linux/fs/btrfs/send.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26
  27/*
  28 * A fs_path is a helper to dynamically build path names with unknown size.
  29 * It reallocates the internal buffer on demand.
  30 * It allows fast adding of path elements on the right side (normal path) and
  31 * fast adding to the left side (reversed path). A reversed path can also be
  32 * unreversed if needed.
  33 */
  34struct fs_path {
  35        union {
  36                struct {
  37                        char *start;
  38                        char *end;
  39
  40                        char *buf;
  41                        unsigned short buf_len:15;
  42                        unsigned short reversed:1;
  43                        char inline_buf[];
  44                };
  45                /*
  46                 * Average path length does not exceed 200 bytes, we'll have
  47                 * better packing in the slab and higher chance to satisfy
  48                 * a allocation later during send.
  49                 */
  50                char pad[256];
  51        };
  52};
  53#define FS_PATH_INLINE_SIZE \
  54        (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  55
  56
  57/* reused for each extent */
  58struct clone_root {
  59        struct btrfs_root *root;
  60        u64 ino;
  61        u64 offset;
  62
  63        u64 found_refs;
  64};
  65
  66#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  67#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  68
  69struct send_ctx {
  70        struct file *send_filp;
  71        loff_t send_off;
  72        char *send_buf;
  73        u32 send_size;
  74        u32 send_max_size;
  75        u64 total_send_size;
  76        u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  77        u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
  78
  79        struct btrfs_root *send_root;
  80        struct btrfs_root *parent_root;
  81        struct clone_root *clone_roots;
  82        int clone_roots_cnt;
  83
  84        /* current state of the compare_tree call */
  85        struct btrfs_path *left_path;
  86        struct btrfs_path *right_path;
  87        struct btrfs_key *cmp_key;
  88
  89        /*
  90         * infos of the currently processed inode. In case of deleted inodes,
  91         * these are the values from the deleted inode.
  92         */
  93        u64 cur_ino;
  94        u64 cur_inode_gen;
  95        int cur_inode_new;
  96        int cur_inode_new_gen;
  97        int cur_inode_deleted;
  98        u64 cur_inode_size;
  99        u64 cur_inode_mode;
 100        u64 cur_inode_rdev;
 101        u64 cur_inode_last_extent;
 102        u64 cur_inode_next_write_offset;
 103
 104        u64 send_progress;
 105
 106        struct list_head new_refs;
 107        struct list_head deleted_refs;
 108
 109        struct radix_tree_root name_cache;
 110        struct list_head name_cache_list;
 111        int name_cache_size;
 112
 113        struct file_ra_state ra;
 114
 115        char *read_buf;
 116
 117        /*
 118         * We process inodes by their increasing order, so if before an
 119         * incremental send we reverse the parent/child relationship of
 120         * directories such that a directory with a lower inode number was
 121         * the parent of a directory with a higher inode number, and the one
 122         * becoming the new parent got renamed too, we can't rename/move the
 123         * directory with lower inode number when we finish processing it - we
 124         * must process the directory with higher inode number first, then
 125         * rename/move it and then rename/move the directory with lower inode
 126         * number. Example follows.
 127         *
 128         * Tree state when the first send was performed:
 129         *
 130         * .
 131         * |-- a                   (ino 257)
 132         *     |-- b               (ino 258)
 133         *         |
 134         *         |
 135         *         |-- c           (ino 259)
 136         *         |   |-- d       (ino 260)
 137         *         |
 138         *         |-- c2          (ino 261)
 139         *
 140         * Tree state when the second (incremental) send is performed:
 141         *
 142         * .
 143         * |-- a                   (ino 257)
 144         *     |-- b               (ino 258)
 145         *         |-- c2          (ino 261)
 146         *             |-- d2      (ino 260)
 147         *                 |-- cc  (ino 259)
 148         *
 149         * The sequence of steps that lead to the second state was:
 150         *
 151         * mv /a/b/c/d /a/b/c2/d2
 152         * mv /a/b/c /a/b/c2/d2/cc
 153         *
 154         * "c" has lower inode number, but we can't move it (2nd mv operation)
 155         * before we move "d", which has higher inode number.
 156         *
 157         * So we just memorize which move/rename operations must be performed
 158         * later when their respective parent is processed and moved/renamed.
 159         */
 160
 161        /* Indexed by parent directory inode number. */
 162        struct rb_root pending_dir_moves;
 163
 164        /*
 165         * Reverse index, indexed by the inode number of a directory that
 166         * is waiting for the move/rename of its immediate parent before its
 167         * own move/rename can be performed.
 168         */
 169        struct rb_root waiting_dir_moves;
 170
 171        /*
 172         * A directory that is going to be rm'ed might have a child directory
 173         * which is in the pending directory moves index above. In this case,
 174         * the directory can only be removed after the move/rename of its child
 175         * is performed. Example:
 176         *
 177         * Parent snapshot:
 178         *
 179         * .                        (ino 256)
 180         * |-- a/                   (ino 257)
 181         *     |-- b/               (ino 258)
 182         *         |-- c/           (ino 259)
 183         *         |   |-- x/       (ino 260)
 184         *         |
 185         *         |-- y/           (ino 261)
 186         *
 187         * Send snapshot:
 188         *
 189         * .                        (ino 256)
 190         * |-- a/                   (ino 257)
 191         *     |-- b/               (ino 258)
 192         *         |-- YY/          (ino 261)
 193         *              |-- x/      (ino 260)
 194         *
 195         * Sequence of steps that lead to the send snapshot:
 196         * rm -f /a/b/c/foo.txt
 197         * mv /a/b/y /a/b/YY
 198         * mv /a/b/c/x /a/b/YY
 199         * rmdir /a/b/c
 200         *
 201         * When the child is processed, its move/rename is delayed until its
 202         * parent is processed (as explained above), but all other operations
 203         * like update utimes, chown, chgrp, etc, are performed and the paths
 204         * that it uses for those operations must use the orphanized name of
 205         * its parent (the directory we're going to rm later), so we need to
 206         * memorize that name.
 207         *
 208         * Indexed by the inode number of the directory to be deleted.
 209         */
 210        struct rb_root orphan_dirs;
 211};
 212
 213struct pending_dir_move {
 214        struct rb_node node;
 215        struct list_head list;
 216        u64 parent_ino;
 217        u64 ino;
 218        u64 gen;
 219        struct list_head update_refs;
 220};
 221
 222struct waiting_dir_move {
 223        struct rb_node node;
 224        u64 ino;
 225        /*
 226         * There might be some directory that could not be removed because it
 227         * was waiting for this directory inode to be moved first. Therefore
 228         * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 229         */
 230        u64 rmdir_ino;
 231        bool orphanized;
 232};
 233
 234struct orphan_dir_info {
 235        struct rb_node node;
 236        u64 ino;
 237        u64 gen;
 238};
 239
 240struct name_cache_entry {
 241        struct list_head list;
 242        /*
 243         * radix_tree has only 32bit entries but we need to handle 64bit inums.
 244         * We use the lower 32bit of the 64bit inum to store it in the tree. If
 245         * more then one inum would fall into the same entry, we use radix_list
 246         * to store the additional entries. radix_list is also used to store
 247         * entries where two entries have the same inum but different
 248         * generations.
 249         */
 250        struct list_head radix_list;
 251        u64 ino;
 252        u64 gen;
 253        u64 parent_ino;
 254        u64 parent_gen;
 255        int ret;
 256        int need_later_update;
 257        int name_len;
 258        char name[];
 259};
 260
 261__cold
 262static void inconsistent_snapshot_error(struct send_ctx *sctx,
 263                                        enum btrfs_compare_tree_result result,
 264                                        const char *what)
 265{
 266        const char *result_string;
 267
 268        switch (result) {
 269        case BTRFS_COMPARE_TREE_NEW:
 270                result_string = "new";
 271                break;
 272        case BTRFS_COMPARE_TREE_DELETED:
 273                result_string = "deleted";
 274                break;
 275        case BTRFS_COMPARE_TREE_CHANGED:
 276                result_string = "updated";
 277                break;
 278        case BTRFS_COMPARE_TREE_SAME:
 279                ASSERT(0);
 280                result_string = "unchanged";
 281                break;
 282        default:
 283                ASSERT(0);
 284                result_string = "unexpected";
 285        }
 286
 287        btrfs_err(sctx->send_root->fs_info,
 288                  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 289                  result_string, what, sctx->cmp_key->objectid,
 290                  sctx->send_root->root_key.objectid,
 291                  (sctx->parent_root ?
 292                   sctx->parent_root->root_key.objectid : 0));
 293}
 294
 295static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 296
 297static struct waiting_dir_move *
 298get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 299
 300static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 301
 302static int need_send_hole(struct send_ctx *sctx)
 303{
 304        return (sctx->parent_root && !sctx->cur_inode_new &&
 305                !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 306                S_ISREG(sctx->cur_inode_mode));
 307}
 308
 309static void fs_path_reset(struct fs_path *p)
 310{
 311        if (p->reversed) {
 312                p->start = p->buf + p->buf_len - 1;
 313                p->end = p->start;
 314                *p->start = 0;
 315        } else {
 316                p->start = p->buf;
 317                p->end = p->start;
 318                *p->start = 0;
 319        }
 320}
 321
 322static struct fs_path *fs_path_alloc(void)
 323{
 324        struct fs_path *p;
 325
 326        p = kmalloc(sizeof(*p), GFP_KERNEL);
 327        if (!p)
 328                return NULL;
 329        p->reversed = 0;
 330        p->buf = p->inline_buf;
 331        p->buf_len = FS_PATH_INLINE_SIZE;
 332        fs_path_reset(p);
 333        return p;
 334}
 335
 336static struct fs_path *fs_path_alloc_reversed(void)
 337{
 338        struct fs_path *p;
 339
 340        p = fs_path_alloc();
 341        if (!p)
 342                return NULL;
 343        p->reversed = 1;
 344        fs_path_reset(p);
 345        return p;
 346}
 347
 348static void fs_path_free(struct fs_path *p)
 349{
 350        if (!p)
 351                return;
 352        if (p->buf != p->inline_buf)
 353                kfree(p->buf);
 354        kfree(p);
 355}
 356
 357static int fs_path_len(struct fs_path *p)
 358{
 359        return p->end - p->start;
 360}
 361
 362static int fs_path_ensure_buf(struct fs_path *p, int len)
 363{
 364        char *tmp_buf;
 365        int path_len;
 366        int old_buf_len;
 367
 368        len++;
 369
 370        if (p->buf_len >= len)
 371                return 0;
 372
 373        if (len > PATH_MAX) {
 374                WARN_ON(1);
 375                return -ENOMEM;
 376        }
 377
 378        path_len = p->end - p->start;
 379        old_buf_len = p->buf_len;
 380
 381        /*
 382         * First time the inline_buf does not suffice
 383         */
 384        if (p->buf == p->inline_buf) {
 385                tmp_buf = kmalloc(len, GFP_KERNEL);
 386                if (tmp_buf)
 387                        memcpy(tmp_buf, p->buf, old_buf_len);
 388        } else {
 389                tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 390        }
 391        if (!tmp_buf)
 392                return -ENOMEM;
 393        p->buf = tmp_buf;
 394        /*
 395         * The real size of the buffer is bigger, this will let the fast path
 396         * happen most of the time
 397         */
 398        p->buf_len = ksize(p->buf);
 399
 400        if (p->reversed) {
 401                tmp_buf = p->buf + old_buf_len - path_len - 1;
 402                p->end = p->buf + p->buf_len - 1;
 403                p->start = p->end - path_len;
 404                memmove(p->start, tmp_buf, path_len + 1);
 405        } else {
 406                p->start = p->buf;
 407                p->end = p->start + path_len;
 408        }
 409        return 0;
 410}
 411
 412static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 413                                   char **prepared)
 414{
 415        int ret;
 416        int new_len;
 417
 418        new_len = p->end - p->start + name_len;
 419        if (p->start != p->end)
 420                new_len++;
 421        ret = fs_path_ensure_buf(p, new_len);
 422        if (ret < 0)
 423                goto out;
 424
 425        if (p->reversed) {
 426                if (p->start != p->end)
 427                        *--p->start = '/';
 428                p->start -= name_len;
 429                *prepared = p->start;
 430        } else {
 431                if (p->start != p->end)
 432                        *p->end++ = '/';
 433                *prepared = p->end;
 434                p->end += name_len;
 435                *p->end = 0;
 436        }
 437
 438out:
 439        return ret;
 440}
 441
 442static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 443{
 444        int ret;
 445        char *prepared;
 446
 447        ret = fs_path_prepare_for_add(p, name_len, &prepared);
 448        if (ret < 0)
 449                goto out;
 450        memcpy(prepared, name, name_len);
 451
 452out:
 453        return ret;
 454}
 455
 456static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 457{
 458        int ret;
 459        char *prepared;
 460
 461        ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 462        if (ret < 0)
 463                goto out;
 464        memcpy(prepared, p2->start, p2->end - p2->start);
 465
 466out:
 467        return ret;
 468}
 469
 470static int fs_path_add_from_extent_buffer(struct fs_path *p,
 471                                          struct extent_buffer *eb,
 472                                          unsigned long off, int len)
 473{
 474        int ret;
 475        char *prepared;
 476
 477        ret = fs_path_prepare_for_add(p, len, &prepared);
 478        if (ret < 0)
 479                goto out;
 480
 481        read_extent_buffer(eb, prepared, off, len);
 482
 483out:
 484        return ret;
 485}
 486
 487static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 488{
 489        int ret;
 490
 491        p->reversed = from->reversed;
 492        fs_path_reset(p);
 493
 494        ret = fs_path_add_path(p, from);
 495
 496        return ret;
 497}
 498
 499
 500static void fs_path_unreverse(struct fs_path *p)
 501{
 502        char *tmp;
 503        int len;
 504
 505        if (!p->reversed)
 506                return;
 507
 508        tmp = p->start;
 509        len = p->end - p->start;
 510        p->start = p->buf;
 511        p->end = p->start + len;
 512        memmove(p->start, tmp, len + 1);
 513        p->reversed = 0;
 514}
 515
 516static struct btrfs_path *alloc_path_for_send(void)
 517{
 518        struct btrfs_path *path;
 519
 520        path = btrfs_alloc_path();
 521        if (!path)
 522                return NULL;
 523        path->search_commit_root = 1;
 524        path->skip_locking = 1;
 525        path->need_commit_sem = 1;
 526        return path;
 527}
 528
 529static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 530{
 531        int ret;
 532        u32 pos = 0;
 533
 534        while (pos < len) {
 535                ret = kernel_write(filp, buf + pos, len - pos, off);
 536                /* TODO handle that correctly */
 537                /*if (ret == -ERESTARTSYS) {
 538                        continue;
 539                }*/
 540                if (ret < 0)
 541                        return ret;
 542                if (ret == 0) {
 543                        return -EIO;
 544                }
 545                pos += ret;
 546        }
 547
 548        return 0;
 549}
 550
 551static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 552{
 553        struct btrfs_tlv_header *hdr;
 554        int total_len = sizeof(*hdr) + len;
 555        int left = sctx->send_max_size - sctx->send_size;
 556
 557        if (unlikely(left < total_len))
 558                return -EOVERFLOW;
 559
 560        hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 561        hdr->tlv_type = cpu_to_le16(attr);
 562        hdr->tlv_len = cpu_to_le16(len);
 563        memcpy(hdr + 1, data, len);
 564        sctx->send_size += total_len;
 565
 566        return 0;
 567}
 568
 569#define TLV_PUT_DEFINE_INT(bits) \
 570        static int tlv_put_u##bits(struct send_ctx *sctx,               \
 571                        u##bits attr, u##bits value)                    \
 572        {                                                               \
 573                __le##bits __tmp = cpu_to_le##bits(value);              \
 574                return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
 575        }
 576
 577TLV_PUT_DEFINE_INT(64)
 578
 579static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 580                          const char *str, int len)
 581{
 582        if (len == -1)
 583                len = strlen(str);
 584        return tlv_put(sctx, attr, str, len);
 585}
 586
 587static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 588                        const u8 *uuid)
 589{
 590        return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 591}
 592
 593static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 594                                  struct extent_buffer *eb,
 595                                  struct btrfs_timespec *ts)
 596{
 597        struct btrfs_timespec bts;
 598        read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 599        return tlv_put(sctx, attr, &bts, sizeof(bts));
 600}
 601
 602
 603#define TLV_PUT(sctx, attrtype, data, attrlen) \
 604        do { \
 605                ret = tlv_put(sctx, attrtype, data, attrlen); \
 606                if (ret < 0) \
 607                        goto tlv_put_failure; \
 608        } while (0)
 609
 610#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 611        do { \
 612                ret = tlv_put_u##bits(sctx, attrtype, value); \
 613                if (ret < 0) \
 614                        goto tlv_put_failure; \
 615        } while (0)
 616
 617#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 618#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 619#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 620#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 621#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 622        do { \
 623                ret = tlv_put_string(sctx, attrtype, str, len); \
 624                if (ret < 0) \
 625                        goto tlv_put_failure; \
 626        } while (0)
 627#define TLV_PUT_PATH(sctx, attrtype, p) \
 628        do { \
 629                ret = tlv_put_string(sctx, attrtype, p->start, \
 630                        p->end - p->start); \
 631                if (ret < 0) \
 632                        goto tlv_put_failure; \
 633        } while(0)
 634#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 635        do { \
 636                ret = tlv_put_uuid(sctx, attrtype, uuid); \
 637                if (ret < 0) \
 638                        goto tlv_put_failure; \
 639        } while (0)
 640#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 641        do { \
 642                ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 643                if (ret < 0) \
 644                        goto tlv_put_failure; \
 645        } while (0)
 646
 647static int send_header(struct send_ctx *sctx)
 648{
 649        struct btrfs_stream_header hdr;
 650
 651        strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 652        hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 653
 654        return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 655                                        &sctx->send_off);
 656}
 657
 658/*
 659 * For each command/item we want to send to userspace, we call this function.
 660 */
 661static int begin_cmd(struct send_ctx *sctx, int cmd)
 662{
 663        struct btrfs_cmd_header *hdr;
 664
 665        if (WARN_ON(!sctx->send_buf))
 666                return -EINVAL;
 667
 668        BUG_ON(sctx->send_size);
 669
 670        sctx->send_size += sizeof(*hdr);
 671        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 672        hdr->cmd = cpu_to_le16(cmd);
 673
 674        return 0;
 675}
 676
 677static int send_cmd(struct send_ctx *sctx)
 678{
 679        int ret;
 680        struct btrfs_cmd_header *hdr;
 681        u32 crc;
 682
 683        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 684        hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 685        hdr->crc = 0;
 686
 687        crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 688        hdr->crc = cpu_to_le32(crc);
 689
 690        ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 691                                        &sctx->send_off);
 692
 693        sctx->total_send_size += sctx->send_size;
 694        sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 695        sctx->send_size = 0;
 696
 697        return ret;
 698}
 699
 700/*
 701 * Sends a move instruction to user space
 702 */
 703static int send_rename(struct send_ctx *sctx,
 704                     struct fs_path *from, struct fs_path *to)
 705{
 706        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 707        int ret;
 708
 709        btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 710
 711        ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 712        if (ret < 0)
 713                goto out;
 714
 715        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 716        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 717
 718        ret = send_cmd(sctx);
 719
 720tlv_put_failure:
 721out:
 722        return ret;
 723}
 724
 725/*
 726 * Sends a link instruction to user space
 727 */
 728static int send_link(struct send_ctx *sctx,
 729                     struct fs_path *path, struct fs_path *lnk)
 730{
 731        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 732        int ret;
 733
 734        btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 735
 736        ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 737        if (ret < 0)
 738                goto out;
 739
 740        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 741        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 742
 743        ret = send_cmd(sctx);
 744
 745tlv_put_failure:
 746out:
 747        return ret;
 748}
 749
 750/*
 751 * Sends an unlink instruction to user space
 752 */
 753static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 754{
 755        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 756        int ret;
 757
 758        btrfs_debug(fs_info, "send_unlink %s", path->start);
 759
 760        ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 761        if (ret < 0)
 762                goto out;
 763
 764        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 765
 766        ret = send_cmd(sctx);
 767
 768tlv_put_failure:
 769out:
 770        return ret;
 771}
 772
 773/*
 774 * Sends a rmdir instruction to user space
 775 */
 776static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 777{
 778        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 779        int ret;
 780
 781        btrfs_debug(fs_info, "send_rmdir %s", path->start);
 782
 783        ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 784        if (ret < 0)
 785                goto out;
 786
 787        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 788
 789        ret = send_cmd(sctx);
 790
 791tlv_put_failure:
 792out:
 793        return ret;
 794}
 795
 796/*
 797 * Helper function to retrieve some fields from an inode item.
 798 */
 799static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 800                          u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 801                          u64 *gid, u64 *rdev)
 802{
 803        int ret;
 804        struct btrfs_inode_item *ii;
 805        struct btrfs_key key;
 806
 807        key.objectid = ino;
 808        key.type = BTRFS_INODE_ITEM_KEY;
 809        key.offset = 0;
 810        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 811        if (ret) {
 812                if (ret > 0)
 813                        ret = -ENOENT;
 814                return ret;
 815        }
 816
 817        ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 818                        struct btrfs_inode_item);
 819        if (size)
 820                *size = btrfs_inode_size(path->nodes[0], ii);
 821        if (gen)
 822                *gen = btrfs_inode_generation(path->nodes[0], ii);
 823        if (mode)
 824                *mode = btrfs_inode_mode(path->nodes[0], ii);
 825        if (uid)
 826                *uid = btrfs_inode_uid(path->nodes[0], ii);
 827        if (gid)
 828                *gid = btrfs_inode_gid(path->nodes[0], ii);
 829        if (rdev)
 830                *rdev = btrfs_inode_rdev(path->nodes[0], ii);
 831
 832        return ret;
 833}
 834
 835static int get_inode_info(struct btrfs_root *root,
 836                          u64 ino, u64 *size, u64 *gen,
 837                          u64 *mode, u64 *uid, u64 *gid,
 838                          u64 *rdev)
 839{
 840        struct btrfs_path *path;
 841        int ret;
 842
 843        path = alloc_path_for_send();
 844        if (!path)
 845                return -ENOMEM;
 846        ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 847                               rdev);
 848        btrfs_free_path(path);
 849        return ret;
 850}
 851
 852typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 853                                   struct fs_path *p,
 854                                   void *ctx);
 855
 856/*
 857 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 858 * btrfs_inode_extref.
 859 * The iterate callback may return a non zero value to stop iteration. This can
 860 * be a negative value for error codes or 1 to simply stop it.
 861 *
 862 * path must point to the INODE_REF or INODE_EXTREF when called.
 863 */
 864static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 865                             struct btrfs_key *found_key, int resolve,
 866                             iterate_inode_ref_t iterate, void *ctx)
 867{
 868        struct extent_buffer *eb = path->nodes[0];
 869        struct btrfs_item *item;
 870        struct btrfs_inode_ref *iref;
 871        struct btrfs_inode_extref *extref;
 872        struct btrfs_path *tmp_path;
 873        struct fs_path *p;
 874        u32 cur = 0;
 875        u32 total;
 876        int slot = path->slots[0];
 877        u32 name_len;
 878        char *start;
 879        int ret = 0;
 880        int num = 0;
 881        int index;
 882        u64 dir;
 883        unsigned long name_off;
 884        unsigned long elem_size;
 885        unsigned long ptr;
 886
 887        p = fs_path_alloc_reversed();
 888        if (!p)
 889                return -ENOMEM;
 890
 891        tmp_path = alloc_path_for_send();
 892        if (!tmp_path) {
 893                fs_path_free(p);
 894                return -ENOMEM;
 895        }
 896
 897
 898        if (found_key->type == BTRFS_INODE_REF_KEY) {
 899                ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 900                                                    struct btrfs_inode_ref);
 901                item = btrfs_item_nr(slot);
 902                total = btrfs_item_size(eb, item);
 903                elem_size = sizeof(*iref);
 904        } else {
 905                ptr = btrfs_item_ptr_offset(eb, slot);
 906                total = btrfs_item_size_nr(eb, slot);
 907                elem_size = sizeof(*extref);
 908        }
 909
 910        while (cur < total) {
 911                fs_path_reset(p);
 912
 913                if (found_key->type == BTRFS_INODE_REF_KEY) {
 914                        iref = (struct btrfs_inode_ref *)(ptr + cur);
 915                        name_len = btrfs_inode_ref_name_len(eb, iref);
 916                        name_off = (unsigned long)(iref + 1);
 917                        index = btrfs_inode_ref_index(eb, iref);
 918                        dir = found_key->offset;
 919                } else {
 920                        extref = (struct btrfs_inode_extref *)(ptr + cur);
 921                        name_len = btrfs_inode_extref_name_len(eb, extref);
 922                        name_off = (unsigned long)&extref->name;
 923                        index = btrfs_inode_extref_index(eb, extref);
 924                        dir = btrfs_inode_extref_parent(eb, extref);
 925                }
 926
 927                if (resolve) {
 928                        start = btrfs_ref_to_path(root, tmp_path, name_len,
 929                                                  name_off, eb, dir,
 930                                                  p->buf, p->buf_len);
 931                        if (IS_ERR(start)) {
 932                                ret = PTR_ERR(start);
 933                                goto out;
 934                        }
 935                        if (start < p->buf) {
 936                                /* overflow , try again with larger buffer */
 937                                ret = fs_path_ensure_buf(p,
 938                                                p->buf_len + p->buf - start);
 939                                if (ret < 0)
 940                                        goto out;
 941                                start = btrfs_ref_to_path(root, tmp_path,
 942                                                          name_len, name_off,
 943                                                          eb, dir,
 944                                                          p->buf, p->buf_len);
 945                                if (IS_ERR(start)) {
 946                                        ret = PTR_ERR(start);
 947                                        goto out;
 948                                }
 949                                BUG_ON(start < p->buf);
 950                        }
 951                        p->start = start;
 952                } else {
 953                        ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 954                                                             name_len);
 955                        if (ret < 0)
 956                                goto out;
 957                }
 958
 959                cur += elem_size + name_len;
 960                ret = iterate(num, dir, index, p, ctx);
 961                if (ret)
 962                        goto out;
 963                num++;
 964        }
 965
 966out:
 967        btrfs_free_path(tmp_path);
 968        fs_path_free(p);
 969        return ret;
 970}
 971
 972typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 973                                  const char *name, int name_len,
 974                                  const char *data, int data_len,
 975                                  u8 type, void *ctx);
 976
 977/*
 978 * Helper function to iterate the entries in ONE btrfs_dir_item.
 979 * The iterate callback may return a non zero value to stop iteration. This can
 980 * be a negative value for error codes or 1 to simply stop it.
 981 *
 982 * path must point to the dir item when called.
 983 */
 984static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
 985                            iterate_dir_item_t iterate, void *ctx)
 986{
 987        int ret = 0;
 988        struct extent_buffer *eb;
 989        struct btrfs_item *item;
 990        struct btrfs_dir_item *di;
 991        struct btrfs_key di_key;
 992        char *buf = NULL;
 993        int buf_len;
 994        u32 name_len;
 995        u32 data_len;
 996        u32 cur;
 997        u32 len;
 998        u32 total;
 999        int slot;
1000        int num;
1001        u8 type;
1002
1003        /*
1004         * Start with a small buffer (1 page). If later we end up needing more
1005         * space, which can happen for xattrs on a fs with a leaf size greater
1006         * then the page size, attempt to increase the buffer. Typically xattr
1007         * values are small.
1008         */
1009        buf_len = PATH_MAX;
1010        buf = kmalloc(buf_len, GFP_KERNEL);
1011        if (!buf) {
1012                ret = -ENOMEM;
1013                goto out;
1014        }
1015
1016        eb = path->nodes[0];
1017        slot = path->slots[0];
1018        item = btrfs_item_nr(slot);
1019        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1020        cur = 0;
1021        len = 0;
1022        total = btrfs_item_size(eb, item);
1023
1024        num = 0;
1025        while (cur < total) {
1026                name_len = btrfs_dir_name_len(eb, di);
1027                data_len = btrfs_dir_data_len(eb, di);
1028                type = btrfs_dir_type(eb, di);
1029                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1030
1031                if (type == BTRFS_FT_XATTR) {
1032                        if (name_len > XATTR_NAME_MAX) {
1033                                ret = -ENAMETOOLONG;
1034                                goto out;
1035                        }
1036                        if (name_len + data_len >
1037                                        BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1038                                ret = -E2BIG;
1039                                goto out;
1040                        }
1041                } else {
1042                        /*
1043                         * Path too long
1044                         */
1045                        if (name_len + data_len > PATH_MAX) {
1046                                ret = -ENAMETOOLONG;
1047                                goto out;
1048                        }
1049                }
1050
1051                if (name_len + data_len > buf_len) {
1052                        buf_len = name_len + data_len;
1053                        if (is_vmalloc_addr(buf)) {
1054                                vfree(buf);
1055                                buf = NULL;
1056                        } else {
1057                                char *tmp = krealloc(buf, buf_len,
1058                                                GFP_KERNEL | __GFP_NOWARN);
1059
1060                                if (!tmp)
1061                                        kfree(buf);
1062                                buf = tmp;
1063                        }
1064                        if (!buf) {
1065                                buf = kvmalloc(buf_len, GFP_KERNEL);
1066                                if (!buf) {
1067                                        ret = -ENOMEM;
1068                                        goto out;
1069                                }
1070                        }
1071                }
1072
1073                read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1074                                name_len + data_len);
1075
1076                len = sizeof(*di) + name_len + data_len;
1077                di = (struct btrfs_dir_item *)((char *)di + len);
1078                cur += len;
1079
1080                ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1081                                data_len, type, ctx);
1082                if (ret < 0)
1083                        goto out;
1084                if (ret) {
1085                        ret = 0;
1086                        goto out;
1087                }
1088
1089                num++;
1090        }
1091
1092out:
1093        kvfree(buf);
1094        return ret;
1095}
1096
1097static int __copy_first_ref(int num, u64 dir, int index,
1098                            struct fs_path *p, void *ctx)
1099{
1100        int ret;
1101        struct fs_path *pt = ctx;
1102
1103        ret = fs_path_copy(pt, p);
1104        if (ret < 0)
1105                return ret;
1106
1107        /* we want the first only */
1108        return 1;
1109}
1110
1111/*
1112 * Retrieve the first path of an inode. If an inode has more then one
1113 * ref/hardlink, this is ignored.
1114 */
1115static int get_inode_path(struct btrfs_root *root,
1116                          u64 ino, struct fs_path *path)
1117{
1118        int ret;
1119        struct btrfs_key key, found_key;
1120        struct btrfs_path *p;
1121
1122        p = alloc_path_for_send();
1123        if (!p)
1124                return -ENOMEM;
1125
1126        fs_path_reset(path);
1127
1128        key.objectid = ino;
1129        key.type = BTRFS_INODE_REF_KEY;
1130        key.offset = 0;
1131
1132        ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1133        if (ret < 0)
1134                goto out;
1135        if (ret) {
1136                ret = 1;
1137                goto out;
1138        }
1139        btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1140        if (found_key.objectid != ino ||
1141            (found_key.type != BTRFS_INODE_REF_KEY &&
1142             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1143                ret = -ENOENT;
1144                goto out;
1145        }
1146
1147        ret = iterate_inode_ref(root, p, &found_key, 1,
1148                                __copy_first_ref, path);
1149        if (ret < 0)
1150                goto out;
1151        ret = 0;
1152
1153out:
1154        btrfs_free_path(p);
1155        return ret;
1156}
1157
1158struct backref_ctx {
1159        struct send_ctx *sctx;
1160
1161        struct btrfs_path *path;
1162        /* number of total found references */
1163        u64 found;
1164
1165        /*
1166         * used for clones found in send_root. clones found behind cur_objectid
1167         * and cur_offset are not considered as allowed clones.
1168         */
1169        u64 cur_objectid;
1170        u64 cur_offset;
1171
1172        /* may be truncated in case it's the last extent in a file */
1173        u64 extent_len;
1174
1175        /* data offset in the file extent item */
1176        u64 data_offset;
1177
1178        /* Just to check for bugs in backref resolving */
1179        int found_itself;
1180};
1181
1182static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1183{
1184        u64 root = (u64)(uintptr_t)key;
1185        struct clone_root *cr = (struct clone_root *)elt;
1186
1187        if (root < cr->root->objectid)
1188                return -1;
1189        if (root > cr->root->objectid)
1190                return 1;
1191        return 0;
1192}
1193
1194static int __clone_root_cmp_sort(const void *e1, const void *e2)
1195{
1196        struct clone_root *cr1 = (struct clone_root *)e1;
1197        struct clone_root *cr2 = (struct clone_root *)e2;
1198
1199        if (cr1->root->objectid < cr2->root->objectid)
1200                return -1;
1201        if (cr1->root->objectid > cr2->root->objectid)
1202                return 1;
1203        return 0;
1204}
1205
1206/*
1207 * Called for every backref that is found for the current extent.
1208 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1209 */
1210static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1211{
1212        struct backref_ctx *bctx = ctx_;
1213        struct clone_root *found;
1214        int ret;
1215        u64 i_size;
1216
1217        /* First check if the root is in the list of accepted clone sources */
1218        found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1219                        bctx->sctx->clone_roots_cnt,
1220                        sizeof(struct clone_root),
1221                        __clone_root_cmp_bsearch);
1222        if (!found)
1223                return 0;
1224
1225        if (found->root == bctx->sctx->send_root &&
1226            ino == bctx->cur_objectid &&
1227            offset == bctx->cur_offset) {
1228                bctx->found_itself = 1;
1229        }
1230
1231        /*
1232         * There are inodes that have extents that lie behind its i_size. Don't
1233         * accept clones from these extents.
1234         */
1235        ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1236                               NULL, NULL, NULL);
1237        btrfs_release_path(bctx->path);
1238        if (ret < 0)
1239                return ret;
1240
1241        if (offset + bctx->data_offset + bctx->extent_len > i_size)
1242                return 0;
1243
1244        /*
1245         * Make sure we don't consider clones from send_root that are
1246         * behind the current inode/offset.
1247         */
1248        if (found->root == bctx->sctx->send_root) {
1249                /*
1250                 * TODO for the moment we don't accept clones from the inode
1251                 * that is currently send. We may change this when
1252                 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1253                 * file.
1254                 */
1255                if (ino >= bctx->cur_objectid)
1256                        return 0;
1257        }
1258
1259        bctx->found++;
1260        found->found_refs++;
1261        if (ino < found->ino) {
1262                found->ino = ino;
1263                found->offset = offset;
1264        } else if (found->ino == ino) {
1265                /*
1266                 * same extent found more then once in the same file.
1267                 */
1268                if (found->offset > offset + bctx->extent_len)
1269                        found->offset = offset;
1270        }
1271
1272        return 0;
1273}
1274
1275/*
1276 * Given an inode, offset and extent item, it finds a good clone for a clone
1277 * instruction. Returns -ENOENT when none could be found. The function makes
1278 * sure that the returned clone is usable at the point where sending is at the
1279 * moment. This means, that no clones are accepted which lie behind the current
1280 * inode+offset.
1281 *
1282 * path must point to the extent item when called.
1283 */
1284static int find_extent_clone(struct send_ctx *sctx,
1285                             struct btrfs_path *path,
1286                             u64 ino, u64 data_offset,
1287                             u64 ino_size,
1288                             struct clone_root **found)
1289{
1290        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1291        int ret;
1292        int extent_type;
1293        u64 logical;
1294        u64 disk_byte;
1295        u64 num_bytes;
1296        u64 extent_item_pos;
1297        u64 flags = 0;
1298        struct btrfs_file_extent_item *fi;
1299        struct extent_buffer *eb = path->nodes[0];
1300        struct backref_ctx *backref_ctx = NULL;
1301        struct clone_root *cur_clone_root;
1302        struct btrfs_key found_key;
1303        struct btrfs_path *tmp_path;
1304        int compressed;
1305        u32 i;
1306
1307        tmp_path = alloc_path_for_send();
1308        if (!tmp_path)
1309                return -ENOMEM;
1310
1311        /* We only use this path under the commit sem */
1312        tmp_path->need_commit_sem = 0;
1313
1314        backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1315        if (!backref_ctx) {
1316                ret = -ENOMEM;
1317                goto out;
1318        }
1319
1320        backref_ctx->path = tmp_path;
1321
1322        if (data_offset >= ino_size) {
1323                /*
1324                 * There may be extents that lie behind the file's size.
1325                 * I at least had this in combination with snapshotting while
1326                 * writing large files.
1327                 */
1328                ret = 0;
1329                goto out;
1330        }
1331
1332        fi = btrfs_item_ptr(eb, path->slots[0],
1333                        struct btrfs_file_extent_item);
1334        extent_type = btrfs_file_extent_type(eb, fi);
1335        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1336                ret = -ENOENT;
1337                goto out;
1338        }
1339        compressed = btrfs_file_extent_compression(eb, fi);
1340
1341        num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1342        disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1343        if (disk_byte == 0) {
1344                ret = -ENOENT;
1345                goto out;
1346        }
1347        logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1348
1349        down_read(&fs_info->commit_root_sem);
1350        ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1351                                  &found_key, &flags);
1352        up_read(&fs_info->commit_root_sem);
1353        btrfs_release_path(tmp_path);
1354
1355        if (ret < 0)
1356                goto out;
1357        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1358                ret = -EIO;
1359                goto out;
1360        }
1361
1362        /*
1363         * Setup the clone roots.
1364         */
1365        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1366                cur_clone_root = sctx->clone_roots + i;
1367                cur_clone_root->ino = (u64)-1;
1368                cur_clone_root->offset = 0;
1369                cur_clone_root->found_refs = 0;
1370        }
1371
1372        backref_ctx->sctx = sctx;
1373        backref_ctx->found = 0;
1374        backref_ctx->cur_objectid = ino;
1375        backref_ctx->cur_offset = data_offset;
1376        backref_ctx->found_itself = 0;
1377        backref_ctx->extent_len = num_bytes;
1378        /*
1379         * For non-compressed extents iterate_extent_inodes() gives us extent
1380         * offsets that already take into account the data offset, but not for
1381         * compressed extents, since the offset is logical and not relative to
1382         * the physical extent locations. We must take this into account to
1383         * avoid sending clone offsets that go beyond the source file's size,
1384         * which would result in the clone ioctl failing with -EINVAL on the
1385         * receiving end.
1386         */
1387        if (compressed == BTRFS_COMPRESS_NONE)
1388                backref_ctx->data_offset = 0;
1389        else
1390                backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1391
1392        /*
1393         * The last extent of a file may be too large due to page alignment.
1394         * We need to adjust extent_len in this case so that the checks in
1395         * __iterate_backrefs work.
1396         */
1397        if (data_offset + num_bytes >= ino_size)
1398                backref_ctx->extent_len = ino_size - data_offset;
1399
1400        /*
1401         * Now collect all backrefs.
1402         */
1403        if (compressed == BTRFS_COMPRESS_NONE)
1404                extent_item_pos = logical - found_key.objectid;
1405        else
1406                extent_item_pos = 0;
1407        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1408                                    extent_item_pos, 1, __iterate_backrefs,
1409                                    backref_ctx, false);
1410
1411        if (ret < 0)
1412                goto out;
1413
1414        if (!backref_ctx->found_itself) {
1415                /* found a bug in backref code? */
1416                ret = -EIO;
1417                btrfs_err(fs_info,
1418                          "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1419                          ino, data_offset, disk_byte, found_key.objectid);
1420                goto out;
1421        }
1422
1423        btrfs_debug(fs_info,
1424                    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1425                    data_offset, ino, num_bytes, logical);
1426
1427        if (!backref_ctx->found)
1428                btrfs_debug(fs_info, "no clones found");
1429
1430        cur_clone_root = NULL;
1431        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1432                if (sctx->clone_roots[i].found_refs) {
1433                        if (!cur_clone_root)
1434                                cur_clone_root = sctx->clone_roots + i;
1435                        else if (sctx->clone_roots[i].root == sctx->send_root)
1436                                /* prefer clones from send_root over others */
1437                                cur_clone_root = sctx->clone_roots + i;
1438                }
1439
1440        }
1441
1442        if (cur_clone_root) {
1443                *found = cur_clone_root;
1444                ret = 0;
1445        } else {
1446                ret = -ENOENT;
1447        }
1448
1449out:
1450        btrfs_free_path(tmp_path);
1451        kfree(backref_ctx);
1452        return ret;
1453}
1454
1455static int read_symlink(struct btrfs_root *root,
1456                        u64 ino,
1457                        struct fs_path *dest)
1458{
1459        int ret;
1460        struct btrfs_path *path;
1461        struct btrfs_key key;
1462        struct btrfs_file_extent_item *ei;
1463        u8 type;
1464        u8 compression;
1465        unsigned long off;
1466        int len;
1467
1468        path = alloc_path_for_send();
1469        if (!path)
1470                return -ENOMEM;
1471
1472        key.objectid = ino;
1473        key.type = BTRFS_EXTENT_DATA_KEY;
1474        key.offset = 0;
1475        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1476        if (ret < 0)
1477                goto out;
1478        if (ret) {
1479                /*
1480                 * An empty symlink inode. Can happen in rare error paths when
1481                 * creating a symlink (transaction committed before the inode
1482                 * eviction handler removed the symlink inode items and a crash
1483                 * happened in between or the subvol was snapshoted in between).
1484                 * Print an informative message to dmesg/syslog so that the user
1485                 * can delete the symlink.
1486                 */
1487                btrfs_err(root->fs_info,
1488                          "Found empty symlink inode %llu at root %llu",
1489                          ino, root->root_key.objectid);
1490                ret = -EIO;
1491                goto out;
1492        }
1493
1494        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1495                        struct btrfs_file_extent_item);
1496        type = btrfs_file_extent_type(path->nodes[0], ei);
1497        compression = btrfs_file_extent_compression(path->nodes[0], ei);
1498        BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1499        BUG_ON(compression);
1500
1501        off = btrfs_file_extent_inline_start(ei);
1502        len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1503
1504        ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1505
1506out:
1507        btrfs_free_path(path);
1508        return ret;
1509}
1510
1511/*
1512 * Helper function to generate a file name that is unique in the root of
1513 * send_root and parent_root. This is used to generate names for orphan inodes.
1514 */
1515static int gen_unique_name(struct send_ctx *sctx,
1516                           u64 ino, u64 gen,
1517                           struct fs_path *dest)
1518{
1519        int ret = 0;
1520        struct btrfs_path *path;
1521        struct btrfs_dir_item *di;
1522        char tmp[64];
1523        int len;
1524        u64 idx = 0;
1525
1526        path = alloc_path_for_send();
1527        if (!path)
1528                return -ENOMEM;
1529
1530        while (1) {
1531                len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1532                                ino, gen, idx);
1533                ASSERT(len < sizeof(tmp));
1534
1535                di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1536                                path, BTRFS_FIRST_FREE_OBJECTID,
1537                                tmp, strlen(tmp), 0);
1538                btrfs_release_path(path);
1539                if (IS_ERR(di)) {
1540                        ret = PTR_ERR(di);
1541                        goto out;
1542                }
1543                if (di) {
1544                        /* not unique, try again */
1545                        idx++;
1546                        continue;
1547                }
1548
1549                if (!sctx->parent_root) {
1550                        /* unique */
1551                        ret = 0;
1552                        break;
1553                }
1554
1555                di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1556                                path, BTRFS_FIRST_FREE_OBJECTID,
1557                                tmp, strlen(tmp), 0);
1558                btrfs_release_path(path);
1559                if (IS_ERR(di)) {
1560                        ret = PTR_ERR(di);
1561                        goto out;
1562                }
1563                if (di) {
1564                        /* not unique, try again */
1565                        idx++;
1566                        continue;
1567                }
1568                /* unique */
1569                break;
1570        }
1571
1572        ret = fs_path_add(dest, tmp, strlen(tmp));
1573
1574out:
1575        btrfs_free_path(path);
1576        return ret;
1577}
1578
1579enum inode_state {
1580        inode_state_no_change,
1581        inode_state_will_create,
1582        inode_state_did_create,
1583        inode_state_will_delete,
1584        inode_state_did_delete,
1585};
1586
1587static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1588{
1589        int ret;
1590        int left_ret;
1591        int right_ret;
1592        u64 left_gen;
1593        u64 right_gen;
1594
1595        ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1596                        NULL, NULL);
1597        if (ret < 0 && ret != -ENOENT)
1598                goto out;
1599        left_ret = ret;
1600
1601        if (!sctx->parent_root) {
1602                right_ret = -ENOENT;
1603        } else {
1604                ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1605                                NULL, NULL, NULL, NULL);
1606                if (ret < 0 && ret != -ENOENT)
1607                        goto out;
1608                right_ret = ret;
1609        }
1610
1611        if (!left_ret && !right_ret) {
1612                if (left_gen == gen && right_gen == gen) {
1613                        ret = inode_state_no_change;
1614                } else if (left_gen == gen) {
1615                        if (ino < sctx->send_progress)
1616                                ret = inode_state_did_create;
1617                        else
1618                                ret = inode_state_will_create;
1619                } else if (right_gen == gen) {
1620                        if (ino < sctx->send_progress)
1621                                ret = inode_state_did_delete;
1622                        else
1623                                ret = inode_state_will_delete;
1624                } else  {
1625                        ret = -ENOENT;
1626                }
1627        } else if (!left_ret) {
1628                if (left_gen == gen) {
1629                        if (ino < sctx->send_progress)
1630                                ret = inode_state_did_create;
1631                        else
1632                                ret = inode_state_will_create;
1633                } else {
1634                        ret = -ENOENT;
1635                }
1636        } else if (!right_ret) {
1637                if (right_gen == gen) {
1638                        if (ino < sctx->send_progress)
1639                                ret = inode_state_did_delete;
1640                        else
1641                                ret = inode_state_will_delete;
1642                } else {
1643                        ret = -ENOENT;
1644                }
1645        } else {
1646                ret = -ENOENT;
1647        }
1648
1649out:
1650        return ret;
1651}
1652
1653static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1654{
1655        int ret;
1656
1657        if (ino == BTRFS_FIRST_FREE_OBJECTID)
1658                return 1;
1659
1660        ret = get_cur_inode_state(sctx, ino, gen);
1661        if (ret < 0)
1662                goto out;
1663
1664        if (ret == inode_state_no_change ||
1665            ret == inode_state_did_create ||
1666            ret == inode_state_will_delete)
1667                ret = 1;
1668        else
1669                ret = 0;
1670
1671out:
1672        return ret;
1673}
1674
1675/*
1676 * Helper function to lookup a dir item in a dir.
1677 */
1678static int lookup_dir_item_inode(struct btrfs_root *root,
1679                                 u64 dir, const char *name, int name_len,
1680                                 u64 *found_inode,
1681                                 u8 *found_type)
1682{
1683        int ret = 0;
1684        struct btrfs_dir_item *di;
1685        struct btrfs_key key;
1686        struct btrfs_path *path;
1687
1688        path = alloc_path_for_send();
1689        if (!path)
1690                return -ENOMEM;
1691
1692        di = btrfs_lookup_dir_item(NULL, root, path,
1693                        dir, name, name_len, 0);
1694        if (!di) {
1695                ret = -ENOENT;
1696                goto out;
1697        }
1698        if (IS_ERR(di)) {
1699                ret = PTR_ERR(di);
1700                goto out;
1701        }
1702        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1703        if (key.type == BTRFS_ROOT_ITEM_KEY) {
1704                ret = -ENOENT;
1705                goto out;
1706        }
1707        *found_inode = key.objectid;
1708        *found_type = btrfs_dir_type(path->nodes[0], di);
1709
1710out:
1711        btrfs_free_path(path);
1712        return ret;
1713}
1714
1715/*
1716 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1717 * generation of the parent dir and the name of the dir entry.
1718 */
1719static int get_first_ref(struct btrfs_root *root, u64 ino,
1720                         u64 *dir, u64 *dir_gen, struct fs_path *name)
1721{
1722        int ret;
1723        struct btrfs_key key;
1724        struct btrfs_key found_key;
1725        struct btrfs_path *path;
1726        int len;
1727        u64 parent_dir;
1728
1729        path = alloc_path_for_send();
1730        if (!path)
1731                return -ENOMEM;
1732
1733        key.objectid = ino;
1734        key.type = BTRFS_INODE_REF_KEY;
1735        key.offset = 0;
1736
1737        ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1738        if (ret < 0)
1739                goto out;
1740        if (!ret)
1741                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1742                                path->slots[0]);
1743        if (ret || found_key.objectid != ino ||
1744            (found_key.type != BTRFS_INODE_REF_KEY &&
1745             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1746                ret = -ENOENT;
1747                goto out;
1748        }
1749
1750        if (found_key.type == BTRFS_INODE_REF_KEY) {
1751                struct btrfs_inode_ref *iref;
1752                iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753                                      struct btrfs_inode_ref);
1754                len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1755                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756                                                     (unsigned long)(iref + 1),
1757                                                     len);
1758                parent_dir = found_key.offset;
1759        } else {
1760                struct btrfs_inode_extref *extref;
1761                extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1762                                        struct btrfs_inode_extref);
1763                len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1764                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1765                                        (unsigned long)&extref->name, len);
1766                parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1767        }
1768        if (ret < 0)
1769                goto out;
1770        btrfs_release_path(path);
1771
1772        if (dir_gen) {
1773                ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1774                                     NULL, NULL, NULL);
1775                if (ret < 0)
1776                        goto out;
1777        }
1778
1779        *dir = parent_dir;
1780
1781out:
1782        btrfs_free_path(path);
1783        return ret;
1784}
1785
1786static int is_first_ref(struct btrfs_root *root,
1787                        u64 ino, u64 dir,
1788                        const char *name, int name_len)
1789{
1790        int ret;
1791        struct fs_path *tmp_name;
1792        u64 tmp_dir;
1793
1794        tmp_name = fs_path_alloc();
1795        if (!tmp_name)
1796                return -ENOMEM;
1797
1798        ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1799        if (ret < 0)
1800                goto out;
1801
1802        if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1803                ret = 0;
1804                goto out;
1805        }
1806
1807        ret = !memcmp(tmp_name->start, name, name_len);
1808
1809out:
1810        fs_path_free(tmp_name);
1811        return ret;
1812}
1813
1814/*
1815 * Used by process_recorded_refs to determine if a new ref would overwrite an
1816 * already existing ref. In case it detects an overwrite, it returns the
1817 * inode/gen in who_ino/who_gen.
1818 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1819 * to make sure later references to the overwritten inode are possible.
1820 * Orphanizing is however only required for the first ref of an inode.
1821 * process_recorded_refs does an additional is_first_ref check to see if
1822 * orphanizing is really required.
1823 */
1824static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1825                              const char *name, int name_len,
1826                              u64 *who_ino, u64 *who_gen, u64 *who_mode)
1827{
1828        int ret = 0;
1829        u64 gen;
1830        u64 other_inode = 0;
1831        u8 other_type = 0;
1832
1833        if (!sctx->parent_root)
1834                goto out;
1835
1836        ret = is_inode_existent(sctx, dir, dir_gen);
1837        if (ret <= 0)
1838                goto out;
1839
1840        /*
1841         * If we have a parent root we need to verify that the parent dir was
1842         * not deleted and then re-created, if it was then we have no overwrite
1843         * and we can just unlink this entry.
1844         */
1845        if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1846                ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1847                                     NULL, NULL, NULL);
1848                if (ret < 0 && ret != -ENOENT)
1849                        goto out;
1850                if (ret) {
1851                        ret = 0;
1852                        goto out;
1853                }
1854                if (gen != dir_gen)
1855                        goto out;
1856        }
1857
1858        ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1859                        &other_inode, &other_type);
1860        if (ret < 0 && ret != -ENOENT)
1861                goto out;
1862        if (ret) {
1863                ret = 0;
1864                goto out;
1865        }
1866
1867        /*
1868         * Check if the overwritten ref was already processed. If yes, the ref
1869         * was already unlinked/moved, so we can safely assume that we will not
1870         * overwrite anything at this point in time.
1871         */
1872        if (other_inode > sctx->send_progress ||
1873            is_waiting_for_move(sctx, other_inode)) {
1874                ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1875                                who_gen, who_mode, NULL, NULL, NULL);
1876                if (ret < 0)
1877                        goto out;
1878
1879                ret = 1;
1880                *who_ino = other_inode;
1881        } else {
1882                ret = 0;
1883        }
1884
1885out:
1886        return ret;
1887}
1888
1889/*
1890 * Checks if the ref was overwritten by an already processed inode. This is
1891 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1892 * thus the orphan name needs be used.
1893 * process_recorded_refs also uses it to avoid unlinking of refs that were
1894 * overwritten.
1895 */
1896static int did_overwrite_ref(struct send_ctx *sctx,
1897                            u64 dir, u64 dir_gen,
1898                            u64 ino, u64 ino_gen,
1899                            const char *name, int name_len)
1900{
1901        int ret = 0;
1902        u64 gen;
1903        u64 ow_inode;
1904        u8 other_type;
1905
1906        if (!sctx->parent_root)
1907                goto out;
1908
1909        ret = is_inode_existent(sctx, dir, dir_gen);
1910        if (ret <= 0)
1911                goto out;
1912
1913        if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1914                ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1915                                     NULL, NULL, NULL);
1916                if (ret < 0 && ret != -ENOENT)
1917                        goto out;
1918                if (ret) {
1919                        ret = 0;
1920                        goto out;
1921                }
1922                if (gen != dir_gen)
1923                        goto out;
1924        }
1925
1926        /* check if the ref was overwritten by another ref */
1927        ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1928                        &ow_inode, &other_type);
1929        if (ret < 0 && ret != -ENOENT)
1930                goto out;
1931        if (ret) {
1932                /* was never and will never be overwritten */
1933                ret = 0;
1934                goto out;
1935        }
1936
1937        ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1938                        NULL, NULL);
1939        if (ret < 0)
1940                goto out;
1941
1942        if (ow_inode == ino && gen == ino_gen) {
1943                ret = 0;
1944                goto out;
1945        }
1946
1947        /*
1948         * We know that it is or will be overwritten. Check this now.
1949         * The current inode being processed might have been the one that caused
1950         * inode 'ino' to be orphanized, therefore check if ow_inode matches
1951         * the current inode being processed.
1952         */
1953        if ((ow_inode < sctx->send_progress) ||
1954            (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1955             gen == sctx->cur_inode_gen))
1956                ret = 1;
1957        else
1958                ret = 0;
1959
1960out:
1961        return ret;
1962}
1963
1964/*
1965 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1966 * that got overwritten. This is used by process_recorded_refs to determine
1967 * if it has to use the path as returned by get_cur_path or the orphan name.
1968 */
1969static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1970{
1971        int ret = 0;
1972        struct fs_path *name = NULL;
1973        u64 dir;
1974        u64 dir_gen;
1975
1976        if (!sctx->parent_root)
1977                goto out;
1978
1979        name = fs_path_alloc();
1980        if (!name)
1981                return -ENOMEM;
1982
1983        ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1984        if (ret < 0)
1985                goto out;
1986
1987        ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1988                        name->start, fs_path_len(name));
1989
1990out:
1991        fs_path_free(name);
1992        return ret;
1993}
1994
1995/*
1996 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1997 * so we need to do some special handling in case we have clashes. This function
1998 * takes care of this with the help of name_cache_entry::radix_list.
1999 * In case of error, nce is kfreed.
2000 */
2001static int name_cache_insert(struct send_ctx *sctx,
2002                             struct name_cache_entry *nce)
2003{
2004        int ret = 0;
2005        struct list_head *nce_head;
2006
2007        nce_head = radix_tree_lookup(&sctx->name_cache,
2008                        (unsigned long)nce->ino);
2009        if (!nce_head) {
2010                nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2011                if (!nce_head) {
2012                        kfree(nce);
2013                        return -ENOMEM;
2014                }
2015                INIT_LIST_HEAD(nce_head);
2016
2017                ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2018                if (ret < 0) {
2019                        kfree(nce_head);
2020                        kfree(nce);
2021                        return ret;
2022                }
2023        }
2024        list_add_tail(&nce->radix_list, nce_head);
2025        list_add_tail(&nce->list, &sctx->name_cache_list);
2026        sctx->name_cache_size++;
2027
2028        return ret;
2029}
2030
2031static void name_cache_delete(struct send_ctx *sctx,
2032                              struct name_cache_entry *nce)
2033{
2034        struct list_head *nce_head;
2035
2036        nce_head = radix_tree_lookup(&sctx->name_cache,
2037                        (unsigned long)nce->ino);
2038        if (!nce_head) {
2039                btrfs_err(sctx->send_root->fs_info,
2040              "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2041                        nce->ino, sctx->name_cache_size);
2042        }
2043
2044        list_del(&nce->radix_list);
2045        list_del(&nce->list);
2046        sctx->name_cache_size--;
2047
2048        /*
2049         * We may not get to the final release of nce_head if the lookup fails
2050         */
2051        if (nce_head && list_empty(nce_head)) {
2052                radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2053                kfree(nce_head);
2054        }
2055}
2056
2057static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2058                                                    u64 ino, u64 gen)
2059{
2060        struct list_head *nce_head;
2061        struct name_cache_entry *cur;
2062
2063        nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2064        if (!nce_head)
2065                return NULL;
2066
2067        list_for_each_entry(cur, nce_head, radix_list) {
2068                if (cur->ino == ino && cur->gen == gen)
2069                        return cur;
2070        }
2071        return NULL;
2072}
2073
2074/*
2075 * Removes the entry from the list and adds it back to the end. This marks the
2076 * entry as recently used so that name_cache_clean_unused does not remove it.
2077 */
2078static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2079{
2080        list_del(&nce->list);
2081        list_add_tail(&nce->list, &sctx->name_cache_list);
2082}
2083
2084/*
2085 * Remove some entries from the beginning of name_cache_list.
2086 */
2087static void name_cache_clean_unused(struct send_ctx *sctx)
2088{
2089        struct name_cache_entry *nce;
2090
2091        if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2092                return;
2093
2094        while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2095                nce = list_entry(sctx->name_cache_list.next,
2096                                struct name_cache_entry, list);
2097                name_cache_delete(sctx, nce);
2098                kfree(nce);
2099        }
2100}
2101
2102static void name_cache_free(struct send_ctx *sctx)
2103{
2104        struct name_cache_entry *nce;
2105
2106        while (!list_empty(&sctx->name_cache_list)) {
2107                nce = list_entry(sctx->name_cache_list.next,
2108                                struct name_cache_entry, list);
2109                name_cache_delete(sctx, nce);
2110                kfree(nce);
2111        }
2112}
2113
2114/*
2115 * Used by get_cur_path for each ref up to the root.
2116 * Returns 0 if it succeeded.
2117 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2118 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2119 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2120 * Returns <0 in case of error.
2121 */
2122static int __get_cur_name_and_parent(struct send_ctx *sctx,
2123                                     u64 ino, u64 gen,
2124                                     u64 *parent_ino,
2125                                     u64 *parent_gen,
2126                                     struct fs_path *dest)
2127{
2128        int ret;
2129        int nce_ret;
2130        struct name_cache_entry *nce = NULL;
2131
2132        /*
2133         * First check if we already did a call to this function with the same
2134         * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2135         * return the cached result.
2136         */
2137        nce = name_cache_search(sctx, ino, gen);
2138        if (nce) {
2139                if (ino < sctx->send_progress && nce->need_later_update) {
2140                        name_cache_delete(sctx, nce);
2141                        kfree(nce);
2142                        nce = NULL;
2143                } else {
2144                        name_cache_used(sctx, nce);
2145                        *parent_ino = nce->parent_ino;
2146                        *parent_gen = nce->parent_gen;
2147                        ret = fs_path_add(dest, nce->name, nce->name_len);
2148                        if (ret < 0)
2149                                goto out;
2150                        ret = nce->ret;
2151                        goto out;
2152                }
2153        }
2154
2155        /*
2156         * If the inode is not existent yet, add the orphan name and return 1.
2157         * This should only happen for the parent dir that we determine in
2158         * __record_new_ref
2159         */
2160        ret = is_inode_existent(sctx, ino, gen);
2161        if (ret < 0)
2162                goto out;
2163
2164        if (!ret) {
2165                ret = gen_unique_name(sctx, ino, gen, dest);
2166                if (ret < 0)
2167                        goto out;
2168                ret = 1;
2169                goto out_cache;
2170        }
2171
2172        /*
2173         * Depending on whether the inode was already processed or not, use
2174         * send_root or parent_root for ref lookup.
2175         */
2176        if (ino < sctx->send_progress)
2177                ret = get_first_ref(sctx->send_root, ino,
2178                                    parent_ino, parent_gen, dest);
2179        else
2180                ret = get_first_ref(sctx->parent_root, ino,
2181                                    parent_ino, parent_gen, dest);
2182        if (ret < 0)
2183                goto out;
2184
2185        /*
2186         * Check if the ref was overwritten by an inode's ref that was processed
2187         * earlier. If yes, treat as orphan and return 1.
2188         */
2189        ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2190                        dest->start, dest->end - dest->start);
2191        if (ret < 0)
2192                goto out;
2193        if (ret) {
2194                fs_path_reset(dest);
2195                ret = gen_unique_name(sctx, ino, gen, dest);
2196                if (ret < 0)
2197                        goto out;
2198                ret = 1;
2199        }
2200
2201out_cache:
2202        /*
2203         * Store the result of the lookup in the name cache.
2204         */
2205        nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2206        if (!nce) {
2207                ret = -ENOMEM;
2208                goto out;
2209        }
2210
2211        nce->ino = ino;
2212        nce->gen = gen;
2213        nce->parent_ino = *parent_ino;
2214        nce->parent_gen = *parent_gen;
2215        nce->name_len = fs_path_len(dest);
2216        nce->ret = ret;
2217        strcpy(nce->name, dest->start);
2218
2219        if (ino < sctx->send_progress)
2220                nce->need_later_update = 0;
2221        else
2222                nce->need_later_update = 1;
2223
2224        nce_ret = name_cache_insert(sctx, nce);
2225        if (nce_ret < 0)
2226                ret = nce_ret;
2227        name_cache_clean_unused(sctx);
2228
2229out:
2230        return ret;
2231}
2232
2233/*
2234 * Magic happens here. This function returns the first ref to an inode as it
2235 * would look like while receiving the stream at this point in time.
2236 * We walk the path up to the root. For every inode in between, we check if it
2237 * was already processed/sent. If yes, we continue with the parent as found
2238 * in send_root. If not, we continue with the parent as found in parent_root.
2239 * If we encounter an inode that was deleted at this point in time, we use the
2240 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2241 * that were not created yet and overwritten inodes/refs.
2242 *
2243 * When do we have have orphan inodes:
2244 * 1. When an inode is freshly created and thus no valid refs are available yet
2245 * 2. When a directory lost all it's refs (deleted) but still has dir items
2246 *    inside which were not processed yet (pending for move/delete). If anyone
2247 *    tried to get the path to the dir items, it would get a path inside that
2248 *    orphan directory.
2249 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2250 *    of an unprocessed inode. If in that case the first ref would be
2251 *    overwritten, the overwritten inode gets "orphanized". Later when we
2252 *    process this overwritten inode, it is restored at a new place by moving
2253 *    the orphan inode.
2254 *
2255 * sctx->send_progress tells this function at which point in time receiving
2256 * would be.
2257 */
2258static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2259                        struct fs_path *dest)
2260{
2261        int ret = 0;
2262        struct fs_path *name = NULL;
2263        u64 parent_inode = 0;
2264        u64 parent_gen = 0;
2265        int stop = 0;
2266
2267        name = fs_path_alloc();
2268        if (!name) {
2269                ret = -ENOMEM;
2270                goto out;
2271        }
2272
2273        dest->reversed = 1;
2274        fs_path_reset(dest);
2275
2276        while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2277                struct waiting_dir_move *wdm;
2278
2279                fs_path_reset(name);
2280
2281                if (is_waiting_for_rm(sctx, ino)) {
2282                        ret = gen_unique_name(sctx, ino, gen, name);
2283                        if (ret < 0)
2284                                goto out;
2285                        ret = fs_path_add_path(dest, name);
2286                        break;
2287                }
2288
2289                wdm = get_waiting_dir_move(sctx, ino);
2290                if (wdm && wdm->orphanized) {
2291                        ret = gen_unique_name(sctx, ino, gen, name);
2292                        stop = 1;
2293                } else if (wdm) {
2294                        ret = get_first_ref(sctx->parent_root, ino,
2295                                            &parent_inode, &parent_gen, name);
2296                } else {
2297                        ret = __get_cur_name_and_parent(sctx, ino, gen,
2298                                                        &parent_inode,
2299                                                        &parent_gen, name);
2300                        if (ret)
2301                                stop = 1;
2302                }
2303
2304                if (ret < 0)
2305                        goto out;
2306
2307                ret = fs_path_add_path(dest, name);
2308                if (ret < 0)
2309                        goto out;
2310
2311                ino = parent_inode;
2312                gen = parent_gen;
2313        }
2314
2315out:
2316        fs_path_free(name);
2317        if (!ret)
2318                fs_path_unreverse(dest);
2319        return ret;
2320}
2321
2322/*
2323 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2324 */
2325static int send_subvol_begin(struct send_ctx *sctx)
2326{
2327        int ret;
2328        struct btrfs_root *send_root = sctx->send_root;
2329        struct btrfs_root *parent_root = sctx->parent_root;
2330        struct btrfs_path *path;
2331        struct btrfs_key key;
2332        struct btrfs_root_ref *ref;
2333        struct extent_buffer *leaf;
2334        char *name = NULL;
2335        int namelen;
2336
2337        path = btrfs_alloc_path();
2338        if (!path)
2339                return -ENOMEM;
2340
2341        name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2342        if (!name) {
2343                btrfs_free_path(path);
2344                return -ENOMEM;
2345        }
2346
2347        key.objectid = send_root->objectid;
2348        key.type = BTRFS_ROOT_BACKREF_KEY;
2349        key.offset = 0;
2350
2351        ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2352                                &key, path, 1, 0);
2353        if (ret < 0)
2354                goto out;
2355        if (ret) {
2356                ret = -ENOENT;
2357                goto out;
2358        }
2359
2360        leaf = path->nodes[0];
2361        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2362        if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2363            key.objectid != send_root->objectid) {
2364                ret = -ENOENT;
2365                goto out;
2366        }
2367        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2368        namelen = btrfs_root_ref_name_len(leaf, ref);
2369        read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2370        btrfs_release_path(path);
2371
2372        if (parent_root) {
2373                ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2374                if (ret < 0)
2375                        goto out;
2376        } else {
2377                ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2378                if (ret < 0)
2379                        goto out;
2380        }
2381
2382        TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2383
2384        if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2385                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2386                            sctx->send_root->root_item.received_uuid);
2387        else
2388                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2389                            sctx->send_root->root_item.uuid);
2390
2391        TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2392                    le64_to_cpu(sctx->send_root->root_item.ctransid));
2393        if (parent_root) {
2394                if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2395                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2396                                     parent_root->root_item.received_uuid);
2397                else
2398                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2399                                     parent_root->root_item.uuid);
2400                TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2401                            le64_to_cpu(sctx->parent_root->root_item.ctransid));
2402        }
2403
2404        ret = send_cmd(sctx);
2405
2406tlv_put_failure:
2407out:
2408        btrfs_free_path(path);
2409        kfree(name);
2410        return ret;
2411}
2412
2413static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2414{
2415        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2416        int ret = 0;
2417        struct fs_path *p;
2418
2419        btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2420
2421        p = fs_path_alloc();
2422        if (!p)
2423                return -ENOMEM;
2424
2425        ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2426        if (ret < 0)
2427                goto out;
2428
2429        ret = get_cur_path(sctx, ino, gen, p);
2430        if (ret < 0)
2431                goto out;
2432        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2433        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2434
2435        ret = send_cmd(sctx);
2436
2437tlv_put_failure:
2438out:
2439        fs_path_free(p);
2440        return ret;
2441}
2442
2443static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2444{
2445        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2446        int ret = 0;
2447        struct fs_path *p;
2448
2449        btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2450
2451        p = fs_path_alloc();
2452        if (!p)
2453                return -ENOMEM;
2454
2455        ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2456        if (ret < 0)
2457                goto out;
2458
2459        ret = get_cur_path(sctx, ino, gen, p);
2460        if (ret < 0)
2461                goto out;
2462        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2463        TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2464
2465        ret = send_cmd(sctx);
2466
2467tlv_put_failure:
2468out:
2469        fs_path_free(p);
2470        return ret;
2471}
2472
2473static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2474{
2475        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2476        int ret = 0;
2477        struct fs_path *p;
2478
2479        btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2480                    ino, uid, gid);
2481
2482        p = fs_path_alloc();
2483        if (!p)
2484                return -ENOMEM;
2485
2486        ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2487        if (ret < 0)
2488                goto out;
2489
2490        ret = get_cur_path(sctx, ino, gen, p);
2491        if (ret < 0)
2492                goto out;
2493        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2494        TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2495        TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2496
2497        ret = send_cmd(sctx);
2498
2499tlv_put_failure:
2500out:
2501        fs_path_free(p);
2502        return ret;
2503}
2504
2505static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2506{
2507        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2508        int ret = 0;
2509        struct fs_path *p = NULL;
2510        struct btrfs_inode_item *ii;
2511        struct btrfs_path *path = NULL;
2512        struct extent_buffer *eb;
2513        struct btrfs_key key;
2514        int slot;
2515
2516        btrfs_debug(fs_info, "send_utimes %llu", ino);
2517
2518        p = fs_path_alloc();
2519        if (!p)
2520                return -ENOMEM;
2521
2522        path = alloc_path_for_send();
2523        if (!path) {
2524                ret = -ENOMEM;
2525                goto out;
2526        }
2527
2528        key.objectid = ino;
2529        key.type = BTRFS_INODE_ITEM_KEY;
2530        key.offset = 0;
2531        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2532        if (ret > 0)
2533                ret = -ENOENT;
2534        if (ret < 0)
2535                goto out;
2536
2537        eb = path->nodes[0];
2538        slot = path->slots[0];
2539        ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2540
2541        ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2542        if (ret < 0)
2543                goto out;
2544
2545        ret = get_cur_path(sctx, ino, gen, p);
2546        if (ret < 0)
2547                goto out;
2548        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2549        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2550        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2551        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2552        /* TODO Add otime support when the otime patches get into upstream */
2553
2554        ret = send_cmd(sctx);
2555
2556tlv_put_failure:
2557out:
2558        fs_path_free(p);
2559        btrfs_free_path(path);
2560        return ret;
2561}
2562
2563/*
2564 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2565 * a valid path yet because we did not process the refs yet. So, the inode
2566 * is created as orphan.
2567 */
2568static int send_create_inode(struct send_ctx *sctx, u64 ino)
2569{
2570        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2571        int ret = 0;
2572        struct fs_path *p;
2573        int cmd;
2574        u64 gen;
2575        u64 mode;
2576        u64 rdev;
2577
2578        btrfs_debug(fs_info, "send_create_inode %llu", ino);
2579
2580        p = fs_path_alloc();
2581        if (!p)
2582                return -ENOMEM;
2583
2584        if (ino != sctx->cur_ino) {
2585                ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2586                                     NULL, NULL, &rdev);
2587                if (ret < 0)
2588                        goto out;
2589        } else {
2590                gen = sctx->cur_inode_gen;
2591                mode = sctx->cur_inode_mode;
2592                rdev = sctx->cur_inode_rdev;
2593        }
2594
2595        if (S_ISREG(mode)) {
2596                cmd = BTRFS_SEND_C_MKFILE;
2597        } else if (S_ISDIR(mode)) {
2598                cmd = BTRFS_SEND_C_MKDIR;
2599        } else if (S_ISLNK(mode)) {
2600                cmd = BTRFS_SEND_C_SYMLINK;
2601        } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2602                cmd = BTRFS_SEND_C_MKNOD;
2603        } else if (S_ISFIFO(mode)) {
2604                cmd = BTRFS_SEND_C_MKFIFO;
2605        } else if (S_ISSOCK(mode)) {
2606                cmd = BTRFS_SEND_C_MKSOCK;
2607        } else {
2608                btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2609                                (int)(mode & S_IFMT));
2610                ret = -EOPNOTSUPP;
2611                goto out;
2612        }
2613
2614        ret = begin_cmd(sctx, cmd);
2615        if (ret < 0)
2616                goto out;
2617
2618        ret = gen_unique_name(sctx, ino, gen, p);
2619        if (ret < 0)
2620                goto out;
2621
2622        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2623        TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2624
2625        if (S_ISLNK(mode)) {
2626                fs_path_reset(p);
2627                ret = read_symlink(sctx->send_root, ino, p);
2628                if (ret < 0)
2629                        goto out;
2630                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2631        } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2632                   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2633                TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2634                TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2635        }
2636
2637        ret = send_cmd(sctx);
2638        if (ret < 0)
2639                goto out;
2640
2641
2642tlv_put_failure:
2643out:
2644        fs_path_free(p);
2645        return ret;
2646}
2647
2648/*
2649 * We need some special handling for inodes that get processed before the parent
2650 * directory got created. See process_recorded_refs for details.
2651 * This function does the check if we already created the dir out of order.
2652 */
2653static int did_create_dir(struct send_ctx *sctx, u64 dir)
2654{
2655        int ret = 0;
2656        struct btrfs_path *path = NULL;
2657        struct btrfs_key key;
2658        struct btrfs_key found_key;
2659        struct btrfs_key di_key;
2660        struct extent_buffer *eb;
2661        struct btrfs_dir_item *di;
2662        int slot;
2663
2664        path = alloc_path_for_send();
2665        if (!path) {
2666                ret = -ENOMEM;
2667                goto out;
2668        }
2669
2670        key.objectid = dir;
2671        key.type = BTRFS_DIR_INDEX_KEY;
2672        key.offset = 0;
2673        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2674        if (ret < 0)
2675                goto out;
2676
2677        while (1) {
2678                eb = path->nodes[0];
2679                slot = path->slots[0];
2680                if (slot >= btrfs_header_nritems(eb)) {
2681                        ret = btrfs_next_leaf(sctx->send_root, path);
2682                        if (ret < 0) {
2683                                goto out;
2684                        } else if (ret > 0) {
2685                                ret = 0;
2686                                break;
2687                        }
2688                        continue;
2689                }
2690
2691                btrfs_item_key_to_cpu(eb, &found_key, slot);
2692                if (found_key.objectid != key.objectid ||
2693                    found_key.type != key.type) {
2694                        ret = 0;
2695                        goto out;
2696                }
2697
2698                di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2699                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2700
2701                if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2702                    di_key.objectid < sctx->send_progress) {
2703                        ret = 1;
2704                        goto out;
2705                }
2706
2707                path->slots[0]++;
2708        }
2709
2710out:
2711        btrfs_free_path(path);
2712        return ret;
2713}
2714
2715/*
2716 * Only creates the inode if it is:
2717 * 1. Not a directory
2718 * 2. Or a directory which was not created already due to out of order
2719 *    directories. See did_create_dir and process_recorded_refs for details.
2720 */
2721static int send_create_inode_if_needed(struct send_ctx *sctx)
2722{
2723        int ret;
2724
2725        if (S_ISDIR(sctx->cur_inode_mode)) {
2726                ret = did_create_dir(sctx, sctx->cur_ino);
2727                if (ret < 0)
2728                        goto out;
2729                if (ret) {
2730                        ret = 0;
2731                        goto out;
2732                }
2733        }
2734
2735        ret = send_create_inode(sctx, sctx->cur_ino);
2736        if (ret < 0)
2737                goto out;
2738
2739out:
2740        return ret;
2741}
2742
2743struct recorded_ref {
2744        struct list_head list;
2745        char *name;
2746        struct fs_path *full_path;
2747        u64 dir;
2748        u64 dir_gen;
2749        int name_len;
2750};
2751
2752static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2753{
2754        ref->full_path = path;
2755        ref->name = (char *)kbasename(ref->full_path->start);
2756        ref->name_len = ref->full_path->end - ref->name;
2757}
2758
2759/*
2760 * We need to process new refs before deleted refs, but compare_tree gives us
2761 * everything mixed. So we first record all refs and later process them.
2762 * This function is a helper to record one ref.
2763 */
2764static int __record_ref(struct list_head *head, u64 dir,
2765                      u64 dir_gen, struct fs_path *path)
2766{
2767        struct recorded_ref *ref;
2768
2769        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2770        if (!ref)
2771                return -ENOMEM;
2772
2773        ref->dir = dir;
2774        ref->dir_gen = dir_gen;
2775        set_ref_path(ref, path);
2776        list_add_tail(&ref->list, head);
2777        return 0;
2778}
2779
2780static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2781{
2782        struct recorded_ref *new;
2783
2784        new = kmalloc(sizeof(*ref), GFP_KERNEL);
2785        if (!new)
2786                return -ENOMEM;
2787
2788        new->dir = ref->dir;
2789        new->dir_gen = ref->dir_gen;
2790        new->full_path = NULL;
2791        INIT_LIST_HEAD(&new->list);
2792        list_add_tail(&new->list, list);
2793        return 0;
2794}
2795
2796static void __free_recorded_refs(struct list_head *head)
2797{
2798        struct recorded_ref *cur;
2799
2800        while (!list_empty(head)) {
2801                cur = list_entry(head->next, struct recorded_ref, list);
2802                fs_path_free(cur->full_path);
2803                list_del(&cur->list);
2804                kfree(cur);
2805        }
2806}
2807
2808static void free_recorded_refs(struct send_ctx *sctx)
2809{
2810        __free_recorded_refs(&sctx->new_refs);
2811        __free_recorded_refs(&sctx->deleted_refs);
2812}
2813
2814/*
2815 * Renames/moves a file/dir to its orphan name. Used when the first
2816 * ref of an unprocessed inode gets overwritten and for all non empty
2817 * directories.
2818 */
2819static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2820                          struct fs_path *path)
2821{
2822        int ret;
2823        struct fs_path *orphan;
2824
2825        orphan = fs_path_alloc();
2826        if (!orphan)
2827                return -ENOMEM;
2828
2829        ret = gen_unique_name(sctx, ino, gen, orphan);
2830        if (ret < 0)
2831                goto out;
2832
2833        ret = send_rename(sctx, path, orphan);
2834
2835out:
2836        fs_path_free(orphan);
2837        return ret;
2838}
2839
2840static struct orphan_dir_info *
2841add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2842{
2843        struct rb_node **p = &sctx->orphan_dirs.rb_node;
2844        struct rb_node *parent = NULL;
2845        struct orphan_dir_info *entry, *odi;
2846
2847        odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2848        if (!odi)
2849                return ERR_PTR(-ENOMEM);
2850        odi->ino = dir_ino;
2851        odi->gen = 0;
2852
2853        while (*p) {
2854                parent = *p;
2855                entry = rb_entry(parent, struct orphan_dir_info, node);
2856                if (dir_ino < entry->ino) {
2857                        p = &(*p)->rb_left;
2858                } else if (dir_ino > entry->ino) {
2859                        p = &(*p)->rb_right;
2860                } else {
2861                        kfree(odi);
2862                        return entry;
2863                }
2864        }
2865
2866        rb_link_node(&odi->node, parent, p);
2867        rb_insert_color(&odi->node, &sctx->orphan_dirs);
2868        return odi;
2869}
2870
2871static struct orphan_dir_info *
2872get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2873{
2874        struct rb_node *n = sctx->orphan_dirs.rb_node;
2875        struct orphan_dir_info *entry;
2876
2877        while (n) {
2878                entry = rb_entry(n, struct orphan_dir_info, node);
2879                if (dir_ino < entry->ino)
2880                        n = n->rb_left;
2881                else if (dir_ino > entry->ino)
2882                        n = n->rb_right;
2883                else
2884                        return entry;
2885        }
2886        return NULL;
2887}
2888
2889static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2890{
2891        struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2892
2893        return odi != NULL;
2894}
2895
2896static void free_orphan_dir_info(struct send_ctx *sctx,
2897                                 struct orphan_dir_info *odi)
2898{
2899        if (!odi)
2900                return;
2901        rb_erase(&odi->node, &sctx->orphan_dirs);
2902        kfree(odi);
2903}
2904
2905/*
2906 * Returns 1 if a directory can be removed at this point in time.
2907 * We check this by iterating all dir items and checking if the inode behind
2908 * the dir item was already processed.
2909 */
2910static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2911                     u64 send_progress)
2912{
2913        int ret = 0;
2914        struct btrfs_root *root = sctx->parent_root;
2915        struct btrfs_path *path;
2916        struct btrfs_key key;
2917        struct btrfs_key found_key;
2918        struct btrfs_key loc;
2919        struct btrfs_dir_item *di;
2920
2921        /*
2922         * Don't try to rmdir the top/root subvolume dir.
2923         */
2924        if (dir == BTRFS_FIRST_FREE_OBJECTID)
2925                return 0;
2926
2927        path = alloc_path_for_send();
2928        if (!path)
2929                return -ENOMEM;
2930
2931        key.objectid = dir;
2932        key.type = BTRFS_DIR_INDEX_KEY;
2933        key.offset = 0;
2934        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2935        if (ret < 0)
2936                goto out;
2937
2938        while (1) {
2939                struct waiting_dir_move *dm;
2940
2941                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2942                        ret = btrfs_next_leaf(root, path);
2943                        if (ret < 0)
2944                                goto out;
2945                        else if (ret > 0)
2946                                break;
2947                        continue;
2948                }
2949                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2950                                      path->slots[0]);
2951                if (found_key.objectid != key.objectid ||
2952                    found_key.type != key.type)
2953                        break;
2954
2955                di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2956                                struct btrfs_dir_item);
2957                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2958
2959                dm = get_waiting_dir_move(sctx, loc.objectid);
2960                if (dm) {
2961                        struct orphan_dir_info *odi;
2962
2963                        odi = add_orphan_dir_info(sctx, dir);
2964                        if (IS_ERR(odi)) {
2965                                ret = PTR_ERR(odi);
2966                                goto out;
2967                        }
2968                        odi->gen = dir_gen;
2969                        dm->rmdir_ino = dir;
2970                        ret = 0;
2971                        goto out;
2972                }
2973
2974                if (loc.objectid > send_progress) {
2975                        struct orphan_dir_info *odi;
2976
2977                        odi = get_orphan_dir_info(sctx, dir);
2978                        free_orphan_dir_info(sctx, odi);
2979                        ret = 0;
2980                        goto out;
2981                }
2982
2983                path->slots[0]++;
2984        }
2985
2986        ret = 1;
2987
2988out:
2989        btrfs_free_path(path);
2990        return ret;
2991}
2992
2993static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2994{
2995        struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2996
2997        return entry != NULL;
2998}
2999
3000static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3001{
3002        struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3003        struct rb_node *parent = NULL;
3004        struct waiting_dir_move *entry, *dm;
3005
3006        dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3007        if (!dm)
3008                return -ENOMEM;
3009        dm->ino = ino;
3010        dm->rmdir_ino = 0;
3011        dm->orphanized = orphanized;
3012
3013        while (*p) {
3014                parent = *p;
3015                entry = rb_entry(parent, struct waiting_dir_move, node);
3016                if (ino < entry->ino) {
3017                        p = &(*p)->rb_left;
3018                } else if (ino > entry->ino) {
3019                        p = &(*p)->rb_right;
3020                } else {
3021                        kfree(dm);
3022                        return -EEXIST;
3023                }
3024        }
3025
3026        rb_link_node(&dm->node, parent, p);
3027        rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3028        return 0;
3029}
3030
3031static struct waiting_dir_move *
3032get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3033{
3034        struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3035        struct waiting_dir_move *entry;
3036
3037        while (n) {
3038                entry = rb_entry(n, struct waiting_dir_move, node);
3039                if (ino < entry->ino)
3040                        n = n->rb_left;
3041                else if (ino > entry->ino)
3042                        n = n->rb_right;
3043                else
3044                        return entry;
3045        }
3046        return NULL;
3047}
3048
3049static void free_waiting_dir_move(struct send_ctx *sctx,
3050                                  struct waiting_dir_move *dm)
3051{
3052        if (!dm)
3053                return;
3054        rb_erase(&dm->node, &sctx->waiting_dir_moves);
3055        kfree(dm);
3056}
3057
3058static int add_pending_dir_move(struct send_ctx *sctx,
3059                                u64 ino,
3060                                u64 ino_gen,
3061                                u64 parent_ino,
3062                                struct list_head *new_refs,
3063                                struct list_head *deleted_refs,
3064                                const bool is_orphan)
3065{
3066        struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3067        struct rb_node *parent = NULL;
3068        struct pending_dir_move *entry = NULL, *pm;
3069        struct recorded_ref *cur;
3070        int exists = 0;
3071        int ret;
3072
3073        pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3074        if (!pm)
3075                return -ENOMEM;
3076        pm->parent_ino = parent_ino;
3077        pm->ino = ino;
3078        pm->gen = ino_gen;
3079        INIT_LIST_HEAD(&pm->list);
3080        INIT_LIST_HEAD(&pm->update_refs);
3081        RB_CLEAR_NODE(&pm->node);
3082
3083        while (*p) {
3084                parent = *p;
3085                entry = rb_entry(parent, struct pending_dir_move, node);
3086                if (parent_ino < entry->parent_ino) {
3087                        p = &(*p)->rb_left;
3088                } else if (parent_ino > entry->parent_ino) {
3089                        p = &(*p)->rb_right;
3090                } else {
3091                        exists = 1;
3092                        break;
3093                }
3094        }
3095
3096        list_for_each_entry(cur, deleted_refs, list) {
3097                ret = dup_ref(cur, &pm->update_refs);
3098                if (ret < 0)
3099                        goto out;
3100        }
3101        list_for_each_entry(cur, new_refs, list) {
3102                ret = dup_ref(cur, &pm->update_refs);
3103                if (ret < 0)
3104                        goto out;
3105        }
3106
3107        ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3108        if (ret)
3109                goto out;
3110
3111        if (exists) {
3112                list_add_tail(&pm->list, &entry->list);
3113        } else {
3114                rb_link_node(&pm->node, parent, p);
3115                rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3116        }
3117        ret = 0;
3118out:
3119        if (ret) {
3120                __free_recorded_refs(&pm->update_refs);
3121                kfree(pm);
3122        }
3123        return ret;
3124}
3125
3126static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3127                                                      u64 parent_ino)
3128{
3129        struct rb_node *n = sctx->pending_dir_moves.rb_node;
3130        struct pending_dir_move *entry;
3131
3132        while (n) {
3133                entry = rb_entry(n, struct pending_dir_move, node);
3134                if (parent_ino < entry->parent_ino)
3135                        n = n->rb_left;
3136                else if (parent_ino > entry->parent_ino)
3137                        n = n->rb_right;
3138                else
3139                        return entry;
3140        }
3141        return NULL;
3142}
3143
3144static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3145                     u64 ino, u64 gen, u64 *ancestor_ino)
3146{
3147        int ret = 0;
3148        u64 parent_inode = 0;
3149        u64 parent_gen = 0;
3150        u64 start_ino = ino;
3151
3152        *ancestor_ino = 0;
3153        while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3154                fs_path_reset(name);
3155
3156                if (is_waiting_for_rm(sctx, ino))
3157                        break;
3158                if (is_waiting_for_move(sctx, ino)) {
3159                        if (*ancestor_ino == 0)
3160                                *ancestor_ino = ino;
3161                        ret = get_first_ref(sctx->parent_root, ino,
3162                                            &parent_inode, &parent_gen, name);
3163                } else {
3164                        ret = __get_cur_name_and_parent(sctx, ino, gen,
3165                                                        &parent_inode,
3166                                                        &parent_gen, name);
3167                        if (ret > 0) {
3168                                ret = 0;
3169                                break;
3170                        }
3171                }
3172                if (ret < 0)
3173                        break;
3174                if (parent_inode == start_ino) {
3175                        ret = 1;
3176                        if (*ancestor_ino == 0)
3177                                *ancestor_ino = ino;
3178                        break;
3179                }
3180                ino = parent_inode;
3181                gen = parent_gen;
3182        }
3183        return ret;
3184}
3185
3186static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3187{
3188        struct fs_path *from_path = NULL;
3189        struct fs_path *to_path = NULL;
3190        struct fs_path *name = NULL;
3191        u64 orig_progress = sctx->send_progress;
3192        struct recorded_ref *cur;
3193        u64 parent_ino, parent_gen;
3194        struct waiting_dir_move *dm = NULL;
3195        u64 rmdir_ino = 0;
3196        u64 ancestor;
3197        bool is_orphan;
3198        int ret;
3199
3200        name = fs_path_alloc();
3201        from_path = fs_path_alloc();
3202        if (!name || !from_path) {
3203                ret = -ENOMEM;
3204                goto out;
3205        }
3206
3207        dm = get_waiting_dir_move(sctx, pm->ino);
3208        ASSERT(dm);
3209        rmdir_ino = dm->rmdir_ino;
3210        is_orphan = dm->orphanized;
3211        free_waiting_dir_move(sctx, dm);
3212
3213        if (is_orphan) {
3214                ret = gen_unique_name(sctx, pm->ino,
3215                                      pm->gen, from_path);
3216        } else {
3217                ret = get_first_ref(sctx->parent_root, pm->ino,
3218                                    &parent_ino, &parent_gen, name);
3219                if (ret < 0)
3220                        goto out;
3221                ret = get_cur_path(sctx, parent_ino, parent_gen,
3222                                   from_path);
3223                if (ret < 0)
3224                        goto out;
3225                ret = fs_path_add_path(from_path, name);
3226        }
3227        if (ret < 0)
3228                goto out;
3229
3230        sctx->send_progress = sctx->cur_ino + 1;
3231        ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3232        if (ret < 0)
3233                goto out;
3234        if (ret) {
3235                LIST_HEAD(deleted_refs);
3236                ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3237                ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3238                                           &pm->update_refs, &deleted_refs,
3239                                           is_orphan);
3240                if (ret < 0)
3241                        goto out;
3242                if (rmdir_ino) {
3243                        dm = get_waiting_dir_move(sctx, pm->ino);
3244                        ASSERT(dm);
3245                        dm->rmdir_ino = rmdir_ino;
3246                }
3247                goto out;
3248        }
3249        fs_path_reset(name);
3250        to_path = name;
3251        name = NULL;
3252        ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3253        if (ret < 0)
3254                goto out;
3255
3256        ret = send_rename(sctx, from_path, to_path);
3257        if (ret < 0)
3258                goto out;
3259
3260        if (rmdir_ino) {
3261                struct orphan_dir_info *odi;
3262
3263                odi = get_orphan_dir_info(sctx, rmdir_ino);
3264                if (!odi) {
3265                        /* already deleted */
3266                        goto finish;
3267                }
3268                ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3269                if (ret < 0)
3270                        goto out;
3271                if (!ret)
3272                        goto finish;
3273
3274                name = fs_path_alloc();
3275                if (!name) {
3276                        ret = -ENOMEM;
3277                        goto out;
3278                }
3279                ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3280                if (ret < 0)
3281                        goto out;
3282                ret = send_rmdir(sctx, name);
3283                if (ret < 0)
3284                        goto out;
3285                free_orphan_dir_info(sctx, odi);
3286        }
3287
3288finish:
3289        ret = send_utimes(sctx, pm->ino, pm->gen);
3290        if (ret < 0)
3291                goto out;
3292
3293        /*
3294         * After rename/move, need to update the utimes of both new parent(s)
3295         * and old parent(s).
3296         */
3297        list_for_each_entry(cur, &pm->update_refs, list) {
3298                /*
3299                 * The parent inode might have been deleted in the send snapshot
3300                 */
3301                ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3302                                     NULL, NULL, NULL, NULL, NULL);
3303                if (ret == -ENOENT) {
3304                        ret = 0;
3305                        continue;
3306                }
3307                if (ret < 0)
3308                        goto out;
3309
3310                ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3311                if (ret < 0)
3312                        goto out;
3313        }
3314
3315out:
3316        fs_path_free(name);
3317        fs_path_free(from_path);
3318        fs_path_free(to_path);
3319        sctx->send_progress = orig_progress;
3320
3321        return ret;
3322}
3323
3324static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3325{
3326        if (!list_empty(&m->list))
3327                list_del(&m->list);
3328        if (!RB_EMPTY_NODE(&m->node))
3329                rb_erase(&m->node, &sctx->pending_dir_moves);
3330        __free_recorded_refs(&m->update_refs);
3331        kfree(m);
3332}
3333
3334static void tail_append_pending_moves(struct pending_dir_move *moves,
3335                                      struct list_head *stack)
3336{
3337        if (list_empty(&moves->list)) {
3338                list_add_tail(&moves->list, stack);
3339        } else {
3340                LIST_HEAD(list);
3341                list_splice_init(&moves->list, &list);
3342                list_add_tail(&moves->list, stack);
3343                list_splice_tail(&list, stack);
3344        }
3345}
3346
3347static int apply_children_dir_moves(struct send_ctx *sctx)
3348{
3349        struct pending_dir_move *pm;
3350        struct list_head stack;
3351        u64 parent_ino = sctx->cur_ino;
3352        int ret = 0;
3353
3354        pm = get_pending_dir_moves(sctx, parent_ino);
3355        if (!pm)
3356                return 0;
3357
3358        INIT_LIST_HEAD(&stack);
3359        tail_append_pending_moves(pm, &stack);
3360
3361        while (!list_empty(&stack)) {
3362                pm = list_first_entry(&stack, struct pending_dir_move, list);
3363                parent_ino = pm->ino;
3364                ret = apply_dir_move(sctx, pm);
3365                free_pending_move(sctx, pm);
3366                if (ret)
3367                        goto out;
3368                pm = get_pending_dir_moves(sctx, parent_ino);
3369                if (pm)
3370                        tail_append_pending_moves(pm, &stack);
3371        }
3372        return 0;
3373
3374out:
3375        while (!list_empty(&stack)) {
3376                pm = list_first_entry(&stack, struct pending_dir_move, list);
3377                free_pending_move(sctx, pm);
3378        }
3379        return ret;
3380}
3381
3382/*
3383 * We might need to delay a directory rename even when no ancestor directory
3384 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3385 * renamed. This happens when we rename a directory to the old name (the name
3386 * in the parent root) of some other unrelated directory that got its rename
3387 * delayed due to some ancestor with higher number that got renamed.
3388 *
3389 * Example:
3390 *
3391 * Parent snapshot:
3392 * .                                       (ino 256)
3393 * |---- a/                                (ino 257)
3394 * |     |---- file                        (ino 260)
3395 * |
3396 * |---- b/                                (ino 258)
3397 * |---- c/                                (ino 259)
3398 *
3399 * Send snapshot:
3400 * .                                       (ino 256)
3401 * |---- a/                                (ino 258)
3402 * |---- x/                                (ino 259)
3403 *       |---- y/                          (ino 257)
3404 *             |----- file                 (ino 260)
3405 *
3406 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3407 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3408 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3409 * must issue is:
3410 *
3411 * 1 - rename 259 from 'c' to 'x'
3412 * 2 - rename 257 from 'a' to 'x/y'
3413 * 3 - rename 258 from 'b' to 'a'
3414 *
3415 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3416 * be done right away and < 0 on error.
3417 */
3418static int wait_for_dest_dir_move(struct send_ctx *sctx,
3419                                  struct recorded_ref *parent_ref,
3420                                  const bool is_orphan)
3421{
3422        struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3423        struct btrfs_path *path;
3424        struct btrfs_key key;
3425        struct btrfs_key di_key;
3426        struct btrfs_dir_item *di;
3427        u64 left_gen;
3428        u64 right_gen;
3429        int ret = 0;
3430        struct waiting_dir_move *wdm;
3431
3432        if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3433                return 0;
3434
3435        path = alloc_path_for_send();
3436        if (!path)
3437                return -ENOMEM;
3438
3439        key.objectid = parent_ref->dir;
3440        key.type = BTRFS_DIR_ITEM_KEY;
3441        key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3442
3443        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3444        if (ret < 0) {
3445                goto out;
3446        } else if (ret > 0) {
3447                ret = 0;
3448                goto out;
3449        }
3450
3451        di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3452                                       parent_ref->name_len);
3453        if (!di) {
3454                ret = 0;
3455                goto out;
3456        }
3457        /*
3458         * di_key.objectid has the number of the inode that has a dentry in the
3459         * parent directory with the same name that sctx->cur_ino is being
3460         * renamed to. We need to check if that inode is in the send root as
3461         * well and if it is currently marked as an inode with a pending rename,
3462         * if it is, we need to delay the rename of sctx->cur_ino as well, so
3463         * that it happens after that other inode is renamed.
3464         */
3465        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3466        if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3467                ret = 0;
3468                goto out;
3469        }
3470
3471        ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3472                             &left_gen, NULL, NULL, NULL, NULL);
3473        if (ret < 0)
3474                goto out;
3475        ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3476                             &right_gen, NULL, NULL, NULL, NULL);
3477        if (ret < 0) {
3478                if (ret == -ENOENT)
3479                        ret = 0;
3480                goto out;
3481        }
3482
3483        /* Different inode, no need to delay the rename of sctx->cur_ino */
3484        if (right_gen != left_gen) {
3485                ret = 0;
3486                goto out;
3487        }
3488
3489        wdm = get_waiting_dir_move(sctx, di_key.objectid);
3490        if (wdm && !wdm->orphanized) {
3491                ret = add_pending_dir_move(sctx,
3492                                           sctx->cur_ino,
3493                                           sctx->cur_inode_gen,
3494                                           di_key.objectid,
3495                                           &sctx->new_refs,
3496                                           &sctx->deleted_refs,
3497                                           is_orphan);
3498                if (!ret)
3499                        ret = 1;
3500        }
3501out:
3502        btrfs_free_path(path);
3503        return ret;
3504}
3505
3506/*
3507 * Check if inode ino2, or any of its ancestors, is inode ino1.
3508 * Return 1 if true, 0 if false and < 0 on error.
3509 */
3510static int check_ino_in_path(struct btrfs_root *root,
3511                             const u64 ino1,
3512                             const u64 ino1_gen,
3513                             const u64 ino2,
3514                             const u64 ino2_gen,
3515                             struct fs_path *fs_path)
3516{
3517        u64 ino = ino2;
3518
3519        if (ino1 == ino2)
3520                return ino1_gen == ino2_gen;
3521
3522        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3523                u64 parent;
3524                u64 parent_gen;
3525                int ret;
3526
3527                fs_path_reset(fs_path);
3528                ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3529                if (ret < 0)
3530                        return ret;
3531                if (parent == ino1)
3532                        return parent_gen == ino1_gen;
3533                ino = parent;
3534        }
3535        return 0;
3536}
3537
3538/*
3539 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3540 * possible path (in case ino2 is not a directory and has multiple hard links).
3541 * Return 1 if true, 0 if false and < 0 on error.
3542 */
3543static int is_ancestor(struct btrfs_root *root,
3544                       const u64 ino1,
3545                       const u64 ino1_gen,
3546                       const u64 ino2,
3547                       struct fs_path *fs_path)
3548{
3549        bool free_fs_path = false;
3550        int ret = 0;
3551        struct btrfs_path *path = NULL;
3552        struct btrfs_key key;
3553
3554        if (!fs_path) {
3555                fs_path = fs_path_alloc();
3556                if (!fs_path)
3557                        return -ENOMEM;
3558                free_fs_path = true;
3559        }
3560
3561        path = alloc_path_for_send();
3562        if (!path) {
3563                ret = -ENOMEM;
3564                goto out;
3565        }
3566
3567        key.objectid = ino2;
3568        key.type = BTRFS_INODE_REF_KEY;
3569        key.offset = 0;
3570
3571        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3572        if (ret < 0)
3573                goto out;
3574
3575        while (true) {
3576                struct extent_buffer *leaf = path->nodes[0];
3577                int slot = path->slots[0];
3578                u32 cur_offset = 0;
3579                u32 item_size;
3580
3581                if (slot >= btrfs_header_nritems(leaf)) {
3582                        ret = btrfs_next_leaf(root, path);
3583                        if (ret < 0)
3584                                goto out;
3585                        if (ret > 0)
3586                                break;
3587                        continue;
3588                }
3589
3590                btrfs_item_key_to_cpu(leaf, &key, slot);
3591                if (key.objectid != ino2)
3592                        break;
3593                if (key.type != BTRFS_INODE_REF_KEY &&
3594                    key.type != BTRFS_INODE_EXTREF_KEY)
3595                        break;
3596
3597                item_size = btrfs_item_size_nr(leaf, slot);
3598                while (cur_offset < item_size) {
3599                        u64 parent;
3600                        u64 parent_gen;
3601
3602                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
3603                                unsigned long ptr;
3604                                struct btrfs_inode_extref *extref;
3605
3606                                ptr = btrfs_item_ptr_offset(leaf, slot);
3607                                extref = (struct btrfs_inode_extref *)
3608                                        (ptr + cur_offset);
3609                                parent = btrfs_inode_extref_parent(leaf,
3610                                                                   extref);
3611                                cur_offset += sizeof(*extref);
3612                                cur_offset += btrfs_inode_extref_name_len(leaf,
3613                                                                  extref);
3614                        } else {
3615                                parent = key.offset;
3616                                cur_offset = item_size;
3617                        }
3618
3619                        ret = get_inode_info(root, parent, NULL, &parent_gen,
3620                                             NULL, NULL, NULL, NULL);
3621                        if (ret < 0)
3622                                goto out;
3623                        ret = check_ino_in_path(root, ino1, ino1_gen,
3624                                                parent, parent_gen, fs_path);
3625                        if (ret)
3626                                goto out;
3627                }
3628                path->slots[0]++;
3629        }
3630        ret = 0;
3631 out:
3632        btrfs_free_path(path);
3633        if (free_fs_path)
3634                fs_path_free(fs_path);
3635        return ret;
3636}
3637
3638static int wait_for_parent_move(struct send_ctx *sctx,
3639                                struct recorded_ref *parent_ref,
3640                                const bool is_orphan)
3641{
3642        int ret = 0;
3643        u64 ino = parent_ref->dir;
3644        u64 ino_gen = parent_ref->dir_gen;
3645        u64 parent_ino_before, parent_ino_after;
3646        struct fs_path *path_before = NULL;
3647        struct fs_path *path_after = NULL;
3648        int len1, len2;
3649
3650        path_after = fs_path_alloc();
3651        path_before = fs_path_alloc();
3652        if (!path_after || !path_before) {
3653                ret = -ENOMEM;
3654                goto out;
3655        }
3656
3657        /*
3658         * Our current directory inode may not yet be renamed/moved because some
3659         * ancestor (immediate or not) has to be renamed/moved first. So find if
3660         * such ancestor exists and make sure our own rename/move happens after
3661         * that ancestor is processed to avoid path build infinite loops (done
3662         * at get_cur_path()).
3663         */
3664        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3665                u64 parent_ino_after_gen;
3666
3667                if (is_waiting_for_move(sctx, ino)) {
3668                        /*
3669                         * If the current inode is an ancestor of ino in the
3670                         * parent root, we need to delay the rename of the
3671                         * current inode, otherwise don't delayed the rename
3672                         * because we can end up with a circular dependency
3673                         * of renames, resulting in some directories never
3674                         * getting the respective rename operations issued in
3675                         * the send stream or getting into infinite path build
3676                         * loops.
3677                         */
3678                        ret = is_ancestor(sctx->parent_root,
3679                                          sctx->cur_ino, sctx->cur_inode_gen,
3680                                          ino, path_before);
3681                        if (ret)
3682                                break;
3683                }
3684
3685                fs_path_reset(path_before);
3686                fs_path_reset(path_after);
3687
3688                ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3689                                    &parent_ino_after_gen, path_after);
3690                if (ret < 0)
3691                        goto out;
3692                ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3693                                    NULL, path_before);
3694                if (ret < 0 && ret != -ENOENT) {
3695                        goto out;
3696                } else if (ret == -ENOENT) {
3697                        ret = 0;
3698                        break;
3699                }
3700
3701                len1 = fs_path_len(path_before);
3702                len2 = fs_path_len(path_after);
3703                if (ino > sctx->cur_ino &&
3704                    (parent_ino_before != parent_ino_after || len1 != len2 ||
3705                     memcmp(path_before->start, path_after->start, len1))) {
3706                        u64 parent_ino_gen;
3707
3708                        ret = get_inode_info(sctx->parent_root, ino, NULL,
3709                                             &parent_ino_gen, NULL, NULL, NULL,
3710                                             NULL);
3711                        if (ret < 0)
3712                                goto out;
3713                        if (ino_gen == parent_ino_gen) {
3714                                ret = 1;
3715                                break;
3716                        }
3717                }
3718                ino = parent_ino_after;
3719                ino_gen = parent_ino_after_gen;
3720        }
3721
3722out:
3723        fs_path_free(path_before);
3724        fs_path_free(path_after);
3725
3726        if (ret == 1) {
3727                ret = add_pending_dir_move(sctx,
3728                                           sctx->cur_ino,
3729                                           sctx->cur_inode_gen,
3730                                           ino,
3731                                           &sctx->new_refs,
3732                                           &sctx->deleted_refs,
3733                                           is_orphan);
3734                if (!ret)
3735                        ret = 1;
3736        }
3737
3738        return ret;
3739}
3740
3741static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3742{
3743        int ret;
3744        struct fs_path *new_path;
3745
3746        /*
3747         * Our reference's name member points to its full_path member string, so
3748         * we use here a new path.
3749         */
3750        new_path = fs_path_alloc();
3751        if (!new_path)
3752                return -ENOMEM;
3753
3754        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3755        if (ret < 0) {
3756                fs_path_free(new_path);
3757                return ret;
3758        }
3759        ret = fs_path_add(new_path, ref->name, ref->name_len);
3760        if (ret < 0) {
3761                fs_path_free(new_path);
3762                return ret;
3763        }
3764
3765        fs_path_free(ref->full_path);
3766        set_ref_path(ref, new_path);
3767
3768        return 0;
3769}
3770
3771/*
3772 * This does all the move/link/unlink/rmdir magic.
3773 */
3774static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3775{
3776        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3777        int ret = 0;
3778        struct recorded_ref *cur;
3779        struct recorded_ref *cur2;
3780        struct list_head check_dirs;
3781        struct fs_path *valid_path = NULL;
3782        u64 ow_inode = 0;
3783        u64 ow_gen;
3784        u64 ow_mode;
3785        int did_overwrite = 0;
3786        int is_orphan = 0;
3787        u64 last_dir_ino_rm = 0;
3788        bool can_rename = true;
3789        bool orphanized_dir = false;
3790        bool orphanized_ancestor = false;
3791
3792        btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3793
3794        /*
3795         * This should never happen as the root dir always has the same ref
3796         * which is always '..'
3797         */
3798        BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3799        INIT_LIST_HEAD(&check_dirs);
3800
3801        valid_path = fs_path_alloc();
3802        if (!valid_path) {
3803                ret = -ENOMEM;
3804                goto out;
3805        }
3806
3807        /*
3808         * First, check if the first ref of the current inode was overwritten
3809         * before. If yes, we know that the current inode was already orphanized
3810         * and thus use the orphan name. If not, we can use get_cur_path to
3811         * get the path of the first ref as it would like while receiving at
3812         * this point in time.
3813         * New inodes are always orphan at the beginning, so force to use the
3814         * orphan name in this case.
3815         * The first ref is stored in valid_path and will be updated if it
3816         * gets moved around.
3817         */
3818        if (!sctx->cur_inode_new) {
3819                ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3820                                sctx->cur_inode_gen);
3821                if (ret < 0)
3822                        goto out;
3823                if (ret)
3824                        did_overwrite = 1;
3825        }
3826        if (sctx->cur_inode_new || did_overwrite) {
3827                ret = gen_unique_name(sctx, sctx->cur_ino,
3828                                sctx->cur_inode_gen, valid_path);
3829                if (ret < 0)
3830                        goto out;
3831                is_orphan = 1;
3832        } else {
3833                ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3834                                valid_path);
3835                if (ret < 0)
3836                        goto out;
3837        }
3838
3839        list_for_each_entry(cur, &sctx->new_refs, list) {
3840                /*
3841                 * We may have refs where the parent directory does not exist
3842                 * yet. This happens if the parent directories inum is higher
3843                 * the the current inum. To handle this case, we create the
3844                 * parent directory out of order. But we need to check if this
3845                 * did already happen before due to other refs in the same dir.
3846                 */
3847                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3848                if (ret < 0)
3849                        goto out;
3850                if (ret == inode_state_will_create) {
3851                        ret = 0;
3852                        /*
3853                         * First check if any of the current inodes refs did
3854                         * already create the dir.
3855                         */
3856                        list_for_each_entry(cur2, &sctx->new_refs, list) {
3857                                if (cur == cur2)
3858                                        break;
3859                                if (cur2->dir == cur->dir) {
3860                                        ret = 1;
3861                                        break;
3862                                }
3863                        }
3864
3865                        /*
3866                         * If that did not happen, check if a previous inode
3867                         * did already create the dir.
3868                         */
3869                        if (!ret)
3870                                ret = did_create_dir(sctx, cur->dir);
3871                        if (ret < 0)
3872                                goto out;
3873                        if (!ret) {
3874                                ret = send_create_inode(sctx, cur->dir);
3875                                if (ret < 0)
3876                                        goto out;
3877                        }
3878                }
3879
3880                /*
3881                 * Check if this new ref would overwrite the first ref of
3882                 * another unprocessed inode. If yes, orphanize the
3883                 * overwritten inode. If we find an overwritten ref that is
3884                 * not the first ref, simply unlink it.
3885                 */
3886                ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3887                                cur->name, cur->name_len,
3888                                &ow_inode, &ow_gen, &ow_mode);
3889                if (ret < 0)
3890                        goto out;
3891                if (ret) {
3892                        ret = is_first_ref(sctx->parent_root,
3893                                           ow_inode, cur->dir, cur->name,
3894                                           cur->name_len);
3895                        if (ret < 0)
3896                                goto out;
3897                        if (ret) {
3898                                struct name_cache_entry *nce;
3899                                struct waiting_dir_move *wdm;
3900
3901                                ret = orphanize_inode(sctx, ow_inode, ow_gen,
3902                                                cur->full_path);
3903                                if (ret < 0)
3904                                        goto out;
3905                                if (S_ISDIR(ow_mode))
3906                                        orphanized_dir = true;
3907
3908                                /*
3909                                 * If ow_inode has its rename operation delayed
3910                                 * make sure that its orphanized name is used in
3911                                 * the source path when performing its rename
3912                                 * operation.
3913                                 */
3914                                if (is_waiting_for_move(sctx, ow_inode)) {
3915                                        wdm = get_waiting_dir_move(sctx,
3916                                                                   ow_inode);
3917                                        ASSERT(wdm);
3918                                        wdm->orphanized = true;
3919                                }
3920
3921                                /*
3922                                 * Make sure we clear our orphanized inode's
3923                                 * name from the name cache. This is because the
3924                                 * inode ow_inode might be an ancestor of some
3925                                 * other inode that will be orphanized as well
3926                                 * later and has an inode number greater than
3927                                 * sctx->send_progress. We need to prevent
3928                                 * future name lookups from using the old name
3929                                 * and get instead the orphan name.
3930                                 */
3931                                nce = name_cache_search(sctx, ow_inode, ow_gen);
3932                                if (nce) {
3933                                        name_cache_delete(sctx, nce);
3934                                        kfree(nce);
3935                                }
3936
3937                                /*
3938                                 * ow_inode might currently be an ancestor of
3939                                 * cur_ino, therefore compute valid_path (the
3940                                 * current path of cur_ino) again because it
3941                                 * might contain the pre-orphanization name of
3942                                 * ow_inode, which is no longer valid.
3943                                 */
3944                                ret = is_ancestor(sctx->parent_root,
3945                                                  ow_inode, ow_gen,
3946                                                  sctx->cur_ino, NULL);
3947                                if (ret > 0) {
3948                                        orphanized_ancestor = true;
3949                                        fs_path_reset(valid_path);
3950                                        ret = get_cur_path(sctx, sctx->cur_ino,
3951                                                           sctx->cur_inode_gen,
3952                                                           valid_path);
3953                                }
3954                                if (ret < 0)
3955                                        goto out;
3956                        } else {
3957                                ret = send_unlink(sctx, cur->full_path);
3958                                if (ret < 0)
3959                                        goto out;
3960                        }
3961                }
3962
3963                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3964                        ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3965                        if (ret < 0)
3966                                goto out;
3967                        if (ret == 1) {
3968                                can_rename = false;
3969                                *pending_move = 1;
3970                        }
3971                }
3972
3973                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3974                    can_rename) {
3975                        ret = wait_for_parent_move(sctx, cur, is_orphan);
3976                        if (ret < 0)
3977                                goto out;
3978                        if (ret == 1) {
3979                                can_rename = false;
3980                                *pending_move = 1;
3981                        }
3982                }
3983
3984                /*
3985                 * link/move the ref to the new place. If we have an orphan
3986                 * inode, move it and update valid_path. If not, link or move
3987                 * it depending on the inode mode.
3988                 */
3989                if (is_orphan && can_rename) {
3990                        ret = send_rename(sctx, valid_path, cur->full_path);
3991                        if (ret < 0)
3992                                goto out;
3993                        is_orphan = 0;
3994                        ret = fs_path_copy(valid_path, cur->full_path);
3995                        if (ret < 0)
3996                                goto out;
3997                } else if (can_rename) {
3998                        if (S_ISDIR(sctx->cur_inode_mode)) {
3999                                /*
4000                                 * Dirs can't be linked, so move it. For moved
4001                                 * dirs, we always have one new and one deleted
4002                                 * ref. The deleted ref is ignored later.
4003                                 */
4004                                ret = send_rename(sctx, valid_path,
4005                                                  cur->full_path);
4006                                if (!ret)
4007                                        ret = fs_path_copy(valid_path,
4008                                                           cur->full_path);
4009                                if (ret < 0)
4010                                        goto out;
4011                        } else {
4012                                /*
4013                                 * We might have previously orphanized an inode
4014                                 * which is an ancestor of our current inode,
4015                                 * so our reference's full path, which was
4016                                 * computed before any such orphanizations, must
4017                                 * be updated.
4018                                 */
4019                                if (orphanized_dir) {
4020                                        ret = update_ref_path(sctx, cur);
4021                                        if (ret < 0)
4022                                                goto out;
4023                                }
4024                                ret = send_link(sctx, cur->full_path,
4025                                                valid_path);
4026                                if (ret < 0)
4027                                        goto out;
4028                        }
4029                }
4030                ret = dup_ref(cur, &check_dirs);
4031                if (ret < 0)
4032                        goto out;
4033        }
4034
4035        if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4036                /*
4037                 * Check if we can already rmdir the directory. If not,
4038                 * orphanize it. For every dir item inside that gets deleted
4039                 * later, we do this check again and rmdir it then if possible.
4040                 * See the use of check_dirs for more details.
4041                 */
4042                ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4043                                sctx->cur_ino);
4044                if (ret < 0)
4045                        goto out;
4046                if (ret) {
4047                        ret = send_rmdir(sctx, valid_path);
4048                        if (ret < 0)
4049                                goto out;
4050                } else if (!is_orphan) {
4051                        ret = orphanize_inode(sctx, sctx->cur_ino,
4052                                        sctx->cur_inode_gen, valid_path);
4053                        if (ret < 0)
4054                                goto out;
4055                        is_orphan = 1;
4056                }
4057
4058                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4059                        ret = dup_ref(cur, &check_dirs);
4060                        if (ret < 0)
4061                                goto out;
4062                }
4063        } else if (S_ISDIR(sctx->cur_inode_mode) &&
4064                   !list_empty(&sctx->deleted_refs)) {
4065                /*
4066                 * We have a moved dir. Add the old parent to check_dirs
4067                 */
4068                cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4069                                list);
4070                ret = dup_ref(cur, &check_dirs);
4071                if (ret < 0)
4072                        goto out;
4073        } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4074                /*
4075                 * We have a non dir inode. Go through all deleted refs and
4076                 * unlink them if they were not already overwritten by other
4077                 * inodes.
4078                 */
4079                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4080                        ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4081                                        sctx->cur_ino, sctx->cur_inode_gen,
4082                                        cur->name, cur->name_len);
4083                        if (ret < 0)
4084                                goto out;
4085                        if (!ret) {
4086                                /*
4087                                 * If we orphanized any ancestor before, we need
4088                                 * to recompute the full path for deleted names,
4089                                 * since any such path was computed before we
4090                                 * processed any references and orphanized any
4091                                 * ancestor inode.
4092                                 */
4093                                if (orphanized_ancestor) {
4094                                        ret = update_ref_path(sctx, cur);
4095                                        if (ret < 0)
4096                                                goto out;
4097                                }
4098                                ret = send_unlink(sctx, cur->full_path);
4099                                if (ret < 0)
4100                                        goto out;
4101                        }
4102                        ret = dup_ref(cur, &check_dirs);
4103                        if (ret < 0)
4104                                goto out;
4105                }
4106                /*
4107                 * If the inode is still orphan, unlink the orphan. This may
4108                 * happen when a previous inode did overwrite the first ref
4109                 * of this inode and no new refs were added for the current
4110                 * inode. Unlinking does not mean that the inode is deleted in
4111                 * all cases. There may still be links to this inode in other
4112                 * places.
4113                 */
4114                if (is_orphan) {
4115                        ret = send_unlink(sctx, valid_path);
4116                        if (ret < 0)
4117                                goto out;
4118                }
4119        }
4120
4121        /*
4122         * We did collect all parent dirs where cur_inode was once located. We
4123         * now go through all these dirs and check if they are pending for
4124         * deletion and if it's finally possible to perform the rmdir now.
4125         * We also update the inode stats of the parent dirs here.
4126         */
4127        list_for_each_entry(cur, &check_dirs, list) {
4128                /*
4129                 * In case we had refs into dirs that were not processed yet,
4130                 * we don't need to do the utime and rmdir logic for these dirs.
4131                 * The dir will be processed later.
4132                 */
4133                if (cur->dir > sctx->cur_ino)
4134                        continue;
4135
4136                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4137                if (ret < 0)
4138                        goto out;
4139
4140                if (ret == inode_state_did_create ||
4141                    ret == inode_state_no_change) {
4142                        /* TODO delayed utimes */
4143                        ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4144                        if (ret < 0)
4145                                goto out;
4146                } else if (ret == inode_state_did_delete &&
4147                           cur->dir != last_dir_ino_rm) {
4148                        ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4149                                        sctx->cur_ino);
4150                        if (ret < 0)
4151                                goto out;
4152                        if (ret) {
4153                                ret = get_cur_path(sctx, cur->dir,
4154                                                   cur->dir_gen, valid_path);
4155                                if (ret < 0)
4156                                        goto out;
4157                                ret = send_rmdir(sctx, valid_path);
4158                                if (ret < 0)
4159                                        goto out;
4160                                last_dir_ino_rm = cur->dir;
4161                        }
4162                }
4163        }
4164
4165        ret = 0;
4166
4167out:
4168        __free_recorded_refs(&check_dirs);
4169        free_recorded_refs(sctx);
4170        fs_path_free(valid_path);
4171        return ret;
4172}
4173
4174static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4175                      void *ctx, struct list_head *refs)
4176{
4177        int ret = 0;
4178        struct send_ctx *sctx = ctx;
4179        struct fs_path *p;
4180        u64 gen;
4181
4182        p = fs_path_alloc();
4183        if (!p)
4184                return -ENOMEM;
4185
4186        ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4187                        NULL, NULL);
4188        if (ret < 0)
4189                goto out;
4190
4191        ret = get_cur_path(sctx, dir, gen, p);
4192        if (ret < 0)
4193                goto out;
4194        ret = fs_path_add_path(p, name);
4195        if (ret < 0)
4196                goto out;
4197
4198        ret = __record_ref(refs, dir, gen, p);
4199
4200out:
4201        if (ret)
4202                fs_path_free(p);
4203        return ret;
4204}
4205
4206static int __record_new_ref(int num, u64 dir, int index,
4207                            struct fs_path *name,
4208                            void *ctx)
4209{
4210        struct send_ctx *sctx = ctx;
4211        return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4212}
4213
4214
4215static int __record_deleted_ref(int num, u64 dir, int index,
4216                                struct fs_path *name,
4217                                void *ctx)
4218{
4219        struct send_ctx *sctx = ctx;
4220        return record_ref(sctx->parent_root, dir, name, ctx,
4221                          &sctx->deleted_refs);
4222}
4223
4224static int record_new_ref(struct send_ctx *sctx)
4225{
4226        int ret;
4227
4228        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4229                                sctx->cmp_key, 0, __record_new_ref, sctx);
4230        if (ret < 0)
4231                goto out;
4232        ret = 0;
4233
4234out:
4235        return ret;
4236}
4237
4238static int record_deleted_ref(struct send_ctx *sctx)
4239{
4240        int ret;
4241
4242        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4243                                sctx->cmp_key, 0, __record_deleted_ref, sctx);
4244        if (ret < 0)
4245                goto out;
4246        ret = 0;
4247
4248out:
4249        return ret;
4250}
4251
4252struct find_ref_ctx {
4253        u64 dir;
4254        u64 dir_gen;
4255        struct btrfs_root *root;
4256        struct fs_path *name;
4257        int found_idx;
4258};
4259
4260static int __find_iref(int num, u64 dir, int index,
4261                       struct fs_path *name,
4262                       void *ctx_)
4263{
4264        struct find_ref_ctx *ctx = ctx_;
4265        u64 dir_gen;
4266        int ret;
4267
4268        if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4269            strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4270                /*
4271                 * To avoid doing extra lookups we'll only do this if everything
4272                 * else matches.
4273                 */
4274                ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4275                                     NULL, NULL, NULL);
4276                if (ret)
4277                        return ret;
4278                if (dir_gen != ctx->dir_gen)
4279                        return 0;
4280                ctx->found_idx = num;
4281                return 1;
4282        }
4283        return 0;
4284}
4285
4286static int find_iref(struct btrfs_root *root,
4287                     struct btrfs_path *path,
4288                     struct btrfs_key *key,
4289                     u64 dir, u64 dir_gen, struct fs_path *name)
4290{
4291        int ret;
4292        struct find_ref_ctx ctx;
4293
4294        ctx.dir = dir;
4295        ctx.name = name;
4296        ctx.dir_gen = dir_gen;
4297        ctx.found_idx = -1;
4298        ctx.root = root;
4299
4300        ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4301        if (ret < 0)
4302                return ret;
4303
4304        if (ctx.found_idx == -1)
4305                return -ENOENT;
4306
4307        return ctx.found_idx;
4308}
4309
4310static int __record_changed_new_ref(int num, u64 dir, int index,
4311                                    struct fs_path *name,
4312                                    void *ctx)
4313{
4314        u64 dir_gen;
4315        int ret;
4316        struct send_ctx *sctx = ctx;
4317
4318        ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4319                             NULL, NULL, NULL);
4320        if (ret)
4321                return ret;
4322
4323        ret = find_iref(sctx->parent_root, sctx->right_path,
4324                        sctx->cmp_key, dir, dir_gen, name);
4325        if (ret == -ENOENT)
4326                ret = __record_new_ref(num, dir, index, name, sctx);
4327        else if (ret > 0)
4328                ret = 0;
4329
4330        return ret;
4331}
4332
4333static int __record_changed_deleted_ref(int num, u64 dir, int index,
4334                                        struct fs_path *name,
4335                                        void *ctx)
4336{
4337        u64 dir_gen;
4338        int ret;
4339        struct send_ctx *sctx = ctx;
4340
4341        ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4342                             NULL, NULL, NULL);
4343        if (ret)
4344                return ret;
4345
4346        ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4347                        dir, dir_gen, name);
4348        if (ret == -ENOENT)
4349                ret = __record_deleted_ref(num, dir, index, name, sctx);
4350        else if (ret > 0)
4351                ret = 0;
4352
4353        return ret;
4354}
4355
4356static int record_changed_ref(struct send_ctx *sctx)
4357{
4358        int ret = 0;
4359
4360        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4361                        sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4362        if (ret < 0)
4363                goto out;
4364        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4365                        sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4366        if (ret < 0)
4367                goto out;
4368        ret = 0;
4369
4370out:
4371        return ret;
4372}
4373
4374/*
4375 * Record and process all refs at once. Needed when an inode changes the
4376 * generation number, which means that it was deleted and recreated.
4377 */
4378static int process_all_refs(struct send_ctx *sctx,
4379                            enum btrfs_compare_tree_result cmd)
4380{
4381        int ret;
4382        struct btrfs_root *root;
4383        struct btrfs_path *path;
4384        struct btrfs_key key;
4385        struct btrfs_key found_key;
4386        struct extent_buffer *eb;
4387        int slot;
4388        iterate_inode_ref_t cb;
4389        int pending_move = 0;
4390
4391        path = alloc_path_for_send();
4392        if (!path)
4393                return -ENOMEM;
4394
4395        if (cmd == BTRFS_COMPARE_TREE_NEW) {
4396                root = sctx->send_root;
4397                cb = __record_new_ref;
4398        } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4399                root = sctx->parent_root;
4400                cb = __record_deleted_ref;
4401        } else {
4402                btrfs_err(sctx->send_root->fs_info,
4403                                "Wrong command %d in process_all_refs", cmd);
4404                ret = -EINVAL;
4405                goto out;
4406        }
4407
4408        key.objectid = sctx->cmp_key->objectid;
4409        key.type = BTRFS_INODE_REF_KEY;
4410        key.offset = 0;
4411        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4412        if (ret < 0)
4413                goto out;
4414
4415        while (1) {
4416                eb = path->nodes[0];
4417                slot = path->slots[0];
4418                if (slot >= btrfs_header_nritems(eb)) {
4419                        ret = btrfs_next_leaf(root, path);
4420                        if (ret < 0)
4421                                goto out;
4422                        else if (ret > 0)
4423                                break;
4424                        continue;
4425                }
4426
4427                btrfs_item_key_to_cpu(eb, &found_key, slot);
4428
4429                if (found_key.objectid != key.objectid ||
4430                    (found_key.type != BTRFS_INODE_REF_KEY &&
4431                     found_key.type != BTRFS_INODE_EXTREF_KEY))
4432                        break;
4433
4434                ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4435                if (ret < 0)
4436                        goto out;
4437
4438                path->slots[0]++;
4439        }
4440        btrfs_release_path(path);
4441
4442        /*
4443         * We don't actually care about pending_move as we are simply
4444         * re-creating this inode and will be rename'ing it into place once we
4445         * rename the parent directory.
4446         */
4447        ret = process_recorded_refs(sctx, &pending_move);
4448out:
4449        btrfs_free_path(path);
4450        return ret;
4451}
4452
4453static int send_set_xattr(struct send_ctx *sctx,
4454                          struct fs_path *path,
4455                          const char *name, int name_len,
4456                          const char *data, int data_len)
4457{
4458        int ret = 0;
4459
4460        ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4461        if (ret < 0)
4462                goto out;
4463
4464        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4465        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4466        TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4467
4468        ret = send_cmd(sctx);
4469
4470tlv_put_failure:
4471out:
4472        return ret;
4473}
4474
4475static int send_remove_xattr(struct send_ctx *sctx,
4476                          struct fs_path *path,
4477                          const char *name, int name_len)
4478{
4479        int ret = 0;
4480
4481        ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4482        if (ret < 0)
4483                goto out;
4484
4485        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4486        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4487
4488        ret = send_cmd(sctx);
4489
4490tlv_put_failure:
4491out:
4492        return ret;
4493}
4494
4495static int __process_new_xattr(int num, struct btrfs_key *di_key,
4496                               const char *name, int name_len,
4497                               const char *data, int data_len,
4498                               u8 type, void *ctx)
4499{
4500        int ret;
4501        struct send_ctx *sctx = ctx;
4502        struct fs_path *p;
4503        struct posix_acl_xattr_header dummy_acl;
4504
4505        p = fs_path_alloc();
4506        if (!p)
4507                return -ENOMEM;
4508
4509        /*
4510         * This hack is needed because empty acls are stored as zero byte
4511         * data in xattrs. Problem with that is, that receiving these zero byte
4512         * acls will fail later. To fix this, we send a dummy acl list that
4513         * only contains the version number and no entries.
4514         */
4515        if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4516            !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4517                if (data_len == 0) {
4518                        dummy_acl.a_version =
4519                                        cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4520                        data = (char *)&dummy_acl;
4521                        data_len = sizeof(dummy_acl);
4522                }
4523        }
4524
4525        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4526        if (ret < 0)
4527                goto out;
4528
4529        ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4530
4531out:
4532        fs_path_free(p);
4533        return ret;
4534}
4535
4536static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4537                                   const char *name, int name_len,
4538                                   const char *data, int data_len,
4539                                   u8 type, void *ctx)
4540{
4541        int ret;
4542        struct send_ctx *sctx = ctx;
4543        struct fs_path *p;
4544
4545        p = fs_path_alloc();
4546        if (!p)
4547                return -ENOMEM;
4548
4549        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4550        if (ret < 0)
4551                goto out;
4552
4553        ret = send_remove_xattr(sctx, p, name, name_len);
4554
4555out:
4556        fs_path_free(p);
4557        return ret;
4558}
4559
4560static int process_new_xattr(struct send_ctx *sctx)
4561{
4562        int ret = 0;
4563
4564        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4565                               __process_new_xattr, sctx);
4566
4567        return ret;
4568}
4569
4570static int process_deleted_xattr(struct send_ctx *sctx)
4571{
4572        return iterate_dir_item(sctx->parent_root, sctx->right_path,
4573                                __process_deleted_xattr, sctx);
4574}
4575
4576struct find_xattr_ctx {
4577        const char *name;
4578        int name_len;
4579        int found_idx;
4580        char *found_data;
4581        int found_data_len;
4582};
4583
4584static int __find_xattr(int num, struct btrfs_key *di_key,
4585                        const char *name, int name_len,
4586                        const char *data, int data_len,
4587                        u8 type, void *vctx)
4588{
4589        struct find_xattr_ctx *ctx = vctx;
4590
4591        if (name_len == ctx->name_len &&
4592            strncmp(name, ctx->name, name_len) == 0) {
4593                ctx->found_idx = num;
4594                ctx->found_data_len = data_len;
4595                ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4596                if (!ctx->found_data)
4597                        return -ENOMEM;
4598                return 1;
4599        }
4600        return 0;
4601}
4602
4603static int find_xattr(struct btrfs_root *root,
4604                      struct btrfs_path *path,
4605                      struct btrfs_key *key,
4606                      const char *name, int name_len,
4607                      char **data, int *data_len)
4608{
4609        int ret;
4610        struct find_xattr_ctx ctx;
4611
4612        ctx.name = name;
4613        ctx.name_len = name_len;
4614        ctx.found_idx = -1;
4615        ctx.found_data = NULL;
4616        ctx.found_data_len = 0;
4617
4618        ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4619        if (ret < 0)
4620                return ret;
4621
4622        if (ctx.found_idx == -1)
4623                return -ENOENT;
4624        if (data) {
4625                *data = ctx.found_data;
4626                *data_len = ctx.found_data_len;
4627        } else {
4628                kfree(ctx.found_data);
4629        }
4630        return ctx.found_idx;
4631}
4632
4633
4634static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4635                                       const char *name, int name_len,
4636                                       const char *data, int data_len,
4637                                       u8 type, void *ctx)
4638{
4639        int ret;
4640        struct send_ctx *sctx = ctx;
4641        char *found_data = NULL;
4642        int found_data_len  = 0;
4643
4644        ret = find_xattr(sctx->parent_root, sctx->right_path,
4645                         sctx->cmp_key, name, name_len, &found_data,
4646                         &found_data_len);
4647        if (ret == -ENOENT) {
4648                ret = __process_new_xattr(num, di_key, name, name_len, data,
4649                                data_len, type, ctx);
4650        } else if (ret >= 0) {
4651                if (data_len != found_data_len ||
4652                    memcmp(data, found_data, data_len)) {
4653                        ret = __process_new_xattr(num, di_key, name, name_len,
4654                                        data, data_len, type, ctx);
4655                } else {
4656                        ret = 0;
4657                }
4658        }
4659
4660        kfree(found_data);
4661        return ret;
4662}
4663
4664static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4665                                           const char *name, int name_len,
4666                                           const char *data, int data_len,
4667                                           u8 type, void *ctx)
4668{
4669        int ret;
4670        struct send_ctx *sctx = ctx;
4671
4672        ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4673                         name, name_len, NULL, NULL);
4674        if (ret == -ENOENT)
4675                ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4676                                data_len, type, ctx);
4677        else if (ret >= 0)
4678                ret = 0;
4679
4680        return ret;
4681}
4682
4683static int process_changed_xattr(struct send_ctx *sctx)
4684{
4685        int ret = 0;
4686
4687        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4688                        __process_changed_new_xattr, sctx);
4689        if (ret < 0)
4690                goto out;
4691        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4692                        __process_changed_deleted_xattr, sctx);
4693
4694out:
4695        return ret;
4696}
4697
4698static int process_all_new_xattrs(struct send_ctx *sctx)
4699{
4700        int ret;
4701        struct btrfs_root *root;
4702        struct btrfs_path *path;
4703        struct btrfs_key key;
4704        struct btrfs_key found_key;
4705        struct extent_buffer *eb;
4706        int slot;
4707
4708        path = alloc_path_for_send();
4709        if (!path)
4710                return -ENOMEM;
4711
4712        root = sctx->send_root;
4713
4714        key.objectid = sctx->cmp_key->objectid;
4715        key.type = BTRFS_XATTR_ITEM_KEY;
4716        key.offset = 0;
4717        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4718        if (ret < 0)
4719                goto out;
4720
4721        while (1) {
4722                eb = path->nodes[0];
4723                slot = path->slots[0];
4724                if (slot >= btrfs_header_nritems(eb)) {
4725                        ret = btrfs_next_leaf(root, path);
4726                        if (ret < 0) {
4727                                goto out;
4728                        } else if (ret > 0) {
4729                                ret = 0;
4730                                break;
4731                        }
4732                        continue;
4733                }
4734
4735                btrfs_item_key_to_cpu(eb, &found_key, slot);
4736                if (found_key.objectid != key.objectid ||
4737                    found_key.type != key.type) {
4738                        ret = 0;
4739                        goto out;
4740                }
4741
4742                ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4743                if (ret < 0)
4744                        goto out;
4745
4746                path->slots[0]++;
4747        }
4748
4749out:
4750        btrfs_free_path(path);
4751        return ret;
4752}
4753
4754static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4755{
4756        struct btrfs_root *root = sctx->send_root;
4757        struct btrfs_fs_info *fs_info = root->fs_info;
4758        struct inode *inode;
4759        struct page *page;
4760        char *addr;
4761        struct btrfs_key key;
4762        pgoff_t index = offset >> PAGE_SHIFT;
4763        pgoff_t last_index;
4764        unsigned pg_offset = offset & ~PAGE_MASK;
4765        ssize_t ret = 0;
4766
4767        key.objectid = sctx->cur_ino;
4768        key.type = BTRFS_INODE_ITEM_KEY;
4769        key.offset = 0;
4770
4771        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4772        if (IS_ERR(inode))
4773                return PTR_ERR(inode);
4774
4775        if (offset + len > i_size_read(inode)) {
4776                if (offset > i_size_read(inode))
4777                        len = 0;
4778                else
4779                        len = offset - i_size_read(inode);
4780        }
4781        if (len == 0)
4782                goto out;
4783
4784        last_index = (offset + len - 1) >> PAGE_SHIFT;
4785
4786        /* initial readahead */
4787        memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4788        file_ra_state_init(&sctx->ra, inode->i_mapping);
4789
4790        while (index <= last_index) {
4791                unsigned cur_len = min_t(unsigned, len,
4792                                         PAGE_SIZE - pg_offset);
4793
4794                page = find_lock_page(inode->i_mapping, index);
4795                if (!page) {
4796                        page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4797                                NULL, index, last_index + 1 - index);
4798
4799                        page = find_or_create_page(inode->i_mapping, index,
4800                                        GFP_KERNEL);
4801                        if (!page) {
4802                                ret = -ENOMEM;
4803                                break;
4804                        }
4805                }
4806
4807                if (PageReadahead(page)) {
4808                        page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4809                                NULL, page, index, last_index + 1 - index);
4810                }
4811
4812                if (!PageUptodate(page)) {
4813                        btrfs_readpage(NULL, page);
4814                        lock_page(page);
4815                        if (!PageUptodate(page)) {
4816                                unlock_page(page);
4817                                put_page(page);
4818                                ret = -EIO;
4819                                break;
4820                        }
4821                }
4822
4823                addr = kmap(page);
4824                memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4825                kunmap(page);
4826                unlock_page(page);
4827                put_page(page);
4828                index++;
4829                pg_offset = 0;
4830                len -= cur_len;
4831                ret += cur_len;
4832        }
4833out:
4834        iput(inode);
4835        return ret;
4836}
4837
4838/*
4839 * Read some bytes from the current inode/file and send a write command to
4840 * user space.
4841 */
4842static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4843{
4844        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4845        int ret = 0;
4846        struct fs_path *p;
4847        ssize_t num_read = 0;
4848
4849        p = fs_path_alloc();
4850        if (!p)
4851                return -ENOMEM;
4852
4853        btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4854
4855        num_read = fill_read_buf(sctx, offset, len);
4856        if (num_read <= 0) {
4857                if (num_read < 0)
4858                        ret = num_read;
4859                goto out;
4860        }
4861
4862        ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4863        if (ret < 0)
4864                goto out;
4865
4866        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4867        if (ret < 0)
4868                goto out;
4869
4870        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4871        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4872        TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4873
4874        ret = send_cmd(sctx);
4875
4876tlv_put_failure:
4877out:
4878        fs_path_free(p);
4879        if (ret < 0)
4880                return ret;
4881        return num_read;
4882}
4883
4884/*
4885 * Send a clone command to user space.
4886 */
4887static int send_clone(struct send_ctx *sctx,
4888                      u64 offset, u32 len,
4889                      struct clone_root *clone_root)
4890{
4891        int ret = 0;
4892        struct fs_path *p;
4893        u64 gen;
4894
4895        btrfs_debug(sctx->send_root->fs_info,
4896                    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4897                    offset, len, clone_root->root->objectid, clone_root->ino,
4898                    clone_root->offset);
4899
4900        p = fs_path_alloc();
4901        if (!p)
4902                return -ENOMEM;
4903
4904        ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4905        if (ret < 0)
4906                goto out;
4907
4908        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4909        if (ret < 0)
4910                goto out;
4911
4912        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4913        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4914        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4915
4916        if (clone_root->root == sctx->send_root) {
4917                ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4918                                &gen, NULL, NULL, NULL, NULL);
4919                if (ret < 0)
4920                        goto out;
4921                ret = get_cur_path(sctx, clone_root->ino, gen, p);
4922        } else {
4923                ret = get_inode_path(clone_root->root, clone_root->ino, p);
4924        }
4925        if (ret < 0)
4926                goto out;
4927
4928        /*
4929         * If the parent we're using has a received_uuid set then use that as
4930         * our clone source as that is what we will look for when doing a
4931         * receive.
4932         *
4933         * This covers the case that we create a snapshot off of a received
4934         * subvolume and then use that as the parent and try to receive on a
4935         * different host.
4936         */
4937        if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4938                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4939                             clone_root->root->root_item.received_uuid);
4940        else
4941                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4942                             clone_root->root->root_item.uuid);
4943        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4944                    le64_to_cpu(clone_root->root->root_item.ctransid));
4945        TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4946        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4947                        clone_root->offset);
4948
4949        ret = send_cmd(sctx);
4950
4951tlv_put_failure:
4952out:
4953        fs_path_free(p);
4954        return ret;
4955}
4956
4957/*
4958 * Send an update extent command to user space.
4959 */
4960static int send_update_extent(struct send_ctx *sctx,
4961                              u64 offset, u32 len)
4962{
4963        int ret = 0;
4964        struct fs_path *p;
4965
4966        p = fs_path_alloc();
4967        if (!p)
4968                return -ENOMEM;
4969
4970        ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4971        if (ret < 0)
4972                goto out;
4973
4974        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4975        if (ret < 0)
4976                goto out;
4977
4978        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4979        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4980        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4981
4982        ret = send_cmd(sctx);
4983
4984tlv_put_failure:
4985out:
4986        fs_path_free(p);
4987        return ret;
4988}
4989
4990static int send_hole(struct send_ctx *sctx, u64 end)
4991{
4992        struct fs_path *p = NULL;
4993        u64 offset = sctx->cur_inode_last_extent;
4994        u64 len;
4995        int ret = 0;
4996
4997        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4998                return send_update_extent(sctx, offset, end - offset);
4999
5000        p = fs_path_alloc();
5001        if (!p)
5002                return -ENOMEM;
5003        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5004        if (ret < 0)
5005                goto tlv_put_failure;
5006        memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5007        while (offset < end) {
5008                len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5009
5010                ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5011                if (ret < 0)
5012                        break;
5013                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5014                TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5015                TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5016                ret = send_cmd(sctx);
5017                if (ret < 0)
5018                        break;
5019                offset += len;
5020        }
5021        sctx->cur_inode_next_write_offset = offset;
5022tlv_put_failure:
5023        fs_path_free(p);
5024        return ret;
5025}
5026
5027static int send_extent_data(struct send_ctx *sctx,
5028                            const u64 offset,
5029                            const u64 len)
5030{
5031        u64 sent = 0;
5032
5033        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5034                return send_update_extent(sctx, offset, len);
5035
5036        while (sent < len) {
5037                u64 size = len - sent;
5038                int ret;
5039
5040                if (size > BTRFS_SEND_READ_SIZE)
5041                        size = BTRFS_SEND_READ_SIZE;
5042                ret = send_write(sctx, offset + sent, size);
5043                if (ret < 0)
5044                        return ret;
5045                if (!ret)
5046                        break;
5047                sent += ret;
5048        }
5049        return 0;
5050}
5051
5052static int clone_range(struct send_ctx *sctx,
5053                       struct clone_root *clone_root,
5054                       const u64 disk_byte,
5055                       u64 data_offset,
5056                       u64 offset,
5057                       u64 len)
5058{
5059        struct btrfs_path *path;
5060        struct btrfs_key key;
5061        int ret;
5062
5063        /*
5064         * Prevent cloning from a zero offset with a length matching the sector
5065         * size because in some scenarios this will make the receiver fail.
5066         *
5067         * For example, if in the source filesystem the extent at offset 0
5068         * has a length of sectorsize and it was written using direct IO, then
5069         * it can never be an inline extent (even if compression is enabled).
5070         * Then this extent can be cloned in the original filesystem to a non
5071         * zero file offset, but it may not be possible to clone in the
5072         * destination filesystem because it can be inlined due to compression
5073         * on the destination filesystem (as the receiver's write operations are
5074         * always done using buffered IO). The same happens when the original
5075         * filesystem does not have compression enabled but the destination
5076         * filesystem has.
5077         */
5078        if (clone_root->offset == 0 &&
5079            len == sctx->send_root->fs_info->sectorsize)
5080                return send_extent_data(sctx, offset, len);
5081
5082        path = alloc_path_for_send();
5083        if (!path)
5084                return -ENOMEM;
5085
5086        /*
5087         * We can't send a clone operation for the entire range if we find
5088         * extent items in the respective range in the source file that
5089         * refer to different extents or if we find holes.
5090         * So check for that and do a mix of clone and regular write/copy
5091         * operations if needed.
5092         *
5093         * Example:
5094         *
5095         * mkfs.btrfs -f /dev/sda
5096         * mount /dev/sda /mnt
5097         * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5098         * cp --reflink=always /mnt/foo /mnt/bar
5099         * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5100         * btrfs subvolume snapshot -r /mnt /mnt/snap
5101         *
5102         * If when we send the snapshot and we are processing file bar (which
5103         * has a higher inode number than foo) we blindly send a clone operation
5104         * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5105         * a file bar that matches the content of file foo - iow, doesn't match
5106         * the content from bar in the original filesystem.
5107         */
5108        key.objectid = clone_root->ino;
5109        key.type = BTRFS_EXTENT_DATA_KEY;
5110        key.offset = clone_root->offset;
5111        ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5112        if (ret < 0)
5113                goto out;
5114        if (ret > 0 && path->slots[0] > 0) {
5115                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5116                if (key.objectid == clone_root->ino &&
5117                    key.type == BTRFS_EXTENT_DATA_KEY)
5118                        path->slots[0]--;
5119        }
5120
5121        while (true) {
5122                struct extent_buffer *leaf = path->nodes[0];
5123                int slot = path->slots[0];
5124                struct btrfs_file_extent_item *ei;
5125                u8 type;
5126                u64 ext_len;
5127                u64 clone_len;
5128
5129                if (slot >= btrfs_header_nritems(leaf)) {
5130                        ret = btrfs_next_leaf(clone_root->root, path);
5131                        if (ret < 0)
5132                                goto out;
5133                        else if (ret > 0)
5134                                break;
5135                        continue;
5136                }
5137
5138                btrfs_item_key_to_cpu(leaf, &key, slot);
5139
5140                /*
5141                 * We might have an implicit trailing hole (NO_HOLES feature
5142                 * enabled). We deal with it after leaving this loop.
5143                 */
5144                if (key.objectid != clone_root->ino ||
5145                    key.type != BTRFS_EXTENT_DATA_KEY)
5146                        break;
5147
5148                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5149                type = btrfs_file_extent_type(leaf, ei);
5150                if (type == BTRFS_FILE_EXTENT_INLINE) {
5151                        ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5152                        ext_len = PAGE_ALIGN(ext_len);
5153                } else {
5154                        ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5155                }
5156
5157                if (key.offset + ext_len <= clone_root->offset)
5158                        goto next;
5159
5160                if (key.offset > clone_root->offset) {
5161                        /* Implicit hole, NO_HOLES feature enabled. */
5162                        u64 hole_len = key.offset - clone_root->offset;
5163
5164                        if (hole_len > len)
5165                                hole_len = len;
5166                        ret = send_extent_data(sctx, offset, hole_len);
5167                        if (ret < 0)
5168                                goto out;
5169
5170                        len -= hole_len;
5171                        if (len == 0)
5172                                break;
5173                        offset += hole_len;
5174                        clone_root->offset += hole_len;
5175                        data_offset += hole_len;
5176                }
5177
5178                if (key.offset >= clone_root->offset + len)
5179                        break;
5180
5181                clone_len = min_t(u64, ext_len, len);
5182
5183                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5184                    btrfs_file_extent_offset(leaf, ei) == data_offset)
5185                        ret = send_clone(sctx, offset, clone_len, clone_root);
5186                else
5187                        ret = send_extent_data(sctx, offset, clone_len);
5188
5189                if (ret < 0)
5190                        goto out;
5191
5192                len -= clone_len;
5193                if (len == 0)
5194                        break;
5195                offset += clone_len;
5196                clone_root->offset += clone_len;
5197                data_offset += clone_len;
5198next:
5199                path->slots[0]++;
5200        }
5201
5202        if (len > 0)
5203                ret = send_extent_data(sctx, offset, len);
5204        else
5205                ret = 0;
5206out:
5207        btrfs_free_path(path);
5208        return ret;
5209}
5210
5211static int send_write_or_clone(struct send_ctx *sctx,
5212                               struct btrfs_path *path,
5213                               struct btrfs_key *key,
5214                               struct clone_root *clone_root)
5215{
5216        int ret = 0;
5217        struct btrfs_file_extent_item *ei;
5218        u64 offset = key->offset;
5219        u64 len;
5220        u8 type;
5221        u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5222
5223        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5224                        struct btrfs_file_extent_item);
5225        type = btrfs_file_extent_type(path->nodes[0], ei);
5226        if (type == BTRFS_FILE_EXTENT_INLINE) {
5227                len = btrfs_file_extent_inline_len(path->nodes[0],
5228                                                   path->slots[0], ei);
5229                /*
5230                 * it is possible the inline item won't cover the whole page,
5231                 * but there may be items after this page.  Make
5232                 * sure to send the whole thing
5233                 */
5234                len = PAGE_ALIGN(len);
5235        } else {
5236                len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5237        }
5238
5239        if (offset >= sctx->cur_inode_size) {
5240                ret = 0;
5241                goto out;
5242        }
5243        if (offset + len > sctx->cur_inode_size)
5244                len = sctx->cur_inode_size - offset;
5245        if (len == 0) {
5246                ret = 0;
5247                goto out;
5248        }
5249
5250        if (clone_root && IS_ALIGNED(offset + len, bs)) {
5251                u64 disk_byte;
5252                u64 data_offset;
5253
5254                disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5255                data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5256                ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5257                                  offset, len);
5258        } else {
5259                ret = send_extent_data(sctx, offset, len);
5260        }
5261        sctx->cur_inode_next_write_offset = offset + len;
5262out:
5263        return ret;
5264}
5265
5266static int is_extent_unchanged(struct send_ctx *sctx,
5267                               struct btrfs_path *left_path,
5268                               struct btrfs_key *ekey)
5269{
5270        int ret = 0;
5271        struct btrfs_key key;
5272        struct btrfs_path *path = NULL;
5273        struct extent_buffer *eb;
5274        int slot;
5275        struct btrfs_key found_key;
5276        struct btrfs_file_extent_item *ei;
5277        u64 left_disknr;
5278        u64 right_disknr;
5279        u64 left_offset;
5280        u64 right_offset;
5281        u64 left_offset_fixed;
5282        u64 left_len;
5283        u64 right_len;
5284        u64 left_gen;
5285        u64 right_gen;
5286        u8 left_type;
5287        u8 right_type;
5288
5289        path = alloc_path_for_send();
5290        if (!path)
5291                return -ENOMEM;
5292
5293        eb = left_path->nodes[0];
5294        slot = left_path->slots[0];
5295        ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5296        left_type = btrfs_file_extent_type(eb, ei);
5297
5298        if (left_type != BTRFS_FILE_EXTENT_REG) {
5299                ret = 0;
5300                goto out;
5301        }
5302        left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5303        left_len = btrfs_file_extent_num_bytes(eb, ei);
5304        left_offset = btrfs_file_extent_offset(eb, ei);
5305        left_gen = btrfs_file_extent_generation(eb, ei);
5306
5307        /*
5308         * Following comments will refer to these graphics. L is the left
5309         * extents which we are checking at the moment. 1-8 are the right
5310         * extents that we iterate.
5311         *
5312         *       |-----L-----|
5313         * |-1-|-2a-|-3-|-4-|-5-|-6-|
5314         *
5315         *       |-----L-----|
5316         * |--1--|-2b-|...(same as above)
5317         *
5318         * Alternative situation. Happens on files where extents got split.
5319         *       |-----L-----|
5320         * |-----------7-----------|-6-|
5321         *
5322         * Alternative situation. Happens on files which got larger.
5323         *       |-----L-----|
5324         * |-8-|
5325         * Nothing follows after 8.
5326         */
5327
5328        key.objectid = ekey->objectid;
5329        key.type = BTRFS_EXTENT_DATA_KEY;
5330        key.offset = ekey->offset;
5331        ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5332        if (ret < 0)
5333                goto out;
5334        if (ret) {
5335                ret = 0;
5336                goto out;
5337        }
5338
5339        /*
5340         * Handle special case where the right side has no extents at all.
5341         */
5342        eb = path->nodes[0];
5343        slot = path->slots[0];
5344        btrfs_item_key_to_cpu(eb, &found_key, slot);
5345        if (found_key.objectid != key.objectid ||
5346            found_key.type != key.type) {
5347                /* If we're a hole then just pretend nothing changed */
5348                ret = (left_disknr) ? 0 : 1;
5349                goto out;
5350        }
5351
5352        /*
5353         * We're now on 2a, 2b or 7.
5354         */
5355        key = found_key;
5356        while (key.offset < ekey->offset + left_len) {
5357                ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5358                right_type = btrfs_file_extent_type(eb, ei);
5359                if (right_type != BTRFS_FILE_EXTENT_REG &&
5360                    right_type != BTRFS_FILE_EXTENT_INLINE) {
5361                        ret = 0;
5362                        goto out;
5363                }
5364
5365                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5366                        right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5367                        right_len = PAGE_ALIGN(right_len);
5368                } else {
5369                        right_len = btrfs_file_extent_num_bytes(eb, ei);
5370                }
5371
5372                /*
5373                 * Are we at extent 8? If yes, we know the extent is changed.
5374                 * This may only happen on the first iteration.
5375                 */
5376                if (found_key.offset + right_len <= ekey->offset) {
5377                        /* If we're a hole just pretend nothing changed */
5378                        ret = (left_disknr) ? 0 : 1;
5379                        goto out;
5380                }
5381
5382                /*
5383                 * We just wanted to see if when we have an inline extent, what
5384                 * follows it is a regular extent (wanted to check the above
5385                 * condition for inline extents too). This should normally not
5386                 * happen but it's possible for example when we have an inline
5387                 * compressed extent representing data with a size matching
5388                 * the page size (currently the same as sector size).
5389                 */
5390                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5391                        ret = 0;
5392                        goto out;
5393                }
5394
5395                right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5396                right_offset = btrfs_file_extent_offset(eb, ei);
5397                right_gen = btrfs_file_extent_generation(eb, ei);
5398
5399                left_offset_fixed = left_offset;
5400                if (key.offset < ekey->offset) {
5401                        /* Fix the right offset for 2a and 7. */
5402                        right_offset += ekey->offset - key.offset;
5403                } else {
5404                        /* Fix the left offset for all behind 2a and 2b */
5405                        left_offset_fixed += key.offset - ekey->offset;
5406                }
5407
5408                /*
5409                 * Check if we have the same extent.
5410                 */
5411                if (left_disknr != right_disknr ||
5412                    left_offset_fixed != right_offset ||
5413                    left_gen != right_gen) {
5414                        ret = 0;
5415                        goto out;
5416                }
5417
5418                /*
5419                 * Go to the next extent.
5420                 */
5421                ret = btrfs_next_item(sctx->parent_root, path);
5422                if (ret < 0)
5423                        goto out;
5424                if (!ret) {
5425                        eb = path->nodes[0];
5426                        slot = path->slots[0];
5427                        btrfs_item_key_to_cpu(eb, &found_key, slot);
5428                }
5429                if (ret || found_key.objectid != key.objectid ||
5430                    found_key.type != key.type) {
5431                        key.offset += right_len;
5432                        break;
5433                }
5434                if (found_key.offset != key.offset + right_len) {
5435                        ret = 0;
5436                        goto out;
5437                }
5438                key = found_key;
5439        }
5440
5441        /*
5442         * We're now behind the left extent (treat as unchanged) or at the end
5443         * of the right side (treat as changed).
5444         */
5445        if (key.offset >= ekey->offset + left_len)
5446                ret = 1;
5447        else
5448                ret = 0;
5449
5450
5451out:
5452        btrfs_free_path(path);
5453        return ret;
5454}
5455
5456static int get_last_extent(struct send_ctx *sctx, u64 offset)
5457{
5458        struct btrfs_path *path;
5459        struct btrfs_root *root = sctx->send_root;
5460        struct btrfs_file_extent_item *fi;
5461        struct btrfs_key key;
5462        u64 extent_end;
5463        u8 type;
5464        int ret;
5465
5466        path = alloc_path_for_send();
5467        if (!path)
5468                return -ENOMEM;
5469
5470        sctx->cur_inode_last_extent = 0;
5471
5472        key.objectid = sctx->cur_ino;
5473        key.type = BTRFS_EXTENT_DATA_KEY;
5474        key.offset = offset;
5475        ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5476        if (ret < 0)
5477                goto out;
5478        ret = 0;
5479        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5480        if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5481                goto out;
5482
5483        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5484                            struct btrfs_file_extent_item);
5485        type = btrfs_file_extent_type(path->nodes[0], fi);
5486        if (type == BTRFS_FILE_EXTENT_INLINE) {
5487                u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5488                                                        path->slots[0], fi);
5489                extent_end = ALIGN(key.offset + size,
5490                                   sctx->send_root->fs_info->sectorsize);
5491        } else {
5492                extent_end = key.offset +
5493                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5494        }
5495        sctx->cur_inode_last_extent = extent_end;
5496out:
5497        btrfs_free_path(path);
5498        return ret;
5499}
5500
5501static int range_is_hole_in_parent(struct send_ctx *sctx,
5502                                   const u64 start,
5503                                   const u64 end)
5504{
5505        struct btrfs_path *path;
5506        struct btrfs_key key;
5507        struct btrfs_root *root = sctx->parent_root;
5508        u64 search_start = start;
5509        int ret;
5510
5511        path = alloc_path_for_send();
5512        if (!path)
5513                return -ENOMEM;
5514
5515        key.objectid = sctx->cur_ino;
5516        key.type = BTRFS_EXTENT_DATA_KEY;
5517        key.offset = search_start;
5518        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5519        if (ret < 0)
5520                goto out;
5521        if (ret > 0 && path->slots[0] > 0)
5522                path->slots[0]--;
5523
5524        while (search_start < end) {
5525                struct extent_buffer *leaf = path->nodes[0];
5526                int slot = path->slots[0];
5527                struct btrfs_file_extent_item *fi;
5528                u64 extent_end;
5529
5530                if (slot >= btrfs_header_nritems(leaf)) {
5531                        ret = btrfs_next_leaf(root, path);
5532                        if (ret < 0)
5533                                goto out;
5534                        else if (ret > 0)
5535                                break;
5536                        continue;
5537                }
5538
5539                btrfs_item_key_to_cpu(leaf, &key, slot);
5540                if (key.objectid < sctx->cur_ino ||
5541                    key.type < BTRFS_EXTENT_DATA_KEY)
5542                        goto next;
5543                if (key.objectid > sctx->cur_ino ||
5544                    key.type > BTRFS_EXTENT_DATA_KEY ||
5545                    key.offset >= end)
5546                        break;
5547
5548                fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5549                if (btrfs_file_extent_type(leaf, fi) ==
5550                    BTRFS_FILE_EXTENT_INLINE) {
5551                        u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5552
5553                        extent_end = ALIGN(key.offset + size,
5554                                           root->fs_info->sectorsize);
5555                } else {
5556                        extent_end = key.offset +
5557                                btrfs_file_extent_num_bytes(leaf, fi);
5558                }
5559                if (extent_end <= start)
5560                        goto next;
5561                if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5562                        search_start = extent_end;
5563                        goto next;
5564                }
5565                ret = 0;
5566                goto out;
5567next:
5568                path->slots[0]++;
5569        }
5570        ret = 1;
5571out:
5572        btrfs_free_path(path);
5573        return ret;
5574}
5575
5576static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5577                           struct btrfs_key *key)
5578{
5579        struct btrfs_file_extent_item *fi;
5580        u64 extent_end;
5581        u8 type;
5582        int ret = 0;
5583
5584        if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5585                return 0;
5586
5587        if (sctx->cur_inode_last_extent == (u64)-1) {
5588                ret = get_last_extent(sctx, key->offset - 1);
5589                if (ret)
5590                        return ret;
5591        }
5592
5593        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5594                            struct btrfs_file_extent_item);
5595        type = btrfs_file_extent_type(path->nodes[0], fi);
5596        if (type == BTRFS_FILE_EXTENT_INLINE) {
5597                u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5598                                                        path->slots[0], fi);
5599                extent_end = ALIGN(key->offset + size,
5600                                   sctx->send_root->fs_info->sectorsize);
5601        } else {
5602                extent_end = key->offset +
5603                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5604        }
5605
5606        if (path->slots[0] == 0 &&
5607            sctx->cur_inode_last_extent < key->offset) {
5608                /*
5609                 * We might have skipped entire leafs that contained only
5610                 * file extent items for our current inode. These leafs have
5611                 * a generation number smaller (older) than the one in the
5612                 * current leaf and the leaf our last extent came from, and
5613                 * are located between these 2 leafs.
5614                 */
5615                ret = get_last_extent(sctx, key->offset - 1);
5616                if (ret)
5617                        return ret;
5618        }
5619
5620        if (sctx->cur_inode_last_extent < key->offset) {
5621                ret = range_is_hole_in_parent(sctx,
5622                                              sctx->cur_inode_last_extent,
5623                                              key->offset);
5624                if (ret < 0)
5625                        return ret;
5626                else if (ret == 0)
5627                        ret = send_hole(sctx, key->offset);
5628                else
5629                        ret = 0;
5630        }
5631        sctx->cur_inode_last_extent = extent_end;
5632        return ret;
5633}
5634
5635static int process_extent(struct send_ctx *sctx,
5636                          struct btrfs_path *path,
5637                          struct btrfs_key *key)
5638{
5639        struct clone_root *found_clone = NULL;
5640        int ret = 0;
5641
5642        if (S_ISLNK(sctx->cur_inode_mode))
5643                return 0;
5644
5645        if (sctx->parent_root && !sctx->cur_inode_new) {
5646                ret = is_extent_unchanged(sctx, path, key);
5647                if (ret < 0)
5648                        goto out;
5649                if (ret) {
5650                        ret = 0;
5651                        goto out_hole;
5652                }
5653        } else {
5654                struct btrfs_file_extent_item *ei;
5655                u8 type;
5656
5657                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5658                                    struct btrfs_file_extent_item);
5659                type = btrfs_file_extent_type(path->nodes[0], ei);
5660                if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5661                    type == BTRFS_FILE_EXTENT_REG) {
5662                        /*
5663                         * The send spec does not have a prealloc command yet,
5664                         * so just leave a hole for prealloc'ed extents until
5665                         * we have enough commands queued up to justify rev'ing
5666                         * the send spec.
5667                         */
5668                        if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5669                                ret = 0;
5670                                goto out;
5671                        }
5672
5673                        /* Have a hole, just skip it. */
5674                        if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5675                                ret = 0;
5676                                goto out;
5677                        }
5678                }
5679        }
5680
5681        ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5682                        sctx->cur_inode_size, &found_clone);
5683        if (ret != -ENOENT && ret < 0)
5684                goto out;
5685
5686        ret = send_write_or_clone(sctx, path, key, found_clone);
5687        if (ret)
5688                goto out;
5689out_hole:
5690        ret = maybe_send_hole(sctx, path, key);
5691out:
5692        return ret;
5693}
5694
5695static int process_all_extents(struct send_ctx *sctx)
5696{
5697        int ret;
5698        struct btrfs_root *root;
5699        struct btrfs_path *path;
5700        struct btrfs_key key;
5701        struct btrfs_key found_key;
5702        struct extent_buffer *eb;
5703        int slot;
5704
5705        root = sctx->send_root;
5706        path = alloc_path_for_send();
5707        if (!path)
5708                return -ENOMEM;
5709
5710        key.objectid = sctx->cmp_key->objectid;
5711        key.type = BTRFS_EXTENT_DATA_KEY;
5712        key.offset = 0;
5713        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714        if (ret < 0)
5715                goto out;
5716
5717        while (1) {
5718                eb = path->nodes[0];
5719                slot = path->slots[0];
5720
5721                if (slot >= btrfs_header_nritems(eb)) {
5722                        ret = btrfs_next_leaf(root, path);
5723                        if (ret < 0) {
5724                                goto out;
5725                        } else if (ret > 0) {
5726                                ret = 0;
5727                                break;
5728                        }
5729                        continue;
5730                }
5731
5732                btrfs_item_key_to_cpu(eb, &found_key, slot);
5733
5734                if (found_key.objectid != key.objectid ||
5735                    found_key.type != key.type) {
5736                        ret = 0;
5737                        goto out;
5738                }
5739
5740                ret = process_extent(sctx, path, &found_key);
5741                if (ret < 0)
5742                        goto out;
5743
5744                path->slots[0]++;
5745        }
5746
5747out:
5748        btrfs_free_path(path);
5749        return ret;
5750}
5751
5752static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5753                                           int *pending_move,
5754                                           int *refs_processed)
5755{
5756        int ret = 0;
5757
5758        if (sctx->cur_ino == 0)
5759                goto out;
5760        if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5761            sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5762                goto out;
5763        if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5764                goto out;
5765
5766        ret = process_recorded_refs(sctx, pending_move);
5767        if (ret < 0)
5768                goto out;
5769
5770        *refs_processed = 1;
5771out:
5772        return ret;
5773}
5774
5775static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5776{
5777        int ret = 0;
5778        u64 left_mode;
5779        u64 left_uid;
5780        u64 left_gid;
5781        u64 right_mode;
5782        u64 right_uid;
5783        u64 right_gid;
5784        int need_chmod = 0;
5785        int need_chown = 0;
5786        int need_truncate = 1;
5787        int pending_move = 0;
5788        int refs_processed = 0;
5789
5790        ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5791                                              &refs_processed);
5792        if (ret < 0)
5793                goto out;
5794
5795        /*
5796         * We have processed the refs and thus need to advance send_progress.
5797         * Now, calls to get_cur_xxx will take the updated refs of the current
5798         * inode into account.
5799         *
5800         * On the other hand, if our current inode is a directory and couldn't
5801         * be moved/renamed because its parent was renamed/moved too and it has
5802         * a higher inode number, we can only move/rename our current inode
5803         * after we moved/renamed its parent. Therefore in this case operate on
5804         * the old path (pre move/rename) of our current inode, and the
5805         * move/rename will be performed later.
5806         */
5807        if (refs_processed && !pending_move)
5808                sctx->send_progress = sctx->cur_ino + 1;
5809
5810        if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5811                goto out;
5812        if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5813                goto out;
5814
5815        ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5816                        &left_mode, &left_uid, &left_gid, NULL);
5817        if (ret < 0)
5818                goto out;
5819
5820        if (!sctx->parent_root || sctx->cur_inode_new) {
5821                need_chown = 1;
5822                if (!S_ISLNK(sctx->cur_inode_mode))
5823                        need_chmod = 1;
5824                if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5825                        need_truncate = 0;
5826        } else {
5827                u64 old_size;
5828
5829                ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5830                                &old_size, NULL, &right_mode, &right_uid,
5831                                &right_gid, NULL);
5832                if (ret < 0)
5833                        goto out;
5834
5835                if (left_uid != right_uid || left_gid != right_gid)
5836                        need_chown = 1;
5837                if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5838                        need_chmod = 1;
5839                if ((old_size == sctx->cur_inode_size) ||
5840                    (sctx->cur_inode_size > old_size &&
5841                     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5842                        need_truncate = 0;
5843        }
5844
5845        if (S_ISREG(sctx->cur_inode_mode)) {
5846                if (need_send_hole(sctx)) {
5847                        if (sctx->cur_inode_last_extent == (u64)-1 ||
5848                            sctx->cur_inode_last_extent <
5849                            sctx->cur_inode_size) {
5850                                ret = get_last_extent(sctx, (u64)-1);
5851                                if (ret)
5852                                        goto out;
5853                        }
5854                        if (sctx->cur_inode_last_extent <
5855                            sctx->cur_inode_size) {
5856                                ret = send_hole(sctx, sctx->cur_inode_size);
5857                                if (ret)
5858                                        goto out;
5859                        }
5860                }
5861                if (need_truncate) {
5862                        ret = send_truncate(sctx, sctx->cur_ino,
5863                                            sctx->cur_inode_gen,
5864                                            sctx->cur_inode_size);
5865                        if (ret < 0)
5866                                goto out;
5867                }
5868        }
5869
5870        if (need_chown) {
5871                ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5872                                left_uid, left_gid);
5873                if (ret < 0)
5874                        goto out;
5875        }
5876        if (need_chmod) {
5877                ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5878                                left_mode);
5879                if (ret < 0)
5880                        goto out;
5881        }
5882
5883        /*
5884         * If other directory inodes depended on our current directory
5885         * inode's move/rename, now do their move/rename operations.
5886         */
5887        if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5888                ret = apply_children_dir_moves(sctx);
5889                if (ret)
5890                        goto out;
5891                /*
5892                 * Need to send that every time, no matter if it actually
5893                 * changed between the two trees as we have done changes to
5894                 * the inode before. If our inode is a directory and it's
5895                 * waiting to be moved/renamed, we will send its utimes when
5896                 * it's moved/renamed, therefore we don't need to do it here.
5897                 */
5898                sctx->send_progress = sctx->cur_ino + 1;
5899                ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5900                if (ret < 0)
5901                        goto out;
5902        }
5903
5904out:
5905        return ret;
5906}
5907
5908static int changed_inode(struct send_ctx *sctx,
5909                         enum btrfs_compare_tree_result result)
5910{
5911        int ret = 0;
5912        struct btrfs_key *key = sctx->cmp_key;
5913        struct btrfs_inode_item *left_ii = NULL;
5914        struct btrfs_inode_item *right_ii = NULL;
5915        u64 left_gen = 0;
5916        u64 right_gen = 0;
5917
5918        sctx->cur_ino = key->objectid;
5919        sctx->cur_inode_new_gen = 0;
5920        sctx->cur_inode_last_extent = (u64)-1;
5921        sctx->cur_inode_next_write_offset = 0;
5922
5923        /*
5924         * Set send_progress to current inode. This will tell all get_cur_xxx
5925         * functions that the current inode's refs are not updated yet. Later,
5926         * when process_recorded_refs is finished, it is set to cur_ino + 1.
5927         */
5928        sctx->send_progress = sctx->cur_ino;
5929
5930        if (result == BTRFS_COMPARE_TREE_NEW ||
5931            result == BTRFS_COMPARE_TREE_CHANGED) {
5932                left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5933                                sctx->left_path->slots[0],
5934                                struct btrfs_inode_item);
5935                left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5936                                left_ii);
5937        } else {
5938                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5939                                sctx->right_path->slots[0],
5940                                struct btrfs_inode_item);
5941                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5942                                right_ii);
5943        }
5944        if (result == BTRFS_COMPARE_TREE_CHANGED) {
5945                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5946                                sctx->right_path->slots[0],
5947                                struct btrfs_inode_item);
5948
5949                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5950                                right_ii);
5951
5952                /*
5953                 * The cur_ino = root dir case is special here. We can't treat
5954                 * the inode as deleted+reused because it would generate a
5955                 * stream that tries to delete/mkdir the root dir.
5956                 */
5957                if (left_gen != right_gen &&
5958                    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5959                        sctx->cur_inode_new_gen = 1;
5960        }
5961
5962        if (result == BTRFS_COMPARE_TREE_NEW) {
5963                sctx->cur_inode_gen = left_gen;
5964                sctx->cur_inode_new = 1;
5965                sctx->cur_inode_deleted = 0;
5966                sctx->cur_inode_size = btrfs_inode_size(
5967                                sctx->left_path->nodes[0], left_ii);
5968                sctx->cur_inode_mode = btrfs_inode_mode(
5969                                sctx->left_path->nodes[0], left_ii);
5970                sctx->cur_inode_rdev = btrfs_inode_rdev(
5971                                sctx->left_path->nodes[0], left_ii);
5972                if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5973                        ret = send_create_inode_if_needed(sctx);
5974        } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5975                sctx->cur_inode_gen = right_gen;
5976                sctx->cur_inode_new = 0;
5977                sctx->cur_inode_deleted = 1;
5978                sctx->cur_inode_size = btrfs_inode_size(
5979                                sctx->right_path->nodes[0], right_ii);
5980                sctx->cur_inode_mode = btrfs_inode_mode(
5981                                sctx->right_path->nodes[0], right_ii);
5982        } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5983                /*
5984                 * We need to do some special handling in case the inode was
5985                 * reported as changed with a changed generation number. This
5986                 * means that the original inode was deleted and new inode
5987                 * reused the same inum. So we have to treat the old inode as
5988                 * deleted and the new one as new.
5989                 */
5990                if (sctx->cur_inode_new_gen) {
5991                        /*
5992                         * First, process the inode as if it was deleted.
5993                         */
5994                        sctx->cur_inode_gen = right_gen;
5995                        sctx->cur_inode_new = 0;
5996                        sctx->cur_inode_deleted = 1;
5997                        sctx->cur_inode_size = btrfs_inode_size(
5998                                        sctx->right_path->nodes[0], right_ii);
5999                        sctx->cur_inode_mode = btrfs_inode_mode(
6000                                        sctx->right_path->nodes[0], right_ii);
6001                        ret = process_all_refs(sctx,
6002                                        BTRFS_COMPARE_TREE_DELETED);
6003                        if (ret < 0)
6004                                goto out;
6005
6006                        /*
6007                         * Now process the inode as if it was new.
6008                         */
6009                        sctx->cur_inode_gen = left_gen;
6010                        sctx->cur_inode_new = 1;
6011                        sctx->cur_inode_deleted = 0;
6012                        sctx->cur_inode_size = btrfs_inode_size(
6013                                        sctx->left_path->nodes[0], left_ii);
6014                        sctx->cur_inode_mode = btrfs_inode_mode(
6015                                        sctx->left_path->nodes[0], left_ii);
6016                        sctx->cur_inode_rdev = btrfs_inode_rdev(
6017                                        sctx->left_path->nodes[0], left_ii);
6018                        ret = send_create_inode_if_needed(sctx);
6019                        if (ret < 0)
6020                                goto out;
6021
6022                        ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6023                        if (ret < 0)
6024                                goto out;
6025                        /*
6026                         * Advance send_progress now as we did not get into
6027                         * process_recorded_refs_if_needed in the new_gen case.
6028                         */
6029                        sctx->send_progress = sctx->cur_ino + 1;
6030
6031                        /*
6032                         * Now process all extents and xattrs of the inode as if
6033                         * they were all new.
6034                         */
6035                        ret = process_all_extents(sctx);
6036                        if (ret < 0)
6037                                goto out;
6038                        ret = process_all_new_xattrs(sctx);
6039                        if (ret < 0)
6040                                goto out;
6041                } else {
6042                        sctx->cur_inode_gen = left_gen;
6043                        sctx->cur_inode_new = 0;
6044                        sctx->cur_inode_new_gen = 0;
6045                        sctx->cur_inode_deleted = 0;
6046                        sctx->cur_inode_size = btrfs_inode_size(
6047                                        sctx->left_path->nodes[0], left_ii);
6048                        sctx->cur_inode_mode = btrfs_inode_mode(
6049                                        sctx->left_path->nodes[0], left_ii);
6050                }
6051        }
6052
6053out:
6054        return ret;
6055}
6056
6057/*
6058 * We have to process new refs before deleted refs, but compare_trees gives us
6059 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6060 * first and later process them in process_recorded_refs.
6061 * For the cur_inode_new_gen case, we skip recording completely because
6062 * changed_inode did already initiate processing of refs. The reason for this is
6063 * that in this case, compare_tree actually compares the refs of 2 different
6064 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6065 * refs of the right tree as deleted and all refs of the left tree as new.
6066 */
6067static int changed_ref(struct send_ctx *sctx,
6068                       enum btrfs_compare_tree_result result)
6069{
6070        int ret = 0;
6071
6072        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6073                inconsistent_snapshot_error(sctx, result, "reference");
6074                return -EIO;
6075        }
6076
6077        if (!sctx->cur_inode_new_gen &&
6078            sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6079                if (result == BTRFS_COMPARE_TREE_NEW)
6080                        ret = record_new_ref(sctx);
6081                else if (result == BTRFS_COMPARE_TREE_DELETED)
6082                        ret = record_deleted_ref(sctx);
6083                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6084                        ret = record_changed_ref(sctx);
6085        }
6086
6087        return ret;
6088}
6089
6090/*
6091 * Process new/deleted/changed xattrs. We skip processing in the
6092 * cur_inode_new_gen case because changed_inode did already initiate processing
6093 * of xattrs. The reason is the same as in changed_ref
6094 */
6095static int changed_xattr(struct send_ctx *sctx,
6096                         enum btrfs_compare_tree_result result)
6097{
6098        int ret = 0;
6099
6100        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6101                inconsistent_snapshot_error(sctx, result, "xattr");
6102                return -EIO;
6103        }
6104
6105        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6106                if (result == BTRFS_COMPARE_TREE_NEW)
6107                        ret = process_new_xattr(sctx);
6108                else if (result == BTRFS_COMPARE_TREE_DELETED)
6109                        ret = process_deleted_xattr(sctx);
6110                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6111                        ret = process_changed_xattr(sctx);
6112        }
6113
6114        return ret;
6115}
6116
6117/*
6118 * Process new/deleted/changed extents. We skip processing in the
6119 * cur_inode_new_gen case because changed_inode did already initiate processing
6120 * of extents. The reason is the same as in changed_ref
6121 */
6122static int changed_extent(struct send_ctx *sctx,
6123                          enum btrfs_compare_tree_result result)
6124{
6125        int ret = 0;
6126
6127        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6128
6129                if (result == BTRFS_COMPARE_TREE_CHANGED) {
6130                        struct extent_buffer *leaf_l;
6131                        struct extent_buffer *leaf_r;
6132                        struct btrfs_file_extent_item *ei_l;
6133                        struct btrfs_file_extent_item *ei_r;
6134
6135                        leaf_l = sctx->left_path->nodes[0];
6136                        leaf_r = sctx->right_path->nodes[0];
6137                        ei_l = btrfs_item_ptr(leaf_l,
6138                                              sctx->left_path->slots[0],
6139                                              struct btrfs_file_extent_item);
6140                        ei_r = btrfs_item_ptr(leaf_r,
6141                                              sctx->right_path->slots[0],
6142                                              struct btrfs_file_extent_item);
6143
6144                        /*
6145                         * We may have found an extent item that has changed
6146                         * only its disk_bytenr field and the corresponding
6147                         * inode item was not updated. This case happens due to
6148                         * very specific timings during relocation when a leaf
6149                         * that contains file extent items is COWed while
6150                         * relocation is ongoing and its in the stage where it
6151                         * updates data pointers. So when this happens we can
6152                         * safely ignore it since we know it's the same extent,
6153                         * but just at different logical and physical locations
6154                         * (when an extent is fully replaced with a new one, we
6155                         * know the generation number must have changed too,
6156                         * since snapshot creation implies committing the current
6157                         * transaction, and the inode item must have been updated
6158                         * as well).
6159                         * This replacement of the disk_bytenr happens at
6160                         * relocation.c:replace_file_extents() through
6161                         * relocation.c:btrfs_reloc_cow_block().
6162                         */
6163                        if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6164                            btrfs_file_extent_generation(leaf_r, ei_r) &&
6165                            btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6166                            btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6167                            btrfs_file_extent_compression(leaf_l, ei_l) ==
6168                            btrfs_file_extent_compression(leaf_r, ei_r) &&
6169                            btrfs_file_extent_encryption(leaf_l, ei_l) ==
6170                            btrfs_file_extent_encryption(leaf_r, ei_r) &&
6171                            btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6172                            btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6173                            btrfs_file_extent_type(leaf_l, ei_l) ==
6174                            btrfs_file_extent_type(leaf_r, ei_r) &&
6175                            btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6176                            btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6177                            btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6178                            btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6179                            btrfs_file_extent_offset(leaf_l, ei_l) ==
6180                            btrfs_file_extent_offset(leaf_r, ei_r) &&
6181                            btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6182                            btrfs_file_extent_num_bytes(leaf_r, ei_r))
6183                                return 0;
6184                }
6185
6186                inconsistent_snapshot_error(sctx, result, "extent");
6187                return -EIO;
6188        }
6189
6190        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6191                if (result != BTRFS_COMPARE_TREE_DELETED)
6192                        ret = process_extent(sctx, sctx->left_path,
6193                                        sctx->cmp_key);
6194        }
6195
6196        return ret;
6197}
6198
6199static int dir_changed(struct send_ctx *sctx, u64 dir)
6200{
6201        u64 orig_gen, new_gen;
6202        int ret;
6203
6204        ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6205                             NULL, NULL);
6206        if (ret)
6207                return ret;
6208
6209        ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6210                             NULL, NULL, NULL);
6211        if (ret)
6212                return ret;
6213
6214        return (orig_gen != new_gen) ? 1 : 0;
6215}
6216
6217static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6218                        struct btrfs_key *key)
6219{
6220        struct btrfs_inode_extref *extref;
6221        struct extent_buffer *leaf;
6222        u64 dirid = 0, last_dirid = 0;
6223        unsigned long ptr;
6224        u32 item_size;
6225        u32 cur_offset = 0;
6226        int ref_name_len;
6227        int ret = 0;
6228
6229        /* Easy case, just check this one dirid */
6230        if (key->type == BTRFS_INODE_REF_KEY) {
6231                dirid = key->offset;
6232
6233                ret = dir_changed(sctx, dirid);
6234                goto out;
6235        }
6236
6237        leaf = path->nodes[0];
6238        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6239        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6240        while (cur_offset < item_size) {
6241                extref = (struct btrfs_inode_extref *)(ptr +
6242                                                       cur_offset);
6243                dirid = btrfs_inode_extref_parent(leaf, extref);
6244                ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6245                cur_offset += ref_name_len + sizeof(*extref);
6246                if (dirid == last_dirid)
6247                        continue;
6248                ret = dir_changed(sctx, dirid);
6249                if (ret)
6250                        break;
6251                last_dirid = dirid;
6252        }
6253out:
6254        return ret;
6255}
6256
6257/*
6258 * Updates compare related fields in sctx and simply forwards to the actual
6259 * changed_xxx functions.
6260 */
6261static int changed_cb(struct btrfs_path *left_path,
6262                      struct btrfs_path *right_path,
6263                      struct btrfs_key *key,
6264                      enum btrfs_compare_tree_result result,
6265                      void *ctx)
6266{
6267        int ret = 0;
6268        struct send_ctx *sctx = ctx;
6269
6270        if (result == BTRFS_COMPARE_TREE_SAME) {
6271                if (key->type == BTRFS_INODE_REF_KEY ||
6272                    key->type == BTRFS_INODE_EXTREF_KEY) {
6273                        ret = compare_refs(sctx, left_path, key);
6274                        if (!ret)
6275                                return 0;
6276                        if (ret < 0)
6277                                return ret;
6278                } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6279                        return maybe_send_hole(sctx, left_path, key);
6280                } else {
6281                        return 0;
6282                }
6283                result = BTRFS_COMPARE_TREE_CHANGED;
6284                ret = 0;
6285        }
6286
6287        sctx->left_path = left_path;
6288        sctx->right_path = right_path;
6289        sctx->cmp_key = key;
6290
6291        ret = finish_inode_if_needed(sctx, 0);
6292        if (ret < 0)
6293                goto out;
6294
6295        /* Ignore non-FS objects */
6296        if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6297            key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6298                goto out;
6299
6300        if (key->type == BTRFS_INODE_ITEM_KEY)
6301                ret = changed_inode(sctx, result);
6302        else if (key->type == BTRFS_INODE_REF_KEY ||
6303                 key->type == BTRFS_INODE_EXTREF_KEY)
6304                ret = changed_ref(sctx, result);
6305        else if (key->type == BTRFS_XATTR_ITEM_KEY)
6306                ret = changed_xattr(sctx, result);
6307        else if (key->type == BTRFS_EXTENT_DATA_KEY)
6308                ret = changed_extent(sctx, result);
6309
6310out:
6311        return ret;
6312}
6313
6314static int full_send_tree(struct send_ctx *sctx)
6315{
6316        int ret;
6317        struct btrfs_root *send_root = sctx->send_root;
6318        struct btrfs_key key;
6319        struct btrfs_key found_key;
6320        struct btrfs_path *path;
6321        struct extent_buffer *eb;
6322        int slot;
6323
6324        path = alloc_path_for_send();
6325        if (!path)
6326                return -ENOMEM;
6327
6328        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6329        key.type = BTRFS_INODE_ITEM_KEY;
6330        key.offset = 0;
6331
6332        ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6333        if (ret < 0)
6334                goto out;
6335        if (ret)
6336                goto out_finish;
6337
6338        while (1) {
6339                eb = path->nodes[0];
6340                slot = path->slots[0];
6341                btrfs_item_key_to_cpu(eb, &found_key, slot);
6342
6343                ret = changed_cb(path, NULL, &found_key,
6344                                 BTRFS_COMPARE_TREE_NEW, sctx);
6345                if (ret < 0)
6346                        goto out;
6347
6348                key.objectid = found_key.objectid;
6349                key.type = found_key.type;
6350                key.offset = found_key.offset + 1;
6351
6352                ret = btrfs_next_item(send_root, path);
6353                if (ret < 0)
6354                        goto out;
6355                if (ret) {
6356                        ret  = 0;
6357                        break;
6358                }
6359        }
6360
6361out_finish:
6362        ret = finish_inode_if_needed(sctx, 1);
6363
6364out:
6365        btrfs_free_path(path);
6366        return ret;
6367}
6368
6369static int send_subvol(struct send_ctx *sctx)
6370{
6371        int ret;
6372
6373        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6374                ret = send_header(sctx);
6375                if (ret < 0)
6376                        goto out;
6377        }
6378
6379        ret = send_subvol_begin(sctx);
6380        if (ret < 0)
6381                goto out;
6382
6383        if (sctx->parent_root) {
6384                ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6385                                changed_cb, sctx);
6386                if (ret < 0)
6387                        goto out;
6388                ret = finish_inode_if_needed(sctx, 1);
6389                if (ret < 0)
6390                        goto out;
6391        } else {
6392                ret = full_send_tree(sctx);
6393                if (ret < 0)
6394                        goto out;
6395        }
6396
6397out:
6398        free_recorded_refs(sctx);
6399        return ret;
6400}
6401
6402/*
6403 * If orphan cleanup did remove any orphans from a root, it means the tree
6404 * was modified and therefore the commit root is not the same as the current
6405 * root anymore. This is a problem, because send uses the commit root and
6406 * therefore can see inode items that don't exist in the current root anymore,
6407 * and for example make calls to btrfs_iget, which will do tree lookups based
6408 * on the current root and not on the commit root. Those lookups will fail,
6409 * returning a -ESTALE error, and making send fail with that error. So make
6410 * sure a send does not see any orphans we have just removed, and that it will
6411 * see the same inodes regardless of whether a transaction commit happened
6412 * before it started (meaning that the commit root will be the same as the
6413 * current root) or not.
6414 */
6415static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6416{
6417        int i;
6418        struct btrfs_trans_handle *trans = NULL;
6419
6420again:
6421        if (sctx->parent_root &&
6422            sctx->parent_root->node != sctx->parent_root->commit_root)
6423                goto commit_trans;
6424
6425        for (i = 0; i < sctx->clone_roots_cnt; i++)
6426                if (sctx->clone_roots[i].root->node !=
6427                    sctx->clone_roots[i].root->commit_root)
6428                        goto commit_trans;
6429
6430        if (trans)
6431                return btrfs_end_transaction(trans);
6432
6433        return 0;
6434
6435commit_trans:
6436        /* Use any root, all fs roots will get their commit roots updated. */
6437        if (!trans) {
6438                trans = btrfs_join_transaction(sctx->send_root);
6439                if (IS_ERR(trans))
6440                        return PTR_ERR(trans);
6441                goto again;
6442        }
6443
6444        return btrfs_commit_transaction(trans);
6445}
6446
6447static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6448{
6449        spin_lock(&root->root_item_lock);
6450        root->send_in_progress--;
6451        /*
6452         * Not much left to do, we don't know why it's unbalanced and
6453         * can't blindly reset it to 0.
6454         */
6455        if (root->send_in_progress < 0)
6456                btrfs_err(root->fs_info,
6457                          "send_in_progres unbalanced %d root %llu",
6458                          root->send_in_progress, root->root_key.objectid);
6459        spin_unlock(&root->root_item_lock);
6460}
6461
6462long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6463{
6464        int ret = 0;
6465        struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6466        struct btrfs_fs_info *fs_info = send_root->fs_info;
6467        struct btrfs_root *clone_root;
6468        struct btrfs_key key;
6469        struct send_ctx *sctx = NULL;
6470        u32 i;
6471        u64 *clone_sources_tmp = NULL;
6472        int clone_sources_to_rollback = 0;
6473        unsigned alloc_size;
6474        int sort_clone_roots = 0;
6475        int index;
6476
6477        if (!capable(CAP_SYS_ADMIN))
6478                return -EPERM;
6479
6480        /*
6481         * The subvolume must remain read-only during send, protect against
6482         * making it RW. This also protects against deletion.
6483         */
6484        spin_lock(&send_root->root_item_lock);
6485        send_root->send_in_progress++;
6486        spin_unlock(&send_root->root_item_lock);
6487
6488        /*
6489         * This is done when we lookup the root, it should already be complete
6490         * by the time we get here.
6491         */
6492        WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6493
6494        /*
6495         * Userspace tools do the checks and warn the user if it's
6496         * not RO.
6497         */
6498        if (!btrfs_root_readonly(send_root)) {
6499                ret = -EPERM;
6500                goto out;
6501        }
6502
6503        /*
6504         * Check that we don't overflow at later allocations, we request
6505         * clone_sources_count + 1 items, and compare to unsigned long inside
6506         * access_ok.
6507         */
6508        if (arg->clone_sources_count >
6509            ULONG_MAX / sizeof(struct clone_root) - 1) {
6510                ret = -EINVAL;
6511                goto out;
6512        }
6513
6514        if (!access_ok(VERIFY_READ, arg->clone_sources,
6515                        sizeof(*arg->clone_sources) *
6516                        arg->clone_sources_count)) {
6517                ret = -EFAULT;
6518                goto out;
6519        }
6520
6521        if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6522                ret = -EINVAL;
6523                goto out;
6524        }
6525
6526        sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6527        if (!sctx) {
6528                ret = -ENOMEM;
6529                goto out;
6530        }
6531
6532        INIT_LIST_HEAD(&sctx->new_refs);
6533        INIT_LIST_HEAD(&sctx->deleted_refs);
6534        INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6535        INIT_LIST_HEAD(&sctx->name_cache_list);
6536
6537        sctx->flags = arg->flags;
6538
6539        sctx->send_filp = fget(arg->send_fd);
6540        if (!sctx->send_filp) {
6541                ret = -EBADF;
6542                goto out;
6543        }
6544
6545        sctx->send_root = send_root;
6546        /*
6547         * Unlikely but possible, if the subvolume is marked for deletion but
6548         * is slow to remove the directory entry, send can still be started
6549         */
6550        if (btrfs_root_dead(sctx->send_root)) {
6551                ret = -EPERM;
6552                goto out;
6553        }
6554
6555        sctx->clone_roots_cnt = arg->clone_sources_count;
6556
6557        sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6558        sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6559        if (!sctx->send_buf) {
6560                ret = -ENOMEM;
6561                goto out;
6562        }
6563
6564        sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6565        if (!sctx->read_buf) {
6566                ret = -ENOMEM;
6567                goto out;
6568        }
6569
6570        sctx->pending_dir_moves = RB_ROOT;
6571        sctx->waiting_dir_moves = RB_ROOT;
6572        sctx->orphan_dirs = RB_ROOT;
6573
6574        alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6575
6576        sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6577        if (!sctx->clone_roots) {
6578                ret = -ENOMEM;
6579                goto out;
6580        }
6581
6582        alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6583
6584        if (arg->clone_sources_count) {
6585                clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6586                if (!clone_sources_tmp) {
6587                        ret = -ENOMEM;
6588                        goto out;
6589                }
6590
6591                ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6592                                alloc_size);
6593                if (ret) {
6594                        ret = -EFAULT;
6595                        goto out;
6596                }
6597
6598                for (i = 0; i < arg->clone_sources_count; i++) {
6599                        key.objectid = clone_sources_tmp[i];
6600                        key.type = BTRFS_ROOT_ITEM_KEY;
6601                        key.offset = (u64)-1;
6602
6603                        index = srcu_read_lock(&fs_info->subvol_srcu);
6604
6605                        clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6606                        if (IS_ERR(clone_root)) {
6607                                srcu_read_unlock(&fs_info->subvol_srcu, index);
6608                                ret = PTR_ERR(clone_root);
6609                                goto out;
6610                        }
6611                        spin_lock(&clone_root->root_item_lock);
6612                        if (!btrfs_root_readonly(clone_root) ||
6613                            btrfs_root_dead(clone_root)) {
6614                                spin_unlock(&clone_root->root_item_lock);
6615                                srcu_read_unlock(&fs_info->subvol_srcu, index);
6616                                ret = -EPERM;
6617                                goto out;
6618                        }
6619                        clone_root->send_in_progress++;
6620                        spin_unlock(&clone_root->root_item_lock);
6621                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6622
6623                        sctx->clone_roots[i].root = clone_root;
6624                        clone_sources_to_rollback = i + 1;
6625                }
6626                kvfree(clone_sources_tmp);
6627                clone_sources_tmp = NULL;
6628        }
6629
6630        if (arg->parent_root) {
6631                key.objectid = arg->parent_root;
6632                key.type = BTRFS_ROOT_ITEM_KEY;
6633                key.offset = (u64)-1;
6634
6635                index = srcu_read_lock(&fs_info->subvol_srcu);
6636
6637                sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6638                if (IS_ERR(sctx->parent_root)) {
6639                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6640                        ret = PTR_ERR(sctx->parent_root);
6641                        goto out;
6642                }
6643
6644                spin_lock(&sctx->parent_root->root_item_lock);
6645                sctx->parent_root->send_in_progress++;
6646                if (!btrfs_root_readonly(sctx->parent_root) ||
6647                                btrfs_root_dead(sctx->parent_root)) {
6648                        spin_unlock(&sctx->parent_root->root_item_lock);
6649                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6650                        ret = -EPERM;
6651                        goto out;
6652                }
6653                spin_unlock(&sctx->parent_root->root_item_lock);
6654
6655                srcu_read_unlock(&fs_info->subvol_srcu, index);
6656        }
6657
6658        /*
6659         * Clones from send_root are allowed, but only if the clone source
6660         * is behind the current send position. This is checked while searching
6661         * for possible clone sources.
6662         */
6663        sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6664
6665        /* We do a bsearch later */
6666        sort(sctx->clone_roots, sctx->clone_roots_cnt,
6667                        sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6668                        NULL);
6669        sort_clone_roots = 1;
6670
6671        ret = ensure_commit_roots_uptodate(sctx);
6672        if (ret)
6673                goto out;
6674
6675        current->journal_info = BTRFS_SEND_TRANS_STUB;
6676        ret = send_subvol(sctx);
6677        current->journal_info = NULL;
6678        if (ret < 0)
6679                goto out;
6680
6681        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6682                ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6683                if (ret < 0)
6684                        goto out;
6685                ret = send_cmd(sctx);
6686                if (ret < 0)
6687                        goto out;
6688        }
6689
6690out:
6691        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6692        while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6693                struct rb_node *n;
6694                struct pending_dir_move *pm;
6695
6696                n = rb_first(&sctx->pending_dir_moves);
6697                pm = rb_entry(n, struct pending_dir_move, node);
6698                while (!list_empty(&pm->list)) {
6699                        struct pending_dir_move *pm2;
6700
6701                        pm2 = list_first_entry(&pm->list,
6702                                               struct pending_dir_move, list);
6703                        free_pending_move(sctx, pm2);
6704                }
6705                free_pending_move(sctx, pm);
6706        }
6707
6708        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6709        while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6710                struct rb_node *n;
6711                struct waiting_dir_move *dm;
6712
6713                n = rb_first(&sctx->waiting_dir_moves);
6714                dm = rb_entry(n, struct waiting_dir_move, node);
6715                rb_erase(&dm->node, &sctx->waiting_dir_moves);
6716                kfree(dm);
6717        }
6718
6719        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6720        while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6721                struct rb_node *n;
6722                struct orphan_dir_info *odi;
6723
6724                n = rb_first(&sctx->orphan_dirs);
6725                odi = rb_entry(n, struct orphan_dir_info, node);
6726                free_orphan_dir_info(sctx, odi);
6727        }
6728
6729        if (sort_clone_roots) {
6730                for (i = 0; i < sctx->clone_roots_cnt; i++)
6731                        btrfs_root_dec_send_in_progress(
6732                                        sctx->clone_roots[i].root);
6733        } else {
6734                for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6735                        btrfs_root_dec_send_in_progress(
6736                                        sctx->clone_roots[i].root);
6737
6738                btrfs_root_dec_send_in_progress(send_root);
6739        }
6740        if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6741                btrfs_root_dec_send_in_progress(sctx->parent_root);
6742
6743        kvfree(clone_sources_tmp);
6744
6745        if (sctx) {
6746                if (sctx->send_filp)
6747                        fput(sctx->send_filp);
6748
6749                kvfree(sctx->clone_roots);
6750                kvfree(sctx->send_buf);
6751                kvfree(sctx->read_buf);
6752
6753                name_cache_free(sctx);
6754
6755                kfree(sctx);
6756        }
6757
6758        return ret;
6759}
6760