linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29                                               unsigned int cycle_state,
  30                                               unsigned int max_packet,
  31                                               gfp_t flags)
  32{
  33        struct xhci_segment *seg;
  34        dma_addr_t      dma;
  35        int             i;
  36
  37        seg = kzalloc(sizeof *seg, flags);
  38        if (!seg)
  39                return NULL;
  40
  41        seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  42        if (!seg->trbs) {
  43                kfree(seg);
  44                return NULL;
  45        }
  46
  47        if (max_packet) {
  48                seg->bounce_buf = kzalloc(max_packet, flags);
  49                if (!seg->bounce_buf) {
  50                        dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  51                        kfree(seg);
  52                        return NULL;
  53                }
  54        }
  55        /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  56        if (cycle_state == 0) {
  57                for (i = 0; i < TRBS_PER_SEGMENT; i++)
  58                        seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  59        }
  60        seg->dma = dma;
  61        seg->next = NULL;
  62
  63        return seg;
  64}
  65
  66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  67{
  68        if (seg->trbs) {
  69                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70                seg->trbs = NULL;
  71        }
  72        kfree(seg->bounce_buf);
  73        kfree(seg);
  74}
  75
  76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  77                                struct xhci_segment *first)
  78{
  79        struct xhci_segment *seg;
  80
  81        seg = first->next;
  82        while (seg != first) {
  83                struct xhci_segment *next = seg->next;
  84                xhci_segment_free(xhci, seg);
  85                seg = next;
  86        }
  87        xhci_segment_free(xhci, first);
  88}
  89
  90/*
  91 * Make the prev segment point to the next segment.
  92 *
  93 * Change the last TRB in the prev segment to be a Link TRB which points to the
  94 * DMA address of the next segment.  The caller needs to set any Link TRB
  95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  96 */
  97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  98                struct xhci_segment *next, enum xhci_ring_type type)
  99{
 100        u32 val;
 101
 102        if (!prev || !next)
 103                return;
 104        prev->next = next;
 105        if (type != TYPE_EVENT) {
 106                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 107                        cpu_to_le64(next->dma);
 108
 109                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 110                val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 111                val &= ~TRB_TYPE_BITMASK;
 112                val |= TRB_TYPE(TRB_LINK);
 113                /* Always set the chain bit with 0.95 hardware */
 114                /* Set chain bit for isoc rings on AMD 0.96 host */
 115                if (xhci_link_trb_quirk(xhci) ||
 116                                (type == TYPE_ISOC &&
 117                                 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 118                        val |= TRB_CHAIN;
 119                prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 120        }
 121}
 122
 123/*
 124 * Link the ring to the new segments.
 125 * Set Toggle Cycle for the new ring if needed.
 126 */
 127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 128                struct xhci_segment *first, struct xhci_segment *last,
 129                unsigned int num_segs)
 130{
 131        struct xhci_segment *next;
 132
 133        if (!ring || !first || !last)
 134                return;
 135
 136        next = ring->enq_seg->next;
 137        xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 138        xhci_link_segments(xhci, last, next, ring->type);
 139        ring->num_segs += num_segs;
 140        ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 141
 142        if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 143                ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 144                        &= ~cpu_to_le32(LINK_TOGGLE);
 145                last->trbs[TRBS_PER_SEGMENT-1].link.control
 146                        |= cpu_to_le32(LINK_TOGGLE);
 147                ring->last_seg = last;
 148        }
 149}
 150
 151/*
 152 * We need a radix tree for mapping physical addresses of TRBs to which stream
 153 * ID they belong to.  We need to do this because the host controller won't tell
 154 * us which stream ring the TRB came from.  We could store the stream ID in an
 155 * event data TRB, but that doesn't help us for the cancellation case, since the
 156 * endpoint may stop before it reaches that event data TRB.
 157 *
 158 * The radix tree maps the upper portion of the TRB DMA address to a ring
 159 * segment that has the same upper portion of DMA addresses.  For example, say I
 160 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 161 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 162 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 163 * pass the radix tree a key to get the right stream ID:
 164 *
 165 *      0x10c90fff >> 10 = 0x43243
 166 *      0x10c912c0 >> 10 = 0x43244
 167 *      0x10c91400 >> 10 = 0x43245
 168 *
 169 * Obviously, only those TRBs with DMA addresses that are within the segment
 170 * will make the radix tree return the stream ID for that ring.
 171 *
 172 * Caveats for the radix tree:
 173 *
 174 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 176 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 178 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 179 * extended systems (where the DMA address can be bigger than 32-bits),
 180 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 181 */
 182static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 183                struct xhci_ring *ring,
 184                struct xhci_segment *seg,
 185                gfp_t mem_flags)
 186{
 187        unsigned long key;
 188        int ret;
 189
 190        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 191        /* Skip any segments that were already added. */
 192        if (radix_tree_lookup(trb_address_map, key))
 193                return 0;
 194
 195        ret = radix_tree_maybe_preload(mem_flags);
 196        if (ret)
 197                return ret;
 198        ret = radix_tree_insert(trb_address_map,
 199                        key, ring);
 200        radix_tree_preload_end();
 201        return ret;
 202}
 203
 204static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 205                struct xhci_segment *seg)
 206{
 207        unsigned long key;
 208
 209        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 210        if (radix_tree_lookup(trb_address_map, key))
 211                radix_tree_delete(trb_address_map, key);
 212}
 213
 214static int xhci_update_stream_segment_mapping(
 215                struct radix_tree_root *trb_address_map,
 216                struct xhci_ring *ring,
 217                struct xhci_segment *first_seg,
 218                struct xhci_segment *last_seg,
 219                gfp_t mem_flags)
 220{
 221        struct xhci_segment *seg;
 222        struct xhci_segment *failed_seg;
 223        int ret;
 224
 225        if (WARN_ON_ONCE(trb_address_map == NULL))
 226                return 0;
 227
 228        seg = first_seg;
 229        do {
 230                ret = xhci_insert_segment_mapping(trb_address_map,
 231                                ring, seg, mem_flags);
 232                if (ret)
 233                        goto remove_streams;
 234                if (seg == last_seg)
 235                        return 0;
 236                seg = seg->next;
 237        } while (seg != first_seg);
 238
 239        return 0;
 240
 241remove_streams:
 242        failed_seg = seg;
 243        seg = first_seg;
 244        do {
 245                xhci_remove_segment_mapping(trb_address_map, seg);
 246                if (seg == failed_seg)
 247                        return ret;
 248                seg = seg->next;
 249        } while (seg != first_seg);
 250
 251        return ret;
 252}
 253
 254static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 255{
 256        struct xhci_segment *seg;
 257
 258        if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 259                return;
 260
 261        seg = ring->first_seg;
 262        do {
 263                xhci_remove_segment_mapping(ring->trb_address_map, seg);
 264                seg = seg->next;
 265        } while (seg != ring->first_seg);
 266}
 267
 268static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 269{
 270        return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 271                        ring->first_seg, ring->last_seg, mem_flags);
 272}
 273
 274/* XXX: Do we need the hcd structure in all these functions? */
 275void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 276{
 277        if (!ring)
 278                return;
 279
 280        trace_xhci_ring_free(ring);
 281
 282        if (ring->first_seg) {
 283                if (ring->type == TYPE_STREAM)
 284                        xhci_remove_stream_mapping(ring);
 285                xhci_free_segments_for_ring(xhci, ring->first_seg);
 286        }
 287
 288        kfree(ring);
 289}
 290
 291static void xhci_initialize_ring_info(struct xhci_ring *ring,
 292                                        unsigned int cycle_state)
 293{
 294        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 295        ring->enqueue = ring->first_seg->trbs;
 296        ring->enq_seg = ring->first_seg;
 297        ring->dequeue = ring->enqueue;
 298        ring->deq_seg = ring->first_seg;
 299        /* The ring is initialized to 0. The producer must write 1 to the cycle
 300         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 301         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 302         *
 303         * New rings are initialized with cycle state equal to 1; if we are
 304         * handling ring expansion, set the cycle state equal to the old ring.
 305         */
 306        ring->cycle_state = cycle_state;
 307
 308        /*
 309         * Each segment has a link TRB, and leave an extra TRB for SW
 310         * accounting purpose
 311         */
 312        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 313}
 314
 315/* Allocate segments and link them for a ring */
 316static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 317                struct xhci_segment **first, struct xhci_segment **last,
 318                unsigned int num_segs, unsigned int cycle_state,
 319                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 320{
 321        struct xhci_segment *prev;
 322
 323        prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 324        if (!prev)
 325                return -ENOMEM;
 326        num_segs--;
 327
 328        *first = prev;
 329        while (num_segs > 0) {
 330                struct xhci_segment     *next;
 331
 332                next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 333                if (!next) {
 334                        prev = *first;
 335                        while (prev) {
 336                                next = prev->next;
 337                                xhci_segment_free(xhci, prev);
 338                                prev = next;
 339                        }
 340                        return -ENOMEM;
 341                }
 342                xhci_link_segments(xhci, prev, next, type);
 343
 344                prev = next;
 345                num_segs--;
 346        }
 347        xhci_link_segments(xhci, prev, *first, type);
 348        *last = prev;
 349
 350        return 0;
 351}
 352
 353/**
 354 * Create a new ring with zero or more segments.
 355 *
 356 * Link each segment together into a ring.
 357 * Set the end flag and the cycle toggle bit on the last segment.
 358 * See section 4.9.1 and figures 15 and 16.
 359 */
 360struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 361                unsigned int num_segs, unsigned int cycle_state,
 362                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 363{
 364        struct xhci_ring        *ring;
 365        int ret;
 366
 367        ring = kzalloc(sizeof *(ring), flags);
 368        if (!ring)
 369                return NULL;
 370
 371        ring->num_segs = num_segs;
 372        ring->bounce_buf_len = max_packet;
 373        INIT_LIST_HEAD(&ring->td_list);
 374        ring->type = type;
 375        if (num_segs == 0)
 376                return ring;
 377
 378        ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 379                        &ring->last_seg, num_segs, cycle_state, type,
 380                        max_packet, flags);
 381        if (ret)
 382                goto fail;
 383
 384        /* Only event ring does not use link TRB */
 385        if (type != TYPE_EVENT) {
 386                /* See section 4.9.2.1 and 6.4.4.1 */
 387                ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 388                        cpu_to_le32(LINK_TOGGLE);
 389        }
 390        xhci_initialize_ring_info(ring, cycle_state);
 391        trace_xhci_ring_alloc(ring);
 392        return ring;
 393
 394fail:
 395        kfree(ring);
 396        return NULL;
 397}
 398
 399void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 400                struct xhci_virt_device *virt_dev,
 401                unsigned int ep_index)
 402{
 403        xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 404        virt_dev->eps[ep_index].ring = NULL;
 405}
 406
 407/*
 408 * Expand an existing ring.
 409 * Allocate a new ring which has same segment numbers and link the two rings.
 410 */
 411int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 412                                unsigned int num_trbs, gfp_t flags)
 413{
 414        struct xhci_segment     *first;
 415        struct xhci_segment     *last;
 416        unsigned int            num_segs;
 417        unsigned int            num_segs_needed;
 418        int                     ret;
 419
 420        num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 421                                (TRBS_PER_SEGMENT - 1);
 422
 423        /* Allocate number of segments we needed, or double the ring size */
 424        num_segs = ring->num_segs > num_segs_needed ?
 425                        ring->num_segs : num_segs_needed;
 426
 427        ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 428                        num_segs, ring->cycle_state, ring->type,
 429                        ring->bounce_buf_len, flags);
 430        if (ret)
 431                return -ENOMEM;
 432
 433        if (ring->type == TYPE_STREAM)
 434                ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 435                                                ring, first, last, flags);
 436        if (ret) {
 437                struct xhci_segment *next;
 438                do {
 439                        next = first->next;
 440                        xhci_segment_free(xhci, first);
 441                        if (first == last)
 442                                break;
 443                        first = next;
 444                } while (true);
 445                return ret;
 446        }
 447
 448        xhci_link_rings(xhci, ring, first, last, num_segs);
 449        trace_xhci_ring_expansion(ring);
 450        xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 451                        "ring expansion succeed, now has %d segments",
 452                        ring->num_segs);
 453
 454        return 0;
 455}
 456
 457struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 458                                                    int type, gfp_t flags)
 459{
 460        struct xhci_container_ctx *ctx;
 461
 462        if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 463                return NULL;
 464
 465        ctx = kzalloc(sizeof(*ctx), flags);
 466        if (!ctx)
 467                return NULL;
 468
 469        ctx->type = type;
 470        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 471        if (type == XHCI_CTX_TYPE_INPUT)
 472                ctx->size += CTX_SIZE(xhci->hcc_params);
 473
 474        ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 475        if (!ctx->bytes) {
 476                kfree(ctx);
 477                return NULL;
 478        }
 479        return ctx;
 480}
 481
 482void xhci_free_container_ctx(struct xhci_hcd *xhci,
 483                             struct xhci_container_ctx *ctx)
 484{
 485        if (!ctx)
 486                return;
 487        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 488        kfree(ctx);
 489}
 490
 491struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 492                                              struct xhci_container_ctx *ctx)
 493{
 494        if (ctx->type != XHCI_CTX_TYPE_INPUT)
 495                return NULL;
 496
 497        return (struct xhci_input_control_ctx *)ctx->bytes;
 498}
 499
 500struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 501                                        struct xhci_container_ctx *ctx)
 502{
 503        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 504                return (struct xhci_slot_ctx *)ctx->bytes;
 505
 506        return (struct xhci_slot_ctx *)
 507                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 508}
 509
 510struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 511                                    struct xhci_container_ctx *ctx,
 512                                    unsigned int ep_index)
 513{
 514        /* increment ep index by offset of start of ep ctx array */
 515        ep_index++;
 516        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 517                ep_index++;
 518
 519        return (struct xhci_ep_ctx *)
 520                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 521}
 522
 523
 524/***************** Streams structures manipulation *************************/
 525
 526static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 527                unsigned int num_stream_ctxs,
 528                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 529{
 530        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 531        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 532
 533        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 534                dma_free_coherent(dev, size,
 535                                stream_ctx, dma);
 536        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 537                return dma_pool_free(xhci->small_streams_pool,
 538                                stream_ctx, dma);
 539        else
 540                return dma_pool_free(xhci->medium_streams_pool,
 541                                stream_ctx, dma);
 542}
 543
 544/*
 545 * The stream context array for each endpoint with bulk streams enabled can
 546 * vary in size, based on:
 547 *  - how many streams the endpoint supports,
 548 *  - the maximum primary stream array size the host controller supports,
 549 *  - and how many streams the device driver asks for.
 550 *
 551 * The stream context array must be a power of 2, and can be as small as
 552 * 64 bytes or as large as 1MB.
 553 */
 554static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 555                unsigned int num_stream_ctxs, dma_addr_t *dma,
 556                gfp_t mem_flags)
 557{
 558        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 559        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 560
 561        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 562                return dma_alloc_coherent(dev, size,
 563                                dma, mem_flags);
 564        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 565                return dma_pool_alloc(xhci->small_streams_pool,
 566                                mem_flags, dma);
 567        else
 568                return dma_pool_alloc(xhci->medium_streams_pool,
 569                                mem_flags, dma);
 570}
 571
 572struct xhci_ring *xhci_dma_to_transfer_ring(
 573                struct xhci_virt_ep *ep,
 574                u64 address)
 575{
 576        if (ep->ep_state & EP_HAS_STREAMS)
 577                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 578                                address >> TRB_SEGMENT_SHIFT);
 579        return ep->ring;
 580}
 581
 582struct xhci_ring *xhci_stream_id_to_ring(
 583                struct xhci_virt_device *dev,
 584                unsigned int ep_index,
 585                unsigned int stream_id)
 586{
 587        struct xhci_virt_ep *ep = &dev->eps[ep_index];
 588
 589        if (stream_id == 0)
 590                return ep->ring;
 591        if (!ep->stream_info)
 592                return NULL;
 593
 594        if (stream_id > ep->stream_info->num_streams)
 595                return NULL;
 596        return ep->stream_info->stream_rings[stream_id];
 597}
 598
 599/*
 600 * Change an endpoint's internal structure so it supports stream IDs.  The
 601 * number of requested streams includes stream 0, which cannot be used by device
 602 * drivers.
 603 *
 604 * The number of stream contexts in the stream context array may be bigger than
 605 * the number of streams the driver wants to use.  This is because the number of
 606 * stream context array entries must be a power of two.
 607 */
 608struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 609                unsigned int num_stream_ctxs,
 610                unsigned int num_streams,
 611                unsigned int max_packet, gfp_t mem_flags)
 612{
 613        struct xhci_stream_info *stream_info;
 614        u32 cur_stream;
 615        struct xhci_ring *cur_ring;
 616        u64 addr;
 617        int ret;
 618
 619        xhci_dbg(xhci, "Allocating %u streams and %u "
 620                        "stream context array entries.\n",
 621                        num_streams, num_stream_ctxs);
 622        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 623                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 624                return NULL;
 625        }
 626        xhci->cmd_ring_reserved_trbs++;
 627
 628        stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 629        if (!stream_info)
 630                goto cleanup_trbs;
 631
 632        stream_info->num_streams = num_streams;
 633        stream_info->num_stream_ctxs = num_stream_ctxs;
 634
 635        /* Initialize the array of virtual pointers to stream rings. */
 636        stream_info->stream_rings = kzalloc(
 637                        sizeof(struct xhci_ring *)*num_streams,
 638                        mem_flags);
 639        if (!stream_info->stream_rings)
 640                goto cleanup_info;
 641
 642        /* Initialize the array of DMA addresses for stream rings for the HW. */
 643        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 644                        num_stream_ctxs, &stream_info->ctx_array_dma,
 645                        mem_flags);
 646        if (!stream_info->stream_ctx_array)
 647                goto cleanup_ctx;
 648        memset(stream_info->stream_ctx_array, 0,
 649                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 650
 651        /* Allocate everything needed to free the stream rings later */
 652        stream_info->free_streams_command =
 653                xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 654        if (!stream_info->free_streams_command)
 655                goto cleanup_ctx;
 656
 657        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 658
 659        /* Allocate rings for all the streams that the driver will use,
 660         * and add their segment DMA addresses to the radix tree.
 661         * Stream 0 is reserved.
 662         */
 663
 664        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 665                stream_info->stream_rings[cur_stream] =
 666                        xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 667                                        mem_flags);
 668                cur_ring = stream_info->stream_rings[cur_stream];
 669                if (!cur_ring)
 670                        goto cleanup_rings;
 671                cur_ring->stream_id = cur_stream;
 672                cur_ring->trb_address_map = &stream_info->trb_address_map;
 673                /* Set deq ptr, cycle bit, and stream context type */
 674                addr = cur_ring->first_seg->dma |
 675                        SCT_FOR_CTX(SCT_PRI_TR) |
 676                        cur_ring->cycle_state;
 677                stream_info->stream_ctx_array[cur_stream].stream_ring =
 678                        cpu_to_le64(addr);
 679                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 680                                cur_stream, (unsigned long long) addr);
 681
 682                ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 683                if (ret) {
 684                        xhci_ring_free(xhci, cur_ring);
 685                        stream_info->stream_rings[cur_stream] = NULL;
 686                        goto cleanup_rings;
 687                }
 688        }
 689        /* Leave the other unused stream ring pointers in the stream context
 690         * array initialized to zero.  This will cause the xHC to give us an
 691         * error if the device asks for a stream ID we don't have setup (if it
 692         * was any other way, the host controller would assume the ring is
 693         * "empty" and wait forever for data to be queued to that stream ID).
 694         */
 695
 696        return stream_info;
 697
 698cleanup_rings:
 699        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 700                cur_ring = stream_info->stream_rings[cur_stream];
 701                if (cur_ring) {
 702                        xhci_ring_free(xhci, cur_ring);
 703                        stream_info->stream_rings[cur_stream] = NULL;
 704                }
 705        }
 706        xhci_free_command(xhci, stream_info->free_streams_command);
 707cleanup_ctx:
 708        kfree(stream_info->stream_rings);
 709cleanup_info:
 710        kfree(stream_info);
 711cleanup_trbs:
 712        xhci->cmd_ring_reserved_trbs--;
 713        return NULL;
 714}
 715/*
 716 * Sets the MaxPStreams field and the Linear Stream Array field.
 717 * Sets the dequeue pointer to the stream context array.
 718 */
 719void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 720                struct xhci_ep_ctx *ep_ctx,
 721                struct xhci_stream_info *stream_info)
 722{
 723        u32 max_primary_streams;
 724        /* MaxPStreams is the number of stream context array entries, not the
 725         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 726         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 727         */
 728        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 729        xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 730                        "Setting number of stream ctx array entries to %u",
 731                        1 << (max_primary_streams + 1));
 732        ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 733        ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 734                                       | EP_HAS_LSA);
 735        ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 736}
 737
 738/*
 739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 741 * not at the beginning of the ring).
 742 */
 743void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 744                struct xhci_virt_ep *ep)
 745{
 746        dma_addr_t addr;
 747        ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 748        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 749        ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 750}
 751
 752/* Frees all stream contexts associated with the endpoint,
 753 *
 754 * Caller should fix the endpoint context streams fields.
 755 */
 756void xhci_free_stream_info(struct xhci_hcd *xhci,
 757                struct xhci_stream_info *stream_info)
 758{
 759        int cur_stream;
 760        struct xhci_ring *cur_ring;
 761
 762        if (!stream_info)
 763                return;
 764
 765        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 766                        cur_stream++) {
 767                cur_ring = stream_info->stream_rings[cur_stream];
 768                if (cur_ring) {
 769                        xhci_ring_free(xhci, cur_ring);
 770                        stream_info->stream_rings[cur_stream] = NULL;
 771                }
 772        }
 773        xhci_free_command(xhci, stream_info->free_streams_command);
 774        xhci->cmd_ring_reserved_trbs--;
 775        if (stream_info->stream_ctx_array)
 776                xhci_free_stream_ctx(xhci,
 777                                stream_info->num_stream_ctxs,
 778                                stream_info->stream_ctx_array,
 779                                stream_info->ctx_array_dma);
 780
 781        kfree(stream_info->stream_rings);
 782        kfree(stream_info);
 783}
 784
 785
 786/***************** Device context manipulation *************************/
 787
 788static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 789                struct xhci_virt_ep *ep)
 790{
 791        timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 792                    0);
 793        ep->xhci = xhci;
 794}
 795
 796static void xhci_free_tt_info(struct xhci_hcd *xhci,
 797                struct xhci_virt_device *virt_dev,
 798                int slot_id)
 799{
 800        struct list_head *tt_list_head;
 801        struct xhci_tt_bw_info *tt_info, *next;
 802        bool slot_found = false;
 803
 804        /* If the device never made it past the Set Address stage,
 805         * it may not have the real_port set correctly.
 806         */
 807        if (virt_dev->real_port == 0 ||
 808                        virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 809                xhci_dbg(xhci, "Bad real port.\n");
 810                return;
 811        }
 812
 813        tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 814        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 815                /* Multi-TT hubs will have more than one entry */
 816                if (tt_info->slot_id == slot_id) {
 817                        slot_found = true;
 818                        list_del(&tt_info->tt_list);
 819                        kfree(tt_info);
 820                } else if (slot_found) {
 821                        break;
 822                }
 823        }
 824}
 825
 826int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 827                struct xhci_virt_device *virt_dev,
 828                struct usb_device *hdev,
 829                struct usb_tt *tt, gfp_t mem_flags)
 830{
 831        struct xhci_tt_bw_info          *tt_info;
 832        unsigned int                    num_ports;
 833        int                             i, j;
 834
 835        if (!tt->multi)
 836                num_ports = 1;
 837        else
 838                num_ports = hdev->maxchild;
 839
 840        for (i = 0; i < num_ports; i++, tt_info++) {
 841                struct xhci_interval_bw_table *bw_table;
 842
 843                tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 844                if (!tt_info)
 845                        goto free_tts;
 846                INIT_LIST_HEAD(&tt_info->tt_list);
 847                list_add(&tt_info->tt_list,
 848                                &xhci->rh_bw[virt_dev->real_port - 1].tts);
 849                tt_info->slot_id = virt_dev->udev->slot_id;
 850                if (tt->multi)
 851                        tt_info->ttport = i+1;
 852                bw_table = &tt_info->bw_table;
 853                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 854                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 855        }
 856        return 0;
 857
 858free_tts:
 859        xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 860        return -ENOMEM;
 861}
 862
 863
 864/* All the xhci_tds in the ring's TD list should be freed at this point.
 865 * Should be called with xhci->lock held if there is any chance the TT lists
 866 * will be manipulated by the configure endpoint, allocate device, or update
 867 * hub functions while this function is removing the TT entries from the list.
 868 */
 869void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 870{
 871        struct xhci_virt_device *dev;
 872        int i;
 873        int old_active_eps = 0;
 874
 875        /* Slot ID 0 is reserved */
 876        if (slot_id == 0 || !xhci->devs[slot_id])
 877                return;
 878
 879        dev = xhci->devs[slot_id];
 880
 881        trace_xhci_free_virt_device(dev);
 882
 883        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 884        if (!dev)
 885                return;
 886
 887        if (dev->tt_info)
 888                old_active_eps = dev->tt_info->active_eps;
 889
 890        for (i = 0; i < 31; i++) {
 891                if (dev->eps[i].ring)
 892                        xhci_ring_free(xhci, dev->eps[i].ring);
 893                if (dev->eps[i].stream_info)
 894                        xhci_free_stream_info(xhci,
 895                                        dev->eps[i].stream_info);
 896                /* Endpoints on the TT/root port lists should have been removed
 897                 * when usb_disable_device() was called for the device.
 898                 * We can't drop them anyway, because the udev might have gone
 899                 * away by this point, and we can't tell what speed it was.
 900                 */
 901                if (!list_empty(&dev->eps[i].bw_endpoint_list))
 902                        xhci_warn(xhci, "Slot %u endpoint %u "
 903                                        "not removed from BW list!\n",
 904                                        slot_id, i);
 905        }
 906        /* If this is a hub, free the TT(s) from the TT list */
 907        xhci_free_tt_info(xhci, dev, slot_id);
 908        /* If necessary, update the number of active TTs on this root port */
 909        xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 910
 911        if (dev->in_ctx)
 912                xhci_free_container_ctx(xhci, dev->in_ctx);
 913        if (dev->out_ctx)
 914                xhci_free_container_ctx(xhci, dev->out_ctx);
 915
 916        if (dev->udev && dev->udev->slot_id)
 917                dev->udev->slot_id = 0;
 918        kfree(xhci->devs[slot_id]);
 919        xhci->devs[slot_id] = NULL;
 920}
 921
 922/*
 923 * Free a virt_device structure.
 924 * If the virt_device added a tt_info (a hub) and has children pointing to
 925 * that tt_info, then free the child first. Recursive.
 926 * We can't rely on udev at this point to find child-parent relationships.
 927 */
 928void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 929{
 930        struct xhci_virt_device *vdev;
 931        struct list_head *tt_list_head;
 932        struct xhci_tt_bw_info *tt_info, *next;
 933        int i;
 934
 935        vdev = xhci->devs[slot_id];
 936        if (!vdev)
 937                return;
 938
 939        if (vdev->real_port == 0 ||
 940                        vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 941                xhci_dbg(xhci, "Bad vdev->real_port.\n");
 942                goto out;
 943        }
 944
 945        tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 946        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 947                /* is this a hub device that added a tt_info to the tts list */
 948                if (tt_info->slot_id == slot_id) {
 949                        /* are any devices using this tt_info? */
 950                        for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 951                                vdev = xhci->devs[i];
 952                                if (vdev && (vdev->tt_info == tt_info))
 953                                        xhci_free_virt_devices_depth_first(
 954                                                xhci, i);
 955                        }
 956                }
 957        }
 958out:
 959        /* we are now at a leaf device */
 960        xhci_debugfs_remove_slot(xhci, slot_id);
 961        xhci_free_virt_device(xhci, slot_id);
 962}
 963
 964int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 965                struct usb_device *udev, gfp_t flags)
 966{
 967        struct xhci_virt_device *dev;
 968        int i;
 969
 970        /* Slot ID 0 is reserved */
 971        if (slot_id == 0 || xhci->devs[slot_id]) {
 972                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 973                return 0;
 974        }
 975
 976        dev = kzalloc(sizeof(*dev), flags);
 977        if (!dev)
 978                return 0;
 979
 980        /* Allocate the (output) device context that will be used in the HC. */
 981        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 982        if (!dev->out_ctx)
 983                goto fail;
 984
 985        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 986                        (unsigned long long)dev->out_ctx->dma);
 987
 988        /* Allocate the (input) device context for address device command */
 989        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 990        if (!dev->in_ctx)
 991                goto fail;
 992
 993        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 994                        (unsigned long long)dev->in_ctx->dma);
 995
 996        /* Initialize the cancellation list and watchdog timers for each ep */
 997        for (i = 0; i < 31; i++) {
 998                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 999                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1000                INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1001        }
1002
1003        /* Allocate endpoint 0 ring */
1004        dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1005        if (!dev->eps[0].ring)
1006                goto fail;
1007
1008        dev->udev = udev;
1009
1010        /* Point to output device context in dcbaa. */
1011        xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1012        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1013                 slot_id,
1014                 &xhci->dcbaa->dev_context_ptrs[slot_id],
1015                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1016
1017        trace_xhci_alloc_virt_device(dev);
1018
1019        xhci->devs[slot_id] = dev;
1020
1021        return 1;
1022fail:
1023
1024        if (dev->in_ctx)
1025                xhci_free_container_ctx(xhci, dev->in_ctx);
1026        if (dev->out_ctx)
1027                xhci_free_container_ctx(xhci, dev->out_ctx);
1028        kfree(dev);
1029
1030        return 0;
1031}
1032
1033void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1034                struct usb_device *udev)
1035{
1036        struct xhci_virt_device *virt_dev;
1037        struct xhci_ep_ctx      *ep0_ctx;
1038        struct xhci_ring        *ep_ring;
1039
1040        virt_dev = xhci->devs[udev->slot_id];
1041        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1042        ep_ring = virt_dev->eps[0].ring;
1043        /*
1044         * FIXME we don't keep track of the dequeue pointer very well after a
1045         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1046         * host to our enqueue pointer.  This should only be called after a
1047         * configured device has reset, so all control transfers should have
1048         * been completed or cancelled before the reset.
1049         */
1050        ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1051                                                        ep_ring->enqueue)
1052                                   | ep_ring->cycle_state);
1053}
1054
1055/*
1056 * The xHCI roothub may have ports of differing speeds in any order in the port
1057 * status registers.  xhci->port_array provides an array of the port speed for
1058 * each offset into the port status registers.
1059 *
1060 * The xHCI hardware wants to know the roothub port number that the USB device
1061 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1062 * know is the index of that port under either the USB 2.0 or the USB 3.0
1063 * roothub, but that doesn't give us the real index into the HW port status
1064 * registers. Call xhci_find_raw_port_number() to get real index.
1065 */
1066static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1067                struct usb_device *udev)
1068{
1069        struct usb_device *top_dev;
1070        struct usb_hcd *hcd;
1071
1072        if (udev->speed >= USB_SPEED_SUPER)
1073                hcd = xhci->shared_hcd;
1074        else
1075                hcd = xhci->main_hcd;
1076
1077        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1078                        top_dev = top_dev->parent)
1079                /* Found device below root hub */;
1080
1081        return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1082}
1083
1084/* Setup an xHCI virtual device for a Set Address command */
1085int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1086{
1087        struct xhci_virt_device *dev;
1088        struct xhci_ep_ctx      *ep0_ctx;
1089        struct xhci_slot_ctx    *slot_ctx;
1090        u32                     port_num;
1091        u32                     max_packets;
1092        struct usb_device *top_dev;
1093
1094        dev = xhci->devs[udev->slot_id];
1095        /* Slot ID 0 is reserved */
1096        if (udev->slot_id == 0 || !dev) {
1097                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1098                                udev->slot_id);
1099                return -EINVAL;
1100        }
1101        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1102        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1103
1104        /* 3) Only the control endpoint is valid - one endpoint context */
1105        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1106        switch (udev->speed) {
1107        case USB_SPEED_SUPER_PLUS:
1108                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1109                max_packets = MAX_PACKET(512);
1110                break;
1111        case USB_SPEED_SUPER:
1112                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1113                max_packets = MAX_PACKET(512);
1114                break;
1115        case USB_SPEED_HIGH:
1116                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1117                max_packets = MAX_PACKET(64);
1118                break;
1119        /* USB core guesses at a 64-byte max packet first for FS devices */
1120        case USB_SPEED_FULL:
1121                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1122                max_packets = MAX_PACKET(64);
1123                break;
1124        case USB_SPEED_LOW:
1125                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1126                max_packets = MAX_PACKET(8);
1127                break;
1128        case USB_SPEED_WIRELESS:
1129                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1130                return -EINVAL;
1131                break;
1132        default:
1133                /* Speed was set earlier, this shouldn't happen. */
1134                return -EINVAL;
1135        }
1136        /* Find the root hub port this device is under */
1137        port_num = xhci_find_real_port_number(xhci, udev);
1138        if (!port_num)
1139                return -EINVAL;
1140        slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1141        /* Set the port number in the virtual_device to the faked port number */
1142        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1143                        top_dev = top_dev->parent)
1144                /* Found device below root hub */;
1145        dev->fake_port = top_dev->portnum;
1146        dev->real_port = port_num;
1147        xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1148        xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1149
1150        /* Find the right bandwidth table that this device will be a part of.
1151         * If this is a full speed device attached directly to a root port (or a
1152         * decendent of one), it counts as a primary bandwidth domain, not a
1153         * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1154         * will never be created for the HS root hub.
1155         */
1156        if (!udev->tt || !udev->tt->hub->parent) {
1157                dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1158        } else {
1159                struct xhci_root_port_bw_info *rh_bw;
1160                struct xhci_tt_bw_info *tt_bw;
1161
1162                rh_bw = &xhci->rh_bw[port_num - 1];
1163                /* Find the right TT. */
1164                list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1165                        if (tt_bw->slot_id != udev->tt->hub->slot_id)
1166                                continue;
1167
1168                        if (!dev->udev->tt->multi ||
1169                                        (udev->tt->multi &&
1170                                         tt_bw->ttport == dev->udev->ttport)) {
1171                                dev->bw_table = &tt_bw->bw_table;
1172                                dev->tt_info = tt_bw;
1173                                break;
1174                        }
1175                }
1176                if (!dev->tt_info)
1177                        xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1178        }
1179
1180        /* Is this a LS/FS device under an external HS hub? */
1181        if (udev->tt && udev->tt->hub->parent) {
1182                slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1183                                                (udev->ttport << 8));
1184                if (udev->tt->multi)
1185                        slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1186        }
1187        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1188        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1189
1190        /* Step 4 - ring already allocated */
1191        /* Step 5 */
1192        ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1193
1194        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1195        ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1196                                         max_packets);
1197
1198        ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1199                                   dev->eps[0].ring->cycle_state);
1200
1201        trace_xhci_setup_addressable_virt_device(dev);
1202
1203        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204
1205        return 0;
1206}
1207
1208/*
1209 * Convert interval expressed as 2^(bInterval - 1) == interval into
1210 * straight exponent value 2^n == interval.
1211 *
1212 */
1213static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214                struct usb_host_endpoint *ep)
1215{
1216        unsigned int interval;
1217
1218        interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219        if (interval != ep->desc.bInterval - 1)
1220                dev_warn(&udev->dev,
1221                         "ep %#x - rounding interval to %d %sframes\n",
1222                         ep->desc.bEndpointAddress,
1223                         1 << interval,
1224                         udev->speed == USB_SPEED_FULL ? "" : "micro");
1225
1226        if (udev->speed == USB_SPEED_FULL) {
1227                /*
1228                 * Full speed isoc endpoints specify interval in frames,
1229                 * not microframes. We are using microframes everywhere,
1230                 * so adjust accordingly.
1231                 */
1232                interval += 3;  /* 1 frame = 2^3 uframes */
1233        }
1234
1235        return interval;
1236}
1237
1238/*
1239 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240 * microframes, rounded down to nearest power of 2.
1241 */
1242static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243                struct usb_host_endpoint *ep, unsigned int desc_interval,
1244                unsigned int min_exponent, unsigned int max_exponent)
1245{
1246        unsigned int interval;
1247
1248        interval = fls(desc_interval) - 1;
1249        interval = clamp_val(interval, min_exponent, max_exponent);
1250        if ((1 << interval) != desc_interval)
1251                dev_dbg(&udev->dev,
1252                         "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253                         ep->desc.bEndpointAddress,
1254                         1 << interval,
1255                         desc_interval);
1256
1257        return interval;
1258}
1259
1260static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261                struct usb_host_endpoint *ep)
1262{
1263        if (ep->desc.bInterval == 0)
1264                return 0;
1265        return xhci_microframes_to_exponent(udev, ep,
1266                        ep->desc.bInterval, 0, 15);
1267}
1268
1269
1270static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271                struct usb_host_endpoint *ep)
1272{
1273        return xhci_microframes_to_exponent(udev, ep,
1274                        ep->desc.bInterval * 8, 3, 10);
1275}
1276
1277/* Return the polling or NAK interval.
1278 *
1279 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1280 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 *
1282 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 * is set to 0.
1284 */
1285static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286                struct usb_host_endpoint *ep)
1287{
1288        unsigned int interval = 0;
1289
1290        switch (udev->speed) {
1291        case USB_SPEED_HIGH:
1292                /* Max NAK rate */
1293                if (usb_endpoint_xfer_control(&ep->desc) ||
1294                    usb_endpoint_xfer_bulk(&ep->desc)) {
1295                        interval = xhci_parse_microframe_interval(udev, ep);
1296                        break;
1297                }
1298                /* Fall through - SS and HS isoc/int have same decoding */
1299
1300        case USB_SPEED_SUPER_PLUS:
1301        case USB_SPEED_SUPER:
1302                if (usb_endpoint_xfer_int(&ep->desc) ||
1303                    usb_endpoint_xfer_isoc(&ep->desc)) {
1304                        interval = xhci_parse_exponent_interval(udev, ep);
1305                }
1306                break;
1307
1308        case USB_SPEED_FULL:
1309                if (usb_endpoint_xfer_isoc(&ep->desc)) {
1310                        interval = xhci_parse_exponent_interval(udev, ep);
1311                        break;
1312                }
1313                /*
1314                 * Fall through for interrupt endpoint interval decoding
1315                 * since it uses the same rules as low speed interrupt
1316                 * endpoints.
1317                 */
1318                /* fall through */
1319
1320        case USB_SPEED_LOW:
1321                if (usb_endpoint_xfer_int(&ep->desc) ||
1322                    usb_endpoint_xfer_isoc(&ep->desc)) {
1323
1324                        interval = xhci_parse_frame_interval(udev, ep);
1325                }
1326                break;
1327
1328        default:
1329                BUG();
1330        }
1331        return interval;
1332}
1333
1334/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1335 * High speed endpoint descriptors can define "the number of additional
1336 * transaction opportunities per microframe", but that goes in the Max Burst
1337 * endpoint context field.
1338 */
1339static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1340                struct usb_host_endpoint *ep)
1341{
1342        if (udev->speed < USB_SPEED_SUPER ||
1343                        !usb_endpoint_xfer_isoc(&ep->desc))
1344                return 0;
1345        return ep->ss_ep_comp.bmAttributes;
1346}
1347
1348static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1349                                       struct usb_host_endpoint *ep)
1350{
1351        /* Super speed and Plus have max burst in ep companion desc */
1352        if (udev->speed >= USB_SPEED_SUPER)
1353                return ep->ss_ep_comp.bMaxBurst;
1354
1355        if (udev->speed == USB_SPEED_HIGH &&
1356            (usb_endpoint_xfer_isoc(&ep->desc) ||
1357             usb_endpoint_xfer_int(&ep->desc)))
1358                return usb_endpoint_maxp_mult(&ep->desc) - 1;
1359
1360        return 0;
1361}
1362
1363static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1364{
1365        int in;
1366
1367        in = usb_endpoint_dir_in(&ep->desc);
1368
1369        switch (usb_endpoint_type(&ep->desc)) {
1370        case USB_ENDPOINT_XFER_CONTROL:
1371                return CTRL_EP;
1372        case USB_ENDPOINT_XFER_BULK:
1373                return in ? BULK_IN_EP : BULK_OUT_EP;
1374        case USB_ENDPOINT_XFER_ISOC:
1375                return in ? ISOC_IN_EP : ISOC_OUT_EP;
1376        case USB_ENDPOINT_XFER_INT:
1377                return in ? INT_IN_EP : INT_OUT_EP;
1378        }
1379        return 0;
1380}
1381
1382/* Return the maximum endpoint service interval time (ESIT) payload.
1383 * Basically, this is the maxpacket size, multiplied by the burst size
1384 * and mult size.
1385 */
1386static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1387                struct usb_host_endpoint *ep)
1388{
1389        int max_burst;
1390        int max_packet;
1391
1392        /* Only applies for interrupt or isochronous endpoints */
1393        if (usb_endpoint_xfer_control(&ep->desc) ||
1394                        usb_endpoint_xfer_bulk(&ep->desc))
1395                return 0;
1396
1397        /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1398        if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1399            USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1400                return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1401        /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1402        else if (udev->speed >= USB_SPEED_SUPER)
1403                return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1404
1405        max_packet = usb_endpoint_maxp(&ep->desc);
1406        max_burst = usb_endpoint_maxp_mult(&ep->desc);
1407        /* A 0 in max burst means 1 transfer per ESIT */
1408        return max_packet * max_burst;
1409}
1410
1411/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1412 * Drivers will have to call usb_alloc_streams() to do that.
1413 */
1414int xhci_endpoint_init(struct xhci_hcd *xhci,
1415                struct xhci_virt_device *virt_dev,
1416                struct usb_device *udev,
1417                struct usb_host_endpoint *ep,
1418                gfp_t mem_flags)
1419{
1420        unsigned int ep_index;
1421        struct xhci_ep_ctx *ep_ctx;
1422        struct xhci_ring *ep_ring;
1423        unsigned int max_packet;
1424        enum xhci_ring_type ring_type;
1425        u32 max_esit_payload;
1426        u32 endpoint_type;
1427        unsigned int max_burst;
1428        unsigned int interval;
1429        unsigned int mult;
1430        unsigned int avg_trb_len;
1431        unsigned int err_count = 0;
1432
1433        ep_index = xhci_get_endpoint_index(&ep->desc);
1434        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1435
1436        endpoint_type = xhci_get_endpoint_type(ep);
1437        if (!endpoint_type)
1438                return -EINVAL;
1439
1440        ring_type = usb_endpoint_type(&ep->desc);
1441
1442        /*
1443         * Get values to fill the endpoint context, mostly from ep descriptor.
1444         * The average TRB buffer lengt for bulk endpoints is unclear as we
1445         * have no clue on scatter gather list entry size. For Isoc and Int,
1446         * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1447         */
1448        max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1449        interval = xhci_get_endpoint_interval(udev, ep);
1450
1451        /* Periodic endpoint bInterval limit quirk */
1452        if (usb_endpoint_xfer_int(&ep->desc) ||
1453            usb_endpoint_xfer_isoc(&ep->desc)) {
1454                if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1455                    udev->speed >= USB_SPEED_HIGH &&
1456                    interval >= 7) {
1457                        interval = 6;
1458                }
1459        }
1460
1461        mult = xhci_get_endpoint_mult(udev, ep);
1462        max_packet = usb_endpoint_maxp(&ep->desc);
1463        max_burst = xhci_get_endpoint_max_burst(udev, ep);
1464        avg_trb_len = max_esit_payload;
1465
1466        /* FIXME dig Mult and streams info out of ep companion desc */
1467
1468        /* Allow 3 retries for everything but isoc, set CErr = 3 */
1469        if (!usb_endpoint_xfer_isoc(&ep->desc))
1470                err_count = 3;
1471        /* Some devices get this wrong */
1472        if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1473                max_packet = 512;
1474        /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1475        if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1476                avg_trb_len = 8;
1477        /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1478        if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1479                mult = 0;
1480
1481        /* Set up the endpoint ring */
1482        virt_dev->eps[ep_index].new_ring =
1483                xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1484        if (!virt_dev->eps[ep_index].new_ring)
1485                return -ENOMEM;
1486
1487        virt_dev->eps[ep_index].skip = false;
1488        ep_ring = virt_dev->eps[ep_index].new_ring;
1489
1490        /* Fill the endpoint context */
1491        ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1492                                      EP_INTERVAL(interval) |
1493                                      EP_MULT(mult));
1494        ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1495                                       MAX_PACKET(max_packet) |
1496                                       MAX_BURST(max_burst) |
1497                                       ERROR_COUNT(err_count));
1498        ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1499                                  ep_ring->cycle_state);
1500
1501        ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1502                                      EP_AVG_TRB_LENGTH(avg_trb_len));
1503
1504        return 0;
1505}
1506
1507void xhci_endpoint_zero(struct xhci_hcd *xhci,
1508                struct xhci_virt_device *virt_dev,
1509                struct usb_host_endpoint *ep)
1510{
1511        unsigned int ep_index;
1512        struct xhci_ep_ctx *ep_ctx;
1513
1514        ep_index = xhci_get_endpoint_index(&ep->desc);
1515        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1516
1517        ep_ctx->ep_info = 0;
1518        ep_ctx->ep_info2 = 0;
1519        ep_ctx->deq = 0;
1520        ep_ctx->tx_info = 0;
1521        /* Don't free the endpoint ring until the set interface or configuration
1522         * request succeeds.
1523         */
1524}
1525
1526void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1527{
1528        bw_info->ep_interval = 0;
1529        bw_info->mult = 0;
1530        bw_info->num_packets = 0;
1531        bw_info->max_packet_size = 0;
1532        bw_info->type = 0;
1533        bw_info->max_esit_payload = 0;
1534}
1535
1536void xhci_update_bw_info(struct xhci_hcd *xhci,
1537                struct xhci_container_ctx *in_ctx,
1538                struct xhci_input_control_ctx *ctrl_ctx,
1539                struct xhci_virt_device *virt_dev)
1540{
1541        struct xhci_bw_info *bw_info;
1542        struct xhci_ep_ctx *ep_ctx;
1543        unsigned int ep_type;
1544        int i;
1545
1546        for (i = 1; i < 31; i++) {
1547                bw_info = &virt_dev->eps[i].bw_info;
1548
1549                /* We can't tell what endpoint type is being dropped, but
1550                 * unconditionally clearing the bandwidth info for non-periodic
1551                 * endpoints should be harmless because the info will never be
1552                 * set in the first place.
1553                 */
1554                if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1555                        /* Dropped endpoint */
1556                        xhci_clear_endpoint_bw_info(bw_info);
1557                        continue;
1558                }
1559
1560                if (EP_IS_ADDED(ctrl_ctx, i)) {
1561                        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1562                        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1563
1564                        /* Ignore non-periodic endpoints */
1565                        if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1566                                        ep_type != ISOC_IN_EP &&
1567                                        ep_type != INT_IN_EP)
1568                                continue;
1569
1570                        /* Added or changed endpoint */
1571                        bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1572                                        le32_to_cpu(ep_ctx->ep_info));
1573                        /* Number of packets and mult are zero-based in the
1574                         * input context, but we want one-based for the
1575                         * interval table.
1576                         */
1577                        bw_info->mult = CTX_TO_EP_MULT(
1578                                        le32_to_cpu(ep_ctx->ep_info)) + 1;
1579                        bw_info->num_packets = CTX_TO_MAX_BURST(
1580                                        le32_to_cpu(ep_ctx->ep_info2)) + 1;
1581                        bw_info->max_packet_size = MAX_PACKET_DECODED(
1582                                        le32_to_cpu(ep_ctx->ep_info2));
1583                        bw_info->type = ep_type;
1584                        bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1585                                        le32_to_cpu(ep_ctx->tx_info));
1586                }
1587        }
1588}
1589
1590/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1591 * Useful when you want to change one particular aspect of the endpoint and then
1592 * issue a configure endpoint command.
1593 */
1594void xhci_endpoint_copy(struct xhci_hcd *xhci,
1595                struct xhci_container_ctx *in_ctx,
1596                struct xhci_container_ctx *out_ctx,
1597                unsigned int ep_index)
1598{
1599        struct xhci_ep_ctx *out_ep_ctx;
1600        struct xhci_ep_ctx *in_ep_ctx;
1601
1602        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1604
1605        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1606        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1607        in_ep_ctx->deq = out_ep_ctx->deq;
1608        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1609}
1610
1611/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command.  Only the context entries field matters,
1614 * but we'll copy the whole thing anyway.
1615 */
1616void xhci_slot_copy(struct xhci_hcd *xhci,
1617                struct xhci_container_ctx *in_ctx,
1618                struct xhci_container_ctx *out_ctx)
1619{
1620        struct xhci_slot_ctx *in_slot_ctx;
1621        struct xhci_slot_ctx *out_slot_ctx;
1622
1623        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1624        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1625
1626        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1630}
1631
1632/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1634{
1635        int i;
1636        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1638
1639        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1640                        "Allocating %d scratchpad buffers", num_sp);
1641
1642        if (!num_sp)
1643                return 0;
1644
1645        xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1646        if (!xhci->scratchpad)
1647                goto fail_sp;
1648
1649        xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1650                                     num_sp * sizeof(u64),
1651                                     &xhci->scratchpad->sp_dma, flags);
1652        if (!xhci->scratchpad->sp_array)
1653                goto fail_sp2;
1654
1655        xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1656        if (!xhci->scratchpad->sp_buffers)
1657                goto fail_sp3;
1658
1659        xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1660        for (i = 0; i < num_sp; i++) {
1661                dma_addr_t dma;
1662                void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1663                                flags);
1664                if (!buf)
1665                        goto fail_sp4;
1666
1667                xhci->scratchpad->sp_array[i] = dma;
1668                xhci->scratchpad->sp_buffers[i] = buf;
1669        }
1670
1671        return 0;
1672
1673 fail_sp4:
1674        for (i = i - 1; i >= 0; i--) {
1675                dma_free_coherent(dev, xhci->page_size,
1676                                    xhci->scratchpad->sp_buffers[i],
1677                                    xhci->scratchpad->sp_array[i]);
1678        }
1679
1680        kfree(xhci->scratchpad->sp_buffers);
1681
1682 fail_sp3:
1683        dma_free_coherent(dev, num_sp * sizeof(u64),
1684                            xhci->scratchpad->sp_array,
1685                            xhci->scratchpad->sp_dma);
1686
1687 fail_sp2:
1688        kfree(xhci->scratchpad);
1689        xhci->scratchpad = NULL;
1690
1691 fail_sp:
1692        return -ENOMEM;
1693}
1694
1695static void scratchpad_free(struct xhci_hcd *xhci)
1696{
1697        int num_sp;
1698        int i;
1699        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1700
1701        if (!xhci->scratchpad)
1702                return;
1703
1704        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1705
1706        for (i = 0; i < num_sp; i++) {
1707                dma_free_coherent(dev, xhci->page_size,
1708                                    xhci->scratchpad->sp_buffers[i],
1709                                    xhci->scratchpad->sp_array[i]);
1710        }
1711        kfree(xhci->scratchpad->sp_buffers);
1712        dma_free_coherent(dev, num_sp * sizeof(u64),
1713                            xhci->scratchpad->sp_array,
1714                            xhci->scratchpad->sp_dma);
1715        kfree(xhci->scratchpad);
1716        xhci->scratchpad = NULL;
1717}
1718
1719struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1720                bool allocate_completion, gfp_t mem_flags)
1721{
1722        struct xhci_command *command;
1723
1724        command = kzalloc(sizeof(*command), mem_flags);
1725        if (!command)
1726                return NULL;
1727
1728        if (allocate_completion) {
1729                command->completion =
1730                        kzalloc(sizeof(struct completion), mem_flags);
1731                if (!command->completion) {
1732                        kfree(command);
1733                        return NULL;
1734                }
1735                init_completion(command->completion);
1736        }
1737
1738        command->status = 0;
1739        INIT_LIST_HEAD(&command->cmd_list);
1740        return command;
1741}
1742
1743struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1744                bool allocate_completion, gfp_t mem_flags)
1745{
1746        struct xhci_command *command;
1747
1748        command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1749        if (!command)
1750                return NULL;
1751
1752        command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753                                                   mem_flags);
1754        if (!command->in_ctx) {
1755                kfree(command->completion);
1756                kfree(command);
1757                return NULL;
1758        }
1759        return command;
1760}
1761
1762void xhci_urb_free_priv(struct urb_priv *urb_priv)
1763{
1764        kfree(urb_priv);
1765}
1766
1767void xhci_free_command(struct xhci_hcd *xhci,
1768                struct xhci_command *command)
1769{
1770        xhci_free_container_ctx(xhci,
1771                        command->in_ctx);
1772        kfree(command->completion);
1773        kfree(command);
1774}
1775
1776int xhci_alloc_erst(struct xhci_hcd *xhci,
1777                    struct xhci_ring *evt_ring,
1778                    struct xhci_erst *erst,
1779                    gfp_t flags)
1780{
1781        size_t size;
1782        unsigned int val;
1783        struct xhci_segment *seg;
1784        struct xhci_erst_entry *entry;
1785
1786        size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1787        erst->entries = dma_zalloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1788                                            size, &erst->erst_dma_addr, flags);
1789        if (!erst->entries)
1790                return -ENOMEM;
1791
1792        erst->num_entries = evt_ring->num_segs;
1793
1794        seg = evt_ring->first_seg;
1795        for (val = 0; val < evt_ring->num_segs; val++) {
1796                entry = &erst->entries[val];
1797                entry->seg_addr = cpu_to_le64(seg->dma);
1798                entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1799                entry->rsvd = 0;
1800                seg = seg->next;
1801        }
1802
1803        return 0;
1804}
1805
1806void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1807{
1808        size_t size;
1809        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1810
1811        size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1812        if (erst->entries)
1813                dma_free_coherent(dev, size,
1814                                erst->entries,
1815                                erst->erst_dma_addr);
1816        erst->entries = NULL;
1817}
1818
1819void xhci_mem_cleanup(struct xhci_hcd *xhci)
1820{
1821        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1822        int i, j, num_ports;
1823
1824        cancel_delayed_work_sync(&xhci->cmd_timer);
1825
1826        xhci_free_erst(xhci, &xhci->erst);
1827
1828        if (xhci->event_ring)
1829                xhci_ring_free(xhci, xhci->event_ring);
1830        xhci->event_ring = NULL;
1831        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1832
1833        if (xhci->lpm_command)
1834                xhci_free_command(xhci, xhci->lpm_command);
1835        xhci->lpm_command = NULL;
1836        if (xhci->cmd_ring)
1837                xhci_ring_free(xhci, xhci->cmd_ring);
1838        xhci->cmd_ring = NULL;
1839        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1840        xhci_cleanup_command_queue(xhci);
1841
1842        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843        for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1844                struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845                for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846                        struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847                        while (!list_empty(ep))
1848                                list_del_init(ep->next);
1849                }
1850        }
1851
1852        for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1853                xhci_free_virt_devices_depth_first(xhci, i);
1854
1855        dma_pool_destroy(xhci->segment_pool);
1856        xhci->segment_pool = NULL;
1857        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1858
1859        dma_pool_destroy(xhci->device_pool);
1860        xhci->device_pool = NULL;
1861        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1862
1863        dma_pool_destroy(xhci->small_streams_pool);
1864        xhci->small_streams_pool = NULL;
1865        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1866                        "Freed small stream array pool");
1867
1868        dma_pool_destroy(xhci->medium_streams_pool);
1869        xhci->medium_streams_pool = NULL;
1870        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1871                        "Freed medium stream array pool");
1872
1873        if (xhci->dcbaa)
1874                dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1875                                xhci->dcbaa, xhci->dcbaa->dma);
1876        xhci->dcbaa = NULL;
1877
1878        scratchpad_free(xhci);
1879
1880        if (!xhci->rh_bw)
1881                goto no_bw;
1882
1883        for (i = 0; i < num_ports; i++) {
1884                struct xhci_tt_bw_info *tt, *n;
1885                list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1886                        list_del(&tt->tt_list);
1887                        kfree(tt);
1888                }
1889        }
1890
1891no_bw:
1892        xhci->cmd_ring_reserved_trbs = 0;
1893        xhci->num_usb2_ports = 0;
1894        xhci->num_usb3_ports = 0;
1895        xhci->num_active_eps = 0;
1896        kfree(xhci->usb2_ports);
1897        kfree(xhci->usb3_ports);
1898        kfree(xhci->port_array);
1899        kfree(xhci->rh_bw);
1900        kfree(xhci->ext_caps);
1901
1902        xhci->usb2_ports = NULL;
1903        xhci->usb3_ports = NULL;
1904        xhci->port_array = NULL;
1905        xhci->rh_bw = NULL;
1906        xhci->ext_caps = NULL;
1907
1908        xhci->page_size = 0;
1909        xhci->page_shift = 0;
1910        xhci->bus_state[0].bus_suspended = 0;
1911        xhci->bus_state[1].bus_suspended = 0;
1912}
1913
1914static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1915                struct xhci_segment *input_seg,
1916                union xhci_trb *start_trb,
1917                union xhci_trb *end_trb,
1918                dma_addr_t input_dma,
1919                struct xhci_segment *result_seg,
1920                char *test_name, int test_number)
1921{
1922        unsigned long long start_dma;
1923        unsigned long long end_dma;
1924        struct xhci_segment *seg;
1925
1926        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1927        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1928
1929        seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1930        if (seg != result_seg) {
1931                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1932                                test_name, test_number);
1933                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1934                                "input DMA 0x%llx\n",
1935                                input_seg,
1936                                (unsigned long long) input_dma);
1937                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1938                                "ending TRB %p (0x%llx DMA)\n",
1939                                start_trb, start_dma,
1940                                end_trb, end_dma);
1941                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1942                                result_seg, seg);
1943                trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1944                          true);
1945                return -1;
1946        }
1947        return 0;
1948}
1949
1950/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1951static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1952{
1953        struct {
1954                dma_addr_t              input_dma;
1955                struct xhci_segment     *result_seg;
1956        } simple_test_vector [] = {
1957                /* A zeroed DMA field should fail */
1958                { 0, NULL },
1959                /* One TRB before the ring start should fail */
1960                { xhci->event_ring->first_seg->dma - 16, NULL },
1961                /* One byte before the ring start should fail */
1962                { xhci->event_ring->first_seg->dma - 1, NULL },
1963                /* Starting TRB should succeed */
1964                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1965                /* Ending TRB should succeed */
1966                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1967                        xhci->event_ring->first_seg },
1968                /* One byte after the ring end should fail */
1969                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1970                /* One TRB after the ring end should fail */
1971                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1972                /* An address of all ones should fail */
1973                { (dma_addr_t) (~0), NULL },
1974        };
1975        struct {
1976                struct xhci_segment     *input_seg;
1977                union xhci_trb          *start_trb;
1978                union xhci_trb          *end_trb;
1979                dma_addr_t              input_dma;
1980                struct xhci_segment     *result_seg;
1981        } complex_test_vector [] = {
1982                /* Test feeding a valid DMA address from a different ring */
1983                {       .input_seg = xhci->event_ring->first_seg,
1984                        .start_trb = xhci->event_ring->first_seg->trbs,
1985                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1986                        .input_dma = xhci->cmd_ring->first_seg->dma,
1987                        .result_seg = NULL,
1988                },
1989                /* Test feeding a valid end TRB from a different ring */
1990                {       .input_seg = xhci->event_ring->first_seg,
1991                        .start_trb = xhci->event_ring->first_seg->trbs,
1992                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1993                        .input_dma = xhci->cmd_ring->first_seg->dma,
1994                        .result_seg = NULL,
1995                },
1996                /* Test feeding a valid start and end TRB from a different ring */
1997                {       .input_seg = xhci->event_ring->first_seg,
1998                        .start_trb = xhci->cmd_ring->first_seg->trbs,
1999                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2000                        .input_dma = xhci->cmd_ring->first_seg->dma,
2001                        .result_seg = NULL,
2002                },
2003                /* TRB in this ring, but after this TD */
2004                {       .input_seg = xhci->event_ring->first_seg,
2005                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
2006                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
2007                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2008                        .result_seg = NULL,
2009                },
2010                /* TRB in this ring, but before this TD */
2011                {       .input_seg = xhci->event_ring->first_seg,
2012                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
2013                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
2014                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2015                        .result_seg = NULL,
2016                },
2017                /* TRB in this ring, but after this wrapped TD */
2018                {       .input_seg = xhci->event_ring->first_seg,
2019                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2020                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2021                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2022                        .result_seg = NULL,
2023                },
2024                /* TRB in this ring, but before this wrapped TD */
2025                {       .input_seg = xhci->event_ring->first_seg,
2026                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2027                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2028                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2029                        .result_seg = NULL,
2030                },
2031                /* TRB not in this ring, and we have a wrapped TD */
2032                {       .input_seg = xhci->event_ring->first_seg,
2033                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2034                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2035                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2036                        .result_seg = NULL,
2037                },
2038        };
2039
2040        unsigned int num_tests;
2041        int i, ret;
2042
2043        num_tests = ARRAY_SIZE(simple_test_vector);
2044        for (i = 0; i < num_tests; i++) {
2045                ret = xhci_test_trb_in_td(xhci,
2046                                xhci->event_ring->first_seg,
2047                                xhci->event_ring->first_seg->trbs,
2048                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2049                                simple_test_vector[i].input_dma,
2050                                simple_test_vector[i].result_seg,
2051                                "Simple", i);
2052                if (ret < 0)
2053                        return ret;
2054        }
2055
2056        num_tests = ARRAY_SIZE(complex_test_vector);
2057        for (i = 0; i < num_tests; i++) {
2058                ret = xhci_test_trb_in_td(xhci,
2059                                complex_test_vector[i].input_seg,
2060                                complex_test_vector[i].start_trb,
2061                                complex_test_vector[i].end_trb,
2062                                complex_test_vector[i].input_dma,
2063                                complex_test_vector[i].result_seg,
2064                                "Complex", i);
2065                if (ret < 0)
2066                        return ret;
2067        }
2068        xhci_dbg(xhci, "TRB math tests passed.\n");
2069        return 0;
2070}
2071
2072static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2073{
2074        u64 temp;
2075        dma_addr_t deq;
2076
2077        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2078                        xhci->event_ring->dequeue);
2079        if (deq == 0 && !in_interrupt())
2080                xhci_warn(xhci, "WARN something wrong with SW event ring "
2081                                "dequeue ptr.\n");
2082        /* Update HC event ring dequeue pointer */
2083        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2084        temp &= ERST_PTR_MASK;
2085        /* Don't clear the EHB bit (which is RW1C) because
2086         * there might be more events to service.
2087         */
2088        temp &= ~ERST_EHB;
2089        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2090                        "// Write event ring dequeue pointer, "
2091                        "preserving EHB bit");
2092        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2093                        &xhci->ir_set->erst_dequeue);
2094}
2095
2096static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2097                __le32 __iomem *addr, int max_caps)
2098{
2099        u32 temp, port_offset, port_count;
2100        int i;
2101        u8 major_revision, minor_revision;
2102        struct xhci_hub *rhub;
2103
2104        temp = readl(addr);
2105        major_revision = XHCI_EXT_PORT_MAJOR(temp);
2106        minor_revision = XHCI_EXT_PORT_MINOR(temp);
2107
2108        if (major_revision == 0x03) {
2109                rhub = &xhci->usb3_rhub;
2110        } else if (major_revision <= 0x02) {
2111                rhub = &xhci->usb2_rhub;
2112        } else {
2113                xhci_warn(xhci, "Ignoring unknown port speed, "
2114                                "Ext Cap %p, revision = 0x%x\n",
2115                                addr, major_revision);
2116                /* Ignoring port protocol we can't understand. FIXME */
2117                return;
2118        }
2119        rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2120
2121        if (rhub->min_rev < minor_revision)
2122                rhub->min_rev = minor_revision;
2123
2124        /* Port offset and count in the third dword, see section 7.2 */
2125        temp = readl(addr + 2);
2126        port_offset = XHCI_EXT_PORT_OFF(temp);
2127        port_count = XHCI_EXT_PORT_COUNT(temp);
2128        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2129                        "Ext Cap %p, port offset = %u, "
2130                        "count = %u, revision = 0x%x",
2131                        addr, port_offset, port_count, major_revision);
2132        /* Port count includes the current port offset */
2133        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2134                /* WTF? "Valid values are ‘1’ to MaxPorts" */
2135                return;
2136
2137        rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2138        if (rhub->psi_count) {
2139                rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2140                                    GFP_KERNEL);
2141                if (!rhub->psi)
2142                        rhub->psi_count = 0;
2143
2144                rhub->psi_uid_count++;
2145                for (i = 0; i < rhub->psi_count; i++) {
2146                        rhub->psi[i] = readl(addr + 4 + i);
2147
2148                        /* count unique ID values, two consecutive entries can
2149                         * have the same ID if link is assymetric
2150                         */
2151                        if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2152                                  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2153                                rhub->psi_uid_count++;
2154
2155                        xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2156                                  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2157                                  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2158                                  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2159                                  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2160                                  XHCI_EXT_PORT_LP(rhub->psi[i]),
2161                                  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2162                }
2163        }
2164        /* cache usb2 port capabilities */
2165        if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2166                xhci->ext_caps[xhci->num_ext_caps++] = temp;
2167
2168        /* Check the host's USB2 LPM capability */
2169        if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2170                        (temp & XHCI_L1C)) {
2171                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2172                                "xHCI 0.96: support USB2 software lpm");
2173                xhci->sw_lpm_support = 1;
2174        }
2175
2176        if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2177                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2178                                "xHCI 1.0: support USB2 software lpm");
2179                xhci->sw_lpm_support = 1;
2180                if (temp & XHCI_HLC) {
2181                        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2182                                        "xHCI 1.0: support USB2 hardware lpm");
2183                        xhci->hw_lpm_support = 1;
2184                }
2185        }
2186
2187        port_offset--;
2188        for (i = port_offset; i < (port_offset + port_count); i++) {
2189                /* Duplicate entry.  Ignore the port if the revisions differ. */
2190                if (xhci->port_array[i] != 0) {
2191                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2192                                        " port %u\n", addr, i);
2193                        xhci_warn(xhci, "Port was marked as USB %u, "
2194                                        "duplicated as USB %u\n",
2195                                        xhci->port_array[i], major_revision);
2196                        /* Only adjust the roothub port counts if we haven't
2197                         * found a similar duplicate.
2198                         */
2199                        if (xhci->port_array[i] != major_revision &&
2200                                xhci->port_array[i] != DUPLICATE_ENTRY) {
2201                                if (xhci->port_array[i] == 0x03)
2202                                        xhci->num_usb3_ports--;
2203                                else
2204                                        xhci->num_usb2_ports--;
2205                                xhci->port_array[i] = DUPLICATE_ENTRY;
2206                        }
2207                        /* FIXME: Should we disable the port? */
2208                        continue;
2209                }
2210                xhci->port_array[i] = major_revision;
2211                if (major_revision == 0x03)
2212                        xhci->num_usb3_ports++;
2213                else
2214                        xhci->num_usb2_ports++;
2215        }
2216        /* FIXME: Should we disable ports not in the Extended Capabilities? */
2217}
2218
2219/*
2220 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2221 * specify what speeds each port is supposed to be.  We can't count on the port
2222 * speed bits in the PORTSC register being correct until a device is connected,
2223 * but we need to set up the two fake roothubs with the correct number of USB
2224 * 3.0 and USB 2.0 ports at host controller initialization time.
2225 */
2226static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2227{
2228        void __iomem *base;
2229        u32 offset;
2230        unsigned int num_ports;
2231        int i, j, port_index;
2232        int cap_count = 0;
2233        u32 cap_start;
2234
2235        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2236        xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2237        if (!xhci->port_array)
2238                return -ENOMEM;
2239
2240        xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2241        if (!xhci->rh_bw)
2242                return -ENOMEM;
2243        for (i = 0; i < num_ports; i++) {
2244                struct xhci_interval_bw_table *bw_table;
2245
2246                INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2247                bw_table = &xhci->rh_bw[i].bw_table;
2248                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2249                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2250        }
2251        base = &xhci->cap_regs->hc_capbase;
2252
2253        cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2254        if (!cap_start) {
2255                xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2256                return -ENODEV;
2257        }
2258
2259        offset = cap_start;
2260        /* count extended protocol capability entries for later caching */
2261        while (offset) {
2262                cap_count++;
2263                offset = xhci_find_next_ext_cap(base, offset,
2264                                                      XHCI_EXT_CAPS_PROTOCOL);
2265        }
2266
2267        xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2268        if (!xhci->ext_caps)
2269                return -ENOMEM;
2270
2271        offset = cap_start;
2272
2273        while (offset) {
2274                xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2275                if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2276                        break;
2277                offset = xhci_find_next_ext_cap(base, offset,
2278                                                XHCI_EXT_CAPS_PROTOCOL);
2279        }
2280
2281        if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2282                xhci_warn(xhci, "No ports on the roothubs?\n");
2283                return -ENODEV;
2284        }
2285        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2286                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2287                        xhci->num_usb2_ports, xhci->num_usb3_ports);
2288
2289        /* Place limits on the number of roothub ports so that the hub
2290         * descriptors aren't longer than the USB core will allocate.
2291         */
2292        if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2293                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2294                                "Limiting USB 3.0 roothub ports to %u.",
2295                                USB_SS_MAXPORTS);
2296                xhci->num_usb3_ports = USB_SS_MAXPORTS;
2297        }
2298        if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2299                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2300                                "Limiting USB 2.0 roothub ports to %u.",
2301                                USB_MAXCHILDREN);
2302                xhci->num_usb2_ports = USB_MAXCHILDREN;
2303        }
2304
2305        /*
2306         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2307         * Not sure how the USB core will handle a hub with no ports...
2308         */
2309        if (xhci->num_usb2_ports) {
2310                xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2311                                xhci->num_usb2_ports, flags);
2312                if (!xhci->usb2_ports)
2313                        return -ENOMEM;
2314
2315                port_index = 0;
2316                for (i = 0; i < num_ports; i++) {
2317                        if (xhci->port_array[i] == 0x03 ||
2318                                        xhci->port_array[i] == 0 ||
2319                                        xhci->port_array[i] == DUPLICATE_ENTRY)
2320                                continue;
2321
2322                        xhci->usb2_ports[port_index] =
2323                                &xhci->op_regs->port_status_base +
2324                                NUM_PORT_REGS*i;
2325                        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2326                                        "USB 2.0 port at index %u, "
2327                                        "addr = %p", i,
2328                                        xhci->usb2_ports[port_index]);
2329                        port_index++;
2330                        if (port_index == xhci->num_usb2_ports)
2331                                break;
2332                }
2333        }
2334        if (xhci->num_usb3_ports) {
2335                xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2336                                xhci->num_usb3_ports, flags);
2337                if (!xhci->usb3_ports)
2338                        return -ENOMEM;
2339
2340                port_index = 0;
2341                for (i = 0; i < num_ports; i++)
2342                        if (xhci->port_array[i] == 0x03) {
2343                                xhci->usb3_ports[port_index] =
2344                                        &xhci->op_regs->port_status_base +
2345                                        NUM_PORT_REGS*i;
2346                                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347                                                "USB 3.0 port at index %u, "
2348                                                "addr = %p", i,
2349                                                xhci->usb3_ports[port_index]);
2350                                port_index++;
2351                                if (port_index == xhci->num_usb3_ports)
2352                                        break;
2353                        }
2354        }
2355        return 0;
2356}
2357
2358int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2359{
2360        dma_addr_t      dma;
2361        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2362        unsigned int    val, val2;
2363        u64             val_64;
2364        u32             page_size, temp;
2365        int             i, ret;
2366
2367        INIT_LIST_HEAD(&xhci->cmd_list);
2368
2369        /* init command timeout work */
2370        INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2371        init_completion(&xhci->cmd_ring_stop_completion);
2372
2373        page_size = readl(&xhci->op_regs->page_size);
2374        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375                        "Supported page size register = 0x%x", page_size);
2376        for (i = 0; i < 16; i++) {
2377                if ((0x1 & page_size) != 0)
2378                        break;
2379                page_size = page_size >> 1;
2380        }
2381        if (i < 16)
2382                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2383                        "Supported page size of %iK", (1 << (i+12)) / 1024);
2384        else
2385                xhci_warn(xhci, "WARN: no supported page size\n");
2386        /* Use 4K pages, since that's common and the minimum the HC supports */
2387        xhci->page_shift = 12;
2388        xhci->page_size = 1 << xhci->page_shift;
2389        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390                        "HCD page size set to %iK", xhci->page_size / 1024);
2391
2392        /*
2393         * Program the Number of Device Slots Enabled field in the CONFIG
2394         * register with the max value of slots the HC can handle.
2395         */
2396        val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2397        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398                        "// xHC can handle at most %d device slots.", val);
2399        val2 = readl(&xhci->op_regs->config_reg);
2400        val |= (val2 & ~HCS_SLOTS_MASK);
2401        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402                        "// Setting Max device slots reg = 0x%x.", val);
2403        writel(val, &xhci->op_regs->config_reg);
2404
2405        /*
2406         * xHCI section 5.4.6 - doorbell array must be
2407         * "physically contiguous and 64-byte (cache line) aligned".
2408         */
2409        xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2410                        flags);
2411        if (!xhci->dcbaa)
2412                goto fail;
2413        memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2414        xhci->dcbaa->dma = dma;
2415        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416                        "// Device context base array address = 0x%llx (DMA), %p (virt)",
2417                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2418        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2419
2420        /*
2421         * Initialize the ring segment pool.  The ring must be a contiguous
2422         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2423         * however, the command ring segment needs 64-byte aligned segments
2424         * and our use of dma addresses in the trb_address_map radix tree needs
2425         * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2426         */
2427        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2428                        TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2429
2430        /* See Table 46 and Note on Figure 55 */
2431        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2432                        2112, 64, xhci->page_size);
2433        if (!xhci->segment_pool || !xhci->device_pool)
2434                goto fail;
2435
2436        /* Linear stream context arrays don't have any boundary restrictions,
2437         * and only need to be 16-byte aligned.
2438         */
2439        xhci->small_streams_pool =
2440                dma_pool_create("xHCI 256 byte stream ctx arrays",
2441                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2442        xhci->medium_streams_pool =
2443                dma_pool_create("xHCI 1KB stream ctx arrays",
2444                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2445        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2446         * will be allocated with dma_alloc_coherent()
2447         */
2448
2449        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2450                goto fail;
2451
2452        /* Set up the command ring to have one segments for now. */
2453        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2454        if (!xhci->cmd_ring)
2455                goto fail;
2456        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2457                        "Allocated command ring at %p", xhci->cmd_ring);
2458        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2459                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
2460
2461        /* Set the address in the Command Ring Control register */
2462        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2463        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2464                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2465                xhci->cmd_ring->cycle_state;
2466        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467                        "// Setting command ring address to 0x%016llx", val_64);
2468        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2469
2470        xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2471        if (!xhci->lpm_command)
2472                goto fail;
2473
2474        /* Reserve one command ring TRB for disabling LPM.
2475         * Since the USB core grabs the shared usb_bus bandwidth mutex before
2476         * disabling LPM, we only need to reserve one TRB for all devices.
2477         */
2478        xhci->cmd_ring_reserved_trbs++;
2479
2480        val = readl(&xhci->cap_regs->db_off);
2481        val &= DBOFF_MASK;
2482        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2483                        "// Doorbell array is located at offset 0x%x"
2484                        " from cap regs base addr", val);
2485        xhci->dba = (void __iomem *) xhci->cap_regs + val;
2486        /* Set ir_set to interrupt register set 0 */
2487        xhci->ir_set = &xhci->run_regs->ir_set[0];
2488
2489        /*
2490         * Event ring setup: Allocate a normal ring, but also setup
2491         * the event ring segment table (ERST).  Section 4.9.3.
2492         */
2493        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2494        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2495                                        0, flags);
2496        if (!xhci->event_ring)
2497                goto fail;
2498        if (xhci_check_trb_in_td_math(xhci) < 0)
2499                goto fail;
2500
2501        ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2502        if (ret)
2503                goto fail;
2504
2505        /* set ERST count with the number of entries in the segment table */
2506        val = readl(&xhci->ir_set->erst_size);
2507        val &= ERST_SIZE_MASK;
2508        val |= ERST_NUM_SEGS;
2509        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2510                        "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2511                        val);
2512        writel(val, &xhci->ir_set->erst_size);
2513
2514        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515                        "// Set ERST entries to point to event ring.");
2516        /* set the segment table base address */
2517        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518                        "// Set ERST base address for ir_set 0 = 0x%llx",
2519                        (unsigned long long)xhci->erst.erst_dma_addr);
2520        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2521        val_64 &= ERST_PTR_MASK;
2522        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2523        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2524
2525        /* Set the event ring dequeue address */
2526        xhci_set_hc_event_deq(xhci);
2527        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2528                        "Wrote ERST address to ir_set 0.");
2529
2530        /*
2531         * XXX: Might need to set the Interrupter Moderation Register to
2532         * something other than the default (~1ms minimum between interrupts).
2533         * See section 5.5.1.2.
2534         */
2535        for (i = 0; i < MAX_HC_SLOTS; i++)
2536                xhci->devs[i] = NULL;
2537        for (i = 0; i < USB_MAXCHILDREN; i++) {
2538                xhci->bus_state[0].resume_done[i] = 0;
2539                xhci->bus_state[1].resume_done[i] = 0;
2540                /* Only the USB 2.0 completions will ever be used. */
2541                init_completion(&xhci->bus_state[1].rexit_done[i]);
2542        }
2543
2544        if (scratchpad_alloc(xhci, flags))
2545                goto fail;
2546        if (xhci_setup_port_arrays(xhci, flags))
2547                goto fail;
2548
2549        /* Enable USB 3.0 device notifications for function remote wake, which
2550         * is necessary for allowing USB 3.0 devices to do remote wakeup from
2551         * U3 (device suspend).
2552         */
2553        temp = readl(&xhci->op_regs->dev_notification);
2554        temp &= ~DEV_NOTE_MASK;
2555        temp |= DEV_NOTE_FWAKE;
2556        writel(temp, &xhci->op_regs->dev_notification);
2557
2558        return 0;
2559
2560fail:
2561        xhci_halt(xhci);
2562        xhci_reset(xhci);
2563        xhci_mem_cleanup(xhci);
2564        return -ENOMEM;
2565}
2566