linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *      See ../COPYING for licensing terms.
  10 */
  11#define pr_fmt(fmt) "%s: " fmt, __func__
  12
  13#include <linux/kernel.h>
  14#include <linux/init.h>
  15#include <linux/errno.h>
  16#include <linux/time.h>
  17#include <linux/aio_abi.h>
  18#include <linux/export.h>
  19#include <linux/syscalls.h>
  20#include <linux/backing-dev.h>
  21#include <linux/uio.h>
  22
  23#include <linux/sched/signal.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/timer.h>
  32#include <linux/aio.h>
  33#include <linux/highmem.h>
  34#include <linux/workqueue.h>
  35#include <linux/security.h>
  36#include <linux/eventfd.h>
  37#include <linux/blkdev.h>
  38#include <linux/compat.h>
  39#include <linux/migrate.h>
  40#include <linux/ramfs.h>
  41#include <linux/percpu-refcount.h>
  42#include <linux/mount.h>
  43
  44#include <asm/kmap_types.h>
  45#include <linux/uaccess.h>
  46
  47#include "internal.h"
  48
  49#define AIO_RING_MAGIC                  0xa10a10a1
  50#define AIO_RING_COMPAT_FEATURES        1
  51#define AIO_RING_INCOMPAT_FEATURES      0
  52struct aio_ring {
  53        unsigned        id;     /* kernel internal index number */
  54        unsigned        nr;     /* number of io_events */
  55        unsigned        head;   /* Written to by userland or under ring_lock
  56                                 * mutex by aio_read_events_ring(). */
  57        unsigned        tail;
  58
  59        unsigned        magic;
  60        unsigned        compat_features;
  61        unsigned        incompat_features;
  62        unsigned        header_length;  /* size of aio_ring */
  63
  64
  65        struct io_event         io_events[0];
  66}; /* 128 bytes + ring size */
  67
  68#define AIO_RING_PAGES  8
  69
  70struct kioctx_table {
  71        struct rcu_head         rcu;
  72        unsigned                nr;
  73        struct kioctx __rcu     *table[];
  74};
  75
  76struct kioctx_cpu {
  77        unsigned                reqs_available;
  78};
  79
  80struct ctx_rq_wait {
  81        struct completion comp;
  82        atomic_t count;
  83};
  84
  85struct kioctx {
  86        struct percpu_ref       users;
  87        atomic_t                dead;
  88
  89        struct percpu_ref       reqs;
  90
  91        unsigned long           user_id;
  92
  93        struct __percpu kioctx_cpu *cpu;
  94
  95        /*
  96         * For percpu reqs_available, number of slots we move to/from global
  97         * counter at a time:
  98         */
  99        unsigned                req_batch;
 100        /*
 101         * This is what userspace passed to io_setup(), it's not used for
 102         * anything but counting against the global max_reqs quota.
 103         *
 104         * The real limit is nr_events - 1, which will be larger (see
 105         * aio_setup_ring())
 106         */
 107        unsigned                max_reqs;
 108
 109        /* Size of ringbuffer, in units of struct io_event */
 110        unsigned                nr_events;
 111
 112        unsigned long           mmap_base;
 113        unsigned long           mmap_size;
 114
 115        struct page             **ring_pages;
 116        long                    nr_pages;
 117
 118        struct rcu_work         free_rwork;     /* see free_ioctx() */
 119
 120        /*
 121         * signals when all in-flight requests are done
 122         */
 123        struct ctx_rq_wait      *rq_wait;
 124
 125        struct {
 126                /*
 127                 * This counts the number of available slots in the ringbuffer,
 128                 * so we avoid overflowing it: it's decremented (if positive)
 129                 * when allocating a kiocb and incremented when the resulting
 130                 * io_event is pulled off the ringbuffer.
 131                 *
 132                 * We batch accesses to it with a percpu version.
 133                 */
 134                atomic_t        reqs_available;
 135        } ____cacheline_aligned_in_smp;
 136
 137        struct {
 138                spinlock_t      ctx_lock;
 139                struct list_head active_reqs;   /* used for cancellation */
 140        } ____cacheline_aligned_in_smp;
 141
 142        struct {
 143                struct mutex    ring_lock;
 144                wait_queue_head_t wait;
 145        } ____cacheline_aligned_in_smp;
 146
 147        struct {
 148                unsigned        tail;
 149                unsigned        completed_events;
 150                spinlock_t      completion_lock;
 151        } ____cacheline_aligned_in_smp;
 152
 153        struct page             *internal_pages[AIO_RING_PAGES];
 154        struct file             *aio_ring_file;
 155
 156        unsigned                id;
 157};
 158
 159/*
 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
 161 * cancelled or completed (this makes a certain amount of sense because
 162 * successful cancellation - io_cancel() - does deliver the completion to
 163 * userspace).
 164 *
 165 * And since most things don't implement kiocb cancellation and we'd really like
 166 * kiocb completion to be lockless when possible, we use ki_cancel to
 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
 169 */
 170#define KIOCB_CANCELLED         ((void *) (~0ULL))
 171
 172struct aio_kiocb {
 173        struct kiocb            common;
 174
 175        struct kioctx           *ki_ctx;
 176        kiocb_cancel_fn         *ki_cancel;
 177
 178        struct iocb __user      *ki_user_iocb;  /* user's aiocb */
 179        __u64                   ki_user_data;   /* user's data for completion */
 180
 181        struct list_head        ki_list;        /* the aio core uses this
 182                                                 * for cancellation */
 183
 184        /*
 185         * If the aio_resfd field of the userspace iocb is not zero,
 186         * this is the underlying eventfd context to deliver events to.
 187         */
 188        struct eventfd_ctx      *ki_eventfd;
 189};
 190
 191/*------ sysctl variables----*/
 192static DEFINE_SPINLOCK(aio_nr_lock);
 193unsigned long aio_nr;           /* current system wide number of aio requests */
 194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 195/*----end sysctl variables---*/
 196
 197static struct kmem_cache        *kiocb_cachep;
 198static struct kmem_cache        *kioctx_cachep;
 199
 200static struct vfsmount *aio_mnt;
 201
 202static const struct file_operations aio_ring_fops;
 203static const struct address_space_operations aio_ctx_aops;
 204
 205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 206{
 207        struct qstr this = QSTR_INIT("[aio]", 5);
 208        struct file *file;
 209        struct path path;
 210        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 211        if (IS_ERR(inode))
 212                return ERR_CAST(inode);
 213
 214        inode->i_mapping->a_ops = &aio_ctx_aops;
 215        inode->i_mapping->private_data = ctx;
 216        inode->i_size = PAGE_SIZE * nr_pages;
 217
 218        path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
 219        if (!path.dentry) {
 220                iput(inode);
 221                return ERR_PTR(-ENOMEM);
 222        }
 223        path.mnt = mntget(aio_mnt);
 224
 225        d_instantiate(path.dentry, inode);
 226        file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
 227        if (IS_ERR(file)) {
 228                path_put(&path);
 229                return file;
 230        }
 231
 232        file->f_flags = O_RDWR;
 233        return file;
 234}
 235
 236static struct dentry *aio_mount(struct file_system_type *fs_type,
 237                                int flags, const char *dev_name, void *data)
 238{
 239        static const struct dentry_operations ops = {
 240                .d_dname        = simple_dname,
 241        };
 242        struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
 243                                           AIO_RING_MAGIC);
 244
 245        if (!IS_ERR(root))
 246                root->d_sb->s_iflags |= SB_I_NOEXEC;
 247        return root;
 248}
 249
 250/* aio_setup
 251 *      Creates the slab caches used by the aio routines, panic on
 252 *      failure as this is done early during the boot sequence.
 253 */
 254static int __init aio_setup(void)
 255{
 256        static struct file_system_type aio_fs = {
 257                .name           = "aio",
 258                .mount          = aio_mount,
 259                .kill_sb        = kill_anon_super,
 260        };
 261        aio_mnt = kern_mount(&aio_fs);
 262        if (IS_ERR(aio_mnt))
 263                panic("Failed to create aio fs mount.");
 264
 265        kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 266        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 267
 268        pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
 269
 270        return 0;
 271}
 272__initcall(aio_setup);
 273
 274static void put_aio_ring_file(struct kioctx *ctx)
 275{
 276        struct file *aio_ring_file = ctx->aio_ring_file;
 277        struct address_space *i_mapping;
 278
 279        if (aio_ring_file) {
 280                truncate_setsize(file_inode(aio_ring_file), 0);
 281
 282                /* Prevent further access to the kioctx from migratepages */
 283                i_mapping = aio_ring_file->f_mapping;
 284                spin_lock(&i_mapping->private_lock);
 285                i_mapping->private_data = NULL;
 286                ctx->aio_ring_file = NULL;
 287                spin_unlock(&i_mapping->private_lock);
 288
 289                fput(aio_ring_file);
 290        }
 291}
 292
 293static void aio_free_ring(struct kioctx *ctx)
 294{
 295        int i;
 296
 297        /* Disconnect the kiotx from the ring file.  This prevents future
 298         * accesses to the kioctx from page migration.
 299         */
 300        put_aio_ring_file(ctx);
 301
 302        for (i = 0; i < ctx->nr_pages; i++) {
 303                struct page *page;
 304                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 305                                page_count(ctx->ring_pages[i]));
 306                page = ctx->ring_pages[i];
 307                if (!page)
 308                        continue;
 309                ctx->ring_pages[i] = NULL;
 310                put_page(page);
 311        }
 312
 313        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 314                kfree(ctx->ring_pages);
 315                ctx->ring_pages = NULL;
 316        }
 317}
 318
 319static int aio_ring_mremap(struct vm_area_struct *vma)
 320{
 321        struct file *file = vma->vm_file;
 322        struct mm_struct *mm = vma->vm_mm;
 323        struct kioctx_table *table;
 324        int i, res = -EINVAL;
 325
 326        spin_lock(&mm->ioctx_lock);
 327        rcu_read_lock();
 328        table = rcu_dereference(mm->ioctx_table);
 329        for (i = 0; i < table->nr; i++) {
 330                struct kioctx *ctx;
 331
 332                ctx = rcu_dereference(table->table[i]);
 333                if (ctx && ctx->aio_ring_file == file) {
 334                        if (!atomic_read(&ctx->dead)) {
 335                                ctx->user_id = ctx->mmap_base = vma->vm_start;
 336                                res = 0;
 337                        }
 338                        break;
 339                }
 340        }
 341
 342        rcu_read_unlock();
 343        spin_unlock(&mm->ioctx_lock);
 344        return res;
 345}
 346
 347static const struct vm_operations_struct aio_ring_vm_ops = {
 348        .mremap         = aio_ring_mremap,
 349#if IS_ENABLED(CONFIG_MMU)
 350        .fault          = filemap_fault,
 351        .map_pages      = filemap_map_pages,
 352        .page_mkwrite   = filemap_page_mkwrite,
 353#endif
 354};
 355
 356static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 357{
 358        vma->vm_flags |= VM_DONTEXPAND;
 359        vma->vm_ops = &aio_ring_vm_ops;
 360        return 0;
 361}
 362
 363static const struct file_operations aio_ring_fops = {
 364        .mmap = aio_ring_mmap,
 365};
 366
 367#if IS_ENABLED(CONFIG_MIGRATION)
 368static int aio_migratepage(struct address_space *mapping, struct page *new,
 369                        struct page *old, enum migrate_mode mode)
 370{
 371        struct kioctx *ctx;
 372        unsigned long flags;
 373        pgoff_t idx;
 374        int rc;
 375
 376        /*
 377         * We cannot support the _NO_COPY case here, because copy needs to
 378         * happen under the ctx->completion_lock. That does not work with the
 379         * migration workflow of MIGRATE_SYNC_NO_COPY.
 380         */
 381        if (mode == MIGRATE_SYNC_NO_COPY)
 382                return -EINVAL;
 383
 384        rc = 0;
 385
 386        /* mapping->private_lock here protects against the kioctx teardown.  */
 387        spin_lock(&mapping->private_lock);
 388        ctx = mapping->private_data;
 389        if (!ctx) {
 390                rc = -EINVAL;
 391                goto out;
 392        }
 393
 394        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 395         * to the ring's head, and prevents page migration from mucking in
 396         * a partially initialized kiotx.
 397         */
 398        if (!mutex_trylock(&ctx->ring_lock)) {
 399                rc = -EAGAIN;
 400                goto out;
 401        }
 402
 403        idx = old->index;
 404        if (idx < (pgoff_t)ctx->nr_pages) {
 405                /* Make sure the old page hasn't already been changed */
 406                if (ctx->ring_pages[idx] != old)
 407                        rc = -EAGAIN;
 408        } else
 409                rc = -EINVAL;
 410
 411        if (rc != 0)
 412                goto out_unlock;
 413
 414        /* Writeback must be complete */
 415        BUG_ON(PageWriteback(old));
 416        get_page(new);
 417
 418        rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
 419        if (rc != MIGRATEPAGE_SUCCESS) {
 420                put_page(new);
 421                goto out_unlock;
 422        }
 423
 424        /* Take completion_lock to prevent other writes to the ring buffer
 425         * while the old page is copied to the new.  This prevents new
 426         * events from being lost.
 427         */
 428        spin_lock_irqsave(&ctx->completion_lock, flags);
 429        migrate_page_copy(new, old);
 430        BUG_ON(ctx->ring_pages[idx] != old);
 431        ctx->ring_pages[idx] = new;
 432        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 433
 434        /* The old page is no longer accessible. */
 435        put_page(old);
 436
 437out_unlock:
 438        mutex_unlock(&ctx->ring_lock);
 439out:
 440        spin_unlock(&mapping->private_lock);
 441        return rc;
 442}
 443#endif
 444
 445static const struct address_space_operations aio_ctx_aops = {
 446        .set_page_dirty = __set_page_dirty_no_writeback,
 447#if IS_ENABLED(CONFIG_MIGRATION)
 448        .migratepage    = aio_migratepage,
 449#endif
 450};
 451
 452static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 453{
 454        struct aio_ring *ring;
 455        struct mm_struct *mm = current->mm;
 456        unsigned long size, unused;
 457        int nr_pages;
 458        int i;
 459        struct file *file;
 460
 461        /* Compensate for the ring buffer's head/tail overlap entry */
 462        nr_events += 2; /* 1 is required, 2 for good luck */
 463
 464        size = sizeof(struct aio_ring);
 465        size += sizeof(struct io_event) * nr_events;
 466
 467        nr_pages = PFN_UP(size);
 468        if (nr_pages < 0)
 469                return -EINVAL;
 470
 471        file = aio_private_file(ctx, nr_pages);
 472        if (IS_ERR(file)) {
 473                ctx->aio_ring_file = NULL;
 474                return -ENOMEM;
 475        }
 476
 477        ctx->aio_ring_file = file;
 478        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 479                        / sizeof(struct io_event);
 480
 481        ctx->ring_pages = ctx->internal_pages;
 482        if (nr_pages > AIO_RING_PAGES) {
 483                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 484                                          GFP_KERNEL);
 485                if (!ctx->ring_pages) {
 486                        put_aio_ring_file(ctx);
 487                        return -ENOMEM;
 488                }
 489        }
 490
 491        for (i = 0; i < nr_pages; i++) {
 492                struct page *page;
 493                page = find_or_create_page(file->f_mapping,
 494                                           i, GFP_HIGHUSER | __GFP_ZERO);
 495                if (!page)
 496                        break;
 497                pr_debug("pid(%d) page[%d]->count=%d\n",
 498                         current->pid, i, page_count(page));
 499                SetPageUptodate(page);
 500                unlock_page(page);
 501
 502                ctx->ring_pages[i] = page;
 503        }
 504        ctx->nr_pages = i;
 505
 506        if (unlikely(i != nr_pages)) {
 507                aio_free_ring(ctx);
 508                return -ENOMEM;
 509        }
 510
 511        ctx->mmap_size = nr_pages * PAGE_SIZE;
 512        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 513
 514        if (down_write_killable(&mm->mmap_sem)) {
 515                ctx->mmap_size = 0;
 516                aio_free_ring(ctx);
 517                return -EINTR;
 518        }
 519
 520        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 521                                       PROT_READ | PROT_WRITE,
 522                                       MAP_SHARED, 0, &unused, NULL);
 523        up_write(&mm->mmap_sem);
 524        if (IS_ERR((void *)ctx->mmap_base)) {
 525                ctx->mmap_size = 0;
 526                aio_free_ring(ctx);
 527                return -ENOMEM;
 528        }
 529
 530        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 531
 532        ctx->user_id = ctx->mmap_base;
 533        ctx->nr_events = nr_events; /* trusted copy */
 534
 535        ring = kmap_atomic(ctx->ring_pages[0]);
 536        ring->nr = nr_events;   /* user copy */
 537        ring->id = ~0U;
 538        ring->head = ring->tail = 0;
 539        ring->magic = AIO_RING_MAGIC;
 540        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 541        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 542        ring->header_length = sizeof(struct aio_ring);
 543        kunmap_atomic(ring);
 544        flush_dcache_page(ctx->ring_pages[0]);
 545
 546        return 0;
 547}
 548
 549#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 550#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 551#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 552
 553void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 554{
 555        struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
 556        struct kioctx *ctx = req->ki_ctx;
 557        unsigned long flags;
 558
 559        spin_lock_irqsave(&ctx->ctx_lock, flags);
 560
 561        if (!req->ki_list.next)
 562                list_add(&req->ki_list, &ctx->active_reqs);
 563
 564        req->ki_cancel = cancel;
 565
 566        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 567}
 568EXPORT_SYMBOL(kiocb_set_cancel_fn);
 569
 570static int kiocb_cancel(struct aio_kiocb *kiocb)
 571{
 572        kiocb_cancel_fn *old, *cancel;
 573
 574        /*
 575         * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
 576         * actually has a cancel function, hence the cmpxchg()
 577         */
 578
 579        cancel = READ_ONCE(kiocb->ki_cancel);
 580        do {
 581                if (!cancel || cancel == KIOCB_CANCELLED)
 582                        return -EINVAL;
 583
 584                old = cancel;
 585                cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
 586        } while (cancel != old);
 587
 588        return cancel(&kiocb->common);
 589}
 590
 591/*
 592 * free_ioctx() should be RCU delayed to synchronize against the RCU
 593 * protected lookup_ioctx() and also needs process context to call
 594 * aio_free_ring().  Use rcu_work.
 595 */
 596static void free_ioctx(struct work_struct *work)
 597{
 598        struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
 599                                          free_rwork);
 600        pr_debug("freeing %p\n", ctx);
 601
 602        aio_free_ring(ctx);
 603        free_percpu(ctx->cpu);
 604        percpu_ref_exit(&ctx->reqs);
 605        percpu_ref_exit(&ctx->users);
 606        kmem_cache_free(kioctx_cachep, ctx);
 607}
 608
 609static void free_ioctx_reqs(struct percpu_ref *ref)
 610{
 611        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 612
 613        /* At this point we know that there are no any in-flight requests */
 614        if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 615                complete(&ctx->rq_wait->comp);
 616
 617        /* Synchronize against RCU protected table->table[] dereferences */
 618        INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
 619        queue_rcu_work(system_wq, &ctx->free_rwork);
 620}
 621
 622/*
 623 * When this function runs, the kioctx has been removed from the "hash table"
 624 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 625 * now it's safe to cancel any that need to be.
 626 */
 627static void free_ioctx_users(struct percpu_ref *ref)
 628{
 629        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 630        struct aio_kiocb *req;
 631
 632        spin_lock_irq(&ctx->ctx_lock);
 633
 634        while (!list_empty(&ctx->active_reqs)) {
 635                req = list_first_entry(&ctx->active_reqs,
 636                                       struct aio_kiocb, ki_list);
 637                kiocb_cancel(req);
 638                list_del_init(&req->ki_list);
 639        }
 640
 641        spin_unlock_irq(&ctx->ctx_lock);
 642
 643        percpu_ref_kill(&ctx->reqs);
 644        percpu_ref_put(&ctx->reqs);
 645}
 646
 647static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 648{
 649        unsigned i, new_nr;
 650        struct kioctx_table *table, *old;
 651        struct aio_ring *ring;
 652
 653        spin_lock(&mm->ioctx_lock);
 654        table = rcu_dereference_raw(mm->ioctx_table);
 655
 656        while (1) {
 657                if (table)
 658                        for (i = 0; i < table->nr; i++)
 659                                if (!rcu_access_pointer(table->table[i])) {
 660                                        ctx->id = i;
 661                                        rcu_assign_pointer(table->table[i], ctx);
 662                                        spin_unlock(&mm->ioctx_lock);
 663
 664                                        /* While kioctx setup is in progress,
 665                                         * we are protected from page migration
 666                                         * changes ring_pages by ->ring_lock.
 667                                         */
 668                                        ring = kmap_atomic(ctx->ring_pages[0]);
 669                                        ring->id = ctx->id;
 670                                        kunmap_atomic(ring);
 671                                        return 0;
 672                                }
 673
 674                new_nr = (table ? table->nr : 1) * 4;
 675                spin_unlock(&mm->ioctx_lock);
 676
 677                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 678                                new_nr, GFP_KERNEL);
 679                if (!table)
 680                        return -ENOMEM;
 681
 682                table->nr = new_nr;
 683
 684                spin_lock(&mm->ioctx_lock);
 685                old = rcu_dereference_raw(mm->ioctx_table);
 686
 687                if (!old) {
 688                        rcu_assign_pointer(mm->ioctx_table, table);
 689                } else if (table->nr > old->nr) {
 690                        memcpy(table->table, old->table,
 691                               old->nr * sizeof(struct kioctx *));
 692
 693                        rcu_assign_pointer(mm->ioctx_table, table);
 694                        kfree_rcu(old, rcu);
 695                } else {
 696                        kfree(table);
 697                        table = old;
 698                }
 699        }
 700}
 701
 702static void aio_nr_sub(unsigned nr)
 703{
 704        spin_lock(&aio_nr_lock);
 705        if (WARN_ON(aio_nr - nr > aio_nr))
 706                aio_nr = 0;
 707        else
 708                aio_nr -= nr;
 709        spin_unlock(&aio_nr_lock);
 710}
 711
 712/* ioctx_alloc
 713 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 714 */
 715static struct kioctx *ioctx_alloc(unsigned nr_events)
 716{
 717        struct mm_struct *mm = current->mm;
 718        struct kioctx *ctx;
 719        int err = -ENOMEM;
 720
 721        /*
 722         * Store the original nr_events -- what userspace passed to io_setup(),
 723         * for counting against the global limit -- before it changes.
 724         */
 725        unsigned int max_reqs = nr_events;
 726
 727        /*
 728         * We keep track of the number of available ringbuffer slots, to prevent
 729         * overflow (reqs_available), and we also use percpu counters for this.
 730         *
 731         * So since up to half the slots might be on other cpu's percpu counters
 732         * and unavailable, double nr_events so userspace sees what they
 733         * expected: additionally, we move req_batch slots to/from percpu
 734         * counters at a time, so make sure that isn't 0:
 735         */
 736        nr_events = max(nr_events, num_possible_cpus() * 4);
 737        nr_events *= 2;
 738
 739        /* Prevent overflows */
 740        if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 741                pr_debug("ENOMEM: nr_events too high\n");
 742                return ERR_PTR(-EINVAL);
 743        }
 744
 745        if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 746                return ERR_PTR(-EAGAIN);
 747
 748        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 749        if (!ctx)
 750                return ERR_PTR(-ENOMEM);
 751
 752        ctx->max_reqs = max_reqs;
 753
 754        spin_lock_init(&ctx->ctx_lock);
 755        spin_lock_init(&ctx->completion_lock);
 756        mutex_init(&ctx->ring_lock);
 757        /* Protect against page migration throughout kiotx setup by keeping
 758         * the ring_lock mutex held until setup is complete. */
 759        mutex_lock(&ctx->ring_lock);
 760        init_waitqueue_head(&ctx->wait);
 761
 762        INIT_LIST_HEAD(&ctx->active_reqs);
 763
 764        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 765                goto err;
 766
 767        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 768                goto err;
 769
 770        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 771        if (!ctx->cpu)
 772                goto err;
 773
 774        err = aio_setup_ring(ctx, nr_events);
 775        if (err < 0)
 776                goto err;
 777
 778        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 779        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 780        if (ctx->req_batch < 1)
 781                ctx->req_batch = 1;
 782
 783        /* limit the number of system wide aios */
 784        spin_lock(&aio_nr_lock);
 785        if (aio_nr + ctx->max_reqs > aio_max_nr ||
 786            aio_nr + ctx->max_reqs < aio_nr) {
 787                spin_unlock(&aio_nr_lock);
 788                err = -EAGAIN;
 789                goto err_ctx;
 790        }
 791        aio_nr += ctx->max_reqs;
 792        spin_unlock(&aio_nr_lock);
 793
 794        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 795        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 796
 797        err = ioctx_add_table(ctx, mm);
 798        if (err)
 799                goto err_cleanup;
 800
 801        /* Release the ring_lock mutex now that all setup is complete. */
 802        mutex_unlock(&ctx->ring_lock);
 803
 804        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 805                 ctx, ctx->user_id, mm, ctx->nr_events);
 806        return ctx;
 807
 808err_cleanup:
 809        aio_nr_sub(ctx->max_reqs);
 810err_ctx:
 811        atomic_set(&ctx->dead, 1);
 812        if (ctx->mmap_size)
 813                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 814        aio_free_ring(ctx);
 815err:
 816        mutex_unlock(&ctx->ring_lock);
 817        free_percpu(ctx->cpu);
 818        percpu_ref_exit(&ctx->reqs);
 819        percpu_ref_exit(&ctx->users);
 820        kmem_cache_free(kioctx_cachep, ctx);
 821        pr_debug("error allocating ioctx %d\n", err);
 822        return ERR_PTR(err);
 823}
 824
 825/* kill_ioctx
 826 *      Cancels all outstanding aio requests on an aio context.  Used
 827 *      when the processes owning a context have all exited to encourage
 828 *      the rapid destruction of the kioctx.
 829 */
 830static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 831                      struct ctx_rq_wait *wait)
 832{
 833        struct kioctx_table *table;
 834
 835        spin_lock(&mm->ioctx_lock);
 836        if (atomic_xchg(&ctx->dead, 1)) {
 837                spin_unlock(&mm->ioctx_lock);
 838                return -EINVAL;
 839        }
 840
 841        table = rcu_dereference_raw(mm->ioctx_table);
 842        WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
 843        RCU_INIT_POINTER(table->table[ctx->id], NULL);
 844        spin_unlock(&mm->ioctx_lock);
 845
 846        /* free_ioctx_reqs() will do the necessary RCU synchronization */
 847        wake_up_all(&ctx->wait);
 848
 849        /*
 850         * It'd be more correct to do this in free_ioctx(), after all
 851         * the outstanding kiocbs have finished - but by then io_destroy
 852         * has already returned, so io_setup() could potentially return
 853         * -EAGAIN with no ioctxs actually in use (as far as userspace
 854         *  could tell).
 855         */
 856        aio_nr_sub(ctx->max_reqs);
 857
 858        if (ctx->mmap_size)
 859                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 860
 861        ctx->rq_wait = wait;
 862        percpu_ref_kill(&ctx->users);
 863        return 0;
 864}
 865
 866/*
 867 * exit_aio: called when the last user of mm goes away.  At this point, there is
 868 * no way for any new requests to be submited or any of the io_* syscalls to be
 869 * called on the context.
 870 *
 871 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 872 * them.
 873 */
 874void exit_aio(struct mm_struct *mm)
 875{
 876        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 877        struct ctx_rq_wait wait;
 878        int i, skipped;
 879
 880        if (!table)
 881                return;
 882
 883        atomic_set(&wait.count, table->nr);
 884        init_completion(&wait.comp);
 885
 886        skipped = 0;
 887        for (i = 0; i < table->nr; ++i) {
 888                struct kioctx *ctx =
 889                        rcu_dereference_protected(table->table[i], true);
 890
 891                if (!ctx) {
 892                        skipped++;
 893                        continue;
 894                }
 895
 896                /*
 897                 * We don't need to bother with munmap() here - exit_mmap(mm)
 898                 * is coming and it'll unmap everything. And we simply can't,
 899                 * this is not necessarily our ->mm.
 900                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 901                 * that it needs to unmap the area, just set it to 0.
 902                 */
 903                ctx->mmap_size = 0;
 904                kill_ioctx(mm, ctx, &wait);
 905        }
 906
 907        if (!atomic_sub_and_test(skipped, &wait.count)) {
 908                /* Wait until all IO for the context are done. */
 909                wait_for_completion(&wait.comp);
 910        }
 911
 912        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 913        kfree(table);
 914}
 915
 916static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 917{
 918        struct kioctx_cpu *kcpu;
 919        unsigned long flags;
 920
 921        local_irq_save(flags);
 922        kcpu = this_cpu_ptr(ctx->cpu);
 923        kcpu->reqs_available += nr;
 924
 925        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 926                kcpu->reqs_available -= ctx->req_batch;
 927                atomic_add(ctx->req_batch, &ctx->reqs_available);
 928        }
 929
 930        local_irq_restore(flags);
 931}
 932
 933static bool get_reqs_available(struct kioctx *ctx)
 934{
 935        struct kioctx_cpu *kcpu;
 936        bool ret = false;
 937        unsigned long flags;
 938
 939        local_irq_save(flags);
 940        kcpu = this_cpu_ptr(ctx->cpu);
 941        if (!kcpu->reqs_available) {
 942                int old, avail = atomic_read(&ctx->reqs_available);
 943
 944                do {
 945                        if (avail < ctx->req_batch)
 946                                goto out;
 947
 948                        old = avail;
 949                        avail = atomic_cmpxchg(&ctx->reqs_available,
 950                                               avail, avail - ctx->req_batch);
 951                } while (avail != old);
 952
 953                kcpu->reqs_available += ctx->req_batch;
 954        }
 955
 956        ret = true;
 957        kcpu->reqs_available--;
 958out:
 959        local_irq_restore(flags);
 960        return ret;
 961}
 962
 963/* refill_reqs_available
 964 *      Updates the reqs_available reference counts used for tracking the
 965 *      number of free slots in the completion ring.  This can be called
 966 *      from aio_complete() (to optimistically update reqs_available) or
 967 *      from aio_get_req() (the we're out of events case).  It must be
 968 *      called holding ctx->completion_lock.
 969 */
 970static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 971                                  unsigned tail)
 972{
 973        unsigned events_in_ring, completed;
 974
 975        /* Clamp head since userland can write to it. */
 976        head %= ctx->nr_events;
 977        if (head <= tail)
 978                events_in_ring = tail - head;
 979        else
 980                events_in_ring = ctx->nr_events - (head - tail);
 981
 982        completed = ctx->completed_events;
 983        if (events_in_ring < completed)
 984                completed -= events_in_ring;
 985        else
 986                completed = 0;
 987
 988        if (!completed)
 989                return;
 990
 991        ctx->completed_events -= completed;
 992        put_reqs_available(ctx, completed);
 993}
 994
 995/* user_refill_reqs_available
 996 *      Called to refill reqs_available when aio_get_req() encounters an
 997 *      out of space in the completion ring.
 998 */
 999static void user_refill_reqs_available(struct kioctx *ctx)
1000{
1001        spin_lock_irq(&ctx->completion_lock);
1002        if (ctx->completed_events) {
1003                struct aio_ring *ring;
1004                unsigned head;
1005
1006                /* Access of ring->head may race with aio_read_events_ring()
1007                 * here, but that's okay since whether we read the old version
1008                 * or the new version, and either will be valid.  The important
1009                 * part is that head cannot pass tail since we prevent
1010                 * aio_complete() from updating tail by holding
1011                 * ctx->completion_lock.  Even if head is invalid, the check
1012                 * against ctx->completed_events below will make sure we do the
1013                 * safe/right thing.
1014                 */
1015                ring = kmap_atomic(ctx->ring_pages[0]);
1016                head = ring->head;
1017                kunmap_atomic(ring);
1018
1019                refill_reqs_available(ctx, head, ctx->tail);
1020        }
1021
1022        spin_unlock_irq(&ctx->completion_lock);
1023}
1024
1025/* aio_get_req
1026 *      Allocate a slot for an aio request.
1027 * Returns NULL if no requests are free.
1028 */
1029static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1030{
1031        struct aio_kiocb *req;
1032
1033        if (!get_reqs_available(ctx)) {
1034                user_refill_reqs_available(ctx);
1035                if (!get_reqs_available(ctx))
1036                        return NULL;
1037        }
1038
1039        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1040        if (unlikely(!req))
1041                goto out_put;
1042
1043        percpu_ref_get(&ctx->reqs);
1044
1045        req->ki_ctx = ctx;
1046        return req;
1047out_put:
1048        put_reqs_available(ctx, 1);
1049        return NULL;
1050}
1051
1052static void kiocb_free(struct aio_kiocb *req)
1053{
1054        if (req->common.ki_filp)
1055                fput(req->common.ki_filp);
1056        if (req->ki_eventfd != NULL)
1057                eventfd_ctx_put(req->ki_eventfd);
1058        kmem_cache_free(kiocb_cachep, req);
1059}
1060
1061static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1062{
1063        struct aio_ring __user *ring  = (void __user *)ctx_id;
1064        struct mm_struct *mm = current->mm;
1065        struct kioctx *ctx, *ret = NULL;
1066        struct kioctx_table *table;
1067        unsigned id;
1068
1069        if (get_user(id, &ring->id))
1070                return NULL;
1071
1072        rcu_read_lock();
1073        table = rcu_dereference(mm->ioctx_table);
1074
1075        if (!table || id >= table->nr)
1076                goto out;
1077
1078        ctx = rcu_dereference(table->table[id]);
1079        if (ctx && ctx->user_id == ctx_id) {
1080                if (percpu_ref_tryget_live(&ctx->users))
1081                        ret = ctx;
1082        }
1083out:
1084        rcu_read_unlock();
1085        return ret;
1086}
1087
1088/* aio_complete
1089 *      Called when the io request on the given iocb is complete.
1090 */
1091static void aio_complete(struct kiocb *kiocb, long res, long res2)
1092{
1093        struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1094        struct kioctx   *ctx = iocb->ki_ctx;
1095        struct aio_ring *ring;
1096        struct io_event *ev_page, *event;
1097        unsigned tail, pos, head;
1098        unsigned long   flags;
1099
1100        if (kiocb->ki_flags & IOCB_WRITE) {
1101                struct file *file = kiocb->ki_filp;
1102
1103                /*
1104                 * Tell lockdep we inherited freeze protection from submission
1105                 * thread.
1106                 */
1107                if (S_ISREG(file_inode(file)->i_mode))
1108                        __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1109                file_end_write(file);
1110        }
1111
1112        /*
1113         * Special case handling for sync iocbs:
1114         *  - events go directly into the iocb for fast handling
1115         *  - the sync task with the iocb in its stack holds the single iocb
1116         *    ref, no other paths have a way to get another ref
1117         *  - the sync task helpfully left a reference to itself in the iocb
1118         */
1119        BUG_ON(is_sync_kiocb(kiocb));
1120
1121        if (iocb->ki_list.next) {
1122                unsigned long flags;
1123
1124                spin_lock_irqsave(&ctx->ctx_lock, flags);
1125                list_del(&iocb->ki_list);
1126                spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1127        }
1128
1129        /*
1130         * Add a completion event to the ring buffer. Must be done holding
1131         * ctx->completion_lock to prevent other code from messing with the tail
1132         * pointer since we might be called from irq context.
1133         */
1134        spin_lock_irqsave(&ctx->completion_lock, flags);
1135
1136        tail = ctx->tail;
1137        pos = tail + AIO_EVENTS_OFFSET;
1138
1139        if (++tail >= ctx->nr_events)
1140                tail = 0;
1141
1142        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1143        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1144
1145        event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1146        event->data = iocb->ki_user_data;
1147        event->res = res;
1148        event->res2 = res2;
1149
1150        kunmap_atomic(ev_page);
1151        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1152
1153        pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1154                 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1155                 res, res2);
1156
1157        /* after flagging the request as done, we
1158         * must never even look at it again
1159         */
1160        smp_wmb();      /* make event visible before updating tail */
1161
1162        ctx->tail = tail;
1163
1164        ring = kmap_atomic(ctx->ring_pages[0]);
1165        head = ring->head;
1166        ring->tail = tail;
1167        kunmap_atomic(ring);
1168        flush_dcache_page(ctx->ring_pages[0]);
1169
1170        ctx->completed_events++;
1171        if (ctx->completed_events > 1)
1172                refill_reqs_available(ctx, head, tail);
1173        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1174
1175        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1176
1177        /*
1178         * Check if the user asked us to deliver the result through an
1179         * eventfd. The eventfd_signal() function is safe to be called
1180         * from IRQ context.
1181         */
1182        if (iocb->ki_eventfd != NULL)
1183                eventfd_signal(iocb->ki_eventfd, 1);
1184
1185        /* everything turned out well, dispose of the aiocb. */
1186        kiocb_free(iocb);
1187
1188        /*
1189         * We have to order our ring_info tail store above and test
1190         * of the wait list below outside the wait lock.  This is
1191         * like in wake_up_bit() where clearing a bit has to be
1192         * ordered with the unlocked test.
1193         */
1194        smp_mb();
1195
1196        if (waitqueue_active(&ctx->wait))
1197                wake_up(&ctx->wait);
1198
1199        percpu_ref_put(&ctx->reqs);
1200}
1201
1202/* aio_read_events_ring
1203 *      Pull an event off of the ioctx's event ring.  Returns the number of
1204 *      events fetched
1205 */
1206static long aio_read_events_ring(struct kioctx *ctx,
1207                                 struct io_event __user *event, long nr)
1208{
1209        struct aio_ring *ring;
1210        unsigned head, tail, pos;
1211        long ret = 0;
1212        int copy_ret;
1213
1214        /*
1215         * The mutex can block and wake us up and that will cause
1216         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1217         * and repeat. This should be rare enough that it doesn't cause
1218         * peformance issues. See the comment in read_events() for more detail.
1219         */
1220        sched_annotate_sleep();
1221        mutex_lock(&ctx->ring_lock);
1222
1223        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1224        ring = kmap_atomic(ctx->ring_pages[0]);
1225        head = ring->head;
1226        tail = ring->tail;
1227        kunmap_atomic(ring);
1228
1229        /*
1230         * Ensure that once we've read the current tail pointer, that
1231         * we also see the events that were stored up to the tail.
1232         */
1233        smp_rmb();
1234
1235        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1236
1237        if (head == tail)
1238                goto out;
1239
1240        head %= ctx->nr_events;
1241        tail %= ctx->nr_events;
1242
1243        while (ret < nr) {
1244                long avail;
1245                struct io_event *ev;
1246                struct page *page;
1247
1248                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1249                if (head == tail)
1250                        break;
1251
1252                avail = min(avail, nr - ret);
1253                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1254                            ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1255
1256                pos = head + AIO_EVENTS_OFFSET;
1257                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1258                pos %= AIO_EVENTS_PER_PAGE;
1259
1260                ev = kmap(page);
1261                copy_ret = copy_to_user(event + ret, ev + pos,
1262                                        sizeof(*ev) * avail);
1263                kunmap(page);
1264
1265                if (unlikely(copy_ret)) {
1266                        ret = -EFAULT;
1267                        goto out;
1268                }
1269
1270                ret += avail;
1271                head += avail;
1272                head %= ctx->nr_events;
1273        }
1274
1275        ring = kmap_atomic(ctx->ring_pages[0]);
1276        ring->head = head;
1277        kunmap_atomic(ring);
1278        flush_dcache_page(ctx->ring_pages[0]);
1279
1280        pr_debug("%li  h%u t%u\n", ret, head, tail);
1281out:
1282        mutex_unlock(&ctx->ring_lock);
1283
1284        return ret;
1285}
1286
1287static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1288                            struct io_event __user *event, long *i)
1289{
1290        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1291
1292        if (ret > 0)
1293                *i += ret;
1294
1295        if (unlikely(atomic_read(&ctx->dead)))
1296                ret = -EINVAL;
1297
1298        if (!*i)
1299                *i = ret;
1300
1301        return ret < 0 || *i >= min_nr;
1302}
1303
1304static long read_events(struct kioctx *ctx, long min_nr, long nr,
1305                        struct io_event __user *event,
1306                        ktime_t until)
1307{
1308        long ret = 0;
1309
1310        /*
1311         * Note that aio_read_events() is being called as the conditional - i.e.
1312         * we're calling it after prepare_to_wait() has set task state to
1313         * TASK_INTERRUPTIBLE.
1314         *
1315         * But aio_read_events() can block, and if it blocks it's going to flip
1316         * the task state back to TASK_RUNNING.
1317         *
1318         * This should be ok, provided it doesn't flip the state back to
1319         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1320         * will only happen if the mutex_lock() call blocks, and we then find
1321         * the ringbuffer empty. So in practice we should be ok, but it's
1322         * something to be aware of when touching this code.
1323         */
1324        if (until == 0)
1325                aio_read_events(ctx, min_nr, nr, event, &ret);
1326        else
1327                wait_event_interruptible_hrtimeout(ctx->wait,
1328                                aio_read_events(ctx, min_nr, nr, event, &ret),
1329                                until);
1330
1331        if (!ret && signal_pending(current))
1332                ret = -EINTR;
1333
1334        return ret;
1335}
1336
1337/* sys_io_setup:
1338 *      Create an aio_context capable of receiving at least nr_events.
1339 *      ctxp must not point to an aio_context that already exists, and
1340 *      must be initialized to 0 prior to the call.  On successful
1341 *      creation of the aio_context, *ctxp is filled in with the resulting 
1342 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1343 *      if the specified nr_events exceeds internal limits.  May fail 
1344 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1345 *      of available events.  May fail with -ENOMEM if insufficient kernel
1346 *      resources are available.  May fail with -EFAULT if an invalid
1347 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1348 *      implemented.
1349 */
1350SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1351{
1352        struct kioctx *ioctx = NULL;
1353        unsigned long ctx;
1354        long ret;
1355
1356        ret = get_user(ctx, ctxp);
1357        if (unlikely(ret))
1358                goto out;
1359
1360        ret = -EINVAL;
1361        if (unlikely(ctx || nr_events == 0)) {
1362                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1363                         ctx, nr_events);
1364                goto out;
1365        }
1366
1367        ioctx = ioctx_alloc(nr_events);
1368        ret = PTR_ERR(ioctx);
1369        if (!IS_ERR(ioctx)) {
1370                ret = put_user(ioctx->user_id, ctxp);
1371                if (ret)
1372                        kill_ioctx(current->mm, ioctx, NULL);
1373                percpu_ref_put(&ioctx->users);
1374        }
1375
1376out:
1377        return ret;
1378}
1379
1380#ifdef CONFIG_COMPAT
1381COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1382{
1383        struct kioctx *ioctx = NULL;
1384        unsigned long ctx;
1385        long ret;
1386
1387        ret = get_user(ctx, ctx32p);
1388        if (unlikely(ret))
1389                goto out;
1390
1391        ret = -EINVAL;
1392        if (unlikely(ctx || nr_events == 0)) {
1393                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1394                         ctx, nr_events);
1395                goto out;
1396        }
1397
1398        ioctx = ioctx_alloc(nr_events);
1399        ret = PTR_ERR(ioctx);
1400        if (!IS_ERR(ioctx)) {
1401                /* truncating is ok because it's a user address */
1402                ret = put_user((u32)ioctx->user_id, ctx32p);
1403                if (ret)
1404                        kill_ioctx(current->mm, ioctx, NULL);
1405                percpu_ref_put(&ioctx->users);
1406        }
1407
1408out:
1409        return ret;
1410}
1411#endif
1412
1413/* sys_io_destroy:
1414 *      Destroy the aio_context specified.  May cancel any outstanding 
1415 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1416 *      implemented.  May fail with -EINVAL if the context pointed to
1417 *      is invalid.
1418 */
1419SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1420{
1421        struct kioctx *ioctx = lookup_ioctx(ctx);
1422        if (likely(NULL != ioctx)) {
1423                struct ctx_rq_wait wait;
1424                int ret;
1425
1426                init_completion(&wait.comp);
1427                atomic_set(&wait.count, 1);
1428
1429                /* Pass requests_done to kill_ioctx() where it can be set
1430                 * in a thread-safe way. If we try to set it here then we have
1431                 * a race condition if two io_destroy() called simultaneously.
1432                 */
1433                ret = kill_ioctx(current->mm, ioctx, &wait);
1434                percpu_ref_put(&ioctx->users);
1435
1436                /* Wait until all IO for the context are done. Otherwise kernel
1437                 * keep using user-space buffers even if user thinks the context
1438                 * is destroyed.
1439                 */
1440                if (!ret)
1441                        wait_for_completion(&wait.comp);
1442
1443                return ret;
1444        }
1445        pr_debug("EINVAL: invalid context id\n");
1446        return -EINVAL;
1447}
1448
1449static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1450                bool vectored, bool compat, struct iov_iter *iter)
1451{
1452        void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1453        size_t len = iocb->aio_nbytes;
1454
1455        if (!vectored) {
1456                ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1457                *iovec = NULL;
1458                return ret;
1459        }
1460#ifdef CONFIG_COMPAT
1461        if (compat)
1462                return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1463                                iter);
1464#endif
1465        return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1466}
1467
1468static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1469{
1470        switch (ret) {
1471        case -EIOCBQUEUED:
1472                return ret;
1473        case -ERESTARTSYS:
1474        case -ERESTARTNOINTR:
1475        case -ERESTARTNOHAND:
1476        case -ERESTART_RESTARTBLOCK:
1477                /*
1478                 * There's no easy way to restart the syscall since other AIO's
1479                 * may be already running. Just fail this IO with EINTR.
1480                 */
1481                ret = -EINTR;
1482                /*FALLTHRU*/
1483        default:
1484                aio_complete(req, ret, 0);
1485                return 0;
1486        }
1487}
1488
1489static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1490                bool compat)
1491{
1492        struct file *file = req->ki_filp;
1493        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1494        struct iov_iter iter;
1495        ssize_t ret;
1496
1497        if (unlikely(!(file->f_mode & FMODE_READ)))
1498                return -EBADF;
1499        if (unlikely(!file->f_op->read_iter))
1500                return -EINVAL;
1501
1502        ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1503        if (ret)
1504                return ret;
1505        ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1506        if (!ret)
1507                ret = aio_ret(req, call_read_iter(file, req, &iter));
1508        kfree(iovec);
1509        return ret;
1510}
1511
1512static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1513                bool compat)
1514{
1515        struct file *file = req->ki_filp;
1516        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1517        struct iov_iter iter;
1518        ssize_t ret;
1519
1520        if (unlikely(!(file->f_mode & FMODE_WRITE)))
1521                return -EBADF;
1522        if (unlikely(!file->f_op->write_iter))
1523                return -EINVAL;
1524
1525        ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1526        if (ret)
1527                return ret;
1528        ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1529        if (!ret) {
1530                req->ki_flags |= IOCB_WRITE;
1531                file_start_write(file);
1532                ret = aio_ret(req, call_write_iter(file, req, &iter));
1533                /*
1534                 * We release freeze protection in aio_complete().  Fool lockdep
1535                 * by telling it the lock got released so that it doesn't
1536                 * complain about held lock when we return to userspace.
1537                 */
1538                if (S_ISREG(file_inode(file)->i_mode))
1539                        __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1540        }
1541        kfree(iovec);
1542        return ret;
1543}
1544
1545static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1546                         struct iocb *iocb, bool compat)
1547{
1548        struct aio_kiocb *req;
1549        struct file *file;
1550        ssize_t ret;
1551
1552        /* enforce forwards compatibility on users */
1553        if (unlikely(iocb->aio_reserved2)) {
1554                pr_debug("EINVAL: reserve field set\n");
1555                return -EINVAL;
1556        }
1557
1558        /* prevent overflows */
1559        if (unlikely(
1560            (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1561            (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1562            ((ssize_t)iocb->aio_nbytes < 0)
1563           )) {
1564                pr_debug("EINVAL: overflow check\n");
1565                return -EINVAL;
1566        }
1567
1568        req = aio_get_req(ctx);
1569        if (unlikely(!req))
1570                return -EAGAIN;
1571
1572        req->common.ki_filp = file = fget(iocb->aio_fildes);
1573        if (unlikely(!req->common.ki_filp)) {
1574                ret = -EBADF;
1575                goto out_put_req;
1576        }
1577        req->common.ki_pos = iocb->aio_offset;
1578        req->common.ki_complete = aio_complete;
1579        req->common.ki_flags = iocb_flags(req->common.ki_filp);
1580        req->common.ki_hint = file_write_hint(file);
1581
1582        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1583                /*
1584                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1585                 * instance of the file* now. The file descriptor must be
1586                 * an eventfd() fd, and will be signaled for each completed
1587                 * event using the eventfd_signal() function.
1588                 */
1589                req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1590                if (IS_ERR(req->ki_eventfd)) {
1591                        ret = PTR_ERR(req->ki_eventfd);
1592                        req->ki_eventfd = NULL;
1593                        goto out_put_req;
1594                }
1595
1596                req->common.ki_flags |= IOCB_EVENTFD;
1597        }
1598
1599        ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1600        if (unlikely(ret)) {
1601                pr_debug("EINVAL: aio_rw_flags\n");
1602                goto out_put_req;
1603        }
1604
1605        ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1606        if (unlikely(ret)) {
1607                pr_debug("EFAULT: aio_key\n");
1608                goto out_put_req;
1609        }
1610
1611        req->ki_user_iocb = user_iocb;
1612        req->ki_user_data = iocb->aio_data;
1613
1614        get_file(file);
1615        switch (iocb->aio_lio_opcode) {
1616        case IOCB_CMD_PREAD:
1617                ret = aio_read(&req->common, iocb, false, compat);
1618                break;
1619        case IOCB_CMD_PWRITE:
1620                ret = aio_write(&req->common, iocb, false, compat);
1621                break;
1622        case IOCB_CMD_PREADV:
1623                ret = aio_read(&req->common, iocb, true, compat);
1624                break;
1625        case IOCB_CMD_PWRITEV:
1626                ret = aio_write(&req->common, iocb, true, compat);
1627                break;
1628        default:
1629                pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1630                ret = -EINVAL;
1631                break;
1632        }
1633        fput(file);
1634
1635        if (ret && ret != -EIOCBQUEUED)
1636                goto out_put_req;
1637        return 0;
1638out_put_req:
1639        put_reqs_available(ctx, 1);
1640        percpu_ref_put(&ctx->reqs);
1641        kiocb_free(req);
1642        return ret;
1643}
1644
1645static long do_io_submit(aio_context_t ctx_id, long nr,
1646                          struct iocb __user *__user *iocbpp, bool compat)
1647{
1648        struct kioctx *ctx;
1649        long ret = 0;
1650        int i = 0;
1651        struct blk_plug plug;
1652
1653        if (unlikely(nr < 0))
1654                return -EINVAL;
1655
1656        if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1657                nr = LONG_MAX/sizeof(*iocbpp);
1658
1659        if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1660                return -EFAULT;
1661
1662        ctx = lookup_ioctx(ctx_id);
1663        if (unlikely(!ctx)) {
1664                pr_debug("EINVAL: invalid context id\n");
1665                return -EINVAL;
1666        }
1667
1668        blk_start_plug(&plug);
1669
1670        /*
1671         * AKPM: should this return a partial result if some of the IOs were
1672         * successfully submitted?
1673         */
1674        for (i=0; i<nr; i++) {
1675                struct iocb __user *user_iocb;
1676                struct iocb tmp;
1677
1678                if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1679                        ret = -EFAULT;
1680                        break;
1681                }
1682
1683                if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1684                        ret = -EFAULT;
1685                        break;
1686                }
1687
1688                ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1689                if (ret)
1690                        break;
1691        }
1692        blk_finish_plug(&plug);
1693
1694        percpu_ref_put(&ctx->users);
1695        return i ? i : ret;
1696}
1697
1698/* sys_io_submit:
1699 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1700 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1701 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1702 *      *iocbpp[0] is not properly initialized, if the operation specified
1703 *      is invalid for the file descriptor in the iocb.  May fail with
1704 *      -EFAULT if any of the data structures point to invalid data.  May
1705 *      fail with -EBADF if the file descriptor specified in the first
1706 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1707 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1708 *      fail with -ENOSYS if not implemented.
1709 */
1710SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1711                struct iocb __user * __user *, iocbpp)
1712{
1713        return do_io_submit(ctx_id, nr, iocbpp, 0);
1714}
1715
1716#ifdef CONFIG_COMPAT
1717static inline long
1718copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1719{
1720        compat_uptr_t uptr;
1721        int i;
1722
1723        for (i = 0; i < nr; ++i) {
1724                if (get_user(uptr, ptr32 + i))
1725                        return -EFAULT;
1726                if (put_user(compat_ptr(uptr), ptr64 + i))
1727                        return -EFAULT;
1728        }
1729        return 0;
1730}
1731
1732#define MAX_AIO_SUBMITS         (PAGE_SIZE/sizeof(struct iocb *))
1733
1734COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1735                       int, nr, u32 __user *, iocb)
1736{
1737        struct iocb __user * __user *iocb64;
1738        long ret;
1739
1740        if (unlikely(nr < 0))
1741                return -EINVAL;
1742
1743        if (nr > MAX_AIO_SUBMITS)
1744                nr = MAX_AIO_SUBMITS;
1745
1746        iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1747        ret = copy_iocb(nr, iocb, iocb64);
1748        if (!ret)
1749                ret = do_io_submit(ctx_id, nr, iocb64, 1);
1750        return ret;
1751}
1752#endif
1753
1754/* lookup_kiocb
1755 *      Finds a given iocb for cancellation.
1756 */
1757static struct aio_kiocb *
1758lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1759{
1760        struct aio_kiocb *kiocb;
1761
1762        assert_spin_locked(&ctx->ctx_lock);
1763
1764        if (key != KIOCB_KEY)
1765                return NULL;
1766
1767        /* TODO: use a hash or array, this sucks. */
1768        list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1769                if (kiocb->ki_user_iocb == iocb)
1770                        return kiocb;
1771        }
1772        return NULL;
1773}
1774
1775/* sys_io_cancel:
1776 *      Attempts to cancel an iocb previously passed to io_submit.  If
1777 *      the operation is successfully cancelled, the resulting event is
1778 *      copied into the memory pointed to by result without being placed
1779 *      into the completion queue and 0 is returned.  May fail with
1780 *      -EFAULT if any of the data structures pointed to are invalid.
1781 *      May fail with -EINVAL if aio_context specified by ctx_id is
1782 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1783 *      cancelled.  Will fail with -ENOSYS if not implemented.
1784 */
1785SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1786                struct io_event __user *, result)
1787{
1788        struct kioctx *ctx;
1789        struct aio_kiocb *kiocb;
1790        u32 key;
1791        int ret;
1792
1793        ret = get_user(key, &iocb->aio_key);
1794        if (unlikely(ret))
1795                return -EFAULT;
1796
1797        ctx = lookup_ioctx(ctx_id);
1798        if (unlikely(!ctx))
1799                return -EINVAL;
1800
1801        spin_lock_irq(&ctx->ctx_lock);
1802
1803        kiocb = lookup_kiocb(ctx, iocb, key);
1804        if (kiocb)
1805                ret = kiocb_cancel(kiocb);
1806        else
1807                ret = -EINVAL;
1808
1809        spin_unlock_irq(&ctx->ctx_lock);
1810
1811        if (!ret) {
1812                /*
1813                 * The result argument is no longer used - the io_event is
1814                 * always delivered via the ring buffer. -EINPROGRESS indicates
1815                 * cancellation is progress:
1816                 */
1817                ret = -EINPROGRESS;
1818        }
1819
1820        percpu_ref_put(&ctx->users);
1821
1822        return ret;
1823}
1824
1825static long do_io_getevents(aio_context_t ctx_id,
1826                long min_nr,
1827                long nr,
1828                struct io_event __user *events,
1829                struct timespec64 *ts)
1830{
1831        ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1832        struct kioctx *ioctx = lookup_ioctx(ctx_id);
1833        long ret = -EINVAL;
1834
1835        if (likely(ioctx)) {
1836                if (likely(min_nr <= nr && min_nr >= 0))
1837                        ret = read_events(ioctx, min_nr, nr, events, until);
1838                percpu_ref_put(&ioctx->users);
1839        }
1840
1841        return ret;
1842}
1843
1844/* io_getevents:
1845 *      Attempts to read at least min_nr events and up to nr events from
1846 *      the completion queue for the aio_context specified by ctx_id. If
1847 *      it succeeds, the number of read events is returned. May fail with
1848 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1849 *      out of range, if timeout is out of range.  May fail with -EFAULT
1850 *      if any of the memory specified is invalid.  May return 0 or
1851 *      < min_nr if the timeout specified by timeout has elapsed
1852 *      before sufficient events are available, where timeout == NULL
1853 *      specifies an infinite timeout. Note that the timeout pointed to by
1854 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
1855 */
1856SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1857                long, min_nr,
1858                long, nr,
1859                struct io_event __user *, events,
1860                struct timespec __user *, timeout)
1861{
1862        struct timespec64       ts;
1863
1864        if (timeout) {
1865                if (unlikely(get_timespec64(&ts, timeout)))
1866                        return -EFAULT;
1867        }
1868
1869        return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1870}
1871
1872#ifdef CONFIG_COMPAT
1873COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1874                       compat_long_t, min_nr,
1875                       compat_long_t, nr,
1876                       struct io_event __user *, events,
1877                       struct compat_timespec __user *, timeout)
1878{
1879        struct timespec64 t;
1880
1881        if (timeout) {
1882                if (compat_get_timespec64(&t, timeout))
1883                        return -EFAULT;
1884
1885        }
1886
1887        return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1888}
1889#endif
1890