linux/fs/btrfs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/buffer_head.h>
   9#include <linux/file.h>
  10#include <linux/fs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/mpage.h>
  18#include <linux/swap.h>
  19#include <linux/writeback.h>
  20#include <linux/compat.h>
  21#include <linux/bit_spinlock.h>
  22#include <linux/xattr.h>
  23#include <linux/posix_acl.h>
  24#include <linux/falloc.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/mount.h>
  28#include <linux/btrfs.h>
  29#include <linux/blkdev.h>
  30#include <linux/posix_acl_xattr.h>
  31#include <linux/uio.h>
  32#include <linux/magic.h>
  33#include <linux/iversion.h>
  34#include <asm/unaligned.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "ordered-data.h"
  41#include "xattr.h"
  42#include "tree-log.h"
  43#include "volumes.h"
  44#include "compression.h"
  45#include "locking.h"
  46#include "free-space-cache.h"
  47#include "inode-map.h"
  48#include "backref.h"
  49#include "props.h"
  50#include "qgroup.h"
  51#include "dedupe.h"
  52
  53struct btrfs_iget_args {
  54        struct btrfs_key *location;
  55        struct btrfs_root *root;
  56};
  57
  58struct btrfs_dio_data {
  59        u64 reserve;
  60        u64 unsubmitted_oe_range_start;
  61        u64 unsubmitted_oe_range_end;
  62        int overwrite;
  63};
  64
  65static const struct inode_operations btrfs_dir_inode_operations;
  66static const struct inode_operations btrfs_symlink_inode_operations;
  67static const struct inode_operations btrfs_dir_ro_inode_operations;
  68static const struct inode_operations btrfs_special_inode_operations;
  69static const struct inode_operations btrfs_file_inode_operations;
  70static const struct address_space_operations btrfs_aops;
  71static const struct address_space_operations btrfs_symlink_aops;
  72static const struct file_operations btrfs_dir_file_operations;
  73static const struct extent_io_ops btrfs_extent_io_ops;
  74
  75static struct kmem_cache *btrfs_inode_cachep;
  76struct kmem_cache *btrfs_trans_handle_cachep;
  77struct kmem_cache *btrfs_path_cachep;
  78struct kmem_cache *btrfs_free_space_cachep;
  79
  80#define S_SHIFT 12
  81static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  82        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  83        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  84        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  85        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  86        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  87        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  88        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  89};
  90
  91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  92static int btrfs_truncate(struct inode *inode, bool skip_writeback);
  93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  94static noinline int cow_file_range(struct inode *inode,
  95                                   struct page *locked_page,
  96                                   u64 start, u64 end, u64 delalloc_end,
  97                                   int *page_started, unsigned long *nr_written,
  98                                   int unlock, struct btrfs_dedupe_hash *hash);
  99static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
 100                                       u64 orig_start, u64 block_start,
 101                                       u64 block_len, u64 orig_block_len,
 102                                       u64 ram_bytes, int compress_type,
 103                                       int type);
 104
 105static void __endio_write_update_ordered(struct inode *inode,
 106                                         const u64 offset, const u64 bytes,
 107                                         const bool uptodate);
 108
 109/*
 110 * Cleanup all submitted ordered extents in specified range to handle errors
 111 * from the fill_dellaloc() callback.
 112 *
 113 * NOTE: caller must ensure that when an error happens, it can not call
 114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
 115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
 116 * to be released, which we want to happen only when finishing the ordered
 117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
 118 * fill_delalloc() callback already does proper cleanup for the first page of
 119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
 120 * range of the first page.
 121 */
 122static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
 123                                                 const u64 offset,
 124                                                 const u64 bytes)
 125{
 126        unsigned long index = offset >> PAGE_SHIFT;
 127        unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
 128        struct page *page;
 129
 130        while (index <= end_index) {
 131                page = find_get_page(inode->i_mapping, index);
 132                index++;
 133                if (!page)
 134                        continue;
 135                ClearPagePrivate2(page);
 136                put_page(page);
 137        }
 138        return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
 139                                            bytes - PAGE_SIZE, false);
 140}
 141
 142static int btrfs_dirty_inode(struct inode *inode);
 143
 144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 145void btrfs_test_inode_set_ops(struct inode *inode)
 146{
 147        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
 148}
 149#endif
 150
 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 152                                     struct inode *inode,  struct inode *dir,
 153                                     const struct qstr *qstr)
 154{
 155        int err;
 156
 157        err = btrfs_init_acl(trans, inode, dir);
 158        if (!err)
 159                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 160        return err;
 161}
 162
 163/*
 164 * this does all the hard work for inserting an inline extent into
 165 * the btree.  The caller should have done a btrfs_drop_extents so that
 166 * no overlapping inline items exist in the btree
 167 */
 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
 169                                struct btrfs_path *path, int extent_inserted,
 170                                struct btrfs_root *root, struct inode *inode,
 171                                u64 start, size_t size, size_t compressed_size,
 172                                int compress_type,
 173                                struct page **compressed_pages)
 174{
 175        struct extent_buffer *leaf;
 176        struct page *page = NULL;
 177        char *kaddr;
 178        unsigned long ptr;
 179        struct btrfs_file_extent_item *ei;
 180        int ret;
 181        size_t cur_size = size;
 182        unsigned long offset;
 183
 184        if (compressed_size && compressed_pages)
 185                cur_size = compressed_size;
 186
 187        inode_add_bytes(inode, size);
 188
 189        if (!extent_inserted) {
 190                struct btrfs_key key;
 191                size_t datasize;
 192
 193                key.objectid = btrfs_ino(BTRFS_I(inode));
 194                key.offset = start;
 195                key.type = BTRFS_EXTENT_DATA_KEY;
 196
 197                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 198                path->leave_spinning = 1;
 199                ret = btrfs_insert_empty_item(trans, root, path, &key,
 200                                              datasize);
 201                if (ret)
 202                        goto fail;
 203        }
 204        leaf = path->nodes[0];
 205        ei = btrfs_item_ptr(leaf, path->slots[0],
 206                            struct btrfs_file_extent_item);
 207        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 208        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 209        btrfs_set_file_extent_encryption(leaf, ei, 0);
 210        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 211        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 212        ptr = btrfs_file_extent_inline_start(ei);
 213
 214        if (compress_type != BTRFS_COMPRESS_NONE) {
 215                struct page *cpage;
 216                int i = 0;
 217                while (compressed_size > 0) {
 218                        cpage = compressed_pages[i];
 219                        cur_size = min_t(unsigned long, compressed_size,
 220                                       PAGE_SIZE);
 221
 222                        kaddr = kmap_atomic(cpage);
 223                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 224                        kunmap_atomic(kaddr);
 225
 226                        i++;
 227                        ptr += cur_size;
 228                        compressed_size -= cur_size;
 229                }
 230                btrfs_set_file_extent_compression(leaf, ei,
 231                                                  compress_type);
 232        } else {
 233                page = find_get_page(inode->i_mapping,
 234                                     start >> PAGE_SHIFT);
 235                btrfs_set_file_extent_compression(leaf, ei, 0);
 236                kaddr = kmap_atomic(page);
 237                offset = start & (PAGE_SIZE - 1);
 238                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 239                kunmap_atomic(kaddr);
 240                put_page(page);
 241        }
 242        btrfs_mark_buffer_dirty(leaf);
 243        btrfs_release_path(path);
 244
 245        /*
 246         * we're an inline extent, so nobody can
 247         * extend the file past i_size without locking
 248         * a page we already have locked.
 249         *
 250         * We must do any isize and inode updates
 251         * before we unlock the pages.  Otherwise we
 252         * could end up racing with unlink.
 253         */
 254        BTRFS_I(inode)->disk_i_size = inode->i_size;
 255        ret = btrfs_update_inode(trans, root, inode);
 256
 257fail:
 258        return ret;
 259}
 260
 261
 262/*
 263 * conditionally insert an inline extent into the file.  This
 264 * does the checks required to make sure the data is small enough
 265 * to fit as an inline extent.
 266 */
 267static noinline int cow_file_range_inline(struct inode *inode, u64 start,
 268                                          u64 end, size_t compressed_size,
 269                                          int compress_type,
 270                                          struct page **compressed_pages)
 271{
 272        struct btrfs_root *root = BTRFS_I(inode)->root;
 273        struct btrfs_fs_info *fs_info = root->fs_info;
 274        struct btrfs_trans_handle *trans;
 275        u64 isize = i_size_read(inode);
 276        u64 actual_end = min(end + 1, isize);
 277        u64 inline_len = actual_end - start;
 278        u64 aligned_end = ALIGN(end, fs_info->sectorsize);
 279        u64 data_len = inline_len;
 280        int ret;
 281        struct btrfs_path *path;
 282        int extent_inserted = 0;
 283        u32 extent_item_size;
 284
 285        if (compressed_size)
 286                data_len = compressed_size;
 287
 288        if (start > 0 ||
 289            actual_end > fs_info->sectorsize ||
 290            data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
 291            (!compressed_size &&
 292            (actual_end & (fs_info->sectorsize - 1)) == 0) ||
 293            end + 1 < isize ||
 294            data_len > fs_info->max_inline) {
 295                return 1;
 296        }
 297
 298        path = btrfs_alloc_path();
 299        if (!path)
 300                return -ENOMEM;
 301
 302        trans = btrfs_join_transaction(root);
 303        if (IS_ERR(trans)) {
 304                btrfs_free_path(path);
 305                return PTR_ERR(trans);
 306        }
 307        trans->block_rsv = &BTRFS_I(inode)->block_rsv;
 308
 309        if (compressed_size && compressed_pages)
 310                extent_item_size = btrfs_file_extent_calc_inline_size(
 311                   compressed_size);
 312        else
 313                extent_item_size = btrfs_file_extent_calc_inline_size(
 314                    inline_len);
 315
 316        ret = __btrfs_drop_extents(trans, root, inode, path,
 317                                   start, aligned_end, NULL,
 318                                   1, 1, extent_item_size, &extent_inserted);
 319        if (ret) {
 320                btrfs_abort_transaction(trans, ret);
 321                goto out;
 322        }
 323
 324        if (isize > actual_end)
 325                inline_len = min_t(u64, isize, actual_end);
 326        ret = insert_inline_extent(trans, path, extent_inserted,
 327                                   root, inode, start,
 328                                   inline_len, compressed_size,
 329                                   compress_type, compressed_pages);
 330        if (ret && ret != -ENOSPC) {
 331                btrfs_abort_transaction(trans, ret);
 332                goto out;
 333        } else if (ret == -ENOSPC) {
 334                ret = 1;
 335                goto out;
 336        }
 337
 338        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 339        btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
 340out:
 341        /*
 342         * Don't forget to free the reserved space, as for inlined extent
 343         * it won't count as data extent, free them directly here.
 344         * And at reserve time, it's always aligned to page size, so
 345         * just free one page here.
 346         */
 347        btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
 348        btrfs_free_path(path);
 349        btrfs_end_transaction(trans);
 350        return ret;
 351}
 352
 353struct async_extent {
 354        u64 start;
 355        u64 ram_size;
 356        u64 compressed_size;
 357        struct page **pages;
 358        unsigned long nr_pages;
 359        int compress_type;
 360        struct list_head list;
 361};
 362
 363struct async_cow {
 364        struct inode *inode;
 365        struct btrfs_root *root;
 366        struct page *locked_page;
 367        u64 start;
 368        u64 end;
 369        unsigned int write_flags;
 370        struct list_head extents;
 371        struct btrfs_work work;
 372};
 373
 374static noinline int add_async_extent(struct async_cow *cow,
 375                                     u64 start, u64 ram_size,
 376                                     u64 compressed_size,
 377                                     struct page **pages,
 378                                     unsigned long nr_pages,
 379                                     int compress_type)
 380{
 381        struct async_extent *async_extent;
 382
 383        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 384        BUG_ON(!async_extent); /* -ENOMEM */
 385        async_extent->start = start;
 386        async_extent->ram_size = ram_size;
 387        async_extent->compressed_size = compressed_size;
 388        async_extent->pages = pages;
 389        async_extent->nr_pages = nr_pages;
 390        async_extent->compress_type = compress_type;
 391        list_add_tail(&async_extent->list, &cow->extents);
 392        return 0;
 393}
 394
 395static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
 396{
 397        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 398
 399        /* force compress */
 400        if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
 401                return 1;
 402        /* defrag ioctl */
 403        if (BTRFS_I(inode)->defrag_compress)
 404                return 1;
 405        /* bad compression ratios */
 406        if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
 407                return 0;
 408        if (btrfs_test_opt(fs_info, COMPRESS) ||
 409            BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
 410            BTRFS_I(inode)->prop_compress)
 411                return btrfs_compress_heuristic(inode, start, end);
 412        return 0;
 413}
 414
 415static inline void inode_should_defrag(struct btrfs_inode *inode,
 416                u64 start, u64 end, u64 num_bytes, u64 small_write)
 417{
 418        /* If this is a small write inside eof, kick off a defrag */
 419        if (num_bytes < small_write &&
 420            (start > 0 || end + 1 < inode->disk_i_size))
 421                btrfs_add_inode_defrag(NULL, inode);
 422}
 423
 424/*
 425 * we create compressed extents in two phases.  The first
 426 * phase compresses a range of pages that have already been
 427 * locked (both pages and state bits are locked).
 428 *
 429 * This is done inside an ordered work queue, and the compression
 430 * is spread across many cpus.  The actual IO submission is step
 431 * two, and the ordered work queue takes care of making sure that
 432 * happens in the same order things were put onto the queue by
 433 * writepages and friends.
 434 *
 435 * If this code finds it can't get good compression, it puts an
 436 * entry onto the work queue to write the uncompressed bytes.  This
 437 * makes sure that both compressed inodes and uncompressed inodes
 438 * are written in the same order that the flusher thread sent them
 439 * down.
 440 */
 441static noinline void compress_file_range(struct inode *inode,
 442                                        struct page *locked_page,
 443                                        u64 start, u64 end,
 444                                        struct async_cow *async_cow,
 445                                        int *num_added)
 446{
 447        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 448        u64 blocksize = fs_info->sectorsize;
 449        u64 actual_end;
 450        u64 isize = i_size_read(inode);
 451        int ret = 0;
 452        struct page **pages = NULL;
 453        unsigned long nr_pages;
 454        unsigned long total_compressed = 0;
 455        unsigned long total_in = 0;
 456        int i;
 457        int will_compress;
 458        int compress_type = fs_info->compress_type;
 459        int redirty = 0;
 460
 461        inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
 462                        SZ_16K);
 463
 464        actual_end = min_t(u64, isize, end + 1);
 465again:
 466        will_compress = 0;
 467        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 468        BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
 469        nr_pages = min_t(unsigned long, nr_pages,
 470                        BTRFS_MAX_COMPRESSED / PAGE_SIZE);
 471
 472        /*
 473         * we don't want to send crud past the end of i_size through
 474         * compression, that's just a waste of CPU time.  So, if the
 475         * end of the file is before the start of our current
 476         * requested range of bytes, we bail out to the uncompressed
 477         * cleanup code that can deal with all of this.
 478         *
 479         * It isn't really the fastest way to fix things, but this is a
 480         * very uncommon corner.
 481         */
 482        if (actual_end <= start)
 483                goto cleanup_and_bail_uncompressed;
 484
 485        total_compressed = actual_end - start;
 486
 487        /*
 488         * skip compression for a small file range(<=blocksize) that
 489         * isn't an inline extent, since it doesn't save disk space at all.
 490         */
 491        if (total_compressed <= blocksize &&
 492           (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 493                goto cleanup_and_bail_uncompressed;
 494
 495        total_compressed = min_t(unsigned long, total_compressed,
 496                        BTRFS_MAX_UNCOMPRESSED);
 497        total_in = 0;
 498        ret = 0;
 499
 500        /*
 501         * we do compression for mount -o compress and when the
 502         * inode has not been flagged as nocompress.  This flag can
 503         * change at any time if we discover bad compression ratios.
 504         */
 505        if (inode_need_compress(inode, start, end)) {
 506                WARN_ON(pages);
 507                pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 508                if (!pages) {
 509                        /* just bail out to the uncompressed code */
 510                        goto cont;
 511                }
 512
 513                if (BTRFS_I(inode)->defrag_compress)
 514                        compress_type = BTRFS_I(inode)->defrag_compress;
 515                else if (BTRFS_I(inode)->prop_compress)
 516                        compress_type = BTRFS_I(inode)->prop_compress;
 517
 518                /*
 519                 * we need to call clear_page_dirty_for_io on each
 520                 * page in the range.  Otherwise applications with the file
 521                 * mmap'd can wander in and change the page contents while
 522                 * we are compressing them.
 523                 *
 524                 * If the compression fails for any reason, we set the pages
 525                 * dirty again later on.
 526                 *
 527                 * Note that the remaining part is redirtied, the start pointer
 528                 * has moved, the end is the original one.
 529                 */
 530                if (!redirty) {
 531                        extent_range_clear_dirty_for_io(inode, start, end);
 532                        redirty = 1;
 533                }
 534
 535                /* Compression level is applied here and only here */
 536                ret = btrfs_compress_pages(
 537                        compress_type | (fs_info->compress_level << 4),
 538                                           inode->i_mapping, start,
 539                                           pages,
 540                                           &nr_pages,
 541                                           &total_in,
 542                                           &total_compressed);
 543
 544                if (!ret) {
 545                        unsigned long offset = total_compressed &
 546                                (PAGE_SIZE - 1);
 547                        struct page *page = pages[nr_pages - 1];
 548                        char *kaddr;
 549
 550                        /* zero the tail end of the last page, we might be
 551                         * sending it down to disk
 552                         */
 553                        if (offset) {
 554                                kaddr = kmap_atomic(page);
 555                                memset(kaddr + offset, 0,
 556                                       PAGE_SIZE - offset);
 557                                kunmap_atomic(kaddr);
 558                        }
 559                        will_compress = 1;
 560                }
 561        }
 562cont:
 563        if (start == 0) {
 564                /* lets try to make an inline extent */
 565                if (ret || total_in < actual_end) {
 566                        /* we didn't compress the entire range, try
 567                         * to make an uncompressed inline extent.
 568                         */
 569                        ret = cow_file_range_inline(inode, start, end, 0,
 570                                                    BTRFS_COMPRESS_NONE, NULL);
 571                } else {
 572                        /* try making a compressed inline extent */
 573                        ret = cow_file_range_inline(inode, start, end,
 574                                                    total_compressed,
 575                                                    compress_type, pages);
 576                }
 577                if (ret <= 0) {
 578                        unsigned long clear_flags = EXTENT_DELALLOC |
 579                                EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 580                                EXTENT_DO_ACCOUNTING;
 581                        unsigned long page_error_op;
 582
 583                        page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 584
 585                        /*
 586                         * inline extent creation worked or returned error,
 587                         * we don't need to create any more async work items.
 588                         * Unlock and free up our temp pages.
 589                         *
 590                         * We use DO_ACCOUNTING here because we need the
 591                         * delalloc_release_metadata to be done _after_ we drop
 592                         * our outstanding extent for clearing delalloc for this
 593                         * range.
 594                         */
 595                        extent_clear_unlock_delalloc(inode, start, end, end,
 596                                                     NULL, clear_flags,
 597                                                     PAGE_UNLOCK |
 598                                                     PAGE_CLEAR_DIRTY |
 599                                                     PAGE_SET_WRITEBACK |
 600                                                     page_error_op |
 601                                                     PAGE_END_WRITEBACK);
 602                        goto free_pages_out;
 603                }
 604        }
 605
 606        if (will_compress) {
 607                /*
 608                 * we aren't doing an inline extent round the compressed size
 609                 * up to a block size boundary so the allocator does sane
 610                 * things
 611                 */
 612                total_compressed = ALIGN(total_compressed, blocksize);
 613
 614                /*
 615                 * one last check to make sure the compression is really a
 616                 * win, compare the page count read with the blocks on disk,
 617                 * compression must free at least one sector size
 618                 */
 619                total_in = ALIGN(total_in, PAGE_SIZE);
 620                if (total_compressed + blocksize <= total_in) {
 621                        *num_added += 1;
 622
 623                        /*
 624                         * The async work queues will take care of doing actual
 625                         * allocation on disk for these compressed pages, and
 626                         * will submit them to the elevator.
 627                         */
 628                        add_async_extent(async_cow, start, total_in,
 629                                        total_compressed, pages, nr_pages,
 630                                        compress_type);
 631
 632                        if (start + total_in < end) {
 633                                start += total_in;
 634                                pages = NULL;
 635                                cond_resched();
 636                                goto again;
 637                        }
 638                        return;
 639                }
 640        }
 641        if (pages) {
 642                /*
 643                 * the compression code ran but failed to make things smaller,
 644                 * free any pages it allocated and our page pointer array
 645                 */
 646                for (i = 0; i < nr_pages; i++) {
 647                        WARN_ON(pages[i]->mapping);
 648                        put_page(pages[i]);
 649                }
 650                kfree(pages);
 651                pages = NULL;
 652                total_compressed = 0;
 653                nr_pages = 0;
 654
 655                /* flag the file so we don't compress in the future */
 656                if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
 657                    !(BTRFS_I(inode)->prop_compress)) {
 658                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 659                }
 660        }
 661cleanup_and_bail_uncompressed:
 662        /*
 663         * No compression, but we still need to write the pages in the file
 664         * we've been given so far.  redirty the locked page if it corresponds
 665         * to our extent and set things up for the async work queue to run
 666         * cow_file_range to do the normal delalloc dance.
 667         */
 668        if (page_offset(locked_page) >= start &&
 669            page_offset(locked_page) <= end)
 670                __set_page_dirty_nobuffers(locked_page);
 671                /* unlocked later on in the async handlers */
 672
 673        if (redirty)
 674                extent_range_redirty_for_io(inode, start, end);
 675        add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
 676                         BTRFS_COMPRESS_NONE);
 677        *num_added += 1;
 678
 679        return;
 680
 681free_pages_out:
 682        for (i = 0; i < nr_pages; i++) {
 683                WARN_ON(pages[i]->mapping);
 684                put_page(pages[i]);
 685        }
 686        kfree(pages);
 687}
 688
 689static void free_async_extent_pages(struct async_extent *async_extent)
 690{
 691        int i;
 692
 693        if (!async_extent->pages)
 694                return;
 695
 696        for (i = 0; i < async_extent->nr_pages; i++) {
 697                WARN_ON(async_extent->pages[i]->mapping);
 698                put_page(async_extent->pages[i]);
 699        }
 700        kfree(async_extent->pages);
 701        async_extent->nr_pages = 0;
 702        async_extent->pages = NULL;
 703}
 704
 705/*
 706 * phase two of compressed writeback.  This is the ordered portion
 707 * of the code, which only gets called in the order the work was
 708 * queued.  We walk all the async extents created by compress_file_range
 709 * and send them down to the disk.
 710 */
 711static noinline void submit_compressed_extents(struct inode *inode,
 712                                              struct async_cow *async_cow)
 713{
 714        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 715        struct async_extent *async_extent;
 716        u64 alloc_hint = 0;
 717        struct btrfs_key ins;
 718        struct extent_map *em;
 719        struct btrfs_root *root = BTRFS_I(inode)->root;
 720        struct extent_io_tree *io_tree;
 721        int ret = 0;
 722
 723again:
 724        while (!list_empty(&async_cow->extents)) {
 725                async_extent = list_entry(async_cow->extents.next,
 726                                          struct async_extent, list);
 727                list_del(&async_extent->list);
 728
 729                io_tree = &BTRFS_I(inode)->io_tree;
 730
 731retry:
 732                /* did the compression code fall back to uncompressed IO? */
 733                if (!async_extent->pages) {
 734                        int page_started = 0;
 735                        unsigned long nr_written = 0;
 736
 737                        lock_extent(io_tree, async_extent->start,
 738                                         async_extent->start +
 739                                         async_extent->ram_size - 1);
 740
 741                        /* allocate blocks */
 742                        ret = cow_file_range(inode, async_cow->locked_page,
 743                                             async_extent->start,
 744                                             async_extent->start +
 745                                             async_extent->ram_size - 1,
 746                                             async_extent->start +
 747                                             async_extent->ram_size - 1,
 748                                             &page_started, &nr_written, 0,
 749                                             NULL);
 750
 751                        /* JDM XXX */
 752
 753                        /*
 754                         * if page_started, cow_file_range inserted an
 755                         * inline extent and took care of all the unlocking
 756                         * and IO for us.  Otherwise, we need to submit
 757                         * all those pages down to the drive.
 758                         */
 759                        if (!page_started && !ret)
 760                                extent_write_locked_range(inode,
 761                                                  async_extent->start,
 762                                                  async_extent->start +
 763                                                  async_extent->ram_size - 1,
 764                                                  WB_SYNC_ALL);
 765                        else if (ret)
 766                                unlock_page(async_cow->locked_page);
 767                        kfree(async_extent);
 768                        cond_resched();
 769                        continue;
 770                }
 771
 772                lock_extent(io_tree, async_extent->start,
 773                            async_extent->start + async_extent->ram_size - 1);
 774
 775                ret = btrfs_reserve_extent(root, async_extent->ram_size,
 776                                           async_extent->compressed_size,
 777                                           async_extent->compressed_size,
 778                                           0, alloc_hint, &ins, 1, 1);
 779                if (ret) {
 780                        free_async_extent_pages(async_extent);
 781
 782                        if (ret == -ENOSPC) {
 783                                unlock_extent(io_tree, async_extent->start,
 784                                              async_extent->start +
 785                                              async_extent->ram_size - 1);
 786
 787                                /*
 788                                 * we need to redirty the pages if we decide to
 789                                 * fallback to uncompressed IO, otherwise we
 790                                 * will not submit these pages down to lower
 791                                 * layers.
 792                                 */
 793                                extent_range_redirty_for_io(inode,
 794                                                async_extent->start,
 795                                                async_extent->start +
 796                                                async_extent->ram_size - 1);
 797
 798                                goto retry;
 799                        }
 800                        goto out_free;
 801                }
 802                /*
 803                 * here we're doing allocation and writeback of the
 804                 * compressed pages
 805                 */
 806                em = create_io_em(inode, async_extent->start,
 807                                  async_extent->ram_size, /* len */
 808                                  async_extent->start, /* orig_start */
 809                                  ins.objectid, /* block_start */
 810                                  ins.offset, /* block_len */
 811                                  ins.offset, /* orig_block_len */
 812                                  async_extent->ram_size, /* ram_bytes */
 813                                  async_extent->compress_type,
 814                                  BTRFS_ORDERED_COMPRESSED);
 815                if (IS_ERR(em))
 816                        /* ret value is not necessary due to void function */
 817                        goto out_free_reserve;
 818                free_extent_map(em);
 819
 820                ret = btrfs_add_ordered_extent_compress(inode,
 821                                                async_extent->start,
 822                                                ins.objectid,
 823                                                async_extent->ram_size,
 824                                                ins.offset,
 825                                                BTRFS_ORDERED_COMPRESSED,
 826                                                async_extent->compress_type);
 827                if (ret) {
 828                        btrfs_drop_extent_cache(BTRFS_I(inode),
 829                                                async_extent->start,
 830                                                async_extent->start +
 831                                                async_extent->ram_size - 1, 0);
 832                        goto out_free_reserve;
 833                }
 834                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 835
 836                /*
 837                 * clear dirty, set writeback and unlock the pages.
 838                 */
 839                extent_clear_unlock_delalloc(inode, async_extent->start,
 840                                async_extent->start +
 841                                async_extent->ram_size - 1,
 842                                async_extent->start +
 843                                async_extent->ram_size - 1,
 844                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 845                                PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 846                                PAGE_SET_WRITEBACK);
 847                if (btrfs_submit_compressed_write(inode,
 848                                    async_extent->start,
 849                                    async_extent->ram_size,
 850                                    ins.objectid,
 851                                    ins.offset, async_extent->pages,
 852                                    async_extent->nr_pages,
 853                                    async_cow->write_flags)) {
 854                        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 855                        struct page *p = async_extent->pages[0];
 856                        const u64 start = async_extent->start;
 857                        const u64 end = start + async_extent->ram_size - 1;
 858
 859                        p->mapping = inode->i_mapping;
 860                        tree->ops->writepage_end_io_hook(p, start, end,
 861                                                         NULL, 0);
 862                        p->mapping = NULL;
 863                        extent_clear_unlock_delalloc(inode, start, end, end,
 864                                                     NULL, 0,
 865                                                     PAGE_END_WRITEBACK |
 866                                                     PAGE_SET_ERROR);
 867                        free_async_extent_pages(async_extent);
 868                }
 869                alloc_hint = ins.objectid + ins.offset;
 870                kfree(async_extent);
 871                cond_resched();
 872        }
 873        return;
 874out_free_reserve:
 875        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 876        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 877out_free:
 878        extent_clear_unlock_delalloc(inode, async_extent->start,
 879                                     async_extent->start +
 880                                     async_extent->ram_size - 1,
 881                                     async_extent->start +
 882                                     async_extent->ram_size - 1,
 883                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 884                                     EXTENT_DELALLOC_NEW |
 885                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 886                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 887                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
 888                                     PAGE_SET_ERROR);
 889        free_async_extent_pages(async_extent);
 890        kfree(async_extent);
 891        goto again;
 892}
 893
 894static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 895                                      u64 num_bytes)
 896{
 897        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 898        struct extent_map *em;
 899        u64 alloc_hint = 0;
 900
 901        read_lock(&em_tree->lock);
 902        em = search_extent_mapping(em_tree, start, num_bytes);
 903        if (em) {
 904                /*
 905                 * if block start isn't an actual block number then find the
 906                 * first block in this inode and use that as a hint.  If that
 907                 * block is also bogus then just don't worry about it.
 908                 */
 909                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 910                        free_extent_map(em);
 911                        em = search_extent_mapping(em_tree, 0, 0);
 912                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 913                                alloc_hint = em->block_start;
 914                        if (em)
 915                                free_extent_map(em);
 916                } else {
 917                        alloc_hint = em->block_start;
 918                        free_extent_map(em);
 919                }
 920        }
 921        read_unlock(&em_tree->lock);
 922
 923        return alloc_hint;
 924}
 925
 926/*
 927 * when extent_io.c finds a delayed allocation range in the file,
 928 * the call backs end up in this code.  The basic idea is to
 929 * allocate extents on disk for the range, and create ordered data structs
 930 * in ram to track those extents.
 931 *
 932 * locked_page is the page that writepage had locked already.  We use
 933 * it to make sure we don't do extra locks or unlocks.
 934 *
 935 * *page_started is set to one if we unlock locked_page and do everything
 936 * required to start IO on it.  It may be clean and already done with
 937 * IO when we return.
 938 */
 939static noinline int cow_file_range(struct inode *inode,
 940                                   struct page *locked_page,
 941                                   u64 start, u64 end, u64 delalloc_end,
 942                                   int *page_started, unsigned long *nr_written,
 943                                   int unlock, struct btrfs_dedupe_hash *hash)
 944{
 945        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 946        struct btrfs_root *root = BTRFS_I(inode)->root;
 947        u64 alloc_hint = 0;
 948        u64 num_bytes;
 949        unsigned long ram_size;
 950        u64 cur_alloc_size = 0;
 951        u64 blocksize = fs_info->sectorsize;
 952        struct btrfs_key ins;
 953        struct extent_map *em;
 954        unsigned clear_bits;
 955        unsigned long page_ops;
 956        bool extent_reserved = false;
 957        int ret = 0;
 958
 959        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 960                WARN_ON_ONCE(1);
 961                ret = -EINVAL;
 962                goto out_unlock;
 963        }
 964
 965        num_bytes = ALIGN(end - start + 1, blocksize);
 966        num_bytes = max(blocksize,  num_bytes);
 967        ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
 968
 969        inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
 970
 971        if (start == 0) {
 972                /* lets try to make an inline extent */
 973                ret = cow_file_range_inline(inode, start, end, 0,
 974                                            BTRFS_COMPRESS_NONE, NULL);
 975                if (ret == 0) {
 976                        /*
 977                         * We use DO_ACCOUNTING here because we need the
 978                         * delalloc_release_metadata to be run _after_ we drop
 979                         * our outstanding extent for clearing delalloc for this
 980                         * range.
 981                         */
 982                        extent_clear_unlock_delalloc(inode, start, end,
 983                                     delalloc_end, NULL,
 984                                     EXTENT_LOCKED | EXTENT_DELALLOC |
 985                                     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 986                                     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
 987                                     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
 988                                     PAGE_END_WRITEBACK);
 989                        *nr_written = *nr_written +
 990                             (end - start + PAGE_SIZE) / PAGE_SIZE;
 991                        *page_started = 1;
 992                        goto out;
 993                } else if (ret < 0) {
 994                        goto out_unlock;
 995                }
 996        }
 997
 998        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 999        btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000                        start + num_bytes - 1, 0);
1001
1002        while (num_bytes > 0) {
1003                cur_alloc_size = num_bytes;
1004                ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1005                                           fs_info->sectorsize, 0, alloc_hint,
1006                                           &ins, 1, 1);
1007                if (ret < 0)
1008                        goto out_unlock;
1009                cur_alloc_size = ins.offset;
1010                extent_reserved = true;
1011
1012                ram_size = ins.offset;
1013                em = create_io_em(inode, start, ins.offset, /* len */
1014                                  start, /* orig_start */
1015                                  ins.objectid, /* block_start */
1016                                  ins.offset, /* block_len */
1017                                  ins.offset, /* orig_block_len */
1018                                  ram_size, /* ram_bytes */
1019                                  BTRFS_COMPRESS_NONE, /* compress_type */
1020                                  BTRFS_ORDERED_REGULAR /* type */);
1021                if (IS_ERR(em))
1022                        goto out_reserve;
1023                free_extent_map(em);
1024
1025                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1026                                               ram_size, cur_alloc_size, 0);
1027                if (ret)
1028                        goto out_drop_extent_cache;
1029
1030                if (root->root_key.objectid ==
1031                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032                        ret = btrfs_reloc_clone_csums(inode, start,
1033                                                      cur_alloc_size);
1034                        /*
1035                         * Only drop cache here, and process as normal.
1036                         *
1037                         * We must not allow extent_clear_unlock_delalloc()
1038                         * at out_unlock label to free meta of this ordered
1039                         * extent, as its meta should be freed by
1040                         * btrfs_finish_ordered_io().
1041                         *
1042                         * So we must continue until @start is increased to
1043                         * skip current ordered extent.
1044                         */
1045                        if (ret)
1046                                btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047                                                start + ram_size - 1, 0);
1048                }
1049
1050                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1051
1052                /* we're not doing compressed IO, don't unlock the first
1053                 * page (which the caller expects to stay locked), don't
1054                 * clear any dirty bits and don't set any writeback bits
1055                 *
1056                 * Do set the Private2 bit so we know this page was properly
1057                 * setup for writepage
1058                 */
1059                page_ops = unlock ? PAGE_UNLOCK : 0;
1060                page_ops |= PAGE_SET_PRIVATE2;
1061
1062                extent_clear_unlock_delalloc(inode, start,
1063                                             start + ram_size - 1,
1064                                             delalloc_end, locked_page,
1065                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1066                                             page_ops);
1067                if (num_bytes < cur_alloc_size)
1068                        num_bytes = 0;
1069                else
1070                        num_bytes -= cur_alloc_size;
1071                alloc_hint = ins.objectid + ins.offset;
1072                start += cur_alloc_size;
1073                extent_reserved = false;
1074
1075                /*
1076                 * btrfs_reloc_clone_csums() error, since start is increased
1077                 * extent_clear_unlock_delalloc() at out_unlock label won't
1078                 * free metadata of current ordered extent, we're OK to exit.
1079                 */
1080                if (ret)
1081                        goto out_unlock;
1082        }
1083out:
1084        return ret;
1085
1086out_drop_extent_cache:
1087        btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1088out_reserve:
1089        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1090        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1091out_unlock:
1092        clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093                EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1094        page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095                PAGE_END_WRITEBACK;
1096        /*
1097         * If we reserved an extent for our delalloc range (or a subrange) and
1098         * failed to create the respective ordered extent, then it means that
1099         * when we reserved the extent we decremented the extent's size from
1100         * the data space_info's bytes_may_use counter and incremented the
1101         * space_info's bytes_reserved counter by the same amount. We must make
1102         * sure extent_clear_unlock_delalloc() does not try to decrement again
1103         * the data space_info's bytes_may_use counter, therefore we do not pass
1104         * it the flag EXTENT_CLEAR_DATA_RESV.
1105         */
1106        if (extent_reserved) {
1107                extent_clear_unlock_delalloc(inode, start,
1108                                             start + cur_alloc_size,
1109                                             start + cur_alloc_size,
1110                                             locked_page,
1111                                             clear_bits,
1112                                             page_ops);
1113                start += cur_alloc_size;
1114                if (start >= end)
1115                        goto out;
1116        }
1117        extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118                                     locked_page,
1119                                     clear_bits | EXTENT_CLEAR_DATA_RESV,
1120                                     page_ops);
1121        goto out;
1122}
1123
1124/*
1125 * work queue call back to started compression on a file and pages
1126 */
1127static noinline void async_cow_start(struct btrfs_work *work)
1128{
1129        struct async_cow *async_cow;
1130        int num_added = 0;
1131        async_cow = container_of(work, struct async_cow, work);
1132
1133        compress_file_range(async_cow->inode, async_cow->locked_page,
1134                            async_cow->start, async_cow->end, async_cow,
1135                            &num_added);
1136        if (num_added == 0) {
1137                btrfs_add_delayed_iput(async_cow->inode);
1138                async_cow->inode = NULL;
1139        }
1140}
1141
1142/*
1143 * work queue call back to submit previously compressed pages
1144 */
1145static noinline void async_cow_submit(struct btrfs_work *work)
1146{
1147        struct btrfs_fs_info *fs_info;
1148        struct async_cow *async_cow;
1149        struct btrfs_root *root;
1150        unsigned long nr_pages;
1151
1152        async_cow = container_of(work, struct async_cow, work);
1153
1154        root = async_cow->root;
1155        fs_info = root->fs_info;
1156        nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157                PAGE_SHIFT;
1158
1159        /*
1160         * atomic_sub_return implies a barrier for waitqueue_active
1161         */
1162        if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1163            5 * SZ_1M &&
1164            waitqueue_active(&fs_info->async_submit_wait))
1165                wake_up(&fs_info->async_submit_wait);
1166
1167        if (async_cow->inode)
1168                submit_compressed_extents(async_cow->inode, async_cow);
1169}
1170
1171static noinline void async_cow_free(struct btrfs_work *work)
1172{
1173        struct async_cow *async_cow;
1174        async_cow = container_of(work, struct async_cow, work);
1175        if (async_cow->inode)
1176                btrfs_add_delayed_iput(async_cow->inode);
1177        kfree(async_cow);
1178}
1179
1180static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1181                                u64 start, u64 end, int *page_started,
1182                                unsigned long *nr_written,
1183                                unsigned int write_flags)
1184{
1185        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1186        struct async_cow *async_cow;
1187        struct btrfs_root *root = BTRFS_I(inode)->root;
1188        unsigned long nr_pages;
1189        u64 cur_end;
1190
1191        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1192                         1, 0, NULL);
1193        while (start < end) {
1194                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1195                BUG_ON(!async_cow); /* -ENOMEM */
1196                async_cow->inode = igrab(inode);
1197                async_cow->root = root;
1198                async_cow->locked_page = locked_page;
1199                async_cow->start = start;
1200                async_cow->write_flags = write_flags;
1201
1202                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1203                    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1204                        cur_end = end;
1205                else
1206                        cur_end = min(end, start + SZ_512K - 1);
1207
1208                async_cow->end = cur_end;
1209                INIT_LIST_HEAD(&async_cow->extents);
1210
1211                btrfs_init_work(&async_cow->work,
1212                                btrfs_delalloc_helper,
1213                                async_cow_start, async_cow_submit,
1214                                async_cow_free);
1215
1216                nr_pages = (cur_end - start + PAGE_SIZE) >>
1217                        PAGE_SHIFT;
1218                atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1219
1220                btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1221
1222                *nr_written += nr_pages;
1223                start = cur_end + 1;
1224        }
1225        *page_started = 1;
1226        return 0;
1227}
1228
1229static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1230                                        u64 bytenr, u64 num_bytes)
1231{
1232        int ret;
1233        struct btrfs_ordered_sum *sums;
1234        LIST_HEAD(list);
1235
1236        ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1237                                       bytenr + num_bytes - 1, &list, 0);
1238        if (ret == 0 && list_empty(&list))
1239                return 0;
1240
1241        while (!list_empty(&list)) {
1242                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1243                list_del(&sums->list);
1244                kfree(sums);
1245        }
1246        if (ret < 0)
1247                return ret;
1248        return 1;
1249}
1250
1251/*
1252 * when nowcow writeback call back.  This checks for snapshots or COW copies
1253 * of the extents that exist in the file, and COWs the file as required.
1254 *
1255 * If no cow copies or snapshots exist, we write directly to the existing
1256 * blocks on disk
1257 */
1258static noinline int run_delalloc_nocow(struct inode *inode,
1259                                       struct page *locked_page,
1260                              u64 start, u64 end, int *page_started, int force,
1261                              unsigned long *nr_written)
1262{
1263        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1264        struct btrfs_root *root = BTRFS_I(inode)->root;
1265        struct extent_buffer *leaf;
1266        struct btrfs_path *path;
1267        struct btrfs_file_extent_item *fi;
1268        struct btrfs_key found_key;
1269        struct extent_map *em;
1270        u64 cow_start;
1271        u64 cur_offset;
1272        u64 extent_end;
1273        u64 extent_offset;
1274        u64 disk_bytenr;
1275        u64 num_bytes;
1276        u64 disk_num_bytes;
1277        u64 ram_bytes;
1278        int extent_type;
1279        int ret, err;
1280        int type;
1281        int nocow;
1282        int check_prev = 1;
1283        bool nolock;
1284        u64 ino = btrfs_ino(BTRFS_I(inode));
1285
1286        path = btrfs_alloc_path();
1287        if (!path) {
1288                extent_clear_unlock_delalloc(inode, start, end, end,
1289                                             locked_page,
1290                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1291                                             EXTENT_DO_ACCOUNTING |
1292                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1293                                             PAGE_CLEAR_DIRTY |
1294                                             PAGE_SET_WRITEBACK |
1295                                             PAGE_END_WRITEBACK);
1296                return -ENOMEM;
1297        }
1298
1299        nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1300
1301        cow_start = (u64)-1;
1302        cur_offset = start;
1303        while (1) {
1304                ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1305                                               cur_offset, 0);
1306                if (ret < 0)
1307                        goto error;
1308                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1309                        leaf = path->nodes[0];
1310                        btrfs_item_key_to_cpu(leaf, &found_key,
1311                                              path->slots[0] - 1);
1312                        if (found_key.objectid == ino &&
1313                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1314                                path->slots[0]--;
1315                }
1316                check_prev = 0;
1317next_slot:
1318                leaf = path->nodes[0];
1319                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1320                        ret = btrfs_next_leaf(root, path);
1321                        if (ret < 0) {
1322                                if (cow_start != (u64)-1)
1323                                        cur_offset = cow_start;
1324                                goto error;
1325                        }
1326                        if (ret > 0)
1327                                break;
1328                        leaf = path->nodes[0];
1329                }
1330
1331                nocow = 0;
1332                disk_bytenr = 0;
1333                num_bytes = 0;
1334                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1335
1336                if (found_key.objectid > ino)
1337                        break;
1338                if (WARN_ON_ONCE(found_key.objectid < ino) ||
1339                    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1340                        path->slots[0]++;
1341                        goto next_slot;
1342                }
1343                if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1344                    found_key.offset > end)
1345                        break;
1346
1347                if (found_key.offset > cur_offset) {
1348                        extent_end = found_key.offset;
1349                        extent_type = 0;
1350                        goto out_check;
1351                }
1352
1353                fi = btrfs_item_ptr(leaf, path->slots[0],
1354                                    struct btrfs_file_extent_item);
1355                extent_type = btrfs_file_extent_type(leaf, fi);
1356
1357                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1358                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1359                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1360                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1361                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1362                        extent_end = found_key.offset +
1363                                btrfs_file_extent_num_bytes(leaf, fi);
1364                        disk_num_bytes =
1365                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1366                        if (extent_end <= start) {
1367                                path->slots[0]++;
1368                                goto next_slot;
1369                        }
1370                        if (disk_bytenr == 0)
1371                                goto out_check;
1372                        if (btrfs_file_extent_compression(leaf, fi) ||
1373                            btrfs_file_extent_encryption(leaf, fi) ||
1374                            btrfs_file_extent_other_encoding(leaf, fi))
1375                                goto out_check;
1376                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1377                                goto out_check;
1378                        if (btrfs_extent_readonly(fs_info, disk_bytenr))
1379                                goto out_check;
1380                        ret = btrfs_cross_ref_exist(root, ino,
1381                                                    found_key.offset -
1382                                                    extent_offset, disk_bytenr);
1383                        if (ret) {
1384                                /*
1385                                 * ret could be -EIO if the above fails to read
1386                                 * metadata.
1387                                 */
1388                                if (ret < 0) {
1389                                        if (cow_start != (u64)-1)
1390                                                cur_offset = cow_start;
1391                                        goto error;
1392                                }
1393
1394                                WARN_ON_ONCE(nolock);
1395                                goto out_check;
1396                        }
1397                        disk_bytenr += extent_offset;
1398                        disk_bytenr += cur_offset - found_key.offset;
1399                        num_bytes = min(end + 1, extent_end) - cur_offset;
1400                        /*
1401                         * if there are pending snapshots for this root,
1402                         * we fall into common COW way.
1403                         */
1404                        if (!nolock) {
1405                                err = btrfs_start_write_no_snapshotting(root);
1406                                if (!err)
1407                                        goto out_check;
1408                        }
1409                        /*
1410                         * force cow if csum exists in the range.
1411                         * this ensure that csum for a given extent are
1412                         * either valid or do not exist.
1413                         */
1414                        ret = csum_exist_in_range(fs_info, disk_bytenr,
1415                                                  num_bytes);
1416                        if (ret) {
1417                                if (!nolock)
1418                                        btrfs_end_write_no_snapshotting(root);
1419
1420                                /*
1421                                 * ret could be -EIO if the above fails to read
1422                                 * metadata.
1423                                 */
1424                                if (ret < 0) {
1425                                        if (cow_start != (u64)-1)
1426                                                cur_offset = cow_start;
1427                                        goto error;
1428                                }
1429                                WARN_ON_ONCE(nolock);
1430                                goto out_check;
1431                        }
1432                        if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1433                                if (!nolock)
1434                                        btrfs_end_write_no_snapshotting(root);
1435                                goto out_check;
1436                        }
1437                        nocow = 1;
1438                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439                        extent_end = found_key.offset +
1440                                btrfs_file_extent_inline_len(leaf,
1441                                                     path->slots[0], fi);
1442                        extent_end = ALIGN(extent_end,
1443                                           fs_info->sectorsize);
1444                } else {
1445                        BUG_ON(1);
1446                }
1447out_check:
1448                if (extent_end <= start) {
1449                        path->slots[0]++;
1450                        if (!nolock && nocow)
1451                                btrfs_end_write_no_snapshotting(root);
1452                        if (nocow)
1453                                btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1454                        goto next_slot;
1455                }
1456                if (!nocow) {
1457                        if (cow_start == (u64)-1)
1458                                cow_start = cur_offset;
1459                        cur_offset = extent_end;
1460                        if (cur_offset > end)
1461                                break;
1462                        path->slots[0]++;
1463                        goto next_slot;
1464                }
1465
1466                btrfs_release_path(path);
1467                if (cow_start != (u64)-1) {
1468                        ret = cow_file_range(inode, locked_page,
1469                                             cow_start, found_key.offset - 1,
1470                                             end, page_started, nr_written, 1,
1471                                             NULL);
1472                        if (ret) {
1473                                if (!nolock && nocow)
1474                                        btrfs_end_write_no_snapshotting(root);
1475                                if (nocow)
1476                                        btrfs_dec_nocow_writers(fs_info,
1477                                                                disk_bytenr);
1478                                goto error;
1479                        }
1480                        cow_start = (u64)-1;
1481                }
1482
1483                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1484                        u64 orig_start = found_key.offset - extent_offset;
1485
1486                        em = create_io_em(inode, cur_offset, num_bytes,
1487                                          orig_start,
1488                                          disk_bytenr, /* block_start */
1489                                          num_bytes, /* block_len */
1490                                          disk_num_bytes, /* orig_block_len */
1491                                          ram_bytes, BTRFS_COMPRESS_NONE,
1492                                          BTRFS_ORDERED_PREALLOC);
1493                        if (IS_ERR(em)) {
1494                                if (!nolock && nocow)
1495                                        btrfs_end_write_no_snapshotting(root);
1496                                if (nocow)
1497                                        btrfs_dec_nocow_writers(fs_info,
1498                                                                disk_bytenr);
1499                                ret = PTR_ERR(em);
1500                                goto error;
1501                        }
1502                        free_extent_map(em);
1503                }
1504
1505                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1506                        type = BTRFS_ORDERED_PREALLOC;
1507                } else {
1508                        type = BTRFS_ORDERED_NOCOW;
1509                }
1510
1511                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1512                                               num_bytes, num_bytes, type);
1513                if (nocow)
1514                        btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1515                BUG_ON(ret); /* -ENOMEM */
1516
1517                if (root->root_key.objectid ==
1518                    BTRFS_DATA_RELOC_TREE_OBJECTID)
1519                        /*
1520                         * Error handled later, as we must prevent
1521                         * extent_clear_unlock_delalloc() in error handler
1522                         * from freeing metadata of created ordered extent.
1523                         */
1524                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1525                                                      num_bytes);
1526
1527                extent_clear_unlock_delalloc(inode, cur_offset,
1528                                             cur_offset + num_bytes - 1, end,
1529                                             locked_page, EXTENT_LOCKED |
1530                                             EXTENT_DELALLOC |
1531                                             EXTENT_CLEAR_DATA_RESV,
1532                                             PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1533
1534                if (!nolock && nocow)
1535                        btrfs_end_write_no_snapshotting(root);
1536                cur_offset = extent_end;
1537
1538                /*
1539                 * btrfs_reloc_clone_csums() error, now we're OK to call error
1540                 * handler, as metadata for created ordered extent will only
1541                 * be freed by btrfs_finish_ordered_io().
1542                 */
1543                if (ret)
1544                        goto error;
1545                if (cur_offset > end)
1546                        break;
1547        }
1548        btrfs_release_path(path);
1549
1550        if (cur_offset <= end && cow_start == (u64)-1) {
1551                cow_start = cur_offset;
1552                cur_offset = end;
1553        }
1554
1555        if (cow_start != (u64)-1) {
1556                ret = cow_file_range(inode, locked_page, cow_start, end, end,
1557                                     page_started, nr_written, 1, NULL);
1558                if (ret)
1559                        goto error;
1560        }
1561
1562error:
1563        if (ret && cur_offset < end)
1564                extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1565                                             locked_page, EXTENT_LOCKED |
1566                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1567                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1568                                             PAGE_CLEAR_DIRTY |
1569                                             PAGE_SET_WRITEBACK |
1570                                             PAGE_END_WRITEBACK);
1571        btrfs_free_path(path);
1572        return ret;
1573}
1574
1575static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1576{
1577
1578        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1579            !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1580                return 0;
1581
1582        /*
1583         * @defrag_bytes is a hint value, no spinlock held here,
1584         * if is not zero, it means the file is defragging.
1585         * Force cow if given extent needs to be defragged.
1586         */
1587        if (BTRFS_I(inode)->defrag_bytes &&
1588            test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1589                           EXTENT_DEFRAG, 0, NULL))
1590                return 1;
1591
1592        return 0;
1593}
1594
1595/*
1596 * extent_io.c call back to do delayed allocation processing
1597 */
1598static int run_delalloc_range(void *private_data, struct page *locked_page,
1599                              u64 start, u64 end, int *page_started,
1600                              unsigned long *nr_written,
1601                              struct writeback_control *wbc)
1602{
1603        struct inode *inode = private_data;
1604        int ret;
1605        int force_cow = need_force_cow(inode, start, end);
1606        unsigned int write_flags = wbc_to_write_flags(wbc);
1607
1608        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1609                ret = run_delalloc_nocow(inode, locked_page, start, end,
1610                                         page_started, 1, nr_written);
1611        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1612                ret = run_delalloc_nocow(inode, locked_page, start, end,
1613                                         page_started, 0, nr_written);
1614        } else if (!inode_need_compress(inode, start, end)) {
1615                ret = cow_file_range(inode, locked_page, start, end, end,
1616                                      page_started, nr_written, 1, NULL);
1617        } else {
1618                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1619                        &BTRFS_I(inode)->runtime_flags);
1620                ret = cow_file_range_async(inode, locked_page, start, end,
1621                                           page_started, nr_written,
1622                                           write_flags);
1623        }
1624        if (ret)
1625                btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1626        return ret;
1627}
1628
1629static void btrfs_split_extent_hook(void *private_data,
1630                                    struct extent_state *orig, u64 split)
1631{
1632        struct inode *inode = private_data;
1633        u64 size;
1634
1635        /* not delalloc, ignore it */
1636        if (!(orig->state & EXTENT_DELALLOC))
1637                return;
1638
1639        size = orig->end - orig->start + 1;
1640        if (size > BTRFS_MAX_EXTENT_SIZE) {
1641                u32 num_extents;
1642                u64 new_size;
1643
1644                /*
1645                 * See the explanation in btrfs_merge_extent_hook, the same
1646                 * applies here, just in reverse.
1647                 */
1648                new_size = orig->end - split + 1;
1649                num_extents = count_max_extents(new_size);
1650                new_size = split - orig->start;
1651                num_extents += count_max_extents(new_size);
1652                if (count_max_extents(size) >= num_extents)
1653                        return;
1654        }
1655
1656        spin_lock(&BTRFS_I(inode)->lock);
1657        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1658        spin_unlock(&BTRFS_I(inode)->lock);
1659}
1660
1661/*
1662 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1663 * extents so we can keep track of new extents that are just merged onto old
1664 * extents, such as when we are doing sequential writes, so we can properly
1665 * account for the metadata space we'll need.
1666 */
1667static void btrfs_merge_extent_hook(void *private_data,
1668                                    struct extent_state *new,
1669                                    struct extent_state *other)
1670{
1671        struct inode *inode = private_data;
1672        u64 new_size, old_size;
1673        u32 num_extents;
1674
1675        /* not delalloc, ignore it */
1676        if (!(other->state & EXTENT_DELALLOC))
1677                return;
1678
1679        if (new->start > other->start)
1680                new_size = new->end - other->start + 1;
1681        else
1682                new_size = other->end - new->start + 1;
1683
1684        /* we're not bigger than the max, unreserve the space and go */
1685        if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1686                spin_lock(&BTRFS_I(inode)->lock);
1687                btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1688                spin_unlock(&BTRFS_I(inode)->lock);
1689                return;
1690        }
1691
1692        /*
1693         * We have to add up either side to figure out how many extents were
1694         * accounted for before we merged into one big extent.  If the number of
1695         * extents we accounted for is <= the amount we need for the new range
1696         * then we can return, otherwise drop.  Think of it like this
1697         *
1698         * [ 4k][MAX_SIZE]
1699         *
1700         * So we've grown the extent by a MAX_SIZE extent, this would mean we
1701         * need 2 outstanding extents, on one side we have 1 and the other side
1702         * we have 1 so they are == and we can return.  But in this case
1703         *
1704         * [MAX_SIZE+4k][MAX_SIZE+4k]
1705         *
1706         * Each range on their own accounts for 2 extents, but merged together
1707         * they are only 3 extents worth of accounting, so we need to drop in
1708         * this case.
1709         */
1710        old_size = other->end - other->start + 1;
1711        num_extents = count_max_extents(old_size);
1712        old_size = new->end - new->start + 1;
1713        num_extents += count_max_extents(old_size);
1714        if (count_max_extents(new_size) >= num_extents)
1715                return;
1716
1717        spin_lock(&BTRFS_I(inode)->lock);
1718        btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1719        spin_unlock(&BTRFS_I(inode)->lock);
1720}
1721
1722static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1723                                      struct inode *inode)
1724{
1725        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1726
1727        spin_lock(&root->delalloc_lock);
1728        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1729                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1730                              &root->delalloc_inodes);
1731                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1732                        &BTRFS_I(inode)->runtime_flags);
1733                root->nr_delalloc_inodes++;
1734                if (root->nr_delalloc_inodes == 1) {
1735                        spin_lock(&fs_info->delalloc_root_lock);
1736                        BUG_ON(!list_empty(&root->delalloc_root));
1737                        list_add_tail(&root->delalloc_root,
1738                                      &fs_info->delalloc_roots);
1739                        spin_unlock(&fs_info->delalloc_root_lock);
1740                }
1741        }
1742        spin_unlock(&root->delalloc_lock);
1743}
1744
1745
1746void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1747                                struct btrfs_inode *inode)
1748{
1749        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1750
1751        if (!list_empty(&inode->delalloc_inodes)) {
1752                list_del_init(&inode->delalloc_inodes);
1753                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1754                          &inode->runtime_flags);
1755                root->nr_delalloc_inodes--;
1756                if (!root->nr_delalloc_inodes) {
1757                        spin_lock(&fs_info->delalloc_root_lock);
1758                        BUG_ON(list_empty(&root->delalloc_root));
1759                        list_del_init(&root->delalloc_root);
1760                        spin_unlock(&fs_info->delalloc_root_lock);
1761                }
1762        }
1763}
1764
1765static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1766                                     struct btrfs_inode *inode)
1767{
1768        spin_lock(&root->delalloc_lock);
1769        __btrfs_del_delalloc_inode(root, inode);
1770        spin_unlock(&root->delalloc_lock);
1771}
1772
1773/*
1774 * extent_io.c set_bit_hook, used to track delayed allocation
1775 * bytes in this file, and to maintain the list of inodes that
1776 * have pending delalloc work to be done.
1777 */
1778static void btrfs_set_bit_hook(void *private_data,
1779                               struct extent_state *state, unsigned *bits)
1780{
1781        struct inode *inode = private_data;
1782
1783        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1784
1785        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1786                WARN_ON(1);
1787        /*
1788         * set_bit and clear bit hooks normally require _irqsave/restore
1789         * but in this case, we are only testing for the DELALLOC
1790         * bit, which is only set or cleared with irqs on
1791         */
1792        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1793                struct btrfs_root *root = BTRFS_I(inode)->root;
1794                u64 len = state->end + 1 - state->start;
1795                u32 num_extents = count_max_extents(len);
1796                bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1797
1798                spin_lock(&BTRFS_I(inode)->lock);
1799                btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1800                spin_unlock(&BTRFS_I(inode)->lock);
1801
1802                /* For sanity tests */
1803                if (btrfs_is_testing(fs_info))
1804                        return;
1805
1806                percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1807                                         fs_info->delalloc_batch);
1808                spin_lock(&BTRFS_I(inode)->lock);
1809                BTRFS_I(inode)->delalloc_bytes += len;
1810                if (*bits & EXTENT_DEFRAG)
1811                        BTRFS_I(inode)->defrag_bytes += len;
1812                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1813                                         &BTRFS_I(inode)->runtime_flags))
1814                        btrfs_add_delalloc_inodes(root, inode);
1815                spin_unlock(&BTRFS_I(inode)->lock);
1816        }
1817
1818        if (!(state->state & EXTENT_DELALLOC_NEW) &&
1819            (*bits & EXTENT_DELALLOC_NEW)) {
1820                spin_lock(&BTRFS_I(inode)->lock);
1821                BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1822                        state->start;
1823                spin_unlock(&BTRFS_I(inode)->lock);
1824        }
1825}
1826
1827/*
1828 * extent_io.c clear_bit_hook, see set_bit_hook for why
1829 */
1830static void btrfs_clear_bit_hook(void *private_data,
1831                                 struct extent_state *state,
1832                                 unsigned *bits)
1833{
1834        struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1835        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1836        u64 len = state->end + 1 - state->start;
1837        u32 num_extents = count_max_extents(len);
1838
1839        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1840                spin_lock(&inode->lock);
1841                inode->defrag_bytes -= len;
1842                spin_unlock(&inode->lock);
1843        }
1844
1845        /*
1846         * set_bit and clear bit hooks normally require _irqsave/restore
1847         * but in this case, we are only testing for the DELALLOC
1848         * bit, which is only set or cleared with irqs on
1849         */
1850        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1851                struct btrfs_root *root = inode->root;
1852                bool do_list = !btrfs_is_free_space_inode(inode);
1853
1854                spin_lock(&inode->lock);
1855                btrfs_mod_outstanding_extents(inode, -num_extents);
1856                spin_unlock(&inode->lock);
1857
1858                /*
1859                 * We don't reserve metadata space for space cache inodes so we
1860                 * don't need to call dellalloc_release_metadata if there is an
1861                 * error.
1862                 */
1863                if (*bits & EXTENT_CLEAR_META_RESV &&
1864                    root != fs_info->tree_root)
1865                        btrfs_delalloc_release_metadata(inode, len, false);
1866
1867                /* For sanity tests. */
1868                if (btrfs_is_testing(fs_info))
1869                        return;
1870
1871                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1872                    do_list && !(state->state & EXTENT_NORESERVE) &&
1873                    (*bits & EXTENT_CLEAR_DATA_RESV))
1874                        btrfs_free_reserved_data_space_noquota(
1875                                        &inode->vfs_inode,
1876                                        state->start, len);
1877
1878                percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1879                                         fs_info->delalloc_batch);
1880                spin_lock(&inode->lock);
1881                inode->delalloc_bytes -= len;
1882                if (do_list && inode->delalloc_bytes == 0 &&
1883                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1884                                        &inode->runtime_flags))
1885                        btrfs_del_delalloc_inode(root, inode);
1886                spin_unlock(&inode->lock);
1887        }
1888
1889        if ((state->state & EXTENT_DELALLOC_NEW) &&
1890            (*bits & EXTENT_DELALLOC_NEW)) {
1891                spin_lock(&inode->lock);
1892                ASSERT(inode->new_delalloc_bytes >= len);
1893                inode->new_delalloc_bytes -= len;
1894                spin_unlock(&inode->lock);
1895        }
1896}
1897
1898/*
1899 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1900 * we don't create bios that span stripes or chunks
1901 *
1902 * return 1 if page cannot be merged to bio
1903 * return 0 if page can be merged to bio
1904 * return error otherwise
1905 */
1906int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1907                         size_t size, struct bio *bio,
1908                         unsigned long bio_flags)
1909{
1910        struct inode *inode = page->mapping->host;
1911        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1912        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1913        u64 length = 0;
1914        u64 map_length;
1915        int ret;
1916
1917        if (bio_flags & EXTENT_BIO_COMPRESSED)
1918                return 0;
1919
1920        length = bio->bi_iter.bi_size;
1921        map_length = length;
1922        ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1923                              NULL, 0);
1924        if (ret < 0)
1925                return ret;
1926        if (map_length < length + size)
1927                return 1;
1928        return 0;
1929}
1930
1931/*
1932 * in order to insert checksums into the metadata in large chunks,
1933 * we wait until bio submission time.   All the pages in the bio are
1934 * checksummed and sums are attached onto the ordered extent record.
1935 *
1936 * At IO completion time the cums attached on the ordered extent record
1937 * are inserted into the btree
1938 */
1939static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1940                                    u64 bio_offset)
1941{
1942        struct inode *inode = private_data;
1943        blk_status_t ret = 0;
1944
1945        ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1946        BUG_ON(ret); /* -ENOMEM */
1947        return 0;
1948}
1949
1950/*
1951 * in order to insert checksums into the metadata in large chunks,
1952 * we wait until bio submission time.   All the pages in the bio are
1953 * checksummed and sums are attached onto the ordered extent record.
1954 *
1955 * At IO completion time the cums attached on the ordered extent record
1956 * are inserted into the btree
1957 */
1958static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1959                          int mirror_num)
1960{
1961        struct inode *inode = private_data;
1962        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1963        blk_status_t ret;
1964
1965        ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1966        if (ret) {
1967                bio->bi_status = ret;
1968                bio_endio(bio);
1969        }
1970        return ret;
1971}
1972
1973/*
1974 * extent_io.c submission hook. This does the right thing for csum calculation
1975 * on write, or reading the csums from the tree before a read.
1976 *
1977 * Rules about async/sync submit,
1978 * a) read:                             sync submit
1979 *
1980 * b) write without checksum:           sync submit
1981 *
1982 * c) write with checksum:
1983 *    c-1) if bio is issued by fsync:   sync submit
1984 *         (sync_writers != 0)
1985 *
1986 *    c-2) if root is reloc root:       sync submit
1987 *         (only in case of buffered IO)
1988 *
1989 *    c-3) otherwise:                   async submit
1990 */
1991static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1992                                 int mirror_num, unsigned long bio_flags,
1993                                 u64 bio_offset)
1994{
1995        struct inode *inode = private_data;
1996        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1997        struct btrfs_root *root = BTRFS_I(inode)->root;
1998        enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1999        blk_status_t ret = 0;
2000        int skip_sum;
2001        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2002
2003        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2004
2005        if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2006                metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2007
2008        if (bio_op(bio) != REQ_OP_WRITE) {
2009                ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2010                if (ret)
2011                        goto out;
2012
2013                if (bio_flags & EXTENT_BIO_COMPRESSED) {
2014                        ret = btrfs_submit_compressed_read(inode, bio,
2015                                                           mirror_num,
2016                                                           bio_flags);
2017                        goto out;
2018                } else if (!skip_sum) {
2019                        ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2020                        if (ret)
2021                                goto out;
2022                }
2023                goto mapit;
2024        } else if (async && !skip_sum) {
2025                /* csum items have already been cloned */
2026                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2027                        goto mapit;
2028                /* we're doing a write, do the async checksumming */
2029                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2030                                          bio_offset, inode,
2031                                          btrfs_submit_bio_start,
2032                                          btrfs_submit_bio_done);
2033                goto out;
2034        } else if (!skip_sum) {
2035                ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2036                if (ret)
2037                        goto out;
2038        }
2039
2040mapit:
2041        ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2042
2043out:
2044        if (ret) {
2045                bio->bi_status = ret;
2046                bio_endio(bio);
2047        }
2048        return ret;
2049}
2050
2051/*
2052 * given a list of ordered sums record them in the inode.  This happens
2053 * at IO completion time based on sums calculated at bio submission time.
2054 */
2055static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2056                             struct inode *inode, struct list_head *list)
2057{
2058        struct btrfs_ordered_sum *sum;
2059        int ret;
2060
2061        list_for_each_entry(sum, list, list) {
2062                trans->adding_csums = true;
2063                ret = btrfs_csum_file_blocks(trans,
2064                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2065                trans->adding_csums = false;
2066                if (ret)
2067                        return ret;
2068        }
2069        return 0;
2070}
2071
2072int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2073                              unsigned int extra_bits,
2074                              struct extent_state **cached_state, int dedupe)
2075{
2076        WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2077        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2078                                   extra_bits, cached_state);
2079}
2080
2081/* see btrfs_writepage_start_hook for details on why this is required */
2082struct btrfs_writepage_fixup {
2083        struct page *page;
2084        struct btrfs_work work;
2085};
2086
2087static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2088{
2089        struct btrfs_writepage_fixup *fixup;
2090        struct btrfs_ordered_extent *ordered;
2091        struct extent_state *cached_state = NULL;
2092        struct extent_changeset *data_reserved = NULL;
2093        struct page *page;
2094        struct inode *inode;
2095        u64 page_start;
2096        u64 page_end;
2097        int ret;
2098
2099        fixup = container_of(work, struct btrfs_writepage_fixup, work);
2100        page = fixup->page;
2101again:
2102        lock_page(page);
2103        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2104                ClearPageChecked(page);
2105                goto out_page;
2106        }
2107
2108        inode = page->mapping->host;
2109        page_start = page_offset(page);
2110        page_end = page_offset(page) + PAGE_SIZE - 1;
2111
2112        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2113                         &cached_state);
2114
2115        /* already ordered? We're done */
2116        if (PagePrivate2(page))
2117                goto out;
2118
2119        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2120                                        PAGE_SIZE);
2121        if (ordered) {
2122                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2123                                     page_end, &cached_state);
2124                unlock_page(page);
2125                btrfs_start_ordered_extent(inode, ordered, 1);
2126                btrfs_put_ordered_extent(ordered);
2127                goto again;
2128        }
2129
2130        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2131                                           PAGE_SIZE);
2132        if (ret) {
2133                mapping_set_error(page->mapping, ret);
2134                end_extent_writepage(page, ret, page_start, page_end);
2135                ClearPageChecked(page);
2136                goto out;
2137         }
2138
2139        ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2140                                        &cached_state, 0);
2141        if (ret) {
2142                mapping_set_error(page->mapping, ret);
2143                end_extent_writepage(page, ret, page_start, page_end);
2144                ClearPageChecked(page);
2145                goto out;
2146        }
2147
2148        ClearPageChecked(page);
2149        set_page_dirty(page);
2150        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2151out:
2152        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2153                             &cached_state);
2154out_page:
2155        unlock_page(page);
2156        put_page(page);
2157        kfree(fixup);
2158        extent_changeset_free(data_reserved);
2159}
2160
2161/*
2162 * There are a few paths in the higher layers of the kernel that directly
2163 * set the page dirty bit without asking the filesystem if it is a
2164 * good idea.  This causes problems because we want to make sure COW
2165 * properly happens and the data=ordered rules are followed.
2166 *
2167 * In our case any range that doesn't have the ORDERED bit set
2168 * hasn't been properly setup for IO.  We kick off an async process
2169 * to fix it up.  The async helper will wait for ordered extents, set
2170 * the delalloc bit and make it safe to write the page.
2171 */
2172static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2173{
2174        struct inode *inode = page->mapping->host;
2175        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2176        struct btrfs_writepage_fixup *fixup;
2177
2178        /* this page is properly in the ordered list */
2179        if (TestClearPagePrivate2(page))
2180                return 0;
2181
2182        if (PageChecked(page))
2183                return -EAGAIN;
2184
2185        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2186        if (!fixup)
2187                return -EAGAIN;
2188
2189        SetPageChecked(page);
2190        get_page(page);
2191        btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2192                        btrfs_writepage_fixup_worker, NULL, NULL);
2193        fixup->page = page;
2194        btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2195        return -EBUSY;
2196}
2197
2198static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2199                                       struct inode *inode, u64 file_pos,
2200                                       u64 disk_bytenr, u64 disk_num_bytes,
2201                                       u64 num_bytes, u64 ram_bytes,
2202                                       u8 compression, u8 encryption,
2203                                       u16 other_encoding, int extent_type)
2204{
2205        struct btrfs_root *root = BTRFS_I(inode)->root;
2206        struct btrfs_file_extent_item *fi;
2207        struct btrfs_path *path;
2208        struct extent_buffer *leaf;
2209        struct btrfs_key ins;
2210        u64 qg_released;
2211        int extent_inserted = 0;
2212        int ret;
2213
2214        path = btrfs_alloc_path();
2215        if (!path)
2216                return -ENOMEM;
2217
2218        /*
2219         * we may be replacing one extent in the tree with another.
2220         * The new extent is pinned in the extent map, and we don't want
2221         * to drop it from the cache until it is completely in the btree.
2222         *
2223         * So, tell btrfs_drop_extents to leave this extent in the cache.
2224         * the caller is expected to unpin it and allow it to be merged
2225         * with the others.
2226         */
2227        ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2228                                   file_pos + num_bytes, NULL, 0,
2229                                   1, sizeof(*fi), &extent_inserted);
2230        if (ret)
2231                goto out;
2232
2233        if (!extent_inserted) {
2234                ins.objectid = btrfs_ino(BTRFS_I(inode));
2235                ins.offset = file_pos;
2236                ins.type = BTRFS_EXTENT_DATA_KEY;
2237
2238                path->leave_spinning = 1;
2239                ret = btrfs_insert_empty_item(trans, root, path, &ins,
2240                                              sizeof(*fi));
2241                if (ret)
2242                        goto out;
2243        }
2244        leaf = path->nodes[0];
2245        fi = btrfs_item_ptr(leaf, path->slots[0],
2246                            struct btrfs_file_extent_item);
2247        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2248        btrfs_set_file_extent_type(leaf, fi, extent_type);
2249        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2250        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2251        btrfs_set_file_extent_offset(leaf, fi, 0);
2252        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2253        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2254        btrfs_set_file_extent_compression(leaf, fi, compression);
2255        btrfs_set_file_extent_encryption(leaf, fi, encryption);
2256        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2257
2258        btrfs_mark_buffer_dirty(leaf);
2259        btrfs_release_path(path);
2260
2261        inode_add_bytes(inode, num_bytes);
2262
2263        ins.objectid = disk_bytenr;
2264        ins.offset = disk_num_bytes;
2265        ins.type = BTRFS_EXTENT_ITEM_KEY;
2266
2267        /*
2268         * Release the reserved range from inode dirty range map, as it is
2269         * already moved into delayed_ref_head
2270         */
2271        ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2272        if (ret < 0)
2273                goto out;
2274        qg_released = ret;
2275        ret = btrfs_alloc_reserved_file_extent(trans, root,
2276                                               btrfs_ino(BTRFS_I(inode)),
2277                                               file_pos, qg_released, &ins);
2278out:
2279        btrfs_free_path(path);
2280
2281        return ret;
2282}
2283
2284/* snapshot-aware defrag */
2285struct sa_defrag_extent_backref {
2286        struct rb_node node;
2287        struct old_sa_defrag_extent *old;
2288        u64 root_id;
2289        u64 inum;
2290        u64 file_pos;
2291        u64 extent_offset;
2292        u64 num_bytes;
2293        u64 generation;
2294};
2295
2296struct old_sa_defrag_extent {
2297        struct list_head list;
2298        struct new_sa_defrag_extent *new;
2299
2300        u64 extent_offset;
2301        u64 bytenr;
2302        u64 offset;
2303        u64 len;
2304        int count;
2305};
2306
2307struct new_sa_defrag_extent {
2308        struct rb_root root;
2309        struct list_head head;
2310        struct btrfs_path *path;
2311        struct inode *inode;
2312        u64 file_pos;
2313        u64 len;
2314        u64 bytenr;
2315        u64 disk_len;
2316        u8 compress_type;
2317};
2318
2319static int backref_comp(struct sa_defrag_extent_backref *b1,
2320                        struct sa_defrag_extent_backref *b2)
2321{
2322        if (b1->root_id < b2->root_id)
2323                return -1;
2324        else if (b1->root_id > b2->root_id)
2325                return 1;
2326
2327        if (b1->inum < b2->inum)
2328                return -1;
2329        else if (b1->inum > b2->inum)
2330                return 1;
2331
2332        if (b1->file_pos < b2->file_pos)
2333                return -1;
2334        else if (b1->file_pos > b2->file_pos)
2335                return 1;
2336
2337        /*
2338         * [------------------------------] ===> (a range of space)
2339         *     |<--->|   |<---->| =============> (fs/file tree A)
2340         * |<---------------------------->| ===> (fs/file tree B)
2341         *
2342         * A range of space can refer to two file extents in one tree while
2343         * refer to only one file extent in another tree.
2344         *
2345         * So we may process a disk offset more than one time(two extents in A)
2346         * and locate at the same extent(one extent in B), then insert two same
2347         * backrefs(both refer to the extent in B).
2348         */
2349        return 0;
2350}
2351
2352static void backref_insert(struct rb_root *root,
2353                           struct sa_defrag_extent_backref *backref)
2354{
2355        struct rb_node **p = &root->rb_node;
2356        struct rb_node *parent = NULL;
2357        struct sa_defrag_extent_backref *entry;
2358        int ret;
2359
2360        while (*p) {
2361                parent = *p;
2362                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2363
2364                ret = backref_comp(backref, entry);
2365                if (ret < 0)
2366                        p = &(*p)->rb_left;
2367                else
2368                        p = &(*p)->rb_right;
2369        }
2370
2371        rb_link_node(&backref->node, parent, p);
2372        rb_insert_color(&backref->node, root);
2373}
2374
2375/*
2376 * Note the backref might has changed, and in this case we just return 0.
2377 */
2378static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2379                                       void *ctx)
2380{
2381        struct btrfs_file_extent_item *extent;
2382        struct old_sa_defrag_extent *old = ctx;
2383        struct new_sa_defrag_extent *new = old->new;
2384        struct btrfs_path *path = new->path;
2385        struct btrfs_key key;
2386        struct btrfs_root *root;
2387        struct sa_defrag_extent_backref *backref;
2388        struct extent_buffer *leaf;
2389        struct inode *inode = new->inode;
2390        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2391        int slot;
2392        int ret;
2393        u64 extent_offset;
2394        u64 num_bytes;
2395
2396        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2397            inum == btrfs_ino(BTRFS_I(inode)))
2398                return 0;
2399
2400        key.objectid = root_id;
2401        key.type = BTRFS_ROOT_ITEM_KEY;
2402        key.offset = (u64)-1;
2403
2404        root = btrfs_read_fs_root_no_name(fs_info, &key);
2405        if (IS_ERR(root)) {
2406                if (PTR_ERR(root) == -ENOENT)
2407                        return 0;
2408                WARN_ON(1);
2409                btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2410                         inum, offset, root_id);
2411                return PTR_ERR(root);
2412        }
2413
2414        key.objectid = inum;
2415        key.type = BTRFS_EXTENT_DATA_KEY;
2416        if (offset > (u64)-1 << 32)
2417                key.offset = 0;
2418        else
2419                key.offset = offset;
2420
2421        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2422        if (WARN_ON(ret < 0))
2423                return ret;
2424        ret = 0;
2425
2426        while (1) {
2427                cond_resched();
2428
2429                leaf = path->nodes[0];
2430                slot = path->slots[0];
2431
2432                if (slot >= btrfs_header_nritems(leaf)) {
2433                        ret = btrfs_next_leaf(root, path);
2434                        if (ret < 0) {
2435                                goto out;
2436                        } else if (ret > 0) {
2437                                ret = 0;
2438                                goto out;
2439                        }
2440                        continue;
2441                }
2442
2443                path->slots[0]++;
2444
2445                btrfs_item_key_to_cpu(leaf, &key, slot);
2446
2447                if (key.objectid > inum)
2448                        goto out;
2449
2450                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2451                        continue;
2452
2453                extent = btrfs_item_ptr(leaf, slot,
2454                                        struct btrfs_file_extent_item);
2455
2456                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2457                        continue;
2458
2459                /*
2460                 * 'offset' refers to the exact key.offset,
2461                 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2462                 * (key.offset - extent_offset).
2463                 */
2464                if (key.offset != offset)
2465                        continue;
2466
2467                extent_offset = btrfs_file_extent_offset(leaf, extent);
2468                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2469
2470                if (extent_offset >= old->extent_offset + old->offset +
2471                    old->len || extent_offset + num_bytes <=
2472                    old->extent_offset + old->offset)
2473                        continue;
2474                break;
2475        }
2476
2477        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2478        if (!backref) {
2479                ret = -ENOENT;
2480                goto out;
2481        }
2482
2483        backref->root_id = root_id;
2484        backref->inum = inum;
2485        backref->file_pos = offset;
2486        backref->num_bytes = num_bytes;
2487        backref->extent_offset = extent_offset;
2488        backref->generation = btrfs_file_extent_generation(leaf, extent);
2489        backref->old = old;
2490        backref_insert(&new->root, backref);
2491        old->count++;
2492out:
2493        btrfs_release_path(path);
2494        WARN_ON(ret);
2495        return ret;
2496}
2497
2498static noinline bool record_extent_backrefs(struct btrfs_path *path,
2499                                   struct new_sa_defrag_extent *new)
2500{
2501        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2502        struct old_sa_defrag_extent *old, *tmp;
2503        int ret;
2504
2505        new->path = path;
2506
2507        list_for_each_entry_safe(old, tmp, &new->head, list) {
2508                ret = iterate_inodes_from_logical(old->bytenr +
2509                                                  old->extent_offset, fs_info,
2510                                                  path, record_one_backref,
2511                                                  old, false);
2512                if (ret < 0 && ret != -ENOENT)
2513                        return false;
2514
2515                /* no backref to be processed for this extent */
2516                if (!old->count) {
2517                        list_del(&old->list);
2518                        kfree(old);
2519                }
2520        }
2521
2522        if (list_empty(&new->head))
2523                return false;
2524
2525        return true;
2526}
2527
2528static int relink_is_mergable(struct extent_buffer *leaf,
2529                              struct btrfs_file_extent_item *fi,
2530                              struct new_sa_defrag_extent *new)
2531{
2532        if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2533                return 0;
2534
2535        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2536                return 0;
2537
2538        if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2539                return 0;
2540
2541        if (btrfs_file_extent_encryption(leaf, fi) ||
2542            btrfs_file_extent_other_encoding(leaf, fi))
2543                return 0;
2544
2545        return 1;
2546}
2547
2548/*
2549 * Note the backref might has changed, and in this case we just return 0.
2550 */
2551static noinline int relink_extent_backref(struct btrfs_path *path,
2552                                 struct sa_defrag_extent_backref *prev,
2553                                 struct sa_defrag_extent_backref *backref)
2554{
2555        struct btrfs_file_extent_item *extent;
2556        struct btrfs_file_extent_item *item;
2557        struct btrfs_ordered_extent *ordered;
2558        struct btrfs_trans_handle *trans;
2559        struct btrfs_root *root;
2560        struct btrfs_key key;
2561        struct extent_buffer *leaf;
2562        struct old_sa_defrag_extent *old = backref->old;
2563        struct new_sa_defrag_extent *new = old->new;
2564        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2565        struct inode *inode;
2566        struct extent_state *cached = NULL;
2567        int ret = 0;
2568        u64 start;
2569        u64 len;
2570        u64 lock_start;
2571        u64 lock_end;
2572        bool merge = false;
2573        int index;
2574
2575        if (prev && prev->root_id == backref->root_id &&
2576            prev->inum == backref->inum &&
2577            prev->file_pos + prev->num_bytes == backref->file_pos)
2578                merge = true;
2579
2580        /* step 1: get root */
2581        key.objectid = backref->root_id;
2582        key.type = BTRFS_ROOT_ITEM_KEY;
2583        key.offset = (u64)-1;
2584
2585        index = srcu_read_lock(&fs_info->subvol_srcu);
2586
2587        root = btrfs_read_fs_root_no_name(fs_info, &key);
2588        if (IS_ERR(root)) {
2589                srcu_read_unlock(&fs_info->subvol_srcu, index);
2590                if (PTR_ERR(root) == -ENOENT)
2591                        return 0;
2592                return PTR_ERR(root);
2593        }
2594
2595        if (btrfs_root_readonly(root)) {
2596                srcu_read_unlock(&fs_info->subvol_srcu, index);
2597                return 0;
2598        }
2599
2600        /* step 2: get inode */
2601        key.objectid = backref->inum;
2602        key.type = BTRFS_INODE_ITEM_KEY;
2603        key.offset = 0;
2604
2605        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2606        if (IS_ERR(inode)) {
2607                srcu_read_unlock(&fs_info->subvol_srcu, index);
2608                return 0;
2609        }
2610
2611        srcu_read_unlock(&fs_info->subvol_srcu, index);
2612
2613        /* step 3: relink backref */
2614        lock_start = backref->file_pos;
2615        lock_end = backref->file_pos + backref->num_bytes - 1;
2616        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2617                         &cached);
2618
2619        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2620        if (ordered) {
2621                btrfs_put_ordered_extent(ordered);
2622                goto out_unlock;
2623        }
2624
2625        trans = btrfs_join_transaction(root);
2626        if (IS_ERR(trans)) {
2627                ret = PTR_ERR(trans);
2628                goto out_unlock;
2629        }
2630
2631        key.objectid = backref->inum;
2632        key.type = BTRFS_EXTENT_DATA_KEY;
2633        key.offset = backref->file_pos;
2634
2635        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2636        if (ret < 0) {
2637                goto out_free_path;
2638        } else if (ret > 0) {
2639                ret = 0;
2640                goto out_free_path;
2641        }
2642
2643        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2644                                struct btrfs_file_extent_item);
2645
2646        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2647            backref->generation)
2648                goto out_free_path;
2649
2650        btrfs_release_path(path);
2651
2652        start = backref->file_pos;
2653        if (backref->extent_offset < old->extent_offset + old->offset)
2654                start += old->extent_offset + old->offset -
2655                         backref->extent_offset;
2656
2657        len = min(backref->extent_offset + backref->num_bytes,
2658                  old->extent_offset + old->offset + old->len);
2659        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2660
2661        ret = btrfs_drop_extents(trans, root, inode, start,
2662                                 start + len, 1);
2663        if (ret)
2664                goto out_free_path;
2665again:
2666        key.objectid = btrfs_ino(BTRFS_I(inode));
2667        key.type = BTRFS_EXTENT_DATA_KEY;
2668        key.offset = start;
2669
2670        path->leave_spinning = 1;
2671        if (merge) {
2672                struct btrfs_file_extent_item *fi;
2673                u64 extent_len;
2674                struct btrfs_key found_key;
2675
2676                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2677                if (ret < 0)
2678                        goto out_free_path;
2679
2680                path->slots[0]--;
2681                leaf = path->nodes[0];
2682                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2683
2684                fi = btrfs_item_ptr(leaf, path->slots[0],
2685                                    struct btrfs_file_extent_item);
2686                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2687
2688                if (extent_len + found_key.offset == start &&
2689                    relink_is_mergable(leaf, fi, new)) {
2690                        btrfs_set_file_extent_num_bytes(leaf, fi,
2691                                                        extent_len + len);
2692                        btrfs_mark_buffer_dirty(leaf);
2693                        inode_add_bytes(inode, len);
2694
2695                        ret = 1;
2696                        goto out_free_path;
2697                } else {
2698                        merge = false;
2699                        btrfs_release_path(path);
2700                        goto again;
2701                }
2702        }
2703
2704        ret = btrfs_insert_empty_item(trans, root, path, &key,
2705                                        sizeof(*extent));
2706        if (ret) {
2707                btrfs_abort_transaction(trans, ret);
2708                goto out_free_path;
2709        }
2710
2711        leaf = path->nodes[0];
2712        item = btrfs_item_ptr(leaf, path->slots[0],
2713                                struct btrfs_file_extent_item);
2714        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2715        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2716        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2717        btrfs_set_file_extent_num_bytes(leaf, item, len);
2718        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2719        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2720        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2721        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2722        btrfs_set_file_extent_encryption(leaf, item, 0);
2723        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2724
2725        btrfs_mark_buffer_dirty(leaf);
2726        inode_add_bytes(inode, len);
2727        btrfs_release_path(path);
2728
2729        ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2730                        new->disk_len, 0,
2731                        backref->root_id, backref->inum,
2732                        new->file_pos); /* start - extent_offset */
2733        if (ret) {
2734                btrfs_abort_transaction(trans, ret);
2735                goto out_free_path;
2736        }
2737
2738        ret = 1;
2739out_free_path:
2740        btrfs_release_path(path);
2741        path->leave_spinning = 0;
2742        btrfs_end_transaction(trans);
2743out_unlock:
2744        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2745                             &cached);
2746        iput(inode);
2747        return ret;
2748}
2749
2750static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2751{
2752        struct old_sa_defrag_extent *old, *tmp;
2753
2754        if (!new)
2755                return;
2756
2757        list_for_each_entry_safe(old, tmp, &new->head, list) {
2758                kfree(old);
2759        }
2760        kfree(new);
2761}
2762
2763static void relink_file_extents(struct new_sa_defrag_extent *new)
2764{
2765        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2766        struct btrfs_path *path;
2767        struct sa_defrag_extent_backref *backref;
2768        struct sa_defrag_extent_backref *prev = NULL;
2769        struct inode *inode;
2770        struct rb_node *node;
2771        int ret;
2772
2773        inode = new->inode;
2774
2775        path = btrfs_alloc_path();
2776        if (!path)
2777                return;
2778
2779        if (!record_extent_backrefs(path, new)) {
2780                btrfs_free_path(path);
2781                goto out;
2782        }
2783        btrfs_release_path(path);
2784
2785        while (1) {
2786                node = rb_first(&new->root);
2787                if (!node)
2788                        break;
2789                rb_erase(node, &new->root);
2790
2791                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2792
2793                ret = relink_extent_backref(path, prev, backref);
2794                WARN_ON(ret < 0);
2795
2796                kfree(prev);
2797
2798                if (ret == 1)
2799                        prev = backref;
2800                else
2801                        prev = NULL;
2802                cond_resched();
2803        }
2804        kfree(prev);
2805
2806        btrfs_free_path(path);
2807out:
2808        free_sa_defrag_extent(new);
2809
2810        atomic_dec(&fs_info->defrag_running);
2811        wake_up(&fs_info->transaction_wait);
2812}
2813
2814static struct new_sa_defrag_extent *
2815record_old_file_extents(struct inode *inode,
2816                        struct btrfs_ordered_extent *ordered)
2817{
2818        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2819        struct btrfs_root *root = BTRFS_I(inode)->root;
2820        struct btrfs_path *path;
2821        struct btrfs_key key;
2822        struct old_sa_defrag_extent *old;
2823        struct new_sa_defrag_extent *new;
2824        int ret;
2825
2826        new = kmalloc(sizeof(*new), GFP_NOFS);
2827        if (!new)
2828                return NULL;
2829
2830        new->inode = inode;
2831        new->file_pos = ordered->file_offset;
2832        new->len = ordered->len;
2833        new->bytenr = ordered->start;
2834        new->disk_len = ordered->disk_len;
2835        new->compress_type = ordered->compress_type;
2836        new->root = RB_ROOT;
2837        INIT_LIST_HEAD(&new->head);
2838
2839        path = btrfs_alloc_path();
2840        if (!path)
2841                goto out_kfree;
2842
2843        key.objectid = btrfs_ino(BTRFS_I(inode));
2844        key.type = BTRFS_EXTENT_DATA_KEY;
2845        key.offset = new->file_pos;
2846
2847        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2848        if (ret < 0)
2849                goto out_free_path;
2850        if (ret > 0 && path->slots[0] > 0)
2851                path->slots[0]--;
2852
2853        /* find out all the old extents for the file range */
2854        while (1) {
2855                struct btrfs_file_extent_item *extent;
2856                struct extent_buffer *l;
2857                int slot;
2858                u64 num_bytes;
2859                u64 offset;
2860                u64 end;
2861                u64 disk_bytenr;
2862                u64 extent_offset;
2863
2864                l = path->nodes[0];
2865                slot = path->slots[0];
2866
2867                if (slot >= btrfs_header_nritems(l)) {
2868                        ret = btrfs_next_leaf(root, path);
2869                        if (ret < 0)
2870                                goto out_free_path;
2871                        else if (ret > 0)
2872                                break;
2873                        continue;
2874                }
2875
2876                btrfs_item_key_to_cpu(l, &key, slot);
2877
2878                if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2879                        break;
2880                if (key.type != BTRFS_EXTENT_DATA_KEY)
2881                        break;
2882                if (key.offset >= new->file_pos + new->len)
2883                        break;
2884
2885                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2886
2887                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2888                if (key.offset + num_bytes < new->file_pos)
2889                        goto next;
2890
2891                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2892                if (!disk_bytenr)
2893                        goto next;
2894
2895                extent_offset = btrfs_file_extent_offset(l, extent);
2896
2897                old = kmalloc(sizeof(*old), GFP_NOFS);
2898                if (!old)
2899                        goto out_free_path;
2900
2901                offset = max(new->file_pos, key.offset);
2902                end = min(new->file_pos + new->len, key.offset + num_bytes);
2903
2904                old->bytenr = disk_bytenr;
2905                old->extent_offset = extent_offset;
2906                old->offset = offset - key.offset;
2907                old->len = end - offset;
2908                old->new = new;
2909                old->count = 0;
2910                list_add_tail(&old->list, &new->head);
2911next:
2912                path->slots[0]++;
2913                cond_resched();
2914        }
2915
2916        btrfs_free_path(path);
2917        atomic_inc(&fs_info->defrag_running);
2918
2919        return new;
2920
2921out_free_path:
2922        btrfs_free_path(path);
2923out_kfree:
2924        free_sa_defrag_extent(new);
2925        return NULL;
2926}
2927
2928static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2929                                         u64 start, u64 len)
2930{
2931        struct btrfs_block_group_cache *cache;
2932
2933        cache = btrfs_lookup_block_group(fs_info, start);
2934        ASSERT(cache);
2935
2936        spin_lock(&cache->lock);
2937        cache->delalloc_bytes -= len;
2938        spin_unlock(&cache->lock);
2939
2940        btrfs_put_block_group(cache);
2941}
2942
2943/* as ordered data IO finishes, this gets called so we can finish
2944 * an ordered extent if the range of bytes in the file it covers are
2945 * fully written.
2946 */
2947static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2948{
2949        struct inode *inode = ordered_extent->inode;
2950        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2951        struct btrfs_root *root = BTRFS_I(inode)->root;
2952        struct btrfs_trans_handle *trans = NULL;
2953        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2954        struct extent_state *cached_state = NULL;
2955        struct new_sa_defrag_extent *new = NULL;
2956        int compress_type = 0;
2957        int ret = 0;
2958        u64 logical_len = ordered_extent->len;
2959        bool nolock;
2960        bool truncated = false;
2961        bool range_locked = false;
2962        bool clear_new_delalloc_bytes = false;
2963
2964        if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2965            !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2966            !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2967                clear_new_delalloc_bytes = true;
2968
2969        nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2970
2971        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2972                ret = -EIO;
2973                goto out;
2974        }
2975
2976        btrfs_free_io_failure_record(BTRFS_I(inode),
2977                        ordered_extent->file_offset,
2978                        ordered_extent->file_offset +
2979                        ordered_extent->len - 1);
2980
2981        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2982                truncated = true;
2983                logical_len = ordered_extent->truncated_len;
2984                /* Truncated the entire extent, don't bother adding */
2985                if (!logical_len)
2986                        goto out;
2987        }
2988
2989        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2990                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2991
2992                /*
2993                 * For mwrite(mmap + memset to write) case, we still reserve
2994                 * space for NOCOW range.
2995                 * As NOCOW won't cause a new delayed ref, just free the space
2996                 */
2997                btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2998                                       ordered_extent->len);
2999                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3000                if (nolock)
3001                        trans = btrfs_join_transaction_nolock(root);
3002                else
3003                        trans = btrfs_join_transaction(root);
3004                if (IS_ERR(trans)) {
3005                        ret = PTR_ERR(trans);
3006                        trans = NULL;
3007                        goto out;
3008                }
3009                trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3010                ret = btrfs_update_inode_fallback(trans, root, inode);
3011                if (ret) /* -ENOMEM or corruption */
3012                        btrfs_abort_transaction(trans, ret);
3013                goto out;
3014        }
3015
3016        range_locked = true;
3017        lock_extent_bits(io_tree, ordered_extent->file_offset,
3018                         ordered_extent->file_offset + ordered_extent->len - 1,
3019                         &cached_state);
3020
3021        ret = test_range_bit(io_tree, ordered_extent->file_offset,
3022                        ordered_extent->file_offset + ordered_extent->len - 1,
3023                        EXTENT_DEFRAG, 0, cached_state);
3024        if (ret) {
3025                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3026                if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3027                        /* the inode is shared */
3028                        new = record_old_file_extents(inode, ordered_extent);
3029
3030                clear_extent_bit(io_tree, ordered_extent->file_offset,
3031                        ordered_extent->file_offset + ordered_extent->len - 1,
3032                        EXTENT_DEFRAG, 0, 0, &cached_state);
3033        }
3034
3035        if (nolock)
3036                trans = btrfs_join_transaction_nolock(root);
3037        else
3038                trans = btrfs_join_transaction(root);
3039        if (IS_ERR(trans)) {
3040                ret = PTR_ERR(trans);
3041                trans = NULL;
3042                goto out;
3043        }
3044
3045        trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3046
3047        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3048                compress_type = ordered_extent->compress_type;
3049        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3050                BUG_ON(compress_type);
3051                btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3052                                       ordered_extent->len);
3053                ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3054                                                ordered_extent->file_offset,
3055                                                ordered_extent->file_offset +
3056                                                logical_len);
3057        } else {
3058                BUG_ON(root == fs_info->tree_root);
3059                ret = insert_reserved_file_extent(trans, inode,
3060                                                ordered_extent->file_offset,
3061                                                ordered_extent->start,
3062                                                ordered_extent->disk_len,
3063                                                logical_len, logical_len,
3064                                                compress_type, 0, 0,
3065                                                BTRFS_FILE_EXTENT_REG);
3066                if (!ret)
3067                        btrfs_release_delalloc_bytes(fs_info,
3068                                                     ordered_extent->start,
3069                                                     ordered_extent->disk_len);
3070        }
3071        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3072                           ordered_extent->file_offset, ordered_extent->len,
3073                           trans->transid);
3074        if (ret < 0) {
3075                btrfs_abort_transaction(trans, ret);
3076                goto out;
3077        }
3078
3079        ret = add_pending_csums(trans, inode, &ordered_extent->list);
3080        if (ret) {
3081                btrfs_abort_transaction(trans, ret);
3082                goto out;
3083        }
3084
3085        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3086        ret = btrfs_update_inode_fallback(trans, root, inode);
3087        if (ret) { /* -ENOMEM or corruption */
3088                btrfs_abort_transaction(trans, ret);
3089                goto out;
3090        }
3091        ret = 0;
3092out:
3093        if (range_locked || clear_new_delalloc_bytes) {
3094                unsigned int clear_bits = 0;
3095
3096                if (range_locked)
3097                        clear_bits |= EXTENT_LOCKED;
3098                if (clear_new_delalloc_bytes)
3099                        clear_bits |= EXTENT_DELALLOC_NEW;
3100                clear_extent_bit(&BTRFS_I(inode)->io_tree,
3101                                 ordered_extent->file_offset,
3102                                 ordered_extent->file_offset +
3103                                 ordered_extent->len - 1,
3104                                 clear_bits,
3105                                 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3106                                 0, &cached_state);
3107        }
3108
3109        if (trans)
3110                btrfs_end_transaction(trans);
3111
3112        if (ret || truncated) {
3113                u64 start, end;
3114
3115                if (truncated)
3116                        start = ordered_extent->file_offset + logical_len;
3117                else
3118                        start = ordered_extent->file_offset;
3119                end = ordered_extent->file_offset + ordered_extent->len - 1;
3120                clear_extent_uptodate(io_tree, start, end, NULL);
3121
3122                /* Drop the cache for the part of the extent we didn't write. */
3123                btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3124
3125                /*
3126                 * If the ordered extent had an IOERR or something else went
3127                 * wrong we need to return the space for this ordered extent
3128                 * back to the allocator.  We only free the extent in the
3129                 * truncated case if we didn't write out the extent at all.
3130                 */
3131                if ((ret || !logical_len) &&
3132                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3133                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3134                        btrfs_free_reserved_extent(fs_info,
3135                                                   ordered_extent->start,
3136                                                   ordered_extent->disk_len, 1);
3137        }
3138
3139
3140        /*
3141         * This needs to be done to make sure anybody waiting knows we are done
3142         * updating everything for this ordered extent.
3143         */
3144        btrfs_remove_ordered_extent(inode, ordered_extent);
3145
3146        /* for snapshot-aware defrag */
3147        if (new) {
3148                if (ret) {
3149                        free_sa_defrag_extent(new);
3150                        atomic_dec(&fs_info->defrag_running);
3151                } else {
3152                        relink_file_extents(new);
3153                }
3154        }
3155
3156        /* once for us */
3157        btrfs_put_ordered_extent(ordered_extent);
3158        /* once for the tree */
3159        btrfs_put_ordered_extent(ordered_extent);
3160
3161        return ret;
3162}
3163
3164static void finish_ordered_fn(struct btrfs_work *work)
3165{
3166        struct btrfs_ordered_extent *ordered_extent;
3167        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3168        btrfs_finish_ordered_io(ordered_extent);
3169}
3170
3171static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3172                                struct extent_state *state, int uptodate)
3173{
3174        struct inode *inode = page->mapping->host;
3175        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3176        struct btrfs_ordered_extent *ordered_extent = NULL;
3177        struct btrfs_workqueue *wq;
3178        btrfs_work_func_t func;
3179
3180        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3181
3182        ClearPagePrivate2(page);
3183        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3184                                            end - start + 1, uptodate))
3185                return;
3186
3187        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3188                wq = fs_info->endio_freespace_worker;
3189                func = btrfs_freespace_write_helper;
3190        } else {
3191                wq = fs_info->endio_write_workers;
3192                func = btrfs_endio_write_helper;
3193        }
3194
3195        btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3196                        NULL);
3197        btrfs_queue_work(wq, &ordered_extent->work);
3198}
3199
3200static int __readpage_endio_check(struct inode *inode,
3201                                  struct btrfs_io_bio *io_bio,
3202                                  int icsum, struct page *page,
3203                                  int pgoff, u64 start, size_t len)
3204{
3205        char *kaddr;
3206        u32 csum_expected;
3207        u32 csum = ~(u32)0;
3208
3209        csum_expected = *(((u32 *)io_bio->csum) + icsum);
3210
3211        kaddr = kmap_atomic(page);
3212        csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3213        btrfs_csum_final(csum, (u8 *)&csum);
3214        if (csum != csum_expected)
3215                goto zeroit;
3216
3217        kunmap_atomic(kaddr);
3218        return 0;
3219zeroit:
3220        btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3221                                    io_bio->mirror_num);
3222        memset(kaddr + pgoff, 1, len);
3223        flush_dcache_page(page);
3224        kunmap_atomic(kaddr);
3225        return -EIO;
3226}
3227
3228/*
3229 * when reads are done, we need to check csums to verify the data is correct
3230 * if there's a match, we allow the bio to finish.  If not, the code in
3231 * extent_io.c will try to find good copies for us.
3232 */
3233static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3234                                      u64 phy_offset, struct page *page,
3235                                      u64 start, u64 end, int mirror)
3236{
3237        size_t offset = start - page_offset(page);
3238        struct inode *inode = page->mapping->host;
3239        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3240        struct btrfs_root *root = BTRFS_I(inode)->root;
3241
3242        if (PageChecked(page)) {
3243                ClearPageChecked(page);
3244                return 0;
3245        }
3246
3247        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3248                return 0;
3249
3250        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3251            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3252                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3253                return 0;
3254        }
3255
3256        phy_offset >>= inode->i_sb->s_blocksize_bits;
3257        return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3258                                      start, (size_t)(end - start + 1));
3259}
3260
3261/*
3262 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3263 *
3264 * @inode: The inode we want to perform iput on
3265 *
3266 * This function uses the generic vfs_inode::i_count to track whether we should
3267 * just decrement it (in case it's > 1) or if this is the last iput then link
3268 * the inode to the delayed iput machinery. Delayed iputs are processed at
3269 * transaction commit time/superblock commit/cleaner kthread.
3270 */
3271void btrfs_add_delayed_iput(struct inode *inode)
3272{
3273        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3274        struct btrfs_inode *binode = BTRFS_I(inode);
3275
3276        if (atomic_add_unless(&inode->i_count, -1, 1))
3277                return;
3278
3279        spin_lock(&fs_info->delayed_iput_lock);
3280        ASSERT(list_empty(&binode->delayed_iput));
3281        list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3282        spin_unlock(&fs_info->delayed_iput_lock);
3283}
3284
3285void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3286{
3287
3288        spin_lock(&fs_info->delayed_iput_lock);
3289        while (!list_empty(&fs_info->delayed_iputs)) {
3290                struct btrfs_inode *inode;
3291
3292                inode = list_first_entry(&fs_info->delayed_iputs,
3293                                struct btrfs_inode, delayed_iput);
3294                list_del_init(&inode->delayed_iput);
3295                spin_unlock(&fs_info->delayed_iput_lock);
3296                iput(&inode->vfs_inode);
3297                spin_lock(&fs_info->delayed_iput_lock);
3298        }
3299        spin_unlock(&fs_info->delayed_iput_lock);
3300}
3301
3302/*
3303 * This is called in transaction commit time. If there are no orphan
3304 * files in the subvolume, it removes orphan item and frees block_rsv
3305 * structure.
3306 */
3307void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3308                              struct btrfs_root *root)
3309{
3310        struct btrfs_fs_info *fs_info = root->fs_info;
3311        struct btrfs_block_rsv *block_rsv;
3312        int ret;
3313
3314        if (atomic_read(&root->orphan_inodes) ||
3315            root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3316                return;
3317
3318        spin_lock(&root->orphan_lock);
3319        if (atomic_read(&root->orphan_inodes)) {
3320                spin_unlock(&root->orphan_lock);
3321                return;
3322        }
3323
3324        if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3325                spin_unlock(&root->orphan_lock);
3326                return;
3327        }
3328
3329        block_rsv = root->orphan_block_rsv;
3330        root->orphan_block_rsv = NULL;
3331        spin_unlock(&root->orphan_lock);
3332
3333        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3334            btrfs_root_refs(&root->root_item) > 0) {
3335                ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3336                                            root->root_key.objectid);
3337                if (ret)
3338                        btrfs_abort_transaction(trans, ret);
3339                else
3340                        clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3341                                  &root->state);
3342        }
3343
3344        if (block_rsv) {
3345                WARN_ON(block_rsv->size > 0);
3346                btrfs_free_block_rsv(fs_info, block_rsv);
3347        }
3348}
3349
3350/*
3351 * This creates an orphan entry for the given inode in case something goes
3352 * wrong in the middle of an unlink/truncate.
3353 *
3354 * NOTE: caller of this function should reserve 5 units of metadata for
3355 *       this function.
3356 */
3357int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3358                struct btrfs_inode *inode)
3359{
3360        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3361        struct btrfs_root *root = inode->root;
3362        struct btrfs_block_rsv *block_rsv = NULL;
3363        int reserve = 0;
3364        bool insert = false;
3365        int ret;
3366
3367        if (!root->orphan_block_rsv) {
3368                block_rsv = btrfs_alloc_block_rsv(fs_info,
3369                                                  BTRFS_BLOCK_RSV_TEMP);
3370                if (!block_rsv)
3371                        return -ENOMEM;
3372        }
3373
3374        if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3375                              &inode->runtime_flags))
3376                insert = true;
3377
3378        if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3379                              &inode->runtime_flags))
3380                reserve = 1;
3381
3382        spin_lock(&root->orphan_lock);
3383        /* If someone has created ->orphan_block_rsv, be happy to use it. */
3384        if (!root->orphan_block_rsv) {
3385                root->orphan_block_rsv = block_rsv;
3386        } else if (block_rsv) {
3387                btrfs_free_block_rsv(fs_info, block_rsv);
3388                block_rsv = NULL;
3389        }
3390
3391        if (insert)
3392                atomic_inc(&root->orphan_inodes);
3393        spin_unlock(&root->orphan_lock);
3394
3395        /* grab metadata reservation from transaction handle */
3396        if (reserve) {
3397                ret = btrfs_orphan_reserve_metadata(trans, inode);
3398                ASSERT(!ret);
3399                if (ret) {
3400                        /*
3401                         * dec doesn't need spin_lock as ->orphan_block_rsv
3402                         * would be released only if ->orphan_inodes is
3403                         * zero.
3404                         */
3405                        atomic_dec(&root->orphan_inodes);
3406                        clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3407                                  &inode->runtime_flags);
3408                        if (insert)
3409                                clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3410                                          &inode->runtime_flags);
3411                        return ret;
3412                }
3413        }
3414
3415        /* insert an orphan item to track this unlinked/truncated file */
3416        if (insert) {
3417                ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3418                if (ret) {
3419                        if (reserve) {
3420                                clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3421                                          &inode->runtime_flags);
3422                                btrfs_orphan_release_metadata(inode);
3423                        }
3424                        /*
3425                         * btrfs_orphan_commit_root may race with us and set
3426                         * ->orphan_block_rsv to zero, in order to avoid that,
3427                         * decrease ->orphan_inodes after everything is done.
3428                         */
3429                        atomic_dec(&root->orphan_inodes);
3430                        if (ret != -EEXIST) {
3431                                clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3432                                          &inode->runtime_flags);
3433                                btrfs_abort_transaction(trans, ret);
3434                                return ret;
3435                        }
3436                }
3437                ret = 0;
3438        }
3439
3440        return 0;
3441}
3442
3443/*
3444 * We have done the truncate/delete so we can go ahead and remove the orphan
3445 * item for this particular inode.
3446 */
3447static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3448                            struct btrfs_inode *inode)
3449{
3450        struct btrfs_root *root = inode->root;
3451        int delete_item = 0;
3452        int ret = 0;
3453
3454        if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3455                               &inode->runtime_flags))
3456                delete_item = 1;
3457
3458        if (delete_item && trans)
3459                ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3460
3461        if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3462                               &inode->runtime_flags))
3463                btrfs_orphan_release_metadata(inode);
3464
3465        /*
3466         * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3467         * to zero, in order to avoid that, decrease ->orphan_inodes after
3468         * everything is done.
3469         */
3470        if (delete_item)
3471                atomic_dec(&root->orphan_inodes);
3472
3473        return ret;
3474}
3475
3476/*
3477 * this cleans up any orphans that may be left on the list from the last use
3478 * of this root.
3479 */
3480int btrfs_orphan_cleanup(struct btrfs_root *root)
3481{
3482        struct btrfs_fs_info *fs_info = root->fs_info;
3483        struct btrfs_path *path;
3484        struct extent_buffer *leaf;
3485        struct btrfs_key key, found_key;
3486        struct btrfs_trans_handle *trans;
3487        struct inode *inode;
3488        u64 last_objectid = 0;
3489        int ret = 0, nr_unlink = 0, nr_truncate = 0;
3490
3491        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3492                return 0;
3493
3494        path = btrfs_alloc_path();
3495        if (!path) {
3496                ret = -ENOMEM;
3497                goto out;
3498        }
3499        path->reada = READA_BACK;
3500
3501        key.objectid = BTRFS_ORPHAN_OBJECTID;
3502        key.type = BTRFS_ORPHAN_ITEM_KEY;
3503        key.offset = (u64)-1;
3504
3505        while (1) {
3506                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3507                if (ret < 0)
3508                        goto out;
3509
3510                /*
3511                 * if ret == 0 means we found what we were searching for, which
3512                 * is weird, but possible, so only screw with path if we didn't
3513                 * find the key and see if we have stuff that matches
3514                 */
3515                if (ret > 0) {
3516                        ret = 0;
3517                        if (path->slots[0] == 0)
3518                                break;
3519                        path->slots[0]--;
3520                }
3521
3522                /* pull out the item */
3523                leaf = path->nodes[0];
3524                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3525
3526                /* make sure the item matches what we want */
3527                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3528                        break;
3529                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3530                        break;
3531
3532                /* release the path since we're done with it */
3533                btrfs_release_path(path);
3534
3535                /*
3536                 * this is where we are basically btrfs_lookup, without the
3537                 * crossing root thing.  we store the inode number in the
3538                 * offset of the orphan item.
3539                 */
3540
3541                if (found_key.offset == last_objectid) {
3542                        btrfs_err(fs_info,
3543                                  "Error removing orphan entry, stopping orphan cleanup");
3544                        ret = -EINVAL;
3545                        goto out;
3546                }
3547
3548                last_objectid = found_key.offset;
3549
3550                found_key.objectid = found_key.offset;
3551                found_key.type = BTRFS_INODE_ITEM_KEY;
3552                found_key.offset = 0;
3553                inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3554                ret = PTR_ERR_OR_ZERO(inode);
3555                if (ret && ret != -ENOENT)
3556                        goto out;
3557
3558                if (ret == -ENOENT && root == fs_info->tree_root) {
3559                        struct btrfs_root *dead_root;
3560                        struct btrfs_fs_info *fs_info = root->fs_info;
3561                        int is_dead_root = 0;
3562
3563                        /*
3564                         * this is an orphan in the tree root. Currently these
3565                         * could come from 2 sources:
3566                         *  a) a snapshot deletion in progress
3567                         *  b) a free space cache inode
3568                         * We need to distinguish those two, as the snapshot
3569                         * orphan must not get deleted.
3570                         * find_dead_roots already ran before us, so if this
3571                         * is a snapshot deletion, we should find the root
3572                         * in the dead_roots list
3573                         */
3574                        spin_lock(&fs_info->trans_lock);
3575                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3576                                            root_list) {
3577                                if (dead_root->root_key.objectid ==
3578                                    found_key.objectid) {
3579                                        is_dead_root = 1;
3580                                        break;
3581                                }
3582                        }
3583                        spin_unlock(&fs_info->trans_lock);
3584                        if (is_dead_root) {
3585                                /* prevent this orphan from being found again */
3586                                key.offset = found_key.objectid - 1;
3587                                continue;
3588                        }
3589                }
3590                /*
3591                 * Inode is already gone but the orphan item is still there,
3592                 * kill the orphan item.
3593                 */
3594                if (ret == -ENOENT) {
3595                        trans = btrfs_start_transaction(root, 1);
3596                        if (IS_ERR(trans)) {
3597                                ret = PTR_ERR(trans);
3598                                goto out;
3599                        }
3600                        btrfs_debug(fs_info, "auto deleting %Lu",
3601                                    found_key.objectid);
3602                        ret = btrfs_del_orphan_item(trans, root,
3603                                                    found_key.objectid);
3604                        btrfs_end_transaction(trans);
3605                        if (ret)
3606                                goto out;
3607                        continue;
3608                }
3609
3610                /*
3611                 * add this inode to the orphan list so btrfs_orphan_del does
3612                 * the proper thing when we hit it
3613                 */
3614                set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3615                        &BTRFS_I(inode)->runtime_flags);
3616                atomic_inc(&root->orphan_inodes);
3617
3618                /* if we have links, this was a truncate, lets do that */
3619                if (inode->i_nlink) {
3620                        if (WARN_ON(!S_ISREG(inode->i_mode))) {
3621                                iput(inode);
3622                                continue;
3623                        }
3624                        nr_truncate++;
3625
3626                        /* 1 for the orphan item deletion. */
3627                        trans = btrfs_start_transaction(root, 1);
3628                        if (IS_ERR(trans)) {
3629                                iput(inode);
3630                                ret = PTR_ERR(trans);
3631                                goto out;
3632                        }
3633                        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3634                        btrfs_end_transaction(trans);
3635                        if (ret) {
3636                                iput(inode);
3637                                goto out;
3638                        }
3639
3640                        ret = btrfs_truncate(inode, false);
3641                        if (ret)
3642                                btrfs_orphan_del(NULL, BTRFS_I(inode));
3643                } else {
3644                        nr_unlink++;
3645                }
3646
3647                /* this will do delete_inode and everything for us */
3648                iput(inode);
3649                if (ret)
3650                        goto out;
3651        }
3652        /* release the path since we're done with it */
3653        btrfs_release_path(path);
3654
3655        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3656
3657        if (root->orphan_block_rsv)
3658                btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3659                                        (u64)-1);
3660
3661        if (root->orphan_block_rsv ||
3662            test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3663                trans = btrfs_join_transaction(root);
3664                if (!IS_ERR(trans))
3665                        btrfs_end_transaction(trans);
3666        }
3667
3668        if (nr_unlink)
3669                btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3670        if (nr_truncate)
3671                btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3672
3673out:
3674        if (ret)
3675                btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3676        btrfs_free_path(path);
3677        return ret;
3678}
3679
3680/*
3681 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3682 * don't find any xattrs, we know there can't be any acls.
3683 *
3684 * slot is the slot the inode is in, objectid is the objectid of the inode
3685 */
3686static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3687                                          int slot, u64 objectid,
3688                                          int *first_xattr_slot)
3689{
3690        u32 nritems = btrfs_header_nritems(leaf);
3691        struct btrfs_key found_key;
3692        static u64 xattr_access = 0;
3693        static u64 xattr_default = 0;
3694        int scanned = 0;
3695
3696        if (!xattr_access) {
3697                xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3698                                        strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3699                xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3700                                        strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3701        }
3702
3703        slot++;
3704        *first_xattr_slot = -1;
3705        while (slot < nritems) {
3706                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707
3708                /* we found a different objectid, there must not be acls */
3709                if (found_key.objectid != objectid)
3710                        return 0;
3711
3712                /* we found an xattr, assume we've got an acl */
3713                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3714                        if (*first_xattr_slot == -1)
3715                                *first_xattr_slot = slot;
3716                        if (found_key.offset == xattr_access ||
3717                            found_key.offset == xattr_default)
3718                                return 1;
3719                }
3720
3721                /*
3722                 * we found a key greater than an xattr key, there can't
3723                 * be any acls later on
3724                 */
3725                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3726                        return 0;
3727
3728                slot++;
3729                scanned++;
3730
3731                /*
3732                 * it goes inode, inode backrefs, xattrs, extents,
3733                 * so if there are a ton of hard links to an inode there can
3734                 * be a lot of backrefs.  Don't waste time searching too hard,
3735                 * this is just an optimization
3736                 */
3737                if (scanned >= 8)
3738                        break;
3739        }
3740        /* we hit the end of the leaf before we found an xattr or
3741         * something larger than an xattr.  We have to assume the inode
3742         * has acls
3743         */
3744        if (*first_xattr_slot == -1)
3745                *first_xattr_slot = slot;
3746        return 1;
3747}
3748
3749/*
3750 * read an inode from the btree into the in-memory inode
3751 */
3752static int btrfs_read_locked_inode(struct inode *inode)
3753{
3754        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3755        struct btrfs_path *path;
3756        struct extent_buffer *leaf;
3757        struct btrfs_inode_item *inode_item;
3758        struct btrfs_root *root = BTRFS_I(inode)->root;
3759        struct btrfs_key location;
3760        unsigned long ptr;
3761        int maybe_acls;
3762        u32 rdev;
3763        int ret;
3764        bool filled = false;
3765        int first_xattr_slot;
3766
3767        ret = btrfs_fill_inode(inode, &rdev);
3768        if (!ret)
3769                filled = true;
3770
3771        path = btrfs_alloc_path();
3772        if (!path) {
3773                ret = -ENOMEM;
3774                goto make_bad;
3775        }
3776
3777        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3778
3779        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3780        if (ret) {
3781                if (ret > 0)
3782                        ret = -ENOENT;
3783                goto make_bad;
3784        }
3785
3786        leaf = path->nodes[0];
3787
3788        if (filled)
3789                goto cache_index;
3790
3791        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3792                                    struct btrfs_inode_item);
3793        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3794        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3795        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3796        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3797        btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3798
3799        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3800        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3801
3802        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3803        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3804
3805        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3806        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3807
3808        BTRFS_I(inode)->i_otime.tv_sec =
3809                btrfs_timespec_sec(leaf, &inode_item->otime);
3810        BTRFS_I(inode)->i_otime.tv_nsec =
3811                btrfs_timespec_nsec(leaf, &inode_item->otime);
3812
3813        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3814        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3815        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3816
3817        inode_set_iversion_queried(inode,
3818                                   btrfs_inode_sequence(leaf, inode_item));
3819        inode->i_generation = BTRFS_I(inode)->generation;
3820        inode->i_rdev = 0;
3821        rdev = btrfs_inode_rdev(leaf, inode_item);
3822
3823        BTRFS_I(inode)->index_cnt = (u64)-1;
3824        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3825
3826cache_index:
3827        /*
3828         * If we were modified in the current generation and evicted from memory
3829         * and then re-read we need to do a full sync since we don't have any
3830         * idea about which extents were modified before we were evicted from
3831         * cache.
3832         *
3833         * This is required for both inode re-read from disk and delayed inode
3834         * in delayed_nodes_tree.
3835         */
3836        if (BTRFS_I(inode)->last_trans == fs_info->generation)
3837                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3838                        &BTRFS_I(inode)->runtime_flags);
3839
3840        /*
3841         * We don't persist the id of the transaction where an unlink operation
3842         * against the inode was last made. So here we assume the inode might
3843         * have been evicted, and therefore the exact value of last_unlink_trans
3844         * lost, and set it to last_trans to avoid metadata inconsistencies
3845         * between the inode and its parent if the inode is fsync'ed and the log
3846         * replayed. For example, in the scenario:
3847         *
3848         * touch mydir/foo
3849         * ln mydir/foo mydir/bar
3850         * sync
3851         * unlink mydir/bar
3852         * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3853         * xfs_io -c fsync mydir/foo
3854         * <power failure>
3855         * mount fs, triggers fsync log replay
3856         *
3857         * We must make sure that when we fsync our inode foo we also log its
3858         * parent inode, otherwise after log replay the parent still has the
3859         * dentry with the "bar" name but our inode foo has a link count of 1
3860         * and doesn't have an inode ref with the name "bar" anymore.
3861         *
3862         * Setting last_unlink_trans to last_trans is a pessimistic approach,
3863         * but it guarantees correctness at the expense of occasional full
3864         * transaction commits on fsync if our inode is a directory, or if our
3865         * inode is not a directory, logging its parent unnecessarily.
3866         */
3867        BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3868
3869        path->slots[0]++;
3870        if (inode->i_nlink != 1 ||
3871            path->slots[0] >= btrfs_header_nritems(leaf))
3872                goto cache_acl;
3873
3874        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3875        if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3876                goto cache_acl;
3877
3878        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3879        if (location.type == BTRFS_INODE_REF_KEY) {
3880                struct btrfs_inode_ref *ref;
3881
3882                ref = (struct btrfs_inode_ref *)ptr;
3883                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3884        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3885                struct btrfs_inode_extref *extref;
3886
3887                extref = (struct btrfs_inode_extref *)ptr;
3888                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3889                                                                     extref);
3890        }
3891cache_acl:
3892        /*
3893         * try to precache a NULL acl entry for files that don't have
3894         * any xattrs or acls
3895         */
3896        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3897                        btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3898        if (first_xattr_slot != -1) {
3899                path->slots[0] = first_xattr_slot;
3900                ret = btrfs_load_inode_props(inode, path);
3901                if (ret)
3902                        btrfs_err(fs_info,
3903                                  "error loading props for ino %llu (root %llu): %d",
3904                                  btrfs_ino(BTRFS_I(inode)),
3905                                  root->root_key.objectid, ret);
3906        }
3907        btrfs_free_path(path);
3908
3909        if (!maybe_acls)
3910                cache_no_acl(inode);
3911
3912        switch (inode->i_mode & S_IFMT) {
3913        case S_IFREG:
3914                inode->i_mapping->a_ops = &btrfs_aops;
3915                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3916                inode->i_fop = &btrfs_file_operations;
3917                inode->i_op = &btrfs_file_inode_operations;
3918                break;
3919        case S_IFDIR:
3920                inode->i_fop = &btrfs_dir_file_operations;
3921                inode->i_op = &btrfs_dir_inode_operations;
3922                break;
3923        case S_IFLNK:
3924                inode->i_op = &btrfs_symlink_inode_operations;
3925                inode_nohighmem(inode);
3926                inode->i_mapping->a_ops = &btrfs_symlink_aops;
3927                break;
3928        default:
3929                inode->i_op = &btrfs_special_inode_operations;
3930                init_special_inode(inode, inode->i_mode, rdev);
3931                break;
3932        }
3933
3934        btrfs_update_iflags(inode);
3935        return 0;
3936
3937make_bad:
3938        btrfs_free_path(path);
3939        make_bad_inode(inode);
3940        return ret;
3941}
3942
3943/*
3944 * given a leaf and an inode, copy the inode fields into the leaf
3945 */
3946static void fill_inode_item(struct btrfs_trans_handle *trans,
3947                            struct extent_buffer *leaf,
3948                            struct btrfs_inode_item *item,
3949                            struct inode *inode)
3950{
3951        struct btrfs_map_token token;
3952
3953        btrfs_init_map_token(&token);
3954
3955        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3956        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3957        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3958                                   &token);
3959        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3960        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3961
3962        btrfs_set_token_timespec_sec(leaf, &item->atime,
3963                                     inode->i_atime.tv_sec, &token);
3964        btrfs_set_token_timespec_nsec(leaf, &item->atime,
3965                                      inode->i_atime.tv_nsec, &token);
3966
3967        btrfs_set_token_timespec_sec(leaf, &item->mtime,
3968                                     inode->i_mtime.tv_sec, &token);
3969        btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3970                                      inode->i_mtime.tv_nsec, &token);
3971
3972        btrfs_set_token_timespec_sec(leaf, &item->ctime,
3973                                     inode->i_ctime.tv_sec, &token);
3974        btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3975                                      inode->i_ctime.tv_nsec, &token);
3976
3977        btrfs_set_token_timespec_sec(leaf, &item->otime,
3978                                     BTRFS_I(inode)->i_otime.tv_sec, &token);
3979        btrfs_set_token_timespec_nsec(leaf, &item->otime,
3980                                      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3981
3982        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3983                                     &token);
3984        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3985                                         &token);
3986        btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3987                                       &token);
3988        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3989        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3990        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3991        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3992}
3993
3994/*
3995 * copy everything in the in-memory inode into the btree.
3996 */
3997static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3998                                struct btrfs_root *root, struct inode *inode)
3999{
4000        struct btrfs_inode_item *inode_item;
4001        struct btrfs_path *path;
4002        struct extent_buffer *leaf;
4003        int ret;
4004
4005        path = btrfs_alloc_path();
4006        if (!path)
4007                return -ENOMEM;
4008
4009        path->leave_spinning = 1;
4010        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4011                                 1);
4012        if (ret) {
4013                if (ret > 0)
4014                        ret = -ENOENT;
4015                goto failed;
4016        }
4017
4018        leaf = path->nodes[0];
4019        inode_item = btrfs_item_ptr(leaf, path->slots[0],
4020                                    struct btrfs_inode_item);
4021
4022        fill_inode_item(trans, leaf, inode_item, inode);
4023        btrfs_mark_buffer_dirty(leaf);
4024        btrfs_set_inode_last_trans(trans, inode);
4025        ret = 0;
4026failed:
4027        btrfs_free_path(path);
4028        return ret;
4029}
4030
4031/*
4032 * copy everything in the in-memory inode into the btree.
4033 */
4034noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4035                                struct btrfs_root *root, struct inode *inode)
4036{
4037        struct btrfs_fs_info *fs_info = root->fs_info;
4038        int ret;
4039
4040        /*
4041         * If the inode is a free space inode, we can deadlock during commit
4042         * if we put it into the delayed code.
4043         *
4044         * The data relocation inode should also be directly updated
4045         * without delay
4046         */
4047        if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4048            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4049            && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4050                btrfs_update_root_times(trans, root);
4051
4052                ret = btrfs_delayed_update_inode(trans, root, inode);
4053                if (!ret)
4054                        btrfs_set_inode_last_trans(trans, inode);
4055                return ret;
4056        }
4057
4058        return btrfs_update_inode_item(trans, root, inode);
4059}
4060
4061noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4062                                         struct btrfs_root *root,
4063                                         struct inode *inode)
4064{
4065        int ret;
4066
4067        ret = btrfs_update_inode(trans, root, inode);
4068        if (ret == -ENOSPC)
4069                return btrfs_update_inode_item(trans, root, inode);
4070        return ret;
4071}
4072
4073/*
4074 * unlink helper that gets used here in inode.c and in the tree logging
4075 * recovery code.  It remove a link in a directory with a given name, and
4076 * also drops the back refs in the inode to the directory
4077 */
4078static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4079                                struct btrfs_root *root,
4080                                struct btrfs_inode *dir,
4081                                struct btrfs_inode *inode,
4082                                const char *name, int name_len)
4083{
4084        struct btrfs_fs_info *fs_info = root->fs_info;
4085        struct btrfs_path *path;
4086        int ret = 0;
4087        struct extent_buffer *leaf;
4088        struct btrfs_dir_item *di;
4089        struct btrfs_key key;
4090        u64 index;
4091        u64 ino = btrfs_ino(inode);
4092        u64 dir_ino = btrfs_ino(dir);
4093
4094        path = btrfs_alloc_path();
4095        if (!path) {
4096                ret = -ENOMEM;
4097                goto out;
4098        }
4099
4100        path->leave_spinning = 1;
4101        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4102                                    name, name_len, -1);
4103        if (IS_ERR(di)) {
4104                ret = PTR_ERR(di);
4105                goto err;
4106        }
4107        if (!di) {
4108                ret = -ENOENT;
4109                goto err;
4110        }
4111        leaf = path->nodes[0];
4112        btrfs_dir_item_key_to_cpu(leaf, di, &key);
4113        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4114        if (ret)
4115                goto err;
4116        btrfs_release_path(path);
4117
4118        /*
4119         * If we don't have dir index, we have to get it by looking up
4120         * the inode ref, since we get the inode ref, remove it directly,
4121         * it is unnecessary to do delayed deletion.
4122         *
4123         * But if we have dir index, needn't search inode ref to get it.
4124         * Since the inode ref is close to the inode item, it is better
4125         * that we delay to delete it, and just do this deletion when
4126         * we update the inode item.
4127         */
4128        if (inode->dir_index) {
4129                ret = btrfs_delayed_delete_inode_ref(inode);
4130                if (!ret) {
4131                        index = inode->dir_index;
4132                        goto skip_backref;
4133                }
4134        }
4135
4136        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4137                                  dir_ino, &index);
4138        if (ret) {
4139                btrfs_info(fs_info,
4140                        "failed to delete reference to %.*s, inode %llu parent %llu",
4141                        name_len, name, ino, dir_ino);
4142                btrfs_abort_transaction(trans, ret);
4143                goto err;
4144        }
4145skip_backref:
4146        ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4147        if (ret) {
4148                btrfs_abort_transaction(trans, ret);
4149                goto err;
4150        }
4151
4152        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4153                        dir_ino);
4154        if (ret != 0 && ret != -ENOENT) {
4155                btrfs_abort_transaction(trans, ret);
4156                goto err;
4157        }
4158
4159        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4160                        index);
4161        if (ret == -ENOENT)
4162                ret = 0;
4163        else if (ret)
4164                btrfs_abort_transaction(trans, ret);
4165err:
4166        btrfs_free_path(path);
4167        if (ret)
4168                goto out;
4169
4170        btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4171        inode_inc_iversion(&inode->vfs_inode);
4172        inode_inc_iversion(&dir->vfs_inode);
4173        inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4174                dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4175        ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4176out:
4177        return ret;
4178}
4179
4180int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4181                       struct btrfs_root *root,
4182                       struct btrfs_inode *dir, struct btrfs_inode *inode,
4183                       const char *name, int name_len)
4184{
4185        int ret;
4186        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4187        if (!ret) {
4188                drop_nlink(&inode->vfs_inode);
4189                ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4190        }
4191        return ret;
4192}
4193
4194/*
4195 * helper to start transaction for unlink and rmdir.
4196 *
4197 * unlink and rmdir are special in btrfs, they do not always free space, so
4198 * if we cannot make our reservations the normal way try and see if there is
4199 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4200 * allow the unlink to occur.
4201 */
4202static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4203{
4204        struct btrfs_root *root = BTRFS_I(dir)->root;
4205
4206        /*
4207         * 1 for the possible orphan item
4208         * 1 for the dir item
4209         * 1 for the dir index
4210         * 1 for the inode ref
4211         * 1 for the inode
4212         */
4213        return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4214}
4215
4216static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4217{
4218        struct btrfs_root *root = BTRFS_I(dir)->root;
4219        struct btrfs_trans_handle *trans;
4220        struct inode *inode = d_inode(dentry);
4221        int ret;
4222
4223        trans = __unlink_start_trans(dir);
4224        if (IS_ERR(trans))
4225                return PTR_ERR(trans);
4226
4227        btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4228                        0);
4229
4230        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4231                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4232                        dentry->d_name.len);
4233        if (ret)
4234                goto out;
4235
4236        if (inode->i_nlink == 0) {
4237                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4238                if (ret)
4239                        goto out;
4240        }
4241
4242out:
4243        btrfs_end_transaction(trans);
4244        btrfs_btree_balance_dirty(root->fs_info);
4245        return ret;
4246}
4247
4248int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4249                        struct btrfs_root *root,
4250                        struct inode *dir, u64 objectid,
4251                        const char *name, int name_len)
4252{
4253        struct btrfs_fs_info *fs_info = root->fs_info;
4254        struct btrfs_path *path;
4255        struct extent_buffer *leaf;
4256        struct btrfs_dir_item *di;
4257        struct btrfs_key key;
4258        u64 index;
4259        int ret;
4260        u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4261
4262        path = btrfs_alloc_path();
4263        if (!path)
4264                return -ENOMEM;
4265
4266        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4267                                   name, name_len, -1);
4268        if (IS_ERR_OR_NULL(di)) {
4269                if (!di)
4270                        ret = -ENOENT;
4271                else
4272                        ret = PTR_ERR(di);
4273                goto out;
4274        }
4275
4276        leaf = path->nodes[0];
4277        btrfs_dir_item_key_to_cpu(leaf, di, &key);
4278        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4279        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4280        if (ret) {
4281                btrfs_abort_transaction(trans, ret);
4282                goto out;
4283        }
4284        btrfs_release_path(path);
4285
4286        ret = btrfs_del_root_ref(trans, fs_info, objectid,
4287                                 root->root_key.objectid, dir_ino,
4288                                 &index, name, name_len);
4289        if (ret < 0) {
4290                if (ret != -ENOENT) {
4291                        btrfs_abort_transaction(trans, ret);
4292                        goto out;
4293                }
4294                di = btrfs_search_dir_index_item(root, path, dir_ino,
4295                                                 name, name_len);
4296                if (IS_ERR_OR_NULL(di)) {
4297                        if (!di)
4298                                ret = -ENOENT;
4299                        else
4300                                ret = PTR_ERR(di);
4301                        btrfs_abort_transaction(trans, ret);
4302                        goto out;
4303                }
4304
4305                leaf = path->nodes[0];
4306                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4307                btrfs_release_path(path);
4308                index = key.offset;
4309        }
4310        btrfs_release_path(path);
4311
4312        ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4313        if (ret) {
4314                btrfs_abort_transaction(trans, ret);
4315                goto out;
4316        }
4317
4318        btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4319        inode_inc_iversion(dir);
4320        dir->i_mtime = dir->i_ctime = current_time(dir);
4321        ret = btrfs_update_inode_fallback(trans, root, dir);
4322        if (ret)
4323                btrfs_abort_transaction(trans, ret);
4324out:
4325        btrfs_free_path(path);
4326        return ret;
4327}
4328
4329static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4330{
4331        struct inode *inode = d_inode(dentry);
4332        int err = 0;
4333        struct btrfs_root *root = BTRFS_I(dir)->root;
4334        struct btrfs_trans_handle *trans;
4335        u64 last_unlink_trans;
4336
4337        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4338                return -ENOTEMPTY;
4339        if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4340                return -EPERM;
4341
4342        trans = __unlink_start_trans(dir);
4343        if (IS_ERR(trans))
4344                return PTR_ERR(trans);
4345
4346        if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4347                err = btrfs_unlink_subvol(trans, root, dir,
4348                                          BTRFS_I(inode)->location.objectid,
4349                                          dentry->d_name.name,
4350                                          dentry->d_name.len);
4351                goto out;
4352        }
4353
4354        err = btrfs_orphan_add(trans, BTRFS_I(inode));
4355        if (err)
4356                goto out;
4357
4358        last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4359
4360        /* now the directory is empty */
4361        err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4362                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4363                        dentry->d_name.len);
4364        if (!err) {
4365                btrfs_i_size_write(BTRFS_I(inode), 0);
4366                /*
4367                 * Propagate the last_unlink_trans value of the deleted dir to
4368                 * its parent directory. This is to prevent an unrecoverable
4369                 * log tree in the case we do something like this:
4370                 * 1) create dir foo
4371                 * 2) create snapshot under dir foo
4372                 * 3) delete the snapshot
4373                 * 4) rmdir foo
4374                 * 5) mkdir foo
4375                 * 6) fsync foo or some file inside foo
4376                 */
4377                if (last_unlink_trans >= trans->transid)
4378                        BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4379        }
4380out:
4381        btrfs_end_transaction(trans);
4382        btrfs_btree_balance_dirty(root->fs_info);
4383
4384        return err;
4385}
4386
4387static int truncate_space_check(struct btrfs_trans_handle *trans,
4388                                struct btrfs_root *root,
4389                                u64 bytes_deleted)
4390{
4391        struct btrfs_fs_info *fs_info = root->fs_info;
4392        int ret;
4393
4394        /*
4395         * This is only used to apply pressure to the enospc system, we don't
4396         * intend to use this reservation at all.
4397         */
4398        bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4399        bytes_deleted *= fs_info->nodesize;
4400        ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4401                                  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4402        if (!ret) {
4403                trace_btrfs_space_reservation(fs_info, "transaction",
4404                                              trans->transid,
4405                                              bytes_deleted, 1);
4406                trans->bytes_reserved += bytes_deleted;
4407        }
4408        return ret;
4409
4410}
4411
4412/*
4413 * Return this if we need to call truncate_block for the last bit of the
4414 * truncate.
4415 */
4416#define NEED_TRUNCATE_BLOCK 1
4417
4418/*
4419 * this can truncate away extent items, csum items and directory items.
4420 * It starts at a high offset and removes keys until it can't find
4421 * any higher than new_size
4422 *
4423 * csum items that cross the new i_size are truncated to the new size
4424 * as well.
4425 *
4426 * min_type is the minimum key type to truncate down to.  If set to 0, this
4427 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4428 */
4429int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4430                               struct btrfs_root *root,
4431                               struct inode *inode,
4432                               u64 new_size, u32 min_type)
4433{
4434        struct btrfs_fs_info *fs_info = root->fs_info;
4435        struct btrfs_path *path;
4436        struct extent_buffer *leaf;
4437        struct btrfs_file_extent_item *fi;
4438        struct btrfs_key key;
4439        struct btrfs_key found_key;
4440        u64 extent_start = 0;
4441        u64 extent_num_bytes = 0;
4442        u64 extent_offset = 0;
4443        u64 item_end = 0;
4444        u64 last_size = new_size;
4445        u32 found_type = (u8)-1;
4446        int found_extent;
4447        int del_item;
4448        int pending_del_nr = 0;
4449        int pending_del_slot = 0;
4450        int extent_type = -1;
4451        int ret;
4452        int err = 0;
4453        u64 ino = btrfs_ino(BTRFS_I(inode));
4454        u64 bytes_deleted = 0;
4455        bool be_nice = false;
4456        bool should_throttle = false;
4457        bool should_end = false;
4458
4459        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4460
4461        /*
4462         * for non-free space inodes and ref cows, we want to back off from
4463         * time to time
4464         */
4465        if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4466            test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4467                be_nice = true;
4468
4469        path = btrfs_alloc_path();
4470        if (!path)
4471                return -ENOMEM;
4472        path->reada = READA_BACK;
4473
4474        /*
4475         * We want to drop from the next block forward in case this new size is
4476         * not block aligned since we will be keeping the last block of the
4477         * extent just the way it is.
4478         */
4479        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4480            root == fs_info->tree_root)
4481                btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4482                                        fs_info->sectorsize),
4483                                        (u64)-1, 0);
4484
4485        /*
4486         * This function is also used to drop the items in the log tree before
4487         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4488         * it is used to drop the loged items. So we shouldn't kill the delayed
4489         * items.
4490         */
4491        if (min_type == 0 && root == BTRFS_I(inode)->root)
4492                btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4493
4494        key.objectid = ino;
4495        key.offset = (u64)-1;
4496        key.type = (u8)-1;
4497
4498search_again:
4499        /*
4500         * with a 16K leaf size and 128MB extents, you can actually queue
4501         * up a huge file in a single leaf.  Most of the time that
4502         * bytes_deleted is > 0, it will be huge by the time we get here
4503         */
4504        if (be_nice && bytes_deleted > SZ_32M) {
4505                if (btrfs_should_end_transaction(trans)) {
4506                        err = -EAGAIN;
4507                        goto error;
4508                }
4509        }
4510
4511
4512        path->leave_spinning = 1;
4513        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4514        if (ret < 0) {
4515                err = ret;
4516                goto out;
4517        }
4518
4519        if (ret > 0) {
4520                /* there are no items in the tree for us to truncate, we're
4521                 * done
4522                 */
4523                if (path->slots[0] == 0)
4524                        goto out;
4525                path->slots[0]--;
4526        }
4527
4528        while (1) {
4529                fi = NULL;
4530                leaf = path->nodes[0];
4531                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4532                found_type = found_key.type;
4533
4534                if (found_key.objectid != ino)
4535                        break;
4536
4537                if (found_type < min_type)
4538                        break;
4539
4540                item_end = found_key.offset;
4541                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4542                        fi = btrfs_item_ptr(leaf, path->slots[0],
4543                                            struct btrfs_file_extent_item);
4544                        extent_type = btrfs_file_extent_type(leaf, fi);
4545                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4546                                item_end +=
4547                                    btrfs_file_extent_num_bytes(leaf, fi);
4548
4549                                trace_btrfs_truncate_show_fi_regular(
4550                                        BTRFS_I(inode), leaf, fi,
4551                                        found_key.offset);
4552                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4553                                item_end += btrfs_file_extent_inline_len(leaf,
4554                                                         path->slots[0], fi);
4555
4556                                trace_btrfs_truncate_show_fi_inline(
4557                                        BTRFS_I(inode), leaf, fi, path->slots[0],
4558                                        found_key.offset);
4559                        }
4560                        item_end--;
4561                }
4562                if (found_type > min_type) {
4563                        del_item = 1;
4564                } else {
4565                        if (item_end < new_size)
4566                                break;
4567                        if (found_key.offset >= new_size)
4568                                del_item = 1;
4569                        else
4570                                del_item = 0;
4571                }
4572                found_extent = 0;
4573                /* FIXME, shrink the extent if the ref count is only 1 */
4574                if (found_type != BTRFS_EXTENT_DATA_KEY)
4575                        goto delete;
4576
4577                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4578                        u64 num_dec;
4579                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4580                        if (!del_item) {
4581                                u64 orig_num_bytes =
4582                                        btrfs_file_extent_num_bytes(leaf, fi);
4583                                extent_num_bytes = ALIGN(new_size -
4584                                                found_key.offset,
4585                                                fs_info->sectorsize);
4586                                btrfs_set_file_extent_num_bytes(leaf, fi,
4587                                                         extent_num_bytes);
4588                                num_dec = (orig_num_bytes -
4589                                           extent_num_bytes);
4590                                if (test_bit(BTRFS_ROOT_REF_COWS,
4591                                             &root->state) &&
4592                                    extent_start != 0)
4593                                        inode_sub_bytes(inode, num_dec);
4594                                btrfs_mark_buffer_dirty(leaf);
4595                        } else {
4596                                extent_num_bytes =
4597                                        btrfs_file_extent_disk_num_bytes(leaf,
4598                                                                         fi);
4599                                extent_offset = found_key.offset -
4600                                        btrfs_file_extent_offset(leaf, fi);
4601
4602                                /* FIXME blocksize != 4096 */
4603                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4604                                if (extent_start != 0) {
4605                                        found_extent = 1;
4606                                        if (test_bit(BTRFS_ROOT_REF_COWS,
4607                                                     &root->state))
4608                                                inode_sub_bytes(inode, num_dec);
4609                                }
4610                        }
4611                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4612                        /*
4613                         * we can't truncate inline items that have had
4614                         * special encodings
4615                         */
4616                        if (!del_item &&
4617                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4618                            btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4619                            btrfs_file_extent_compression(leaf, fi) == 0) {
4620                                u32 size = (u32)(new_size - found_key.offset);
4621
4622                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4623                                size = btrfs_file_extent_calc_inline_size(size);
4624                                btrfs_truncate_item(root->fs_info, path, size, 1);
4625                        } else if (!del_item) {
4626                                /*
4627                                 * We have to bail so the last_size is set to
4628                                 * just before this extent.
4629                                 */
4630                                err = NEED_TRUNCATE_BLOCK;
4631                                break;
4632                        }
4633
4634                        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4635                                inode_sub_bytes(inode, item_end + 1 - new_size);
4636                }
4637delete:
4638                if (del_item)
4639                        last_size = found_key.offset;
4640                else
4641                        last_size = new_size;
4642                if (del_item) {
4643                        if (!pending_del_nr) {
4644                                /* no pending yet, add ourselves */
4645                                pending_del_slot = path->slots[0];
4646                                pending_del_nr = 1;
4647                        } else if (pending_del_nr &&
4648                                   path->slots[0] + 1 == pending_del_slot) {
4649                                /* hop on the pending chunk */
4650                                pending_del_nr++;
4651                                pending_del_slot = path->slots[0];
4652                        } else {
4653                                BUG();
4654                        }
4655                } else {
4656                        break;
4657                }
4658                should_throttle = false;
4659
4660                if (found_extent &&
4661                    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4662                     root == fs_info->tree_root)) {
4663                        btrfs_set_path_blocking(path);
4664                        bytes_deleted += extent_num_bytes;
4665                        ret = btrfs_free_extent(trans, root, extent_start,
4666                                                extent_num_bytes, 0,
4667                                                btrfs_header_owner(leaf),
4668                                                ino, extent_offset);
4669                        BUG_ON(ret);
4670                        if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4671                                btrfs_async_run_delayed_refs(fs_info,
4672                                        trans->delayed_ref_updates * 2,
4673                                        trans->transid, 0);
4674                        if (be_nice) {
4675                                if (truncate_space_check(trans, root,
4676                                                         extent_num_bytes)) {
4677                                        should_end = true;
4678                                }
4679                                if (btrfs_should_throttle_delayed_refs(trans,
4680                                                                       fs_info))
4681                                        should_throttle = true;
4682                        }
4683                }
4684
4685                if (found_type == BTRFS_INODE_ITEM_KEY)
4686                        break;
4687
4688                if (path->slots[0] == 0 ||
4689                    path->slots[0] != pending_del_slot ||
4690                    should_throttle || should_end) {
4691                        if (pending_del_nr) {
4692                                ret = btrfs_del_items(trans, root, path,
4693                                                pending_del_slot,
4694                                                pending_del_nr);
4695                                if (ret) {
4696                                        btrfs_abort_transaction(trans, ret);
4697                                        goto error;
4698                                }
4699                                pending_del_nr = 0;
4700                        }
4701                        btrfs_release_path(path);
4702                        if (should_throttle) {
4703                                unsigned long updates = trans->delayed_ref_updates;
4704                                if (updates) {
4705                                        trans->delayed_ref_updates = 0;
4706                                        ret = btrfs_run_delayed_refs(trans,
4707                                                                   updates * 2);
4708                                        if (ret && !err)
4709                                                err = ret;
4710                                }
4711                        }
4712                        /*
4713                         * if we failed to refill our space rsv, bail out
4714                         * and let the transaction restart
4715                         */
4716                        if (should_end) {
4717                                err = -EAGAIN;
4718                                goto error;
4719                        }
4720                        goto search_again;
4721                } else {
4722                        path->slots[0]--;
4723                }
4724        }
4725out:
4726        if (pending_del_nr) {
4727                ret = btrfs_del_items(trans, root, path, pending_del_slot,
4728                                      pending_del_nr);
4729                if (ret)
4730                        btrfs_abort_transaction(trans, ret);
4731        }
4732error:
4733        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4734                ASSERT(last_size >= new_size);
4735                if (!err && last_size > new_size)
4736                        last_size = new_size;
4737                btrfs_ordered_update_i_size(inode, last_size, NULL);
4738        }
4739
4740        btrfs_free_path(path);
4741
4742        if (be_nice && bytes_deleted > SZ_32M) {
4743                unsigned long updates = trans->delayed_ref_updates;
4744                if (updates) {
4745                        trans->delayed_ref_updates = 0;
4746                        ret = btrfs_run_delayed_refs(trans, updates * 2);
4747                        if (ret && !err)
4748                                err = ret;
4749                }
4750        }
4751        return err;
4752}
4753
4754/*
4755 * btrfs_truncate_block - read, zero a chunk and write a block
4756 * @inode - inode that we're zeroing
4757 * @from - the offset to start zeroing
4758 * @len - the length to zero, 0 to zero the entire range respective to the
4759 *      offset
4760 * @front - zero up to the offset instead of from the offset on
4761 *
4762 * This will find the block for the "from" offset and cow the block and zero the
4763 * part we want to zero.  This is used with truncate and hole punching.
4764 */
4765int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4766                        int front)
4767{
4768        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4769        struct address_space *mapping = inode->i_mapping;
4770        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4771        struct btrfs_ordered_extent *ordered;
4772        struct extent_state *cached_state = NULL;
4773        struct extent_changeset *data_reserved = NULL;
4774        char *kaddr;
4775        u32 blocksize = fs_info->sectorsize;
4776        pgoff_t index = from >> PAGE_SHIFT;
4777        unsigned offset = from & (blocksize - 1);
4778        struct page *page;
4779        gfp_t mask = btrfs_alloc_write_mask(mapping);
4780        int ret = 0;
4781        u64 block_start;
4782        u64 block_end;
4783
4784        if (IS_ALIGNED(offset, blocksize) &&
4785            (!len || IS_ALIGNED(len, blocksize)))
4786                goto out;
4787
4788        block_start = round_down(from, blocksize);
4789        block_end = block_start + blocksize - 1;
4790
4791        ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4792                                           block_start, blocksize);
4793        if (ret)
4794                goto out;
4795
4796again:
4797        page = find_or_create_page(mapping, index, mask);
4798        if (!page) {
4799                btrfs_delalloc_release_space(inode, data_reserved,
4800                                             block_start, blocksize, true);
4801                btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4802                ret = -ENOMEM;
4803                goto out;
4804        }
4805
4806        if (!PageUptodate(page)) {
4807                ret = btrfs_readpage(NULL, page);
4808                lock_page(page);
4809                if (page->mapping != mapping) {
4810                        unlock_page(page);
4811                        put_page(page);
4812                        goto again;
4813                }
4814                if (!PageUptodate(page)) {
4815                        ret = -EIO;
4816                        goto out_unlock;
4817                }
4818        }
4819        wait_on_page_writeback(page);
4820
4821        lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4822        set_page_extent_mapped(page);
4823
4824        ordered = btrfs_lookup_ordered_extent(inode, block_start);
4825        if (ordered) {
4826                unlock_extent_cached(io_tree, block_start, block_end,
4827                                     &cached_state);
4828                unlock_page(page);
4829                put_page(page);
4830                btrfs_start_ordered_extent(inode, ordered, 1);
4831                btrfs_put_ordered_extent(ordered);
4832                goto again;
4833        }
4834
4835        clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4836                          EXTENT_DIRTY | EXTENT_DELALLOC |
4837                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4838                          0, 0, &cached_state);
4839
4840        ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4841                                        &cached_state, 0);
4842        if (ret) {
4843                unlock_extent_cached(io_tree, block_start, block_end,
4844                                     &cached_state);
4845                goto out_unlock;
4846        }
4847
4848        if (offset != blocksize) {
4849                if (!len)
4850                        len = blocksize - offset;
4851                kaddr = kmap(page);
4852                if (front)
4853                        memset(kaddr + (block_start - page_offset(page)),
4854                                0, offset);
4855                else
4856                        memset(kaddr + (block_start - page_offset(page)) +  offset,
4857                                0, len);
4858                flush_dcache_page(page);
4859                kunmap(page);
4860        }
4861        ClearPageChecked(page);
4862        set_page_dirty(page);
4863        unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4864
4865out_unlock:
4866        if (ret)
4867                btrfs_delalloc_release_space(inode, data_reserved, block_start,
4868                                             blocksize, true);
4869        btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4870        unlock_page(page);
4871        put_page(page);
4872out:
4873        extent_changeset_free(data_reserved);
4874        return ret;
4875}
4876
4877static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4878                             u64 offset, u64 len)
4879{
4880        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4881        struct btrfs_trans_handle *trans;
4882        int ret;
4883
4884        /*
4885         * Still need to make sure the inode looks like it's been updated so
4886         * that any holes get logged if we fsync.
4887         */
4888        if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4889                BTRFS_I(inode)->last_trans = fs_info->generation;
4890                BTRFS_I(inode)->last_sub_trans = root->log_transid;
4891                BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4892                return 0;
4893        }
4894
4895        /*
4896         * 1 - for the one we're dropping
4897         * 1 - for the one we're adding
4898         * 1 - for updating the inode.
4899         */
4900        trans = btrfs_start_transaction(root, 3);
4901        if (IS_ERR(trans))
4902                return PTR_ERR(trans);
4903
4904        ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4905        if (ret) {
4906                btrfs_abort_transaction(trans, ret);
4907                btrfs_end_transaction(trans);
4908                return ret;
4909        }
4910
4911        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4912                        offset, 0, 0, len, 0, len, 0, 0, 0);
4913        if (ret)
4914                btrfs_abort_transaction(trans, ret);
4915        else
4916                btrfs_update_inode(trans, root, inode);
4917        btrfs_end_transaction(trans);
4918        return ret;
4919}
4920
4921/*
4922 * This function puts in dummy file extents for the area we're creating a hole
4923 * for.  So if we are truncating this file to a larger size we need to insert
4924 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4925 * the range between oldsize and size
4926 */
4927int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4928{
4929        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4930        struct btrfs_root *root = BTRFS_I(inode)->root;
4931        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4932        struct extent_map *em = NULL;
4933        struct extent_state *cached_state = NULL;
4934        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4935        u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4936        u64 block_end = ALIGN(size, fs_info->sectorsize);
4937        u64 last_byte;
4938        u64 cur_offset;
4939        u64 hole_size;
4940        int err = 0;
4941
4942        /*
4943         * If our size started in the middle of a block we need to zero out the
4944         * rest of the block before we expand the i_size, otherwise we could
4945         * expose stale data.
4946         */
4947        err = btrfs_truncate_block(inode, oldsize, 0, 0);
4948        if (err)
4949                return err;
4950
4951        if (size <= hole_start)
4952                return 0;
4953
4954        while (1) {
4955                struct btrfs_ordered_extent *ordered;
4956
4957                lock_extent_bits(io_tree, hole_start, block_end - 1,
4958                                 &cached_state);
4959                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4960                                                     block_end - hole_start);
4961                if (!ordered)
4962                        break;
4963                unlock_extent_cached(io_tree, hole_start, block_end - 1,
4964                                     &cached_state);
4965                btrfs_start_ordered_extent(inode, ordered, 1);
4966                btrfs_put_ordered_extent(ordered);
4967        }
4968
4969        cur_offset = hole_start;
4970        while (1) {
4971                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4972                                block_end - cur_offset, 0);
4973                if (IS_ERR(em)) {
4974                        err = PTR_ERR(em);
4975                        em = NULL;
4976                        break;
4977                }
4978                last_byte = min(extent_map_end(em), block_end);
4979                last_byte = ALIGN(last_byte, fs_info->sectorsize);
4980                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4981                        struct extent_map *hole_em;
4982                        hole_size = last_byte - cur_offset;
4983
4984                        err = maybe_insert_hole(root, inode, cur_offset,
4985                                                hole_size);
4986                        if (err)
4987                                break;
4988                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4989                                                cur_offset + hole_size - 1, 0);
4990                        hole_em = alloc_extent_map();
4991                        if (!hole_em) {
4992                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4993                                        &BTRFS_I(inode)->runtime_flags);
4994                                goto next;
4995                        }
4996                        hole_em->start = cur_offset;
4997                        hole_em->len = hole_size;
4998                        hole_em->orig_start = cur_offset;
4999
5000                        hole_em->block_start = EXTENT_MAP_HOLE;
5001                        hole_em->block_len = 0;
5002                        hole_em->orig_block_len = 0;
5003                        hole_em->ram_bytes = hole_size;
5004                        hole_em->bdev = fs_info->fs_devices->latest_bdev;
5005                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
5006                        hole_em->generation = fs_info->generation;
5007
5008                        while (1) {
5009                                write_lock(&em_tree->lock);
5010                                err = add_extent_mapping(em_tree, hole_em, 1);
5011                                write_unlock(&em_tree->lock);
5012                                if (err != -EEXIST)
5013                                        break;
5014                                btrfs_drop_extent_cache(BTRFS_I(inode),
5015                                                        cur_offset,
5016                                                        cur_offset +
5017                                                        hole_size - 1, 0);
5018                        }
5019                        free_extent_map(hole_em);
5020                }
5021next:
5022                free_extent_map(em);
5023                em = NULL;
5024                cur_offset = last_byte;
5025                if (cur_offset >= block_end)
5026                        break;
5027        }
5028        free_extent_map(em);
5029        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5030        return err;
5031}
5032
5033static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5034{
5035        struct btrfs_root *root = BTRFS_I(inode)->root;
5036        struct btrfs_trans_handle *trans;
5037        loff_t oldsize = i_size_read(inode);
5038        loff_t newsize = attr->ia_size;
5039        int mask = attr->ia_valid;
5040        int ret;
5041
5042        /*
5043         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5044         * special case where we need to update the times despite not having
5045         * these flags set.  For all other operations the VFS set these flags
5046         * explicitly if it wants a timestamp update.
5047         */
5048        if (newsize != oldsize) {
5049                inode_inc_iversion(inode);
5050                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5051                        inode->i_ctime = inode->i_mtime =
5052                                current_time(inode);
5053        }
5054
5055        if (newsize > oldsize) {
5056                /*
5057                 * Don't do an expanding truncate while snapshotting is ongoing.
5058                 * This is to ensure the snapshot captures a fully consistent
5059                 * state of this file - if the snapshot captures this expanding
5060                 * truncation, it must capture all writes that happened before
5061                 * this truncation.
5062                 */
5063                btrfs_wait_for_snapshot_creation(root);
5064                ret = btrfs_cont_expand(inode, oldsize, newsize);
5065                if (ret) {
5066                        btrfs_end_write_no_snapshotting(root);
5067                        return ret;
5068                }
5069
5070                trans = btrfs_start_transaction(root, 1);
5071                if (IS_ERR(trans)) {
5072                        btrfs_end_write_no_snapshotting(root);
5073                        return PTR_ERR(trans);
5074                }
5075
5076                i_size_write(inode, newsize);
5077                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5078                pagecache_isize_extended(inode, oldsize, newsize);
5079                ret = btrfs_update_inode(trans, root, inode);
5080                btrfs_end_write_no_snapshotting(root);
5081                btrfs_end_transaction(trans);
5082        } else {
5083
5084                /*
5085                 * We're truncating a file that used to have good data down to
5086                 * zero. Make sure it gets into the ordered flush list so that
5087                 * any new writes get down to disk quickly.
5088                 */
5089                if (newsize == 0)
5090                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5091                                &BTRFS_I(inode)->runtime_flags);
5092
5093                /*
5094                 * 1 for the orphan item we're going to add
5095                 * 1 for the orphan item deletion.
5096                 */
5097                trans = btrfs_start_transaction(root, 2);
5098                if (IS_ERR(trans))
5099                        return PTR_ERR(trans);
5100
5101                /*
5102                 * We need to do this in case we fail at _any_ point during the
5103                 * actual truncate.  Once we do the truncate_setsize we could
5104                 * invalidate pages which forces any outstanding ordered io to
5105                 * be instantly completed which will give us extents that need
5106                 * to be truncated.  If we fail to get an orphan inode down we
5107                 * could have left over extents that were never meant to live,
5108                 * so we need to guarantee from this point on that everything
5109                 * will be consistent.
5110                 */
5111                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5112                btrfs_end_transaction(trans);
5113                if (ret)
5114                        return ret;
5115
5116                /* we don't support swapfiles, so vmtruncate shouldn't fail */
5117                truncate_setsize(inode, newsize);
5118
5119                /* Disable nonlocked read DIO to avoid the end less truncate */
5120                btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5121                inode_dio_wait(inode);
5122                btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5123
5124                ret = btrfs_truncate(inode, newsize == oldsize);
5125                if (ret && inode->i_nlink) {
5126                        int err;
5127
5128                        /* To get a stable disk_i_size */
5129                        err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5130                        if (err) {
5131                                btrfs_orphan_del(NULL, BTRFS_I(inode));
5132                                return err;
5133                        }
5134
5135                        /*
5136                         * failed to truncate, disk_i_size is only adjusted down
5137                         * as we remove extents, so it should represent the true
5138                         * size of the inode, so reset the in memory size and
5139                         * delete our orphan entry.
5140                         */
5141                        trans = btrfs_join_transaction(root);
5142                        if (IS_ERR(trans)) {
5143                                btrfs_orphan_del(NULL, BTRFS_I(inode));
5144                                return ret;
5145                        }
5146                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5147                        err = btrfs_orphan_del(trans, BTRFS_I(inode));
5148                        if (err)
5149                                btrfs_abort_transaction(trans, err);
5150                        btrfs_end_transaction(trans);
5151                }
5152        }
5153
5154        return ret;
5155}
5156
5157static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5158{
5159        struct inode *inode = d_inode(dentry);
5160        struct btrfs_root *root = BTRFS_I(inode)->root;
5161        int err;
5162
5163        if (btrfs_root_readonly(root))
5164                return -EROFS;
5165
5166        err = setattr_prepare(dentry, attr);
5167        if (err)
5168                return err;
5169
5170        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5171                err = btrfs_setsize(inode, attr);
5172                if (err)
5173                        return err;
5174        }
5175
5176        if (attr->ia_valid) {
5177                setattr_copy(inode, attr);
5178                inode_inc_iversion(inode);
5179                err = btrfs_dirty_inode(inode);
5180
5181                if (!err && attr->ia_valid & ATTR_MODE)
5182                        err = posix_acl_chmod(inode, inode->i_mode);
5183        }
5184
5185        return err;
5186}
5187
5188/*
5189 * While truncating the inode pages during eviction, we get the VFS calling
5190 * btrfs_invalidatepage() against each page of the inode. This is slow because
5191 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5192 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5193 * extent_state structures over and over, wasting lots of time.
5194 *
5195 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5196 * those expensive operations on a per page basis and do only the ordered io
5197 * finishing, while we release here the extent_map and extent_state structures,
5198 * without the excessive merging and splitting.
5199 */
5200static void evict_inode_truncate_pages(struct inode *inode)
5201{
5202        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5203        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5204        struct rb_node *node;
5205
5206        ASSERT(inode->i_state & I_FREEING);
5207        truncate_inode_pages_final(&inode->i_data);
5208
5209        write_lock(&map_tree->lock);
5210        while (!RB_EMPTY_ROOT(&map_tree->map)) {
5211                struct extent_map *em;
5212
5213                node = rb_first(&map_tree->map);
5214                em = rb_entry(node, struct extent_map, rb_node);
5215                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5216                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5217                remove_extent_mapping(map_tree, em);
5218                free_extent_map(em);
5219                if (need_resched()) {
5220                        write_unlock(&map_tree->lock);
5221                        cond_resched();
5222                        write_lock(&map_tree->lock);
5223                }
5224        }
5225        write_unlock(&map_tree->lock);
5226
5227        /*
5228         * Keep looping until we have no more ranges in the io tree.
5229         * We can have ongoing bios started by readpages (called from readahead)
5230         * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5231         * still in progress (unlocked the pages in the bio but did not yet
5232         * unlocked the ranges in the io tree). Therefore this means some
5233         * ranges can still be locked and eviction started because before
5234         * submitting those bios, which are executed by a separate task (work
5235         * queue kthread), inode references (inode->i_count) were not taken
5236         * (which would be dropped in the end io callback of each bio).
5237         * Therefore here we effectively end up waiting for those bios and
5238         * anyone else holding locked ranges without having bumped the inode's
5239         * reference count - if we don't do it, when they access the inode's
5240         * io_tree to unlock a range it may be too late, leading to an
5241         * use-after-free issue.
5242         */
5243        spin_lock(&io_tree->lock);
5244        while (!RB_EMPTY_ROOT(&io_tree->state)) {
5245                struct extent_state *state;
5246                struct extent_state *cached_state = NULL;
5247                u64 start;
5248                u64 end;
5249
5250                node = rb_first(&io_tree->state);
5251                state = rb_entry(node, struct extent_state, rb_node);
5252                start = state->start;
5253                end = state->end;
5254                spin_unlock(&io_tree->lock);
5255
5256                lock_extent_bits(io_tree, start, end, &cached_state);
5257
5258                /*
5259                 * If still has DELALLOC flag, the extent didn't reach disk,
5260                 * and its reserved space won't be freed by delayed_ref.
5261                 * So we need to free its reserved space here.
5262                 * (Refer to comment in btrfs_invalidatepage, case 2)
5263                 *
5264                 * Note, end is the bytenr of last byte, so we need + 1 here.
5265                 */
5266                if (state->state & EXTENT_DELALLOC)
5267                        btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5268
5269                clear_extent_bit(io_tree, start, end,
5270                                 EXTENT_LOCKED | EXTENT_DIRTY |
5271                                 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5272                                 EXTENT_DEFRAG, 1, 1, &cached_state);
5273
5274                cond_resched();
5275                spin_lock(&io_tree->lock);
5276        }
5277        spin_unlock(&io_tree->lock);
5278}
5279
5280void btrfs_evict_inode(struct inode *inode)
5281{
5282        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5283        struct btrfs_trans_handle *trans;
5284        struct btrfs_root *root = BTRFS_I(inode)->root;
5285        struct btrfs_block_rsv *rsv, *global_rsv;
5286        int steal_from_global = 0;
5287        u64 min_size;
5288        int ret;
5289
5290        trace_btrfs_inode_evict(inode);
5291
5292        if (!root) {
5293                clear_inode(inode);
5294                return;
5295        }
5296
5297        min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5298
5299        evict_inode_truncate_pages(inode);
5300
5301        if (inode->i_nlink &&
5302            ((btrfs_root_refs(&root->root_item) != 0 &&
5303              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5304             btrfs_is_free_space_inode(BTRFS_I(inode))))
5305                goto no_delete;
5306
5307        if (is_bad_inode(inode)) {
5308                btrfs_orphan_del(NULL, BTRFS_I(inode));
5309                goto no_delete;
5310        }
5311        /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5312        if (!special_file(inode->i_mode))
5313                btrfs_wait_ordered_range(inode, 0, (u64)-1);
5314
5315        btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5316
5317        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5318                BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5319                                 &BTRFS_I(inode)->runtime_flags));
5320                goto no_delete;
5321        }
5322
5323        if (inode->i_nlink > 0) {
5324                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5325                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5326                goto no_delete;
5327        }
5328
5329        ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5330        if (ret) {
5331                btrfs_orphan_del(NULL, BTRFS_I(inode));
5332                goto no_delete;
5333        }
5334
5335        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5336        if (!rsv) {
5337                btrfs_orphan_del(NULL, BTRFS_I(inode));
5338                goto no_delete;
5339        }
5340        rsv->size = min_size;
5341        rsv->failfast = 1;
5342        global_rsv = &fs_info->global_block_rsv;
5343
5344        btrfs_i_size_write(BTRFS_I(inode), 0);
5345
5346        /*
5347         * This is a bit simpler than btrfs_truncate since we've already
5348         * reserved our space for our orphan item in the unlink, so we just
5349         * need to reserve some slack space in case we add bytes and update
5350         * inode item when doing the truncate.
5351         */
5352        while (1) {
5353                ret = btrfs_block_rsv_refill(root, rsv, min_size,
5354                                             BTRFS_RESERVE_FLUSH_LIMIT);
5355
5356                /*
5357                 * Try and steal from the global reserve since we will
5358                 * likely not use this space anyway, we want to try as
5359                 * hard as possible to get this to work.
5360                 */
5361                if (ret)
5362                        steal_from_global++;
5363                else
5364                        steal_from_global = 0;
5365                ret = 0;
5366
5367                /*
5368                 * steal_from_global == 0: we reserved stuff, hooray!
5369                 * steal_from_global == 1: we didn't reserve stuff, boo!
5370                 * steal_from_global == 2: we've committed, still not a lot of
5371                 * room but maybe we'll have room in the global reserve this
5372                 * time.
5373                 * steal_from_global == 3: abandon all hope!
5374                 */
5375                if (steal_from_global > 2) {
5376                        btrfs_warn(fs_info,
5377                                   "Could not get space for a delete, will truncate on mount %d",
5378                                   ret);
5379                        btrfs_orphan_del(NULL, BTRFS_I(inode));
5380                        btrfs_free_block_rsv(fs_info, rsv);
5381                        goto no_delete;
5382                }
5383
5384                trans = btrfs_join_transaction(root);
5385                if (IS_ERR(trans)) {
5386                        btrfs_orphan_del(NULL, BTRFS_I(inode));
5387                        btrfs_free_block_rsv(fs_info, rsv);
5388                        goto no_delete;
5389                }
5390
5391                /*
5392                 * We can't just steal from the global reserve, we need to make
5393                 * sure there is room to do it, if not we need to commit and try
5394                 * again.
5395                 */
5396                if (steal_from_global) {
5397                        if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5398                                ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5399                                                              min_size, 0);
5400                        else
5401                                ret = -ENOSPC;
5402                }
5403
5404                /*
5405                 * Couldn't steal from the global reserve, we have too much
5406                 * pending stuff built up, commit the transaction and try it
5407                 * again.
5408                 */
5409                if (ret) {
5410                        ret = btrfs_commit_transaction(trans);
5411                        if (ret) {
5412                                btrfs_orphan_del(NULL, BTRFS_I(inode));
5413                                btrfs_free_block_rsv(fs_info, rsv);
5414                                goto no_delete;
5415                        }
5416                        continue;
5417                } else {
5418                        steal_from_global = 0;
5419                }
5420
5421                trans->block_rsv = rsv;
5422
5423                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5424                if (ret != -ENOSPC && ret != -EAGAIN)
5425                        break;
5426
5427                trans->block_rsv = &fs_info->trans_block_rsv;
5428                btrfs_end_transaction(trans);
5429                trans = NULL;
5430                btrfs_btree_balance_dirty(fs_info);
5431        }
5432
5433        btrfs_free_block_rsv(fs_info, rsv);
5434
5435        /*
5436         * Errors here aren't a big deal, it just means we leave orphan items
5437         * in the tree.  They will be cleaned up on the next mount.
5438         */
5439        if (ret == 0) {
5440                trans->block_rsv = root->orphan_block_rsv;
5441                btrfs_orphan_del(trans, BTRFS_I(inode));
5442        } else {
5443                btrfs_orphan_del(NULL, BTRFS_I(inode));
5444        }
5445
5446        trans->block_rsv = &fs_info->trans_block_rsv;
5447        if (!(root == fs_info->tree_root ||
5448              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5449                btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5450
5451        btrfs_end_transaction(trans);
5452        btrfs_btree_balance_dirty(fs_info);
5453no_delete:
5454        btrfs_remove_delayed_node(BTRFS_I(inode));
5455        clear_inode(inode);
5456}
5457
5458/*
5459 * this returns the key found in the dir entry in the location pointer.
5460 * If no dir entries were found, returns -ENOENT.
5461 * If found a corrupted location in dir entry, returns -EUCLEAN.
5462 */
5463static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5464                               struct btrfs_key *location)
5465{
5466        const char *name = dentry->d_name.name;
5467        int namelen = dentry->d_name.len;
5468        struct btrfs_dir_item *di;
5469        struct btrfs_path *path;
5470        struct btrfs_root *root = BTRFS_I(dir)->root;
5471        int ret = 0;
5472
5473        path = btrfs_alloc_path();
5474        if (!path)
5475                return -ENOMEM;
5476
5477        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5478                        name, namelen, 0);
5479        if (!di) {
5480                ret = -ENOENT;
5481                goto out;
5482        }
5483        if (IS_ERR(di)) {
5484                ret = PTR_ERR(di);
5485                goto out;
5486        }
5487
5488        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5489        if (location->type != BTRFS_INODE_ITEM_KEY &&
5490            location->type != BTRFS_ROOT_ITEM_KEY) {
5491                ret = -EUCLEAN;
5492                btrfs_warn(root->fs_info,
5493"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5494                           __func__, name, btrfs_ino(BTRFS_I(dir)),
5495                           location->objectid, location->type, location->offset);
5496        }
5497out:
5498        btrfs_free_path(path);
5499        return ret;
5500}
5501
5502/*
5503 * when we hit a tree root in a directory, the btrfs part of the inode
5504 * needs to be changed to reflect the root directory of the tree root.  This
5505 * is kind of like crossing a mount point.
5506 */
5507static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5508                                    struct inode *dir,
5509                                    struct dentry *dentry,
5510                                    struct btrfs_key *location,
5511                                    struct btrfs_root **sub_root)
5512{
5513        struct btrfs_path *path;
5514        struct btrfs_root *new_root;
5515        struct btrfs_root_ref *ref;
5516        struct extent_buffer *leaf;
5517        struct btrfs_key key;
5518        int ret;
5519        int err = 0;
5520
5521        path = btrfs_alloc_path();
5522        if (!path) {
5523                err = -ENOMEM;
5524                goto out;
5525        }
5526
5527        err = -ENOENT;
5528        key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5529        key.type = BTRFS_ROOT_REF_KEY;
5530        key.offset = location->objectid;
5531
5532        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5533        if (ret) {
5534                if (ret < 0)
5535                        err = ret;
5536                goto out;
5537        }
5538
5539        leaf = path->nodes[0];
5540        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5541        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5542            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5543                goto out;
5544
5545        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5546                                   (unsigned long)(ref + 1),
5547                                   dentry->d_name.len);
5548        if (ret)
5549                goto out;
5550
5551        btrfs_release_path(path);
5552
5553        new_root = btrfs_read_fs_root_no_name(fs_info, location);
5554        if (IS_ERR(new_root)) {
5555                err = PTR_ERR(new_root);
5556                goto out;
5557        }
5558
5559        *sub_root = new_root;
5560        location->objectid = btrfs_root_dirid(&new_root->root_item);
5561        location->type = BTRFS_INODE_ITEM_KEY;
5562        location->offset = 0;
5563        err = 0;
5564out:
5565        btrfs_free_path(path);
5566        return err;
5567}
5568
5569static void inode_tree_add(struct inode *inode)
5570{
5571        struct btrfs_root *root = BTRFS_I(inode)->root;
5572        struct btrfs_inode *entry;
5573        struct rb_node **p;
5574        struct rb_node *parent;
5575        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5576        u64 ino = btrfs_ino(BTRFS_I(inode));
5577
5578        if (inode_unhashed(inode))
5579                return;
5580        parent = NULL;
5581        spin_lock(&root->inode_lock);
5582        p = &root->inode_tree.rb_node;
5583        while (*p) {
5584                parent = *p;
5585                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5586
5587                if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5588                        p = &parent->rb_left;
5589                else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5590                        p = &parent->rb_right;
5591                else {
5592                        WARN_ON(!(entry->vfs_inode.i_state &
5593                                  (I_WILL_FREE | I_FREEING)));
5594                        rb_replace_node(parent, new, &root->inode_tree);
5595                        RB_CLEAR_NODE(parent);
5596                        spin_unlock(&root->inode_lock);
5597                        return;
5598                }
5599        }
5600        rb_link_node(new, parent, p);
5601        rb_insert_color(new, &root->inode_tree);
5602        spin_unlock(&root->inode_lock);
5603}
5604
5605static void inode_tree_del(struct inode *inode)
5606{
5607        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5608        struct btrfs_root *root = BTRFS_I(inode)->root;
5609        int empty = 0;
5610
5611        spin_lock(&root->inode_lock);
5612        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5613                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5614                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5615                empty = RB_EMPTY_ROOT(&root->inode_tree);
5616        }
5617        spin_unlock(&root->inode_lock);
5618
5619        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5620                synchronize_srcu(&fs_info->subvol_srcu);
5621                spin_lock(&root->inode_lock);
5622                empty = RB_EMPTY_ROOT(&root->inode_tree);
5623                spin_unlock(&root->inode_lock);
5624                if (empty)
5625                        btrfs_add_dead_root(root);
5626        }
5627}
5628
5629void btrfs_invalidate_inodes(struct btrfs_root *root)
5630{
5631        struct btrfs_fs_info *fs_info = root->fs_info;
5632        struct rb_node *node;
5633        struct rb_node *prev;
5634        struct btrfs_inode *entry;
5635        struct inode *inode;
5636        u64 objectid = 0;
5637
5638        if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5639                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5640
5641        spin_lock(&root->inode_lock);
5642again:
5643        node = root->inode_tree.rb_node;
5644        prev = NULL;
5645        while (node) {
5646                prev = node;
5647                entry = rb_entry(node, struct btrfs_inode, rb_node);
5648
5649                if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5650                        node = node->rb_left;
5651                else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5652                        node = node->rb_right;
5653                else
5654                        break;
5655        }
5656        if (!node) {
5657                while (prev) {
5658                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
5659                        if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5660                                node = prev;
5661                                break;
5662                        }
5663                        prev = rb_next(prev);
5664                }
5665        }
5666        while (node) {
5667                entry = rb_entry(node, struct btrfs_inode, rb_node);
5668                objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5669                inode = igrab(&entry->vfs_inode);
5670                if (inode) {
5671                        spin_unlock(&root->inode_lock);
5672                        if (atomic_read(&inode->i_count) > 1)
5673                                d_prune_aliases(inode);
5674                        /*
5675                         * btrfs_drop_inode will have it removed from
5676                         * the inode cache when its usage count
5677                         * hits zero.
5678                         */
5679                        iput(inode);
5680                        cond_resched();
5681                        spin_lock(&root->inode_lock);
5682                        goto again;
5683                }
5684
5685                if (cond_resched_lock(&root->inode_lock))
5686                        goto again;
5687
5688                node = rb_next(node);
5689        }
5690        spin_unlock(&root->inode_lock);
5691}
5692
5693static int btrfs_init_locked_inode(struct inode *inode, void *p)
5694{
5695        struct btrfs_iget_args *args = p;
5696        inode->i_ino = args->location->objectid;
5697        memcpy(&BTRFS_I(inode)->location, args->location,
5698               sizeof(*args->location));
5699        BTRFS_I(inode)->root = args->root;
5700        return 0;
5701}
5702
5703static int btrfs_find_actor(struct inode *inode, void *opaque)
5704{
5705        struct btrfs_iget_args *args = opaque;
5706        return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5707                args->root == BTRFS_I(inode)->root;
5708}
5709
5710static struct inode *btrfs_iget_locked(struct super_block *s,
5711                                       struct btrfs_key *location,
5712                                       struct btrfs_root *root)
5713{
5714        struct inode *inode;
5715        struct btrfs_iget_args args;
5716        unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5717
5718        args.location = location;
5719        args.root = root;
5720
5721        inode = iget5_locked(s, hashval, btrfs_find_actor,
5722                             btrfs_init_locked_inode,
5723                             (void *)&args);
5724        return inode;
5725}
5726
5727/* Get an inode object given its location and corresponding root.
5728 * Returns in *is_new if the inode was read from disk
5729 */
5730struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5731                         struct btrfs_root *root, int *new)
5732{
5733        struct inode *inode;
5734
5735        inode = btrfs_iget_locked(s, location, root);
5736        if (!inode)
5737                return ERR_PTR(-ENOMEM);
5738
5739        if (inode->i_state & I_NEW) {
5740                int ret;
5741
5742                ret = btrfs_read_locked_inode(inode);
5743                if (!is_bad_inode(inode)) {
5744                        inode_tree_add(inode);
5745                        unlock_new_inode(inode);
5746                        if (new)
5747                                *new = 1;
5748                } else {
5749                        unlock_new_inode(inode);
5750                        iput(inode);
5751                        ASSERT(ret < 0);
5752                        inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5753                }
5754        }
5755
5756        return inode;
5757}
5758
5759static struct inode *new_simple_dir(struct super_block *s,
5760                                    struct btrfs_key *key,
5761                                    struct btrfs_root *root)
5762{
5763        struct inode *inode = new_inode(s);
5764
5765        if (!inode)
5766                return ERR_PTR(-ENOMEM);
5767
5768        BTRFS_I(inode)->root = root;
5769        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5770        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5771
5772        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5773        inode->i_op = &btrfs_dir_ro_inode_operations;
5774        inode->i_opflags &= ~IOP_XATTR;
5775        inode->i_fop = &simple_dir_operations;
5776        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5777        inode->i_mtime = current_time(inode);
5778        inode->i_atime = inode->i_mtime;
5779        inode->i_ctime = inode->i_mtime;
5780        BTRFS_I(inode)->i_otime = inode->i_mtime;
5781
5782        return inode;
5783}
5784
5785struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5786{
5787        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5788        struct inode *inode;
5789        struct btrfs_root *root = BTRFS_I(dir)->root;
5790        struct btrfs_root *sub_root = root;
5791        struct btrfs_key location;
5792        int index;
5793        int ret = 0;
5794
5795        if (dentry->d_name.len > BTRFS_NAME_LEN)
5796                return ERR_PTR(-ENAMETOOLONG);
5797
5798        ret = btrfs_inode_by_name(dir, dentry, &location);
5799        if (ret < 0)
5800                return ERR_PTR(ret);
5801
5802        if (location.type == BTRFS_INODE_ITEM_KEY) {
5803                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5804                return inode;
5805        }
5806
5807        index = srcu_read_lock(&fs_info->subvol_srcu);
5808        ret = fixup_tree_root_location(fs_info, dir, dentry,
5809                                       &location, &sub_root);
5810        if (ret < 0) {
5811                if (ret != -ENOENT)
5812                        inode = ERR_PTR(ret);
5813                else
5814                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5815        } else {
5816                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5817        }
5818        srcu_read_unlock(&fs_info->subvol_srcu, index);
5819
5820        if (!IS_ERR(inode) && root != sub_root) {
5821                down_read(&fs_info->cleanup_work_sem);
5822                if (!sb_rdonly(inode->i_sb))
5823                        ret = btrfs_orphan_cleanup(sub_root);
5824                up_read(&fs_info->cleanup_work_sem);
5825                if (ret) {
5826                        iput(inode);
5827                        inode = ERR_PTR(ret);
5828                }
5829        }
5830
5831        return inode;
5832}
5833
5834static int btrfs_dentry_delete(const struct dentry *dentry)
5835{
5836        struct btrfs_root *root;
5837        struct inode *inode = d_inode(dentry);
5838
5839        if (!inode && !IS_ROOT(dentry))
5840                inode = d_inode(dentry->d_parent);
5841
5842        if (inode) {
5843                root = BTRFS_I(inode)->root;
5844                if (btrfs_root_refs(&root->root_item) == 0)
5845                        return 1;
5846
5847                if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5848                        return 1;
5849        }
5850        return 0;
5851}
5852
5853static void btrfs_dentry_release(struct dentry *dentry)
5854{
5855        kfree(dentry->d_fsdata);
5856}
5857
5858static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5859                                   unsigned int flags)
5860{
5861        struct inode *inode;
5862
5863        inode = btrfs_lookup_dentry(dir, dentry);
5864        if (IS_ERR(inode)) {
5865                if (PTR_ERR(inode) == -ENOENT)
5866                        inode = NULL;
5867                else
5868                        return ERR_CAST(inode);
5869        }
5870
5871        return d_splice_alias(inode, dentry);
5872}
5873
5874unsigned char btrfs_filetype_table[] = {
5875        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5876};
5877
5878/*
5879 * All this infrastructure exists because dir_emit can fault, and we are holding
5880 * the tree lock when doing readdir.  For now just allocate a buffer and copy
5881 * our information into that, and then dir_emit from the buffer.  This is
5882 * similar to what NFS does, only we don't keep the buffer around in pagecache
5883 * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5884 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5885 * tree lock.
5886 */
5887static int btrfs_opendir(struct inode *inode, struct file *file)
5888{
5889        struct btrfs_file_private *private;
5890
5891        private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5892        if (!private)
5893                return -ENOMEM;
5894        private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5895        if (!private->filldir_buf) {
5896                kfree(private);
5897                return -ENOMEM;
5898        }
5899        file->private_data = private;
5900        return 0;
5901}
5902
5903struct dir_entry {
5904        u64 ino;
5905        u64 offset;
5906        unsigned type;
5907        int name_len;
5908};
5909
5910static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5911{
5912        while (entries--) {
5913                struct dir_entry *entry = addr;
5914                char *name = (char *)(entry + 1);
5915
5916                ctx->pos = get_unaligned(&entry->offset);
5917                if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5918                                         get_unaligned(&entry->ino),
5919                                         get_unaligned(&entry->type)))
5920                        return 1;
5921                addr += sizeof(struct dir_entry) +
5922                        get_unaligned(&entry->name_len);
5923                ctx->pos++;
5924        }
5925        return 0;
5926}
5927
5928static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5929{
5930        struct inode *inode = file_inode(file);
5931        struct btrfs_root *root = BTRFS_I(inode)->root;
5932        struct btrfs_file_private *private = file->private_data;
5933        struct btrfs_dir_item *di;
5934        struct btrfs_key key;
5935        struct btrfs_key found_key;
5936        struct btrfs_path *path;
5937        void *addr;
5938        struct list_head ins_list;
5939        struct list_head del_list;
5940        int ret;
5941        struct extent_buffer *leaf;
5942        int slot;
5943        char *name_ptr;
5944        int name_len;
5945        int entries = 0;
5946        int total_len = 0;
5947        bool put = false;
5948        struct btrfs_key location;
5949
5950        if (!dir_emit_dots(file, ctx))
5951                return 0;
5952
5953        path = btrfs_alloc_path();
5954        if (!path)
5955                return -ENOMEM;
5956
5957        addr = private->filldir_buf;
5958        path->reada = READA_FORWARD;
5959
5960        INIT_LIST_HEAD(&ins_list);
5961        INIT_LIST_HEAD(&del_list);
5962        put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5963
5964again:
5965        key.type = BTRFS_DIR_INDEX_KEY;
5966        key.offset = ctx->pos;
5967        key.objectid = btrfs_ino(BTRFS_I(inode));
5968
5969        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5970        if (ret < 0)
5971                goto err;
5972
5973        while (1) {
5974                struct dir_entry *entry;
5975
5976                leaf = path->nodes[0];
5977                slot = path->slots[0];
5978                if (slot >= btrfs_header_nritems(leaf)) {
5979                        ret = btrfs_next_leaf(root, path);
5980                        if (ret < 0)
5981                                goto err;
5982                        else if (ret > 0)
5983                                break;
5984                        continue;
5985                }
5986
5987                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5988
5989                if (found_key.objectid != key.objectid)
5990                        break;
5991                if (found_key.type != BTRFS_DIR_INDEX_KEY)
5992                        break;
5993                if (found_key.offset < ctx->pos)
5994                        goto next;
5995                if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5996                        goto next;
5997                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5998                name_len = btrfs_dir_name_len(leaf, di);
5999                if ((total_len + sizeof(struct dir_entry) + name_len) >=
6000                    PAGE_SIZE) {
6001                        btrfs_release_path(path);
6002                        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6003                        if (ret)
6004                                goto nopos;
6005                        addr = private->filldir_buf;
6006                        entries = 0;
6007                        total_len = 0;
6008                        goto again;
6009                }
6010
6011                entry = addr;
6012                put_unaligned(name_len, &entry->name_len);
6013                name_ptr = (char *)(entry + 1);
6014                read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6015                                   name_len);
6016                put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6017                                &entry->type);
6018                btrfs_dir_item_key_to_cpu(leaf, di, &location);
6019                put_unaligned(location.objectid, &entry->ino);
6020                put_unaligned(found_key.offset, &entry->offset);
6021                entries++;
6022                addr += sizeof(struct dir_entry) + name_len;
6023                total_len += sizeof(struct dir_entry) + name_len;
6024next:
6025                path->slots[0]++;
6026        }
6027        btrfs_release_path(path);
6028
6029        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6030        if (ret)
6031                goto nopos;
6032
6033        ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6034        if (ret)
6035                goto nopos;
6036
6037        /*
6038         * Stop new entries from being returned after we return the last
6039         * entry.
6040         *
6041         * New directory entries are assigned a strictly increasing
6042         * offset.  This means that new entries created during readdir
6043         * are *guaranteed* to be seen in the future by that readdir.
6044         * This has broken buggy programs which operate on names as
6045         * they're returned by readdir.  Until we re-use freed offsets
6046         * we have this hack to stop new entries from being returned
6047         * under the assumption that they'll never reach this huge
6048         * offset.
6049         *
6050         * This is being careful not to overflow 32bit loff_t unless the
6051         * last entry requires it because doing so has broken 32bit apps
6052         * in the past.
6053         */
6054        if (ctx->pos >= INT_MAX)
6055                ctx->pos = LLONG_MAX;
6056        else
6057                ctx->pos = INT_MAX;
6058nopos:
6059        ret = 0;
6060err:
6061        if (put)
6062                btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6063        btrfs_free_path(path);
6064        return ret;
6065}
6066
6067int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6068{
6069        struct btrfs_root *root = BTRFS_I(inode)->root;
6070        struct btrfs_trans_handle *trans;
6071        int ret = 0;
6072        bool nolock = false;
6073
6074        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6075                return 0;
6076
6077        if (btrfs_fs_closing(root->fs_info) &&
6078                        btrfs_is_free_space_inode(BTRFS_I(inode)))
6079                nolock = true;
6080
6081        if (wbc->sync_mode == WB_SYNC_ALL) {
6082                if (nolock)
6083                        trans = btrfs_join_transaction_nolock(root);
6084                else
6085                        trans = btrfs_join_transaction(root);
6086                if (IS_ERR(trans))
6087                        return PTR_ERR(trans);
6088                ret = btrfs_commit_transaction(trans);
6089        }
6090        return ret;
6091}
6092
6093/*
6094 * This is somewhat expensive, updating the tree every time the
6095 * inode changes.  But, it is most likely to find the inode in cache.
6096 * FIXME, needs more benchmarking...there are no reasons other than performance
6097 * to keep or drop this code.
6098 */
6099static int btrfs_dirty_inode(struct inode *inode)
6100{
6101        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6102        struct btrfs_root *root = BTRFS_I(inode)->root;
6103        struct btrfs_trans_handle *trans;
6104        int ret;
6105
6106        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6107                return 0;
6108
6109        trans = btrfs_join_transaction(root);
6110        if (IS_ERR(trans))
6111                return PTR_ERR(trans);
6112
6113        ret = btrfs_update_inode(trans, root, inode);
6114        if (ret && ret == -ENOSPC) {
6115                /* whoops, lets try again with the full transaction */
6116                btrfs_end_transaction(trans);
6117                trans = btrfs_start_transaction(root, 1);
6118                if (IS_ERR(trans))
6119                        return PTR_ERR(trans);
6120
6121                ret = btrfs_update_inode(trans, root, inode);
6122        }
6123        btrfs_end_transaction(trans);
6124        if (BTRFS_I(inode)->delayed_node)
6125                btrfs_balance_delayed_items(fs_info);
6126
6127        return ret;
6128}
6129
6130/*
6131 * This is a copy of file_update_time.  We need this so we can return error on
6132 * ENOSPC for updating the inode in the case of file write and mmap writes.
6133 */
6134static int btrfs_update_time(struct inode *inode, struct timespec *now,
6135                             int flags)
6136{
6137        struct btrfs_root *root = BTRFS_I(inode)->root;
6138        bool dirty = flags & ~S_VERSION;
6139
6140        if (btrfs_root_readonly(root))
6141                return -EROFS;
6142
6143        if (flags & S_VERSION)
6144                dirty |= inode_maybe_inc_iversion(inode, dirty);
6145        if (flags & S_CTIME)
6146                inode->i_ctime = *now;
6147        if (flags & S_MTIME)
6148                inode->i_mtime = *now;
6149        if (flags & S_ATIME)
6150                inode->i_atime = *now;
6151        return dirty ? btrfs_dirty_inode(inode) : 0;
6152}
6153
6154/*
6155 * find the highest existing sequence number in a directory
6156 * and then set the in-memory index_cnt variable to reflect
6157 * free sequence numbers
6158 */
6159static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6160{
6161        struct btrfs_root *root = inode->root;
6162        struct btrfs_key key, found_key;
6163        struct btrfs_path *path;
6164        struct extent_buffer *leaf;
6165        int ret;
6166
6167        key.objectid = btrfs_ino(inode);
6168        key.type = BTRFS_DIR_INDEX_KEY;
6169        key.offset = (u64)-1;
6170
6171        path = btrfs_alloc_path();
6172        if (!path)
6173                return -ENOMEM;
6174
6175        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6176        if (ret < 0)
6177                goto out;
6178        /* FIXME: we should be able to handle this */
6179        if (ret == 0)
6180                goto out;
6181        ret = 0;
6182
6183        /*
6184         * MAGIC NUMBER EXPLANATION:
6185         * since we search a directory based on f_pos we have to start at 2
6186         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6187         * else has to start at 2
6188         */
6189        if (path->slots[0] == 0) {
6190                inode->index_cnt = 2;
6191                goto out;
6192        }
6193
6194        path->slots[0]--;
6195
6196        leaf = path->nodes[0];
6197        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6198
6199        if (found_key.objectid != btrfs_ino(inode) ||
6200            found_key.type != BTRFS_DIR_INDEX_KEY) {
6201                inode->index_cnt = 2;
6202                goto out;
6203        }
6204
6205        inode->index_cnt = found_key.offset + 1;
6206out:
6207        btrfs_free_path(path);
6208        return ret;
6209}
6210
6211/*
6212 * helper to find a free sequence number in a given directory.  This current
6213 * code is very simple, later versions will do smarter things in the btree
6214 */
6215int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6216{
6217        int ret = 0;
6218
6219        if (dir->index_cnt == (u64)-1) {
6220                ret = btrfs_inode_delayed_dir_index_count(dir);
6221                if (ret) {
6222                        ret = btrfs_set_inode_index_count(dir);
6223                        if (ret)
6224                                return ret;
6225                }
6226        }
6227
6228        *index = dir->index_cnt;
6229        dir->index_cnt++;
6230
6231        return ret;
6232}
6233
6234static int btrfs_insert_inode_locked(struct inode *inode)
6235{
6236        struct btrfs_iget_args args;
6237        args.location = &BTRFS_I(inode)->location;
6238        args.root = BTRFS_I(inode)->root;
6239
6240        return insert_inode_locked4(inode,
6241                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6242                   btrfs_find_actor, &args);
6243}
6244
6245/*
6246 * Inherit flags from the parent inode.
6247 *
6248 * Currently only the compression flags and the cow flags are inherited.
6249 */
6250static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6251{
6252        unsigned int flags;
6253
6254        if (!dir)
6255                return;
6256
6257        flags = BTRFS_I(dir)->flags;
6258
6259        if (flags & BTRFS_INODE_NOCOMPRESS) {
6260                BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6261                BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6262        } else if (flags & BTRFS_INODE_COMPRESS) {
6263                BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6264                BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6265        }
6266
6267        if (flags & BTRFS_INODE_NODATACOW) {
6268                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6269                if (S_ISREG(inode->i_mode))
6270                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6271        }
6272
6273        btrfs_update_iflags(inode);
6274}
6275
6276static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6277                                     struct btrfs_root *root,
6278                                     struct inode *dir,
6279                                     const char *name, int name_len,
6280                                     u64 ref_objectid, u64 objectid,
6281                                     umode_t mode, u64 *index)
6282{
6283        struct btrfs_fs_info *fs_info = root->fs_info;
6284        struct inode *inode;
6285        struct btrfs_inode_item *inode_item;
6286        struct btrfs_key *location;
6287        struct btrfs_path *path;
6288        struct btrfs_inode_ref *ref;
6289        struct btrfs_key key[2];
6290        u32 sizes[2];
6291        int nitems = name ? 2 : 1;
6292        unsigned long ptr;
6293        int ret;
6294
6295        path = btrfs_alloc_path();
6296        if (!path)
6297                return ERR_PTR(-ENOMEM);
6298
6299        inode = new_inode(fs_info->sb);
6300        if (!inode) {
6301                btrfs_free_path(path);
6302                return ERR_PTR(-ENOMEM);
6303        }
6304
6305        /*
6306         * O_TMPFILE, set link count to 0, so that after this point,
6307         * we fill in an inode item with the correct link count.
6308         */
6309        if (!name)
6310                set_nlink(inode, 0);
6311
6312        /*
6313         * we have to initialize this early, so we can reclaim the inode
6314         * number if we fail afterwards in this function.
6315         */
6316        inode->i_ino = objectid;
6317
6318        if (dir && name) {
6319                trace_btrfs_inode_request(dir);
6320
6321                ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6322                if (ret) {
6323                        btrfs_free_path(path);
6324                        iput(inode);
6325                        return ERR_PTR(ret);
6326                }
6327        } else if (dir) {
6328                *index = 0;
6329        }
6330        /*
6331         * index_cnt is ignored for everything but a dir,
6332         * btrfs_set_inode_index_count has an explanation for the magic
6333         * number
6334         */
6335        BTRFS_I(inode)->index_cnt = 2;
6336        BTRFS_I(inode)->dir_index = *index;
6337        BTRFS_I(inode)->root = root;
6338        BTRFS_I(inode)->generation = trans->transid;
6339        inode->i_generation = BTRFS_I(inode)->generation;
6340
6341        /*
6342         * We could have gotten an inode number from somebody who was fsynced
6343         * and then removed in this same transaction, so let's just set full
6344         * sync since it will be a full sync anyway and this will blow away the
6345         * old info in the log.
6346         */
6347        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6348
6349        key[0].objectid = objectid;
6350        key[0].type = BTRFS_INODE_ITEM_KEY;
6351        key[0].offset = 0;
6352
6353        sizes[0] = sizeof(struct btrfs_inode_item);
6354
6355        if (name) {
6356                /*
6357                 * Start new inodes with an inode_ref. This is slightly more
6358                 * efficient for small numbers of hard links since they will
6359                 * be packed into one item. Extended refs will kick in if we
6360                 * add more hard links than can fit in the ref item.
6361                 */
6362                key[1].objectid = objectid;
6363                key[1].type = BTRFS_INODE_REF_KEY;
6364                key[1].offset = ref_objectid;
6365
6366                sizes[1] = name_len + sizeof(*ref);
6367        }
6368
6369        location = &BTRFS_I(inode)->location;
6370        location->objectid = objectid;
6371        location->offset = 0;
6372        location->type = BTRFS_INODE_ITEM_KEY;
6373
6374        ret = btrfs_insert_inode_locked(inode);
6375        if (ret < 0)
6376                goto fail;
6377
6378        path->leave_spinning = 1;
6379        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6380        if (ret != 0)
6381                goto fail_unlock;
6382
6383        inode_init_owner(inode, dir, mode);
6384        inode_set_bytes(inode, 0);
6385
6386        inode->i_mtime = current_time(inode);
6387        inode->i_atime = inode->i_mtime;
6388        inode->i_ctime = inode->i_mtime;
6389        BTRFS_I(inode)->i_otime = inode->i_mtime;
6390
6391        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6392                                  struct btrfs_inode_item);
6393        memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6394                             sizeof(*inode_item));
6395        fill_inode_item(trans, path->nodes[0], inode_item, inode);
6396
6397        if (name) {
6398                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6399                                     struct btrfs_inode_ref);
6400                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6401                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6402                ptr = (unsigned long)(ref + 1);
6403                write_extent_buffer(path->nodes[0], name, ptr, name_len);
6404        }
6405
6406        btrfs_mark_buffer_dirty(path->nodes[0]);
6407        btrfs_free_path(path);
6408
6409        btrfs_inherit_iflags(inode, dir);
6410
6411        if (S_ISREG(mode)) {
6412                if (btrfs_test_opt(fs_info, NODATASUM))
6413                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6414                if (btrfs_test_opt(fs_info, NODATACOW))
6415                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6416                                BTRFS_INODE_NODATASUM;
6417        }
6418
6419        inode_tree_add(inode);
6420
6421        trace_btrfs_inode_new(inode);
6422        btrfs_set_inode_last_trans(trans, inode);
6423
6424        btrfs_update_root_times(trans, root);
6425
6426        ret = btrfs_inode_inherit_props(trans, inode, dir);
6427        if (ret)
6428                btrfs_err(fs_info,
6429                          "error inheriting props for ino %llu (root %llu): %d",
6430                        btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6431
6432        return inode;
6433
6434fail_unlock:
6435        unlock_new_inode(inode);
6436fail:
6437        if (dir && name)
6438                BTRFS_I(dir)->index_cnt--;
6439        btrfs_free_path(path);
6440        iput(inode);
6441        return ERR_PTR(ret);
6442}
6443
6444static inline u8 btrfs_inode_type(struct inode *inode)
6445{
6446        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6447}
6448
6449/*
6450 * utility function to add 'inode' into 'parent_inode' with
6451 * a give name and a given sequence number.
6452 * if 'add_backref' is true, also insert a backref from the
6453 * inode to the parent directory.
6454 */
6455int btrfs_add_link(struct btrfs_trans_handle *trans,
6456                   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6457                   const char *name, int name_len, int add_backref, u64 index)
6458{
6459        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6460        int ret = 0;
6461        struct btrfs_key key;
6462        struct btrfs_root *root = parent_inode->root;
6463        u64 ino = btrfs_ino(inode);
6464        u64 parent_ino = btrfs_ino(parent_inode);
6465
6466        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6467                memcpy(&key, &inode->root->root_key, sizeof(key));
6468        } else {
6469                key.objectid = ino;
6470                key.type = BTRFS_INODE_ITEM_KEY;
6471                key.offset = 0;
6472        }
6473
6474        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6475                ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6476                                         root->root_key.objectid, parent_ino,
6477                                         index, name, name_len);
6478        } else if (add_backref) {
6479                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6480                                             parent_ino, index);
6481        }
6482
6483        /* Nothing to clean up yet */
6484        if (ret)
6485                return ret;
6486
6487        ret = btrfs_insert_dir_item(trans, root, name, name_len,
6488                                    parent_inode, &key,
6489                                    btrfs_inode_type(&inode->vfs_inode), index);
6490        if (ret == -EEXIST || ret == -EOVERFLOW)
6491                goto fail_dir_item;
6492        else if (ret) {
6493                btrfs_abort_transaction(trans, ret);
6494                return ret;
6495        }
6496
6497        btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6498                           name_len * 2);
6499        inode_inc_iversion(&parent_inode->vfs_inode);
6500        parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6501                current_time(&parent_inode->vfs_inode);
6502        ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6503        if (ret)
6504                btrfs_abort_transaction(trans, ret);
6505        return ret;
6506
6507fail_dir_item:
6508        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6509                u64 local_index;
6510                int err;
6511                err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6512                                         root->root_key.objectid, parent_ino,
6513                                         &local_index, name, name_len);
6514
6515        } else if (add_backref) {
6516                u64 local_index;
6517                int err;
6518
6519                err = btrfs_del_inode_ref(trans, root, name, name_len,
6520                                          ino, parent_ino, &local_index);
6521        }
6522        return ret;
6523}
6524
6525static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6526                            struct btrfs_inode *dir, struct dentry *dentry,
6527                            struct btrfs_inode *inode, int backref, u64 index)
6528{
6529        int err = btrfs_add_link(trans, dir, inode,
6530                                 dentry->d_name.name, dentry->d_name.len,
6531                                 backref, index);
6532        if (err > 0)
6533                err = -EEXIST;
6534        return err;
6535}
6536
6537static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6538                        umode_t mode, dev_t rdev)
6539{
6540        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6541        struct btrfs_trans_handle *trans;
6542        struct btrfs_root *root = BTRFS_I(dir)->root;
6543        struct inode *inode = NULL;
6544        int err;
6545        int drop_inode = 0;
6546        u64 objectid;
6547        u64 index = 0;
6548
6549        /*
6550         * 2 for inode item and ref
6551         * 2 for dir items
6552         * 1 for xattr if selinux is on
6553         */
6554        trans = btrfs_start_transaction(root, 5);
6555        if (IS_ERR(trans))
6556                return PTR_ERR(trans);
6557
6558        err = btrfs_find_free_ino(root, &objectid);
6559        if (err)
6560                goto out_unlock;
6561
6562        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6563                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6564                        mode, &index);
6565        if (IS_ERR(inode)) {
6566                err = PTR_ERR(inode);
6567                goto out_unlock;
6568        }
6569
6570        /*
6571        * If the active LSM wants to access the inode during
6572        * d_instantiate it needs these. Smack checks to see
6573        * if the filesystem supports xattrs by looking at the
6574        * ops vector.
6575        */
6576        inode->i_op = &btrfs_special_inode_operations;
6577        init_special_inode(inode, inode->i_mode, rdev);
6578
6579        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6580        if (err)
6581                goto out_unlock_inode;
6582
6583        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6584                        0, index);
6585        if (err) {
6586                goto out_unlock_inode;
6587        } else {
6588                btrfs_update_inode(trans, root, inode);
6589                d_instantiate_new(dentry, inode);
6590        }
6591
6592out_unlock:
6593        btrfs_end_transaction(trans);
6594        btrfs_btree_balance_dirty(fs_info);
6595        if (drop_inode) {
6596                inode_dec_link_count(inode);
6597                iput(inode);
6598        }
6599        return err;
6600
6601out_unlock_inode:
6602        drop_inode = 1;
6603        unlock_new_inode(inode);
6604        goto out_unlock;
6605
6606}
6607
6608static int btrfs_create(struct inode *dir, struct dentry *dentry,
6609                        umode_t mode, bool excl)
6610{
6611        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6612        struct btrfs_trans_handle *trans;
6613        struct btrfs_root *root = BTRFS_I(dir)->root;
6614        struct inode *inode = NULL;
6615        int drop_inode_on_err = 0;
6616        int err;
6617        u64 objectid;
6618        u64 index = 0;
6619
6620        /*
6621         * 2 for inode item and ref
6622         * 2 for dir items
6623         * 1 for xattr if selinux is on
6624         */
6625        trans = btrfs_start_transaction(root, 5);
6626        if (IS_ERR(trans))
6627                return PTR_ERR(trans);
6628
6629        err = btrfs_find_free_ino(root, &objectid);
6630        if (err)
6631                goto out_unlock;
6632
6633        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6634                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6635                        mode, &index);
6636        if (IS_ERR(inode)) {
6637                err = PTR_ERR(inode);
6638                goto out_unlock;
6639        }
6640        drop_inode_on_err = 1;
6641        /*
6642        * If the active LSM wants to access the inode during
6643        * d_instantiate it needs these. Smack checks to see
6644        * if the filesystem supports xattrs by looking at the
6645        * ops vector.
6646        */
6647        inode->i_fop = &btrfs_file_operations;
6648        inode->i_op = &btrfs_file_inode_operations;
6649        inode->i_mapping->a_ops = &btrfs_aops;
6650
6651        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6652        if (err)
6653                goto out_unlock_inode;
6654
6655        err = btrfs_update_inode(trans, root, inode);
6656        if (err)
6657                goto out_unlock_inode;
6658
6659        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6660                        0, index);
6661        if (err)
6662                goto out_unlock_inode;
6663
6664        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6665        d_instantiate_new(dentry, inode);
6666
6667out_unlock:
6668        btrfs_end_transaction(trans);
6669        if (err && drop_inode_on_err) {
6670                inode_dec_link_count(inode);
6671                iput(inode);
6672        }
6673        btrfs_btree_balance_dirty(fs_info);
6674        return err;
6675
6676out_unlock_inode:
6677        unlock_new_inode(inode);
6678        goto out_unlock;
6679
6680}
6681
6682static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6683                      struct dentry *dentry)
6684{
6685        struct btrfs_trans_handle *trans = NULL;
6686        struct btrfs_root *root = BTRFS_I(dir)->root;
6687        struct inode *inode = d_inode(old_dentry);
6688        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6689        u64 index;
6690        int err;
6691        int drop_inode = 0;
6692
6693        /* do not allow sys_link's with other subvols of the same device */
6694        if (root->objectid != BTRFS_I(inode)->root->objectid)
6695                return -EXDEV;
6696
6697        if (inode->i_nlink >= BTRFS_LINK_MAX)
6698                return -EMLINK;
6699
6700        err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6701        if (err)
6702                goto fail;
6703
6704        /*
6705         * 2 items for inode and inode ref
6706         * 2 items for dir items
6707         * 1 item for parent inode
6708         */
6709        trans = btrfs_start_transaction(root, 5);
6710        if (IS_ERR(trans)) {
6711                err = PTR_ERR(trans);
6712                trans = NULL;
6713                goto fail;
6714        }
6715
6716        /* There are several dir indexes for this inode, clear the cache. */
6717        BTRFS_I(inode)->dir_index = 0ULL;
6718        inc_nlink(inode);
6719        inode_inc_iversion(inode);
6720        inode->i_ctime = current_time(inode);
6721        ihold(inode);
6722        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6723
6724        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6725                        1, index);
6726
6727        if (err) {
6728                drop_inode = 1;
6729        } else {
6730                struct dentry *parent = dentry->d_parent;
6731                err = btrfs_update_inode(trans, root, inode);
6732                if (err)
6733                        goto fail;
6734                if (inode->i_nlink == 1) {
6735                        /*
6736                         * If new hard link count is 1, it's a file created
6737                         * with open(2) O_TMPFILE flag.
6738                         */
6739                        err = btrfs_orphan_del(trans, BTRFS_I(inode));
6740                        if (err)
6741                                goto fail;
6742                }
6743                d_instantiate(dentry, inode);
6744                btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6745        }
6746
6747fail:
6748        if (trans)
6749                btrfs_end_transaction(trans);
6750        if (drop_inode) {
6751                inode_dec_link_count(inode);
6752                iput(inode);
6753        }
6754        btrfs_btree_balance_dirty(fs_info);
6755        return err;
6756}
6757
6758static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6759{
6760        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6761        struct inode *inode = NULL;
6762        struct btrfs_trans_handle *trans;
6763        struct btrfs_root *root = BTRFS_I(dir)->root;
6764        int err = 0;
6765        int drop_on_err = 0;
6766        u64 objectid = 0;
6767        u64 index = 0;
6768
6769        /*
6770         * 2 items for inode and ref
6771         * 2 items for dir items
6772         * 1 for xattr if selinux is on
6773         */
6774        trans = btrfs_start_transaction(root, 5);
6775        if (IS_ERR(trans))
6776                return PTR_ERR(trans);
6777
6778        err = btrfs_find_free_ino(root, &objectid);
6779        if (err)
6780                goto out_fail;
6781
6782        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6783                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6784                        S_IFDIR | mode, &index);
6785        if (IS_ERR(inode)) {
6786                err = PTR_ERR(inode);
6787                goto out_fail;
6788        }
6789
6790        drop_on_err = 1;
6791        /* these must be set before we unlock the inode */
6792        inode->i_op = &btrfs_dir_inode_operations;
6793        inode->i_fop = &btrfs_dir_file_operations;
6794
6795        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6796        if (err)
6797                goto out_fail_inode;
6798
6799        btrfs_i_size_write(BTRFS_I(inode), 0);
6800        err = btrfs_update_inode(trans, root, inode);
6801        if (err)
6802                goto out_fail_inode;
6803
6804        err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6805                        dentry->d_name.name,
6806                        dentry->d_name.len, 0, index);
6807        if (err)
6808                goto out_fail_inode;
6809
6810        d_instantiate_new(dentry, inode);
6811        drop_on_err = 0;
6812
6813out_fail:
6814        btrfs_end_transaction(trans);
6815        if (drop_on_err) {
6816                inode_dec_link_count(inode);
6817                iput(inode);
6818        }
6819        btrfs_btree_balance_dirty(fs_info);
6820        return err;
6821
6822out_fail_inode:
6823        unlock_new_inode(inode);
6824        goto out_fail;
6825}
6826
6827static noinline int uncompress_inline(struct btrfs_path *path,
6828                                      struct page *page,
6829                                      size_t pg_offset, u64 extent_offset,
6830                                      struct btrfs_file_extent_item *item)
6831{
6832        int ret;
6833        struct extent_buffer *leaf = path->nodes[0];
6834        char *tmp;
6835        size_t max_size;
6836        unsigned long inline_size;
6837        unsigned long ptr;
6838        int compress_type;
6839
6840        WARN_ON(pg_offset != 0);
6841        compress_type = btrfs_file_extent_compression(leaf, item);
6842        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6843        inline_size = btrfs_file_extent_inline_item_len(leaf,
6844                                        btrfs_item_nr(path->slots[0]));
6845        tmp = kmalloc(inline_size, GFP_NOFS);
6846        if (!tmp)
6847                return -ENOMEM;
6848        ptr = btrfs_file_extent_inline_start(item);
6849
6850        read_extent_buffer(leaf, tmp, ptr, inline_size);
6851
6852        max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6853        ret = btrfs_decompress(compress_type, tmp, page,
6854                               extent_offset, inline_size, max_size);
6855
6856        /*
6857         * decompression code contains a memset to fill in any space between the end
6858         * of the uncompressed data and the end of max_size in case the decompressed
6859         * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6860         * the end of an inline extent and the beginning of the next block, so we
6861         * cover that region here.
6862         */
6863
6864        if (max_size + pg_offset < PAGE_SIZE) {
6865                char *map = kmap(page);
6866                memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6867                kunmap(page);
6868        }
6869        kfree(tmp);
6870        return ret;
6871}
6872
6873/*
6874 * a bit scary, this does extent mapping from logical file offset to the disk.
6875 * the ugly parts come from merging extents from the disk with the in-ram
6876 * representation.  This gets more complex because of the data=ordered code,
6877 * where the in-ram extents might be locked pending data=ordered completion.
6878 *
6879 * This also copies inline extents directly into the page.
6880 */
6881struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6882                struct page *page,
6883            size_t pg_offset, u64 start, u64 len,
6884                int create)
6885{
6886        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6887        int ret;
6888        int err = 0;
6889        u64 extent_start = 0;
6890        u64 extent_end = 0;
6891        u64 objectid = btrfs_ino(inode);
6892        u32 found_type;
6893        struct btrfs_path *path = NULL;
6894        struct btrfs_root *root = inode->root;
6895        struct btrfs_file_extent_item *item;
6896        struct extent_buffer *leaf;
6897        struct btrfs_key found_key;
6898        struct extent_map *em = NULL;
6899        struct extent_map_tree *em_tree = &inode->extent_tree;
6900        struct extent_io_tree *io_tree = &inode->io_tree;
6901        const bool new_inline = !page || create;
6902
6903        read_lock(&em_tree->lock);
6904        em = lookup_extent_mapping(em_tree, start, len);
6905        if (em)
6906                em->bdev = fs_info->fs_devices->latest_bdev;
6907        read_unlock(&em_tree->lock);
6908
6909        if (em) {
6910                if (em->start > start || em->start + em->len <= start)
6911                        free_extent_map(em);
6912                else if (em->block_start == EXTENT_MAP_INLINE && page)
6913                        free_extent_map(em);
6914                else
6915                        goto out;
6916        }
6917        em = alloc_extent_map();
6918        if (!em) {
6919                err = -ENOMEM;
6920                goto out;
6921        }
6922        em->bdev = fs_info->fs_devices->latest_bdev;
6923        em->start = EXTENT_MAP_HOLE;
6924        em->orig_start = EXTENT_MAP_HOLE;
6925        em->len = (u64)-1;
6926        em->block_len = (u64)-1;
6927
6928        if (!path) {
6929                path = btrfs_alloc_path();
6930                if (!path) {
6931                        err = -ENOMEM;
6932                        goto out;
6933                }
6934                /*
6935                 * Chances are we'll be called again, so go ahead and do
6936                 * readahead
6937                 */
6938                path->reada = READA_FORWARD;
6939        }
6940
6941        ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6942        if (ret < 0) {
6943                err = ret;
6944                goto out;
6945        }
6946
6947        if (ret != 0) {
6948                if (path->slots[0] == 0)
6949                        goto not_found;
6950                path->slots[0]--;
6951        }
6952
6953        leaf = path->nodes[0];
6954        item = btrfs_item_ptr(leaf, path->slots[0],
6955                              struct btrfs_file_extent_item);
6956        /* are we inside the extent that was found? */
6957        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6958        found_type = found_key.type;
6959        if (found_key.objectid != objectid ||
6960            found_type != BTRFS_EXTENT_DATA_KEY) {
6961                /*
6962                 * If we backup past the first extent we want to move forward
6963                 * and see if there is an extent in front of us, otherwise we'll
6964                 * say there is a hole for our whole search range which can
6965                 * cause problems.
6966                 */
6967                extent_end = start;
6968                goto next;
6969        }
6970
6971        found_type = btrfs_file_extent_type(leaf, item);
6972        extent_start = found_key.offset;
6973        if (found_type == BTRFS_FILE_EXTENT_REG ||
6974            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6975                extent_end = extent_start +
6976                       btrfs_file_extent_num_bytes(leaf, item);
6977
6978                trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6979                                                       extent_start);
6980        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6981                size_t size;
6982                size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6983                extent_end = ALIGN(extent_start + size,
6984                                   fs_info->sectorsize);
6985
6986                trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6987                                                      path->slots[0],
6988                                                      extent_start);
6989        }
6990next:
6991        if (start >= extent_end) {
6992                path->slots[0]++;
6993                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6994                        ret = btrfs_next_leaf(root, path);
6995                        if (ret < 0) {
6996                                err = ret;
6997                                goto out;
6998                        }
6999                        if (ret > 0)
7000                                goto not_found;
7001                        leaf = path->nodes[0];
7002                }
7003                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7004                if (found_key.objectid != objectid ||
7005                    found_key.type != BTRFS_EXTENT_DATA_KEY)
7006                        goto not_found;
7007                if (start + len <= found_key.offset)
7008                        goto not_found;
7009                if (start > found_key.offset)
7010                        goto next;
7011                em->start = start;
7012                em->orig_start = start;
7013                em->len = found_key.offset - start;
7014                goto not_found_em;
7015        }
7016
7017        btrfs_extent_item_to_extent_map(inode, path, item,
7018                        new_inline, em);
7019
7020        if (found_type == BTRFS_FILE_EXTENT_REG ||
7021            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7022                goto insert;
7023        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7024                unsigned long ptr;
7025                char *map;
7026                size_t size;
7027                size_t extent_offset;
7028                size_t copy_size;
7029
7030                if (new_inline)
7031                        goto out;
7032
7033                size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7034                extent_offset = page_offset(page) + pg_offset - extent_start;
7035                copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7036                                  size - extent_offset);
7037                em->start = extent_start + extent_offset;
7038                em->len = ALIGN(copy_size, fs_info->sectorsize);
7039                em->orig_block_len = em->len;
7040                em->orig_start = em->start;
7041                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7042                if (!PageUptodate(page)) {
7043                        if (btrfs_file_extent_compression(leaf, item) !=
7044                            BTRFS_COMPRESS_NONE) {
7045                                ret = uncompress_inline(path, page, pg_offset,
7046                                                        extent_offset, item);
7047                                if (ret) {
7048                                        err = ret;
7049                                        goto out;
7050                                }
7051                        } else {
7052                                map = kmap(page);
7053                                read_extent_buffer(leaf, map + pg_offset, ptr,
7054                                                   copy_size);
7055                                if (pg_offset + copy_size < PAGE_SIZE) {
7056                                        memset(map + pg_offset + copy_size, 0,
7057                                               PAGE_SIZE - pg_offset -
7058                                               copy_size);
7059                                }
7060                                kunmap(page);
7061                        }
7062                        flush_dcache_page(page);
7063                }
7064                set_extent_uptodate(io_tree, em->start,
7065                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
7066                goto insert;
7067        }
7068not_found:
7069        em->start = start;
7070        em->orig_start = start;
7071        em->len = len;
7072not_found_em:
7073        em->block_start = EXTENT_MAP_HOLE;
7074insert:
7075        btrfs_release_path(path);
7076        if (em->start > start || extent_map_end(em) <= start) {
7077                btrfs_err(fs_info,
7078                          "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079                          em->start, em->len, start, len);
7080                err = -EIO;
7081                goto out;
7082        }
7083
7084        err = 0;
7085        write_lock(&em_tree->lock);
7086        err = btrfs_add_extent_mapping(em_tree, &em, start, len);
7087        write_unlock(&em_tree->lock);
7088out:
7089
7090        trace_btrfs_get_extent(root, inode, em);
7091
7092        btrfs_free_path(path);
7093        if (err) {
7094                free_extent_map(em);
7095                return ERR_PTR(err);
7096        }
7097        BUG_ON(!em); /* Error is always set */
7098        return em;
7099}
7100
7101struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7102                struct page *page,
7103                size_t pg_offset, u64 start, u64 len,
7104                int create)
7105{
7106        struct extent_map *em;
7107        struct extent_map *hole_em = NULL;
7108        u64 range_start = start;
7109        u64 end;
7110        u64 found;
7111        u64 found_end;
7112        int err = 0;
7113
7114        em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7115        if (IS_ERR(em))
7116                return em;
7117        /*
7118         * If our em maps to:
7119         * - a hole or
7120         * - a pre-alloc extent,
7121         * there might actually be delalloc bytes behind it.
7122         */
7123        if (em->block_start != EXTENT_MAP_HOLE &&
7124            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7125                return em;
7126        else
7127                hole_em = em;
7128
7129        /* check to see if we've wrapped (len == -1 or similar) */
7130        end = start + len;
7131        if (end < start)
7132                end = (u64)-1;
7133        else
7134                end -= 1;
7135
7136        em = NULL;
7137
7138        /* ok, we didn't find anything, lets look for delalloc */
7139        found = count_range_bits(&inode->io_tree, &range_start,
7140                                 end, len, EXTENT_DELALLOC, 1);
7141        found_end = range_start + found;
7142        if (found_end < range_start)
7143                found_end = (u64)-1;
7144
7145        /*
7146         * we didn't find anything useful, return
7147         * the original results from get_extent()
7148         */
7149        if (range_start > end || found_end <= start) {
7150                em = hole_em;
7151                hole_em = NULL;
7152                goto out;
7153        }
7154
7155        /* adjust the range_start to make sure it doesn't
7156         * go backwards from the start they passed in
7157         */
7158        range_start = max(start, range_start);
7159        found = found_end - range_start;
7160
7161        if (found > 0) {
7162                u64 hole_start = start;
7163                u64 hole_len = len;
7164
7165                em = alloc_extent_map();
7166                if (!em) {
7167                        err = -ENOMEM;
7168                        goto out;
7169                }
7170                /*
7171                 * when btrfs_get_extent can't find anything it
7172                 * returns one huge hole
7173                 *
7174                 * make sure what it found really fits our range, and
7175                 * adjust to make sure it is based on the start from
7176                 * the caller
7177                 */
7178                if (hole_em) {
7179                        u64 calc_end = extent_map_end(hole_em);
7180
7181                        if (calc_end <= start || (hole_em->start > end)) {
7182                                free_extent_map(hole_em);
7183                                hole_em = NULL;
7184                        } else {
7185                                hole_start = max(hole_em->start, start);
7186                                hole_len = calc_end - hole_start;
7187                        }
7188                }
7189                em->bdev = NULL;
7190                if (hole_em && range_start > hole_start) {
7191                        /* our hole starts before our delalloc, so we
7192                         * have to return just the parts of the hole
7193                         * that go until  the delalloc starts
7194                         */
7195                        em->len = min(hole_len,
7196                                      range_start - hole_start);
7197                        em->start = hole_start;
7198                        em->orig_start = hole_start;
7199                        /*
7200                         * don't adjust block start at all,
7201                         * it is fixed at EXTENT_MAP_HOLE
7202                         */
7203                        em->block_start = hole_em->block_start;
7204                        em->block_len = hole_len;
7205                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7206                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7207                } else {
7208                        em->start = range_start;
7209                        em->len = found;
7210                        em->orig_start = range_start;
7211                        em->block_start = EXTENT_MAP_DELALLOC;
7212                        em->block_len = found;
7213                }
7214        } else {
7215                return hole_em;
7216        }
7217out:
7218
7219        free_extent_map(hole_em);
7220        if (err) {
7221                free_extent_map(em);
7222                return ERR_PTR(err);
7223        }
7224        return em;
7225}
7226
7227static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7228                                                  const u64 start,
7229                                                  const u64 len,
7230                                                  const u64 orig_start,
7231                                                  const u64 block_start,
7232                                                  const u64 block_len,
7233                                                  const u64 orig_block_len,
7234                                                  const u64 ram_bytes,
7235                                                  const int type)
7236{
7237        struct extent_map *em = NULL;
7238        int ret;
7239
7240        if (type != BTRFS_ORDERED_NOCOW) {
7241                em = create_io_em(inode, start, len, orig_start,
7242                                  block_start, block_len, orig_block_len,
7243                                  ram_bytes,
7244                                  BTRFS_COMPRESS_NONE, /* compress_type */
7245                                  type);
7246                if (IS_ERR(em))
7247                        goto out;
7248        }
7249        ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7250                                           len, block_len, type);
7251        if (ret) {
7252                if (em) {
7253                        free_extent_map(em);
7254                        btrfs_drop_extent_cache(BTRFS_I(inode), start,
7255                                                start + len - 1, 0);
7256                }
7257                em = ERR_PTR(ret);
7258        }
7259 out:
7260
7261        return em;
7262}
7263
7264static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7265                                                  u64 start, u64 len)
7266{
7267        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7268        struct btrfs_root *root = BTRFS_I(inode)->root;
7269        struct extent_map *em;
7270        struct btrfs_key ins;
7271        u64 alloc_hint;
7272        int ret;
7273
7274        alloc_hint = get_extent_allocation_hint(inode, start, len);
7275        ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7276                                   0, alloc_hint, &ins, 1, 1);
7277        if (ret)
7278                return ERR_PTR(ret);
7279
7280        em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7281                                     ins.objectid, ins.offset, ins.offset,
7282                                     ins.offset, BTRFS_ORDERED_REGULAR);
7283        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7284        if (IS_ERR(em))
7285                btrfs_free_reserved_extent(fs_info, ins.objectid,
7286                                           ins.offset, 1);
7287
7288        return em;
7289}
7290
7291/*
7292 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7293 * block must be cow'd
7294 */
7295noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7296                              u64 *orig_start, u64 *orig_block_len,
7297                              u64 *ram_bytes)
7298{
7299        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7300        struct btrfs_path *path;
7301        int ret;
7302        struct extent_buffer *leaf;
7303        struct btrfs_root *root = BTRFS_I(inode)->root;
7304        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7305        struct btrfs_file_extent_item *fi;
7306        struct btrfs_key key;
7307        u64 disk_bytenr;
7308        u64 backref_offset;
7309        u64 extent_end;
7310        u64 num_bytes;
7311        int slot;
7312        int found_type;
7313        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7314
7315        path = btrfs_alloc_path();
7316        if (!path)
7317                return -ENOMEM;
7318
7319        ret = btrfs_lookup_file_extent(NULL, root, path,
7320                        btrfs_ino(BTRFS_I(inode)), offset, 0);
7321        if (ret < 0)
7322                goto out;
7323
7324        slot = path->slots[0];
7325        if (ret == 1) {
7326                if (slot == 0) {
7327                        /* can't find the item, must cow */
7328                        ret = 0;
7329                        goto out;
7330                }
7331                slot--;
7332        }
7333        ret = 0;
7334        leaf = path->nodes[0];
7335        btrfs_item_key_to_cpu(leaf, &key, slot);
7336        if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7337            key.type != BTRFS_EXTENT_DATA_KEY) {
7338                /* not our file or wrong item type, must cow */
7339                goto out;
7340        }
7341
7342        if (key.offset > offset) {
7343                /* Wrong offset, must cow */
7344                goto out;
7345        }
7346
7347        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7348        found_type = btrfs_file_extent_type(leaf, fi);
7349        if (found_type != BTRFS_FILE_EXTENT_REG &&
7350            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7351                /* not a regular extent, must cow */
7352                goto out;
7353        }
7354
7355        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7356                goto out;
7357
7358        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7359        if (extent_end <= offset)
7360                goto out;
7361
7362        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7363        if (disk_bytenr == 0)
7364                goto out;
7365
7366        if (btrfs_file_extent_compression(leaf, fi) ||
7367            btrfs_file_extent_encryption(leaf, fi) ||
7368            btrfs_file_extent_other_encoding(leaf, fi))
7369                goto out;
7370
7371        backref_offset = btrfs_file_extent_offset(leaf, fi);
7372
7373        if (orig_start) {
7374                *orig_start = key.offset - backref_offset;
7375                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7376                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7377        }
7378
7379        if (btrfs_extent_readonly(fs_info, disk_bytenr))
7380                goto out;
7381
7382        num_bytes = min(offset + *len, extent_end) - offset;
7383        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7384                u64 range_end;
7385
7386                range_end = round_up(offset + num_bytes,
7387                                     root->fs_info->sectorsize) - 1;
7388                ret = test_range_bit(io_tree, offset, range_end,
7389                                     EXTENT_DELALLOC, 0, NULL);
7390                if (ret) {
7391                        ret = -EAGAIN;
7392                        goto out;
7393                }
7394        }
7395
7396        btrfs_release_path(path);
7397
7398        /*
7399         * look for other files referencing this extent, if we
7400         * find any we must cow
7401         */
7402
7403        ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7404                                    key.offset - backref_offset, disk_bytenr);
7405        if (ret) {
7406                ret = 0;
7407                goto out;
7408        }
7409
7410        /*
7411         * adjust disk_bytenr and num_bytes to cover just the bytes
7412         * in this extent we are about to write.  If there
7413         * are any csums in that range we have to cow in order
7414         * to keep the csums correct
7415         */
7416        disk_bytenr += backref_offset;
7417        disk_bytenr += offset - key.offset;
7418        if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7419                goto out;
7420        /*
7421         * all of the above have passed, it is safe to overwrite this extent
7422         * without cow
7423         */
7424        *len = num_bytes;
7425        ret = 1;
7426out:
7427        btrfs_free_path(path);
7428        return ret;
7429}
7430
7431static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7432                              struct extent_state **cached_state, int writing)
7433{
7434        struct btrfs_ordered_extent *ordered;
7435        int ret = 0;
7436
7437        while (1) {
7438                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7439                                 cached_state);
7440                /*
7441                 * We're concerned with the entire range that we're going to be
7442                 * doing DIO to, so we need to make sure there's no ordered
7443                 * extents in this range.
7444                 */
7445                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7446                                                     lockend - lockstart + 1);
7447
7448                /*
7449                 * We need to make sure there are no buffered pages in this
7450                 * range either, we could have raced between the invalidate in
7451                 * generic_file_direct_write and locking the extent.  The
7452                 * invalidate needs to happen so that reads after a write do not
7453                 * get stale data.
7454                 */
7455                if (!ordered &&
7456                    (!writing || !filemap_range_has_page(inode->i_mapping,
7457                                                         lockstart, lockend)))
7458                        break;
7459
7460                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7461                                     cached_state);
7462
7463                if (ordered) {
7464                        /*
7465                         * If we are doing a DIO read and the ordered extent we
7466                         * found is for a buffered write, we can not wait for it
7467                         * to complete and retry, because if we do so we can
7468                         * deadlock with concurrent buffered writes on page
7469                         * locks. This happens only if our DIO read covers more
7470                         * than one extent map, if at this point has already
7471                         * created an ordered extent for a previous extent map
7472                         * and locked its range in the inode's io tree, and a
7473                         * concurrent write against that previous extent map's
7474                         * range and this range started (we unlock the ranges
7475                         * in the io tree only when the bios complete and
7476                         * buffered writes always lock pages before attempting
7477                         * to lock range in the io tree).
7478                         */
7479                        if (writing ||
7480                            test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7481                                btrfs_start_ordered_extent(inode, ordered, 1);
7482                        else
7483                                ret = -ENOTBLK;
7484                        btrfs_put_ordered_extent(ordered);
7485                } else {
7486                        /*
7487                         * We could trigger writeback for this range (and wait
7488                         * for it to complete) and then invalidate the pages for
7489                         * this range (through invalidate_inode_pages2_range()),
7490                         * but that can lead us to a deadlock with a concurrent
7491                         * call to readpages() (a buffered read or a defrag call
7492                         * triggered a readahead) on a page lock due to an
7493                         * ordered dio extent we created before but did not have
7494                         * yet a corresponding bio submitted (whence it can not
7495                         * complete), which makes readpages() wait for that
7496                         * ordered extent to complete while holding a lock on
7497                         * that page.
7498                         */
7499                        ret = -ENOTBLK;
7500                }
7501
7502                if (ret)
7503                        break;
7504
7505                cond_resched();
7506        }
7507
7508        return ret;
7509}
7510
7511/* The callers of this must take lock_extent() */
7512static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7513                                       u64 orig_start, u64 block_start,
7514                                       u64 block_len, u64 orig_block_len,
7515                                       u64 ram_bytes, int compress_type,
7516                                       int type)
7517{
7518        struct extent_map_tree *em_tree;
7519        struct extent_map *em;
7520        struct btrfs_root *root = BTRFS_I(inode)->root;
7521        int ret;
7522
7523        ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7524               type == BTRFS_ORDERED_COMPRESSED ||
7525               type == BTRFS_ORDERED_NOCOW ||
7526               type == BTRFS_ORDERED_REGULAR);
7527
7528        em_tree = &BTRFS_I(inode)->extent_tree;
7529        em = alloc_extent_map();
7530        if (!em)
7531                return ERR_PTR(-ENOMEM);
7532
7533        em->start = start;
7534        em->orig_start = orig_start;
7535        em->len = len;
7536        em->block_len = block_len;
7537        em->block_start = block_start;
7538        em->bdev = root->fs_info->fs_devices->latest_bdev;
7539        em->orig_block_len = orig_block_len;
7540        em->ram_bytes = ram_bytes;
7541        em->generation = -1;
7542        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7543        if (type == BTRFS_ORDERED_PREALLOC) {
7544                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7545        } else if (type == BTRFS_ORDERED_COMPRESSED) {
7546                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7547                em->compress_type = compress_type;
7548        }
7549
7550        do {
7551                btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7552                                em->start + em->len - 1, 0);
7553                write_lock(&em_tree->lock);
7554                ret = add_extent_mapping(em_tree, em, 1);
7555                write_unlock(&em_tree->lock);
7556                /*
7557                 * The caller has taken lock_extent(), who could race with us
7558                 * to add em?
7559                 */
7560        } while (ret == -EEXIST);
7561
7562        if (ret) {
7563                free_extent_map(em);
7564                return ERR_PTR(ret);
7565        }
7566
7567        /* em got 2 refs now, callers needs to do free_extent_map once. */
7568        return em;
7569}
7570
7571static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7572                                   struct buffer_head *bh_result, int create)
7573{
7574        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7575        struct extent_map *em;
7576        struct extent_state *cached_state = NULL;
7577        struct btrfs_dio_data *dio_data = NULL;
7578        u64 start = iblock << inode->i_blkbits;
7579        u64 lockstart, lockend;
7580        u64 len = bh_result->b_size;
7581        int unlock_bits = EXTENT_LOCKED;
7582        int ret = 0;
7583
7584        if (create)
7585                unlock_bits |= EXTENT_DIRTY;
7586        else
7587                len = min_t(u64, len, fs_info->sectorsize);
7588
7589        lockstart = start;
7590        lockend = start + len - 1;
7591
7592        if (current->journal_info) {
7593                /*
7594                 * Need to pull our outstanding extents and set journal_info to NULL so
7595                 * that anything that needs to check if there's a transaction doesn't get
7596                 * confused.
7597                 */
7598                dio_data = current->journal_info;
7599                current->journal_info = NULL;
7600        }
7601
7602        /*
7603         * If this errors out it's because we couldn't invalidate pagecache for
7604         * this range and we need to fallback to buffered.
7605         */
7606        if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7607                               create)) {
7608                ret = -ENOTBLK;
7609                goto err;
7610        }
7611
7612        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7613        if (IS_ERR(em)) {
7614                ret = PTR_ERR(em);
7615                goto unlock_err;
7616        }
7617
7618        /*
7619         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7620         * io.  INLINE is special, and we could probably kludge it in here, but
7621         * it's still buffered so for safety lets just fall back to the generic
7622         * buffered path.
7623         *
7624         * For COMPRESSED we _have_ to read the entire extent in so we can
7625         * decompress it, so there will be buffering required no matter what we
7626         * do, so go ahead and fallback to buffered.
7627         *
7628         * We return -ENOTBLK because that's what makes DIO go ahead and go back
7629         * to buffered IO.  Don't blame me, this is the price we pay for using
7630         * the generic code.
7631         */
7632        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7633            em->block_start == EXTENT_MAP_INLINE) {
7634                free_extent_map(em);
7635                ret = -ENOTBLK;
7636                goto unlock_err;
7637        }
7638
7639        /* Just a good old fashioned hole, return */
7640        if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7641                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7642                free_extent_map(em);
7643                goto unlock_err;
7644        }
7645
7646        /*
7647         * We don't allocate a new extent in the following cases
7648         *
7649         * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7650         * existing extent.
7651         * 2) The extent is marked as PREALLOC.  We're good to go here and can
7652         * just use the extent.
7653         *
7654         */
7655        if (!create) {
7656                len = min(len, em->len - (start - em->start));
7657                lockstart = start + len;
7658                goto unlock;
7659        }
7660
7661        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7662            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7663             em->block_start != EXTENT_MAP_HOLE)) {
7664                int type;
7665                u64 block_start, orig_start, orig_block_len, ram_bytes;
7666
7667                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7668                        type = BTRFS_ORDERED_PREALLOC;
7669                else
7670                        type = BTRFS_ORDERED_NOCOW;
7671                len = min(len, em->len - (start - em->start));
7672                block_start = em->block_start + (start - em->start);
7673
7674                if (can_nocow_extent(inode, start, &len, &orig_start,
7675                                     &orig_block_len, &ram_bytes) == 1 &&
7676                    btrfs_inc_nocow_writers(fs_info, block_start)) {
7677                        struct extent_map *em2;
7678
7679                        em2 = btrfs_create_dio_extent(inode, start, len,
7680                                                      orig_start, block_start,
7681                                                      len, orig_block_len,
7682                                                      ram_bytes, type);
7683                        btrfs_dec_nocow_writers(fs_info, block_start);
7684                        if (type == BTRFS_ORDERED_PREALLOC) {
7685                                free_extent_map(em);
7686                                em = em2;
7687                        }
7688                        if (em2 && IS_ERR(em2)) {
7689                                ret = PTR_ERR(em2);
7690                                goto unlock_err;
7691                        }
7692                        /*
7693                         * For inode marked NODATACOW or extent marked PREALLOC,
7694                         * use the existing or preallocated extent, so does not
7695                         * need to adjust btrfs_space_info's bytes_may_use.
7696                         */
7697                        btrfs_free_reserved_data_space_noquota(inode,
7698                                        start, len);
7699                        goto unlock;
7700                }
7701        }
7702
7703        /*
7704         * this will cow the extent, reset the len in case we changed
7705         * it above
7706         */
7707        len = bh_result->b_size;
7708        free_extent_map(em);
7709        em = btrfs_new_extent_direct(inode, start, len);
7710        if (IS_ERR(em)) {
7711                ret = PTR_ERR(em);
7712                goto unlock_err;
7713        }
7714        len = min(len, em->len - (start - em->start));
7715unlock:
7716        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7717                inode->i_blkbits;
7718        bh_result->b_size = len;
7719        bh_result->b_bdev = em->bdev;
7720        set_buffer_mapped(bh_result);
7721        if (create) {
7722                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7723                        set_buffer_new(bh_result);
7724
7725                /*
7726                 * Need to update the i_size under the extent lock so buffered
7727                 * readers will get the updated i_size when we unlock.
7728                 */
7729                if (!dio_data->overwrite && start + len > i_size_read(inode))
7730                        i_size_write(inode, start + len);
7731
7732                WARN_ON(dio_data->reserve < len);
7733                dio_data->reserve -= len;
7734                dio_data->unsubmitted_oe_range_end = start + len;
7735                current->journal_info = dio_data;
7736        }
7737
7738        /*
7739         * In the case of write we need to clear and unlock the entire range,
7740         * in the case of read we need to unlock only the end area that we
7741         * aren't using if there is any left over space.
7742         */
7743        if (lockstart < lockend) {
7744                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7745                                 lockend, unlock_bits, 1, 0,
7746                                 &cached_state);
7747        } else {
7748                free_extent_state(cached_state);
7749        }
7750
7751        free_extent_map(em);
7752
7753        return 0;
7754
7755unlock_err:
7756        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7757                         unlock_bits, 1, 0, &cached_state);
7758err:
7759        if (dio_data)
7760                current->journal_info = dio_data;
7761        return ret;
7762}
7763
7764static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7765                                                 struct bio *bio,
7766                                                 int mirror_num)
7767{
7768        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7769        blk_status_t ret;
7770
7771        BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7772
7773        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7774        if (ret)
7775                return ret;
7776
7777        ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7778
7779        return ret;
7780}
7781
7782static int btrfs_check_dio_repairable(struct inode *inode,
7783                                      struct bio *failed_bio,
7784                                      struct io_failure_record *failrec,
7785                                      int failed_mirror)
7786{
7787        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7788        int num_copies;
7789
7790        num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7791        if (num_copies == 1) {
7792                /*
7793                 * we only have a single copy of the data, so don't bother with
7794                 * all the retry and error correction code that follows. no
7795                 * matter what the error is, it is very likely to persist.
7796                 */
7797                btrfs_debug(fs_info,
7798                        "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7799                        num_copies, failrec->this_mirror, failed_mirror);
7800                return 0;
7801        }
7802
7803        failrec->failed_mirror = failed_mirror;
7804        failrec->this_mirror++;
7805        if (failrec->this_mirror == failed_mirror)
7806                failrec->this_mirror++;
7807
7808        if (failrec->this_mirror > num_copies) {
7809                btrfs_debug(fs_info,
7810                        "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7811                        num_copies, failrec->this_mirror, failed_mirror);
7812                return 0;
7813        }
7814
7815        return 1;
7816}
7817
7818static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7819                                   struct page *page, unsigned int pgoff,
7820                                   u64 start, u64 end, int failed_mirror,
7821                                   bio_end_io_t *repair_endio, void *repair_arg)
7822{
7823        struct io_failure_record *failrec;
7824        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7825        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7826        struct bio *bio;
7827        int isector;
7828        unsigned int read_mode = 0;
7829        int segs;
7830        int ret;
7831        blk_status_t status;
7832        struct bio_vec bvec;
7833
7834        BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7835
7836        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7837        if (ret)
7838                return errno_to_blk_status(ret);
7839
7840        ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7841                                         failed_mirror);
7842        if (!ret) {
7843                free_io_failure(failure_tree, io_tree, failrec);
7844                return BLK_STS_IOERR;
7845        }
7846
7847        segs = bio_segments(failed_bio);
7848        bio_get_first_bvec(failed_bio, &bvec);
7849        if (segs > 1 ||
7850            (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7851                read_mode |= REQ_FAILFAST_DEV;
7852
7853        isector = start - btrfs_io_bio(failed_bio)->logical;
7854        isector >>= inode->i_sb->s_blocksize_bits;
7855        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7856                                pgoff, isector, repair_endio, repair_arg);
7857        bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7858
7859        btrfs_debug(BTRFS_I(inode)->root->fs_info,
7860                    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7861                    read_mode, failrec->this_mirror, failrec->in_validation);
7862
7863        status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7864        if (status) {
7865                free_io_failure(failure_tree, io_tree, failrec);
7866                bio_put(bio);
7867        }
7868
7869        return status;
7870}
7871
7872struct btrfs_retry_complete {
7873        struct completion done;
7874        struct inode *inode;
7875        u64 start;
7876        int uptodate;
7877};
7878
7879static void btrfs_retry_endio_nocsum(struct bio *bio)
7880{
7881        struct btrfs_retry_complete *done = bio->bi_private;
7882        struct inode *inode = done->inode;
7883        struct bio_vec *bvec;
7884        struct extent_io_tree *io_tree, *failure_tree;
7885        int i;
7886
7887        if (bio->bi_status)
7888                goto end;
7889
7890        ASSERT(bio->bi_vcnt == 1);
7891        io_tree = &BTRFS_I(inode)->io_tree;
7892        failure_tree = &BTRFS_I(inode)->io_failure_tree;
7893        ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7894
7895        done->uptodate = 1;
7896        ASSERT(!bio_flagged(bio, BIO_CLONED));
7897        bio_for_each_segment_all(bvec, bio, i)
7898                clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7899                                 io_tree, done->start, bvec->bv_page,
7900                                 btrfs_ino(BTRFS_I(inode)), 0);
7901end:
7902        complete(&done->done);
7903        bio_put(bio);
7904}
7905
7906static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7907                                                struct btrfs_io_bio *io_bio)
7908{
7909        struct btrfs_fs_info *fs_info;
7910        struct bio_vec bvec;
7911        struct bvec_iter iter;
7912        struct btrfs_retry_complete done;
7913        u64 start;
7914        unsigned int pgoff;
7915        u32 sectorsize;
7916        int nr_sectors;
7917        blk_status_t ret;
7918        blk_status_t err = BLK_STS_OK;
7919
7920        fs_info = BTRFS_I(inode)->root->fs_info;
7921        sectorsize = fs_info->sectorsize;
7922
7923        start = io_bio->logical;
7924        done.inode = inode;
7925        io_bio->bio.bi_iter = io_bio->iter;
7926
7927        bio_for_each_segment(bvec, &io_bio->bio, iter) {
7928                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7929                pgoff = bvec.bv_offset;
7930
7931next_block_or_try_again:
7932                done.uptodate = 0;
7933                done.start = start;
7934                init_completion(&done.done);
7935
7936                ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7937                                pgoff, start, start + sectorsize - 1,
7938                                io_bio->mirror_num,
7939                                btrfs_retry_endio_nocsum, &done);
7940                if (ret) {
7941                        err = ret;
7942                        goto next;
7943                }
7944
7945                wait_for_completion_io(&done.done);
7946
7947                if (!done.uptodate) {
7948                        /* We might have another mirror, so try again */
7949                        goto next_block_or_try_again;
7950                }
7951
7952next:
7953                start += sectorsize;
7954
7955                nr_sectors--;
7956                if (nr_sectors) {
7957                        pgoff += sectorsize;
7958                        ASSERT(pgoff < PAGE_SIZE);
7959                        goto next_block_or_try_again;
7960                }
7961        }
7962
7963        return err;
7964}
7965
7966static void btrfs_retry_endio(struct bio *bio)
7967{
7968        struct btrfs_retry_complete *done = bio->bi_private;
7969        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7970        struct extent_io_tree *io_tree, *failure_tree;
7971        struct inode *inode = done->inode;
7972        struct bio_vec *bvec;
7973        int uptodate;
7974        int ret;
7975        int i;
7976
7977        if (bio->bi_status)
7978                goto end;
7979
7980        uptodate = 1;
7981
7982        ASSERT(bio->bi_vcnt == 1);
7983        ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7984
7985        io_tree = &BTRFS_I(inode)->io_tree;
7986        failure_tree = &BTRFS_I(inode)->io_failure_tree;
7987
7988        ASSERT(!bio_flagged(bio, BIO_CLONED));
7989        bio_for_each_segment_all(bvec, bio, i) {
7990                ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7991                                             bvec->bv_offset, done->start,
7992                                             bvec->bv_len);
7993                if (!ret)
7994                        clean_io_failure(BTRFS_I(inode)->root->fs_info,
7995                                         failure_tree, io_tree, done->start,
7996                                         bvec->bv_page,
7997                                         btrfs_ino(BTRFS_I(inode)),
7998                                         bvec->bv_offset);
7999                else
8000                        uptodate = 0;
8001        }
8002
8003        done->uptodate = uptodate;
8004end:
8005        complete(&done->done);
8006        bio_put(bio);
8007}
8008
8009static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8010                struct btrfs_io_bio *io_bio, blk_status_t err)
8011{
8012        struct btrfs_fs_info *fs_info;
8013        struct bio_vec bvec;
8014        struct bvec_iter iter;
8015        struct btrfs_retry_complete done;
8016        u64 start;
8017        u64 offset = 0;
8018        u32 sectorsize;
8019        int nr_sectors;
8020        unsigned int pgoff;
8021        int csum_pos;
8022        bool uptodate = (err == 0);
8023        int ret;
8024        blk_status_t status;
8025
8026        fs_info = BTRFS_I(inode)->root->fs_info;
8027        sectorsize = fs_info->sectorsize;
8028
8029        err = BLK_STS_OK;
8030        start = io_bio->logical;
8031        done.inode = inode;
8032        io_bio->bio.bi_iter = io_bio->iter;
8033
8034        bio_for_each_segment(bvec, &io_bio->bio, iter) {
8035                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8036
8037                pgoff = bvec.bv_offset;
8038next_block:
8039                if (uptodate) {
8040                        csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8041                        ret = __readpage_endio_check(inode, io_bio, csum_pos,
8042                                        bvec.bv_page, pgoff, start, sectorsize);
8043                        if (likely(!ret))
8044                                goto next;
8045                }
8046try_again:
8047                done.uptodate = 0;
8048                done.start = start;
8049                init_completion(&done.done);
8050
8051                status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8052                                        pgoff, start, start + sectorsize - 1,
8053                                        io_bio->mirror_num, btrfs_retry_endio,
8054                                        &done);
8055                if (status) {
8056                        err = status;
8057                        goto next;
8058                }
8059
8060                wait_for_completion_io(&done.done);
8061
8062                if (!done.uptodate) {
8063                        /* We might have another mirror, so try again */
8064                        goto try_again;
8065                }
8066next:
8067                offset += sectorsize;
8068                start += sectorsize;
8069
8070                ASSERT(nr_sectors);
8071
8072                nr_sectors--;
8073                if (nr_sectors) {
8074                        pgoff += sectorsize;
8075                        ASSERT(pgoff < PAGE_SIZE);
8076                        goto next_block;
8077                }
8078        }
8079
8080        return err;
8081}
8082
8083static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8084                struct btrfs_io_bio *io_bio, blk_status_t err)
8085{
8086        bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8087
8088        if (skip_csum) {
8089                if (unlikely(err))
8090                        return __btrfs_correct_data_nocsum(inode, io_bio);
8091                else
8092                        return BLK_STS_OK;
8093        } else {
8094                return __btrfs_subio_endio_read(inode, io_bio, err);
8095        }
8096}
8097
8098static void btrfs_endio_direct_read(struct bio *bio)
8099{
8100        struct btrfs_dio_private *dip = bio->bi_private;
8101        struct inode *inode = dip->inode;
8102        struct bio *dio_bio;
8103        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8104        blk_status_t err = bio->bi_status;
8105
8106        if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8107                err = btrfs_subio_endio_read(inode, io_bio, err);
8108
8109        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8110                      dip->logical_offset + dip->bytes - 1);
8111        dio_bio = dip->dio_bio;
8112
8113        kfree(dip);
8114
8115        dio_bio->bi_status = err;
8116        dio_end_io(dio_bio);
8117
8118        if (io_bio->end_io)
8119                io_bio->end_io(io_bio, blk_status_to_errno(err));
8120        bio_put(bio);
8121}
8122
8123static void __endio_write_update_ordered(struct inode *inode,
8124                                         const u64 offset, const u64 bytes,
8125                                         const bool uptodate)
8126{
8127        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8128        struct btrfs_ordered_extent *ordered = NULL;
8129        struct btrfs_workqueue *wq;
8130        btrfs_work_func_t func;
8131        u64 ordered_offset = offset;
8132        u64 ordered_bytes = bytes;
8133        u64 last_offset;
8134        int ret;
8135
8136        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8137                wq = fs_info->endio_freespace_worker;
8138                func = btrfs_freespace_write_helper;
8139        } else {
8140                wq = fs_info->endio_write_workers;
8141                func = btrfs_endio_write_helper;
8142        }
8143
8144again:
8145        last_offset = ordered_offset;
8146        ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8147                                                   &ordered_offset,
8148                                                   ordered_bytes,
8149                                                   uptodate);
8150        if (!ret)
8151                goto out_test;
8152
8153        btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8154        btrfs_queue_work(wq, &ordered->work);
8155out_test:
8156        /*
8157         * If btrfs_dec_test_ordered_pending does not find any ordered extent
8158         * in the range, we can exit.
8159         */
8160        if (ordered_offset == last_offset)
8161                return;
8162        /*
8163         * our bio might span multiple ordered extents.  If we haven't
8164         * completed the accounting for the whole dio, go back and try again
8165         */
8166        if (ordered_offset < offset + bytes) {
8167                ordered_bytes = offset + bytes - ordered_offset;
8168                ordered = NULL;
8169                goto again;
8170        }
8171}
8172
8173static void btrfs_endio_direct_write(struct bio *bio)
8174{
8175        struct btrfs_dio_private *dip = bio->bi_private;
8176        struct bio *dio_bio = dip->dio_bio;
8177
8178        __endio_write_update_ordered(dip->inode, dip->logical_offset,
8179                                     dip->bytes, !bio->bi_status);
8180
8181        kfree(dip);
8182
8183        dio_bio->bi_status = bio->bi_status;
8184        dio_end_io(dio_bio);
8185        bio_put(bio);
8186}
8187
8188static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8189                                    struct bio *bio, u64 offset)
8190{
8191        struct inode *inode = private_data;
8192        blk_status_t ret;
8193        ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8194        BUG_ON(ret); /* -ENOMEM */
8195        return 0;
8196}
8197
8198static void btrfs_end_dio_bio(struct bio *bio)
8199{
8200        struct btrfs_dio_private *dip = bio->bi_private;
8201        blk_status_t err = bio->bi_status;
8202
8203        if (err)
8204                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8205                           "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8206                           btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8207                           bio->bi_opf,
8208                           (unsigned long long)bio->bi_iter.bi_sector,
8209                           bio->bi_iter.bi_size, err);
8210
8211        if (dip->subio_endio)
8212                err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8213
8214        if (err) {
8215                /*
8216                 * We want to perceive the errors flag being set before
8217                 * decrementing the reference count. We don't need a barrier
8218                 * since atomic operations with a return value are fully
8219                 * ordered as per atomic_t.txt
8220                 */
8221                dip->errors = 1;
8222        }
8223
8224        /* if there are more bios still pending for this dio, just exit */
8225        if (!atomic_dec_and_test(&dip->pending_bios))
8226                goto out;
8227
8228        if (dip->errors) {
8229                bio_io_error(dip->orig_bio);
8230        } else {
8231                dip->dio_bio->bi_status = BLK_STS_OK;
8232                bio_endio(dip->orig_bio);
8233        }
8234out:
8235        bio_put(bio);
8236}
8237
8238static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8239                                                 struct btrfs_dio_private *dip,
8240                                                 struct bio *bio,
8241                                                 u64 file_offset)
8242{
8243        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8244        struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8245        blk_status_t ret;
8246
8247        /*
8248         * We load all the csum data we need when we submit
8249         * the first bio to reduce the csum tree search and
8250         * contention.
8251         */
8252        if (dip->logical_offset == file_offset) {
8253                ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8254                                                file_offset);
8255                if (ret)
8256                        return ret;
8257        }
8258
8259        if (bio == dip->orig_bio)
8260                return 0;
8261
8262        file_offset -= dip->logical_offset;
8263        file_offset >>= inode->i_sb->s_blocksize_bits;
8264        io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8265
8266        return 0;
8267}
8268
8269static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8270                struct inode *inode, u64 file_offset, int async_submit)
8271{
8272        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8273        struct btrfs_dio_private *dip = bio->bi_private;
8274        bool write = bio_op(bio) == REQ_OP_WRITE;
8275        blk_status_t ret;
8276
8277        /* Check btrfs_submit_bio_hook() for rules about async submit. */
8278        if (async_submit)
8279                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8280
8281        if (!write) {
8282                ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8283                if (ret)
8284                        goto err;
8285        }
8286
8287        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8288                goto map;
8289
8290        if (write && async_submit) {
8291                ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8292                                          file_offset, inode,
8293                                          btrfs_submit_bio_start_direct_io,
8294                                          btrfs_submit_bio_done);
8295                goto err;
8296        } else if (write) {
8297                /*
8298                 * If we aren't doing async submit, calculate the csum of the
8299                 * bio now.
8300                 */
8301                ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8302                if (ret)
8303                        goto err;
8304        } else {
8305                ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8306                                                     file_offset);
8307                if (ret)
8308                        goto err;
8309        }
8310map:
8311        ret = btrfs_map_bio(fs_info, bio, 0, 0);
8312err:
8313        return ret;
8314}
8315
8316static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8317{
8318        struct inode *inode = dip->inode;
8319        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8320        struct bio *bio;
8321        struct bio *orig_bio = dip->orig_bio;
8322        u64 start_sector = orig_bio->bi_iter.bi_sector;
8323        u64 file_offset = dip->logical_offset;
8324        u64 map_length;
8325        int async_submit = 0;
8326        u64 submit_len;
8327        int clone_offset = 0;
8328        int clone_len;
8329        int ret;
8330        blk_status_t status;
8331
8332        map_length = orig_bio->bi_iter.bi_size;
8333        submit_len = map_length;
8334        ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8335                              &map_length, NULL, 0);
8336        if (ret)
8337                return -EIO;
8338
8339        if (map_length >= submit_len) {
8340                bio = orig_bio;
8341                dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8342                goto submit;
8343        }
8344
8345        /* async crcs make it difficult to collect full stripe writes. */
8346        if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8347                async_submit = 0;
8348        else
8349                async_submit = 1;
8350
8351        /* bio split */
8352        ASSERT(map_length <= INT_MAX);
8353        atomic_inc(&dip->pending_bios);
8354        do {
8355                clone_len = min_t(int, submit_len, map_length);
8356
8357                /*
8358                 * This will never fail as it's passing GPF_NOFS and
8359                 * the allocation is backed by btrfs_bioset.
8360                 */
8361                bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8362                                              clone_len);
8363                bio->bi_private = dip;
8364                bio->bi_end_io = btrfs_end_dio_bio;
8365                btrfs_io_bio(bio)->logical = file_offset;
8366
8367                ASSERT(submit_len >= clone_len);
8368                submit_len -= clone_len;
8369                if (submit_len == 0)
8370                        break;
8371
8372                /*
8373                 * Increase the count before we submit the bio so we know
8374                 * the end IO handler won't happen before we increase the
8375                 * count. Otherwise, the dip might get freed before we're
8376                 * done setting it up.
8377                 */
8378                atomic_inc(&dip->pending_bios);
8379
8380                status = btrfs_submit_dio_bio(bio, inode, file_offset,
8381                                                async_submit);
8382                if (status) {
8383                        bio_put(bio);
8384                        atomic_dec(&dip->pending_bios);
8385                        goto out_err;
8386                }
8387
8388                clone_offset += clone_len;
8389                start_sector += clone_len >> 9;
8390                file_offset += clone_len;
8391
8392                map_length = submit_len;
8393                ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8394                                      start_sector << 9, &map_length, NULL, 0);
8395                if (ret)
8396                        goto out_err;
8397        } while (submit_len > 0);
8398
8399submit:
8400        status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8401        if (!status)
8402                return 0;
8403
8404        bio_put(bio);
8405out_err:
8406        dip->errors = 1;
8407        /*
8408         * Before atomic variable goto zero, we must  make sure dip->errors is
8409         * perceived to be set. This ordering is ensured by the fact that an
8410         * atomic operations with a return value are fully ordered as per
8411         * atomic_t.txt
8412         */
8413        if (atomic_dec_and_test(&dip->pending_bios))
8414                bio_io_error(dip->orig_bio);
8415
8416        /* bio_end_io() will handle error, so we needn't return it */
8417        return 0;
8418}
8419
8420static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8421                                loff_t file_offset)
8422{
8423        struct btrfs_dio_private *dip = NULL;
8424        struct bio *bio = NULL;
8425        struct btrfs_io_bio *io_bio;
8426        bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8427        int ret = 0;
8428
8429        bio = btrfs_bio_clone(dio_bio);
8430
8431        dip = kzalloc(sizeof(*dip), GFP_NOFS);
8432        if (!dip) {
8433                ret = -ENOMEM;
8434                goto free_ordered;
8435        }
8436
8437        dip->private = dio_bio->bi_private;
8438        dip->inode = inode;
8439        dip->logical_offset = file_offset;
8440        dip->bytes = dio_bio->bi_iter.bi_size;
8441        dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8442        bio->bi_private = dip;
8443        dip->orig_bio = bio;
8444        dip->dio_bio = dio_bio;
8445        atomic_set(&dip->pending_bios, 0);
8446        io_bio = btrfs_io_bio(bio);
8447        io_bio->logical = file_offset;
8448
8449        if (write) {
8450                bio->bi_end_io = btrfs_endio_direct_write;
8451        } else {
8452                bio->bi_end_io = btrfs_endio_direct_read;
8453                dip->subio_endio = btrfs_subio_endio_read;
8454        }
8455
8456        /*
8457         * Reset the range for unsubmitted ordered extents (to a 0 length range)
8458         * even if we fail to submit a bio, because in such case we do the
8459         * corresponding error handling below and it must not be done a second
8460         * time by btrfs_direct_IO().
8461         */
8462        if (write) {
8463                struct btrfs_dio_data *dio_data = current->journal_info;
8464
8465                dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8466                        dip->bytes;
8467                dio_data->unsubmitted_oe_range_start =
8468                        dio_data->unsubmitted_oe_range_end;
8469        }
8470
8471        ret = btrfs_submit_direct_hook(dip);
8472        if (!ret)
8473                return;
8474
8475        if (io_bio->end_io)
8476                io_bio->end_io(io_bio, ret);
8477
8478free_ordered:
8479        /*
8480         * If we arrived here it means either we failed to submit the dip
8481         * or we either failed to clone the dio_bio or failed to allocate the
8482         * dip. If we cloned the dio_bio and allocated the dip, we can just
8483         * call bio_endio against our io_bio so that we get proper resource
8484         * cleanup if we fail to submit the dip, otherwise, we must do the
8485         * same as btrfs_endio_direct_[write|read] because we can't call these
8486         * callbacks - they require an allocated dip and a clone of dio_bio.
8487         */
8488        if (bio && dip) {
8489                bio_io_error(bio);
8490                /*
8491                 * The end io callbacks free our dip, do the final put on bio
8492                 * and all the cleanup and final put for dio_bio (through
8493                 * dio_end_io()).
8494                 */
8495                dip = NULL;
8496                bio = NULL;
8497        } else {
8498                if (write)
8499                        __endio_write_update_ordered(inode,
8500                                                file_offset,
8501                                                dio_bio->bi_iter.bi_size,
8502                                                false);
8503                else
8504                        unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8505                              file_offset + dio_bio->bi_iter.bi_size - 1);
8506
8507                dio_bio->bi_status = BLK_STS_IOERR;
8508                /*
8509                 * Releases and cleans up our dio_bio, no need to bio_put()
8510                 * nor bio_endio()/bio_io_error() against dio_bio.
8511                 */
8512                dio_end_io(dio_bio);
8513        }
8514        if (bio)
8515                bio_put(bio);
8516        kfree(dip);
8517}
8518
8519static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8520                               const struct iov_iter *iter, loff_t offset)
8521{
8522        int seg;
8523        int i;
8524        unsigned int blocksize_mask = fs_info->sectorsize - 1;
8525        ssize_t retval = -EINVAL;
8526
8527        if (offset & blocksize_mask)
8528                goto out;
8529
8530        if (iov_iter_alignment(iter) & blocksize_mask)
8531                goto out;
8532
8533        /* If this is a write we don't need to check anymore */
8534        if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8535                return 0;
8536        /*
8537         * Check to make sure we don't have duplicate iov_base's in this
8538         * iovec, if so return EINVAL, otherwise we'll get csum errors
8539         * when reading back.
8540         */
8541        for (seg = 0; seg < iter->nr_segs; seg++) {
8542                for (i = seg + 1; i < iter->nr_segs; i++) {
8543                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8544                                goto out;
8545                }
8546        }
8547        retval = 0;
8548out:
8549        return retval;
8550}
8551
8552static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8553{
8554        struct file *file = iocb->ki_filp;
8555        struct inode *inode = file->f_mapping->host;
8556        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8557        struct btrfs_dio_data dio_data = { 0 };
8558        struct extent_changeset *data_reserved = NULL;
8559        loff_t offset = iocb->ki_pos;
8560        size_t count = 0;
8561        int flags = 0;
8562        bool wakeup = true;
8563        bool relock = false;
8564        ssize_t ret;
8565
8566        if (check_direct_IO(fs_info, iter, offset))
8567                return 0;
8568
8569        inode_dio_begin(inode);
8570
8571        /*
8572         * The generic stuff only does filemap_write_and_wait_range, which
8573         * isn't enough if we've written compressed pages to this area, so
8574         * we need to flush the dirty pages again to make absolutely sure
8575         * that any outstanding dirty pages are on disk.
8576         */
8577        count = iov_iter_count(iter);
8578        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8579                     &BTRFS_I(inode)->runtime_flags))
8580                filemap_fdatawrite_range(inode->i_mapping, offset,
8581                                         offset + count - 1);
8582
8583        if (iov_iter_rw(iter) == WRITE) {
8584                /*
8585                 * If the write DIO is beyond the EOF, we need update
8586                 * the isize, but it is protected by i_mutex. So we can
8587                 * not unlock the i_mutex at this case.
8588                 */
8589                if (offset + count <= inode->i_size) {
8590                        dio_data.overwrite = 1;
8591                        inode_unlock(inode);
8592                        relock = true;
8593                } else if (iocb->ki_flags & IOCB_NOWAIT) {
8594                        ret = -EAGAIN;
8595                        goto out;
8596                }
8597                ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8598                                                   offset, count);
8599                if (ret)
8600                        goto out;
8601
8602                /*
8603                 * We need to know how many extents we reserved so that we can
8604                 * do the accounting properly if we go over the number we
8605                 * originally calculated.  Abuse current->journal_info for this.
8606                 */
8607                dio_data.reserve = round_up(count,
8608                                            fs_info->sectorsize);
8609                dio_data.unsubmitted_oe_range_start = (u64)offset;
8610                dio_data.unsubmitted_oe_range_end = (u64)offset;
8611                current->journal_info = &dio_data;
8612                down_read(&BTRFS_I(inode)->dio_sem);
8613        } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8614                                     &BTRFS_I(inode)->runtime_flags)) {
8615                inode_dio_end(inode);
8616                flags = DIO_LOCKING | DIO_SKIP_HOLES;
8617                wakeup = false;
8618        }
8619
8620        ret = __blockdev_direct_IO(iocb, inode,
8621                                   fs_info->fs_devices->latest_bdev,
8622                                   iter, btrfs_get_blocks_direct, NULL,
8623                                   btrfs_submit_direct, flags);
8624        if (iov_iter_rw(iter) == WRITE) {
8625                up_read(&BTRFS_I(inode)->dio_sem);
8626                current->journal_info = NULL;
8627                if (ret < 0 && ret != -EIOCBQUEUED) {
8628                        if (dio_data.reserve)
8629                                btrfs_delalloc_release_space(inode, data_reserved,
8630                                        offset, dio_data.reserve, true);
8631                        /*
8632                         * On error we might have left some ordered extents
8633                         * without submitting corresponding bios for them, so
8634                         * cleanup them up to avoid other tasks getting them
8635                         * and waiting for them to complete forever.
8636                         */
8637                        if (dio_data.unsubmitted_oe_range_start <
8638                            dio_data.unsubmitted_oe_range_end)
8639                                __endio_write_update_ordered(inode,
8640                                        dio_data.unsubmitted_oe_range_start,
8641                                        dio_data.unsubmitted_oe_range_end -
8642                                        dio_data.unsubmitted_oe_range_start,
8643                                        false);
8644                } else if (ret >= 0 && (size_t)ret < count)
8645                        btrfs_delalloc_release_space(inode, data_reserved,
8646                                        offset, count - (size_t)ret, true);
8647                btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8648        }
8649out:
8650        if (wakeup)
8651                inode_dio_end(inode);
8652        if (relock)
8653                inode_lock(inode);
8654
8655        extent_changeset_free(data_reserved);
8656        return ret;
8657}
8658
8659#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8660
8661static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8662                __u64 start, __u64 len)
8663{
8664        int     ret;
8665
8666        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8667        if (ret)
8668                return ret;
8669
8670        return extent_fiemap(inode, fieinfo, start, len);
8671}
8672
8673int btrfs_readpage(struct file *file, struct page *page)
8674{
8675        struct extent_io_tree *tree;
8676        tree = &BTRFS_I(page->mapping->host)->io_tree;
8677        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8678}
8679
8680static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8681{
8682        struct inode *inode = page->mapping->host;
8683        int ret;
8684
8685        if (current->flags & PF_MEMALLOC) {
8686                redirty_page_for_writepage(wbc, page);
8687                unlock_page(page);
8688                return 0;
8689        }
8690
8691        /*
8692         * If we are under memory pressure we will call this directly from the
8693         * VM, we need to make sure we have the inode referenced for the ordered
8694         * extent.  If not just return like we didn't do anything.
8695         */
8696        if (!igrab(inode)) {
8697                redirty_page_for_writepage(wbc, page);
8698                return AOP_WRITEPAGE_ACTIVATE;
8699        }
8700        ret = extent_write_full_page(page, wbc);
8701        btrfs_add_delayed_iput(inode);
8702        return ret;
8703}
8704
8705static int btrfs_writepages(struct address_space *mapping,
8706                            struct writeback_control *wbc)
8707{
8708        struct extent_io_tree *tree;
8709
8710        tree = &BTRFS_I(mapping->host)->io_tree;
8711        return extent_writepages(tree, mapping, wbc);
8712}
8713
8714static int
8715btrfs_readpages(struct file *file, struct address_space *mapping,
8716                struct list_head *pages, unsigned nr_pages)
8717{
8718        struct extent_io_tree *tree;
8719        tree = &BTRFS_I(mapping->host)->io_tree;
8720        return extent_readpages(tree, mapping, pages, nr_pages);
8721}
8722static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8723{
8724        struct extent_io_tree *tree;
8725        struct extent_map_tree *map;
8726        int ret;
8727
8728        tree = &BTRFS_I(page->mapping->host)->io_tree;
8729        map = &BTRFS_I(page->mapping->host)->extent_tree;
8730        ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8731        if (ret == 1) {
8732                ClearPagePrivate(page);
8733                set_page_private(page, 0);
8734                put_page(page);
8735        }
8736        return ret;
8737}
8738
8739static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8740{
8741        if (PageWriteback(page) || PageDirty(page))
8742                return 0;
8743        return __btrfs_releasepage(page, gfp_flags);
8744}
8745
8746static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8747                                 unsigned int length)
8748{
8749        struct inode *inode = page->mapping->host;
8750        struct extent_io_tree *tree;
8751        struct btrfs_ordered_extent *ordered;
8752        struct extent_state *cached_state = NULL;
8753        u64 page_start = page_offset(page);
8754        u64 page_end = page_start + PAGE_SIZE - 1;
8755        u64 start;
8756        u64 end;
8757        int inode_evicting = inode->i_state & I_FREEING;
8758
8759        /*
8760         * we have the page locked, so new writeback can't start,
8761         * and the dirty bit won't be cleared while we are here.
8762         *
8763         * Wait for IO on this page so that we can safely clear
8764         * the PagePrivate2 bit and do ordered accounting
8765         */
8766        wait_on_page_writeback(page);
8767
8768        tree = &BTRFS_I(inode)->io_tree;
8769        if (offset) {
8770                btrfs_releasepage(page, GFP_NOFS);
8771                return;
8772        }
8773
8774        if (!inode_evicting)
8775                lock_extent_bits(tree, page_start, page_end, &cached_state);
8776again:
8777        start = page_start;
8778        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8779                                        page_end - start + 1);
8780        if (ordered) {
8781                end = min(page_end, ordered->file_offset + ordered->len - 1);
8782                /*
8783                 * IO on this page will never be started, so we need
8784                 * to account for any ordered extents now
8785                 */
8786                if (!inode_evicting)
8787                        clear_extent_bit(tree, start, end,
8788                                         EXTENT_DIRTY | EXTENT_DELALLOC |
8789                                         EXTENT_DELALLOC_NEW |
8790                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8791                                         EXTENT_DEFRAG, 1, 0, &cached_state);
8792                /*
8793                 * whoever cleared the private bit is responsible
8794                 * for the finish_ordered_io
8795                 */
8796                if (TestClearPagePrivate2(page)) {
8797                        struct btrfs_ordered_inode_tree *tree;
8798                        u64 new_len;
8799
8800                        tree = &BTRFS_I(inode)->ordered_tree;
8801
8802                        spin_lock_irq(&tree->lock);
8803                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8804                        new_len = start - ordered->file_offset;
8805                        if (new_len < ordered->truncated_len)
8806                                ordered->truncated_len = new_len;
8807                        spin_unlock_irq(&tree->lock);
8808
8809                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
8810                                                           start,
8811                                                           end - start + 1, 1))
8812                                btrfs_finish_ordered_io(ordered);
8813                }
8814                btrfs_put_ordered_extent(ordered);
8815                if (!inode_evicting) {
8816                        cached_state = NULL;
8817                        lock_extent_bits(tree, start, end,
8818                                         &cached_state);
8819                }
8820
8821                start = end + 1;
8822                if (start < page_end)
8823                        goto again;
8824        }
8825
8826        /*
8827         * Qgroup reserved space handler
8828         * Page here will be either
8829         * 1) Already written to disk
8830         *    In this case, its reserved space is released from data rsv map
8831         *    and will be freed by delayed_ref handler finally.
8832         *    So even we call qgroup_free_data(), it won't decrease reserved
8833         *    space.
8834         * 2) Not written to disk
8835         *    This means the reserved space should be freed here. However,
8836         *    if a truncate invalidates the page (by clearing PageDirty)
8837         *    and the page is accounted for while allocating extent
8838         *    in btrfs_check_data_free_space() we let delayed_ref to
8839         *    free the entire extent.
8840         */
8841        if (PageDirty(page))
8842                btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8843        if (!inode_evicting) {
8844                clear_extent_bit(tree, page_start, page_end,
8845                                 EXTENT_LOCKED | EXTENT_DIRTY |
8846                                 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8847                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8848                                 &cached_state);
8849
8850                __btrfs_releasepage(page, GFP_NOFS);
8851        }
8852
8853        ClearPageChecked(page);
8854        if (PagePrivate(page)) {
8855                ClearPagePrivate(page);
8856                set_page_private(page, 0);
8857                put_page(page);
8858        }
8859}
8860
8861/*
8862 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8863 * called from a page fault handler when a page is first dirtied. Hence we must
8864 * be careful to check for EOF conditions here. We set the page up correctly
8865 * for a written page which means we get ENOSPC checking when writing into
8866 * holes and correct delalloc and unwritten extent mapping on filesystems that
8867 * support these features.
8868 *
8869 * We are not allowed to take the i_mutex here so we have to play games to
8870 * protect against truncate races as the page could now be beyond EOF.  Because
8871 * vmtruncate() writes the inode size before removing pages, once we have the
8872 * page lock we can determine safely if the page is beyond EOF. If it is not
8873 * beyond EOF, then the page is guaranteed safe against truncation until we
8874 * unlock the page.
8875 */
8876int btrfs_page_mkwrite(struct vm_fault *vmf)
8877{
8878        struct page *page = vmf->page;
8879        struct inode *inode = file_inode(vmf->vma->vm_file);
8880        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8881        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8882        struct btrfs_ordered_extent *ordered;
8883        struct extent_state *cached_state = NULL;
8884        struct extent_changeset *data_reserved = NULL;
8885        char *kaddr;
8886        unsigned long zero_start;
8887        loff_t size;
8888        int ret;
8889        int reserved = 0;
8890        u64 reserved_space;
8891        u64 page_start;
8892        u64 page_end;
8893        u64 end;
8894
8895        reserved_space = PAGE_SIZE;
8896
8897        sb_start_pagefault(inode->i_sb);
8898        page_start = page_offset(page);
8899        page_end = page_start + PAGE_SIZE - 1;
8900        end = page_end;
8901
8902        /*
8903         * Reserving delalloc space after obtaining the page lock can lead to
8904         * deadlock. For example, if a dirty page is locked by this function
8905         * and the call to btrfs_delalloc_reserve_space() ends up triggering
8906         * dirty page write out, then the btrfs_writepage() function could
8907         * end up waiting indefinitely to get a lock on the page currently
8908         * being processed by btrfs_page_mkwrite() function.
8909         */
8910        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8911                                           reserved_space);
8912        if (!ret) {
8913                ret = file_update_time(vmf->vma->vm_file);
8914                reserved = 1;
8915        }
8916        if (ret) {
8917                if (ret == -ENOMEM)
8918                        ret = VM_FAULT_OOM;
8919                else /* -ENOSPC, -EIO, etc */
8920                        ret = VM_FAULT_SIGBUS;
8921                if (reserved)
8922                        goto out;
8923                goto out_noreserve;
8924        }
8925
8926        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8927again:
8928        lock_page(page);
8929        size = i_size_read(inode);
8930
8931        if ((page->mapping != inode->i_mapping) ||
8932            (page_start >= size)) {
8933                /* page got truncated out from underneath us */
8934                goto out_unlock;
8935        }
8936        wait_on_page_writeback(page);
8937
8938        lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8939        set_page_extent_mapped(page);
8940
8941        /*
8942         * we can't set the delalloc bits if there are pending ordered
8943         * extents.  Drop our locks and wait for them to finish
8944         */
8945        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8946                        PAGE_SIZE);
8947        if (ordered) {
8948                unlock_extent_cached(io_tree, page_start, page_end,
8949                                     &cached_state);
8950                unlock_page(page);
8951                btrfs_start_ordered_extent(inode, ordered, 1);
8952                btrfs_put_ordered_extent(ordered);
8953                goto again;
8954        }
8955
8956        if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8957                reserved_space = round_up(size - page_start,
8958                                          fs_info->sectorsize);
8959                if (reserved_space < PAGE_SIZE) {
8960                        end = page_start + reserved_space - 1;
8961                        btrfs_delalloc_release_space(inode, data_reserved,
8962                                        page_start, PAGE_SIZE - reserved_space,
8963                                        true);
8964                }
8965        }
8966
8967        /*
8968         * page_mkwrite gets called when the page is firstly dirtied after it's
8969         * faulted in, but write(2) could also dirty a page and set delalloc
8970         * bits, thus in this case for space account reason, we still need to
8971         * clear any delalloc bits within this page range since we have to
8972         * reserve data&meta space before lock_page() (see above comments).
8973         */
8974        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8975                          EXTENT_DIRTY | EXTENT_DELALLOC |
8976                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8977                          0, 0, &cached_state);
8978
8979        ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8980                                        &cached_state, 0);
8981        if (ret) {
8982                unlock_extent_cached(io_tree, page_start, page_end,
8983                                     &cached_state);
8984                ret = VM_FAULT_SIGBUS;
8985                goto out_unlock;
8986        }
8987        ret = 0;
8988
8989        /* page is wholly or partially inside EOF */
8990        if (page_start + PAGE_SIZE > size)
8991                zero_start = size & ~PAGE_MASK;
8992        else
8993                zero_start = PAGE_SIZE;
8994
8995        if (zero_start != PAGE_SIZE) {
8996                kaddr = kmap(page);
8997                memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8998                flush_dcache_page(page);
8999                kunmap(page);
9000        }
9001        ClearPageChecked(page);
9002        set_page_dirty(page);
9003        SetPageUptodate(page);
9004
9005        BTRFS_I(inode)->last_trans = fs_info->generation;
9006        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9007        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9008
9009        unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9010
9011out_unlock:
9012        if (!ret) {
9013                btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9014                sb_end_pagefault(inode->i_sb);
9015                extent_changeset_free(data_reserved);
9016                return VM_FAULT_LOCKED;
9017        }
9018        unlock_page(page);
9019out:
9020        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9021        btrfs_delalloc_release_space(inode, data_reserved, page_start,
9022                                     reserved_space, (ret != 0));
9023out_noreserve:
9024        sb_end_pagefault(inode->i_sb);
9025        extent_changeset_free(data_reserved);
9026        return ret;
9027}
9028
9029static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9030{
9031        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9032        struct btrfs_root *root = BTRFS_I(inode)->root;
9033        struct btrfs_block_rsv *rsv;
9034        int ret = 0;
9035        int err = 0;
9036        struct btrfs_trans_handle *trans;
9037        u64 mask = fs_info->sectorsize - 1;
9038        u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9039
9040        if (!skip_writeback) {
9041                ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9042                                               (u64)-1);
9043                if (ret)
9044                        return ret;
9045        }
9046
9047        /*
9048         * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9049         * 3 things going on here
9050         *
9051         * 1) We need to reserve space for our orphan item and the space to
9052         * delete our orphan item.  Lord knows we don't want to have a dangling
9053         * orphan item because we didn't reserve space to remove it.
9054         *
9055         * 2) We need to reserve space to update our inode.
9056         *
9057         * 3) We need to have something to cache all the space that is going to
9058         * be free'd up by the truncate operation, but also have some slack
9059         * space reserved in case it uses space during the truncate (thank you
9060         * very much snapshotting).
9061         *
9062         * And we need these to all be separate.  The fact is we can use a lot of
9063         * space doing the truncate, and we have no earthly idea how much space
9064         * we will use, so we need the truncate reservation to be separate so it
9065         * doesn't end up using space reserved for updating the inode or
9066         * removing the orphan item.  We also need to be able to stop the
9067         * transaction and start a new one, which means we need to be able to
9068         * update the inode several times, and we have no idea of knowing how
9069         * many times that will be, so we can't just reserve 1 item for the
9070         * entirety of the operation, so that has to be done separately as well.
9071         * Then there is the orphan item, which does indeed need to be held on
9072         * to for the whole operation, and we need nobody to touch this reserved
9073         * space except the orphan code.
9074         *
9075         * So that leaves us with
9076         *
9077         * 1) root->orphan_block_rsv - for the orphan deletion.
9078         * 2) rsv - for the truncate reservation, which we will steal from the
9079         * transaction reservation.
9080         * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9081         * updating the inode.
9082         */
9083        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9084        if (!rsv)
9085                return -ENOMEM;
9086        rsv->size = min_size;
9087        rsv->failfast = 1;
9088
9089        /*
9090         * 1 for the truncate slack space
9091         * 1 for updating the inode.
9092         */
9093        trans = btrfs_start_transaction(root, 2);
9094        if (IS_ERR(trans)) {
9095                err = PTR_ERR(trans);
9096                goto out;
9097        }
9098
9099        /* Migrate the slack space for the truncate to our reserve */
9100        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9101                                      min_size, 0);
9102        BUG_ON(ret);
9103
9104        /*
9105         * So if we truncate and then write and fsync we normally would just
9106         * write the extents that changed, which is a problem if we need to
9107         * first truncate that entire inode.  So set this flag so we write out
9108         * all of the extents in the inode to the sync log so we're completely
9109         * safe.
9110         */
9111        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9112        trans->block_rsv = rsv;
9113
9114        while (1) {
9115                ret = btrfs_truncate_inode_items(trans, root, inode,
9116                                                 inode->i_size,
9117                                                 BTRFS_EXTENT_DATA_KEY);
9118                trans->block_rsv = &fs_info->trans_block_rsv;
9119                if (ret != -ENOSPC && ret != -EAGAIN) {
9120                        if (ret < 0)
9121                                err = ret;
9122                        break;
9123                }
9124
9125                ret = btrfs_update_inode(trans, root, inode);
9126                if (ret) {
9127                        err = ret;
9128                        break;
9129                }
9130
9131                btrfs_end_transaction(trans);
9132                btrfs_btree_balance_dirty(fs_info);
9133
9134                trans = btrfs_start_transaction(root, 2);
9135                if (IS_ERR(trans)) {
9136                        ret = err = PTR_ERR(trans);
9137                        trans = NULL;
9138                        break;
9139                }
9140
9141                btrfs_block_rsv_release(fs_info, rsv, -1);
9142                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9143                                              rsv, min_size, 0);
9144                BUG_ON(ret);    /* shouldn't happen */
9145                trans->block_rsv = rsv;
9146        }
9147
9148        /*
9149         * We can't call btrfs_truncate_block inside a trans handle as we could
9150         * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9151         * we've truncated everything except the last little bit, and can do
9152         * btrfs_truncate_block and then update the disk_i_size.
9153         */
9154        if (ret == NEED_TRUNCATE_BLOCK) {
9155                btrfs_end_transaction(trans);
9156                btrfs_btree_balance_dirty(fs_info);
9157
9158                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9159                if (ret)
9160                        goto out;
9161                trans = btrfs_start_transaction(root, 1);
9162                if (IS_ERR(trans)) {
9163                        ret = PTR_ERR(trans);
9164                        goto out;
9165                }
9166                btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9167        }
9168
9169        if (ret == 0 && inode->i_nlink > 0) {
9170                trans->block_rsv = root->orphan_block_rsv;
9171                ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9172                if (ret)
9173                        err = ret;
9174        }
9175
9176        if (trans) {
9177                trans->block_rsv = &fs_info->trans_block_rsv;
9178                ret = btrfs_update_inode(trans, root, inode);
9179                if (ret && !err)
9180                        err = ret;
9181
9182                ret = btrfs_end_transaction(trans);
9183                btrfs_btree_balance_dirty(fs_info);
9184        }
9185out:
9186        btrfs_free_block_rsv(fs_info, rsv);
9187
9188        if (ret && !err)
9189                err = ret;
9190
9191        return err;
9192}
9193
9194/*
9195 * create a new subvolume directory/inode (helper for the ioctl).
9196 */
9197int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9198                             struct btrfs_root *new_root,
9199                             struct btrfs_root *parent_root,
9200                             u64 new_dirid)
9201{
9202        struct inode *inode;
9203        int err;
9204        u64 index = 0;
9205
9206        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9207                                new_dirid, new_dirid,
9208                                S_IFDIR | (~current_umask() & S_IRWXUGO),
9209                                &index);
9210        if (IS_ERR(inode))
9211                return PTR_ERR(inode);
9212        inode->i_op = &btrfs_dir_inode_operations;
9213        inode->i_fop = &btrfs_dir_file_operations;
9214
9215        set_nlink(inode, 1);
9216        btrfs_i_size_write(BTRFS_I(inode), 0);
9217        unlock_new_inode(inode);
9218
9219        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9220        if (err)
9221                btrfs_err(new_root->fs_info,
9222                          "error inheriting subvolume %llu properties: %d",
9223                          new_root->root_key.objectid, err);
9224
9225        err = btrfs_update_inode(trans, new_root, inode);
9226
9227        iput(inode);
9228        return err;
9229}
9230
9231struct inode *btrfs_alloc_inode(struct super_block *sb)
9232{
9233        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9234        struct btrfs_inode *ei;
9235        struct inode *inode;
9236
9237        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9238        if (!ei)
9239                return NULL;
9240
9241        ei->root = NULL;
9242        ei->generation = 0;
9243        ei->last_trans = 0;
9244        ei->last_sub_trans = 0;
9245        ei->logged_trans = 0;
9246        ei->delalloc_bytes = 0;
9247        ei->new_delalloc_bytes = 0;
9248        ei->defrag_bytes = 0;
9249        ei->disk_i_size = 0;
9250        ei->flags = 0;
9251        ei->csum_bytes = 0;
9252        ei->index_cnt = (u64)-1;
9253        ei->dir_index = 0;
9254        ei->last_unlink_trans = 0;
9255        ei->last_log_commit = 0;
9256
9257        spin_lock_init(&ei->lock);
9258        ei->outstanding_extents = 0;
9259        if (sb->s_magic != BTRFS_TEST_MAGIC)
9260                btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9261                                              BTRFS_BLOCK_RSV_DELALLOC);
9262        ei->runtime_flags = 0;
9263        ei->prop_compress = BTRFS_COMPRESS_NONE;
9264        ei->defrag_compress = BTRFS_COMPRESS_NONE;
9265
9266        ei->delayed_node = NULL;
9267
9268        ei->i_otime.tv_sec = 0;
9269        ei->i_otime.tv_nsec = 0;
9270
9271        inode = &ei->vfs_inode;
9272        extent_map_tree_init(&ei->extent_tree);
9273        extent_io_tree_init(&ei->io_tree, inode);
9274        extent_io_tree_init(&ei->io_failure_tree, inode);
9275        ei->io_tree.track_uptodate = 1;
9276        ei->io_failure_tree.track_uptodate = 1;
9277        atomic_set(&ei->sync_writers, 0);
9278        mutex_init(&ei->log_mutex);
9279        mutex_init(&ei->delalloc_mutex);
9280        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9281        INIT_LIST_HEAD(&ei->delalloc_inodes);
9282        INIT_LIST_HEAD(&ei->delayed_iput);
9283        RB_CLEAR_NODE(&ei->rb_node);
9284        init_rwsem(&ei->dio_sem);
9285
9286        return inode;
9287}
9288
9289#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9290void btrfs_test_destroy_inode(struct inode *inode)
9291{
9292        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9293        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9294}
9295#endif
9296
9297static void btrfs_i_callback(struct rcu_head *head)
9298{
9299        struct inode *inode = container_of(head, struct inode, i_rcu);
9300        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9301}
9302
9303void btrfs_destroy_inode(struct inode *inode)
9304{
9305        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9306        struct btrfs_ordered_extent *ordered;
9307        struct btrfs_root *root = BTRFS_I(inode)->root;
9308
9309        WARN_ON(!hlist_empty(&inode->i_dentry));
9310        WARN_ON(inode->i_data.nrpages);
9311        WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9312        WARN_ON(BTRFS_I(inode)->block_rsv.size);
9313        WARN_ON(BTRFS_I(inode)->outstanding_extents);
9314        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9315        WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9316        WARN_ON(BTRFS_I(inode)->csum_bytes);
9317        WARN_ON(BTRFS_I(inode)->defrag_bytes);
9318
9319        /*
9320         * This can happen where we create an inode, but somebody else also
9321         * created the same inode and we need to destroy the one we already
9322         * created.
9323         */
9324        if (!root)
9325                goto free;
9326
9327        if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9328                     &BTRFS_I(inode)->runtime_flags)) {
9329                btrfs_info(fs_info, "inode %llu still on the orphan list",
9330                           btrfs_ino(BTRFS_I(inode)));
9331                atomic_dec(&root->orphan_inodes);
9332        }
9333
9334        while (1) {
9335                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9336                if (!ordered)
9337                        break;
9338                else {
9339                        btrfs_err(fs_info,
9340                                  "found ordered extent %llu %llu on inode cleanup",
9341                                  ordered->file_offset, ordered->len);
9342                        btrfs_remove_ordered_extent(inode, ordered);
9343                        btrfs_put_ordered_extent(ordered);
9344                        btrfs_put_ordered_extent(ordered);
9345                }
9346        }
9347        btrfs_qgroup_check_reserved_leak(inode);
9348        inode_tree_del(inode);
9349        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9350free:
9351        call_rcu(&inode->i_rcu, btrfs_i_callback);
9352}
9353
9354int btrfs_drop_inode(struct inode *inode)
9355{
9356        struct btrfs_root *root = BTRFS_I(inode)->root;
9357
9358        if (root == NULL)
9359                return 1;
9360
9361        /* the snap/subvol tree is on deleting */
9362        if (btrfs_root_refs(&root->root_item) == 0)
9363                return 1;
9364        else
9365                return generic_drop_inode(inode);
9366}
9367
9368static void init_once(void *foo)
9369{
9370        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9371
9372        inode_init_once(&ei->vfs_inode);
9373}
9374
9375void __cold btrfs_destroy_cachep(void)
9376{
9377        /*
9378         * Make sure all delayed rcu free inodes are flushed before we
9379         * destroy cache.
9380         */
9381        rcu_barrier();
9382        kmem_cache_destroy(btrfs_inode_cachep);
9383        kmem_cache_destroy(btrfs_trans_handle_cachep);
9384        kmem_cache_destroy(btrfs_path_cachep);
9385        kmem_cache_destroy(btrfs_free_space_cachep);
9386}
9387
9388int __init btrfs_init_cachep(void)
9389{
9390        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9391                        sizeof(struct btrfs_inode), 0,
9392                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9393                        init_once);
9394        if (!btrfs_inode_cachep)
9395                goto fail;
9396
9397        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9398                        sizeof(struct btrfs_trans_handle), 0,
9399                        SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9400        if (!btrfs_trans_handle_cachep)
9401                goto fail;
9402
9403        btrfs_path_cachep = kmem_cache_create("btrfs_path",
9404                        sizeof(struct btrfs_path), 0,
9405                        SLAB_MEM_SPREAD, NULL);
9406        if (!btrfs_path_cachep)
9407                goto fail;
9408
9409        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9410                        sizeof(struct btrfs_free_space), 0,
9411                        SLAB_MEM_SPREAD, NULL);
9412        if (!btrfs_free_space_cachep)
9413                goto fail;
9414
9415        return 0;
9416fail:
9417        btrfs_destroy_cachep();
9418        return -ENOMEM;
9419}
9420
9421static int btrfs_getattr(const struct path *path, struct kstat *stat,
9422                         u32 request_mask, unsigned int flags)
9423{
9424        u64 delalloc_bytes;
9425        struct inode *inode = d_inode(path->dentry);
9426        u32 blocksize = inode->i_sb->s_blocksize;
9427        u32 bi_flags = BTRFS_I(inode)->flags;
9428
9429        stat->result_mask |= STATX_BTIME;
9430        stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9431        stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9432        if (bi_flags & BTRFS_INODE_APPEND)
9433                stat->attributes |= STATX_ATTR_APPEND;
9434        if (bi_flags & BTRFS_INODE_COMPRESS)
9435                stat->attributes |= STATX_ATTR_COMPRESSED;
9436        if (bi_flags & BTRFS_INODE_IMMUTABLE)
9437                stat->attributes |= STATX_ATTR_IMMUTABLE;
9438        if (bi_flags & BTRFS_INODE_NODUMP)
9439                stat->attributes |= STATX_ATTR_NODUMP;
9440
9441        stat->attributes_mask |= (STATX_ATTR_APPEND |
9442                                  STATX_ATTR_COMPRESSED |
9443                                  STATX_ATTR_IMMUTABLE |
9444                                  STATX_ATTR_NODUMP);
9445
9446        generic_fillattr(inode, stat);
9447        stat->dev = BTRFS_I(inode)->root->anon_dev;
9448
9449        spin_lock(&BTRFS_I(inode)->lock);
9450        delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9451        spin_unlock(&BTRFS_I(inode)->lock);
9452        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9453                        ALIGN(delalloc_bytes, blocksize)) >> 9;
9454        return 0;
9455}
9456
9457static int btrfs_rename_exchange(struct inode *old_dir,
9458                              struct dentry *old_dentry,
9459                              struct inode *new_dir,
9460                              struct dentry *new_dentry)
9461{
9462        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9463        struct btrfs_trans_handle *trans;
9464        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9465        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9466        struct inode *new_inode = new_dentry->d_inode;
9467        struct inode *old_inode = old_dentry->d_inode;
9468        struct timespec ctime = current_time(old_inode);
9469        struct dentry *parent;
9470        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9471        u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9472        u64 old_idx = 0;
9473        u64 new_idx = 0;
9474        u64 root_objectid;
9475        int ret;
9476        bool root_log_pinned = false;
9477        bool dest_log_pinned = false;
9478
9479        /* we only allow rename subvolume link between subvolumes */
9480        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9481                return -EXDEV;
9482
9483        /* close the race window with snapshot create/destroy ioctl */
9484        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9485                down_read(&fs_info->subvol_sem);
9486        if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9487                down_read(&fs_info->subvol_sem);
9488
9489        /*
9490         * We want to reserve the absolute worst case amount of items.  So if
9491         * both inodes are subvols and we need to unlink them then that would
9492         * require 4 item modifications, but if they are both normal inodes it
9493         * would require 5 item modifications, so we'll assume their normal
9494         * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9495         * should cover the worst case number of items we'll modify.
9496         */
9497        trans = btrfs_start_transaction(root, 12);
9498        if (IS_ERR(trans)) {
9499                ret = PTR_ERR(trans);
9500                goto out_notrans;
9501        }
9502
9503        /*
9504         * We need to find a free sequence number both in the source and
9505         * in the destination directory for the exchange.
9506         */
9507        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9508        if (ret)
9509                goto out_fail;
9510        ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9511        if (ret)
9512                goto out_fail;
9513
9514        BTRFS_I(old_inode)->dir_index = 0ULL;
9515        BTRFS_I(new_inode)->dir_index = 0ULL;
9516
9517        /* Reference for the source. */
9518        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9519                /* force full log commit if subvolume involved. */
9520                btrfs_set_log_full_commit(fs_info, trans);
9521        } else {
9522                btrfs_pin_log_trans(root);
9523                root_log_pinned = true;
9524                ret = btrfs_insert_inode_ref(trans, dest,
9525                                             new_dentry->d_name.name,
9526                                             new_dentry->d_name.len,
9527                                             old_ino,
9528                                             btrfs_ino(BTRFS_I(new_dir)),
9529                                             old_idx);
9530                if (ret)
9531                        goto out_fail;
9532        }
9533
9534        /* And now for the dest. */
9535        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9536                /* force full log commit if subvolume involved. */
9537                btrfs_set_log_full_commit(fs_info, trans);
9538        } else {
9539                btrfs_pin_log_trans(dest);
9540                dest_log_pinned = true;
9541                ret = btrfs_insert_inode_ref(trans, root,
9542                                             old_dentry->d_name.name,
9543                                             old_dentry->d_name.len,
9544                                             new_ino,
9545                                             btrfs_ino(BTRFS_I(old_dir)),
9546                                             new_idx);
9547                if (ret)
9548                        goto out_fail;
9549        }
9550
9551        /* Update inode version and ctime/mtime. */
9552        inode_inc_iversion(old_dir);
9553        inode_inc_iversion(new_dir);
9554        inode_inc_iversion(old_inode);
9555        inode_inc_iversion(new_inode);
9556        old_dir->i_ctime = old_dir->i_mtime = ctime;
9557        new_dir->i_ctime = new_dir->i_mtime = ctime;
9558        old_inode->i_ctime = ctime;
9559        new_inode->i_ctime = ctime;
9560
9561        if (old_dentry->d_parent != new_dentry->d_parent) {
9562                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9563                                BTRFS_I(old_inode), 1);
9564                btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9565                                BTRFS_I(new_inode), 1);
9566        }
9567
9568        /* src is a subvolume */
9569        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9570                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9571                ret = btrfs_unlink_subvol(trans, root, old_dir,
9572                                          root_objectid,
9573                                          old_dentry->d_name.name,
9574                                          old_dentry->d_name.len);
9575        } else { /* src is an inode */
9576                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9577                                           BTRFS_I(old_dentry->d_inode),
9578                                           old_dentry->d_name.name,
9579                                           old_dentry->d_name.len);
9580                if (!ret)
9581                        ret = btrfs_update_inode(trans, root, old_inode);
9582        }
9583        if (ret) {
9584                btrfs_abort_transaction(trans, ret);
9585                goto out_fail;
9586        }
9587
9588        /* dest is a subvolume */
9589        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9590                root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9591                ret = btrfs_unlink_subvol(trans, dest, new_dir,
9592                                          root_objectid,
9593                                          new_dentry->d_name.name,
9594                                          new_dentry->d_name.len);
9595        } else { /* dest is an inode */
9596                ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9597                                           BTRFS_I(new_dentry->d_inode),
9598                                           new_dentry->d_name.name,
9599                                           new_dentry->d_name.len);
9600                if (!ret)
9601                        ret = btrfs_update_inode(trans, dest, new_inode);
9602        }
9603        if (ret) {
9604                btrfs_abort_transaction(trans, ret);
9605                goto out_fail;
9606        }
9607
9608        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9609                             new_dentry->d_name.name,
9610                             new_dentry->d_name.len, 0, old_idx);
9611        if (ret) {
9612                btrfs_abort_transaction(trans, ret);
9613                goto out_fail;
9614        }
9615
9616        ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9617                             old_dentry->d_name.name,
9618                             old_dentry->d_name.len, 0, new_idx);
9619        if (ret) {
9620                btrfs_abort_transaction(trans, ret);
9621                goto out_fail;
9622        }
9623
9624        if (old_inode->i_nlink == 1)
9625                BTRFS_I(old_inode)->dir_index = old_idx;
9626        if (new_inode->i_nlink == 1)
9627                BTRFS_I(new_inode)->dir_index = new_idx;
9628
9629        if (root_log_pinned) {
9630                parent = new_dentry->d_parent;
9631                btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9632                                parent);
9633                btrfs_end_log_trans(root);
9634                root_log_pinned = false;
9635        }
9636        if (dest_log_pinned) {
9637                parent = old_dentry->d_parent;
9638                btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9639                                parent);
9640                btrfs_end_log_trans(dest);
9641                dest_log_pinned = false;
9642        }
9643out_fail:
9644        /*
9645         * If we have pinned a log and an error happened, we unpin tasks
9646         * trying to sync the log and force them to fallback to a transaction
9647         * commit if the log currently contains any of the inodes involved in
9648         * this rename operation (to ensure we do not persist a log with an
9649         * inconsistent state for any of these inodes or leading to any
9650         * inconsistencies when replayed). If the transaction was aborted, the
9651         * abortion reason is propagated to userspace when attempting to commit
9652         * the transaction. If the log does not contain any of these inodes, we
9653         * allow the tasks to sync it.
9654         */
9655        if (ret && (root_log_pinned || dest_log_pinned)) {
9656                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9657                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9658                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9659                    (new_inode &&
9660                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9661                        btrfs_set_log_full_commit(fs_info, trans);
9662
9663                if (root_log_pinned) {
9664                        btrfs_end_log_trans(root);
9665                        root_log_pinned = false;
9666                }
9667                if (dest_log_pinned) {
9668                        btrfs_end_log_trans(dest);
9669                        dest_log_pinned = false;
9670                }
9671        }
9672        ret = btrfs_end_transaction(trans);
9673out_notrans:
9674        if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9675                up_read(&fs_info->subvol_sem);
9676        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9677                up_read(&fs_info->subvol_sem);
9678
9679        return ret;
9680}
9681
9682static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9683                                     struct btrfs_root *root,
9684                                     struct inode *dir,
9685                                     struct dentry *dentry)
9686{
9687        int ret;
9688        struct inode *inode;
9689        u64 objectid;
9690        u64 index;
9691
9692        ret = btrfs_find_free_ino(root, &objectid);
9693        if (ret)
9694                return ret;
9695
9696        inode = btrfs_new_inode(trans, root, dir,
9697                                dentry->d_name.name,
9698                                dentry->d_name.len,
9699                                btrfs_ino(BTRFS_I(dir)),
9700                                objectid,
9701                                S_IFCHR | WHITEOUT_MODE,
9702                                &index);
9703
9704        if (IS_ERR(inode)) {
9705                ret = PTR_ERR(inode);
9706                return ret;
9707        }
9708
9709        inode->i_op = &btrfs_special_inode_operations;
9710        init_special_inode(inode, inode->i_mode,
9711                WHITEOUT_DEV);
9712
9713        ret = btrfs_init_inode_security(trans, inode, dir,
9714                                &dentry->d_name);
9715        if (ret)
9716                goto out;
9717
9718        ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9719                                BTRFS_I(inode), 0, index);
9720        if (ret)
9721                goto out;
9722
9723        ret = btrfs_update_inode(trans, root, inode);
9724out:
9725        unlock_new_inode(inode);
9726        if (ret)
9727                inode_dec_link_count(inode);
9728        iput(inode);
9729
9730        return ret;
9731}
9732
9733static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9734                           struct inode *new_dir, struct dentry *new_dentry,
9735                           unsigned int flags)
9736{
9737        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9738        struct btrfs_trans_handle *trans;
9739        unsigned int trans_num_items;
9740        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9741        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9742        struct inode *new_inode = d_inode(new_dentry);
9743        struct inode *old_inode = d_inode(old_dentry);
9744        u64 index = 0;
9745        u64 root_objectid;
9746        int ret;
9747        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9748        bool log_pinned = false;
9749
9750        if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9751                return -EPERM;
9752
9753        /* we only allow rename subvolume link between subvolumes */
9754        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9755                return -EXDEV;
9756
9757        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9758            (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9759                return -ENOTEMPTY;
9760
9761        if (S_ISDIR(old_inode->i_mode) && new_inode &&
9762            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9763                return -ENOTEMPTY;
9764
9765
9766        /* check for collisions, even if the  name isn't there */
9767        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9768                             new_dentry->d_name.name,
9769                             new_dentry->d_name.len);
9770
9771        if (ret) {
9772                if (ret == -EEXIST) {
9773                        /* we shouldn't get
9774                         * eexist without a new_inode */
9775                        if (WARN_ON(!new_inode)) {
9776                                return ret;
9777                        }
9778                } else {
9779                        /* maybe -EOVERFLOW */
9780                        return ret;
9781                }
9782        }
9783        ret = 0;
9784
9785        /*
9786         * we're using rename to replace one file with another.  Start IO on it
9787         * now so  we don't add too much work to the end of the transaction
9788         */
9789        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9790                filemap_flush(old_inode->i_mapping);
9791
9792        /* close the racy window with snapshot create/destroy ioctl */
9793        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9794                down_read(&fs_info->subvol_sem);
9795        /*
9796         * We want to reserve the absolute worst case amount of items.  So if
9797         * both inodes are subvols and we need to unlink them then that would
9798         * require 4 item modifications, but if they are both normal inodes it
9799         * would require 5 item modifications, so we'll assume they are normal
9800         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9801         * should cover the worst case number of items we'll modify.
9802         * If our rename has the whiteout flag, we need more 5 units for the
9803         * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9804         * when selinux is enabled).
9805         */
9806        trans_num_items = 11;
9807        if (flags & RENAME_WHITEOUT)
9808                trans_num_items += 5;
9809        trans = btrfs_start_transaction(root, trans_num_items);
9810        if (IS_ERR(trans)) {
9811                ret = PTR_ERR(trans);
9812                goto out_notrans;
9813        }
9814
9815        if (dest != root)
9816                btrfs_record_root_in_trans(trans, dest);
9817
9818        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9819        if (ret)
9820                goto out_fail;
9821
9822        BTRFS_I(old_inode)->dir_index = 0ULL;
9823        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9824                /* force full log commit if subvolume involved. */
9825                btrfs_set_log_full_commit(fs_info, trans);
9826        } else {
9827                btrfs_pin_log_trans(root);
9828                log_pinned = true;
9829                ret = btrfs_insert_inode_ref(trans, dest,
9830                                             new_dentry->d_name.name,
9831                                             new_dentry->d_name.len,
9832                                             old_ino,
9833                                             btrfs_ino(BTRFS_I(new_dir)), index);
9834                if (ret)
9835                        goto out_fail;
9836        }
9837
9838        inode_inc_iversion(old_dir);
9839        inode_inc_iversion(new_dir);
9840        inode_inc_iversion(old_inode);
9841        old_dir->i_ctime = old_dir->i_mtime =
9842        new_dir->i_ctime = new_dir->i_mtime =
9843        old_inode->i_ctime = current_time(old_dir);
9844
9845        if (old_dentry->d_parent != new_dentry->d_parent)
9846                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9847                                BTRFS_I(old_inode), 1);
9848
9849        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9850                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9851                ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9852                                        old_dentry->d_name.name,
9853                                        old_dentry->d_name.len);
9854        } else {
9855                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9856                                        BTRFS_I(d_inode(old_dentry)),
9857                                        old_dentry->d_name.name,
9858                                        old_dentry->d_name.len);
9859                if (!ret)
9860                        ret = btrfs_update_inode(trans, root, old_inode);
9861        }
9862        if (ret) {
9863                btrfs_abort_transaction(trans, ret);
9864                goto out_fail;
9865        }
9866
9867        if (new_inode) {
9868                inode_inc_iversion(new_inode);
9869                new_inode->i_ctime = current_time(new_inode);
9870                if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9871                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9872                        root_objectid = BTRFS_I(new_inode)->location.objectid;
9873                        ret = btrfs_unlink_subvol(trans, dest, new_dir,
9874                                                root_objectid,
9875                                                new_dentry->d_name.name,
9876                                                new_dentry->d_name.len);
9877                        BUG_ON(new_inode->i_nlink == 0);
9878                } else {
9879                        ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9880                                                 BTRFS_I(d_inode(new_dentry)),
9881                                                 new_dentry->d_name.name,
9882                                                 new_dentry->d_name.len);
9883                }
9884                if (!ret && new_inode->i_nlink == 0)
9885                        ret = btrfs_orphan_add(trans,
9886                                        BTRFS_I(d_inode(new_dentry)));
9887                if (ret) {
9888                        btrfs_abort_transaction(trans, ret);
9889                        goto out_fail;
9890                }
9891        }
9892
9893        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9894                             new_dentry->d_name.name,
9895                             new_dentry->d_name.len, 0, index);
9896        if (ret) {
9897                btrfs_abort_transaction(trans, ret);
9898                goto out_fail;
9899        }
9900
9901        if (old_inode->i_nlink == 1)
9902                BTRFS_I(old_inode)->dir_index = index;
9903
9904        if (log_pinned) {
9905                struct dentry *parent = new_dentry->d_parent;
9906
9907                btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9908                                parent);
9909                btrfs_end_log_trans(root);
9910                log_pinned = false;
9911        }
9912
9913        if (flags & RENAME_WHITEOUT) {
9914                ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9915                                                old_dentry);
9916
9917                if (ret) {
9918                        btrfs_abort_transaction(trans, ret);
9919                        goto out_fail;
9920                }
9921        }
9922out_fail:
9923        /*
9924         * If we have pinned the log and an error happened, we unpin tasks
9925         * trying to sync the log and force them to fallback to a transaction
9926         * commit if the log currently contains any of the inodes involved in
9927         * this rename operation (to ensure we do not persist a log with an
9928         * inconsistent state for any of these inodes or leading to any
9929         * inconsistencies when replayed). If the transaction was aborted, the
9930         * abortion reason is propagated to userspace when attempting to commit
9931         * the transaction. If the log does not contain any of these inodes, we
9932         * allow the tasks to sync it.
9933         */
9934        if (ret && log_pinned) {
9935                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9936                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9937                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9938                    (new_inode &&
9939                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9940                        btrfs_set_log_full_commit(fs_info, trans);
9941
9942                btrfs_end_log_trans(root);
9943                log_pinned = false;
9944        }
9945        btrfs_end_transaction(trans);
9946out_notrans:
9947        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9948                up_read(&fs_info->subvol_sem);
9949
9950        return ret;
9951}
9952
9953static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9954                         struct inode *new_dir, struct dentry *new_dentry,
9955                         unsigned int flags)
9956{
9957        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9958                return -EINVAL;
9959
9960        if (flags & RENAME_EXCHANGE)
9961                return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9962                                          new_dentry);
9963
9964        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9965}
9966
9967static void btrfs_run_delalloc_work(struct btrfs_work *work)
9968{
9969        struct btrfs_delalloc_work *delalloc_work;
9970        struct inode *inode;
9971
9972        delalloc_work = container_of(work, struct btrfs_delalloc_work,
9973                                     work);
9974        inode = delalloc_work->inode;
9975        filemap_flush(inode->i_mapping);
9976        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9977                                &BTRFS_I(inode)->runtime_flags))
9978                filemap_flush(inode->i_mapping);
9979
9980        if (delalloc_work->delay_iput)
9981                btrfs_add_delayed_iput(inode);
9982        else
9983                iput(inode);
9984        complete(&delalloc_work->completion);
9985}
9986
9987struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9988                                                    int delay_iput)
9989{
9990        struct btrfs_delalloc_work *work;
9991
9992        work = kmalloc(sizeof(*work), GFP_NOFS);
9993        if (!work)
9994                return NULL;
9995
9996        init_completion(&work->completion);
9997        INIT_LIST_HEAD(&work->list);
9998        work->inode = inode;
9999        work->delay_iput = delay_iput;
10000        WARN_ON_ONCE(!inode);
10001        btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10002                        btrfs_run_delalloc_work, NULL, NULL);
10003
10004        return work;
10005}
10006
10007void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10008{
10009        wait_for_completion(&work->completion);
10010        kfree(work);
10011}
10012
10013/*
10014 * some fairly slow code that needs optimization. This walks the list
10015 * of all the inodes with pending delalloc and forces them to disk.
10016 */
10017static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10018                                   int nr)
10019{
10020        struct btrfs_inode *binode;
10021        struct inode *inode;
10022        struct btrfs_delalloc_work *work, *next;
10023        struct list_head works;
10024        struct list_head splice;
10025        int ret = 0;
10026
10027        INIT_LIST_HEAD(&works);
10028        INIT_LIST_HEAD(&splice);
10029
10030        mutex_lock(&root->delalloc_mutex);
10031        spin_lock(&root->delalloc_lock);
10032        list_splice_init(&root->delalloc_inodes, &splice);
10033        while (!list_empty(&splice)) {
10034                binode = list_entry(splice.next, struct btrfs_inode,
10035                                    delalloc_inodes);
10036
10037                list_move_tail(&binode->delalloc_inodes,
10038                               &root->delalloc_inodes);
10039                inode = igrab(&binode->vfs_inode);
10040                if (!inode) {
10041                        cond_resched_lock(&root->delalloc_lock);
10042                        continue;
10043                }
10044                spin_unlock(&root->delalloc_lock);
10045
10046                work = btrfs_alloc_delalloc_work(inode, delay_iput);
10047                if (!work) {
10048                        if (delay_iput)
10049                                btrfs_add_delayed_iput(inode);
10050                        else
10051                                iput(inode);
10052                        ret = -ENOMEM;
10053                        goto out;
10054                }
10055                list_add_tail(&work->list, &works);
10056                btrfs_queue_work(root->fs_info->flush_workers,
10057                                 &work->work);
10058                ret++;
10059                if (nr != -1 && ret >= nr)
10060                        goto out;
10061                cond_resched();
10062                spin_lock(&root->delalloc_lock);
10063        }
10064        spin_unlock(&root->delalloc_lock);
10065
10066out:
10067        list_for_each_entry_safe(work, next, &works, list) {
10068                list_del_init(&work->list);
10069                btrfs_wait_and_free_delalloc_work(work);
10070        }
10071
10072        if (!list_empty_careful(&splice)) {
10073                spin_lock(&root->delalloc_lock);
10074                list_splice_tail(&splice, &root->delalloc_inodes);
10075                spin_unlock(&root->delalloc_lock);
10076        }
10077        mutex_unlock(&root->delalloc_mutex);
10078        return ret;
10079}
10080
10081int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10082{
10083        struct btrfs_fs_info *fs_info = root->fs_info;
10084        int ret;
10085
10086        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10087                return -EROFS;
10088
10089        ret = __start_delalloc_inodes(root, delay_iput, -1);
10090        if (ret > 0)
10091                ret = 0;
10092        return ret;
10093}
10094
10095int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10096                               int nr)
10097{
10098        struct btrfs_root *root;
10099        struct list_head splice;
10100        int ret;
10101
10102        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10103                return -EROFS;
10104
10105        INIT_LIST_HEAD(&splice);
10106
10107        mutex_lock(&fs_info->delalloc_root_mutex);
10108        spin_lock(&fs_info->delalloc_root_lock);
10109        list_splice_init(&fs_info->delalloc_roots, &splice);
10110        while (!list_empty(&splice) && nr) {
10111                root = list_first_entry(&splice, struct btrfs_root,
10112                                        delalloc_root);
10113                root = btrfs_grab_fs_root(root);
10114                BUG_ON(!root);
10115                list_move_tail(&root->delalloc_root,
10116                               &fs_info->delalloc_roots);
10117                spin_unlock(&fs_info->delalloc_root_lock);
10118
10119                ret = __start_delalloc_inodes(root, delay_iput, nr);
10120                btrfs_put_fs_root(root);
10121                if (ret < 0)
10122                        goto out;
10123
10124                if (nr != -1) {
10125                        nr -= ret;
10126                        WARN_ON(nr < 0);
10127                }
10128                spin_lock(&fs_info->delalloc_root_lock);
10129        }
10130        spin_unlock(&fs_info->delalloc_root_lock);
10131
10132        ret = 0;
10133out:
10134        if (!list_empty_careful(&splice)) {
10135                spin_lock(&fs_info->delalloc_root_lock);
10136                list_splice_tail(&splice, &fs_info->delalloc_roots);
10137                spin_unlock(&fs_info->delalloc_root_lock);
10138        }
10139        mutex_unlock(&fs_info->delalloc_root_mutex);
10140        return ret;
10141}
10142
10143static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10144                         const char *symname)
10145{
10146        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10147        struct btrfs_trans_handle *trans;
10148        struct btrfs_root *root = BTRFS_I(dir)->root;
10149        struct btrfs_path *path;
10150        struct btrfs_key key;
10151        struct inode *inode = NULL;
10152        int err;
10153        int drop_inode = 0;
10154        u64 objectid;
10155        u64 index = 0;
10156        int name_len;
10157        int datasize;
10158        unsigned long ptr;
10159        struct btrfs_file_extent_item *ei;
10160        struct extent_buffer *leaf;
10161
10162        name_len = strlen(symname);
10163        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10164                return -ENAMETOOLONG;
10165
10166        /*
10167         * 2 items for inode item and ref
10168         * 2 items for dir items
10169         * 1 item for updating parent inode item
10170         * 1 item for the inline extent item
10171         * 1 item for xattr if selinux is on
10172         */
10173        trans = btrfs_start_transaction(root, 7);
10174        if (IS_ERR(trans))
10175                return PTR_ERR(trans);
10176
10177        err = btrfs_find_free_ino(root, &objectid);
10178        if (err)
10179                goto out_unlock;
10180
10181        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10182                                dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10183                                objectid, S_IFLNK|S_IRWXUGO, &index);
10184        if (IS_ERR(inode)) {
10185                err = PTR_ERR(inode);
10186                goto out_unlock;
10187        }
10188
10189        /*
10190        * If the active LSM wants to access the inode during
10191        * d_instantiate it needs these. Smack checks to see
10192        * if the filesystem supports xattrs by looking at the
10193        * ops vector.
10194        */
10195        inode->i_fop = &btrfs_file_operations;
10196        inode->i_op = &btrfs_file_inode_operations;
10197        inode->i_mapping->a_ops = &btrfs_aops;
10198        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10199
10200        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10201        if (err)
10202                goto out_unlock_inode;
10203
10204        path = btrfs_alloc_path();
10205        if (!path) {
10206                err = -ENOMEM;
10207                goto out_unlock_inode;
10208        }
10209        key.objectid = btrfs_ino(BTRFS_I(inode));
10210        key.offset = 0;
10211        key.type = BTRFS_EXTENT_DATA_KEY;
10212        datasize = btrfs_file_extent_calc_inline_size(name_len);
10213        err = btrfs_insert_empty_item(trans, root, path, &key,
10214                                      datasize);
10215        if (err) {
10216                btrfs_free_path(path);
10217                goto out_unlock_inode;
10218        }
10219        leaf = path->nodes[0];
10220        ei = btrfs_item_ptr(leaf, path->slots[0],
10221                            struct btrfs_file_extent_item);
10222        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10223        btrfs_set_file_extent_type(leaf, ei,
10224                                   BTRFS_FILE_EXTENT_INLINE);
10225        btrfs_set_file_extent_encryption(leaf, ei, 0);
10226        btrfs_set_file_extent_compression(leaf, ei, 0);
10227        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10228        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10229
10230        ptr = btrfs_file_extent_inline_start(ei);
10231        write_extent_buffer(leaf, symname, ptr, name_len);
10232        btrfs_mark_buffer_dirty(leaf);
10233        btrfs_free_path(path);
10234
10235        inode->i_op = &btrfs_symlink_inode_operations;
10236        inode_nohighmem(inode);
10237        inode->i_mapping->a_ops = &btrfs_symlink_aops;
10238        inode_set_bytes(inode, name_len);
10239        btrfs_i_size_write(BTRFS_I(inode), name_len);
10240        err = btrfs_update_inode(trans, root, inode);
10241        /*
10242         * Last step, add directory indexes for our symlink inode. This is the
10243         * last step to avoid extra cleanup of these indexes if an error happens
10244         * elsewhere above.
10245         */
10246        if (!err)
10247                err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10248                                BTRFS_I(inode), 0, index);
10249        if (err) {
10250                drop_inode = 1;
10251                goto out_unlock_inode;
10252        }
10253
10254        d_instantiate_new(dentry, inode);
10255
10256out_unlock:
10257        btrfs_end_transaction(trans);
10258        if (drop_inode) {
10259                inode_dec_link_count(inode);
10260                iput(inode);
10261        }
10262        btrfs_btree_balance_dirty(fs_info);
10263        return err;
10264
10265out_unlock_inode:
10266        drop_inode = 1;
10267        unlock_new_inode(inode);
10268        goto out_unlock;
10269}
10270
10271static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10272                                       u64 start, u64 num_bytes, u64 min_size,
10273                                       loff_t actual_len, u64 *alloc_hint,
10274                                       struct btrfs_trans_handle *trans)
10275{
10276        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10277        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10278        struct extent_map *em;
10279        struct btrfs_root *root = BTRFS_I(inode)->root;
10280        struct btrfs_key ins;
10281        u64 cur_offset = start;
10282        u64 i_size;
10283        u64 cur_bytes;
10284        u64 last_alloc = (u64)-1;
10285        int ret = 0;
10286        bool own_trans = true;
10287        u64 end = start + num_bytes - 1;
10288
10289        if (trans)
10290                own_trans = false;
10291        while (num_bytes > 0) {
10292                if (own_trans) {
10293                        trans = btrfs_start_transaction(root, 3);
10294                        if (IS_ERR(trans)) {
10295                                ret = PTR_ERR(trans);
10296                                break;
10297                        }
10298                }
10299
10300                cur_bytes = min_t(u64, num_bytes, SZ_256M);
10301                cur_bytes = max(cur_bytes, min_size);
10302                /*
10303                 * If we are severely fragmented we could end up with really
10304                 * small allocations, so if the allocator is returning small
10305                 * chunks lets make its job easier by only searching for those
10306                 * sized chunks.
10307                 */
10308                cur_bytes = min(cur_bytes, last_alloc);
10309                ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10310                                min_size, 0, *alloc_hint, &ins, 1, 0);
10311                if (ret) {
10312                        if (own_trans)
10313                                btrfs_end_transaction(trans);
10314                        break;
10315                }
10316                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10317
10318                last_alloc = ins.offset;
10319                ret = insert_reserved_file_extent(trans, inode,
10320                                                  cur_offset, ins.objectid,
10321                                                  ins.offset, ins.offset,
10322                                                  ins.offset, 0, 0, 0,
10323                                                  BTRFS_FILE_EXTENT_PREALLOC);
10324                if (ret) {
10325                        btrfs_free_reserved_extent(fs_info, ins.objectid,
10326                                                   ins.offset, 0);
10327                        btrfs_abort_transaction(trans, ret);
10328                        if (own_trans)
10329                                btrfs_end_transaction(trans);
10330                        break;
10331                }
10332
10333                btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10334                                        cur_offset + ins.offset -1, 0);
10335
10336                em = alloc_extent_map();
10337                if (!em) {
10338                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10339                                &BTRFS_I(inode)->runtime_flags);
10340                        goto next;
10341                }
10342
10343                em->start = cur_offset;
10344                em->orig_start = cur_offset;
10345                em->len = ins.offset;
10346                em->block_start = ins.objectid;
10347                em->block_len = ins.offset;
10348                em->orig_block_len = ins.offset;
10349                em->ram_bytes = ins.offset;
10350                em->bdev = fs_info->fs_devices->latest_bdev;
10351                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10352                em->generation = trans->transid;
10353
10354                while (1) {
10355                        write_lock(&em_tree->lock);
10356                        ret = add_extent_mapping(em_tree, em, 1);
10357                        write_unlock(&em_tree->lock);
10358                        if (ret != -EEXIST)
10359                                break;
10360                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10361                                                cur_offset + ins.offset - 1,
10362                                                0);
10363                }
10364                free_extent_map(em);
10365next:
10366                num_bytes -= ins.offset;
10367                cur_offset += ins.offset;
10368                *alloc_hint = ins.objectid + ins.offset;
10369
10370                inode_inc_iversion(inode);
10371                inode->i_ctime = current_time(inode);
10372                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10373                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10374                    (actual_len > inode->i_size) &&
10375                    (cur_offset > inode->i_size)) {
10376                        if (cur_offset > actual_len)
10377                                i_size = actual_len;
10378                        else
10379                                i_size = cur_offset;
10380                        i_size_write(inode, i_size);
10381                        btrfs_ordered_update_i_size(inode, i_size, NULL);
10382                }
10383
10384                ret = btrfs_update_inode(trans, root, inode);
10385
10386                if (ret) {
10387                        btrfs_abort_transaction(trans, ret);
10388                        if (own_trans)
10389                                btrfs_end_transaction(trans);
10390                        break;
10391                }
10392
10393                if (own_trans)
10394                        btrfs_end_transaction(trans);
10395        }
10396        if (cur_offset < end)
10397                btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10398                        end - cur_offset + 1);
10399        return ret;
10400}
10401
10402int btrfs_prealloc_file_range(struct inode *inode, int mode,
10403                              u64 start, u64 num_bytes, u64 min_size,
10404                              loff_t actual_len, u64 *alloc_hint)
10405{
10406        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10407                                           min_size, actual_len, alloc_hint,
10408                                           NULL);
10409}
10410
10411int btrfs_prealloc_file_range_trans(struct inode *inode,
10412                                    struct btrfs_trans_handle *trans, int mode,
10413                                    u64 start, u64 num_bytes, u64 min_size,
10414                                    loff_t actual_len, u64 *alloc_hint)
10415{
10416        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10417                                           min_size, actual_len, alloc_hint, trans);
10418}
10419
10420static int btrfs_set_page_dirty(struct page *page)
10421{
10422        return __set_page_dirty_nobuffers(page);
10423}
10424
10425static int btrfs_permission(struct inode *inode, int mask)
10426{
10427        struct btrfs_root *root = BTRFS_I(inode)->root;
10428        umode_t mode = inode->i_mode;
10429
10430        if (mask & MAY_WRITE &&
10431            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10432                if (btrfs_root_readonly(root))
10433                        return -EROFS;
10434                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10435                        return -EACCES;
10436        }
10437        return generic_permission(inode, mask);
10438}
10439
10440static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10441{
10442        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10443        struct btrfs_trans_handle *trans;
10444        struct btrfs_root *root = BTRFS_I(dir)->root;
10445        struct inode *inode = NULL;
10446        u64 objectid;
10447        u64 index;
10448        int ret = 0;
10449
10450        /*
10451         * 5 units required for adding orphan entry
10452         */
10453        trans = btrfs_start_transaction(root, 5);
10454        if (IS_ERR(trans))
10455                return PTR_ERR(trans);
10456
10457        ret = btrfs_find_free_ino(root, &objectid);
10458        if (ret)
10459                goto out;
10460
10461        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10462                        btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10463        if (IS_ERR(inode)) {
10464                ret = PTR_ERR(inode);
10465                inode = NULL;
10466                goto out;
10467        }
10468
10469        inode->i_fop = &btrfs_file_operations;
10470        inode->i_op = &btrfs_file_inode_operations;
10471
10472        inode->i_mapping->a_ops = &btrfs_aops;
10473        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10474
10475        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10476        if (ret)
10477                goto out_inode;
10478
10479        ret = btrfs_update_inode(trans, root, inode);
10480        if (ret)
10481                goto out_inode;
10482        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10483        if (ret)
10484                goto out_inode;
10485
10486        /*
10487         * We set number of links to 0 in btrfs_new_inode(), and here we set
10488         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10489         * through:
10490         *
10491         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10492         */
10493        set_nlink(inode, 1);
10494        unlock_new_inode(inode);
10495        d_tmpfile(dentry, inode);
10496        mark_inode_dirty(inode);
10497
10498out:
10499        btrfs_end_transaction(trans);
10500        if (ret)
10501                iput(inode);
10502        btrfs_btree_balance_dirty(fs_info);
10503        return ret;
10504
10505out_inode:
10506        unlock_new_inode(inode);
10507        goto out;
10508
10509}
10510
10511__attribute__((const))
10512static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10513{
10514        return -EAGAIN;
10515}
10516
10517static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10518{
10519        struct inode *inode = private_data;
10520        return btrfs_sb(inode->i_sb);
10521}
10522
10523static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10524                                        u64 start, u64 end)
10525{
10526        struct inode *inode = private_data;
10527        u64 isize;
10528
10529        isize = i_size_read(inode);
10530        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10531                btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10532                    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10533                        caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10534        }
10535}
10536
10537void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10538{
10539        struct inode *inode = private_data;
10540        unsigned long index = start >> PAGE_SHIFT;
10541        unsigned long end_index = end >> PAGE_SHIFT;
10542        struct page *page;
10543
10544        while (index <= end_index) {
10545                page = find_get_page(inode->i_mapping, index);
10546                ASSERT(page); /* Pages should be in the extent_io_tree */
10547                set_page_writeback(page);
10548                put_page(page);
10549                index++;
10550        }
10551}
10552
10553static const struct inode_operations btrfs_dir_inode_operations = {
10554        .getattr        = btrfs_getattr,
10555        .lookup         = btrfs_lookup,
10556        .create         = btrfs_create,
10557        .unlink         = btrfs_unlink,
10558        .link           = btrfs_link,
10559        .mkdir          = btrfs_mkdir,
10560        .rmdir          = btrfs_rmdir,
10561        .rename         = btrfs_rename2,
10562        .symlink        = btrfs_symlink,
10563        .setattr        = btrfs_setattr,
10564        .mknod          = btrfs_mknod,
10565        .listxattr      = btrfs_listxattr,
10566        .permission     = btrfs_permission,
10567        .get_acl        = btrfs_get_acl,
10568        .set_acl        = btrfs_set_acl,
10569        .update_time    = btrfs_update_time,
10570        .tmpfile        = btrfs_tmpfile,
10571};
10572static const struct inode_operations btrfs_dir_ro_inode_operations = {
10573        .lookup         = btrfs_lookup,
10574        .permission     = btrfs_permission,
10575        .update_time    = btrfs_update_time,
10576};
10577
10578static const struct file_operations btrfs_dir_file_operations = {
10579        .llseek         = generic_file_llseek,
10580        .read           = generic_read_dir,
10581        .iterate_shared = btrfs_real_readdir,
10582        .open           = btrfs_opendir,
10583        .unlocked_ioctl = btrfs_ioctl,
10584#ifdef CONFIG_COMPAT
10585        .compat_ioctl   = btrfs_compat_ioctl,
10586#endif
10587        .release        = btrfs_release_file,
10588        .fsync          = btrfs_sync_file,
10589};
10590
10591static const struct extent_io_ops btrfs_extent_io_ops = {
10592        /* mandatory callbacks */
10593        .submit_bio_hook = btrfs_submit_bio_hook,
10594        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10595        .merge_bio_hook = btrfs_merge_bio_hook,
10596        .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10597        .tree_fs_info = iotree_fs_info,
10598        .set_range_writeback = btrfs_set_range_writeback,
10599
10600        /* optional callbacks */
10601        .fill_delalloc = run_delalloc_range,
10602        .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10603        .writepage_start_hook = btrfs_writepage_start_hook,
10604        .set_bit_hook = btrfs_set_bit_hook,
10605        .clear_bit_hook = btrfs_clear_bit_hook,
10606        .merge_extent_hook = btrfs_merge_extent_hook,
10607        .split_extent_hook = btrfs_split_extent_hook,
10608        .check_extent_io_range = btrfs_check_extent_io_range,
10609};
10610
10611/*
10612 * btrfs doesn't support the bmap operation because swapfiles
10613 * use bmap to make a mapping of extents in the file.  They assume
10614 * these extents won't change over the life of the file and they
10615 * use the bmap result to do IO directly to the drive.
10616 *
10617 * the btrfs bmap call would return logical addresses that aren't
10618 * suitable for IO and they also will change frequently as COW
10619 * operations happen.  So, swapfile + btrfs == corruption.
10620 *
10621 * For now we're avoiding this by dropping bmap.
10622 */
10623static const struct address_space_operations btrfs_aops = {
10624        .readpage       = btrfs_readpage,
10625        .writepage      = btrfs_writepage,
10626        .writepages     = btrfs_writepages,
10627        .readpages      = btrfs_readpages,
10628        .direct_IO      = btrfs_direct_IO,
10629        .invalidatepage = btrfs_invalidatepage,
10630        .releasepage    = btrfs_releasepage,
10631        .set_page_dirty = btrfs_set_page_dirty,
10632        .error_remove_page = generic_error_remove_page,
10633};
10634
10635static const struct address_space_operations btrfs_symlink_aops = {
10636        .readpage       = btrfs_readpage,
10637        .writepage      = btrfs_writepage,
10638        .invalidatepage = btrfs_invalidatepage,
10639        .releasepage    = btrfs_releasepage,
10640};
10641
10642static const struct inode_operations btrfs_file_inode_operations = {
10643        .getattr        = btrfs_getattr,
10644        .setattr        = btrfs_setattr,
10645        .listxattr      = btrfs_listxattr,
10646        .permission     = btrfs_permission,
10647        .fiemap         = btrfs_fiemap,
10648        .get_acl        = btrfs_get_acl,
10649        .set_acl        = btrfs_set_acl,
10650        .update_time    = btrfs_update_time,
10651};
10652static const struct inode_operations btrfs_special_inode_operations = {
10653        .getattr        = btrfs_getattr,
10654        .setattr        = btrfs_setattr,
10655        .permission     = btrfs_permission,
10656        .listxattr      = btrfs_listxattr,
10657        .get_acl        = btrfs_get_acl,
10658        .set_acl        = btrfs_set_acl,
10659        .update_time    = btrfs_update_time,
10660};
10661static const struct inode_operations btrfs_symlink_inode_operations = {
10662        .get_link       = page_get_link,
10663        .getattr        = btrfs_getattr,
10664        .setattr        = btrfs_setattr,
10665        .permission     = btrfs_permission,
10666        .listxattr      = btrfs_listxattr,
10667        .update_time    = btrfs_update_time,
10668};
10669
10670const struct dentry_operations btrfs_dentry_operations = {
10671        .d_delete       = btrfs_dentry_delete,
10672        .d_release      = btrfs_dentry_release,
10673};
10674