linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/pagevec.h>
  10#include "ctree.h"
  11#include "transaction.h"
  12#include "btrfs_inode.h"
  13#include "extent_io.h"
  14#include "disk-io.h"
  15#include "compression.h"
  16
  17static struct kmem_cache *btrfs_ordered_extent_cache;
  18
  19static u64 entry_end(struct btrfs_ordered_extent *entry)
  20{
  21        if (entry->file_offset + entry->len < entry->file_offset)
  22                return (u64)-1;
  23        return entry->file_offset + entry->len;
  24}
  25
  26/* returns NULL if the insertion worked, or it returns the node it did find
  27 * in the tree
  28 */
  29static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  30                                   struct rb_node *node)
  31{
  32        struct rb_node **p = &root->rb_node;
  33        struct rb_node *parent = NULL;
  34        struct btrfs_ordered_extent *entry;
  35
  36        while (*p) {
  37                parent = *p;
  38                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  39
  40                if (file_offset < entry->file_offset)
  41                        p = &(*p)->rb_left;
  42                else if (file_offset >= entry_end(entry))
  43                        p = &(*p)->rb_right;
  44                else
  45                        return parent;
  46        }
  47
  48        rb_link_node(node, parent, p);
  49        rb_insert_color(node, root);
  50        return NULL;
  51}
  52
  53static void ordered_data_tree_panic(struct inode *inode, int errno,
  54                                               u64 offset)
  55{
  56        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  57        btrfs_panic(fs_info, errno,
  58                    "Inconsistency in ordered tree at offset %llu", offset);
  59}
  60
  61/*
  62 * look for a given offset in the tree, and if it can't be found return the
  63 * first lesser offset
  64 */
  65static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  66                                     struct rb_node **prev_ret)
  67{
  68        struct rb_node *n = root->rb_node;
  69        struct rb_node *prev = NULL;
  70        struct rb_node *test;
  71        struct btrfs_ordered_extent *entry;
  72        struct btrfs_ordered_extent *prev_entry = NULL;
  73
  74        while (n) {
  75                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  76                prev = n;
  77                prev_entry = entry;
  78
  79                if (file_offset < entry->file_offset)
  80                        n = n->rb_left;
  81                else if (file_offset >= entry_end(entry))
  82                        n = n->rb_right;
  83                else
  84                        return n;
  85        }
  86        if (!prev_ret)
  87                return NULL;
  88
  89        while (prev && file_offset >= entry_end(prev_entry)) {
  90                test = rb_next(prev);
  91                if (!test)
  92                        break;
  93                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  94                                      rb_node);
  95                if (file_offset < entry_end(prev_entry))
  96                        break;
  97
  98                prev = test;
  99        }
 100        if (prev)
 101                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 102                                      rb_node);
 103        while (prev && file_offset < entry_end(prev_entry)) {
 104                test = rb_prev(prev);
 105                if (!test)
 106                        break;
 107                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 108                                      rb_node);
 109                prev = test;
 110        }
 111        *prev_ret = prev;
 112        return NULL;
 113}
 114
 115/*
 116 * helper to check if a given offset is inside a given entry
 117 */
 118static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 119{
 120        if (file_offset < entry->file_offset ||
 121            entry->file_offset + entry->len <= file_offset)
 122                return 0;
 123        return 1;
 124}
 125
 126static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 127                          u64 len)
 128{
 129        if (file_offset + len <= entry->file_offset ||
 130            entry->file_offset + entry->len <= file_offset)
 131                return 0;
 132        return 1;
 133}
 134
 135/*
 136 * look find the first ordered struct that has this offset, otherwise
 137 * the first one less than this offset
 138 */
 139static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 140                                          u64 file_offset)
 141{
 142        struct rb_root *root = &tree->tree;
 143        struct rb_node *prev = NULL;
 144        struct rb_node *ret;
 145        struct btrfs_ordered_extent *entry;
 146
 147        if (tree->last) {
 148                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 149                                 rb_node);
 150                if (offset_in_entry(entry, file_offset))
 151                        return tree->last;
 152        }
 153        ret = __tree_search(root, file_offset, &prev);
 154        if (!ret)
 155                ret = prev;
 156        if (ret)
 157                tree->last = ret;
 158        return ret;
 159}
 160
 161/* allocate and add a new ordered_extent into the per-inode tree.
 162 * file_offset is the logical offset in the file
 163 *
 164 * start is the disk block number of an extent already reserved in the
 165 * extent allocation tree
 166 *
 167 * len is the length of the extent
 168 *
 169 * The tree is given a single reference on the ordered extent that was
 170 * inserted.
 171 */
 172static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 173                                      u64 start, u64 len, u64 disk_len,
 174                                      int type, int dio, int compress_type)
 175{
 176        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 177        struct btrfs_root *root = BTRFS_I(inode)->root;
 178        struct btrfs_ordered_inode_tree *tree;
 179        struct rb_node *node;
 180        struct btrfs_ordered_extent *entry;
 181
 182        tree = &BTRFS_I(inode)->ordered_tree;
 183        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 184        if (!entry)
 185                return -ENOMEM;
 186
 187        entry->file_offset = file_offset;
 188        entry->start = start;
 189        entry->len = len;
 190        entry->disk_len = disk_len;
 191        entry->bytes_left = len;
 192        entry->inode = igrab(inode);
 193        entry->compress_type = compress_type;
 194        entry->truncated_len = (u64)-1;
 195        if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 196                set_bit(type, &entry->flags);
 197
 198        if (dio)
 199                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 200
 201        /* one ref for the tree */
 202        refcount_set(&entry->refs, 1);
 203        init_waitqueue_head(&entry->wait);
 204        INIT_LIST_HEAD(&entry->list);
 205        INIT_LIST_HEAD(&entry->root_extent_list);
 206        INIT_LIST_HEAD(&entry->work_list);
 207        init_completion(&entry->completion);
 208        INIT_LIST_HEAD(&entry->log_list);
 209        INIT_LIST_HEAD(&entry->trans_list);
 210
 211        trace_btrfs_ordered_extent_add(inode, entry);
 212
 213        spin_lock_irq(&tree->lock);
 214        node = tree_insert(&tree->tree, file_offset,
 215                           &entry->rb_node);
 216        if (node)
 217                ordered_data_tree_panic(inode, -EEXIST, file_offset);
 218        spin_unlock_irq(&tree->lock);
 219
 220        spin_lock(&root->ordered_extent_lock);
 221        list_add_tail(&entry->root_extent_list,
 222                      &root->ordered_extents);
 223        root->nr_ordered_extents++;
 224        if (root->nr_ordered_extents == 1) {
 225                spin_lock(&fs_info->ordered_root_lock);
 226                BUG_ON(!list_empty(&root->ordered_root));
 227                list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 228                spin_unlock(&fs_info->ordered_root_lock);
 229        }
 230        spin_unlock(&root->ordered_extent_lock);
 231
 232        /*
 233         * We don't need the count_max_extents here, we can assume that all of
 234         * that work has been done at higher layers, so this is truly the
 235         * smallest the extent is going to get.
 236         */
 237        spin_lock(&BTRFS_I(inode)->lock);
 238        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
 239        spin_unlock(&BTRFS_I(inode)->lock);
 240
 241        return 0;
 242}
 243
 244int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 245                             u64 start, u64 len, u64 disk_len, int type)
 246{
 247        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 248                                          disk_len, type, 0,
 249                                          BTRFS_COMPRESS_NONE);
 250}
 251
 252int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 253                                 u64 start, u64 len, u64 disk_len, int type)
 254{
 255        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 256                                          disk_len, type, 1,
 257                                          BTRFS_COMPRESS_NONE);
 258}
 259
 260int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 261                                      u64 start, u64 len, u64 disk_len,
 262                                      int type, int compress_type)
 263{
 264        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 265                                          disk_len, type, 0,
 266                                          compress_type);
 267}
 268
 269/*
 270 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 271 * when an ordered extent is finished.  If the list covers more than one
 272 * ordered extent, it is split across multiples.
 273 */
 274void btrfs_add_ordered_sum(struct inode *inode,
 275                           struct btrfs_ordered_extent *entry,
 276                           struct btrfs_ordered_sum *sum)
 277{
 278        struct btrfs_ordered_inode_tree *tree;
 279
 280        tree = &BTRFS_I(inode)->ordered_tree;
 281        spin_lock_irq(&tree->lock);
 282        list_add_tail(&sum->list, &entry->list);
 283        spin_unlock_irq(&tree->lock);
 284}
 285
 286/*
 287 * this is used to account for finished IO across a given range
 288 * of the file.  The IO may span ordered extents.  If
 289 * a given ordered_extent is completely done, 1 is returned, otherwise
 290 * 0.
 291 *
 292 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 293 * to make sure this function only returns 1 once for a given ordered extent.
 294 *
 295 * file_offset is updated to one byte past the range that is recorded as
 296 * complete.  This allows you to walk forward in the file.
 297 */
 298int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 299                                   struct btrfs_ordered_extent **cached,
 300                                   u64 *file_offset, u64 io_size, int uptodate)
 301{
 302        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 303        struct btrfs_ordered_inode_tree *tree;
 304        struct rb_node *node;
 305        struct btrfs_ordered_extent *entry = NULL;
 306        int ret;
 307        unsigned long flags;
 308        u64 dec_end;
 309        u64 dec_start;
 310        u64 to_dec;
 311
 312        tree = &BTRFS_I(inode)->ordered_tree;
 313        spin_lock_irqsave(&tree->lock, flags);
 314        node = tree_search(tree, *file_offset);
 315        if (!node) {
 316                ret = 1;
 317                goto out;
 318        }
 319
 320        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 321        if (!offset_in_entry(entry, *file_offset)) {
 322                ret = 1;
 323                goto out;
 324        }
 325
 326        dec_start = max(*file_offset, entry->file_offset);
 327        dec_end = min(*file_offset + io_size, entry->file_offset +
 328                      entry->len);
 329        *file_offset = dec_end;
 330        if (dec_start > dec_end) {
 331                btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
 332                           dec_start, dec_end);
 333        }
 334        to_dec = dec_end - dec_start;
 335        if (to_dec > entry->bytes_left) {
 336                btrfs_crit(fs_info,
 337                           "bad ordered accounting left %llu size %llu",
 338                           entry->bytes_left, to_dec);
 339        }
 340        entry->bytes_left -= to_dec;
 341        if (!uptodate)
 342                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 343
 344        if (entry->bytes_left == 0) {
 345                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 346                /*
 347                 * Implicit memory barrier after test_and_set_bit
 348                 */
 349                if (waitqueue_active(&entry->wait))
 350                        wake_up(&entry->wait);
 351        } else {
 352                ret = 1;
 353        }
 354out:
 355        if (!ret && cached && entry) {
 356                *cached = entry;
 357                refcount_inc(&entry->refs);
 358        }
 359        spin_unlock_irqrestore(&tree->lock, flags);
 360        return ret == 0;
 361}
 362
 363/*
 364 * this is used to account for finished IO across a given range
 365 * of the file.  The IO should not span ordered extents.  If
 366 * a given ordered_extent is completely done, 1 is returned, otherwise
 367 * 0.
 368 *
 369 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 370 * to make sure this function only returns 1 once for a given ordered extent.
 371 */
 372int btrfs_dec_test_ordered_pending(struct inode *inode,
 373                                   struct btrfs_ordered_extent **cached,
 374                                   u64 file_offset, u64 io_size, int uptodate)
 375{
 376        struct btrfs_ordered_inode_tree *tree;
 377        struct rb_node *node;
 378        struct btrfs_ordered_extent *entry = NULL;
 379        unsigned long flags;
 380        int ret;
 381
 382        tree = &BTRFS_I(inode)->ordered_tree;
 383        spin_lock_irqsave(&tree->lock, flags);
 384        if (cached && *cached) {
 385                entry = *cached;
 386                goto have_entry;
 387        }
 388
 389        node = tree_search(tree, file_offset);
 390        if (!node) {
 391                ret = 1;
 392                goto out;
 393        }
 394
 395        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 396have_entry:
 397        if (!offset_in_entry(entry, file_offset)) {
 398                ret = 1;
 399                goto out;
 400        }
 401
 402        if (io_size > entry->bytes_left) {
 403                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 404                           "bad ordered accounting left %llu size %llu",
 405                       entry->bytes_left, io_size);
 406        }
 407        entry->bytes_left -= io_size;
 408        if (!uptodate)
 409                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 410
 411        if (entry->bytes_left == 0) {
 412                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 413                /*
 414                 * Implicit memory barrier after test_and_set_bit
 415                 */
 416                if (waitqueue_active(&entry->wait))
 417                        wake_up(&entry->wait);
 418        } else {
 419                ret = 1;
 420        }
 421out:
 422        if (!ret && cached && entry) {
 423                *cached = entry;
 424                refcount_inc(&entry->refs);
 425        }
 426        spin_unlock_irqrestore(&tree->lock, flags);
 427        return ret == 0;
 428}
 429
 430/* Needs to either be called under a log transaction or the log_mutex */
 431void btrfs_get_logged_extents(struct btrfs_inode *inode,
 432                              struct list_head *logged_list,
 433                              const loff_t start,
 434                              const loff_t end)
 435{
 436        struct btrfs_ordered_inode_tree *tree;
 437        struct btrfs_ordered_extent *ordered;
 438        struct rb_node *n;
 439        struct rb_node *prev;
 440
 441        tree = &inode->ordered_tree;
 442        spin_lock_irq(&tree->lock);
 443        n = __tree_search(&tree->tree, end, &prev);
 444        if (!n)
 445                n = prev;
 446        for (; n; n = rb_prev(n)) {
 447                ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 448                if (ordered->file_offset > end)
 449                        continue;
 450                if (entry_end(ordered) <= start)
 451                        break;
 452                if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 453                        continue;
 454                list_add(&ordered->log_list, logged_list);
 455                refcount_inc(&ordered->refs);
 456        }
 457        spin_unlock_irq(&tree->lock);
 458}
 459
 460void btrfs_put_logged_extents(struct list_head *logged_list)
 461{
 462        struct btrfs_ordered_extent *ordered;
 463
 464        while (!list_empty(logged_list)) {
 465                ordered = list_first_entry(logged_list,
 466                                           struct btrfs_ordered_extent,
 467                                           log_list);
 468                list_del_init(&ordered->log_list);
 469                btrfs_put_ordered_extent(ordered);
 470        }
 471}
 472
 473void btrfs_submit_logged_extents(struct list_head *logged_list,
 474                                 struct btrfs_root *log)
 475{
 476        int index = log->log_transid % 2;
 477
 478        spin_lock_irq(&log->log_extents_lock[index]);
 479        list_splice_tail(logged_list, &log->logged_list[index]);
 480        spin_unlock_irq(&log->log_extents_lock[index]);
 481}
 482
 483void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
 484                               struct btrfs_root *log, u64 transid)
 485{
 486        struct btrfs_ordered_extent *ordered;
 487        int index = transid % 2;
 488
 489        spin_lock_irq(&log->log_extents_lock[index]);
 490        while (!list_empty(&log->logged_list[index])) {
 491                struct inode *inode;
 492                ordered = list_first_entry(&log->logged_list[index],
 493                                           struct btrfs_ordered_extent,
 494                                           log_list);
 495                list_del_init(&ordered->log_list);
 496                inode = ordered->inode;
 497                spin_unlock_irq(&log->log_extents_lock[index]);
 498
 499                if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 500                    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 501                        u64 start = ordered->file_offset;
 502                        u64 end = ordered->file_offset + ordered->len - 1;
 503
 504                        WARN_ON(!inode);
 505                        filemap_fdatawrite_range(inode->i_mapping, start, end);
 506                }
 507                wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 508                                                   &ordered->flags));
 509
 510                /*
 511                 * In order to keep us from losing our ordered extent
 512                 * information when committing the transaction we have to make
 513                 * sure that any logged extents are completed when we go to
 514                 * commit the transaction.  To do this we simply increase the
 515                 * current transactions pending_ordered counter and decrement it
 516                 * when the ordered extent completes.
 517                 */
 518                if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 519                        struct btrfs_ordered_inode_tree *tree;
 520
 521                        tree = &BTRFS_I(inode)->ordered_tree;
 522                        spin_lock_irq(&tree->lock);
 523                        if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 524                                set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
 525                                atomic_inc(&trans->transaction->pending_ordered);
 526                        }
 527                        spin_unlock_irq(&tree->lock);
 528                }
 529                btrfs_put_ordered_extent(ordered);
 530                spin_lock_irq(&log->log_extents_lock[index]);
 531        }
 532        spin_unlock_irq(&log->log_extents_lock[index]);
 533}
 534
 535void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 536{
 537        struct btrfs_ordered_extent *ordered;
 538        int index = transid % 2;
 539
 540        spin_lock_irq(&log->log_extents_lock[index]);
 541        while (!list_empty(&log->logged_list[index])) {
 542                ordered = list_first_entry(&log->logged_list[index],
 543                                           struct btrfs_ordered_extent,
 544                                           log_list);
 545                list_del_init(&ordered->log_list);
 546                spin_unlock_irq(&log->log_extents_lock[index]);
 547                btrfs_put_ordered_extent(ordered);
 548                spin_lock_irq(&log->log_extents_lock[index]);
 549        }
 550        spin_unlock_irq(&log->log_extents_lock[index]);
 551}
 552
 553/*
 554 * used to drop a reference on an ordered extent.  This will free
 555 * the extent if the last reference is dropped
 556 */
 557void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 558{
 559        struct list_head *cur;
 560        struct btrfs_ordered_sum *sum;
 561
 562        trace_btrfs_ordered_extent_put(entry->inode, entry);
 563
 564        if (refcount_dec_and_test(&entry->refs)) {
 565                ASSERT(list_empty(&entry->log_list));
 566                ASSERT(list_empty(&entry->trans_list));
 567                ASSERT(list_empty(&entry->root_extent_list));
 568                ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 569                if (entry->inode)
 570                        btrfs_add_delayed_iput(entry->inode);
 571                while (!list_empty(&entry->list)) {
 572                        cur = entry->list.next;
 573                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 574                        list_del(&sum->list);
 575                        kfree(sum);
 576                }
 577                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 578        }
 579}
 580
 581/*
 582 * remove an ordered extent from the tree.  No references are dropped
 583 * and waiters are woken up.
 584 */
 585void btrfs_remove_ordered_extent(struct inode *inode,
 586                                 struct btrfs_ordered_extent *entry)
 587{
 588        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 589        struct btrfs_ordered_inode_tree *tree;
 590        struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 591        struct btrfs_root *root = btrfs_inode->root;
 592        struct rb_node *node;
 593        bool dec_pending_ordered = false;
 594
 595        /* This is paired with btrfs_add_ordered_extent. */
 596        spin_lock(&btrfs_inode->lock);
 597        btrfs_mod_outstanding_extents(btrfs_inode, -1);
 598        spin_unlock(&btrfs_inode->lock);
 599        if (root != fs_info->tree_root)
 600                btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
 601
 602        tree = &btrfs_inode->ordered_tree;
 603        spin_lock_irq(&tree->lock);
 604        node = &entry->rb_node;
 605        rb_erase(node, &tree->tree);
 606        RB_CLEAR_NODE(node);
 607        if (tree->last == node)
 608                tree->last = NULL;
 609        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 610        if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
 611                dec_pending_ordered = true;
 612        spin_unlock_irq(&tree->lock);
 613
 614        /*
 615         * The current running transaction is waiting on us, we need to let it
 616         * know that we're complete and wake it up.
 617         */
 618        if (dec_pending_ordered) {
 619                struct btrfs_transaction *trans;
 620
 621                /*
 622                 * The checks for trans are just a formality, it should be set,
 623                 * but if it isn't we don't want to deref/assert under the spin
 624                 * lock, so be nice and check if trans is set, but ASSERT() so
 625                 * if it isn't set a developer will notice.
 626                 */
 627                spin_lock(&fs_info->trans_lock);
 628                trans = fs_info->running_transaction;
 629                if (trans)
 630                        refcount_inc(&trans->use_count);
 631                spin_unlock(&fs_info->trans_lock);
 632
 633                ASSERT(trans);
 634                if (trans) {
 635                        if (atomic_dec_and_test(&trans->pending_ordered))
 636                                wake_up(&trans->pending_wait);
 637                        btrfs_put_transaction(trans);
 638                }
 639        }
 640
 641        spin_lock(&root->ordered_extent_lock);
 642        list_del_init(&entry->root_extent_list);
 643        root->nr_ordered_extents--;
 644
 645        trace_btrfs_ordered_extent_remove(inode, entry);
 646
 647        if (!root->nr_ordered_extents) {
 648                spin_lock(&fs_info->ordered_root_lock);
 649                BUG_ON(list_empty(&root->ordered_root));
 650                list_del_init(&root->ordered_root);
 651                spin_unlock(&fs_info->ordered_root_lock);
 652        }
 653        spin_unlock(&root->ordered_extent_lock);
 654        wake_up(&entry->wait);
 655}
 656
 657static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 658{
 659        struct btrfs_ordered_extent *ordered;
 660
 661        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 662        btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 663        complete(&ordered->completion);
 664}
 665
 666/*
 667 * wait for all the ordered extents in a root.  This is done when balancing
 668 * space between drives.
 669 */
 670u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 671                               const u64 range_start, const u64 range_len)
 672{
 673        struct btrfs_fs_info *fs_info = root->fs_info;
 674        LIST_HEAD(splice);
 675        LIST_HEAD(skipped);
 676        LIST_HEAD(works);
 677        struct btrfs_ordered_extent *ordered, *next;
 678        u64 count = 0;
 679        const u64 range_end = range_start + range_len;
 680
 681        mutex_lock(&root->ordered_extent_mutex);
 682        spin_lock(&root->ordered_extent_lock);
 683        list_splice_init(&root->ordered_extents, &splice);
 684        while (!list_empty(&splice) && nr) {
 685                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 686                                           root_extent_list);
 687
 688                if (range_end <= ordered->start ||
 689                    ordered->start + ordered->disk_len <= range_start) {
 690                        list_move_tail(&ordered->root_extent_list, &skipped);
 691                        cond_resched_lock(&root->ordered_extent_lock);
 692                        continue;
 693                }
 694
 695                list_move_tail(&ordered->root_extent_list,
 696                               &root->ordered_extents);
 697                refcount_inc(&ordered->refs);
 698                spin_unlock(&root->ordered_extent_lock);
 699
 700                btrfs_init_work(&ordered->flush_work,
 701                                btrfs_flush_delalloc_helper,
 702                                btrfs_run_ordered_extent_work, NULL, NULL);
 703                list_add_tail(&ordered->work_list, &works);
 704                btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 705
 706                cond_resched();
 707                spin_lock(&root->ordered_extent_lock);
 708                if (nr != U64_MAX)
 709                        nr--;
 710                count++;
 711        }
 712        list_splice_tail(&skipped, &root->ordered_extents);
 713        list_splice_tail(&splice, &root->ordered_extents);
 714        spin_unlock(&root->ordered_extent_lock);
 715
 716        list_for_each_entry_safe(ordered, next, &works, work_list) {
 717                list_del_init(&ordered->work_list);
 718                wait_for_completion(&ordered->completion);
 719                btrfs_put_ordered_extent(ordered);
 720                cond_resched();
 721        }
 722        mutex_unlock(&root->ordered_extent_mutex);
 723
 724        return count;
 725}
 726
 727u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 728                             const u64 range_start, const u64 range_len)
 729{
 730        struct btrfs_root *root;
 731        struct list_head splice;
 732        u64 total_done = 0;
 733        u64 done;
 734
 735        INIT_LIST_HEAD(&splice);
 736
 737        mutex_lock(&fs_info->ordered_operations_mutex);
 738        spin_lock(&fs_info->ordered_root_lock);
 739        list_splice_init(&fs_info->ordered_roots, &splice);
 740        while (!list_empty(&splice) && nr) {
 741                root = list_first_entry(&splice, struct btrfs_root,
 742                                        ordered_root);
 743                root = btrfs_grab_fs_root(root);
 744                BUG_ON(!root);
 745                list_move_tail(&root->ordered_root,
 746                               &fs_info->ordered_roots);
 747                spin_unlock(&fs_info->ordered_root_lock);
 748
 749                done = btrfs_wait_ordered_extents(root, nr,
 750                                                  range_start, range_len);
 751                btrfs_put_fs_root(root);
 752                total_done += done;
 753
 754                spin_lock(&fs_info->ordered_root_lock);
 755                if (nr != U64_MAX) {
 756                        nr -= done;
 757                }
 758        }
 759        list_splice_tail(&splice, &fs_info->ordered_roots);
 760        spin_unlock(&fs_info->ordered_root_lock);
 761        mutex_unlock(&fs_info->ordered_operations_mutex);
 762
 763        return total_done;
 764}
 765
 766/*
 767 * Used to start IO or wait for a given ordered extent to finish.
 768 *
 769 * If wait is one, this effectively waits on page writeback for all the pages
 770 * in the extent, and it waits on the io completion code to insert
 771 * metadata into the btree corresponding to the extent
 772 */
 773void btrfs_start_ordered_extent(struct inode *inode,
 774                                       struct btrfs_ordered_extent *entry,
 775                                       int wait)
 776{
 777        u64 start = entry->file_offset;
 778        u64 end = start + entry->len - 1;
 779
 780        trace_btrfs_ordered_extent_start(inode, entry);
 781
 782        /*
 783         * pages in the range can be dirty, clean or writeback.  We
 784         * start IO on any dirty ones so the wait doesn't stall waiting
 785         * for the flusher thread to find them
 786         */
 787        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 788                filemap_fdatawrite_range(inode->i_mapping, start, end);
 789        if (wait) {
 790                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 791                                                 &entry->flags));
 792        }
 793}
 794
 795/*
 796 * Used to wait on ordered extents across a large range of bytes.
 797 */
 798int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 799{
 800        int ret = 0;
 801        int ret_wb = 0;
 802        u64 end;
 803        u64 orig_end;
 804        struct btrfs_ordered_extent *ordered;
 805
 806        if (start + len < start) {
 807                orig_end = INT_LIMIT(loff_t);
 808        } else {
 809                orig_end = start + len - 1;
 810                if (orig_end > INT_LIMIT(loff_t))
 811                        orig_end = INT_LIMIT(loff_t);
 812        }
 813
 814        /* start IO across the range first to instantiate any delalloc
 815         * extents
 816         */
 817        ret = btrfs_fdatawrite_range(inode, start, orig_end);
 818        if (ret)
 819                return ret;
 820
 821        /*
 822         * If we have a writeback error don't return immediately. Wait first
 823         * for any ordered extents that haven't completed yet. This is to make
 824         * sure no one can dirty the same page ranges and call writepages()
 825         * before the ordered extents complete - to avoid failures (-EEXIST)
 826         * when adding the new ordered extents to the ordered tree.
 827         */
 828        ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 829
 830        end = orig_end;
 831        while (1) {
 832                ordered = btrfs_lookup_first_ordered_extent(inode, end);
 833                if (!ordered)
 834                        break;
 835                if (ordered->file_offset > orig_end) {
 836                        btrfs_put_ordered_extent(ordered);
 837                        break;
 838                }
 839                if (ordered->file_offset + ordered->len <= start) {
 840                        btrfs_put_ordered_extent(ordered);
 841                        break;
 842                }
 843                btrfs_start_ordered_extent(inode, ordered, 1);
 844                end = ordered->file_offset;
 845                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 846                        ret = -EIO;
 847                btrfs_put_ordered_extent(ordered);
 848                if (ret || end == 0 || end == start)
 849                        break;
 850                end--;
 851        }
 852        return ret_wb ? ret_wb : ret;
 853}
 854
 855/*
 856 * find an ordered extent corresponding to file_offset.  return NULL if
 857 * nothing is found, otherwise take a reference on the extent and return it
 858 */
 859struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 860                                                         u64 file_offset)
 861{
 862        struct btrfs_ordered_inode_tree *tree;
 863        struct rb_node *node;
 864        struct btrfs_ordered_extent *entry = NULL;
 865
 866        tree = &BTRFS_I(inode)->ordered_tree;
 867        spin_lock_irq(&tree->lock);
 868        node = tree_search(tree, file_offset);
 869        if (!node)
 870                goto out;
 871
 872        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 873        if (!offset_in_entry(entry, file_offset))
 874                entry = NULL;
 875        if (entry)
 876                refcount_inc(&entry->refs);
 877out:
 878        spin_unlock_irq(&tree->lock);
 879        return entry;
 880}
 881
 882/* Since the DIO code tries to lock a wide area we need to look for any ordered
 883 * extents that exist in the range, rather than just the start of the range.
 884 */
 885struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 886                struct btrfs_inode *inode, u64 file_offset, u64 len)
 887{
 888        struct btrfs_ordered_inode_tree *tree;
 889        struct rb_node *node;
 890        struct btrfs_ordered_extent *entry = NULL;
 891
 892        tree = &inode->ordered_tree;
 893        spin_lock_irq(&tree->lock);
 894        node = tree_search(tree, file_offset);
 895        if (!node) {
 896                node = tree_search(tree, file_offset + len);
 897                if (!node)
 898                        goto out;
 899        }
 900
 901        while (1) {
 902                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 903                if (range_overlaps(entry, file_offset, len))
 904                        break;
 905
 906                if (entry->file_offset >= file_offset + len) {
 907                        entry = NULL;
 908                        break;
 909                }
 910                entry = NULL;
 911                node = rb_next(node);
 912                if (!node)
 913                        break;
 914        }
 915out:
 916        if (entry)
 917                refcount_inc(&entry->refs);
 918        spin_unlock_irq(&tree->lock);
 919        return entry;
 920}
 921
 922bool btrfs_have_ordered_extents_in_range(struct inode *inode,
 923                                         u64 file_offset,
 924                                         u64 len)
 925{
 926        struct btrfs_ordered_extent *oe;
 927
 928        oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
 929        if (oe) {
 930                btrfs_put_ordered_extent(oe);
 931                return true;
 932        }
 933        return false;
 934}
 935
 936/*
 937 * lookup and return any extent before 'file_offset'.  NULL is returned
 938 * if none is found
 939 */
 940struct btrfs_ordered_extent *
 941btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 942{
 943        struct btrfs_ordered_inode_tree *tree;
 944        struct rb_node *node;
 945        struct btrfs_ordered_extent *entry = NULL;
 946
 947        tree = &BTRFS_I(inode)->ordered_tree;
 948        spin_lock_irq(&tree->lock);
 949        node = tree_search(tree, file_offset);
 950        if (!node)
 951                goto out;
 952
 953        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 954        refcount_inc(&entry->refs);
 955out:
 956        spin_unlock_irq(&tree->lock);
 957        return entry;
 958}
 959
 960/*
 961 * After an extent is done, call this to conditionally update the on disk
 962 * i_size.  i_size is updated to cover any fully written part of the file.
 963 */
 964int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 965                                struct btrfs_ordered_extent *ordered)
 966{
 967        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 968        u64 disk_i_size;
 969        u64 new_i_size;
 970        u64 i_size = i_size_read(inode);
 971        struct rb_node *node;
 972        struct rb_node *prev = NULL;
 973        struct btrfs_ordered_extent *test;
 974        int ret = 1;
 975        u64 orig_offset = offset;
 976
 977        spin_lock_irq(&tree->lock);
 978        if (ordered) {
 979                offset = entry_end(ordered);
 980                if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 981                        offset = min(offset,
 982                                     ordered->file_offset +
 983                                     ordered->truncated_len);
 984        } else {
 985                offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
 986        }
 987        disk_i_size = BTRFS_I(inode)->disk_i_size;
 988
 989        /*
 990         * truncate file.
 991         * If ordered is not NULL, then this is called from endio and
 992         * disk_i_size will be updated by either truncate itself or any
 993         * in-flight IOs which are inside the disk_i_size.
 994         *
 995         * Because btrfs_setsize() may set i_size with disk_i_size if truncate
 996         * fails somehow, we need to make sure we have a precise disk_i_size by
 997         * updating it as usual.
 998         *
 999         */
1000        if (!ordered && disk_i_size > i_size) {
1001                BTRFS_I(inode)->disk_i_size = orig_offset;
1002                ret = 0;
1003                goto out;
1004        }
1005
1006        /*
1007         * if the disk i_size is already at the inode->i_size, or
1008         * this ordered extent is inside the disk i_size, we're done
1009         */
1010        if (disk_i_size == i_size)
1011                goto out;
1012
1013        /*
1014         * We still need to update disk_i_size if outstanding_isize is greater
1015         * than disk_i_size.
1016         */
1017        if (offset <= disk_i_size &&
1018            (!ordered || ordered->outstanding_isize <= disk_i_size))
1019                goto out;
1020
1021        /*
1022         * walk backward from this ordered extent to disk_i_size.
1023         * if we find an ordered extent then we can't update disk i_size
1024         * yet
1025         */
1026        if (ordered) {
1027                node = rb_prev(&ordered->rb_node);
1028        } else {
1029                prev = tree_search(tree, offset);
1030                /*
1031                 * we insert file extents without involving ordered struct,
1032                 * so there should be no ordered struct cover this offset
1033                 */
1034                if (prev) {
1035                        test = rb_entry(prev, struct btrfs_ordered_extent,
1036                                        rb_node);
1037                        BUG_ON(offset_in_entry(test, offset));
1038                }
1039                node = prev;
1040        }
1041        for (; node; node = rb_prev(node)) {
1042                test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1043
1044                /* We treat this entry as if it doesn't exist */
1045                if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1046                        continue;
1047
1048                if (entry_end(test) <= disk_i_size)
1049                        break;
1050                if (test->file_offset >= i_size)
1051                        break;
1052
1053                /*
1054                 * We don't update disk_i_size now, so record this undealt
1055                 * i_size. Or we will not know the real i_size.
1056                 */
1057                if (test->outstanding_isize < offset)
1058                        test->outstanding_isize = offset;
1059                if (ordered &&
1060                    ordered->outstanding_isize > test->outstanding_isize)
1061                        test->outstanding_isize = ordered->outstanding_isize;
1062                goto out;
1063        }
1064        new_i_size = min_t(u64, offset, i_size);
1065
1066        /*
1067         * Some ordered extents may completed before the current one, and
1068         * we hold the real i_size in ->outstanding_isize.
1069         */
1070        if (ordered && ordered->outstanding_isize > new_i_size)
1071                new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1072        BTRFS_I(inode)->disk_i_size = new_i_size;
1073        ret = 0;
1074out:
1075        /*
1076         * We need to do this because we can't remove ordered extents until
1077         * after the i_disk_size has been updated and then the inode has been
1078         * updated to reflect the change, so we need to tell anybody who finds
1079         * this ordered extent that we've already done all the real work, we
1080         * just haven't completed all the other work.
1081         */
1082        if (ordered)
1083                set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1084        spin_unlock_irq(&tree->lock);
1085        return ret;
1086}
1087
1088/*
1089 * search the ordered extents for one corresponding to 'offset' and
1090 * try to find a checksum.  This is used because we allow pages to
1091 * be reclaimed before their checksum is actually put into the btree
1092 */
1093int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1094                           u32 *sum, int len)
1095{
1096        struct btrfs_ordered_sum *ordered_sum;
1097        struct btrfs_ordered_extent *ordered;
1098        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1099        unsigned long num_sectors;
1100        unsigned long i;
1101        u32 sectorsize = btrfs_inode_sectorsize(inode);
1102        int index = 0;
1103
1104        ordered = btrfs_lookup_ordered_extent(inode, offset);
1105        if (!ordered)
1106                return 0;
1107
1108        spin_lock_irq(&tree->lock);
1109        list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1110                if (disk_bytenr >= ordered_sum->bytenr &&
1111                    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1112                        i = (disk_bytenr - ordered_sum->bytenr) >>
1113                            inode->i_sb->s_blocksize_bits;
1114                        num_sectors = ordered_sum->len >>
1115                                      inode->i_sb->s_blocksize_bits;
1116                        num_sectors = min_t(int, len - index, num_sectors - i);
1117                        memcpy(sum + index, ordered_sum->sums + i,
1118                               num_sectors);
1119
1120                        index += (int)num_sectors;
1121                        if (index == len)
1122                                goto out;
1123                        disk_bytenr += num_sectors * sectorsize;
1124                }
1125        }
1126out:
1127        spin_unlock_irq(&tree->lock);
1128        btrfs_put_ordered_extent(ordered);
1129        return index;
1130}
1131
1132int __init ordered_data_init(void)
1133{
1134        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1135                                     sizeof(struct btrfs_ordered_extent), 0,
1136                                     SLAB_MEM_SPREAD,
1137                                     NULL);
1138        if (!btrfs_ordered_extent_cache)
1139                return -ENOMEM;
1140
1141        return 0;
1142}
1143
1144void __cold ordered_data_exit(void)
1145{
1146        kmem_cache_destroy(btrfs_ordered_extent_cache);
1147}
1148