linux/fs/afs/rxrpc.c
<<
>>
Prefs
   1/* Maintain an RxRPC server socket to do AFS communications through
   2 *
   3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/sched/signal.h>
  14
  15#include <net/sock.h>
  16#include <net/af_rxrpc.h>
  17#include "internal.h"
  18#include "afs_cm.h"
  19
  20struct workqueue_struct *afs_async_calls;
  21
  22static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
  23static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
  24static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
  25static void afs_process_async_call(struct work_struct *);
  26static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
  27static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
  28static int afs_deliver_cm_op_id(struct afs_call *);
  29
  30/* asynchronous incoming call initial processing */
  31static const struct afs_call_type afs_RXCMxxxx = {
  32        .name           = "CB.xxxx",
  33        .deliver        = afs_deliver_cm_op_id,
  34};
  35
  36/*
  37 * open an RxRPC socket and bind it to be a server for callback notifications
  38 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
  39 */
  40int afs_open_socket(struct afs_net *net)
  41{
  42        struct sockaddr_rxrpc srx;
  43        struct socket *socket;
  44        unsigned int min_level;
  45        int ret;
  46
  47        _enter("");
  48
  49        ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
  50        if (ret < 0)
  51                goto error_1;
  52
  53        socket->sk->sk_allocation = GFP_NOFS;
  54
  55        /* bind the callback manager's address to make this a server socket */
  56        memset(&srx, 0, sizeof(srx));
  57        srx.srx_family                  = AF_RXRPC;
  58        srx.srx_service                 = CM_SERVICE;
  59        srx.transport_type              = SOCK_DGRAM;
  60        srx.transport_len               = sizeof(srx.transport.sin6);
  61        srx.transport.sin6.sin6_family  = AF_INET6;
  62        srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
  63
  64        min_level = RXRPC_SECURITY_ENCRYPT;
  65        ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
  66                                (void *)&min_level, sizeof(min_level));
  67        if (ret < 0)
  68                goto error_2;
  69
  70        ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
  71        if (ret == -EADDRINUSE) {
  72                srx.transport.sin6.sin6_port = 0;
  73                ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
  74        }
  75        if (ret < 0)
  76                goto error_2;
  77
  78        rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
  79                                           afs_rx_discard_new_call);
  80
  81        ret = kernel_listen(socket, INT_MAX);
  82        if (ret < 0)
  83                goto error_2;
  84
  85        net->socket = socket;
  86        afs_charge_preallocation(&net->charge_preallocation_work);
  87        _leave(" = 0");
  88        return 0;
  89
  90error_2:
  91        sock_release(socket);
  92error_1:
  93        _leave(" = %d", ret);
  94        return ret;
  95}
  96
  97/*
  98 * close the RxRPC socket AFS was using
  99 */
 100void afs_close_socket(struct afs_net *net)
 101{
 102        _enter("");
 103
 104        kernel_listen(net->socket, 0);
 105        flush_workqueue(afs_async_calls);
 106
 107        if (net->spare_incoming_call) {
 108                afs_put_call(net->spare_incoming_call);
 109                net->spare_incoming_call = NULL;
 110        }
 111
 112        _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
 113        wait_var_event(&net->nr_outstanding_calls,
 114                       !atomic_read(&net->nr_outstanding_calls));
 115        _debug("no outstanding calls");
 116
 117        kernel_sock_shutdown(net->socket, SHUT_RDWR);
 118        flush_workqueue(afs_async_calls);
 119        sock_release(net->socket);
 120
 121        _debug("dework");
 122        _leave("");
 123}
 124
 125/*
 126 * Allocate a call.
 127 */
 128static struct afs_call *afs_alloc_call(struct afs_net *net,
 129                                       const struct afs_call_type *type,
 130                                       gfp_t gfp)
 131{
 132        struct afs_call *call;
 133        int o;
 134
 135        call = kzalloc(sizeof(*call), gfp);
 136        if (!call)
 137                return NULL;
 138
 139        call->type = type;
 140        call->net = net;
 141        call->debug_id = atomic_inc_return(&rxrpc_debug_id);
 142        atomic_set(&call->usage, 1);
 143        INIT_WORK(&call->async_work, afs_process_async_call);
 144        init_waitqueue_head(&call->waitq);
 145        spin_lock_init(&call->state_lock);
 146
 147        o = atomic_inc_return(&net->nr_outstanding_calls);
 148        trace_afs_call(call, afs_call_trace_alloc, 1, o,
 149                       __builtin_return_address(0));
 150        return call;
 151}
 152
 153/*
 154 * Dispose of a reference on a call.
 155 */
 156void afs_put_call(struct afs_call *call)
 157{
 158        struct afs_net *net = call->net;
 159        int n = atomic_dec_return(&call->usage);
 160        int o = atomic_read(&net->nr_outstanding_calls);
 161
 162        trace_afs_call(call, afs_call_trace_put, n + 1, o,
 163                       __builtin_return_address(0));
 164
 165        ASSERTCMP(n, >=, 0);
 166        if (n == 0) {
 167                ASSERT(!work_pending(&call->async_work));
 168                ASSERT(call->type->name != NULL);
 169
 170                if (call->rxcall) {
 171                        rxrpc_kernel_end_call(net->socket, call->rxcall);
 172                        call->rxcall = NULL;
 173                }
 174                if (call->type->destructor)
 175                        call->type->destructor(call);
 176
 177                afs_put_server(call->net, call->cm_server);
 178                afs_put_cb_interest(call->net, call->cbi);
 179                kfree(call->request);
 180
 181                trace_afs_call(call, afs_call_trace_free, 0, o,
 182                               __builtin_return_address(0));
 183                kfree(call);
 184
 185                o = atomic_dec_return(&net->nr_outstanding_calls);
 186                if (o == 0)
 187                        wake_up_var(&net->nr_outstanding_calls);
 188        }
 189}
 190
 191/*
 192 * Queue the call for actual work.  Returns 0 unconditionally for convenience.
 193 */
 194int afs_queue_call_work(struct afs_call *call)
 195{
 196        int u = atomic_inc_return(&call->usage);
 197
 198        trace_afs_call(call, afs_call_trace_work, u,
 199                       atomic_read(&call->net->nr_outstanding_calls),
 200                       __builtin_return_address(0));
 201
 202        INIT_WORK(&call->work, call->type->work);
 203
 204        if (!queue_work(afs_wq, &call->work))
 205                afs_put_call(call);
 206        return 0;
 207}
 208
 209/*
 210 * allocate a call with flat request and reply buffers
 211 */
 212struct afs_call *afs_alloc_flat_call(struct afs_net *net,
 213                                     const struct afs_call_type *type,
 214                                     size_t request_size, size_t reply_max)
 215{
 216        struct afs_call *call;
 217
 218        call = afs_alloc_call(net, type, GFP_NOFS);
 219        if (!call)
 220                goto nomem_call;
 221
 222        if (request_size) {
 223                call->request_size = request_size;
 224                call->request = kmalloc(request_size, GFP_NOFS);
 225                if (!call->request)
 226                        goto nomem_free;
 227        }
 228
 229        if (reply_max) {
 230                call->reply_max = reply_max;
 231                call->buffer = kmalloc(reply_max, GFP_NOFS);
 232                if (!call->buffer)
 233                        goto nomem_free;
 234        }
 235
 236        call->operation_ID = type->op;
 237        init_waitqueue_head(&call->waitq);
 238        return call;
 239
 240nomem_free:
 241        afs_put_call(call);
 242nomem_call:
 243        return NULL;
 244}
 245
 246/*
 247 * clean up a call with flat buffer
 248 */
 249void afs_flat_call_destructor(struct afs_call *call)
 250{
 251        _enter("");
 252
 253        kfree(call->request);
 254        call->request = NULL;
 255        kfree(call->buffer);
 256        call->buffer = NULL;
 257}
 258
 259#define AFS_BVEC_MAX 8
 260
 261/*
 262 * Load the given bvec with the next few pages.
 263 */
 264static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
 265                          struct bio_vec *bv, pgoff_t first, pgoff_t last,
 266                          unsigned offset)
 267{
 268        struct page *pages[AFS_BVEC_MAX];
 269        unsigned int nr, n, i, to, bytes = 0;
 270
 271        nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
 272        n = find_get_pages_contig(call->mapping, first, nr, pages);
 273        ASSERTCMP(n, ==, nr);
 274
 275        msg->msg_flags |= MSG_MORE;
 276        for (i = 0; i < nr; i++) {
 277                to = PAGE_SIZE;
 278                if (first + i >= last) {
 279                        to = call->last_to;
 280                        msg->msg_flags &= ~MSG_MORE;
 281                }
 282                bv[i].bv_page = pages[i];
 283                bv[i].bv_len = to - offset;
 284                bv[i].bv_offset = offset;
 285                bytes += to - offset;
 286                offset = 0;
 287        }
 288
 289        iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
 290}
 291
 292/*
 293 * Advance the AFS call state when the RxRPC call ends the transmit phase.
 294 */
 295static void afs_notify_end_request_tx(struct sock *sock,
 296                                      struct rxrpc_call *rxcall,
 297                                      unsigned long call_user_ID)
 298{
 299        struct afs_call *call = (struct afs_call *)call_user_ID;
 300
 301        afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
 302}
 303
 304/*
 305 * attach the data from a bunch of pages on an inode to a call
 306 */
 307static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
 308{
 309        struct bio_vec bv[AFS_BVEC_MAX];
 310        unsigned int bytes, nr, loop, offset;
 311        pgoff_t first = call->first, last = call->last;
 312        int ret;
 313
 314        offset = call->first_offset;
 315        call->first_offset = 0;
 316
 317        do {
 318                afs_load_bvec(call, msg, bv, first, last, offset);
 319                trace_afs_send_pages(call, msg, first, last, offset);
 320
 321                offset = 0;
 322                bytes = msg->msg_iter.count;
 323                nr = msg->msg_iter.nr_segs;
 324
 325                ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
 326                                             bytes, afs_notify_end_request_tx);
 327                for (loop = 0; loop < nr; loop++)
 328                        put_page(bv[loop].bv_page);
 329                if (ret < 0)
 330                        break;
 331
 332                first += nr;
 333        } while (first <= last);
 334
 335        trace_afs_sent_pages(call, call->first, last, first, ret);
 336        return ret;
 337}
 338
 339/*
 340 * initiate a call
 341 */
 342long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
 343                   gfp_t gfp, bool async)
 344{
 345        struct sockaddr_rxrpc *srx = ac->addr;
 346        struct rxrpc_call *rxcall;
 347        struct msghdr msg;
 348        struct kvec iov[1];
 349        size_t offset;
 350        s64 tx_total_len;
 351        int ret;
 352
 353        _enter(",{%pISp},", &srx->transport);
 354
 355        ASSERT(call->type != NULL);
 356        ASSERT(call->type->name != NULL);
 357
 358        _debug("____MAKE %p{%s,%x} [%d]____",
 359               call, call->type->name, key_serial(call->key),
 360               atomic_read(&call->net->nr_outstanding_calls));
 361
 362        call->async = async;
 363
 364        /* Work out the length we're going to transmit.  This is awkward for
 365         * calls such as FS.StoreData where there's an extra injection of data
 366         * after the initial fixed part.
 367         */
 368        tx_total_len = call->request_size;
 369        if (call->send_pages) {
 370                if (call->last == call->first) {
 371                        tx_total_len += call->last_to - call->first_offset;
 372                } else {
 373                        /* It looks mathematically like you should be able to
 374                         * combine the following lines with the ones above, but
 375                         * unsigned arithmetic is fun when it wraps...
 376                         */
 377                        tx_total_len += PAGE_SIZE - call->first_offset;
 378                        tx_total_len += call->last_to;
 379                        tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
 380                }
 381        }
 382
 383        /* create a call */
 384        rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
 385                                         (unsigned long)call,
 386                                         tx_total_len, gfp,
 387                                         (async ?
 388                                          afs_wake_up_async_call :
 389                                          afs_wake_up_call_waiter),
 390                                         call->upgrade,
 391                                         call->debug_id);
 392        if (IS_ERR(rxcall)) {
 393                ret = PTR_ERR(rxcall);
 394                goto error_kill_call;
 395        }
 396
 397        call->rxcall = rxcall;
 398
 399        /* send the request */
 400        iov[0].iov_base = call->request;
 401        iov[0].iov_len  = call->request_size;
 402
 403        msg.msg_name            = NULL;
 404        msg.msg_namelen         = 0;
 405        iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
 406                      call->request_size);
 407        msg.msg_control         = NULL;
 408        msg.msg_controllen      = 0;
 409        msg.msg_flags           = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
 410
 411        ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
 412                                     &msg, call->request_size,
 413                                     afs_notify_end_request_tx);
 414        if (ret < 0)
 415                goto error_do_abort;
 416
 417        if (call->send_pages) {
 418                ret = afs_send_pages(call, &msg);
 419                if (ret < 0)
 420                        goto error_do_abort;
 421        }
 422
 423        /* at this point, an async call may no longer exist as it may have
 424         * already completed */
 425        if (call->async)
 426                return -EINPROGRESS;
 427
 428        return afs_wait_for_call_to_complete(call, ac);
 429
 430error_do_abort:
 431        call->state = AFS_CALL_COMPLETE;
 432        if (ret != -ECONNABORTED) {
 433                rxrpc_kernel_abort_call(call->net->socket, rxcall,
 434                                        RX_USER_ABORT, ret, "KSD");
 435        } else {
 436                offset = 0;
 437                rxrpc_kernel_recv_data(call->net->socket, rxcall, NULL,
 438                                       0, &offset, false, &call->abort_code,
 439                                       &call->service_id);
 440                ac->abort_code = call->abort_code;
 441                ac->responded = true;
 442        }
 443        call->error = ret;
 444        trace_afs_call_done(call);
 445error_kill_call:
 446        afs_put_call(call);
 447        ac->error = ret;
 448        _leave(" = %d", ret);
 449        return ret;
 450}
 451
 452/*
 453 * deliver messages to a call
 454 */
 455static void afs_deliver_to_call(struct afs_call *call)
 456{
 457        enum afs_call_state state;
 458        u32 abort_code, remote_abort = 0;
 459        int ret;
 460
 461        _enter("%s", call->type->name);
 462
 463        while (state = READ_ONCE(call->state),
 464               state == AFS_CALL_CL_AWAIT_REPLY ||
 465               state == AFS_CALL_SV_AWAIT_OP_ID ||
 466               state == AFS_CALL_SV_AWAIT_REQUEST ||
 467               state == AFS_CALL_SV_AWAIT_ACK
 468               ) {
 469                if (state == AFS_CALL_SV_AWAIT_ACK) {
 470                        size_t offset = 0;
 471                        ret = rxrpc_kernel_recv_data(call->net->socket,
 472                                                     call->rxcall,
 473                                                     NULL, 0, &offset, false,
 474                                                     &remote_abort,
 475                                                     &call->service_id);
 476                        trace_afs_recv_data(call, 0, offset, false, ret);
 477
 478                        if (ret == -EINPROGRESS || ret == -EAGAIN)
 479                                return;
 480                        if (ret < 0 || ret == 1) {
 481                                if (ret == 1)
 482                                        ret = 0;
 483                                goto call_complete;
 484                        }
 485                        return;
 486                }
 487
 488                ret = call->type->deliver(call);
 489                state = READ_ONCE(call->state);
 490                switch (ret) {
 491                case 0:
 492                        if (state == AFS_CALL_CL_PROC_REPLY) {
 493                                if (call->cbi)
 494                                        set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
 495                                                &call->cbi->server->flags);
 496                                goto call_complete;
 497                        }
 498                        ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
 499                        goto done;
 500                case -EINPROGRESS:
 501                case -EAGAIN:
 502                        goto out;
 503                case -EIO:
 504                case -ECONNABORTED:
 505                        ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
 506                        goto done;
 507                case -ENOTSUPP:
 508                        abort_code = RXGEN_OPCODE;
 509                        rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
 510                                                abort_code, ret, "KIV");
 511                        goto local_abort;
 512                case -ENODATA:
 513                case -EBADMSG:
 514                case -EMSGSIZE:
 515                default:
 516                        abort_code = RXGEN_CC_UNMARSHAL;
 517                        if (state != AFS_CALL_CL_AWAIT_REPLY)
 518                                abort_code = RXGEN_SS_UNMARSHAL;
 519                        rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
 520                                                abort_code, -EBADMSG, "KUM");
 521                        goto local_abort;
 522                }
 523        }
 524
 525done:
 526        if (state == AFS_CALL_COMPLETE && call->incoming)
 527                afs_put_call(call);
 528out:
 529        _leave("");
 530        return;
 531
 532local_abort:
 533        abort_code = 0;
 534call_complete:
 535        afs_set_call_complete(call, ret, remote_abort);
 536        state = AFS_CALL_COMPLETE;
 537        goto done;
 538}
 539
 540/*
 541 * wait synchronously for a call to complete
 542 */
 543static long afs_wait_for_call_to_complete(struct afs_call *call,
 544                                          struct afs_addr_cursor *ac)
 545{
 546        signed long rtt2, timeout;
 547        long ret;
 548        u64 rtt;
 549        u32 life, last_life;
 550
 551        DECLARE_WAITQUEUE(myself, current);
 552
 553        _enter("");
 554
 555        rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
 556        rtt2 = nsecs_to_jiffies64(rtt) * 2;
 557        if (rtt2 < 2)
 558                rtt2 = 2;
 559
 560        timeout = rtt2;
 561        last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
 562
 563        add_wait_queue(&call->waitq, &myself);
 564        for (;;) {
 565                set_current_state(TASK_UNINTERRUPTIBLE);
 566
 567                /* deliver any messages that are in the queue */
 568                if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
 569                    call->need_attention) {
 570                        call->need_attention = false;
 571                        __set_current_state(TASK_RUNNING);
 572                        afs_deliver_to_call(call);
 573                        continue;
 574                }
 575
 576                if (afs_check_call_state(call, AFS_CALL_COMPLETE))
 577                        break;
 578
 579                life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
 580                if (timeout == 0 &&
 581                    life == last_life && signal_pending(current))
 582                                break;
 583
 584                if (life != last_life) {
 585                        timeout = rtt2;
 586                        last_life = life;
 587                }
 588
 589                timeout = schedule_timeout(timeout);
 590        }
 591
 592        remove_wait_queue(&call->waitq, &myself);
 593        __set_current_state(TASK_RUNNING);
 594
 595        /* Kill off the call if it's still live. */
 596        if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
 597                _debug("call interrupted");
 598                if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
 599                                            RX_USER_ABORT, -EINTR, "KWI"))
 600                        afs_set_call_complete(call, -EINTR, 0);
 601        }
 602
 603        spin_lock_bh(&call->state_lock);
 604        ac->abort_code = call->abort_code;
 605        ac->error = call->error;
 606        spin_unlock_bh(&call->state_lock);
 607
 608        ret = ac->error;
 609        switch (ret) {
 610        case 0:
 611                if (call->ret_reply0) {
 612                        ret = (long)call->reply[0];
 613                        call->reply[0] = NULL;
 614                }
 615                /* Fall through */
 616        case -ECONNABORTED:
 617                ac->responded = true;
 618                break;
 619        }
 620
 621        _debug("call complete");
 622        afs_put_call(call);
 623        _leave(" = %p", (void *)ret);
 624        return ret;
 625}
 626
 627/*
 628 * wake up a waiting call
 629 */
 630static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
 631                                    unsigned long call_user_ID)
 632{
 633        struct afs_call *call = (struct afs_call *)call_user_ID;
 634
 635        call->need_attention = true;
 636        wake_up(&call->waitq);
 637}
 638
 639/*
 640 * wake up an asynchronous call
 641 */
 642static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
 643                                   unsigned long call_user_ID)
 644{
 645        struct afs_call *call = (struct afs_call *)call_user_ID;
 646        int u;
 647
 648        trace_afs_notify_call(rxcall, call);
 649        call->need_attention = true;
 650
 651        u = __atomic_add_unless(&call->usage, 1, 0);
 652        if (u != 0) {
 653                trace_afs_call(call, afs_call_trace_wake, u,
 654                               atomic_read(&call->net->nr_outstanding_calls),
 655                               __builtin_return_address(0));
 656
 657                if (!queue_work(afs_async_calls, &call->async_work))
 658                        afs_put_call(call);
 659        }
 660}
 661
 662/*
 663 * Delete an asynchronous call.  The work item carries a ref to the call struct
 664 * that we need to release.
 665 */
 666static void afs_delete_async_call(struct work_struct *work)
 667{
 668        struct afs_call *call = container_of(work, struct afs_call, async_work);
 669
 670        _enter("");
 671
 672        afs_put_call(call);
 673
 674        _leave("");
 675}
 676
 677/*
 678 * Perform I/O processing on an asynchronous call.  The work item carries a ref
 679 * to the call struct that we either need to release or to pass on.
 680 */
 681static void afs_process_async_call(struct work_struct *work)
 682{
 683        struct afs_call *call = container_of(work, struct afs_call, async_work);
 684
 685        _enter("");
 686
 687        if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
 688                call->need_attention = false;
 689                afs_deliver_to_call(call);
 690        }
 691
 692        if (call->state == AFS_CALL_COMPLETE) {
 693                call->reply[0] = NULL;
 694
 695                /* We have two refs to release - one from the alloc and one
 696                 * queued with the work item - and we can't just deallocate the
 697                 * call because the work item may be queued again.
 698                 */
 699                call->async_work.func = afs_delete_async_call;
 700                if (!queue_work(afs_async_calls, &call->async_work))
 701                        afs_put_call(call);
 702        }
 703
 704        afs_put_call(call);
 705        _leave("");
 706}
 707
 708static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
 709{
 710        struct afs_call *call = (struct afs_call *)user_call_ID;
 711
 712        call->rxcall = rxcall;
 713}
 714
 715/*
 716 * Charge the incoming call preallocation.
 717 */
 718void afs_charge_preallocation(struct work_struct *work)
 719{
 720        struct afs_net *net =
 721                container_of(work, struct afs_net, charge_preallocation_work);
 722        struct afs_call *call = net->spare_incoming_call;
 723
 724        for (;;) {
 725                if (!call) {
 726                        call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
 727                        if (!call)
 728                                break;
 729
 730                        call->async = true;
 731                        call->state = AFS_CALL_SV_AWAIT_OP_ID;
 732                        init_waitqueue_head(&call->waitq);
 733                }
 734
 735                if (rxrpc_kernel_charge_accept(net->socket,
 736                                               afs_wake_up_async_call,
 737                                               afs_rx_attach,
 738                                               (unsigned long)call,
 739                                               GFP_KERNEL,
 740                                               call->debug_id) < 0)
 741                        break;
 742                call = NULL;
 743        }
 744        net->spare_incoming_call = call;
 745}
 746
 747/*
 748 * Discard a preallocated call when a socket is shut down.
 749 */
 750static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
 751                                    unsigned long user_call_ID)
 752{
 753        struct afs_call *call = (struct afs_call *)user_call_ID;
 754
 755        call->rxcall = NULL;
 756        afs_put_call(call);
 757}
 758
 759/*
 760 * Notification of an incoming call.
 761 */
 762static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
 763                            unsigned long user_call_ID)
 764{
 765        struct afs_net *net = afs_sock2net(sk);
 766
 767        queue_work(afs_wq, &net->charge_preallocation_work);
 768}
 769
 770/*
 771 * Grab the operation ID from an incoming cache manager call.  The socket
 772 * buffer is discarded on error or if we don't yet have sufficient data.
 773 */
 774static int afs_deliver_cm_op_id(struct afs_call *call)
 775{
 776        int ret;
 777
 778        _enter("{%zu}", call->offset);
 779
 780        ASSERTCMP(call->offset, <, 4);
 781
 782        /* the operation ID forms the first four bytes of the request data */
 783        ret = afs_extract_data(call, &call->tmp, 4, true);
 784        if (ret < 0)
 785                return ret;
 786
 787        call->operation_ID = ntohl(call->tmp);
 788        afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
 789        call->offset = 0;
 790
 791        /* ask the cache manager to route the call (it'll change the call type
 792         * if successful) */
 793        if (!afs_cm_incoming_call(call))
 794                return -ENOTSUPP;
 795
 796        trace_afs_cb_call(call);
 797
 798        /* pass responsibility for the remainer of this message off to the
 799         * cache manager op */
 800        return call->type->deliver(call);
 801}
 802
 803/*
 804 * Advance the AFS call state when an RxRPC service call ends the transmit
 805 * phase.
 806 */
 807static void afs_notify_end_reply_tx(struct sock *sock,
 808                                    struct rxrpc_call *rxcall,
 809                                    unsigned long call_user_ID)
 810{
 811        struct afs_call *call = (struct afs_call *)call_user_ID;
 812
 813        afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
 814}
 815
 816/*
 817 * send an empty reply
 818 */
 819void afs_send_empty_reply(struct afs_call *call)
 820{
 821        struct afs_net *net = call->net;
 822        struct msghdr msg;
 823
 824        _enter("");
 825
 826        rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
 827
 828        msg.msg_name            = NULL;
 829        msg.msg_namelen         = 0;
 830        iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
 831        msg.msg_control         = NULL;
 832        msg.msg_controllen      = 0;
 833        msg.msg_flags           = 0;
 834
 835        switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
 836                                       afs_notify_end_reply_tx)) {
 837        case 0:
 838                _leave(" [replied]");
 839                return;
 840
 841        case -ENOMEM:
 842                _debug("oom");
 843                rxrpc_kernel_abort_call(net->socket, call->rxcall,
 844                                        RX_USER_ABORT, -ENOMEM, "KOO");
 845        default:
 846                _leave(" [error]");
 847                return;
 848        }
 849}
 850
 851/*
 852 * send a simple reply
 853 */
 854void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
 855{
 856        struct afs_net *net = call->net;
 857        struct msghdr msg;
 858        struct kvec iov[1];
 859        int n;
 860
 861        _enter("");
 862
 863        rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
 864
 865        iov[0].iov_base         = (void *) buf;
 866        iov[0].iov_len          = len;
 867        msg.msg_name            = NULL;
 868        msg.msg_namelen         = 0;
 869        iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
 870        msg.msg_control         = NULL;
 871        msg.msg_controllen      = 0;
 872        msg.msg_flags           = 0;
 873
 874        n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
 875                                   afs_notify_end_reply_tx);
 876        if (n >= 0) {
 877                /* Success */
 878                _leave(" [replied]");
 879                return;
 880        }
 881
 882        if (n == -ENOMEM) {
 883                _debug("oom");
 884                rxrpc_kernel_abort_call(net->socket, call->rxcall,
 885                                        RX_USER_ABORT, -ENOMEM, "KOO");
 886        }
 887        _leave(" [error]");
 888}
 889
 890/*
 891 * Extract a piece of data from the received data socket buffers.
 892 */
 893int afs_extract_data(struct afs_call *call, void *buf, size_t count,
 894                     bool want_more)
 895{
 896        struct afs_net *net = call->net;
 897        enum afs_call_state state;
 898        u32 remote_abort = 0;
 899        int ret;
 900
 901        _enter("{%s,%zu},,%zu,%d",
 902               call->type->name, call->offset, count, want_more);
 903
 904        ASSERTCMP(call->offset, <=, count);
 905
 906        ret = rxrpc_kernel_recv_data(net->socket, call->rxcall,
 907                                     buf, count, &call->offset,
 908                                     want_more, &remote_abort,
 909                                     &call->service_id);
 910        trace_afs_recv_data(call, count, call->offset, want_more, ret);
 911        if (ret == 0 || ret == -EAGAIN)
 912                return ret;
 913
 914        state = READ_ONCE(call->state);
 915        if (ret == 1) {
 916                switch (state) {
 917                case AFS_CALL_CL_AWAIT_REPLY:
 918                        afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
 919                        break;
 920                case AFS_CALL_SV_AWAIT_REQUEST:
 921                        afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
 922                        break;
 923                case AFS_CALL_COMPLETE:
 924                        kdebug("prem complete %d", call->error);
 925                        return -EIO;
 926                default:
 927                        break;
 928                }
 929                return 0;
 930        }
 931
 932        afs_set_call_complete(call, ret, remote_abort);
 933        return ret;
 934}
 935
 936/*
 937 * Log protocol error production.
 938 */
 939noinline int afs_protocol_error(struct afs_call *call, int error)
 940{
 941        trace_afs_protocol_error(call, error, __builtin_return_address(0));
 942        return error;
 943}
 944