linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/bio.h>
   8#include <linux/slab.h>
   9#include <linux/buffer_head.h>
  10#include <linux/blkdev.h>
  11#include <linux/iocontext.h>
  12#include <linux/capability.h>
  13#include <linux/ratelimit.h>
  14#include <linux/kthread.h>
  15#include <linux/raid/pq.h>
  16#include <linux/semaphore.h>
  17#include <linux/uuid.h>
  18#include <linux/list_sort.h>
  19#include <asm/div64.h>
  20#include "ctree.h"
  21#include "extent_map.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "print-tree.h"
  25#include "volumes.h"
  26#include "raid56.h"
  27#include "async-thread.h"
  28#include "check-integrity.h"
  29#include "rcu-string.h"
  30#include "math.h"
  31#include "dev-replace.h"
  32#include "sysfs.h"
  33
  34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  35        [BTRFS_RAID_RAID10] = {
  36                .sub_stripes    = 2,
  37                .dev_stripes    = 1,
  38                .devs_max       = 0,    /* 0 == as many as possible */
  39                .devs_min       = 4,
  40                .tolerated_failures = 1,
  41                .devs_increment = 2,
  42                .ncopies        = 2,
  43        },
  44        [BTRFS_RAID_RAID1] = {
  45                .sub_stripes    = 1,
  46                .dev_stripes    = 1,
  47                .devs_max       = 2,
  48                .devs_min       = 2,
  49                .tolerated_failures = 1,
  50                .devs_increment = 2,
  51                .ncopies        = 2,
  52        },
  53        [BTRFS_RAID_DUP] = {
  54                .sub_stripes    = 1,
  55                .dev_stripes    = 2,
  56                .devs_max       = 1,
  57                .devs_min       = 1,
  58                .tolerated_failures = 0,
  59                .devs_increment = 1,
  60                .ncopies        = 2,
  61        },
  62        [BTRFS_RAID_RAID0] = {
  63                .sub_stripes    = 1,
  64                .dev_stripes    = 1,
  65                .devs_max       = 0,
  66                .devs_min       = 2,
  67                .tolerated_failures = 0,
  68                .devs_increment = 1,
  69                .ncopies        = 1,
  70        },
  71        [BTRFS_RAID_SINGLE] = {
  72                .sub_stripes    = 1,
  73                .dev_stripes    = 1,
  74                .devs_max       = 1,
  75                .devs_min       = 1,
  76                .tolerated_failures = 0,
  77                .devs_increment = 1,
  78                .ncopies        = 1,
  79        },
  80        [BTRFS_RAID_RAID5] = {
  81                .sub_stripes    = 1,
  82                .dev_stripes    = 1,
  83                .devs_max       = 0,
  84                .devs_min       = 2,
  85                .tolerated_failures = 1,
  86                .devs_increment = 1,
  87                .ncopies        = 2,
  88        },
  89        [BTRFS_RAID_RAID6] = {
  90                .sub_stripes    = 1,
  91                .dev_stripes    = 1,
  92                .devs_max       = 0,
  93                .devs_min       = 3,
  94                .tolerated_failures = 2,
  95                .devs_increment = 1,
  96                .ncopies        = 3,
  97        },
  98};
  99
 100const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
 101        [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
 102        [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
 103        [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
 104        [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
 105        [BTRFS_RAID_SINGLE] = 0,
 106        [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
 107        [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
 108};
 109
 110/*
 111 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
 112 * condition is not met. Zero means there's no corresponding
 113 * BTRFS_ERROR_DEV_*_NOT_MET value.
 114 */
 115const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
 116        [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
 117        [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
 118        [BTRFS_RAID_DUP]    = 0,
 119        [BTRFS_RAID_RAID0]  = 0,
 120        [BTRFS_RAID_SINGLE] = 0,
 121        [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 122        [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 123};
 124
 125static int init_first_rw_device(struct btrfs_trans_handle *trans,
 126                                struct btrfs_fs_info *fs_info);
 127static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 128static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
 129static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 130static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 131static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
 132                             enum btrfs_map_op op,
 133                             u64 logical, u64 *length,
 134                             struct btrfs_bio **bbio_ret,
 135                             int mirror_num, int need_raid_map);
 136
 137/*
 138 * Device locking
 139 * ==============
 140 *
 141 * There are several mutexes that protect manipulation of devices and low-level
 142 * structures like chunks but not block groups, extents or files
 143 *
 144 * uuid_mutex (global lock)
 145 * ------------------------
 146 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 147 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 148 * device) or requested by the device= mount option
 149 *
 150 * the mutex can be very coarse and can cover long-running operations
 151 *
 152 * protects: updates to fs_devices counters like missing devices, rw devices,
 153 * seeding, structure cloning, openning/closing devices at mount/umount time
 154 *
 155 * global::fs_devs - add, remove, updates to the global list
 156 *
 157 * does not protect: manipulation of the fs_devices::devices list!
 158 *
 159 * btrfs_device::name - renames (write side), read is RCU
 160 *
 161 * fs_devices::device_list_mutex (per-fs, with RCU)
 162 * ------------------------------------------------
 163 * protects updates to fs_devices::devices, ie. adding and deleting
 164 *
 165 * simple list traversal with read-only actions can be done with RCU protection
 166 *
 167 * may be used to exclude some operations from running concurrently without any
 168 * modifications to the list (see write_all_supers)
 169 *
 170 * volume_mutex
 171 * ------------
 172 * coarse lock owned by a mounted filesystem; used to exclude some operations
 173 * that cannot run in parallel and affect the higher-level properties of the
 174 * filesystem like: device add/deleting/resize/replace, or balance
 175 *
 176 * balance_mutex
 177 * -------------
 178 * protects balance structures (status, state) and context accessed from
 179 * several places (internally, ioctl)
 180 *
 181 * chunk_mutex
 182 * -----------
 183 * protects chunks, adding or removing during allocation, trim or when a new
 184 * device is added/removed
 185 *
 186 * cleaner_mutex
 187 * -------------
 188 * a big lock that is held by the cleaner thread and prevents running subvolume
 189 * cleaning together with relocation or delayed iputs
 190 *
 191 *
 192 * Lock nesting
 193 * ============
 194 *
 195 * uuid_mutex
 196 *   volume_mutex
 197 *     device_list_mutex
 198 *       chunk_mutex
 199 *     balance_mutex
 200 */
 201
 202DEFINE_MUTEX(uuid_mutex);
 203static LIST_HEAD(fs_uuids);
 204struct list_head *btrfs_get_fs_uuids(void)
 205{
 206        return &fs_uuids;
 207}
 208
 209/*
 210 * alloc_fs_devices - allocate struct btrfs_fs_devices
 211 * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
 212 *
 213 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 214 * The returned struct is not linked onto any lists and can be destroyed with
 215 * kfree() right away.
 216 */
 217static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 218{
 219        struct btrfs_fs_devices *fs_devs;
 220
 221        fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 222        if (!fs_devs)
 223                return ERR_PTR(-ENOMEM);
 224
 225        mutex_init(&fs_devs->device_list_mutex);
 226
 227        INIT_LIST_HEAD(&fs_devs->devices);
 228        INIT_LIST_HEAD(&fs_devs->resized_devices);
 229        INIT_LIST_HEAD(&fs_devs->alloc_list);
 230        INIT_LIST_HEAD(&fs_devs->list);
 231        if (fsid)
 232                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 233
 234        return fs_devs;
 235}
 236
 237static void free_device(struct btrfs_device *device)
 238{
 239        rcu_string_free(device->name);
 240        bio_put(device->flush_bio);
 241        kfree(device);
 242}
 243
 244static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 245{
 246        struct btrfs_device *device;
 247        WARN_ON(fs_devices->opened);
 248        while (!list_empty(&fs_devices->devices)) {
 249                device = list_entry(fs_devices->devices.next,
 250                                    struct btrfs_device, dev_list);
 251                list_del(&device->dev_list);
 252                free_device(device);
 253        }
 254        kfree(fs_devices);
 255}
 256
 257static void btrfs_kobject_uevent(struct block_device *bdev,
 258                                 enum kobject_action action)
 259{
 260        int ret;
 261
 262        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 263        if (ret)
 264                pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
 265                        action,
 266                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 267                        &disk_to_dev(bdev->bd_disk)->kobj);
 268}
 269
 270void __exit btrfs_cleanup_fs_uuids(void)
 271{
 272        struct btrfs_fs_devices *fs_devices;
 273
 274        while (!list_empty(&fs_uuids)) {
 275                fs_devices = list_entry(fs_uuids.next,
 276                                        struct btrfs_fs_devices, list);
 277                list_del(&fs_devices->list);
 278                free_fs_devices(fs_devices);
 279        }
 280}
 281
 282/*
 283 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 284 * Returned struct is not linked onto any lists and must be destroyed using
 285 * free_device.
 286 */
 287static struct btrfs_device *__alloc_device(void)
 288{
 289        struct btrfs_device *dev;
 290
 291        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 292        if (!dev)
 293                return ERR_PTR(-ENOMEM);
 294
 295        /*
 296         * Preallocate a bio that's always going to be used for flushing device
 297         * barriers and matches the device lifespan
 298         */
 299        dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
 300        if (!dev->flush_bio) {
 301                kfree(dev);
 302                return ERR_PTR(-ENOMEM);
 303        }
 304
 305        INIT_LIST_HEAD(&dev->dev_list);
 306        INIT_LIST_HEAD(&dev->dev_alloc_list);
 307        INIT_LIST_HEAD(&dev->resized_list);
 308
 309        spin_lock_init(&dev->io_lock);
 310
 311        atomic_set(&dev->reada_in_flight, 0);
 312        atomic_set(&dev->dev_stats_ccnt, 0);
 313        btrfs_device_data_ordered_init(dev);
 314        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 315        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 316
 317        return dev;
 318}
 319
 320/*
 321 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 322 * return NULL.
 323 *
 324 * If devid and uuid are both specified, the match must be exact, otherwise
 325 * only devid is used.
 326 */
 327static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
 328                u64 devid, const u8 *uuid)
 329{
 330        struct list_head *head = &fs_devices->devices;
 331        struct btrfs_device *dev;
 332
 333        list_for_each_entry(dev, head, dev_list) {
 334                if (dev->devid == devid &&
 335                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 336                        return dev;
 337                }
 338        }
 339        return NULL;
 340}
 341
 342static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 343{
 344        struct btrfs_fs_devices *fs_devices;
 345
 346        list_for_each_entry(fs_devices, &fs_uuids, list) {
 347                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 348                        return fs_devices;
 349        }
 350        return NULL;
 351}
 352
 353static int
 354btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 355                      int flush, struct block_device **bdev,
 356                      struct buffer_head **bh)
 357{
 358        int ret;
 359
 360        *bdev = blkdev_get_by_path(device_path, flags, holder);
 361
 362        if (IS_ERR(*bdev)) {
 363                ret = PTR_ERR(*bdev);
 364                goto error;
 365        }
 366
 367        if (flush)
 368                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 369        ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 370        if (ret) {
 371                blkdev_put(*bdev, flags);
 372                goto error;
 373        }
 374        invalidate_bdev(*bdev);
 375        *bh = btrfs_read_dev_super(*bdev);
 376        if (IS_ERR(*bh)) {
 377                ret = PTR_ERR(*bh);
 378                blkdev_put(*bdev, flags);
 379                goto error;
 380        }
 381
 382        return 0;
 383
 384error:
 385        *bdev = NULL;
 386        *bh = NULL;
 387        return ret;
 388}
 389
 390static void requeue_list(struct btrfs_pending_bios *pending_bios,
 391                        struct bio *head, struct bio *tail)
 392{
 393
 394        struct bio *old_head;
 395
 396        old_head = pending_bios->head;
 397        pending_bios->head = head;
 398        if (pending_bios->tail)
 399                tail->bi_next = old_head;
 400        else
 401                pending_bios->tail = tail;
 402}
 403
 404/*
 405 * we try to collect pending bios for a device so we don't get a large
 406 * number of procs sending bios down to the same device.  This greatly
 407 * improves the schedulers ability to collect and merge the bios.
 408 *
 409 * But, it also turns into a long list of bios to process and that is sure
 410 * to eventually make the worker thread block.  The solution here is to
 411 * make some progress and then put this work struct back at the end of
 412 * the list if the block device is congested.  This way, multiple devices
 413 * can make progress from a single worker thread.
 414 */
 415static noinline void run_scheduled_bios(struct btrfs_device *device)
 416{
 417        struct btrfs_fs_info *fs_info = device->fs_info;
 418        struct bio *pending;
 419        struct backing_dev_info *bdi;
 420        struct btrfs_pending_bios *pending_bios;
 421        struct bio *tail;
 422        struct bio *cur;
 423        int again = 0;
 424        unsigned long num_run;
 425        unsigned long batch_run = 0;
 426        unsigned long last_waited = 0;
 427        int force_reg = 0;
 428        int sync_pending = 0;
 429        struct blk_plug plug;
 430
 431        /*
 432         * this function runs all the bios we've collected for
 433         * a particular device.  We don't want to wander off to
 434         * another device without first sending all of these down.
 435         * So, setup a plug here and finish it off before we return
 436         */
 437        blk_start_plug(&plug);
 438
 439        bdi = device->bdev->bd_bdi;
 440
 441loop:
 442        spin_lock(&device->io_lock);
 443
 444loop_lock:
 445        num_run = 0;
 446
 447        /* take all the bios off the list at once and process them
 448         * later on (without the lock held).  But, remember the
 449         * tail and other pointers so the bios can be properly reinserted
 450         * into the list if we hit congestion
 451         */
 452        if (!force_reg && device->pending_sync_bios.head) {
 453                pending_bios = &device->pending_sync_bios;
 454                force_reg = 1;
 455        } else {
 456                pending_bios = &device->pending_bios;
 457                force_reg = 0;
 458        }
 459
 460        pending = pending_bios->head;
 461        tail = pending_bios->tail;
 462        WARN_ON(pending && !tail);
 463
 464        /*
 465         * if pending was null this time around, no bios need processing
 466         * at all and we can stop.  Otherwise it'll loop back up again
 467         * and do an additional check so no bios are missed.
 468         *
 469         * device->running_pending is used to synchronize with the
 470         * schedule_bio code.
 471         */
 472        if (device->pending_sync_bios.head == NULL &&
 473            device->pending_bios.head == NULL) {
 474                again = 0;
 475                device->running_pending = 0;
 476        } else {
 477                again = 1;
 478                device->running_pending = 1;
 479        }
 480
 481        pending_bios->head = NULL;
 482        pending_bios->tail = NULL;
 483
 484        spin_unlock(&device->io_lock);
 485
 486        while (pending) {
 487
 488                rmb();
 489                /* we want to work on both lists, but do more bios on the
 490                 * sync list than the regular list
 491                 */
 492                if ((num_run > 32 &&
 493                    pending_bios != &device->pending_sync_bios &&
 494                    device->pending_sync_bios.head) ||
 495                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 496                    device->pending_bios.head)) {
 497                        spin_lock(&device->io_lock);
 498                        requeue_list(pending_bios, pending, tail);
 499                        goto loop_lock;
 500                }
 501
 502                cur = pending;
 503                pending = pending->bi_next;
 504                cur->bi_next = NULL;
 505
 506                BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
 507
 508                /*
 509                 * if we're doing the sync list, record that our
 510                 * plug has some sync requests on it
 511                 *
 512                 * If we're doing the regular list and there are
 513                 * sync requests sitting around, unplug before
 514                 * we add more
 515                 */
 516                if (pending_bios == &device->pending_sync_bios) {
 517                        sync_pending = 1;
 518                } else if (sync_pending) {
 519                        blk_finish_plug(&plug);
 520                        blk_start_plug(&plug);
 521                        sync_pending = 0;
 522                }
 523
 524                btrfsic_submit_bio(cur);
 525                num_run++;
 526                batch_run++;
 527
 528                cond_resched();
 529
 530                /*
 531                 * we made progress, there is more work to do and the bdi
 532                 * is now congested.  Back off and let other work structs
 533                 * run instead
 534                 */
 535                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 536                    fs_info->fs_devices->open_devices > 1) {
 537                        struct io_context *ioc;
 538
 539                        ioc = current->io_context;
 540
 541                        /*
 542                         * the main goal here is that we don't want to
 543                         * block if we're going to be able to submit
 544                         * more requests without blocking.
 545                         *
 546                         * This code does two great things, it pokes into
 547                         * the elevator code from a filesystem _and_
 548                         * it makes assumptions about how batching works.
 549                         */
 550                        if (ioc && ioc->nr_batch_requests > 0 &&
 551                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 552                            (last_waited == 0 ||
 553                             ioc->last_waited == last_waited)) {
 554                                /*
 555                                 * we want to go through our batch of
 556                                 * requests and stop.  So, we copy out
 557                                 * the ioc->last_waited time and test
 558                                 * against it before looping
 559                                 */
 560                                last_waited = ioc->last_waited;
 561                                cond_resched();
 562                                continue;
 563                        }
 564                        spin_lock(&device->io_lock);
 565                        requeue_list(pending_bios, pending, tail);
 566                        device->running_pending = 1;
 567
 568                        spin_unlock(&device->io_lock);
 569                        btrfs_queue_work(fs_info->submit_workers,
 570                                         &device->work);
 571                        goto done;
 572                }
 573        }
 574
 575        cond_resched();
 576        if (again)
 577                goto loop;
 578
 579        spin_lock(&device->io_lock);
 580        if (device->pending_bios.head || device->pending_sync_bios.head)
 581                goto loop_lock;
 582        spin_unlock(&device->io_lock);
 583
 584done:
 585        blk_finish_plug(&plug);
 586}
 587
 588static void pending_bios_fn(struct btrfs_work *work)
 589{
 590        struct btrfs_device *device;
 591
 592        device = container_of(work, struct btrfs_device, work);
 593        run_scheduled_bios(device);
 594}
 595
 596/*
 597 *  Search and remove all stale (devices which are not mounted) devices.
 598 *  When both inputs are NULL, it will search and release all stale devices.
 599 *  path:       Optional. When provided will it release all unmounted devices
 600 *              matching this path only.
 601 *  skip_dev:   Optional. Will skip this device when searching for the stale
 602 *              devices.
 603 */
 604static void btrfs_free_stale_devices(const char *path,
 605                                     struct btrfs_device *skip_dev)
 606{
 607        struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
 608        struct btrfs_device *dev, *tmp_dev;
 609
 610        list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
 611
 612                if (fs_devs->opened)
 613                        continue;
 614
 615                list_for_each_entry_safe(dev, tmp_dev,
 616                                         &fs_devs->devices, dev_list) {
 617                        int not_found = 0;
 618
 619                        if (skip_dev && skip_dev == dev)
 620                                continue;
 621                        if (path && !dev->name)
 622                                continue;
 623
 624                        rcu_read_lock();
 625                        if (path)
 626                                not_found = strcmp(rcu_str_deref(dev->name),
 627                                                   path);
 628                        rcu_read_unlock();
 629                        if (not_found)
 630                                continue;
 631
 632                        /* delete the stale device */
 633                        if (fs_devs->num_devices == 1) {
 634                                btrfs_sysfs_remove_fsid(fs_devs);
 635                                list_del(&fs_devs->list);
 636                                free_fs_devices(fs_devs);
 637                                break;
 638                        } else {
 639                                fs_devs->num_devices--;
 640                                list_del(&dev->dev_list);
 641                                free_device(dev);
 642                        }
 643                }
 644        }
 645}
 646
 647static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 648                        struct btrfs_device *device, fmode_t flags,
 649                        void *holder)
 650{
 651        struct request_queue *q;
 652        struct block_device *bdev;
 653        struct buffer_head *bh;
 654        struct btrfs_super_block *disk_super;
 655        u64 devid;
 656        int ret;
 657
 658        if (device->bdev)
 659                return -EINVAL;
 660        if (!device->name)
 661                return -EINVAL;
 662
 663        ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 664                                    &bdev, &bh);
 665        if (ret)
 666                return ret;
 667
 668        disk_super = (struct btrfs_super_block *)bh->b_data;
 669        devid = btrfs_stack_device_id(&disk_super->dev_item);
 670        if (devid != device->devid)
 671                goto error_brelse;
 672
 673        if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 674                goto error_brelse;
 675
 676        device->generation = btrfs_super_generation(disk_super);
 677
 678        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 679                clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 680                fs_devices->seeding = 1;
 681        } else {
 682                if (bdev_read_only(bdev))
 683                        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 684                else
 685                        set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 686        }
 687
 688        q = bdev_get_queue(bdev);
 689        if (!blk_queue_nonrot(q))
 690                fs_devices->rotating = 1;
 691
 692        device->bdev = bdev;
 693        clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 694        device->mode = flags;
 695
 696        fs_devices->open_devices++;
 697        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 698            device->devid != BTRFS_DEV_REPLACE_DEVID) {
 699                fs_devices->rw_devices++;
 700                list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 701        }
 702        brelse(bh);
 703
 704        return 0;
 705
 706error_brelse:
 707        brelse(bh);
 708        blkdev_put(bdev, flags);
 709
 710        return -EINVAL;
 711}
 712
 713/*
 714 * Add new device to list of registered devices
 715 *
 716 * Returns:
 717 * device pointer which was just added or updated when successful
 718 * error pointer when failed
 719 */
 720static noinline struct btrfs_device *device_list_add(const char *path,
 721                           struct btrfs_super_block *disk_super)
 722{
 723        struct btrfs_device *device;
 724        struct btrfs_fs_devices *fs_devices;
 725        struct rcu_string *name;
 726        u64 found_transid = btrfs_super_generation(disk_super);
 727        u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 728
 729        fs_devices = find_fsid(disk_super->fsid);
 730        if (!fs_devices) {
 731                fs_devices = alloc_fs_devices(disk_super->fsid);
 732                if (IS_ERR(fs_devices))
 733                        return ERR_CAST(fs_devices);
 734
 735                list_add(&fs_devices->list, &fs_uuids);
 736
 737                device = NULL;
 738        } else {
 739                device = find_device(fs_devices, devid,
 740                                disk_super->dev_item.uuid);
 741        }
 742
 743        if (!device) {
 744                if (fs_devices->opened)
 745                        return ERR_PTR(-EBUSY);
 746
 747                device = btrfs_alloc_device(NULL, &devid,
 748                                            disk_super->dev_item.uuid);
 749                if (IS_ERR(device)) {
 750                        /* we can safely leave the fs_devices entry around */
 751                        return device;
 752                }
 753
 754                name = rcu_string_strdup(path, GFP_NOFS);
 755                if (!name) {
 756                        free_device(device);
 757                        return ERR_PTR(-ENOMEM);
 758                }
 759                rcu_assign_pointer(device->name, name);
 760
 761                mutex_lock(&fs_devices->device_list_mutex);
 762                list_add_rcu(&device->dev_list, &fs_devices->devices);
 763                fs_devices->num_devices++;
 764                mutex_unlock(&fs_devices->device_list_mutex);
 765
 766                device->fs_devices = fs_devices;
 767                btrfs_free_stale_devices(path, device);
 768
 769                if (disk_super->label[0])
 770                        pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
 771                                disk_super->label, devid, found_transid, path);
 772                else
 773                        pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
 774                                disk_super->fsid, devid, found_transid, path);
 775
 776        } else if (!device->name || strcmp(device->name->str, path)) {
 777                /*
 778                 * When FS is already mounted.
 779                 * 1. If you are here and if the device->name is NULL that
 780                 *    means this device was missing at time of FS mount.
 781                 * 2. If you are here and if the device->name is different
 782                 *    from 'path' that means either
 783                 *      a. The same device disappeared and reappeared with
 784                 *         different name. or
 785                 *      b. The missing-disk-which-was-replaced, has
 786                 *         reappeared now.
 787                 *
 788                 * We must allow 1 and 2a above. But 2b would be a spurious
 789                 * and unintentional.
 790                 *
 791                 * Further in case of 1 and 2a above, the disk at 'path'
 792                 * would have missed some transaction when it was away and
 793                 * in case of 2a the stale bdev has to be updated as well.
 794                 * 2b must not be allowed at all time.
 795                 */
 796
 797                /*
 798                 * For now, we do allow update to btrfs_fs_device through the
 799                 * btrfs dev scan cli after FS has been mounted.  We're still
 800                 * tracking a problem where systems fail mount by subvolume id
 801                 * when we reject replacement on a mounted FS.
 802                 */
 803                if (!fs_devices->opened && found_transid < device->generation) {
 804                        /*
 805                         * That is if the FS is _not_ mounted and if you
 806                         * are here, that means there is more than one
 807                         * disk with same uuid and devid.We keep the one
 808                         * with larger generation number or the last-in if
 809                         * generation are equal.
 810                         */
 811                        return ERR_PTR(-EEXIST);
 812                }
 813
 814                name = rcu_string_strdup(path, GFP_NOFS);
 815                if (!name)
 816                        return ERR_PTR(-ENOMEM);
 817                rcu_string_free(device->name);
 818                rcu_assign_pointer(device->name, name);
 819                if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 820                        fs_devices->missing_devices--;
 821                        clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 822                }
 823        }
 824
 825        /*
 826         * Unmount does not free the btrfs_device struct but would zero
 827         * generation along with most of the other members. So just update
 828         * it back. We need it to pick the disk with largest generation
 829         * (as above).
 830         */
 831        if (!fs_devices->opened)
 832                device->generation = found_transid;
 833
 834        fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 835
 836        return device;
 837}
 838
 839static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 840{
 841        struct btrfs_fs_devices *fs_devices;
 842        struct btrfs_device *device;
 843        struct btrfs_device *orig_dev;
 844
 845        fs_devices = alloc_fs_devices(orig->fsid);
 846        if (IS_ERR(fs_devices))
 847                return fs_devices;
 848
 849        mutex_lock(&orig->device_list_mutex);
 850        fs_devices->total_devices = orig->total_devices;
 851
 852        /* We have held the volume lock, it is safe to get the devices. */
 853        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 854                struct rcu_string *name;
 855
 856                device = btrfs_alloc_device(NULL, &orig_dev->devid,
 857                                            orig_dev->uuid);
 858                if (IS_ERR(device))
 859                        goto error;
 860
 861                /*
 862                 * This is ok to do without rcu read locked because we hold the
 863                 * uuid mutex so nothing we touch in here is going to disappear.
 864                 */
 865                if (orig_dev->name) {
 866                        name = rcu_string_strdup(orig_dev->name->str,
 867                                        GFP_KERNEL);
 868                        if (!name) {
 869                                free_device(device);
 870                                goto error;
 871                        }
 872                        rcu_assign_pointer(device->name, name);
 873                }
 874
 875                list_add(&device->dev_list, &fs_devices->devices);
 876                device->fs_devices = fs_devices;
 877                fs_devices->num_devices++;
 878        }
 879        mutex_unlock(&orig->device_list_mutex);
 880        return fs_devices;
 881error:
 882        mutex_unlock(&orig->device_list_mutex);
 883        free_fs_devices(fs_devices);
 884        return ERR_PTR(-ENOMEM);
 885}
 886
 887/*
 888 * After we have read the system tree and know devids belonging to
 889 * this filesystem, remove the device which does not belong there.
 890 */
 891void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
 892{
 893        struct btrfs_device *device, *next;
 894        struct btrfs_device *latest_dev = NULL;
 895
 896        mutex_lock(&uuid_mutex);
 897again:
 898        /* This is the initialized path, it is safe to release the devices. */
 899        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 900                if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
 901                                                        &device->dev_state)) {
 902                        if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
 903                             &device->dev_state) &&
 904                             (!latest_dev ||
 905                              device->generation > latest_dev->generation)) {
 906                                latest_dev = device;
 907                        }
 908                        continue;
 909                }
 910
 911                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 912                        /*
 913                         * In the first step, keep the device which has
 914                         * the correct fsid and the devid that is used
 915                         * for the dev_replace procedure.
 916                         * In the second step, the dev_replace state is
 917                         * read from the device tree and it is known
 918                         * whether the procedure is really active or
 919                         * not, which means whether this device is
 920                         * used or whether it should be removed.
 921                         */
 922                        if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
 923                                                  &device->dev_state)) {
 924                                continue;
 925                        }
 926                }
 927                if (device->bdev) {
 928                        blkdev_put(device->bdev, device->mode);
 929                        device->bdev = NULL;
 930                        fs_devices->open_devices--;
 931                }
 932                if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 933                        list_del_init(&device->dev_alloc_list);
 934                        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 935                        if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
 936                                      &device->dev_state))
 937                                fs_devices->rw_devices--;
 938                }
 939                list_del_init(&device->dev_list);
 940                fs_devices->num_devices--;
 941                free_device(device);
 942        }
 943
 944        if (fs_devices->seed) {
 945                fs_devices = fs_devices->seed;
 946                goto again;
 947        }
 948
 949        fs_devices->latest_bdev = latest_dev->bdev;
 950
 951        mutex_unlock(&uuid_mutex);
 952}
 953
 954static void free_device_rcu(struct rcu_head *head)
 955{
 956        struct btrfs_device *device;
 957
 958        device = container_of(head, struct btrfs_device, rcu);
 959        free_device(device);
 960}
 961
 962static void btrfs_close_bdev(struct btrfs_device *device)
 963{
 964        if (!device->bdev)
 965                return;
 966
 967        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 968                sync_blockdev(device->bdev);
 969                invalidate_bdev(device->bdev);
 970        }
 971
 972        blkdev_put(device->bdev, device->mode);
 973}
 974
 975static void btrfs_prepare_close_one_device(struct btrfs_device *device)
 976{
 977        struct btrfs_fs_devices *fs_devices = device->fs_devices;
 978        struct btrfs_device *new_device;
 979        struct rcu_string *name;
 980
 981        if (device->bdev)
 982                fs_devices->open_devices--;
 983
 984        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 985            device->devid != BTRFS_DEV_REPLACE_DEVID) {
 986                list_del_init(&device->dev_alloc_list);
 987                fs_devices->rw_devices--;
 988        }
 989
 990        if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
 991                fs_devices->missing_devices--;
 992
 993        new_device = btrfs_alloc_device(NULL, &device->devid,
 994                                        device->uuid);
 995        BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
 996
 997        /* Safe because we are under uuid_mutex */
 998        if (device->name) {
 999                name = rcu_string_strdup(device->name->str, GFP_NOFS);
1000                BUG_ON(!name); /* -ENOMEM */
1001                rcu_assign_pointer(new_device->name, name);
1002        }
1003
1004        list_replace_rcu(&device->dev_list, &new_device->dev_list);
1005        new_device->fs_devices = device->fs_devices;
1006}
1007
1008static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1009{
1010        struct btrfs_device *device, *tmp;
1011        struct list_head pending_put;
1012
1013        INIT_LIST_HEAD(&pending_put);
1014
1015        if (--fs_devices->opened > 0)
1016                return 0;
1017
1018        mutex_lock(&fs_devices->device_list_mutex);
1019        list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1020                btrfs_prepare_close_one_device(device);
1021                list_add(&device->dev_list, &pending_put);
1022        }
1023        mutex_unlock(&fs_devices->device_list_mutex);
1024
1025        /*
1026         * btrfs_show_devname() is using the device_list_mutex,
1027         * sometimes call to blkdev_put() leads vfs calling
1028         * into this func. So do put outside of device_list_mutex,
1029         * as of now.
1030         */
1031        while (!list_empty(&pending_put)) {
1032                device = list_first_entry(&pending_put,
1033                                struct btrfs_device, dev_list);
1034                list_del(&device->dev_list);
1035                btrfs_close_bdev(device);
1036                call_rcu(&device->rcu, free_device_rcu);
1037        }
1038
1039        WARN_ON(fs_devices->open_devices);
1040        WARN_ON(fs_devices->rw_devices);
1041        fs_devices->opened = 0;
1042        fs_devices->seeding = 0;
1043
1044        return 0;
1045}
1046
1047int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1048{
1049        struct btrfs_fs_devices *seed_devices = NULL;
1050        int ret;
1051
1052        mutex_lock(&uuid_mutex);
1053        ret = __btrfs_close_devices(fs_devices);
1054        if (!fs_devices->opened) {
1055                seed_devices = fs_devices->seed;
1056                fs_devices->seed = NULL;
1057        }
1058        mutex_unlock(&uuid_mutex);
1059
1060        while (seed_devices) {
1061                fs_devices = seed_devices;
1062                seed_devices = fs_devices->seed;
1063                __btrfs_close_devices(fs_devices);
1064                free_fs_devices(fs_devices);
1065        }
1066        return ret;
1067}
1068
1069static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1070                                fmode_t flags, void *holder)
1071{
1072        struct list_head *head = &fs_devices->devices;
1073        struct btrfs_device *device;
1074        struct btrfs_device *latest_dev = NULL;
1075        int ret = 0;
1076
1077        flags |= FMODE_EXCL;
1078
1079        list_for_each_entry(device, head, dev_list) {
1080                /* Just open everything we can; ignore failures here */
1081                if (btrfs_open_one_device(fs_devices, device, flags, holder))
1082                        continue;
1083
1084                if (!latest_dev ||
1085                    device->generation > latest_dev->generation)
1086                        latest_dev = device;
1087        }
1088        if (fs_devices->open_devices == 0) {
1089                ret = -EINVAL;
1090                goto out;
1091        }
1092        fs_devices->opened = 1;
1093        fs_devices->latest_bdev = latest_dev->bdev;
1094        fs_devices->total_rw_bytes = 0;
1095out:
1096        return ret;
1097}
1098
1099static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1100{
1101        struct btrfs_device *dev1, *dev2;
1102
1103        dev1 = list_entry(a, struct btrfs_device, dev_list);
1104        dev2 = list_entry(b, struct btrfs_device, dev_list);
1105
1106        if (dev1->devid < dev2->devid)
1107                return -1;
1108        else if (dev1->devid > dev2->devid)
1109                return 1;
1110        return 0;
1111}
1112
1113int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1114                       fmode_t flags, void *holder)
1115{
1116        int ret;
1117
1118        mutex_lock(&uuid_mutex);
1119        if (fs_devices->opened) {
1120                fs_devices->opened++;
1121                ret = 0;
1122        } else {
1123                list_sort(NULL, &fs_devices->devices, devid_cmp);
1124                ret = __btrfs_open_devices(fs_devices, flags, holder);
1125        }
1126        mutex_unlock(&uuid_mutex);
1127        return ret;
1128}
1129
1130static void btrfs_release_disk_super(struct page *page)
1131{
1132        kunmap(page);
1133        put_page(page);
1134}
1135
1136static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1137                                 struct page **page,
1138                                 struct btrfs_super_block **disk_super)
1139{
1140        void *p;
1141        pgoff_t index;
1142
1143        /* make sure our super fits in the device */
1144        if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1145                return 1;
1146
1147        /* make sure our super fits in the page */
1148        if (sizeof(**disk_super) > PAGE_SIZE)
1149                return 1;
1150
1151        /* make sure our super doesn't straddle pages on disk */
1152        index = bytenr >> PAGE_SHIFT;
1153        if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1154                return 1;
1155
1156        /* pull in the page with our super */
1157        *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1158                                   index, GFP_KERNEL);
1159
1160        if (IS_ERR_OR_NULL(*page))
1161                return 1;
1162
1163        p = kmap(*page);
1164
1165        /* align our pointer to the offset of the super block */
1166        *disk_super = p + (bytenr & ~PAGE_MASK);
1167
1168        if (btrfs_super_bytenr(*disk_super) != bytenr ||
1169            btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1170                btrfs_release_disk_super(*page);
1171                return 1;
1172        }
1173
1174        if ((*disk_super)->label[0] &&
1175                (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1176                (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1177
1178        return 0;
1179}
1180
1181/*
1182 * Look for a btrfs signature on a device. This may be called out of the mount path
1183 * and we are not allowed to call set_blocksize during the scan. The superblock
1184 * is read via pagecache
1185 */
1186int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1187                          struct btrfs_fs_devices **fs_devices_ret)
1188{
1189        struct btrfs_super_block *disk_super;
1190        struct btrfs_device *device;
1191        struct block_device *bdev;
1192        struct page *page;
1193        int ret = 0;
1194        u64 bytenr;
1195
1196        /*
1197         * we would like to check all the supers, but that would make
1198         * a btrfs mount succeed after a mkfs from a different FS.
1199         * So, we need to add a special mount option to scan for
1200         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1201         */
1202        bytenr = btrfs_sb_offset(0);
1203        flags |= FMODE_EXCL;
1204        mutex_lock(&uuid_mutex);
1205
1206        bdev = blkdev_get_by_path(path, flags, holder);
1207        if (IS_ERR(bdev)) {
1208                ret = PTR_ERR(bdev);
1209                goto error;
1210        }
1211
1212        if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1213                ret = -EINVAL;
1214                goto error_bdev_put;
1215        }
1216
1217        device = device_list_add(path, disk_super);
1218        if (IS_ERR(device))
1219                ret = PTR_ERR(device);
1220        else
1221                *fs_devices_ret = device->fs_devices;
1222
1223        btrfs_release_disk_super(page);
1224
1225error_bdev_put:
1226        blkdev_put(bdev, flags);
1227error:
1228        mutex_unlock(&uuid_mutex);
1229        return ret;
1230}
1231
1232/* helper to account the used device space in the range */
1233int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1234                                   u64 end, u64 *length)
1235{
1236        struct btrfs_key key;
1237        struct btrfs_root *root = device->fs_info->dev_root;
1238        struct btrfs_dev_extent *dev_extent;
1239        struct btrfs_path *path;
1240        u64 extent_end;
1241        int ret;
1242        int slot;
1243        struct extent_buffer *l;
1244
1245        *length = 0;
1246
1247        if (start >= device->total_bytes ||
1248                test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1249                return 0;
1250
1251        path = btrfs_alloc_path();
1252        if (!path)
1253                return -ENOMEM;
1254        path->reada = READA_FORWARD;
1255
1256        key.objectid = device->devid;
1257        key.offset = start;
1258        key.type = BTRFS_DEV_EXTENT_KEY;
1259
1260        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1261        if (ret < 0)
1262                goto out;
1263        if (ret > 0) {
1264                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1265                if (ret < 0)
1266                        goto out;
1267        }
1268
1269        while (1) {
1270                l = path->nodes[0];
1271                slot = path->slots[0];
1272                if (slot >= btrfs_header_nritems(l)) {
1273                        ret = btrfs_next_leaf(root, path);
1274                        if (ret == 0)
1275                                continue;
1276                        if (ret < 0)
1277                                goto out;
1278
1279                        break;
1280                }
1281                btrfs_item_key_to_cpu(l, &key, slot);
1282
1283                if (key.objectid < device->devid)
1284                        goto next;
1285
1286                if (key.objectid > device->devid)
1287                        break;
1288
1289                if (key.type != BTRFS_DEV_EXTENT_KEY)
1290                        goto next;
1291
1292                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1293                extent_end = key.offset + btrfs_dev_extent_length(l,
1294                                                                  dev_extent);
1295                if (key.offset <= start && extent_end > end) {
1296                        *length = end - start + 1;
1297                        break;
1298                } else if (key.offset <= start && extent_end > start)
1299                        *length += extent_end - start;
1300                else if (key.offset > start && extent_end <= end)
1301                        *length += extent_end - key.offset;
1302                else if (key.offset > start && key.offset <= end) {
1303                        *length += end - key.offset + 1;
1304                        break;
1305                } else if (key.offset > end)
1306                        break;
1307
1308next:
1309                path->slots[0]++;
1310        }
1311        ret = 0;
1312out:
1313        btrfs_free_path(path);
1314        return ret;
1315}
1316
1317static int contains_pending_extent(struct btrfs_transaction *transaction,
1318                                   struct btrfs_device *device,
1319                                   u64 *start, u64 len)
1320{
1321        struct btrfs_fs_info *fs_info = device->fs_info;
1322        struct extent_map *em;
1323        struct list_head *search_list = &fs_info->pinned_chunks;
1324        int ret = 0;
1325        u64 physical_start = *start;
1326
1327        if (transaction)
1328                search_list = &transaction->pending_chunks;
1329again:
1330        list_for_each_entry(em, search_list, list) {
1331                struct map_lookup *map;
1332                int i;
1333
1334                map = em->map_lookup;
1335                for (i = 0; i < map->num_stripes; i++) {
1336                        u64 end;
1337
1338                        if (map->stripes[i].dev != device)
1339                                continue;
1340                        if (map->stripes[i].physical >= physical_start + len ||
1341                            map->stripes[i].physical + em->orig_block_len <=
1342                            physical_start)
1343                                continue;
1344                        /*
1345                         * Make sure that while processing the pinned list we do
1346                         * not override our *start with a lower value, because
1347                         * we can have pinned chunks that fall within this
1348                         * device hole and that have lower physical addresses
1349                         * than the pending chunks we processed before. If we
1350                         * do not take this special care we can end up getting
1351                         * 2 pending chunks that start at the same physical
1352                         * device offsets because the end offset of a pinned
1353                         * chunk can be equal to the start offset of some
1354                         * pending chunk.
1355                         */
1356                        end = map->stripes[i].physical + em->orig_block_len;
1357                        if (end > *start) {
1358                                *start = end;
1359                                ret = 1;
1360                        }
1361                }
1362        }
1363        if (search_list != &fs_info->pinned_chunks) {
1364                search_list = &fs_info->pinned_chunks;
1365                goto again;
1366        }
1367
1368        return ret;
1369}
1370
1371
1372/*
1373 * find_free_dev_extent_start - find free space in the specified device
1374 * @device:       the device which we search the free space in
1375 * @num_bytes:    the size of the free space that we need
1376 * @search_start: the position from which to begin the search
1377 * @start:        store the start of the free space.
1378 * @len:          the size of the free space. that we find, or the size
1379 *                of the max free space if we don't find suitable free space
1380 *
1381 * this uses a pretty simple search, the expectation is that it is
1382 * called very infrequently and that a given device has a small number
1383 * of extents
1384 *
1385 * @start is used to store the start of the free space if we find. But if we
1386 * don't find suitable free space, it will be used to store the start position
1387 * of the max free space.
1388 *
1389 * @len is used to store the size of the free space that we find.
1390 * But if we don't find suitable free space, it is used to store the size of
1391 * the max free space.
1392 */
1393int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1394                               struct btrfs_device *device, u64 num_bytes,
1395                               u64 search_start, u64 *start, u64 *len)
1396{
1397        struct btrfs_fs_info *fs_info = device->fs_info;
1398        struct btrfs_root *root = fs_info->dev_root;
1399        struct btrfs_key key;
1400        struct btrfs_dev_extent *dev_extent;
1401        struct btrfs_path *path;
1402        u64 hole_size;
1403        u64 max_hole_start;
1404        u64 max_hole_size;
1405        u64 extent_end;
1406        u64 search_end = device->total_bytes;
1407        int ret;
1408        int slot;
1409        struct extent_buffer *l;
1410
1411        /*
1412         * We don't want to overwrite the superblock on the drive nor any area
1413         * used by the boot loader (grub for example), so we make sure to start
1414         * at an offset of at least 1MB.
1415         */
1416        search_start = max_t(u64, search_start, SZ_1M);
1417
1418        path = btrfs_alloc_path();
1419        if (!path)
1420                return -ENOMEM;
1421
1422        max_hole_start = search_start;
1423        max_hole_size = 0;
1424
1425again:
1426        if (search_start >= search_end ||
1427                test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1428                ret = -ENOSPC;
1429                goto out;
1430        }
1431
1432        path->reada = READA_FORWARD;
1433        path->search_commit_root = 1;
1434        path->skip_locking = 1;
1435
1436        key.objectid = device->devid;
1437        key.offset = search_start;
1438        key.type = BTRFS_DEV_EXTENT_KEY;
1439
1440        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1441        if (ret < 0)
1442                goto out;
1443        if (ret > 0) {
1444                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1445                if (ret < 0)
1446                        goto out;
1447        }
1448
1449        while (1) {
1450                l = path->nodes[0];
1451                slot = path->slots[0];
1452                if (slot >= btrfs_header_nritems(l)) {
1453                        ret = btrfs_next_leaf(root, path);
1454                        if (ret == 0)
1455                                continue;
1456                        if (ret < 0)
1457                                goto out;
1458
1459                        break;
1460                }
1461                btrfs_item_key_to_cpu(l, &key, slot);
1462
1463                if (key.objectid < device->devid)
1464                        goto next;
1465
1466                if (key.objectid > device->devid)
1467                        break;
1468
1469                if (key.type != BTRFS_DEV_EXTENT_KEY)
1470                        goto next;
1471
1472                if (key.offset > search_start) {
1473                        hole_size = key.offset - search_start;
1474
1475                        /*
1476                         * Have to check before we set max_hole_start, otherwise
1477                         * we could end up sending back this offset anyway.
1478                         */
1479                        if (contains_pending_extent(transaction, device,
1480                                                    &search_start,
1481                                                    hole_size)) {
1482                                if (key.offset >= search_start) {
1483                                        hole_size = key.offset - search_start;
1484                                } else {
1485                                        WARN_ON_ONCE(1);
1486                                        hole_size = 0;
1487                                }
1488                        }
1489
1490                        if (hole_size > max_hole_size) {
1491                                max_hole_start = search_start;
1492                                max_hole_size = hole_size;
1493                        }
1494
1495                        /*
1496                         * If this free space is greater than which we need,
1497                         * it must be the max free space that we have found
1498                         * until now, so max_hole_start must point to the start
1499                         * of this free space and the length of this free space
1500                         * is stored in max_hole_size. Thus, we return
1501                         * max_hole_start and max_hole_size and go back to the
1502                         * caller.
1503                         */
1504                        if (hole_size >= num_bytes) {
1505                                ret = 0;
1506                                goto out;
1507                        }
1508                }
1509
1510                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1511                extent_end = key.offset + btrfs_dev_extent_length(l,
1512                                                                  dev_extent);
1513                if (extent_end > search_start)
1514                        search_start = extent_end;
1515next:
1516                path->slots[0]++;
1517                cond_resched();
1518        }
1519
1520        /*
1521         * At this point, search_start should be the end of
1522         * allocated dev extents, and when shrinking the device,
1523         * search_end may be smaller than search_start.
1524         */
1525        if (search_end > search_start) {
1526                hole_size = search_end - search_start;
1527
1528                if (contains_pending_extent(transaction, device, &search_start,
1529                                            hole_size)) {
1530                        btrfs_release_path(path);
1531                        goto again;
1532                }
1533
1534                if (hole_size > max_hole_size) {
1535                        max_hole_start = search_start;
1536                        max_hole_size = hole_size;
1537                }
1538        }
1539
1540        /* See above. */
1541        if (max_hole_size < num_bytes)
1542                ret = -ENOSPC;
1543        else
1544                ret = 0;
1545
1546out:
1547        btrfs_free_path(path);
1548        *start = max_hole_start;
1549        if (len)
1550                *len = max_hole_size;
1551        return ret;
1552}
1553
1554int find_free_dev_extent(struct btrfs_trans_handle *trans,
1555                         struct btrfs_device *device, u64 num_bytes,
1556                         u64 *start, u64 *len)
1557{
1558        /* FIXME use last free of some kind */
1559        return find_free_dev_extent_start(trans->transaction, device,
1560                                          num_bytes, 0, start, len);
1561}
1562
1563static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1564                          struct btrfs_device *device,
1565                          u64 start, u64 *dev_extent_len)
1566{
1567        struct btrfs_fs_info *fs_info = device->fs_info;
1568        struct btrfs_root *root = fs_info->dev_root;
1569        int ret;
1570        struct btrfs_path *path;
1571        struct btrfs_key key;
1572        struct btrfs_key found_key;
1573        struct extent_buffer *leaf = NULL;
1574        struct btrfs_dev_extent *extent = NULL;
1575
1576        path = btrfs_alloc_path();
1577        if (!path)
1578                return -ENOMEM;
1579
1580        key.objectid = device->devid;
1581        key.offset = start;
1582        key.type = BTRFS_DEV_EXTENT_KEY;
1583again:
1584        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1585        if (ret > 0) {
1586                ret = btrfs_previous_item(root, path, key.objectid,
1587                                          BTRFS_DEV_EXTENT_KEY);
1588                if (ret)
1589                        goto out;
1590                leaf = path->nodes[0];
1591                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1592                extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                        struct btrfs_dev_extent);
1594                BUG_ON(found_key.offset > start || found_key.offset +
1595                       btrfs_dev_extent_length(leaf, extent) < start);
1596                key = found_key;
1597                btrfs_release_path(path);
1598                goto again;
1599        } else if (ret == 0) {
1600                leaf = path->nodes[0];
1601                extent = btrfs_item_ptr(leaf, path->slots[0],
1602                                        struct btrfs_dev_extent);
1603        } else {
1604                btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1605                goto out;
1606        }
1607
1608        *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1609
1610        ret = btrfs_del_item(trans, root, path);
1611        if (ret) {
1612                btrfs_handle_fs_error(fs_info, ret,
1613                                      "Failed to remove dev extent item");
1614        } else {
1615                set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1616        }
1617out:
1618        btrfs_free_path(path);
1619        return ret;
1620}
1621
1622static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1623                                  struct btrfs_device *device,
1624                                  u64 chunk_offset, u64 start, u64 num_bytes)
1625{
1626        int ret;
1627        struct btrfs_path *path;
1628        struct btrfs_fs_info *fs_info = device->fs_info;
1629        struct btrfs_root *root = fs_info->dev_root;
1630        struct btrfs_dev_extent *extent;
1631        struct extent_buffer *leaf;
1632        struct btrfs_key key;
1633
1634        WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1635        WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1636        path = btrfs_alloc_path();
1637        if (!path)
1638                return -ENOMEM;
1639
1640        key.objectid = device->devid;
1641        key.offset = start;
1642        key.type = BTRFS_DEV_EXTENT_KEY;
1643        ret = btrfs_insert_empty_item(trans, root, path, &key,
1644                                      sizeof(*extent));
1645        if (ret)
1646                goto out;
1647
1648        leaf = path->nodes[0];
1649        extent = btrfs_item_ptr(leaf, path->slots[0],
1650                                struct btrfs_dev_extent);
1651        btrfs_set_dev_extent_chunk_tree(leaf, extent,
1652                                        BTRFS_CHUNK_TREE_OBJECTID);
1653        btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1654                                            BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1655        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1656
1657        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1658        btrfs_mark_buffer_dirty(leaf);
1659out:
1660        btrfs_free_path(path);
1661        return ret;
1662}
1663
1664static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1665{
1666        struct extent_map_tree *em_tree;
1667        struct extent_map *em;
1668        struct rb_node *n;
1669        u64 ret = 0;
1670
1671        em_tree = &fs_info->mapping_tree.map_tree;
1672        read_lock(&em_tree->lock);
1673        n = rb_last(&em_tree->map);
1674        if (n) {
1675                em = rb_entry(n, struct extent_map, rb_node);
1676                ret = em->start + em->len;
1677        }
1678        read_unlock(&em_tree->lock);
1679
1680        return ret;
1681}
1682
1683static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1684                                    u64 *devid_ret)
1685{
1686        int ret;
1687        struct btrfs_key key;
1688        struct btrfs_key found_key;
1689        struct btrfs_path *path;
1690
1691        path = btrfs_alloc_path();
1692        if (!path)
1693                return -ENOMEM;
1694
1695        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1696        key.type = BTRFS_DEV_ITEM_KEY;
1697        key.offset = (u64)-1;
1698
1699        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1700        if (ret < 0)
1701                goto error;
1702
1703        BUG_ON(ret == 0); /* Corruption */
1704
1705        ret = btrfs_previous_item(fs_info->chunk_root, path,
1706                                  BTRFS_DEV_ITEMS_OBJECTID,
1707                                  BTRFS_DEV_ITEM_KEY);
1708        if (ret) {
1709                *devid_ret = 1;
1710        } else {
1711                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1712                                      path->slots[0]);
1713                *devid_ret = found_key.offset + 1;
1714        }
1715        ret = 0;
1716error:
1717        btrfs_free_path(path);
1718        return ret;
1719}
1720
1721/*
1722 * the device information is stored in the chunk root
1723 * the btrfs_device struct should be fully filled in
1724 */
1725static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1726                            struct btrfs_fs_info *fs_info,
1727                            struct btrfs_device *device)
1728{
1729        struct btrfs_root *root = fs_info->chunk_root;
1730        int ret;
1731        struct btrfs_path *path;
1732        struct btrfs_dev_item *dev_item;
1733        struct extent_buffer *leaf;
1734        struct btrfs_key key;
1735        unsigned long ptr;
1736
1737        path = btrfs_alloc_path();
1738        if (!path)
1739                return -ENOMEM;
1740
1741        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1742        key.type = BTRFS_DEV_ITEM_KEY;
1743        key.offset = device->devid;
1744
1745        ret = btrfs_insert_empty_item(trans, root, path, &key,
1746                                      sizeof(*dev_item));
1747        if (ret)
1748                goto out;
1749
1750        leaf = path->nodes[0];
1751        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1752
1753        btrfs_set_device_id(leaf, dev_item, device->devid);
1754        btrfs_set_device_generation(leaf, dev_item, 0);
1755        btrfs_set_device_type(leaf, dev_item, device->type);
1756        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1757        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1758        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1759        btrfs_set_device_total_bytes(leaf, dev_item,
1760                                     btrfs_device_get_disk_total_bytes(device));
1761        btrfs_set_device_bytes_used(leaf, dev_item,
1762                                    btrfs_device_get_bytes_used(device));
1763        btrfs_set_device_group(leaf, dev_item, 0);
1764        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1765        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1766        btrfs_set_device_start_offset(leaf, dev_item, 0);
1767
1768        ptr = btrfs_device_uuid(dev_item);
1769        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1770        ptr = btrfs_device_fsid(dev_item);
1771        write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1772        btrfs_mark_buffer_dirty(leaf);
1773
1774        ret = 0;
1775out:
1776        btrfs_free_path(path);
1777        return ret;
1778}
1779
1780/*
1781 * Function to update ctime/mtime for a given device path.
1782 * Mainly used for ctime/mtime based probe like libblkid.
1783 */
1784static void update_dev_time(const char *path_name)
1785{
1786        struct file *filp;
1787
1788        filp = filp_open(path_name, O_RDWR, 0);
1789        if (IS_ERR(filp))
1790                return;
1791        file_update_time(filp);
1792        filp_close(filp, NULL);
1793}
1794
1795static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1796                             struct btrfs_device *device)
1797{
1798        struct btrfs_root *root = fs_info->chunk_root;
1799        int ret;
1800        struct btrfs_path *path;
1801        struct btrfs_key key;
1802        struct btrfs_trans_handle *trans;
1803
1804        path = btrfs_alloc_path();
1805        if (!path)
1806                return -ENOMEM;
1807
1808        trans = btrfs_start_transaction(root, 0);
1809        if (IS_ERR(trans)) {
1810                btrfs_free_path(path);
1811                return PTR_ERR(trans);
1812        }
1813        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1814        key.type = BTRFS_DEV_ITEM_KEY;
1815        key.offset = device->devid;
1816
1817        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1818        if (ret) {
1819                if (ret > 0)
1820                        ret = -ENOENT;
1821                btrfs_abort_transaction(trans, ret);
1822                btrfs_end_transaction(trans);
1823                goto out;
1824        }
1825
1826        ret = btrfs_del_item(trans, root, path);
1827        if (ret) {
1828                btrfs_abort_transaction(trans, ret);
1829                btrfs_end_transaction(trans);
1830        }
1831
1832out:
1833        btrfs_free_path(path);
1834        if (!ret)
1835                ret = btrfs_commit_transaction(trans);
1836        return ret;
1837}
1838
1839/*
1840 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1841 * filesystem. It's up to the caller to adjust that number regarding eg. device
1842 * replace.
1843 */
1844static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1845                u64 num_devices)
1846{
1847        u64 all_avail;
1848        unsigned seq;
1849        int i;
1850
1851        do {
1852                seq = read_seqbegin(&fs_info->profiles_lock);
1853
1854                all_avail = fs_info->avail_data_alloc_bits |
1855                            fs_info->avail_system_alloc_bits |
1856                            fs_info->avail_metadata_alloc_bits;
1857        } while (read_seqretry(&fs_info->profiles_lock, seq));
1858
1859        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1860                if (!(all_avail & btrfs_raid_group[i]))
1861                        continue;
1862
1863                if (num_devices < btrfs_raid_array[i].devs_min) {
1864                        int ret = btrfs_raid_mindev_error[i];
1865
1866                        if (ret)
1867                                return ret;
1868                }
1869        }
1870
1871        return 0;
1872}
1873
1874static struct btrfs_device * btrfs_find_next_active_device(
1875                struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1876{
1877        struct btrfs_device *next_device;
1878
1879        list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1880                if (next_device != device &&
1881                    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1882                    && next_device->bdev)
1883                        return next_device;
1884        }
1885
1886        return NULL;
1887}
1888
1889/*
1890 * Helper function to check if the given device is part of s_bdev / latest_bdev
1891 * and replace it with the provided or the next active device, in the context
1892 * where this function called, there should be always be another device (or
1893 * this_dev) which is active.
1894 */
1895void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1896                struct btrfs_device *device, struct btrfs_device *this_dev)
1897{
1898        struct btrfs_device *next_device;
1899
1900        if (this_dev)
1901                next_device = this_dev;
1902        else
1903                next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1904                                                                device);
1905        ASSERT(next_device);
1906
1907        if (fs_info->sb->s_bdev &&
1908                        (fs_info->sb->s_bdev == device->bdev))
1909                fs_info->sb->s_bdev = next_device->bdev;
1910
1911        if (fs_info->fs_devices->latest_bdev == device->bdev)
1912                fs_info->fs_devices->latest_bdev = next_device->bdev;
1913}
1914
1915int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1916                u64 devid)
1917{
1918        struct btrfs_device *device;
1919        struct btrfs_fs_devices *cur_devices;
1920        u64 num_devices;
1921        int ret = 0;
1922
1923        mutex_lock(&fs_info->volume_mutex);
1924        mutex_lock(&uuid_mutex);
1925
1926        num_devices = fs_info->fs_devices->num_devices;
1927        btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1928        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1929                WARN_ON(num_devices < 1);
1930                num_devices--;
1931        }
1932        btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1933
1934        ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1935        if (ret)
1936                goto out;
1937
1938        ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1939                                           &device);
1940        if (ret)
1941                goto out;
1942
1943        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1944                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1945                goto out;
1946        }
1947
1948        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1949            fs_info->fs_devices->rw_devices == 1) {
1950                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1951                goto out;
1952        }
1953
1954        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1955                mutex_lock(&fs_info->chunk_mutex);
1956                list_del_init(&device->dev_alloc_list);
1957                device->fs_devices->rw_devices--;
1958                mutex_unlock(&fs_info->chunk_mutex);
1959        }
1960
1961        mutex_unlock(&uuid_mutex);
1962        ret = btrfs_shrink_device(device, 0);
1963        mutex_lock(&uuid_mutex);
1964        if (ret)
1965                goto error_undo;
1966
1967        /*
1968         * TODO: the superblock still includes this device in its num_devices
1969         * counter although write_all_supers() is not locked out. This
1970         * could give a filesystem state which requires a degraded mount.
1971         */
1972        ret = btrfs_rm_dev_item(fs_info, device);
1973        if (ret)
1974                goto error_undo;
1975
1976        clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1977        btrfs_scrub_cancel_dev(fs_info, device);
1978
1979        /*
1980         * the device list mutex makes sure that we don't change
1981         * the device list while someone else is writing out all
1982         * the device supers. Whoever is writing all supers, should
1983         * lock the device list mutex before getting the number of
1984         * devices in the super block (super_copy). Conversely,
1985         * whoever updates the number of devices in the super block
1986         * (super_copy) should hold the device list mutex.
1987         */
1988
1989        cur_devices = device->fs_devices;
1990        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1991        list_del_rcu(&device->dev_list);
1992
1993        device->fs_devices->num_devices--;
1994        device->fs_devices->total_devices--;
1995
1996        if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1997                device->fs_devices->missing_devices--;
1998
1999        btrfs_assign_next_active_device(fs_info, device, NULL);
2000
2001        if (device->bdev) {
2002                device->fs_devices->open_devices--;
2003                /* remove sysfs entry */
2004                btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2005        }
2006
2007        num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2008        btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2009        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2010
2011        /*
2012         * at this point, the device is zero sized and detached from
2013         * the devices list.  All that's left is to zero out the old
2014         * supers and free the device.
2015         */
2016        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2017                btrfs_scratch_superblocks(device->bdev, device->name->str);
2018
2019        btrfs_close_bdev(device);
2020        call_rcu(&device->rcu, free_device_rcu);
2021
2022        if (cur_devices->open_devices == 0) {
2023                struct btrfs_fs_devices *fs_devices;
2024                fs_devices = fs_info->fs_devices;
2025                while (fs_devices) {
2026                        if (fs_devices->seed == cur_devices) {
2027                                fs_devices->seed = cur_devices->seed;
2028                                break;
2029                        }
2030                        fs_devices = fs_devices->seed;
2031                }
2032                cur_devices->seed = NULL;
2033                __btrfs_close_devices(cur_devices);
2034                free_fs_devices(cur_devices);
2035        }
2036
2037out:
2038        mutex_unlock(&uuid_mutex);
2039        mutex_unlock(&fs_info->volume_mutex);
2040        return ret;
2041
2042error_undo:
2043        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2044                mutex_lock(&fs_info->chunk_mutex);
2045                list_add(&device->dev_alloc_list,
2046                         &fs_info->fs_devices->alloc_list);
2047                device->fs_devices->rw_devices++;
2048                mutex_unlock(&fs_info->chunk_mutex);
2049        }
2050        goto out;
2051}
2052
2053void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2054                                        struct btrfs_device *srcdev)
2055{
2056        struct btrfs_fs_devices *fs_devices;
2057
2058        lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2059
2060        /*
2061         * in case of fs with no seed, srcdev->fs_devices will point
2062         * to fs_devices of fs_info. However when the dev being replaced is
2063         * a seed dev it will point to the seed's local fs_devices. In short
2064         * srcdev will have its correct fs_devices in both the cases.
2065         */
2066        fs_devices = srcdev->fs_devices;
2067
2068        list_del_rcu(&srcdev->dev_list);
2069        list_del(&srcdev->dev_alloc_list);
2070        fs_devices->num_devices--;
2071        if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2072                fs_devices->missing_devices--;
2073
2074        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2075                fs_devices->rw_devices--;
2076
2077        if (srcdev->bdev)
2078                fs_devices->open_devices--;
2079}
2080
2081void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2082                                      struct btrfs_device *srcdev)
2083{
2084        struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2085
2086        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2087                /* zero out the old super if it is writable */
2088                btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2089        }
2090
2091        btrfs_close_bdev(srcdev);
2092        call_rcu(&srcdev->rcu, free_device_rcu);
2093
2094        /* if this is no devs we rather delete the fs_devices */
2095        if (!fs_devices->num_devices) {
2096                struct btrfs_fs_devices *tmp_fs_devices;
2097
2098                /*
2099                 * On a mounted FS, num_devices can't be zero unless it's a
2100                 * seed. In case of a seed device being replaced, the replace
2101                 * target added to the sprout FS, so there will be no more
2102                 * device left under the seed FS.
2103                 */
2104                ASSERT(fs_devices->seeding);
2105
2106                tmp_fs_devices = fs_info->fs_devices;
2107                while (tmp_fs_devices) {
2108                        if (tmp_fs_devices->seed == fs_devices) {
2109                                tmp_fs_devices->seed = fs_devices->seed;
2110                                break;
2111                        }
2112                        tmp_fs_devices = tmp_fs_devices->seed;
2113                }
2114                fs_devices->seed = NULL;
2115                __btrfs_close_devices(fs_devices);
2116                free_fs_devices(fs_devices);
2117        }
2118}
2119
2120void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2121                                      struct btrfs_device *tgtdev)
2122{
2123        mutex_lock(&uuid_mutex);
2124        WARN_ON(!tgtdev);
2125        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2126
2127        btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2128
2129        if (tgtdev->bdev)
2130                fs_info->fs_devices->open_devices--;
2131
2132        fs_info->fs_devices->num_devices--;
2133
2134        btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2135
2136        list_del_rcu(&tgtdev->dev_list);
2137
2138        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2139        mutex_unlock(&uuid_mutex);
2140
2141        /*
2142         * The update_dev_time() with in btrfs_scratch_superblocks()
2143         * may lead to a call to btrfs_show_devname() which will try
2144         * to hold device_list_mutex. And here this device
2145         * is already out of device list, so we don't have to hold
2146         * the device_list_mutex lock.
2147         */
2148        btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2149
2150        btrfs_close_bdev(tgtdev);
2151        call_rcu(&tgtdev->rcu, free_device_rcu);
2152}
2153
2154static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2155                                     const char *device_path,
2156                                     struct btrfs_device **device)
2157{
2158        int ret = 0;
2159        struct btrfs_super_block *disk_super;
2160        u64 devid;
2161        u8 *dev_uuid;
2162        struct block_device *bdev;
2163        struct buffer_head *bh;
2164
2165        *device = NULL;
2166        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2167                                    fs_info->bdev_holder, 0, &bdev, &bh);
2168        if (ret)
2169                return ret;
2170        disk_super = (struct btrfs_super_block *)bh->b_data;
2171        devid = btrfs_stack_device_id(&disk_super->dev_item);
2172        dev_uuid = disk_super->dev_item.uuid;
2173        *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2174        brelse(bh);
2175        if (!*device)
2176                ret = -ENOENT;
2177        blkdev_put(bdev, FMODE_READ);
2178        return ret;
2179}
2180
2181int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2182                                         const char *device_path,
2183                                         struct btrfs_device **device)
2184{
2185        *device = NULL;
2186        if (strcmp(device_path, "missing") == 0) {
2187                struct list_head *devices;
2188                struct btrfs_device *tmp;
2189
2190                devices = &fs_info->fs_devices->devices;
2191                /*
2192                 * It is safe to read the devices since the volume_mutex
2193                 * is held by the caller.
2194                 */
2195                list_for_each_entry(tmp, devices, dev_list) {
2196                        if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2197                                        &tmp->dev_state) && !tmp->bdev) {
2198                                *device = tmp;
2199                                break;
2200                        }
2201                }
2202
2203                if (!*device)
2204                        return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2205
2206                return 0;
2207        } else {
2208                return btrfs_find_device_by_path(fs_info, device_path, device);
2209        }
2210}
2211
2212/*
2213 * Lookup a device given by device id, or the path if the id is 0.
2214 */
2215int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2216                                 const char *devpath,
2217                                 struct btrfs_device **device)
2218{
2219        int ret;
2220
2221        if (devid) {
2222                ret = 0;
2223                *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2224                if (!*device)
2225                        ret = -ENOENT;
2226        } else {
2227                if (!devpath || !devpath[0])
2228                        return -EINVAL;
2229
2230                ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2231                                                           device);
2232        }
2233        return ret;
2234}
2235
2236/*
2237 * does all the dirty work required for changing file system's UUID.
2238 */
2239static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2240{
2241        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2242        struct btrfs_fs_devices *old_devices;
2243        struct btrfs_fs_devices *seed_devices;
2244        struct btrfs_super_block *disk_super = fs_info->super_copy;
2245        struct btrfs_device *device;
2246        u64 super_flags;
2247
2248        lockdep_assert_held(&uuid_mutex);
2249        if (!fs_devices->seeding)
2250                return -EINVAL;
2251
2252        seed_devices = alloc_fs_devices(NULL);
2253        if (IS_ERR(seed_devices))
2254                return PTR_ERR(seed_devices);
2255
2256        old_devices = clone_fs_devices(fs_devices);
2257        if (IS_ERR(old_devices)) {
2258                kfree(seed_devices);
2259                return PTR_ERR(old_devices);
2260        }
2261
2262        list_add(&old_devices->list, &fs_uuids);
2263
2264        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2265        seed_devices->opened = 1;
2266        INIT_LIST_HEAD(&seed_devices->devices);
2267        INIT_LIST_HEAD(&seed_devices->alloc_list);
2268        mutex_init(&seed_devices->device_list_mutex);
2269
2270        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2271        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2272                              synchronize_rcu);
2273        list_for_each_entry(device, &seed_devices->devices, dev_list)
2274                device->fs_devices = seed_devices;
2275
2276        mutex_lock(&fs_info->chunk_mutex);
2277        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2278        mutex_unlock(&fs_info->chunk_mutex);
2279
2280        fs_devices->seeding = 0;
2281        fs_devices->num_devices = 0;
2282        fs_devices->open_devices = 0;
2283        fs_devices->missing_devices = 0;
2284        fs_devices->rotating = 0;
2285        fs_devices->seed = seed_devices;
2286
2287        generate_random_uuid(fs_devices->fsid);
2288        memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2289        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2290        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2291
2292        super_flags = btrfs_super_flags(disk_super) &
2293                      ~BTRFS_SUPER_FLAG_SEEDING;
2294        btrfs_set_super_flags(disk_super, super_flags);
2295
2296        return 0;
2297}
2298
2299/*
2300 * Store the expected generation for seed devices in device items.
2301 */
2302static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2303                               struct btrfs_fs_info *fs_info)
2304{
2305        struct btrfs_root *root = fs_info->chunk_root;
2306        struct btrfs_path *path;
2307        struct extent_buffer *leaf;
2308        struct btrfs_dev_item *dev_item;
2309        struct btrfs_device *device;
2310        struct btrfs_key key;
2311        u8 fs_uuid[BTRFS_FSID_SIZE];
2312        u8 dev_uuid[BTRFS_UUID_SIZE];
2313        u64 devid;
2314        int ret;
2315
2316        path = btrfs_alloc_path();
2317        if (!path)
2318                return -ENOMEM;
2319
2320        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2321        key.offset = 0;
2322        key.type = BTRFS_DEV_ITEM_KEY;
2323
2324        while (1) {
2325                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2326                if (ret < 0)
2327                        goto error;
2328
2329                leaf = path->nodes[0];
2330next_slot:
2331                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2332                        ret = btrfs_next_leaf(root, path);
2333                        if (ret > 0)
2334                                break;
2335                        if (ret < 0)
2336                                goto error;
2337                        leaf = path->nodes[0];
2338                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2339                        btrfs_release_path(path);
2340                        continue;
2341                }
2342
2343                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2344                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2345                    key.type != BTRFS_DEV_ITEM_KEY)
2346                        break;
2347
2348                dev_item = btrfs_item_ptr(leaf, path->slots[0],
2349                                          struct btrfs_dev_item);
2350                devid = btrfs_device_id(leaf, dev_item);
2351                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2352                                   BTRFS_UUID_SIZE);
2353                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2354                                   BTRFS_FSID_SIZE);
2355                device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2356                BUG_ON(!device); /* Logic error */
2357
2358                if (device->fs_devices->seeding) {
2359                        btrfs_set_device_generation(leaf, dev_item,
2360                                                    device->generation);
2361                        btrfs_mark_buffer_dirty(leaf);
2362                }
2363
2364                path->slots[0]++;
2365                goto next_slot;
2366        }
2367        ret = 0;
2368error:
2369        btrfs_free_path(path);
2370        return ret;
2371}
2372
2373int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2374{
2375        struct btrfs_root *root = fs_info->dev_root;
2376        struct request_queue *q;
2377        struct btrfs_trans_handle *trans;
2378        struct btrfs_device *device;
2379        struct block_device *bdev;
2380        struct list_head *devices;
2381        struct super_block *sb = fs_info->sb;
2382        struct rcu_string *name;
2383        u64 tmp;
2384        int seeding_dev = 0;
2385        int ret = 0;
2386        bool unlocked = false;
2387
2388        if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2389                return -EROFS;
2390
2391        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2392                                  fs_info->bdev_holder);
2393        if (IS_ERR(bdev))
2394                return PTR_ERR(bdev);
2395
2396        if (fs_info->fs_devices->seeding) {
2397                seeding_dev = 1;
2398                down_write(&sb->s_umount);
2399                mutex_lock(&uuid_mutex);
2400        }
2401
2402        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2403
2404        devices = &fs_info->fs_devices->devices;
2405
2406        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2407        list_for_each_entry(device, devices, dev_list) {
2408                if (device->bdev == bdev) {
2409                        ret = -EEXIST;
2410                        mutex_unlock(
2411                                &fs_info->fs_devices->device_list_mutex);
2412                        goto error;
2413                }
2414        }
2415        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2416
2417        device = btrfs_alloc_device(fs_info, NULL, NULL);
2418        if (IS_ERR(device)) {
2419                /* we can safely leave the fs_devices entry around */
2420                ret = PTR_ERR(device);
2421                goto error;
2422        }
2423
2424        name = rcu_string_strdup(device_path, GFP_KERNEL);
2425        if (!name) {
2426                ret = -ENOMEM;
2427                goto error_free_device;
2428        }
2429        rcu_assign_pointer(device->name, name);
2430
2431        trans = btrfs_start_transaction(root, 0);
2432        if (IS_ERR(trans)) {
2433                ret = PTR_ERR(trans);
2434                goto error_free_device;
2435        }
2436
2437        q = bdev_get_queue(bdev);
2438        set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2439        device->generation = trans->transid;
2440        device->io_width = fs_info->sectorsize;
2441        device->io_align = fs_info->sectorsize;
2442        device->sector_size = fs_info->sectorsize;
2443        device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2444                                         fs_info->sectorsize);
2445        device->disk_total_bytes = device->total_bytes;
2446        device->commit_total_bytes = device->total_bytes;
2447        device->fs_info = fs_info;
2448        device->bdev = bdev;
2449        set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2450        clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2451        device->mode = FMODE_EXCL;
2452        device->dev_stats_valid = 1;
2453        set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2454
2455        if (seeding_dev) {
2456                sb->s_flags &= ~SB_RDONLY;
2457                ret = btrfs_prepare_sprout(fs_info);
2458                if (ret) {
2459                        btrfs_abort_transaction(trans, ret);
2460                        goto error_trans;
2461                }
2462        }
2463
2464        device->fs_devices = fs_info->fs_devices;
2465
2466        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2467        mutex_lock(&fs_info->chunk_mutex);
2468        list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2469        list_add(&device->dev_alloc_list,
2470                 &fs_info->fs_devices->alloc_list);
2471        fs_info->fs_devices->num_devices++;
2472        fs_info->fs_devices->open_devices++;
2473        fs_info->fs_devices->rw_devices++;
2474        fs_info->fs_devices->total_devices++;
2475        fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2476
2477        atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2478
2479        if (!blk_queue_nonrot(q))
2480                fs_info->fs_devices->rotating = 1;
2481
2482        tmp = btrfs_super_total_bytes(fs_info->super_copy);
2483        btrfs_set_super_total_bytes(fs_info->super_copy,
2484                round_down(tmp + device->total_bytes, fs_info->sectorsize));
2485
2486        tmp = btrfs_super_num_devices(fs_info->super_copy);
2487        btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2488
2489        /* add sysfs device entry */
2490        btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2491
2492        /*
2493         * we've got more storage, clear any full flags on the space
2494         * infos
2495         */
2496        btrfs_clear_space_info_full(fs_info);
2497
2498        mutex_unlock(&fs_info->chunk_mutex);
2499        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2500
2501        if (seeding_dev) {
2502                mutex_lock(&fs_info->chunk_mutex);
2503                ret = init_first_rw_device(trans, fs_info);
2504                mutex_unlock(&fs_info->chunk_mutex);
2505                if (ret) {
2506                        btrfs_abort_transaction(trans, ret);
2507                        goto error_sysfs;
2508                }
2509        }
2510
2511        ret = btrfs_add_dev_item(trans, fs_info, device);
2512        if (ret) {
2513                btrfs_abort_transaction(trans, ret);
2514                goto error_sysfs;
2515        }
2516
2517        if (seeding_dev) {
2518                char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2519
2520                ret = btrfs_finish_sprout(trans, fs_info);
2521                if (ret) {
2522                        btrfs_abort_transaction(trans, ret);
2523                        goto error_sysfs;
2524                }
2525
2526                /* Sprouting would change fsid of the mounted root,
2527                 * so rename the fsid on the sysfs
2528                 */
2529                snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2530                                                fs_info->fsid);
2531                if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2532                        btrfs_warn(fs_info,
2533                                   "sysfs: failed to create fsid for sprout");
2534        }
2535
2536        ret = btrfs_commit_transaction(trans);
2537
2538        if (seeding_dev) {
2539                mutex_unlock(&uuid_mutex);
2540                up_write(&sb->s_umount);
2541                unlocked = true;
2542
2543                if (ret) /* transaction commit */
2544                        return ret;
2545
2546                ret = btrfs_relocate_sys_chunks(fs_info);
2547                if (ret < 0)
2548                        btrfs_handle_fs_error(fs_info, ret,
2549                                    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2550                trans = btrfs_attach_transaction(root);
2551                if (IS_ERR(trans)) {
2552                        if (PTR_ERR(trans) == -ENOENT)
2553                                return 0;
2554                        ret = PTR_ERR(trans);
2555                        trans = NULL;
2556                        goto error_sysfs;
2557                }
2558                ret = btrfs_commit_transaction(trans);
2559        }
2560
2561        /* Update ctime/mtime for libblkid */
2562        update_dev_time(device_path);
2563        return ret;
2564
2565error_sysfs:
2566        btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2567error_trans:
2568        if (seeding_dev)
2569                sb->s_flags |= SB_RDONLY;
2570        if (trans)
2571                btrfs_end_transaction(trans);
2572error_free_device:
2573        free_device(device);
2574error:
2575        blkdev_put(bdev, FMODE_EXCL);
2576        if (seeding_dev && !unlocked) {
2577                mutex_unlock(&uuid_mutex);
2578                up_write(&sb->s_umount);
2579        }
2580        return ret;
2581}
2582
2583int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2584                                  const char *device_path,
2585                                  struct btrfs_device *srcdev,
2586                                  struct btrfs_device **device_out)
2587{
2588        struct btrfs_device *device;
2589        struct block_device *bdev;
2590        struct list_head *devices;
2591        struct rcu_string *name;
2592        u64 devid = BTRFS_DEV_REPLACE_DEVID;
2593        int ret = 0;
2594
2595        *device_out = NULL;
2596        if (fs_info->fs_devices->seeding) {
2597                btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2598                return -EINVAL;
2599        }
2600
2601        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2602                                  fs_info->bdev_holder);
2603        if (IS_ERR(bdev)) {
2604                btrfs_err(fs_info, "target device %s is invalid!", device_path);
2605                return PTR_ERR(bdev);
2606        }
2607
2608        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2609
2610        devices = &fs_info->fs_devices->devices;
2611        list_for_each_entry(device, devices, dev_list) {
2612                if (device->bdev == bdev) {
2613                        btrfs_err(fs_info,
2614                                  "target device is in the filesystem!");
2615                        ret = -EEXIST;
2616                        goto error;
2617                }
2618        }
2619
2620
2621        if (i_size_read(bdev->bd_inode) <
2622            btrfs_device_get_total_bytes(srcdev)) {
2623                btrfs_err(fs_info,
2624                          "target device is smaller than source device!");
2625                ret = -EINVAL;
2626                goto error;
2627        }
2628
2629
2630        device = btrfs_alloc_device(NULL, &devid, NULL);
2631        if (IS_ERR(device)) {
2632                ret = PTR_ERR(device);
2633                goto error;
2634        }
2635
2636        name = rcu_string_strdup(device_path, GFP_KERNEL);
2637        if (!name) {
2638                free_device(device);
2639                ret = -ENOMEM;
2640                goto error;
2641        }
2642        rcu_assign_pointer(device->name, name);
2643
2644        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2645        set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2646        device->generation = 0;
2647        device->io_width = fs_info->sectorsize;
2648        device->io_align = fs_info->sectorsize;
2649        device->sector_size = fs_info->sectorsize;
2650        device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2651        device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2652        device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2653        device->commit_total_bytes = srcdev->commit_total_bytes;
2654        device->commit_bytes_used = device->bytes_used;
2655        device->fs_info = fs_info;
2656        device->bdev = bdev;
2657        set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2658        set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2659        device->mode = FMODE_EXCL;
2660        device->dev_stats_valid = 1;
2661        set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2662        device->fs_devices = fs_info->fs_devices;
2663        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2664        fs_info->fs_devices->num_devices++;
2665        fs_info->fs_devices->open_devices++;
2666        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2667
2668        *device_out = device;
2669        return ret;
2670
2671error:
2672        blkdev_put(bdev, FMODE_EXCL);
2673        return ret;
2674}
2675
2676static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2677                                        struct btrfs_device *device)
2678{
2679        int ret;
2680        struct btrfs_path *path;
2681        struct btrfs_root *root = device->fs_info->chunk_root;
2682        struct btrfs_dev_item *dev_item;
2683        struct extent_buffer *leaf;
2684        struct btrfs_key key;
2685
2686        path = btrfs_alloc_path();
2687        if (!path)
2688                return -ENOMEM;
2689
2690        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2691        key.type = BTRFS_DEV_ITEM_KEY;
2692        key.offset = device->devid;
2693
2694        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2695        if (ret < 0)
2696                goto out;
2697
2698        if (ret > 0) {
2699                ret = -ENOENT;
2700                goto out;
2701        }
2702
2703        leaf = path->nodes[0];
2704        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2705
2706        btrfs_set_device_id(leaf, dev_item, device->devid);
2707        btrfs_set_device_type(leaf, dev_item, device->type);
2708        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2709        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2710        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2711        btrfs_set_device_total_bytes(leaf, dev_item,
2712                                     btrfs_device_get_disk_total_bytes(device));
2713        btrfs_set_device_bytes_used(leaf, dev_item,
2714                                    btrfs_device_get_bytes_used(device));
2715        btrfs_mark_buffer_dirty(leaf);
2716
2717out:
2718        btrfs_free_path(path);
2719        return ret;
2720}
2721
2722int btrfs_grow_device(struct btrfs_trans_handle *trans,
2723                      struct btrfs_device *device, u64 new_size)
2724{
2725        struct btrfs_fs_info *fs_info = device->fs_info;
2726        struct btrfs_super_block *super_copy = fs_info->super_copy;
2727        struct btrfs_fs_devices *fs_devices;
2728        u64 old_total;
2729        u64 diff;
2730
2731        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2732                return -EACCES;
2733
2734        new_size = round_down(new_size, fs_info->sectorsize);
2735
2736        mutex_lock(&fs_info->chunk_mutex);
2737        old_total = btrfs_super_total_bytes(super_copy);
2738        diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2739
2740        if (new_size <= device->total_bytes ||
2741            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2742                mutex_unlock(&fs_info->chunk_mutex);
2743                return -EINVAL;
2744        }
2745
2746        fs_devices = fs_info->fs_devices;
2747
2748        btrfs_set_super_total_bytes(super_copy,
2749                        round_down(old_total + diff, fs_info->sectorsize));
2750        device->fs_devices->total_rw_bytes += diff;
2751
2752        btrfs_device_set_total_bytes(device, new_size);
2753        btrfs_device_set_disk_total_bytes(device, new_size);
2754        btrfs_clear_space_info_full(device->fs_info);
2755        if (list_empty(&device->resized_list))
2756                list_add_tail(&device->resized_list,
2757                              &fs_devices->resized_devices);
2758        mutex_unlock(&fs_info->chunk_mutex);
2759
2760        return btrfs_update_device(trans, device);
2761}
2762
2763static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2764                            struct btrfs_fs_info *fs_info, u64 chunk_offset)
2765{
2766        struct btrfs_root *root = fs_info->chunk_root;
2767        int ret;
2768        struct btrfs_path *path;
2769        struct btrfs_key key;
2770
2771        path = btrfs_alloc_path();
2772        if (!path)
2773                return -ENOMEM;
2774
2775        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2776        key.offset = chunk_offset;
2777        key.type = BTRFS_CHUNK_ITEM_KEY;
2778
2779        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2780        if (ret < 0)
2781                goto out;
2782        else if (ret > 0) { /* Logic error or corruption */
2783                btrfs_handle_fs_error(fs_info, -ENOENT,
2784                                      "Failed lookup while freeing chunk.");
2785                ret = -ENOENT;
2786                goto out;
2787        }
2788
2789        ret = btrfs_del_item(trans, root, path);
2790        if (ret < 0)
2791                btrfs_handle_fs_error(fs_info, ret,
2792                                      "Failed to delete chunk item.");
2793out:
2794        btrfs_free_path(path);
2795        return ret;
2796}
2797
2798static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2799{
2800        struct btrfs_super_block *super_copy = fs_info->super_copy;
2801        struct btrfs_disk_key *disk_key;
2802        struct btrfs_chunk *chunk;
2803        u8 *ptr;
2804        int ret = 0;
2805        u32 num_stripes;
2806        u32 array_size;
2807        u32 len = 0;
2808        u32 cur;
2809        struct btrfs_key key;
2810
2811        mutex_lock(&fs_info->chunk_mutex);
2812        array_size = btrfs_super_sys_array_size(super_copy);
2813
2814        ptr = super_copy->sys_chunk_array;
2815        cur = 0;
2816
2817        while (cur < array_size) {
2818                disk_key = (struct btrfs_disk_key *)ptr;
2819                btrfs_disk_key_to_cpu(&key, disk_key);
2820
2821                len = sizeof(*disk_key);
2822
2823                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2824                        chunk = (struct btrfs_chunk *)(ptr + len);
2825                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2826                        len += btrfs_chunk_item_size(num_stripes);
2827                } else {
2828                        ret = -EIO;
2829                        break;
2830                }
2831                if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2832                    key.offset == chunk_offset) {
2833                        memmove(ptr, ptr + len, array_size - (cur + len));
2834                        array_size -= len;
2835                        btrfs_set_super_sys_array_size(super_copy, array_size);
2836                } else {
2837                        ptr += len;
2838                        cur += len;
2839                }
2840        }
2841        mutex_unlock(&fs_info->chunk_mutex);
2842        return ret;
2843}
2844
2845static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2846                                        u64 logical, u64 length)
2847{
2848        struct extent_map_tree *em_tree;
2849        struct extent_map *em;
2850
2851        em_tree = &fs_info->mapping_tree.map_tree;
2852        read_lock(&em_tree->lock);
2853        em = lookup_extent_mapping(em_tree, logical, length);
2854        read_unlock(&em_tree->lock);
2855
2856        if (!em) {
2857                btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2858                           logical, length);
2859                return ERR_PTR(-EINVAL);
2860        }
2861
2862        if (em->start > logical || em->start + em->len < logical) {
2863                btrfs_crit(fs_info,
2864                           "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2865                           logical, length, em->start, em->start + em->len);
2866                free_extent_map(em);
2867                return ERR_PTR(-EINVAL);
2868        }
2869
2870        /* callers are responsible for dropping em's ref. */
2871        return em;
2872}
2873
2874int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2875                       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2876{
2877        struct extent_map *em;
2878        struct map_lookup *map;
2879        u64 dev_extent_len = 0;
2880        int i, ret = 0;
2881        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2882
2883        em = get_chunk_map(fs_info, chunk_offset, 1);
2884        if (IS_ERR(em)) {
2885                /*
2886                 * This is a logic error, but we don't want to just rely on the
2887                 * user having built with ASSERT enabled, so if ASSERT doesn't
2888                 * do anything we still error out.
2889                 */
2890                ASSERT(0);
2891                return PTR_ERR(em);
2892        }
2893        map = em->map_lookup;
2894        mutex_lock(&fs_info->chunk_mutex);
2895        check_system_chunk(trans, fs_info, map->type);
2896        mutex_unlock(&fs_info->chunk_mutex);
2897
2898        /*
2899         * Take the device list mutex to prevent races with the final phase of
2900         * a device replace operation that replaces the device object associated
2901         * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2902         */
2903        mutex_lock(&fs_devices->device_list_mutex);
2904        for (i = 0; i < map->num_stripes; i++) {
2905                struct btrfs_device *device = map->stripes[i].dev;
2906                ret = btrfs_free_dev_extent(trans, device,
2907                                            map->stripes[i].physical,
2908                                            &dev_extent_len);
2909                if (ret) {
2910                        mutex_unlock(&fs_devices->device_list_mutex);
2911                        btrfs_abort_transaction(trans, ret);
2912                        goto out;
2913                }
2914
2915                if (device->bytes_used > 0) {
2916                        mutex_lock(&fs_info->chunk_mutex);
2917                        btrfs_device_set_bytes_used(device,
2918                                        device->bytes_used - dev_extent_len);
2919                        atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2920                        btrfs_clear_space_info_full(fs_info);
2921                        mutex_unlock(&fs_info->chunk_mutex);
2922                }
2923
2924                if (map->stripes[i].dev) {
2925                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2926                        if (ret) {
2927                                mutex_unlock(&fs_devices->device_list_mutex);
2928                                btrfs_abort_transaction(trans, ret);
2929                                goto out;
2930                        }
2931                }
2932        }
2933        mutex_unlock(&fs_devices->device_list_mutex);
2934
2935        ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2936        if (ret) {
2937                btrfs_abort_transaction(trans, ret);
2938                goto out;
2939        }
2940
2941        trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2942
2943        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2944                ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2945                if (ret) {
2946                        btrfs_abort_transaction(trans, ret);
2947                        goto out;
2948                }
2949        }
2950
2951        ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2952        if (ret) {
2953                btrfs_abort_transaction(trans, ret);
2954                goto out;
2955        }
2956
2957out:
2958        /* once for us */
2959        free_extent_map(em);
2960        return ret;
2961}
2962
2963static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2964{
2965        struct btrfs_root *root = fs_info->chunk_root;
2966        struct btrfs_trans_handle *trans;
2967        int ret;
2968
2969        /*
2970         * Prevent races with automatic removal of unused block groups.
2971         * After we relocate and before we remove the chunk with offset
2972         * chunk_offset, automatic removal of the block group can kick in,
2973         * resulting in a failure when calling btrfs_remove_chunk() below.
2974         *
2975         * Make sure to acquire this mutex before doing a tree search (dev
2976         * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2977         * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2978         * we release the path used to search the chunk/dev tree and before
2979         * the current task acquires this mutex and calls us.
2980         */
2981        lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2982
2983        ret = btrfs_can_relocate(fs_info, chunk_offset);
2984        if (ret)
2985                return -ENOSPC;
2986
2987        /* step one, relocate all the extents inside this chunk */
2988        btrfs_scrub_pause(fs_info);
2989        ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2990        btrfs_scrub_continue(fs_info);
2991        if (ret)
2992                return ret;
2993
2994        /*
2995         * We add the kobjects here (and after forcing data chunk creation)
2996         * since relocation is the only place we'll create chunks of a new
2997         * type at runtime.  The only place where we'll remove the last
2998         * chunk of a type is the call immediately below this one.  Even
2999         * so, we're protected against races with the cleaner thread since
3000         * we're covered by the delete_unused_bgs_mutex.
3001         */
3002        btrfs_add_raid_kobjects(fs_info);
3003
3004        trans = btrfs_start_trans_remove_block_group(root->fs_info,
3005                                                     chunk_offset);
3006        if (IS_ERR(trans)) {
3007                ret = PTR_ERR(trans);
3008                btrfs_handle_fs_error(root->fs_info, ret, NULL);
3009                return ret;
3010        }
3011
3012        /*
3013         * step two, delete the device extents and the
3014         * chunk tree entries
3015         */
3016        ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3017        btrfs_end_transaction(trans);
3018        return ret;
3019}
3020
3021static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3022{
3023        struct btrfs_root *chunk_root = fs_info->chunk_root;
3024        struct btrfs_path *path;
3025        struct extent_buffer *leaf;
3026        struct btrfs_chunk *chunk;
3027        struct btrfs_key key;
3028        struct btrfs_key found_key;
3029        u64 chunk_type;
3030        bool retried = false;
3031        int failed = 0;
3032        int ret;
3033
3034        path = btrfs_alloc_path();
3035        if (!path)
3036                return -ENOMEM;
3037
3038again:
3039        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3040        key.offset = (u64)-1;
3041        key.type = BTRFS_CHUNK_ITEM_KEY;
3042
3043        while (1) {
3044                mutex_lock(&fs_info->delete_unused_bgs_mutex);
3045                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3046                if (ret < 0) {
3047                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3048                        goto error;
3049                }
3050                BUG_ON(ret == 0); /* Corruption */
3051
3052                ret = btrfs_previous_item(chunk_root, path, key.objectid,
3053                                          key.type);
3054                if (ret)
3055                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3056                if (ret < 0)
3057                        goto error;
3058                if (ret > 0)
3059                        break;
3060
3061                leaf = path->nodes[0];
3062                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3063
3064                chunk = btrfs_item_ptr(leaf, path->slots[0],
3065                                       struct btrfs_chunk);
3066                chunk_type = btrfs_chunk_type(leaf, chunk);
3067                btrfs_release_path(path);
3068
3069                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3070                        ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3071                        if (ret == -ENOSPC)
3072                                failed++;
3073                        else
3074                                BUG_ON(ret);
3075                }
3076                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3077
3078                if (found_key.offset == 0)
3079                        break;
3080                key.offset = found_key.offset - 1;
3081        }
3082        ret = 0;
3083        if (failed && !retried) {
3084                failed = 0;
3085                retried = true;
3086                goto again;
3087        } else if (WARN_ON(failed && retried)) {
3088                ret = -ENOSPC;
3089        }
3090error:
3091        btrfs_free_path(path);
3092        return ret;
3093}
3094
3095/*
3096 * return 1 : allocate a data chunk successfully,
3097 * return <0: errors during allocating a data chunk,
3098 * return 0 : no need to allocate a data chunk.
3099 */
3100static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3101                                      u64 chunk_offset)
3102{
3103        struct btrfs_block_group_cache *cache;
3104        u64 bytes_used;
3105        u64 chunk_type;
3106
3107        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3108        ASSERT(cache);
3109        chunk_type = cache->flags;
3110        btrfs_put_block_group(cache);
3111
3112        if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3113                spin_lock(&fs_info->data_sinfo->lock);
3114                bytes_used = fs_info->data_sinfo->bytes_used;
3115                spin_unlock(&fs_info->data_sinfo->lock);
3116
3117                if (!bytes_used) {
3118                        struct btrfs_trans_handle *trans;
3119                        int ret;
3120
3121                        trans = btrfs_join_transaction(fs_info->tree_root);
3122                        if (IS_ERR(trans))
3123                                return PTR_ERR(trans);
3124
3125                        ret = btrfs_force_chunk_alloc(trans, fs_info,
3126                                                      BTRFS_BLOCK_GROUP_DATA);
3127                        btrfs_end_transaction(trans);
3128                        if (ret < 0)
3129                                return ret;
3130
3131                        btrfs_add_raid_kobjects(fs_info);
3132
3133                        return 1;
3134                }
3135        }
3136        return 0;
3137}
3138
3139static int insert_balance_item(struct btrfs_fs_info *fs_info,
3140                               struct btrfs_balance_control *bctl)
3141{
3142        struct btrfs_root *root = fs_info->tree_root;
3143        struct btrfs_trans_handle *trans;
3144        struct btrfs_balance_item *item;
3145        struct btrfs_disk_balance_args disk_bargs;
3146        struct btrfs_path *path;
3147        struct extent_buffer *leaf;
3148        struct btrfs_key key;
3149        int ret, err;
3150
3151        path = btrfs_alloc_path();
3152        if (!path)
3153                return -ENOMEM;
3154
3155        trans = btrfs_start_transaction(root, 0);
3156        if (IS_ERR(trans)) {
3157                btrfs_free_path(path);
3158                return PTR_ERR(trans);
3159        }
3160
3161        key.objectid = BTRFS_BALANCE_OBJECTID;
3162        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3163        key.offset = 0;
3164
3165        ret = btrfs_insert_empty_item(trans, root, path, &key,
3166                                      sizeof(*item));
3167        if (ret)
3168                goto out;
3169
3170        leaf = path->nodes[0];
3171        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3172
3173        memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3174
3175        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3176        btrfs_set_balance_data(leaf, item, &disk_bargs);
3177        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3178        btrfs_set_balance_meta(leaf, item, &disk_bargs);
3179        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3180        btrfs_set_balance_sys(leaf, item, &disk_bargs);
3181
3182        btrfs_set_balance_flags(leaf, item, bctl->flags);
3183
3184        btrfs_mark_buffer_dirty(leaf);
3185out:
3186        btrfs_free_path(path);
3187        err = btrfs_commit_transaction(trans);
3188        if (err && !ret)
3189                ret = err;
3190        return ret;
3191}
3192
3193static int del_balance_item(struct btrfs_fs_info *fs_info)
3194{
3195        struct btrfs_root *root = fs_info->tree_root;
3196        struct btrfs_trans_handle *trans;
3197        struct btrfs_path *path;
3198        struct btrfs_key key;
3199        int ret, err;
3200
3201        path = btrfs_alloc_path();
3202        if (!path)
3203                return -ENOMEM;
3204
3205        trans = btrfs_start_transaction(root, 0);
3206        if (IS_ERR(trans)) {
3207                btrfs_free_path(path);
3208                return PTR_ERR(trans);
3209        }
3210
3211        key.objectid = BTRFS_BALANCE_OBJECTID;
3212        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3213        key.offset = 0;
3214
3215        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3216        if (ret < 0)
3217                goto out;
3218        if (ret > 0) {
3219                ret = -ENOENT;
3220                goto out;
3221        }
3222
3223        ret = btrfs_del_item(trans, root, path);
3224out:
3225        btrfs_free_path(path);
3226        err = btrfs_commit_transaction(trans);
3227        if (err && !ret)
3228                ret = err;
3229        return ret;
3230}
3231
3232/*
3233 * This is a heuristic used to reduce the number of chunks balanced on
3234 * resume after balance was interrupted.
3235 */
3236static void update_balance_args(struct btrfs_balance_control *bctl)
3237{
3238        /*
3239         * Turn on soft mode for chunk types that were being converted.
3240         */
3241        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3242                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3243        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3244                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3245        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3246                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3247
3248        /*
3249         * Turn on usage filter if is not already used.  The idea is
3250         * that chunks that we have already balanced should be
3251         * reasonably full.  Don't do it for chunks that are being
3252         * converted - that will keep us from relocating unconverted
3253         * (albeit full) chunks.
3254         */
3255        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3256            !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3257            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3258                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3259                bctl->data.usage = 90;
3260        }
3261        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3262            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3263            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3264                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3265                bctl->sys.usage = 90;
3266        }
3267        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3268            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3269            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3270                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3271                bctl->meta.usage = 90;
3272        }
3273}
3274
3275/*
3276 * Should be called with both balance and volume mutexes held to
3277 * serialize other volume operations (add_dev/rm_dev/resize) with
3278 * restriper.  Same goes for unset_balance_control.
3279 */
3280static void set_balance_control(struct btrfs_balance_control *bctl)
3281{
3282        struct btrfs_fs_info *fs_info = bctl->fs_info;
3283
3284        BUG_ON(fs_info->balance_ctl);
3285
3286        spin_lock(&fs_info->balance_lock);
3287        fs_info->balance_ctl = bctl;
3288        spin_unlock(&fs_info->balance_lock);
3289}
3290
3291static void unset_balance_control(struct btrfs_fs_info *fs_info)
3292{
3293        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3294
3295        BUG_ON(!fs_info->balance_ctl);
3296
3297        spin_lock(&fs_info->balance_lock);
3298        fs_info->balance_ctl = NULL;
3299        spin_unlock(&fs_info->balance_lock);
3300
3301        kfree(bctl);
3302}
3303
3304/*
3305 * Balance filters.  Return 1 if chunk should be filtered out
3306 * (should not be balanced).
3307 */
3308static int chunk_profiles_filter(u64 chunk_type,
3309                                 struct btrfs_balance_args *bargs)
3310{
3311        chunk_type = chunk_to_extended(chunk_type) &
3312                                BTRFS_EXTENDED_PROFILE_MASK;
3313
3314        if (bargs->profiles & chunk_type)
3315                return 0;
3316
3317        return 1;
3318}
3319
3320static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3321                              struct btrfs_balance_args *bargs)
3322{
3323        struct btrfs_block_group_cache *cache;
3324        u64 chunk_used;
3325        u64 user_thresh_min;
3326        u64 user_thresh_max;
3327        int ret = 1;
3328
3329        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3330        chunk_used = btrfs_block_group_used(&cache->item);
3331
3332        if (bargs->usage_min == 0)
3333                user_thresh_min = 0;
3334        else
3335                user_thresh_min = div_factor_fine(cache->key.offset,
3336                                        bargs->usage_min);
3337
3338        if (bargs->usage_max == 0)
3339                user_thresh_max = 1;
3340        else if (bargs->usage_max > 100)
3341                user_thresh_max = cache->key.offset;
3342        else
3343                user_thresh_max = div_factor_fine(cache->key.offset,
3344                                        bargs->usage_max);
3345
3346        if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3347                ret = 0;
3348
3349        btrfs_put_block_group(cache);
3350        return ret;
3351}
3352
3353static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3354                u64 chunk_offset, struct btrfs_balance_args *bargs)
3355{
3356        struct btrfs_block_group_cache *cache;
3357        u64 chunk_used, user_thresh;
3358        int ret = 1;
3359
3360        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3361        chunk_used = btrfs_block_group_used(&cache->item);
3362
3363        if (bargs->usage_min == 0)
3364                user_thresh = 1;
3365        else if (bargs->usage > 100)
3366                user_thresh = cache->key.offset;
3367        else
3368                user_thresh = div_factor_fine(cache->key.offset,
3369                                              bargs->usage);
3370
3371        if (chunk_used < user_thresh)
3372                ret = 0;
3373
3374        btrfs_put_block_group(cache);
3375        return ret;
3376}
3377
3378static int chunk_devid_filter(struct extent_buffer *leaf,
3379                              struct btrfs_chunk *chunk,
3380                              struct btrfs_balance_args *bargs)
3381{
3382        struct btrfs_stripe *stripe;
3383        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3384        int i;
3385
3386        for (i = 0; i < num_stripes; i++) {
3387                stripe = btrfs_stripe_nr(chunk, i);
3388                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3389                        return 0;
3390        }
3391
3392        return 1;
3393}
3394
3395/* [pstart, pend) */
3396static int chunk_drange_filter(struct extent_buffer *leaf,
3397                               struct btrfs_chunk *chunk,
3398                               struct btrfs_balance_args *bargs)
3399{
3400        struct btrfs_stripe *stripe;
3401        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3402        u64 stripe_offset;
3403        u64 stripe_length;
3404        int factor;
3405        int i;
3406
3407        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3408                return 0;
3409
3410        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3411             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3412                factor = num_stripes / 2;
3413        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3414                factor = num_stripes - 1;
3415        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3416                factor = num_stripes - 2;
3417        } else {
3418                factor = num_stripes;
3419        }
3420
3421        for (i = 0; i < num_stripes; i++) {
3422                stripe = btrfs_stripe_nr(chunk, i);
3423                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3424                        continue;
3425
3426                stripe_offset = btrfs_stripe_offset(leaf, stripe);
3427                stripe_length = btrfs_chunk_length(leaf, chunk);
3428                stripe_length = div_u64(stripe_length, factor);
3429
3430                if (stripe_offset < bargs->pend &&
3431                    stripe_offset + stripe_length > bargs->pstart)
3432                        return 0;
3433        }
3434
3435        return 1;
3436}
3437
3438/* [vstart, vend) */
3439static int chunk_vrange_filter(struct extent_buffer *leaf,
3440                               struct btrfs_chunk *chunk,
3441                               u64 chunk_offset,
3442                               struct btrfs_balance_args *bargs)
3443{
3444        if (chunk_offset < bargs->vend &&
3445            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3446                /* at least part of the chunk is inside this vrange */
3447                return 0;
3448
3449        return 1;
3450}
3451
3452static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3453                               struct btrfs_chunk *chunk,
3454                               struct btrfs_balance_args *bargs)
3455{
3456        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3457
3458        if (bargs->stripes_min <= num_stripes
3459                        && num_stripes <= bargs->stripes_max)
3460                return 0;
3461
3462        return 1;
3463}
3464
3465static int chunk_soft_convert_filter(u64 chunk_type,
3466                                     struct btrfs_balance_args *bargs)
3467{
3468        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3469                return 0;
3470
3471        chunk_type = chunk_to_extended(chunk_type) &
3472                                BTRFS_EXTENDED_PROFILE_MASK;
3473
3474        if (bargs->target == chunk_type)
3475                return 1;
3476
3477        return 0;
3478}
3479
3480static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3481                                struct extent_buffer *leaf,
3482                                struct btrfs_chunk *chunk, u64 chunk_offset)
3483{
3484        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3485        struct btrfs_balance_args *bargs = NULL;
3486        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3487
3488        /* type filter */
3489        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3490              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3491                return 0;
3492        }
3493
3494        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3495                bargs = &bctl->data;
3496        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3497                bargs = &bctl->sys;
3498        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3499                bargs = &bctl->meta;
3500
3501        /* profiles filter */
3502        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3503            chunk_profiles_filter(chunk_type, bargs)) {
3504                return 0;
3505        }
3506
3507        /* usage filter */
3508        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3509            chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3510                return 0;
3511        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3512            chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3513                return 0;
3514        }
3515
3516        /* devid filter */
3517        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3518            chunk_devid_filter(leaf, chunk, bargs)) {
3519                return 0;
3520        }
3521
3522        /* drange filter, makes sense only with devid filter */
3523        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3524            chunk_drange_filter(leaf, chunk, bargs)) {
3525                return 0;
3526        }
3527
3528        /* vrange filter */
3529        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3530            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3531                return 0;
3532        }
3533
3534        /* stripes filter */
3535        if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3536            chunk_stripes_range_filter(leaf, chunk, bargs)) {
3537                return 0;
3538        }
3539
3540        /* soft profile changing mode */
3541        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3542            chunk_soft_convert_filter(chunk_type, bargs)) {
3543                return 0;
3544        }
3545
3546        /*
3547         * limited by count, must be the last filter
3548         */
3549        if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3550                if (bargs->limit == 0)
3551                        return 0;
3552                else
3553                        bargs->limit--;
3554        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3555                /*
3556                 * Same logic as the 'limit' filter; the minimum cannot be
3557                 * determined here because we do not have the global information
3558                 * about the count of all chunks that satisfy the filters.
3559                 */
3560                if (bargs->limit_max == 0)
3561                        return 0;
3562                else
3563                        bargs->limit_max--;
3564        }
3565
3566        return 1;
3567}
3568
3569static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3570{
3571        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3572        struct btrfs_root *chunk_root = fs_info->chunk_root;
3573        struct btrfs_root *dev_root = fs_info->dev_root;
3574        struct list_head *devices;
3575        struct btrfs_device *device;
3576        u64 old_size;
3577        u64 size_to_free;
3578        u64 chunk_type;
3579        struct btrfs_chunk *chunk;
3580        struct btrfs_path *path = NULL;
3581        struct btrfs_key key;
3582        struct btrfs_key found_key;
3583        struct btrfs_trans_handle *trans;
3584        struct extent_buffer *leaf;
3585        int slot;
3586        int ret;
3587        int enospc_errors = 0;
3588        bool counting = true;
3589        /* The single value limit and min/max limits use the same bytes in the */
3590        u64 limit_data = bctl->data.limit;
3591        u64 limit_meta = bctl->meta.limit;
3592        u64 limit_sys = bctl->sys.limit;
3593        u32 count_data = 0;
3594        u32 count_meta = 0;
3595        u32 count_sys = 0;
3596        int chunk_reserved = 0;
3597
3598        /* step one make some room on all the devices */
3599        devices = &fs_info->fs_devices->devices;
3600        list_for_each_entry(device, devices, dev_list) {
3601                old_size = btrfs_device_get_total_bytes(device);
3602                size_to_free = div_factor(old_size, 1);
3603                size_to_free = min_t(u64, size_to_free, SZ_1M);
3604                if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3605                    btrfs_device_get_total_bytes(device) -
3606                    btrfs_device_get_bytes_used(device) > size_to_free ||
3607                    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3608                        continue;
3609
3610                ret = btrfs_shrink_device(device, old_size - size_to_free);
3611                if (ret == -ENOSPC)
3612                        break;
3613                if (ret) {
3614                        /* btrfs_shrink_device never returns ret > 0 */
3615                        WARN_ON(ret > 0);
3616                        goto error;
3617                }
3618
3619                trans = btrfs_start_transaction(dev_root, 0);
3620                if (IS_ERR(trans)) {
3621                        ret = PTR_ERR(trans);
3622                        btrfs_info_in_rcu(fs_info,
3623                 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3624                                          rcu_str_deref(device->name), ret,
3625                                          old_size, old_size - size_to_free);
3626                        goto error;
3627                }
3628
3629                ret = btrfs_grow_device(trans, device, old_size);
3630                if (ret) {
3631                        btrfs_end_transaction(trans);
3632                        /* btrfs_grow_device never returns ret > 0 */
3633                        WARN_ON(ret > 0);
3634                        btrfs_info_in_rcu(fs_info,
3635                 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3636                                          rcu_str_deref(device->name), ret,
3637                                          old_size, old_size - size_to_free);
3638                        goto error;
3639                }
3640
3641                btrfs_end_transaction(trans);
3642        }
3643
3644        /* step two, relocate all the chunks */
3645        path = btrfs_alloc_path();
3646        if (!path) {
3647                ret = -ENOMEM;
3648                goto error;
3649        }
3650
3651        /* zero out stat counters */
3652        spin_lock(&fs_info->balance_lock);
3653        memset(&bctl->stat, 0, sizeof(bctl->stat));
3654        spin_unlock(&fs_info->balance_lock);
3655again:
3656        if (!counting) {
3657                /*
3658                 * The single value limit and min/max limits use the same bytes
3659                 * in the
3660                 */
3661                bctl->data.limit = limit_data;
3662                bctl->meta.limit = limit_meta;
3663                bctl->sys.limit = limit_sys;
3664        }
3665        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3666        key.offset = (u64)-1;
3667        key.type = BTRFS_CHUNK_ITEM_KEY;
3668
3669        while (1) {
3670                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3671                    atomic_read(&fs_info->balance_cancel_req)) {
3672                        ret = -ECANCELED;
3673                        goto error;
3674                }
3675
3676                mutex_lock(&fs_info->delete_unused_bgs_mutex);
3677                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3678                if (ret < 0) {
3679                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680                        goto error;
3681                }
3682
3683                /*
3684                 * this shouldn't happen, it means the last relocate
3685                 * failed
3686                 */
3687                if (ret == 0)
3688                        BUG(); /* FIXME break ? */
3689
3690                ret = btrfs_previous_item(chunk_root, path, 0,
3691                                          BTRFS_CHUNK_ITEM_KEY);
3692                if (ret) {
3693                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3694                        ret = 0;
3695                        break;
3696                }
3697
3698                leaf = path->nodes[0];
3699                slot = path->slots[0];
3700                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3701
3702                if (found_key.objectid != key.objectid) {
3703                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3704                        break;
3705                }
3706
3707                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3708                chunk_type = btrfs_chunk_type(leaf, chunk);
3709
3710                if (!counting) {
3711                        spin_lock(&fs_info->balance_lock);
3712                        bctl->stat.considered++;
3713                        spin_unlock(&fs_info->balance_lock);
3714                }
3715
3716                ret = should_balance_chunk(fs_info, leaf, chunk,
3717                                           found_key.offset);
3718
3719                btrfs_release_path(path);
3720                if (!ret) {
3721                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3722                        goto loop;
3723                }
3724
3725                if (counting) {
3726                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3727                        spin_lock(&fs_info->balance_lock);
3728                        bctl->stat.expected++;
3729                        spin_unlock(&fs_info->balance_lock);
3730
3731                        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3732                                count_data++;
3733                        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3734                                count_sys++;
3735                        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3736                                count_meta++;
3737
3738                        goto loop;
3739                }
3740
3741                /*
3742                 * Apply limit_min filter, no need to check if the LIMITS
3743                 * filter is used, limit_min is 0 by default
3744                 */
3745                if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3746                                        count_data < bctl->data.limit_min)
3747                                || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3748                                        count_meta < bctl->meta.limit_min)
3749                                || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3750                                        count_sys < bctl->sys.limit_min)) {
3751                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3752                        goto loop;
3753                }
3754
3755                if (!chunk_reserved) {
3756                        /*
3757                         * We may be relocating the only data chunk we have,
3758                         * which could potentially end up with losing data's
3759                         * raid profile, so lets allocate an empty one in
3760                         * advance.
3761                         */
3762                        ret = btrfs_may_alloc_data_chunk(fs_info,
3763                                                         found_key.offset);
3764                        if (ret < 0) {
3765                                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3766                                goto error;
3767                        } else if (ret == 1) {
3768                                chunk_reserved = 1;
3769                        }
3770                }
3771
3772                ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3773                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3774                if (ret && ret != -ENOSPC)
3775                        goto error;
3776                if (ret == -ENOSPC) {
3777                        enospc_errors++;
3778                } else {
3779                        spin_lock(&fs_info->balance_lock);
3780                        bctl->stat.completed++;
3781                        spin_unlock(&fs_info->balance_lock);
3782                }
3783loop:
3784                if (found_key.offset == 0)
3785                        break;
3786                key.offset = found_key.offset - 1;
3787        }
3788
3789        if (counting) {
3790                btrfs_release_path(path);
3791                counting = false;
3792                goto again;
3793        }
3794error:
3795        btrfs_free_path(path);
3796        if (enospc_errors) {
3797                btrfs_info(fs_info, "%d enospc errors during balance",
3798                           enospc_errors);
3799                if (!ret)
3800                        ret = -ENOSPC;
3801        }
3802
3803        return ret;
3804}
3805
3806/**
3807 * alloc_profile_is_valid - see if a given profile is valid and reduced
3808 * @flags: profile to validate
3809 * @extended: if true @flags is treated as an extended profile
3810 */
3811static int alloc_profile_is_valid(u64 flags, int extended)
3812{
3813        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3814                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3815
3816        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3817
3818        /* 1) check that all other bits are zeroed */
3819        if (flags & ~mask)
3820                return 0;
3821
3822        /* 2) see if profile is reduced */
3823        if (flags == 0)
3824                return !extended; /* "0" is valid for usual profiles */
3825
3826        /* true if exactly one bit set */
3827        return (flags & (flags - 1)) == 0;
3828}
3829
3830static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3831{
3832        /* cancel requested || normal exit path */
3833        return atomic_read(&fs_info->balance_cancel_req) ||
3834                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3835                 atomic_read(&fs_info->balance_cancel_req) == 0);
3836}
3837
3838static void __cancel_balance(struct btrfs_fs_info *fs_info)
3839{
3840        int ret;
3841
3842        unset_balance_control(fs_info);
3843        ret = del_balance_item(fs_info);
3844        if (ret)
3845                btrfs_handle_fs_error(fs_info, ret, NULL);
3846
3847        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3848}
3849
3850/* Non-zero return value signifies invalidity */
3851static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3852                u64 allowed)
3853{
3854        return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3855                (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3856                 (bctl_arg->target & ~allowed)));
3857}
3858
3859/*
3860 * Should be called with both balance and volume mutexes held
3861 */
3862int btrfs_balance(struct btrfs_balance_control *bctl,
3863                  struct btrfs_ioctl_balance_args *bargs)
3864{
3865        struct btrfs_fs_info *fs_info = bctl->fs_info;
3866        u64 meta_target, data_target;
3867        u64 allowed;
3868        int mixed = 0;
3869        int ret;
3870        u64 num_devices;
3871        unsigned seq;
3872
3873        if (btrfs_fs_closing(fs_info) ||
3874            atomic_read(&fs_info->balance_pause_req) ||
3875            atomic_read(&fs_info->balance_cancel_req)) {
3876                ret = -EINVAL;
3877                goto out;
3878        }
3879
3880        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3881        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3882                mixed = 1;
3883
3884        /*
3885         * In case of mixed groups both data and meta should be picked,
3886         * and identical options should be given for both of them.
3887         */
3888        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3889        if (mixed && (bctl->flags & allowed)) {
3890                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3891                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3892                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3893                        btrfs_err(fs_info,
3894                                  "with mixed groups data and metadata balance options must be the same");
3895                        ret = -EINVAL;
3896                        goto out;
3897                }
3898        }
3899
3900        num_devices = fs_info->fs_devices->num_devices;
3901        btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3902        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3903                BUG_ON(num_devices < 1);
3904                num_devices--;
3905        }
3906        btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3907        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3908        if (num_devices > 1)
3909                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3910        if (num_devices > 2)
3911                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3912        if (num_devices > 3)
3913                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3914                            BTRFS_BLOCK_GROUP_RAID6);
3915        if (validate_convert_profile(&bctl->data, allowed)) {
3916                btrfs_err(fs_info,
3917                          "unable to start balance with target data profile %llu",
3918                          bctl->data.target);
3919                ret = -EINVAL;
3920                goto out;
3921        }
3922        if (validate_convert_profile(&bctl->meta, allowed)) {
3923                btrfs_err(fs_info,
3924                          "unable to start balance with target metadata profile %llu",
3925                          bctl->meta.target);
3926                ret = -EINVAL;
3927                goto out;
3928        }
3929        if (validate_convert_profile(&bctl->sys, allowed)) {
3930                btrfs_err(fs_info,
3931                          "unable to start balance with target system profile %llu",
3932                          bctl->sys.target);
3933                ret = -EINVAL;
3934                goto out;
3935        }
3936
3937        /* allow to reduce meta or sys integrity only if force set */
3938        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3939                        BTRFS_BLOCK_GROUP_RAID10 |
3940                        BTRFS_BLOCK_GROUP_RAID5 |
3941                        BTRFS_BLOCK_GROUP_RAID6;
3942        do {
3943                seq = read_seqbegin(&fs_info->profiles_lock);
3944
3945                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3946                     (fs_info->avail_system_alloc_bits & allowed) &&
3947                     !(bctl->sys.target & allowed)) ||
3948                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3949                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3950                     !(bctl->meta.target & allowed))) {
3951                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3952                                btrfs_info(fs_info,
3953                                           "force reducing metadata integrity");
3954                        } else {
3955                                btrfs_err(fs_info,
3956                                          "balance will reduce metadata integrity, use force if you want this");
3957                                ret = -EINVAL;
3958                                goto out;
3959                        }
3960                }
3961        } while (read_seqretry(&fs_info->profiles_lock, seq));
3962
3963        /* if we're not converting, the target field is uninitialized */
3964        meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3965                bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3966        data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3967                bctl->data.target : fs_info->avail_data_alloc_bits;
3968        if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3969                btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3970                btrfs_warn(fs_info,
3971                           "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3972                           meta_target, data_target);
3973        }
3974
3975        ret = insert_balance_item(fs_info, bctl);
3976        if (ret && ret != -EEXIST)
3977                goto out;
3978
3979        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3980                BUG_ON(ret == -EEXIST);
3981                set_balance_control(bctl);
3982        } else {
3983                BUG_ON(ret != -EEXIST);
3984                spin_lock(&fs_info->balance_lock);
3985                update_balance_args(bctl);
3986                spin_unlock(&fs_info->balance_lock);
3987        }
3988
3989        atomic_inc(&fs_info->balance_running);
3990        mutex_unlock(&fs_info->balance_mutex);
3991
3992        ret = __btrfs_balance(fs_info);
3993
3994        mutex_lock(&fs_info->balance_mutex);
3995        atomic_dec(&fs_info->balance_running);
3996
3997        if (bargs) {
3998                memset(bargs, 0, sizeof(*bargs));
3999                update_ioctl_balance_args(fs_info, 0, bargs);
4000        }
4001
4002        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4003            balance_need_close(fs_info)) {
4004                __cancel_balance(fs_info);
4005        }
4006
4007        wake_up(&fs_info->balance_wait_q);
4008
4009        return ret;
4010out:
4011        if (bctl->flags & BTRFS_BALANCE_RESUME)
4012                __cancel_balance(fs_info);
4013        else {
4014                kfree(bctl);
4015                clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4016        }
4017        return ret;
4018}
4019
4020static int balance_kthread(void *data)
4021{
4022        struct btrfs_fs_info *fs_info = data;
4023        int ret = 0;
4024
4025        mutex_lock(&fs_info->volume_mutex);
4026        mutex_lock(&fs_info->balance_mutex);
4027
4028        if (fs_info->balance_ctl) {
4029                btrfs_info(fs_info, "continuing balance");
4030                ret = btrfs_balance(fs_info->balance_ctl, NULL);
4031        }
4032
4033        mutex_unlock(&fs_info->balance_mutex);
4034        mutex_unlock(&fs_info->volume_mutex);
4035
4036        return ret;
4037}
4038
4039int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4040{
4041        struct task_struct *tsk;
4042
4043        spin_lock(&fs_info->balance_lock);
4044        if (!fs_info->balance_ctl) {
4045                spin_unlock(&fs_info->balance_lock);
4046                return 0;
4047        }
4048        spin_unlock(&fs_info->balance_lock);
4049
4050        if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4051                btrfs_info(fs_info, "force skipping balance");
4052                return 0;
4053        }
4054
4055        /*
4056         * A ro->rw remount sequence should continue with the paused balance
4057         * regardless of who pauses it, system or the user as of now, so set
4058         * the resume flag.
4059         */
4060        spin_lock(&fs_info->balance_lock);
4061        fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4062        spin_unlock(&fs_info->balance_lock);
4063
4064        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4065        return PTR_ERR_OR_ZERO(tsk);
4066}
4067
4068int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4069{
4070        struct btrfs_balance_control *bctl;
4071        struct btrfs_balance_item *item;
4072        struct btrfs_disk_balance_args disk_bargs;
4073        struct btrfs_path *path;
4074        struct extent_buffer *leaf;
4075        struct btrfs_key key;
4076        int ret;
4077
4078        path = btrfs_alloc_path();
4079        if (!path)
4080                return -ENOMEM;
4081
4082        key.objectid = BTRFS_BALANCE_OBJECTID;
4083        key.type = BTRFS_TEMPORARY_ITEM_KEY;
4084        key.offset = 0;
4085
4086        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4087        if (ret < 0)
4088                goto out;
4089        if (ret > 0) { /* ret = -ENOENT; */
4090                ret = 0;
4091                goto out;
4092        }
4093
4094        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4095        if (!bctl) {
4096                ret = -ENOMEM;
4097                goto out;
4098        }
4099
4100        leaf = path->nodes[0];
4101        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4102
4103        bctl->fs_info = fs_info;
4104        bctl->flags = btrfs_balance_flags(leaf, item);
4105        bctl->flags |= BTRFS_BALANCE_RESUME;
4106
4107        btrfs_balance_data(leaf, item, &disk_bargs);
4108        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4109        btrfs_balance_meta(leaf, item, &disk_bargs);
4110        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4111        btrfs_balance_sys(leaf, item, &disk_bargs);
4112        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4113
4114        WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4115
4116        mutex_lock(&fs_info->volume_mutex);
4117        mutex_lock(&fs_info->balance_mutex);
4118
4119        set_balance_control(bctl);
4120
4121        mutex_unlock(&fs_info->balance_mutex);
4122        mutex_unlock(&fs_info->volume_mutex);
4123out:
4124        btrfs_free_path(path);
4125        return ret;
4126}
4127
4128int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4129{
4130        int ret = 0;
4131
4132        mutex_lock(&fs_info->balance_mutex);
4133        if (!fs_info->balance_ctl) {
4134                mutex_unlock(&fs_info->balance_mutex);
4135                return -ENOTCONN;
4136        }
4137
4138        if (atomic_read(&fs_info->balance_running)) {
4139                atomic_inc(&fs_info->balance_pause_req);
4140                mutex_unlock(&fs_info->balance_mutex);
4141
4142                wait_event(fs_info->balance_wait_q,
4143                           atomic_read(&fs_info->balance_running) == 0);
4144
4145                mutex_lock(&fs_info->balance_mutex);
4146                /* we are good with balance_ctl ripped off from under us */
4147                BUG_ON(atomic_read(&fs_info->balance_running));
4148                atomic_dec(&fs_info->balance_pause_req);
4149        } else {
4150                ret = -ENOTCONN;
4151        }
4152
4153        mutex_unlock(&fs_info->balance_mutex);
4154        return ret;
4155}
4156
4157int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4158{
4159        if (sb_rdonly(fs_info->sb))
4160                return -EROFS;
4161
4162        mutex_lock(&fs_info->balance_mutex);
4163        if (!fs_info->balance_ctl) {
4164                mutex_unlock(&fs_info->balance_mutex);
4165                return -ENOTCONN;
4166        }
4167
4168        atomic_inc(&fs_info->balance_cancel_req);
4169        /*
4170         * if we are running just wait and return, balance item is
4171         * deleted in btrfs_balance in this case
4172         */
4173        if (atomic_read(&fs_info->balance_running)) {
4174                mutex_unlock(&fs_info->balance_mutex);
4175                wait_event(fs_info->balance_wait_q,
4176                           atomic_read(&fs_info->balance_running) == 0);
4177                mutex_lock(&fs_info->balance_mutex);
4178        } else {
4179                /* __cancel_balance needs volume_mutex */
4180                mutex_unlock(&fs_info->balance_mutex);
4181                mutex_lock(&fs_info->volume_mutex);
4182                mutex_lock(&fs_info->balance_mutex);
4183
4184                if (fs_info->balance_ctl)
4185                        __cancel_balance(fs_info);
4186
4187                mutex_unlock(&fs_info->volume_mutex);
4188        }
4189
4190        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4191        atomic_dec(&fs_info->balance_cancel_req);
4192        mutex_unlock(&fs_info->balance_mutex);
4193        return 0;
4194}
4195
4196static int btrfs_uuid_scan_kthread(void *data)
4197{
4198        struct btrfs_fs_info *fs_info = data;
4199        struct btrfs_root *root = fs_info->tree_root;
4200        struct btrfs_key key;
4201        struct btrfs_path *path = NULL;
4202        int ret = 0;
4203        struct extent_buffer *eb;
4204        int slot;
4205        struct btrfs_root_item root_item;
4206        u32 item_size;
4207        struct btrfs_trans_handle *trans = NULL;
4208
4209        path = btrfs_alloc_path();
4210        if (!path) {
4211                ret = -ENOMEM;
4212                goto out;
4213        }
4214
4215        key.objectid = 0;
4216        key.type = BTRFS_ROOT_ITEM_KEY;
4217        key.offset = 0;
4218
4219        while (1) {
4220                ret = btrfs_search_forward(root, &key, path,
4221                                BTRFS_OLDEST_GENERATION);
4222                if (ret) {
4223                        if (ret > 0)
4224                                ret = 0;
4225                        break;
4226                }
4227
4228                if (key.type != BTRFS_ROOT_ITEM_KEY ||
4229                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4230                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4231                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4232                        goto skip;
4233
4234                eb = path->nodes[0];
4235                slot = path->slots[0];
4236                item_size = btrfs_item_size_nr(eb, slot);
4237                if (item_size < sizeof(root_item))
4238                        goto skip;
4239
4240                read_extent_buffer(eb, &root_item,
4241                                   btrfs_item_ptr_offset(eb, slot),
4242                                   (int)sizeof(root_item));
4243                if (btrfs_root_refs(&root_item) == 0)
4244                        goto skip;
4245
4246                if (!btrfs_is_empty_uuid(root_item.uuid) ||
4247                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4248                        if (trans)
4249                                goto update_tree;
4250
4251                        btrfs_release_path(path);
4252                        /*
4253                         * 1 - subvol uuid item
4254                         * 1 - received_subvol uuid item
4255                         */
4256                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4257                        if (IS_ERR(trans)) {
4258                                ret = PTR_ERR(trans);
4259                                break;
4260                        }
4261                        continue;
4262                } else {
4263                        goto skip;
4264                }
4265update_tree:
4266                if (!btrfs_is_empty_uuid(root_item.uuid)) {
4267                        ret = btrfs_uuid_tree_add(trans, fs_info,
4268                                                  root_item.uuid,
4269                                                  BTRFS_UUID_KEY_SUBVOL,
4270                                                  key.objectid);
4271                        if (ret < 0) {
4272                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4273                                        ret);
4274                                break;
4275                        }
4276                }
4277
4278                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4279                        ret = btrfs_uuid_tree_add(trans, fs_info,
4280                                                  root_item.received_uuid,
4281                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4282                                                  key.objectid);
4283                        if (ret < 0) {
4284                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4285                                        ret);
4286                                break;
4287                        }
4288                }
4289
4290skip:
4291                if (trans) {
4292                        ret = btrfs_end_transaction(trans);
4293                        trans = NULL;
4294                        if (ret)
4295                                break;
4296                }
4297
4298                btrfs_release_path(path);
4299                if (key.offset < (u64)-1) {
4300                        key.offset++;
4301                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4302                        key.offset = 0;
4303                        key.type = BTRFS_ROOT_ITEM_KEY;
4304                } else if (key.objectid < (u64)-1) {
4305                        key.offset = 0;
4306                        key.type = BTRFS_ROOT_ITEM_KEY;
4307                        key.objectid++;
4308                } else {
4309                        break;
4310                }
4311                cond_resched();
4312        }
4313
4314out:
4315        btrfs_free_path(path);
4316        if (trans && !IS_ERR(trans))
4317                btrfs_end_transaction(trans);
4318        if (ret)
4319                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4320        else
4321                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4322        up(&fs_info->uuid_tree_rescan_sem);
4323        return 0;
4324}
4325
4326/*
4327 * Callback for btrfs_uuid_tree_iterate().
4328 * returns:
4329 * 0    check succeeded, the entry is not outdated.
4330 * < 0  if an error occurred.
4331 * > 0  if the check failed, which means the caller shall remove the entry.
4332 */
4333static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4334                                       u8 *uuid, u8 type, u64 subid)
4335{
4336        struct btrfs_key key;
4337        int ret = 0;
4338        struct btrfs_root *subvol_root;
4339
4340        if (type != BTRFS_UUID_KEY_SUBVOL &&
4341            type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4342                goto out;
4343
4344        key.objectid = subid;
4345        key.type = BTRFS_ROOT_ITEM_KEY;
4346        key.offset = (u64)-1;
4347        subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4348        if (IS_ERR(subvol_root)) {
4349                ret = PTR_ERR(subvol_root);
4350                if (ret == -ENOENT)
4351                        ret = 1;
4352                goto out;
4353        }
4354
4355        switch (type) {
4356        case BTRFS_UUID_KEY_SUBVOL:
4357                if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4358                        ret = 1;
4359                break;
4360        case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4361                if (memcmp(uuid, subvol_root->root_item.received_uuid,
4362                           BTRFS_UUID_SIZE))
4363                        ret = 1;
4364                break;
4365        }
4366
4367out:
4368        return ret;
4369}
4370
4371static int btrfs_uuid_rescan_kthread(void *data)
4372{
4373        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4374        int ret;
4375
4376        /*
4377         * 1st step is to iterate through the existing UUID tree and
4378         * to delete all entries that contain outdated data.
4379         * 2nd step is to add all missing entries to the UUID tree.
4380         */
4381        ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4382        if (ret < 0) {
4383                btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4384                up(&fs_info->uuid_tree_rescan_sem);
4385                return ret;
4386        }
4387        return btrfs_uuid_scan_kthread(data);
4388}
4389
4390int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4391{
4392        struct btrfs_trans_handle *trans;
4393        struct btrfs_root *tree_root = fs_info->tree_root;
4394        struct btrfs_root *uuid_root;
4395        struct task_struct *task;
4396        int ret;
4397
4398        /*
4399         * 1 - root node
4400         * 1 - root item
4401         */
4402        trans = btrfs_start_transaction(tree_root, 2);
4403        if (IS_ERR(trans))
4404                return PTR_ERR(trans);
4405
4406        uuid_root = btrfs_create_tree(trans, fs_info,
4407                                      BTRFS_UUID_TREE_OBJECTID);
4408        if (IS_ERR(uuid_root)) {
4409                ret = PTR_ERR(uuid_root);
4410                btrfs_abort_transaction(trans, ret);
4411                btrfs_end_transaction(trans);
4412                return ret;
4413        }
4414
4415        fs_info->uuid_root = uuid_root;
4416
4417        ret = btrfs_commit_transaction(trans);
4418        if (ret)
4419                return ret;
4420
4421        down(&fs_info->uuid_tree_rescan_sem);
4422        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4423        if (IS_ERR(task)) {
4424                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4425                btrfs_warn(fs_info, "failed to start uuid_scan task");
4426                up(&fs_info->uuid_tree_rescan_sem);
4427                return PTR_ERR(task);
4428        }
4429
4430        return 0;
4431}
4432
4433int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4434{
4435        struct task_struct *task;
4436
4437        down(&fs_info->uuid_tree_rescan_sem);
4438        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4439        if (IS_ERR(task)) {
4440                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4441                btrfs_warn(fs_info, "failed to start uuid_rescan task");
4442                up(&fs_info->uuid_tree_rescan_sem);
4443                return PTR_ERR(task);
4444        }
4445
4446        return 0;
4447}
4448
4449/*
4450 * shrinking a device means finding all of the device extents past
4451 * the new size, and then following the back refs to the chunks.
4452 * The chunk relocation code actually frees the device extent
4453 */
4454int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4455{
4456        struct btrfs_fs_info *fs_info = device->fs_info;
4457        struct btrfs_root *root = fs_info->dev_root;
4458        struct btrfs_trans_handle *trans;
4459        struct btrfs_dev_extent *dev_extent = NULL;
4460        struct btrfs_path *path;
4461        u64 length;
4462        u64 chunk_offset;
4463        int ret;
4464        int slot;
4465        int failed = 0;
4466        bool retried = false;
4467        bool checked_pending_chunks = false;
4468        struct extent_buffer *l;
4469        struct btrfs_key key;
4470        struct btrfs_super_block *super_copy = fs_info->super_copy;
4471        u64 old_total = btrfs_super_total_bytes(super_copy);
4472        u64 old_size = btrfs_device_get_total_bytes(device);
4473        u64 diff;
4474
4475        new_size = round_down(new_size, fs_info->sectorsize);
4476        diff = round_down(old_size - new_size, fs_info->sectorsize);
4477
4478        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4479                return -EINVAL;
4480
4481        path = btrfs_alloc_path();
4482        if (!path)
4483                return -ENOMEM;
4484
4485        path->reada = READA_FORWARD;
4486
4487        mutex_lock(&fs_info->chunk_mutex);
4488
4489        btrfs_device_set_total_bytes(device, new_size);
4490        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4491                device->fs_devices->total_rw_bytes -= diff;
4492                atomic64_sub(diff, &fs_info->free_chunk_space);
4493        }
4494        mutex_unlock(&fs_info->chunk_mutex);
4495
4496again:
4497        key.objectid = device->devid;
4498        key.offset = (u64)-1;
4499        key.type = BTRFS_DEV_EXTENT_KEY;
4500
4501        do {
4502                mutex_lock(&fs_info->delete_unused_bgs_mutex);
4503                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4504                if (ret < 0) {
4505                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4506                        goto done;
4507                }
4508
4509                ret = btrfs_previous_item(root, path, 0, key.type);
4510                if (ret)
4511                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4512                if (ret < 0)
4513                        goto done;
4514                if (ret) {
4515                        ret = 0;
4516                        btrfs_release_path(path);
4517                        break;
4518                }
4519
4520                l = path->nodes[0];
4521                slot = path->slots[0];
4522                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4523
4524                if (key.objectid != device->devid) {
4525                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4526                        btrfs_release_path(path);
4527                        break;
4528                }
4529
4530                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4531                length = btrfs_dev_extent_length(l, dev_extent);
4532
4533                if (key.offset + length <= new_size) {
4534                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4535                        btrfs_release_path(path);
4536                        break;
4537                }
4538
4539                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4540                btrfs_release_path(path);
4541
4542                /*
4543                 * We may be relocating the only data chunk we have,
4544                 * which could potentially end up with losing data's
4545                 * raid profile, so lets allocate an empty one in
4546                 * advance.
4547                 */
4548                ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4549                if (ret < 0) {
4550                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4551                        goto done;
4552                }
4553
4554                ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4555                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4556                if (ret && ret != -ENOSPC)
4557                        goto done;
4558                if (ret == -ENOSPC)
4559                        failed++;
4560        } while (key.offset-- > 0);
4561
4562        if (failed && !retried) {
4563                failed = 0;
4564                retried = true;
4565                goto again;
4566        } else if (failed && retried) {
4567                ret = -ENOSPC;
4568                goto done;
4569        }
4570
4571        /* Shrinking succeeded, else we would be at "done". */
4572        trans = btrfs_start_transaction(root, 0);
4573        if (IS_ERR(trans)) {
4574                ret = PTR_ERR(trans);
4575                goto done;
4576        }
4577
4578        mutex_lock(&fs_info->chunk_mutex);
4579
4580        /*
4581         * We checked in the above loop all device extents that were already in
4582         * the device tree. However before we have updated the device's
4583         * total_bytes to the new size, we might have had chunk allocations that
4584         * have not complete yet (new block groups attached to transaction
4585         * handles), and therefore their device extents were not yet in the
4586         * device tree and we missed them in the loop above. So if we have any
4587         * pending chunk using a device extent that overlaps the device range
4588         * that we can not use anymore, commit the current transaction and
4589         * repeat the search on the device tree - this way we guarantee we will
4590         * not have chunks using device extents that end beyond 'new_size'.
4591         */
4592        if (!checked_pending_chunks) {
4593                u64 start = new_size;
4594                u64 len = old_size - new_size;
4595
4596                if (contains_pending_extent(trans->transaction, device,
4597                                            &start, len)) {
4598                        mutex_unlock(&fs_info->chunk_mutex);
4599                        checked_pending_chunks = true;
4600                        failed = 0;
4601                        retried = false;
4602                        ret = btrfs_commit_transaction(trans);
4603                        if (ret)
4604                                goto done;
4605                        goto again;
4606                }
4607        }
4608
4609        btrfs_device_set_disk_total_bytes(device, new_size);
4610        if (list_empty(&device->resized_list))
4611                list_add_tail(&device->resized_list,
4612                              &fs_info->fs_devices->resized_devices);
4613
4614        WARN_ON(diff > old_total);
4615        btrfs_set_super_total_bytes(super_copy,
4616                        round_down(old_total - diff, fs_info->sectorsize));
4617        mutex_unlock(&fs_info->chunk_mutex);
4618
4619        /* Now btrfs_update_device() will change the on-disk size. */
4620        ret = btrfs_update_device(trans, device);
4621        btrfs_end_transaction(trans);
4622done:
4623        btrfs_free_path(path);
4624        if (ret) {
4625                mutex_lock(&fs_info->chunk_mutex);
4626                btrfs_device_set_total_bytes(device, old_size);
4627                if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4628                        device->fs_devices->total_rw_bytes += diff;
4629                atomic64_add(diff, &fs_info->free_chunk_space);
4630                mutex_unlock(&fs_info->chunk_mutex);
4631        }
4632        return ret;
4633}
4634
4635static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4636                           struct btrfs_key *key,
4637                           struct btrfs_chunk *chunk, int item_size)
4638{
4639        struct btrfs_super_block *super_copy = fs_info->super_copy;
4640        struct btrfs_disk_key disk_key;
4641        u32 array_size;
4642        u8 *ptr;
4643
4644        mutex_lock(&fs_info->chunk_mutex);
4645        array_size = btrfs_super_sys_array_size(super_copy);
4646        if (array_size + item_size + sizeof(disk_key)
4647                        > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4648                mutex_unlock(&fs_info->chunk_mutex);
4649                return -EFBIG;
4650        }
4651
4652        ptr = super_copy->sys_chunk_array + array_size;
4653        btrfs_cpu_key_to_disk(&disk_key, key);
4654        memcpy(ptr, &disk_key, sizeof(disk_key));
4655        ptr += sizeof(disk_key);
4656        memcpy(ptr, chunk, item_size);
4657        item_size += sizeof(disk_key);
4658        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4659        mutex_unlock(&fs_info->chunk_mutex);
4660
4661        return 0;
4662}
4663
4664/*
4665 * sort the devices in descending order by max_avail, total_avail
4666 */
4667static int btrfs_cmp_device_info(const void *a, const void *b)
4668{
4669        const struct btrfs_device_info *di_a = a;
4670        const struct btrfs_device_info *di_b = b;
4671
4672        if (di_a->max_avail > di_b->max_avail)
4673                return -1;
4674        if (di_a->max_avail < di_b->max_avail)
4675                return 1;
4676        if (di_a->total_avail > di_b->total_avail)
4677                return -1;
4678        if (di_a->total_avail < di_b->total_avail)
4679                return 1;
4680        return 0;
4681}
4682
4683static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4684{
4685        if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4686                return;
4687
4688        btrfs_set_fs_incompat(info, RAID56);
4689}
4690
4691#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4692                        - sizeof(struct btrfs_chunk))           \
4693                        / sizeof(struct btrfs_stripe) + 1)
4694
4695#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4696                                - 2 * sizeof(struct btrfs_disk_key)     \
4697                                - 2 * sizeof(struct btrfs_chunk))       \
4698                                / sizeof(struct btrfs_stripe) + 1)
4699
4700static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4701                               u64 start, u64 type)
4702{
4703        struct btrfs_fs_info *info = trans->fs_info;
4704        struct btrfs_fs_devices *fs_devices = info->fs_devices;
4705        struct btrfs_device *device;
4706        struct map_lookup *map = NULL;
4707        struct extent_map_tree *em_tree;
4708        struct extent_map *em;
4709        struct btrfs_device_info *devices_info = NULL;
4710        u64 total_avail;
4711        int num_stripes;        /* total number of stripes to allocate */
4712        int data_stripes;       /* number of stripes that count for
4713                                   block group size */
4714        int sub_stripes;        /* sub_stripes info for map */
4715        int dev_stripes;        /* stripes per dev */
4716        int devs_max;           /* max devs to use */
4717        int devs_min;           /* min devs needed */
4718        int devs_increment;     /* ndevs has to be a multiple of this */
4719        int ncopies;            /* how many copies to data has */
4720        int ret;
4721        u64 max_stripe_size;
4722        u64 max_chunk_size;
4723        u64 stripe_size;
4724        u64 num_bytes;
4725        int ndevs;
4726        int i;
4727        int j;
4728        int index;
4729
4730        BUG_ON(!alloc_profile_is_valid(type, 0));
4731
4732        if (list_empty(&fs_devices->alloc_list)) {
4733                if (btrfs_test_opt(info, ENOSPC_DEBUG))
4734                        btrfs_debug(info, "%s: no writable device", __func__);
4735                return -ENOSPC;
4736        }
4737
4738        index = btrfs_bg_flags_to_raid_index(type);
4739
4740        sub_stripes = btrfs_raid_array[index].sub_stripes;
4741        dev_stripes = btrfs_raid_array[index].dev_stripes;
4742        devs_max = btrfs_raid_array[index].devs_max;
4743        devs_min = btrfs_raid_array[index].devs_min;
4744        devs_increment = btrfs_raid_array[index].devs_increment;
4745        ncopies = btrfs_raid_array[index].ncopies;
4746
4747        if (type & BTRFS_BLOCK_GROUP_DATA) {
4748                max_stripe_size = SZ_1G;
4749                max_chunk_size = 10 * max_stripe_size;
4750                if (!devs_max)
4751                        devs_max = BTRFS_MAX_DEVS(info);
4752        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4753                /* for larger filesystems, use larger metadata chunks */
4754                if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4755                        max_stripe_size = SZ_1G;
4756                else
4757                        max_stripe_size = SZ_256M;
4758                max_chunk_size = max_stripe_size;
4759                if (!devs_max)
4760                        devs_max = BTRFS_MAX_DEVS(info);
4761        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4762                max_stripe_size = SZ_32M;
4763                max_chunk_size = 2 * max_stripe_size;
4764                if (!devs_max)
4765                        devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4766        } else {
4767                btrfs_err(info, "invalid chunk type 0x%llx requested",
4768                       type);
4769                BUG_ON(1);
4770        }
4771
4772        /* we don't want a chunk larger than 10% of writeable space */
4773        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4774                             max_chunk_size);
4775
4776        devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4777                               GFP_NOFS);
4778        if (!devices_info)
4779                return -ENOMEM;
4780
4781        /*
4782         * in the first pass through the devices list, we gather information
4783         * about the available holes on each device.
4784         */
4785        ndevs = 0;
4786        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4787                u64 max_avail;
4788                u64 dev_offset;
4789
4790                if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4791                        WARN(1, KERN_ERR
4792                               "BTRFS: read-only device in alloc_list\n");
4793                        continue;
4794                }
4795
4796                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4797                                        &device->dev_state) ||
4798                    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4799                        continue;
4800
4801                if (device->total_bytes > device->bytes_used)
4802                        total_avail = device->total_bytes - device->bytes_used;
4803                else
4804                        total_avail = 0;
4805
4806                /* If there is no space on this device, skip it. */
4807                if (total_avail == 0)
4808                        continue;
4809
4810                ret = find_free_dev_extent(trans, device,
4811                                           max_stripe_size * dev_stripes,
4812                                           &dev_offset, &max_avail);
4813                if (ret && ret != -ENOSPC)
4814                        goto error;
4815
4816                if (ret == 0)
4817                        max_avail = max_stripe_size * dev_stripes;
4818
4819                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4820                        if (btrfs_test_opt(info, ENOSPC_DEBUG))
4821                                btrfs_debug(info,
4822                        "%s: devid %llu has no free space, have=%llu want=%u",
4823                                            __func__, device->devid, max_avail,
4824                                            BTRFS_STRIPE_LEN * dev_stripes);
4825                        continue;
4826                }
4827
4828                if (ndevs == fs_devices->rw_devices) {
4829                        WARN(1, "%s: found more than %llu devices\n",
4830                             __func__, fs_devices->rw_devices);
4831                        break;
4832                }
4833                devices_info[ndevs].dev_offset = dev_offset;
4834                devices_info[ndevs].max_avail = max_avail;
4835                devices_info[ndevs].total_avail = total_avail;
4836                devices_info[ndevs].dev = device;
4837                ++ndevs;
4838        }
4839
4840        /*
4841         * now sort the devices by hole size / available space
4842         */
4843        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4844             btrfs_cmp_device_info, NULL);
4845
4846        /* round down to number of usable stripes */
4847        ndevs = round_down(ndevs, devs_increment);
4848
4849        if (ndevs < devs_min) {
4850                ret = -ENOSPC;
4851                if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4852                        btrfs_debug(info,
4853        "%s: not enough devices with free space: have=%d minimum required=%d",
4854                                    __func__, ndevs, devs_min);
4855                }
4856                goto error;
4857        }
4858
4859        ndevs = min(ndevs, devs_max);
4860
4861        /*
4862         * The primary goal is to maximize the number of stripes, so use as
4863         * many devices as possible, even if the stripes are not maximum sized.
4864         *
4865         * The DUP profile stores more than one stripe per device, the
4866         * max_avail is the total size so we have to adjust.
4867         */
4868        stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4869        num_stripes = ndevs * dev_stripes;
4870
4871        /*
4872         * this will have to be fixed for RAID1 and RAID10 over
4873         * more drives
4874         */
4875        data_stripes = num_stripes / ncopies;
4876
4877        if (type & BTRFS_BLOCK_GROUP_RAID5)
4878                data_stripes = num_stripes - 1;
4879
4880        if (type & BTRFS_BLOCK_GROUP_RAID6)
4881                data_stripes = num_stripes - 2;
4882
4883        /*
4884         * Use the number of data stripes to figure out how big this chunk
4885         * is really going to be in terms of logical address space,
4886         * and compare that answer with the max chunk size
4887         */
4888        if (stripe_size * data_stripes > max_chunk_size) {
4889                stripe_size = div_u64(max_chunk_size, data_stripes);
4890
4891                /* bump the answer up to a 16MB boundary */
4892                stripe_size = round_up(stripe_size, SZ_16M);
4893
4894                /*
4895                 * But don't go higher than the limits we found while searching
4896                 * for free extents
4897                 */
4898                stripe_size = min(devices_info[ndevs - 1].max_avail,
4899                                  stripe_size);
4900        }
4901
4902        /* align to BTRFS_STRIPE_LEN */
4903        stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4904
4905        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4906        if (!map) {
4907                ret = -ENOMEM;
4908                goto error;
4909        }
4910        map->num_stripes = num_stripes;
4911
4912        for (i = 0; i < ndevs; ++i) {
4913                for (j = 0; j < dev_stripes; ++j) {
4914                        int s = i * dev_stripes + j;
4915                        map->stripes[s].dev = devices_info[i].dev;
4916                        map->stripes[s].physical = devices_info[i].dev_offset +
4917                                                   j * stripe_size;
4918                }
4919        }
4920        map->stripe_len = BTRFS_STRIPE_LEN;
4921        map->io_align = BTRFS_STRIPE_LEN;
4922        map->io_width = BTRFS_STRIPE_LEN;
4923        map->type = type;
4924        map->sub_stripes = sub_stripes;
4925
4926        num_bytes = stripe_size * data_stripes;
4927
4928        trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4929
4930        em = alloc_extent_map();
4931        if (!em) {
4932                kfree(map);
4933                ret = -ENOMEM;
4934                goto error;
4935        }
4936        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4937        em->map_lookup = map;
4938        em->start = start;
4939        em->len = num_bytes;
4940        em->block_start = 0;
4941        em->block_len = em->len;
4942        em->orig_block_len = stripe_size;
4943
4944        em_tree = &info->mapping_tree.map_tree;
4945        write_lock(&em_tree->lock);
4946        ret = add_extent_mapping(em_tree, em, 0);
4947        if (ret) {
4948                write_unlock(&em_tree->lock);
4949                free_extent_map(em);
4950                goto error;
4951        }
4952
4953        list_add_tail(&em->list, &trans->transaction->pending_chunks);
4954        refcount_inc(&em->refs);
4955        write_unlock(&em_tree->lock);
4956
4957        ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4958        if (ret)
4959                goto error_del_extent;
4960
4961        for (i = 0; i < map->num_stripes; i++) {
4962                num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4963                btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4964        }
4965
4966        atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4967
4968        free_extent_map(em);
4969        check_raid56_incompat_flag(info, type);
4970
4971        kfree(devices_info);
4972        return 0;
4973
4974error_del_extent:
4975        write_lock(&em_tree->lock);
4976        remove_extent_mapping(em_tree, em);
4977        write_unlock(&em_tree->lock);
4978
4979        /* One for our allocation */
4980        free_extent_map(em);
4981        /* One for the tree reference */
4982        free_extent_map(em);
4983        /* One for the pending_chunks list reference */
4984        free_extent_map(em);
4985error:
4986        kfree(devices_info);
4987        return ret;
4988}
4989
4990int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4991                                struct btrfs_fs_info *fs_info,
4992                                u64 chunk_offset, u64 chunk_size)
4993{
4994        struct btrfs_root *extent_root = fs_info->extent_root;
4995        struct btrfs_root *chunk_root = fs_info->chunk_root;
4996        struct btrfs_key key;
4997        struct btrfs_device *device;
4998        struct btrfs_chunk *chunk;
4999        struct btrfs_stripe *stripe;
5000        struct extent_map *em;
5001        struct map_lookup *map;
5002        size_t item_size;
5003        u64 dev_offset;
5004        u64 stripe_size;
5005        int i = 0;
5006        int ret = 0;
5007
5008        em = get_chunk_map(fs_info, chunk_offset, chunk_size);
5009        if (IS_ERR(em))
5010                return PTR_ERR(em);
5011
5012        map = em->map_lookup;
5013        item_size = btrfs_chunk_item_size(map->num_stripes);
5014        stripe_size = em->orig_block_len;
5015
5016        chunk = kzalloc(item_size, GFP_NOFS);
5017        if (!chunk) {
5018                ret = -ENOMEM;
5019                goto out;
5020        }
5021
5022        /*
5023         * Take the device list mutex to prevent races with the final phase of
5024         * a device replace operation that replaces the device object associated
5025         * with the map's stripes, because the device object's id can change
5026         * at any time during that final phase of the device replace operation
5027         * (dev-replace.c:btrfs_dev_replace_finishing()).
5028         */
5029        mutex_lock(&fs_info->fs_devices->device_list_mutex);
5030        for (i = 0; i < map->num_stripes; i++) {
5031                device = map->stripes[i].dev;
5032                dev_offset = map->stripes[i].physical;
5033
5034                ret = btrfs_update_device(trans, device);
5035                if (ret)
5036                        break;
5037                ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5038                                             dev_offset, stripe_size);
5039                if (ret)
5040                        break;
5041        }
5042        if (ret) {
5043                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5044                goto out;
5045        }
5046
5047        stripe = &chunk->stripe;
5048        for (i = 0; i < map->num_stripes; i++) {
5049                device = map->stripes[i].dev;
5050                dev_offset = map->stripes[i].physical;
5051
5052                btrfs_set_stack_stripe_devid(stripe, device->devid);
5053                btrfs_set_stack_stripe_offset(stripe, dev_offset);
5054                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5055                stripe++;
5056        }
5057        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5058
5059        btrfs_set_stack_chunk_length(chunk, chunk_size);
5060        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5061        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5062        btrfs_set_stack_chunk_type(chunk, map->type);
5063        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5064        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5065        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5066        btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5067        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5068
5069        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5070        key.type = BTRFS_CHUNK_ITEM_KEY;
5071        key.offset = chunk_offset;
5072
5073        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5074        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5075                /*
5076                 * TODO: Cleanup of inserted chunk root in case of
5077                 * failure.
5078                 */
5079                ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5080        }
5081
5082out:
5083        kfree(chunk);
5084        free_extent_map(em);
5085        return ret;
5086}
5087
5088/*
5089 * Chunk allocation falls into two parts. The first part does works
5090 * that make the new allocated chunk useable, but not do any operation
5091 * that modifies the chunk tree. The second part does the works that
5092 * require modifying the chunk tree. This division is important for the
5093 * bootstrap process of adding storage to a seed btrfs.
5094 */
5095int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5096                      struct btrfs_fs_info *fs_info, u64 type)
5097{
5098        u64 chunk_offset;
5099
5100        lockdep_assert_held(&fs_info->chunk_mutex);
5101        chunk_offset = find_next_chunk(fs_info);
5102        return __btrfs_alloc_chunk(trans, chunk_offset, type);
5103}
5104
5105static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5106                                         struct btrfs_fs_info *fs_info)
5107{
5108        u64 chunk_offset;
5109        u64 sys_chunk_offset;
5110        u64 alloc_profile;
5111        int ret;
5112
5113        chunk_offset = find_next_chunk(fs_info);
5114        alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5115        ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5116        if (ret)
5117                return ret;
5118
5119        sys_chunk_offset = find_next_chunk(fs_info);
5120        alloc_profile = btrfs_system_alloc_profile(fs_info);
5121        ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5122        return ret;
5123}
5124
5125static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5126{
5127        int max_errors;
5128
5129        if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5130                         BTRFS_BLOCK_GROUP_RAID10 |
5131                         BTRFS_BLOCK_GROUP_RAID5 |
5132                         BTRFS_BLOCK_GROUP_DUP)) {
5133                max_errors = 1;
5134        } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5135                max_errors = 2;
5136        } else {
5137                max_errors = 0;
5138        }
5139
5140        return max_errors;
5141}
5142
5143int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5144{
5145        struct extent_map *em;
5146        struct map_lookup *map;
5147        int readonly = 0;
5148        int miss_ndevs = 0;
5149        int i;
5150
5151        em = get_chunk_map(fs_info, chunk_offset, 1);
5152        if (IS_ERR(em))
5153                return 1;
5154
5155        map = em->map_lookup;
5156        for (i = 0; i < map->num_stripes; i++) {
5157                if (test_bit(BTRFS_DEV_STATE_MISSING,
5158                                        &map->stripes[i].dev->dev_state)) {
5159                        miss_ndevs++;
5160                        continue;
5161                }
5162                if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5163                                        &map->stripes[i].dev->dev_state)) {
5164                        readonly = 1;
5165                        goto end;
5166                }
5167        }
5168
5169        /*
5170         * If the number of missing devices is larger than max errors,
5171         * we can not write the data into that chunk successfully, so
5172         * set it readonly.
5173         */
5174        if (miss_ndevs > btrfs_chunk_max_errors(map))
5175                readonly = 1;
5176end:
5177        free_extent_map(em);
5178        return readonly;
5179}
5180
5181void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5182{
5183        extent_map_tree_init(&tree->map_tree);
5184}
5185
5186void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5187{
5188        struct extent_map *em;
5189
5190        while (1) {
5191                write_lock(&tree->map_tree.lock);
5192                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5193                if (em)
5194                        remove_extent_mapping(&tree->map_tree, em);
5195                write_unlock(&tree->map_tree.lock);
5196                if (!em)
5197                        break;
5198                /* once for us */
5199                free_extent_map(em);
5200                /* once for the tree */
5201                free_extent_map(em);
5202        }
5203}
5204
5205int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5206{
5207        struct extent_map *em;
5208        struct map_lookup *map;
5209        int ret;
5210
5211        em = get_chunk_map(fs_info, logical, len);
5212        if (IS_ERR(em))
5213                /*
5214                 * We could return errors for these cases, but that could get
5215                 * ugly and we'd probably do the same thing which is just not do
5216                 * anything else and exit, so return 1 so the callers don't try
5217                 * to use other copies.
5218                 */
5219                return 1;
5220
5221        map = em->map_lookup;
5222        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5223                ret = map->num_stripes;
5224        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5225                ret = map->sub_stripes;
5226        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5227                ret = 2;
5228        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5229                /*
5230                 * There could be two corrupted data stripes, we need
5231                 * to loop retry in order to rebuild the correct data.
5232                 * 
5233                 * Fail a stripe at a time on every retry except the
5234                 * stripe under reconstruction.
5235                 */
5236                ret = map->num_stripes;
5237        else
5238                ret = 1;
5239        free_extent_map(em);
5240
5241        btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5242        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5243            fs_info->dev_replace.tgtdev)
5244                ret++;
5245        btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5246
5247        return ret;
5248}
5249
5250unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5251                                    u64 logical)
5252{
5253        struct extent_map *em;
5254        struct map_lookup *map;
5255        unsigned long len = fs_info->sectorsize;
5256
5257        em = get_chunk_map(fs_info, logical, len);
5258
5259        if (!WARN_ON(IS_ERR(em))) {
5260                map = em->map_lookup;
5261                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5262                        len = map->stripe_len * nr_data_stripes(map);
5263                free_extent_map(em);
5264        }
5265        return len;
5266}
5267
5268int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5269{
5270        struct extent_map *em;
5271        struct map_lookup *map;
5272        int ret = 0;
5273
5274        em = get_chunk_map(fs_info, logical, len);
5275
5276        if(!WARN_ON(IS_ERR(em))) {
5277                map = em->map_lookup;
5278                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5279                        ret = 1;
5280                free_extent_map(em);
5281        }
5282        return ret;
5283}
5284
5285static int find_live_mirror(struct btrfs_fs_info *fs_info,
5286                            struct map_lookup *map, int first,
5287                            int dev_replace_is_ongoing)
5288{
5289        int i;
5290        int num_stripes;
5291        int preferred_mirror;
5292        int tolerance;
5293        struct btrfs_device *srcdev;
5294
5295        ASSERT((map->type &
5296                 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5297
5298        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5299                num_stripes = map->sub_stripes;
5300        else
5301                num_stripes = map->num_stripes;
5302
5303        preferred_mirror = first + current->pid % num_stripes;
5304
5305        if (dev_replace_is_ongoing &&
5306            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5307             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5308                srcdev = fs_info->dev_replace.srcdev;
5309        else
5310                srcdev = NULL;
5311
5312        /*
5313         * try to avoid the drive that is the source drive for a
5314         * dev-replace procedure, only choose it if no other non-missing
5315         * mirror is available
5316         */
5317        for (tolerance = 0; tolerance < 2; tolerance++) {
5318                if (map->stripes[preferred_mirror].dev->bdev &&
5319                    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5320                        return preferred_mirror;
5321                for (i = first; i < first + num_stripes; i++) {
5322                        if (map->stripes[i].dev->bdev &&
5323                            (tolerance || map->stripes[i].dev != srcdev))
5324                                return i;
5325                }
5326        }
5327
5328        /* we couldn't find one that doesn't fail.  Just return something
5329         * and the io error handling code will clean up eventually
5330         */
5331        return preferred_mirror;
5332}
5333
5334static inline int parity_smaller(u64 a, u64 b)
5335{
5336        return a > b;
5337}
5338
5339/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5340static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5341{
5342        struct btrfs_bio_stripe s;
5343        int i;
5344        u64 l;
5345        int again = 1;
5346
5347        while (again) {
5348                again = 0;
5349                for (i = 0; i < num_stripes - 1; i++) {
5350                        if (parity_smaller(bbio->raid_map[i],
5351                                           bbio->raid_map[i+1])) {
5352                                s = bbio->stripes[i];
5353                                l = bbio->raid_map[i];
5354                                bbio->stripes[i] = bbio->stripes[i+1];
5355                                bbio->raid_map[i] = bbio->raid_map[i+1];
5356                                bbio->stripes[i+1] = s;
5357                                bbio->raid_map[i+1] = l;
5358
5359                                again = 1;
5360                        }
5361                }
5362        }
5363}
5364
5365static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5366{
5367        struct btrfs_bio *bbio = kzalloc(
5368                 /* the size of the btrfs_bio */
5369                sizeof(struct btrfs_bio) +
5370                /* plus the variable array for the stripes */
5371                sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5372                /* plus the variable array for the tgt dev */
5373                sizeof(int) * (real_stripes) +
5374                /*
5375                 * plus the raid_map, which includes both the tgt dev
5376                 * and the stripes
5377                 */
5378                sizeof(u64) * (total_stripes),
5379                GFP_NOFS|__GFP_NOFAIL);
5380
5381        atomic_set(&bbio->error, 0);
5382        refcount_set(&bbio->refs, 1);
5383
5384        return bbio;
5385}
5386
5387void btrfs_get_bbio(struct btrfs_bio *bbio)
5388{
5389        WARN_ON(!refcount_read(&bbio->refs));
5390        refcount_inc(&bbio->refs);
5391}
5392
5393void btrfs_put_bbio(struct btrfs_bio *bbio)
5394{
5395        if (!bbio)
5396                return;
5397        if (refcount_dec_and_test(&bbio->refs))
5398                kfree(bbio);
5399}
5400
5401/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5402/*
5403 * Please note that, discard won't be sent to target device of device
5404 * replace.
5405 */
5406static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5407                                         u64 logical, u64 length,
5408                                         struct btrfs_bio **bbio_ret)
5409{
5410        struct extent_map *em;
5411        struct map_lookup *map;
5412        struct btrfs_bio *bbio;
5413        u64 offset;
5414        u64 stripe_nr;
5415        u64 stripe_nr_end;
5416        u64 stripe_end_offset;
5417        u64 stripe_cnt;
5418        u64 stripe_len;
5419        u64 stripe_offset;
5420        u64 num_stripes;
5421        u32 stripe_index;
5422        u32 factor = 0;
5423        u32 sub_stripes = 0;
5424        u64 stripes_per_dev = 0;
5425        u32 remaining_stripes = 0;
5426        u32 last_stripe = 0;
5427        int ret = 0;
5428        int i;
5429
5430        /* discard always return a bbio */
5431        ASSERT(bbio_ret);
5432
5433        em = get_chunk_map(fs_info, logical, length);
5434        if (IS_ERR(em))
5435                return PTR_ERR(em);
5436
5437        map = em->map_lookup;
5438        /* we don't discard raid56 yet */
5439        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5440                ret = -EOPNOTSUPP;
5441                goto out;
5442        }
5443
5444        offset = logical - em->start;
5445        length = min_t(u64, em->len - offset, length);
5446
5447        stripe_len = map->stripe_len;
5448        /*
5449         * stripe_nr counts the total number of stripes we have to stride
5450         * to get to this block
5451         */
5452        stripe_nr = div64_u64(offset, stripe_len);
5453
5454        /* stripe_offset is the offset of this block in its stripe */
5455        stripe_offset = offset - stripe_nr * stripe_len;
5456
5457        stripe_nr_end = round_up(offset + length, map->stripe_len);
5458        stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5459        stripe_cnt = stripe_nr_end - stripe_nr;
5460        stripe_end_offset = stripe_nr_end * map->stripe_len -
5461                            (offset + length);
5462        /*
5463         * after this, stripe_nr is the number of stripes on this
5464         * device we have to walk to find the data, and stripe_index is
5465         * the number of our device in the stripe array
5466         */
5467        num_stripes = 1;
5468        stripe_index = 0;
5469        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5470                         BTRFS_BLOCK_GROUP_RAID10)) {
5471                if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5472                        sub_stripes = 1;
5473                else
5474                        sub_stripes = map->sub_stripes;
5475
5476                factor = map->num_stripes / sub_stripes;
5477                num_stripes = min_t(u64, map->num_stripes,
5478                                    sub_stripes * stripe_cnt);
5479                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5480                stripe_index *= sub_stripes;
5481                stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5482                                              &remaining_stripes);
5483                div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5484                last_stripe *= sub_stripes;
5485        } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5486                                BTRFS_BLOCK_GROUP_DUP)) {
5487                num_stripes = map->num_stripes;
5488        } else {
5489                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5490                                        &stripe_index);
5491        }
5492
5493        bbio = alloc_btrfs_bio(num_stripes, 0);
5494        if (!bbio) {
5495                ret = -ENOMEM;
5496                goto out;
5497        }
5498
5499        for (i = 0; i < num_stripes; i++) {
5500                bbio->stripes[i].physical =
5501                        map->stripes[stripe_index].physical +
5502                        stripe_offset + stripe_nr * map->stripe_len;
5503                bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5504
5505                if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5506                                 BTRFS_BLOCK_GROUP_RAID10)) {
5507                        bbio->stripes[i].length = stripes_per_dev *
5508                                map->stripe_len;
5509
5510                        if (i / sub_stripes < remaining_stripes)
5511                                bbio->stripes[i].length +=
5512                                        map->stripe_len;
5513
5514                        /*
5515                         * Special for the first stripe and
5516                         * the last stripe:
5517                         *
5518                         * |-------|...|-------|
5519                         *     |----------|
5520                         *    off     end_off
5521                         */
5522                        if (i < sub_stripes)
5523                                bbio->stripes[i].length -=
5524                                        stripe_offset;
5525
5526                        if (stripe_index >= last_stripe &&
5527                            stripe_index <= (last_stripe +
5528                                             sub_stripes - 1))
5529                                bbio->stripes[i].length -=
5530                                        stripe_end_offset;
5531
5532                        if (i == sub_stripes - 1)
5533                                stripe_offset = 0;
5534                } else {
5535                        bbio->stripes[i].length = length;
5536                }
5537
5538                stripe_index++;
5539                if (stripe_index == map->num_stripes) {
5540                        stripe_index = 0;
5541                        stripe_nr++;
5542                }
5543        }
5544
5545        *bbio_ret = bbio;
5546        bbio->map_type = map->type;
5547        bbio->num_stripes = num_stripes;
5548out:
5549        free_extent_map(em);
5550        return ret;
5551}
5552
5553/*
5554 * In dev-replace case, for repair case (that's the only case where the mirror
5555 * is selected explicitly when calling btrfs_map_block), blocks left of the
5556 * left cursor can also be read from the target drive.
5557 *
5558 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5559 * array of stripes.
5560 * For READ, it also needs to be supported using the same mirror number.
5561 *
5562 * If the requested block is not left of the left cursor, EIO is returned. This
5563 * can happen because btrfs_num_copies() returns one more in the dev-replace
5564 * case.
5565 */
5566static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5567                                         u64 logical, u64 length,
5568                                         u64 srcdev_devid, int *mirror_num,
5569                                         u64 *physical)
5570{
5571        struct btrfs_bio *bbio = NULL;
5572        int num_stripes;
5573        int index_srcdev = 0;
5574        int found = 0;
5575        u64 physical_of_found = 0;
5576        int i;
5577        int ret = 0;
5578
5579        ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5580                                logical, &length, &bbio, 0, 0);
5581        if (ret) {
5582                ASSERT(bbio == NULL);
5583                return ret;
5584        }
5585
5586        num_stripes = bbio->num_stripes;
5587        if (*mirror_num > num_stripes) {
5588                /*
5589                 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5590                 * that means that the requested area is not left of the left
5591                 * cursor
5592                 */
5593                btrfs_put_bbio(bbio);
5594                return -EIO;
5595        }
5596
5597        /*
5598         * process the rest of the function using the mirror_num of the source
5599         * drive. Therefore look it up first.  At the end, patch the device
5600         * pointer to the one of the target drive.
5601         */
5602        for (i = 0; i < num_stripes; i++) {
5603                if (bbio->stripes[i].dev->devid != srcdev_devid)
5604                        continue;
5605
5606                /*
5607                 * In case of DUP, in order to keep it simple, only add the
5608                 * mirror with the lowest physical address
5609                 */
5610                if (found &&
5611                    physical_of_found <= bbio->stripes[i].physical)
5612                        continue;
5613
5614                index_srcdev = i;
5615                found = 1;
5616                physical_of_found = bbio->stripes[i].physical;
5617        }
5618
5619        btrfs_put_bbio(bbio);
5620
5621        ASSERT(found);
5622        if (!found)
5623                return -EIO;
5624
5625        *mirror_num = index_srcdev + 1;
5626        *physical = physical_of_found;
5627        return ret;
5628}
5629
5630static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5631                                      struct btrfs_bio **bbio_ret,
5632                                      struct btrfs_dev_replace *dev_replace,
5633                                      int *num_stripes_ret, int *max_errors_ret)
5634{
5635        struct btrfs_bio *bbio = *bbio_ret;
5636        u64 srcdev_devid = dev_replace->srcdev->devid;
5637        int tgtdev_indexes = 0;
5638        int num_stripes = *num_stripes_ret;
5639        int max_errors = *max_errors_ret;
5640        int i;
5641
5642        if (op == BTRFS_MAP_WRITE) {
5643                int index_where_to_add;
5644
5645                /*
5646                 * duplicate the write operations while the dev replace
5647                 * procedure is running. Since the copying of the old disk to
5648                 * the new disk takes place at run time while the filesystem is
5649                 * mounted writable, the regular write operations to the old
5650                 * disk have to be duplicated to go to the new disk as well.
5651                 *
5652                 * Note that device->missing is handled by the caller, and that
5653                 * the write to the old disk is already set up in the stripes
5654                 * array.
5655                 */
5656                index_where_to_add = num_stripes;
5657                for (i = 0; i < num_stripes; i++) {
5658                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5659                                /* write to new disk, too */
5660                                struct btrfs_bio_stripe *new =
5661                                        bbio->stripes + index_where_to_add;
5662                                struct btrfs_bio_stripe *old =
5663                                        bbio->stripes + i;
5664
5665                                new->physical = old->physical;
5666                                new->length = old->length;
5667                                new->dev = dev_replace->tgtdev;
5668                                bbio->tgtdev_map[i] = index_where_to_add;
5669                                index_where_to_add++;
5670                                max_errors++;
5671                                tgtdev_indexes++;
5672                        }
5673                }
5674                num_stripes = index_where_to_add;
5675        } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5676                int index_srcdev = 0;
5677                int found = 0;
5678                u64 physical_of_found = 0;
5679
5680                /*
5681                 * During the dev-replace procedure, the target drive can also
5682                 * be used to read data in case it is needed to repair a corrupt
5683                 * block elsewhere. This is possible if the requested area is
5684                 * left of the left cursor. In this area, the target drive is a
5685                 * full copy of the source drive.
5686                 */
5687                for (i = 0; i < num_stripes; i++) {
5688                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5689                                /*
5690                                 * In case of DUP, in order to keep it simple,
5691                                 * only add the mirror with the lowest physical
5692                                 * address
5693                                 */
5694                                if (found &&
5695                                    physical_of_found <=
5696                                     bbio->stripes[i].physical)
5697                                        continue;
5698                                index_srcdev = i;
5699                                found = 1;
5700                                physical_of_found = bbio->stripes[i].physical;
5701                        }
5702                }
5703                if (found) {
5704                        struct btrfs_bio_stripe *tgtdev_stripe =
5705                                bbio->stripes + num_stripes;
5706
5707                        tgtdev_stripe->physical = physical_of_found;
5708                        tgtdev_stripe->length =
5709                                bbio->stripes[index_srcdev].length;
5710                        tgtdev_stripe->dev = dev_replace->tgtdev;
5711                        bbio->tgtdev_map[index_srcdev] = num_stripes;
5712
5713                        tgtdev_indexes++;
5714                        num_stripes++;
5715                }
5716        }
5717
5718        *num_stripes_ret = num_stripes;
5719        *max_errors_ret = max_errors;
5720        bbio->num_tgtdevs = tgtdev_indexes;
5721        *bbio_ret = bbio;
5722}
5723
5724static bool need_full_stripe(enum btrfs_map_op op)
5725{
5726        return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5727}
5728
5729static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5730                             enum btrfs_map_op op,
5731                             u64 logical, u64 *length,
5732                             struct btrfs_bio **bbio_ret,
5733                             int mirror_num, int need_raid_map)
5734{
5735        struct extent_map *em;
5736        struct map_lookup *map;
5737        u64 offset;
5738        u64 stripe_offset;
5739        u64 stripe_nr;
5740        u64 stripe_len;
5741        u32 stripe_index;
5742        int i;
5743        int ret = 0;
5744        int num_stripes;
5745        int max_errors = 0;
5746        int tgtdev_indexes = 0;
5747        struct btrfs_bio *bbio = NULL;
5748        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5749        int dev_replace_is_ongoing = 0;
5750        int num_alloc_stripes;
5751        int patch_the_first_stripe_for_dev_replace = 0;
5752        u64 physical_to_patch_in_first_stripe = 0;
5753        u64 raid56_full_stripe_start = (u64)-1;
5754
5755        if (op == BTRFS_MAP_DISCARD)
5756                return __btrfs_map_block_for_discard(fs_info, logical,
5757                                                     *length, bbio_ret);
5758
5759        em = get_chunk_map(fs_info, logical, *length);
5760        if (IS_ERR(em))
5761                return PTR_ERR(em);
5762
5763        map = em->map_lookup;
5764        offset = logical - em->start;
5765
5766        stripe_len = map->stripe_len;
5767        stripe_nr = offset;
5768        /*
5769         * stripe_nr counts the total number of stripes we have to stride
5770         * to get to this block
5771         */
5772        stripe_nr = div64_u64(stripe_nr, stripe_len);
5773
5774        stripe_offset = stripe_nr * stripe_len;
5775        if (offset < stripe_offset) {
5776                btrfs_crit(fs_info,
5777                           "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5778                           stripe_offset, offset, em->start, logical,
5779                           stripe_len);
5780                free_extent_map(em);
5781                return -EINVAL;
5782        }
5783
5784        /* stripe_offset is the offset of this block in its stripe*/
5785        stripe_offset = offset - stripe_offset;
5786
5787        /* if we're here for raid56, we need to know the stripe aligned start */
5788        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5789                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5790                raid56_full_stripe_start = offset;
5791
5792                /* allow a write of a full stripe, but make sure we don't
5793                 * allow straddling of stripes
5794                 */
5795                raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5796                                full_stripe_len);
5797                raid56_full_stripe_start *= full_stripe_len;
5798        }
5799
5800        if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5801                u64 max_len;
5802                /* For writes to RAID[56], allow a full stripeset across all disks.
5803                   For other RAID types and for RAID[56] reads, just allow a single
5804                   stripe (on a single disk). */
5805                if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5806                    (op == BTRFS_MAP_WRITE)) {
5807                        max_len = stripe_len * nr_data_stripes(map) -
5808                                (offset - raid56_full_stripe_start);
5809                } else {
5810                        /* we limit the length of each bio to what fits in a stripe */
5811                        max_len = stripe_len - stripe_offset;
5812                }
5813                *length = min_t(u64, em->len - offset, max_len);
5814        } else {
5815                *length = em->len - offset;
5816        }
5817
5818        /* This is for when we're called from btrfs_merge_bio_hook() and all
5819           it cares about is the length */
5820        if (!bbio_ret)
5821                goto out;
5822
5823        btrfs_dev_replace_read_lock(dev_replace);
5824        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5825        if (!dev_replace_is_ongoing)
5826                btrfs_dev_replace_read_unlock(dev_replace);
5827        else
5828                btrfs_dev_replace_set_lock_blocking(dev_replace);
5829
5830        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5831            !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5832                ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5833                                                    dev_replace->srcdev->devid,
5834                                                    &mirror_num,
5835                                            &physical_to_patch_in_first_stripe);
5836                if (ret)
5837                        goto out;
5838                else
5839                        patch_the_first_stripe_for_dev_replace = 1;
5840        } else if (mirror_num > map->num_stripes) {
5841                mirror_num = 0;
5842        }
5843
5844        num_stripes = 1;
5845        stripe_index = 0;
5846        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5847                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5848                                &stripe_index);
5849                if (!need_full_stripe(op))
5850                        mirror_num = 1;
5851        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5852                if (need_full_stripe(op))
5853                        num_stripes = map->num_stripes;
5854                else if (mirror_num)
5855                        stripe_index = mirror_num - 1;
5856                else {
5857                        stripe_index = find_live_mirror(fs_info, map, 0,
5858                                            dev_replace_is_ongoing);
5859                        mirror_num = stripe_index + 1;
5860                }
5861
5862        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5863                if (need_full_stripe(op)) {
5864                        num_stripes = map->num_stripes;
5865                } else if (mirror_num) {
5866                        stripe_index = mirror_num - 1;
5867                } else {
5868                        mirror_num = 1;
5869                }
5870
5871        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5872                u32 factor = map->num_stripes / map->sub_stripes;
5873
5874                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5875                stripe_index *= map->sub_stripes;
5876
5877                if (need_full_stripe(op))
5878                        num_stripes = map->sub_stripes;
5879                else if (mirror_num)
5880                        stripe_index += mirror_num - 1;
5881                else {
5882                        int old_stripe_index = stripe_index;
5883                        stripe_index = find_live_mirror(fs_info, map,
5884                                              stripe_index,
5885                                              dev_replace_is_ongoing);
5886                        mirror_num = stripe_index - old_stripe_index + 1;
5887                }
5888
5889        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5890                if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5891                        /* push stripe_nr back to the start of the full stripe */
5892                        stripe_nr = div64_u64(raid56_full_stripe_start,
5893                                        stripe_len * nr_data_stripes(map));
5894
5895                        /* RAID[56] write or recovery. Return all stripes */
5896                        num_stripes = map->num_stripes;
5897                        max_errors = nr_parity_stripes(map);
5898
5899                        *length = map->stripe_len;
5900                        stripe_index = 0;
5901                        stripe_offset = 0;
5902                } else {
5903                        /*
5904                         * Mirror #0 or #1 means the original data block.
5905                         * Mirror #2 is RAID5 parity block.
5906                         * Mirror #3 is RAID6 Q block.
5907                         */
5908                        stripe_nr = div_u64_rem(stripe_nr,
5909                                        nr_data_stripes(map), &stripe_index);
5910                        if (mirror_num > 1)
5911                                stripe_index = nr_data_stripes(map) +
5912                                                mirror_num - 2;
5913
5914                        /* We distribute the parity blocks across stripes */
5915                        div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5916                                        &stripe_index);
5917                        if (!need_full_stripe(op) && mirror_num <= 1)
5918                                mirror_num = 1;
5919                }
5920        } else {
5921                /*
5922                 * after this, stripe_nr is the number of stripes on this
5923                 * device we have to walk to find the data, and stripe_index is
5924                 * the number of our device in the stripe array
5925                 */
5926                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5927                                &stripe_index);
5928                mirror_num = stripe_index + 1;
5929        }
5930        if (stripe_index >= map->num_stripes) {
5931                btrfs_crit(fs_info,
5932                           "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5933                           stripe_index, map->num_stripes);
5934                ret = -EINVAL;
5935                goto out;
5936        }
5937
5938        num_alloc_stripes = num_stripes;
5939        if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5940                if (op == BTRFS_MAP_WRITE)
5941                        num_alloc_stripes <<= 1;
5942                if (op == BTRFS_MAP_GET_READ_MIRRORS)
5943                        num_alloc_stripes++;
5944                tgtdev_indexes = num_stripes;
5945        }
5946
5947        bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5948        if (!bbio) {
5949                ret = -ENOMEM;
5950                goto out;
5951        }
5952        if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5953                bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5954
5955        /* build raid_map */
5956        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5957            (need_full_stripe(op) || mirror_num > 1)) {
5958                u64 tmp;
5959                unsigned rot;
5960
5961                bbio->raid_map = (u64 *)((void *)bbio->stripes +
5962                                 sizeof(struct btrfs_bio_stripe) *
5963                                 num_alloc_stripes +
5964                                 sizeof(int) * tgtdev_indexes);
5965
5966                /* Work out the disk rotation on this stripe-set */
5967                div_u64_rem(stripe_nr, num_stripes, &rot);
5968
5969                /* Fill in the logical address of each stripe */
5970                tmp = stripe_nr * nr_data_stripes(map);
5971                for (i = 0; i < nr_data_stripes(map); i++)
5972                        bbio->raid_map[(i+rot) % num_stripes] =
5973                                em->start + (tmp + i) * map->stripe_len;
5974
5975                bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5976                if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5977                        bbio->raid_map[(i+rot+1) % num_stripes] =
5978                                RAID6_Q_STRIPE;
5979        }
5980
5981
5982        for (i = 0; i < num_stripes; i++) {
5983                bbio->stripes[i].physical =
5984                        map->stripes[stripe_index].physical +
5985                        stripe_offset +
5986                        stripe_nr * map->stripe_len;
5987                bbio->stripes[i].dev =
5988                        map->stripes[stripe_index].dev;
5989                stripe_index++;
5990        }
5991
5992        if (need_full_stripe(op))
5993                max_errors = btrfs_chunk_max_errors(map);
5994
5995        if (bbio->raid_map)
5996                sort_parity_stripes(bbio, num_stripes);
5997
5998        if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5999            need_full_stripe(op)) {
6000                handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6001                                          &max_errors);
6002        }
6003
6004        *bbio_ret = bbio;
6005        bbio->map_type = map->type;
6006        bbio->num_stripes = num_stripes;
6007        bbio->max_errors = max_errors;
6008        bbio->mirror_num = mirror_num;
6009
6010        /*
6011         * this is the case that REQ_READ && dev_replace_is_ongoing &&
6012         * mirror_num == num_stripes + 1 && dev_replace target drive is
6013         * available as a mirror
6014         */
6015        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6016                WARN_ON(num_stripes > 1);
6017                bbio->stripes[0].dev = dev_replace->tgtdev;
6018                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6019                bbio->mirror_num = map->num_stripes + 1;
6020        }
6021out:
6022        if (dev_replace_is_ongoing) {
6023                btrfs_dev_replace_clear_lock_blocking(dev_replace);
6024                btrfs_dev_replace_read_unlock(dev_replace);
6025        }
6026        free_extent_map(em);
6027        return ret;
6028}
6029
6030int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6031                      u64 logical, u64 *length,
6032                      struct btrfs_bio **bbio_ret, int mirror_num)
6033{
6034        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6035                                 mirror_num, 0);
6036}
6037
6038/* For Scrub/replace */
6039int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6040                     u64 logical, u64 *length,
6041                     struct btrfs_bio **bbio_ret)
6042{
6043        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6044}
6045
6046int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6047                     u64 chunk_start, u64 physical, u64 devid,
6048                     u64 **logical, int *naddrs, int *stripe_len)
6049{
6050        struct extent_map *em;
6051        struct map_lookup *map;
6052        u64 *buf;
6053        u64 bytenr;
6054        u64 length;
6055        u64 stripe_nr;
6056        u64 rmap_len;
6057        int i, j, nr = 0;
6058
6059        em = get_chunk_map(fs_info, chunk_start, 1);
6060        if (IS_ERR(em))
6061                return -EIO;
6062
6063        map = em->map_lookup;
6064        length = em->len;
6065        rmap_len = map->stripe_len;
6066
6067        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6068                length = div_u64(length, map->num_stripes / map->sub_stripes);
6069        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6070                length = div_u64(length, map->num_stripes);
6071        else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6072                length = div_u64(length, nr_data_stripes(map));
6073                rmap_len = map->stripe_len * nr_data_stripes(map);
6074        }
6075
6076        buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6077        BUG_ON(!buf); /* -ENOMEM */
6078
6079        for (i = 0; i < map->num_stripes; i++) {
6080                if (devid && map->stripes[i].dev->devid != devid)
6081                        continue;
6082                if (map->stripes[i].physical > physical ||
6083                    map->stripes[i].physical + length <= physical)
6084                        continue;
6085
6086                stripe_nr = physical - map->stripes[i].physical;
6087                stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6088
6089                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6090                        stripe_nr = stripe_nr * map->num_stripes + i;
6091                        stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6092                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6093                        stripe_nr = stripe_nr * map->num_stripes + i;
6094                } /* else if RAID[56], multiply by nr_data_stripes().
6095                   * Alternatively, just use rmap_len below instead of
6096                   * map->stripe_len */
6097
6098                bytenr = chunk_start + stripe_nr * rmap_len;
6099                WARN_ON(nr >= map->num_stripes);
6100                for (j = 0; j < nr; j++) {
6101                        if (buf[j] == bytenr)
6102                                break;
6103                }
6104                if (j == nr) {
6105                        WARN_ON(nr >= map->num_stripes);
6106                        buf[nr++] = bytenr;
6107                }
6108        }
6109
6110        *logical = buf;
6111        *naddrs = nr;
6112        *stripe_len = rmap_len;
6113
6114        free_extent_map(em);
6115        return 0;
6116}
6117
6118static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6119{
6120        bio->bi_private = bbio->private;
6121        bio->bi_end_io = bbio->end_io;
6122        bio_endio(bio);
6123
6124        btrfs_put_bbio(bbio);
6125}
6126
6127static void btrfs_end_bio(struct bio *bio)
6128{
6129        struct btrfs_bio *bbio = bio->bi_private;
6130        int is_orig_bio = 0;
6131
6132        if (bio->bi_status) {
6133                atomic_inc(&bbio->error);
6134                if (bio->bi_status == BLK_STS_IOERR ||
6135                    bio->bi_status == BLK_STS_TARGET) {
6136                        unsigned int stripe_index =
6137                                btrfs_io_bio(bio)->stripe_index;
6138                        struct btrfs_device *dev;
6139
6140                        BUG_ON(stripe_index >= bbio->num_stripes);
6141                        dev = bbio->stripes[stripe_index].dev;
6142                        if (dev->bdev) {
6143                                if (bio_op(bio) == REQ_OP_WRITE)
6144                                        btrfs_dev_stat_inc_and_print(dev,
6145                                                BTRFS_DEV_STAT_WRITE_ERRS);
6146                                else
6147                                        btrfs_dev_stat_inc_and_print(dev,
6148                                                BTRFS_DEV_STAT_READ_ERRS);
6149                                if (bio->bi_opf & REQ_PREFLUSH)
6150                                        btrfs_dev_stat_inc_and_print(dev,
6151                                                BTRFS_DEV_STAT_FLUSH_ERRS);
6152                        }
6153                }
6154        }
6155
6156        if (bio == bbio->orig_bio)
6157                is_orig_bio = 1;
6158
6159        btrfs_bio_counter_dec(bbio->fs_info);
6160
6161        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6162                if (!is_orig_bio) {
6163                        bio_put(bio);
6164                        bio = bbio->orig_bio;
6165                }
6166
6167                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6168                /* only send an error to the higher layers if it is
6169                 * beyond the tolerance of the btrfs bio
6170                 */
6171                if (atomic_read(&bbio->error) > bbio->max_errors) {
6172                        bio->bi_status = BLK_STS_IOERR;
6173                } else {
6174                        /*
6175                         * this bio is actually up to date, we didn't
6176                         * go over the max number of errors
6177                         */
6178                        bio->bi_status = BLK_STS_OK;
6179                }
6180
6181                btrfs_end_bbio(bbio, bio);
6182        } else if (!is_orig_bio) {
6183                bio_put(bio);
6184        }
6185}
6186
6187/*
6188 * see run_scheduled_bios for a description of why bios are collected for
6189 * async submit.
6190 *
6191 * This will add one bio to the pending list for a device and make sure
6192 * the work struct is scheduled.
6193 */
6194static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6195                                        struct bio *bio)
6196{
6197        struct btrfs_fs_info *fs_info = device->fs_info;
6198        int should_queue = 1;
6199        struct btrfs_pending_bios *pending_bios;
6200
6201        if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6202            !device->bdev) {
6203                bio_io_error(bio);
6204                return;
6205        }
6206
6207        /* don't bother with additional async steps for reads, right now */
6208        if (bio_op(bio) == REQ_OP_READ) {
6209                btrfsic_submit_bio(bio);
6210                return;
6211        }
6212
6213        WARN_ON(bio->bi_next);
6214        bio->bi_next = NULL;
6215
6216        spin_lock(&device->io_lock);
6217        if (op_is_sync(bio->bi_opf))
6218                pending_bios = &device->pending_sync_bios;
6219        else
6220                pending_bios = &device->pending_bios;
6221
6222        if (pending_bios->tail)
6223                pending_bios->tail->bi_next = bio;
6224
6225        pending_bios->tail = bio;
6226        if (!pending_bios->head)
6227                pending_bios->head = bio;
6228        if (device->running_pending)
6229                should_queue = 0;
6230
6231        spin_unlock(&device->io_lock);
6232
6233        if (should_queue)
6234                btrfs_queue_work(fs_info->submit_workers, &device->work);
6235}
6236
6237static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6238                              u64 physical, int dev_nr, int async)
6239{
6240        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6241        struct btrfs_fs_info *fs_info = bbio->fs_info;
6242
6243        bio->bi_private = bbio;
6244        btrfs_io_bio(bio)->stripe_index = dev_nr;
6245        bio->bi_end_io = btrfs_end_bio;
6246        bio->bi_iter.bi_sector = physical >> 9;
6247#ifdef DEBUG
6248        {
6249                struct rcu_string *name;
6250
6251                rcu_read_lock();
6252                name = rcu_dereference(dev->name);
6253                btrfs_debug(fs_info,
6254                        "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6255                        bio_op(bio), bio->bi_opf,
6256                        (u64)bio->bi_iter.bi_sector,
6257                        (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6258                        bio->bi_iter.bi_size);
6259                rcu_read_unlock();
6260        }
6261#endif
6262        bio_set_dev(bio, dev->bdev);
6263
6264        btrfs_bio_counter_inc_noblocked(fs_info);
6265
6266        if (async)
6267                btrfs_schedule_bio(dev, bio);
6268        else
6269                btrfsic_submit_bio(bio);
6270}
6271
6272static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6273{
6274        atomic_inc(&bbio->error);
6275        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6276                /* Should be the original bio. */
6277                WARN_ON(bio != bbio->orig_bio);
6278
6279                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6280                bio->bi_iter.bi_sector = logical >> 9;
6281                if (atomic_read(&bbio->error) > bbio->max_errors)
6282                        bio->bi_status = BLK_STS_IOERR;
6283                else
6284                        bio->bi_status = BLK_STS_OK;
6285                btrfs_end_bbio(bbio, bio);
6286        }
6287}
6288
6289blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6290                           int mirror_num, int async_submit)
6291{
6292        struct btrfs_device *dev;
6293        struct bio *first_bio = bio;
6294        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6295        u64 length = 0;
6296        u64 map_length;
6297        int ret;
6298        int dev_nr;
6299        int total_devs;
6300        struct btrfs_bio *bbio = NULL;
6301
6302        length = bio->bi_iter.bi_size;
6303        map_length = length;
6304
6305        btrfs_bio_counter_inc_blocked(fs_info);
6306        ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6307                                &map_length, &bbio, mirror_num, 1);
6308        if (ret) {
6309                btrfs_bio_counter_dec(fs_info);
6310                return errno_to_blk_status(ret);
6311        }
6312
6313        total_devs = bbio->num_stripes;
6314        bbio->orig_bio = first_bio;
6315        bbio->private = first_bio->bi_private;
6316        bbio->end_io = first_bio->bi_end_io;
6317        bbio->fs_info = fs_info;
6318        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6319
6320        if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6321            ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6322                /* In this case, map_length has been set to the length of
6323                   a single stripe; not the whole write */
6324                if (bio_op(bio) == REQ_OP_WRITE) {
6325                        ret = raid56_parity_write(fs_info, bio, bbio,
6326                                                  map_length);
6327                } else {
6328                        ret = raid56_parity_recover(fs_info, bio, bbio,
6329                                                    map_length, mirror_num, 1);
6330                }
6331
6332                btrfs_bio_counter_dec(fs_info);
6333                return errno_to_blk_status(ret);
6334        }
6335
6336        if (map_length < length) {
6337                btrfs_crit(fs_info,
6338                           "mapping failed logical %llu bio len %llu len %llu",
6339                           logical, length, map_length);
6340                BUG();
6341        }
6342
6343        for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6344                dev = bbio->stripes[dev_nr].dev;
6345                if (!dev || !dev->bdev ||
6346                    (bio_op(first_bio) == REQ_OP_WRITE &&
6347                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6348                        bbio_error(bbio, first_bio, logical);
6349                        continue;
6350                }
6351
6352                if (dev_nr < total_devs - 1)
6353                        bio = btrfs_bio_clone(first_bio);
6354                else
6355                        bio = first_bio;
6356
6357                submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6358                                  dev_nr, async_submit);
6359        }
6360        btrfs_bio_counter_dec(fs_info);
6361        return BLK_STS_OK;
6362}
6363
6364struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6365                                       u8 *uuid, u8 *fsid)
6366{
6367        struct btrfs_device *device;
6368        struct btrfs_fs_devices *cur_devices;
6369
6370        cur_devices = fs_info->fs_devices;
6371        while (cur_devices) {
6372                if (!fsid ||
6373                    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6374                        device = find_device(cur_devices, devid, uuid);
6375                        if (device)
6376                                return device;
6377                }
6378                cur_devices = cur_devices->seed;
6379        }
6380        return NULL;
6381}
6382
6383static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6384                                            u64 devid, u8 *dev_uuid)
6385{
6386        struct btrfs_device *device;
6387
6388        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6389        if (IS_ERR(device))
6390                return device;
6391
6392        list_add(&device->dev_list, &fs_devices->devices);
6393        device->fs_devices = fs_devices;
6394        fs_devices->num_devices++;
6395
6396        set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6397        fs_devices->missing_devices++;
6398
6399        return device;
6400}
6401
6402/**
6403 * btrfs_alloc_device - allocate struct btrfs_device
6404 * @fs_info:    used only for generating a new devid, can be NULL if
6405 *              devid is provided (i.e. @devid != NULL).
6406 * @devid:      a pointer to devid for this device.  If NULL a new devid
6407 *              is generated.
6408 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6409 *              is generated.
6410 *
6411 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6412 * on error.  Returned struct is not linked onto any lists and must be
6413 * destroyed with free_device.
6414 */
6415struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6416                                        const u64 *devid,
6417                                        const u8 *uuid)
6418{
6419        struct btrfs_device *dev;
6420        u64 tmp;
6421
6422        if (WARN_ON(!devid && !fs_info))
6423                return ERR_PTR(-EINVAL);
6424
6425        dev = __alloc_device();
6426        if (IS_ERR(dev))
6427                return dev;
6428
6429        if (devid)
6430                tmp = *devid;
6431        else {
6432                int ret;
6433
6434                ret = find_next_devid(fs_info, &tmp);
6435                if (ret) {
6436                        free_device(dev);
6437                        return ERR_PTR(ret);
6438                }
6439        }
6440        dev->devid = tmp;
6441
6442        if (uuid)
6443                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6444        else
6445                generate_random_uuid(dev->uuid);
6446
6447        btrfs_init_work(&dev->work, btrfs_submit_helper,
6448                        pending_bios_fn, NULL, NULL);
6449
6450        return dev;
6451}
6452
6453/* Return -EIO if any error, otherwise return 0. */
6454static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6455                                   struct extent_buffer *leaf,
6456                                   struct btrfs_chunk *chunk, u64 logical)
6457{
6458        u64 length;
6459        u64 stripe_len;
6460        u16 num_stripes;
6461        u16 sub_stripes;
6462        u64 type;
6463
6464        length = btrfs_chunk_length(leaf, chunk);
6465        stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6466        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6467        sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6468        type = btrfs_chunk_type(leaf, chunk);
6469
6470        if (!num_stripes) {
6471                btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6472                          num_stripes);
6473                return -EIO;
6474        }
6475        if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6476                btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6477                return -EIO;
6478        }
6479        if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6480                btrfs_err(fs_info, "invalid chunk sectorsize %u",
6481                          btrfs_chunk_sector_size(leaf, chunk));
6482                return -EIO;
6483        }
6484        if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6485                btrfs_err(fs_info, "invalid chunk length %llu", length);
6486                return -EIO;
6487        }
6488        if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6489                btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6490                          stripe_len);
6491                return -EIO;
6492        }
6493        if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6494            type) {
6495                btrfs_err(fs_info, "unrecognized chunk type: %llu",
6496                          ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6497                            BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6498                          btrfs_chunk_type(leaf, chunk));
6499                return -EIO;
6500        }
6501        if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6502            (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6503            (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6504            (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6505            (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6506            ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6507             num_stripes != 1)) {
6508                btrfs_err(fs_info,
6509                        "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6510                        num_stripes, sub_stripes,
6511                        type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6512                return -EIO;
6513        }
6514
6515        return 0;
6516}
6517
6518static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6519                                        u64 devid, u8 *uuid, bool error)
6520{
6521        if (error)
6522                btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6523                              devid, uuid);
6524        else
6525                btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6526                              devid, uuid);
6527}
6528
6529static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6530                          struct extent_buffer *leaf,
6531                          struct btrfs_chunk *chunk)
6532{
6533        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6534        struct map_lookup *map;
6535        struct extent_map *em;
6536        u64 logical;
6537        u64 length;
6538        u64 devid;
6539        u8 uuid[BTRFS_UUID_SIZE];
6540        int num_stripes;
6541        int ret;
6542        int i;
6543
6544        logical = key->offset;
6545        length = btrfs_chunk_length(leaf, chunk);
6546        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6547
6548        ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6549        if (ret)
6550                return ret;
6551
6552        read_lock(&map_tree->map_tree.lock);
6553        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6554        read_unlock(&map_tree->map_tree.lock);
6555
6556        /* already mapped? */
6557        if (em && em->start <= logical && em->start + em->len > logical) {
6558                free_extent_map(em);
6559                return 0;
6560        } else if (em) {
6561                free_extent_map(em);
6562        }
6563
6564        em = alloc_extent_map();
6565        if (!em)
6566                return -ENOMEM;
6567        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6568        if (!map) {
6569                free_extent_map(em);
6570                return -ENOMEM;
6571        }
6572
6573        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6574        em->map_lookup = map;
6575        em->start = logical;
6576        em->len = length;
6577        em->orig_start = 0;
6578        em->block_start = 0;
6579        em->block_len = em->len;
6580
6581        map->num_stripes = num_stripes;
6582        map->io_width = btrfs_chunk_io_width(leaf, chunk);
6583        map->io_align = btrfs_chunk_io_align(leaf, chunk);
6584        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6585        map->type = btrfs_chunk_type(leaf, chunk);
6586        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6587        for (i = 0; i < num_stripes; i++) {
6588                map->stripes[i].physical =
6589                        btrfs_stripe_offset_nr(leaf, chunk, i);
6590                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6591                read_extent_buffer(leaf, uuid, (unsigned long)
6592                                   btrfs_stripe_dev_uuid_nr(chunk, i),
6593                                   BTRFS_UUID_SIZE);
6594                map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6595                                                        uuid, NULL);
6596                if (!map->stripes[i].dev &&
6597                    !btrfs_test_opt(fs_info, DEGRADED)) {
6598                        free_extent_map(em);
6599                        btrfs_report_missing_device(fs_info, devid, uuid, true);
6600                        return -ENOENT;
6601                }
6602                if (!map->stripes[i].dev) {
6603                        map->stripes[i].dev =
6604                                add_missing_dev(fs_info->fs_devices, devid,
6605                                                uuid);
6606                        if (IS_ERR(map->stripes[i].dev)) {
6607                                free_extent_map(em);
6608                                btrfs_err(fs_info,
6609                                        "failed to init missing dev %llu: %ld",
6610                                        devid, PTR_ERR(map->stripes[i].dev));
6611                                return PTR_ERR(map->stripes[i].dev);
6612                        }
6613                        btrfs_report_missing_device(fs_info, devid, uuid, false);
6614                }
6615                set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6616                                &(map->stripes[i].dev->dev_state));
6617
6618        }
6619
6620        write_lock(&map_tree->map_tree.lock);
6621        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6622        write_unlock(&map_tree->map_tree.lock);
6623        BUG_ON(ret); /* Tree corruption */
6624        free_extent_map(em);
6625
6626        return 0;
6627}
6628
6629static void fill_device_from_item(struct extent_buffer *leaf,
6630                                 struct btrfs_dev_item *dev_item,
6631                                 struct btrfs_device *device)
6632{
6633        unsigned long ptr;
6634
6635        device->devid = btrfs_device_id(leaf, dev_item);
6636        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6637        device->total_bytes = device->disk_total_bytes;
6638        device->commit_total_bytes = device->disk_total_bytes;
6639        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6640        device->commit_bytes_used = device->bytes_used;
6641        device->type = btrfs_device_type(leaf, dev_item);
6642        device->io_align = btrfs_device_io_align(leaf, dev_item);
6643        device->io_width = btrfs_device_io_width(leaf, dev_item);
6644        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6645        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6646        clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6647
6648        ptr = btrfs_device_uuid(dev_item);
6649        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6650}
6651
6652static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6653                                                  u8 *fsid)
6654{
6655        struct btrfs_fs_devices *fs_devices;
6656        int ret;
6657
6658        lockdep_assert_held(&uuid_mutex);
6659        ASSERT(fsid);
6660
6661        fs_devices = fs_info->fs_devices->seed;
6662        while (fs_devices) {
6663                if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6664                        return fs_devices;
6665
6666                fs_devices = fs_devices->seed;
6667        }
6668
6669        fs_devices = find_fsid(fsid);
6670        if (!fs_devices) {
6671                if (!btrfs_test_opt(fs_info, DEGRADED))
6672                        return ERR_PTR(-ENOENT);
6673
6674                fs_devices = alloc_fs_devices(fsid);
6675                if (IS_ERR(fs_devices))
6676                        return fs_devices;
6677
6678                fs_devices->seeding = 1;
6679                fs_devices->opened = 1;
6680                return fs_devices;
6681        }
6682
6683        fs_devices = clone_fs_devices(fs_devices);
6684        if (IS_ERR(fs_devices))
6685                return fs_devices;
6686
6687        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6688                                   fs_info->bdev_holder);
6689        if (ret) {
6690                free_fs_devices(fs_devices);
6691                fs_devices = ERR_PTR(ret);
6692                goto out;
6693        }
6694
6695        if (!fs_devices->seeding) {
6696                __btrfs_close_devices(fs_devices);
6697                free_fs_devices(fs_devices);
6698                fs_devices = ERR_PTR(-EINVAL);
6699                goto out;
6700        }
6701
6702        fs_devices->seed = fs_info->fs_devices->seed;
6703        fs_info->fs_devices->seed = fs_devices;
6704out:
6705        return fs_devices;
6706}
6707
6708static int read_one_dev(struct btrfs_fs_info *fs_info,
6709                        struct extent_buffer *leaf,
6710                        struct btrfs_dev_item *dev_item)
6711{
6712        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6713        struct btrfs_device *device;
6714        u64 devid;
6715        int ret;
6716        u8 fs_uuid[BTRFS_FSID_SIZE];
6717        u8 dev_uuid[BTRFS_UUID_SIZE];
6718
6719        devid = btrfs_device_id(leaf, dev_item);
6720        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6721                           BTRFS_UUID_SIZE);
6722        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6723                           BTRFS_FSID_SIZE);
6724
6725        if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6726                fs_devices = open_seed_devices(fs_info, fs_uuid);
6727                if (IS_ERR(fs_devices))
6728                        return PTR_ERR(fs_devices);
6729        }
6730
6731        device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6732        if (!device) {
6733                if (!btrfs_test_opt(fs_info, DEGRADED)) {
6734                        btrfs_report_missing_device(fs_info, devid,
6735                                                        dev_uuid, true);
6736                        return -ENOENT;
6737                }
6738
6739                device = add_missing_dev(fs_devices, devid, dev_uuid);
6740                if (IS_ERR(device)) {
6741                        btrfs_err(fs_info,
6742                                "failed to add missing dev %llu: %ld",
6743                                devid, PTR_ERR(device));
6744                        return PTR_ERR(device);
6745                }
6746                btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6747        } else {
6748                if (!device->bdev) {
6749                        if (!btrfs_test_opt(fs_info, DEGRADED)) {
6750                                btrfs_report_missing_device(fs_info,
6751                                                devid, dev_uuid, true);
6752                                return -ENOENT;
6753                        }
6754                        btrfs_report_missing_device(fs_info, devid,
6755                                                        dev_uuid, false);
6756                }
6757
6758                if (!device->bdev &&
6759                    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6760                        /*
6761                         * this happens when a device that was properly setup
6762                         * in the device info lists suddenly goes bad.
6763                         * device->bdev is NULL, and so we have to set
6764                         * device->missing to one here
6765                         */
6766                        device->fs_devices->missing_devices++;
6767                        set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6768                }
6769
6770                /* Move the device to its own fs_devices */
6771                if (device->fs_devices != fs_devices) {
6772                        ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6773                                                        &device->dev_state));
6774
6775                        list_move(&device->dev_list, &fs_devices->devices);
6776                        device->fs_devices->num_devices--;
6777                        fs_devices->num_devices++;
6778
6779                        device->fs_devices->missing_devices--;
6780                        fs_devices->missing_devices++;
6781
6782                        device->fs_devices = fs_devices;
6783                }
6784        }
6785
6786        if (device->fs_devices != fs_info->fs_devices) {
6787                BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6788                if (device->generation !=
6789                    btrfs_device_generation(leaf, dev_item))
6790                        return -EINVAL;
6791        }
6792
6793        fill_device_from_item(leaf, dev_item, device);
6794        set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6795        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6796           !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6797                device->fs_devices->total_rw_bytes += device->total_bytes;
6798                atomic64_add(device->total_bytes - device->bytes_used,
6799                                &fs_info->free_chunk_space);
6800        }
6801        ret = 0;
6802        return ret;
6803}
6804
6805int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6806{
6807        struct btrfs_root *root = fs_info->tree_root;
6808        struct btrfs_super_block *super_copy = fs_info->super_copy;
6809        struct extent_buffer *sb;
6810        struct btrfs_disk_key *disk_key;
6811        struct btrfs_chunk *chunk;
6812        u8 *array_ptr;
6813        unsigned long sb_array_offset;
6814        int ret = 0;
6815        u32 num_stripes;
6816        u32 array_size;
6817        u32 len = 0;
6818        u32 cur_offset;
6819        u64 type;
6820        struct btrfs_key key;
6821
6822        ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6823        /*
6824         * This will create extent buffer of nodesize, superblock size is
6825         * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6826         * overallocate but we can keep it as-is, only the first page is used.
6827         */
6828        sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6829        if (IS_ERR(sb))
6830                return PTR_ERR(sb);
6831        set_extent_buffer_uptodate(sb);
6832        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6833        /*
6834         * The sb extent buffer is artificial and just used to read the system array.
6835         * set_extent_buffer_uptodate() call does not properly mark all it's
6836         * pages up-to-date when the page is larger: extent does not cover the
6837         * whole page and consequently check_page_uptodate does not find all
6838         * the page's extents up-to-date (the hole beyond sb),
6839         * write_extent_buffer then triggers a WARN_ON.
6840         *
6841         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6842         * but sb spans only this function. Add an explicit SetPageUptodate call
6843         * to silence the warning eg. on PowerPC 64.
6844         */
6845        if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6846                SetPageUptodate(sb->pages[0]);
6847
6848        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6849        array_size = btrfs_super_sys_array_size(super_copy);
6850
6851        array_ptr = super_copy->sys_chunk_array;
6852        sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6853        cur_offset = 0;
6854
6855        while (cur_offset < array_size) {
6856                disk_key = (struct btrfs_disk_key *)array_ptr;
6857                len = sizeof(*disk_key);
6858                if (cur_offset + len > array_size)
6859                        goto out_short_read;
6860
6861                btrfs_disk_key_to_cpu(&key, disk_key);
6862
6863                array_ptr += len;
6864                sb_array_offset += len;
6865                cur_offset += len;
6866
6867                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6868                        chunk = (struct btrfs_chunk *)sb_array_offset;
6869                        /*
6870                         * At least one btrfs_chunk with one stripe must be
6871                         * present, exact stripe count check comes afterwards
6872                         */
6873                        len = btrfs_chunk_item_size(1);
6874                        if (cur_offset + len > array_size)
6875                                goto out_short_read;
6876
6877                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6878                        if (!num_stripes) {
6879                                btrfs_err(fs_info,
6880                                        "invalid number of stripes %u in sys_array at offset %u",
6881                                        num_stripes, cur_offset);
6882                                ret = -EIO;
6883                                break;
6884                        }
6885
6886                        type = btrfs_chunk_type(sb, chunk);
6887                        if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6888                                btrfs_err(fs_info,
6889                            "invalid chunk type %llu in sys_array at offset %u",
6890                                        type, cur_offset);
6891                                ret = -EIO;
6892                                break;
6893                        }
6894
6895                        len = btrfs_chunk_item_size(num_stripes);
6896                        if (cur_offset + len > array_size)
6897                                goto out_short_read;
6898
6899                        ret = read_one_chunk(fs_info, &key, sb, chunk);
6900                        if (ret)
6901                                break;
6902                } else {
6903                        btrfs_err(fs_info,
6904                            "unexpected item type %u in sys_array at offset %u",
6905                                  (u32)key.type, cur_offset);
6906                        ret = -EIO;
6907                        break;
6908                }
6909                array_ptr += len;
6910                sb_array_offset += len;
6911                cur_offset += len;
6912        }
6913        clear_extent_buffer_uptodate(sb);
6914        free_extent_buffer_stale(sb);
6915        return ret;
6916
6917out_short_read:
6918        btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6919                        len, cur_offset);
6920        clear_extent_buffer_uptodate(sb);
6921        free_extent_buffer_stale(sb);
6922        return -EIO;
6923}
6924
6925/*
6926 * Check if all chunks in the fs are OK for read-write degraded mount
6927 *
6928 * If the @failing_dev is specified, it's accounted as missing.
6929 *
6930 * Return true if all chunks meet the minimal RW mount requirements.
6931 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6932 */
6933bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6934                                        struct btrfs_device *failing_dev)
6935{
6936        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6937        struct extent_map *em;
6938        u64 next_start = 0;
6939        bool ret = true;
6940
6941        read_lock(&map_tree->map_tree.lock);
6942        em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6943        read_unlock(&map_tree->map_tree.lock);
6944        /* No chunk at all? Return false anyway */
6945        if (!em) {
6946                ret = false;
6947                goto out;
6948        }
6949        while (em) {
6950                struct map_lookup *map;
6951                int missing = 0;
6952                int max_tolerated;
6953                int i;
6954
6955                map = em->map_lookup;
6956                max_tolerated =
6957                        btrfs_get_num_tolerated_disk_barrier_failures(
6958                                        map->type);
6959                for (i = 0; i < map->num_stripes; i++) {
6960                        struct btrfs_device *dev = map->stripes[i].dev;
6961
6962                        if (!dev || !dev->bdev ||
6963                            test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6964                            dev->last_flush_error)
6965                                missing++;
6966                        else if (failing_dev && failing_dev == dev)
6967                                missing++;
6968                }
6969                if (missing > max_tolerated) {
6970                        if (!failing_dev)
6971                                btrfs_warn(fs_info,
6972        "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6973                                   em->start, missing, max_tolerated);
6974                        free_extent_map(em);
6975                        ret = false;
6976                        goto out;
6977                }
6978                next_start = extent_map_end(em);
6979                free_extent_map(em);
6980
6981                read_lock(&map_tree->map_tree.lock);
6982                em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6983                                           (u64)(-1) - next_start);
6984                read_unlock(&map_tree->map_tree.lock);
6985        }
6986out:
6987        return ret;
6988}
6989
6990int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6991{
6992        struct btrfs_root *root = fs_info->chunk_root;
6993        struct btrfs_path *path;
6994        struct extent_buffer *leaf;
6995        struct btrfs_key key;
6996        struct btrfs_key found_key;
6997        int ret;
6998        int slot;
6999        u64 total_dev = 0;
7000
7001        path = btrfs_alloc_path();
7002        if (!path)
7003                return -ENOMEM;
7004
7005        mutex_lock(&uuid_mutex);
7006        mutex_lock(&fs_info->chunk_mutex);
7007
7008        /*
7009         * Read all device items, and then all the chunk items. All
7010         * device items are found before any chunk item (their object id
7011         * is smaller than the lowest possible object id for a chunk
7012         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7013         */
7014        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7015        key.offset = 0;
7016        key.type = 0;
7017        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7018        if (ret < 0)
7019                goto error;
7020        while (1) {
7021                leaf = path->nodes[0];
7022                slot = path->slots[0];
7023                if (slot >= btrfs_header_nritems(leaf)) {
7024                        ret = btrfs_next_leaf(root, path);
7025                        if (ret == 0)
7026                                continue;
7027                        if (ret < 0)
7028                                goto error;
7029                        break;
7030                }
7031                btrfs_item_key_to_cpu(leaf, &found_key, slot);
7032                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7033                        struct btrfs_dev_item *dev_item;
7034                        dev_item = btrfs_item_ptr(leaf, slot,
7035                                                  struct btrfs_dev_item);
7036                        ret = read_one_dev(fs_info, leaf, dev_item);
7037                        if (ret)
7038                                goto error;
7039                        total_dev++;
7040                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7041                        struct btrfs_chunk *chunk;
7042                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7043                        ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7044                        if (ret)
7045                                goto error;
7046                }
7047                path->slots[0]++;
7048        }
7049
7050        /*
7051         * After loading chunk tree, we've got all device information,
7052         * do another round of validation checks.
7053         */
7054        if (total_dev != fs_info->fs_devices->total_devices) {
7055                btrfs_err(fs_info,
7056           "super_num_devices %llu mismatch with num_devices %llu found here",
7057                          btrfs_super_num_devices(fs_info->super_copy),
7058                          total_dev);
7059                ret = -EINVAL;
7060                goto error;
7061        }
7062        if (btrfs_super_total_bytes(fs_info->super_copy) <
7063            fs_info->fs_devices->total_rw_bytes) {
7064                btrfs_err(fs_info,
7065        "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7066                          btrfs_super_total_bytes(fs_info->super_copy),
7067                          fs_info->fs_devices->total_rw_bytes);
7068                ret = -EINVAL;
7069                goto error;
7070        }
7071        ret = 0;
7072error:
7073        mutex_unlock(&fs_info->chunk_mutex);
7074        mutex_unlock(&uuid_mutex);
7075
7076        btrfs_free_path(path);
7077        return ret;
7078}
7079
7080void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7081{
7082        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7083        struct btrfs_device *device;
7084
7085        while (fs_devices) {
7086                mutex_lock(&fs_devices->device_list_mutex);
7087                list_for_each_entry(device, &fs_devices->devices, dev_list)
7088                        device->fs_info = fs_info;
7089                mutex_unlock(&fs_devices->device_list_mutex);
7090
7091                fs_devices = fs_devices->seed;
7092        }
7093}
7094
7095static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7096{
7097        int i;
7098
7099        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7100                btrfs_dev_stat_reset(dev, i);
7101}
7102
7103int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7104{
7105        struct btrfs_key key;
7106        struct btrfs_key found_key;
7107        struct btrfs_root *dev_root = fs_info->dev_root;
7108        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7109        struct extent_buffer *eb;
7110        int slot;
7111        int ret = 0;
7112        struct btrfs_device *device;
7113        struct btrfs_path *path = NULL;
7114        int i;
7115
7116        path = btrfs_alloc_path();
7117        if (!path) {
7118                ret = -ENOMEM;
7119                goto out;
7120        }
7121
7122        mutex_lock(&fs_devices->device_list_mutex);
7123        list_for_each_entry(device, &fs_devices->devices, dev_list) {
7124                int item_size;
7125                struct btrfs_dev_stats_item *ptr;
7126
7127                key.objectid = BTRFS_DEV_STATS_OBJECTID;
7128                key.type = BTRFS_PERSISTENT_ITEM_KEY;
7129                key.offset = device->devid;
7130                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7131                if (ret) {
7132                        __btrfs_reset_dev_stats(device);
7133                        device->dev_stats_valid = 1;
7134                        btrfs_release_path(path);
7135                        continue;
7136                }
7137                slot = path->slots[0];
7138                eb = path->nodes[0];
7139                btrfs_item_key_to_cpu(eb, &found_key, slot);
7140                item_size = btrfs_item_size_nr(eb, slot);
7141
7142                ptr = btrfs_item_ptr(eb, slot,
7143                                     struct btrfs_dev_stats_item);
7144
7145                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7146                        if (item_size >= (1 + i) * sizeof(__le64))
7147                                btrfs_dev_stat_set(device, i,
7148                                        btrfs_dev_stats_value(eb, ptr, i));
7149                        else
7150                                btrfs_dev_stat_reset(device, i);
7151                }
7152
7153                device->dev_stats_valid = 1;
7154                btrfs_dev_stat_print_on_load(device);
7155                btrfs_release_path(path);
7156        }
7157        mutex_unlock(&fs_devices->device_list_mutex);
7158
7159out:
7160        btrfs_free_path(path);
7161        return ret < 0 ? ret : 0;
7162}
7163
7164static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7165                                struct btrfs_fs_info *fs_info,
7166                                struct btrfs_device *device)
7167{
7168        struct btrfs_root *dev_root = fs_info->dev_root;
7169        struct btrfs_path *path;
7170        struct btrfs_key key;
7171        struct extent_buffer *eb;
7172        struct btrfs_dev_stats_item *ptr;
7173        int ret;
7174        int i;
7175
7176        key.objectid = BTRFS_DEV_STATS_OBJECTID;
7177        key.type = BTRFS_PERSISTENT_ITEM_KEY;
7178        key.offset = device->devid;
7179
7180        path = btrfs_alloc_path();
7181        if (!path)
7182                return -ENOMEM;
7183        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7184        if (ret < 0) {
7185                btrfs_warn_in_rcu(fs_info,
7186                        "error %d while searching for dev_stats item for device %s",
7187                              ret, rcu_str_deref(device->name));
7188                goto out;
7189        }
7190
7191        if (ret == 0 &&
7192            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7193                /* need to delete old one and insert a new one */
7194                ret = btrfs_del_item(trans, dev_root, path);
7195                if (ret != 0) {
7196                        btrfs_warn_in_rcu(fs_info,
7197                                "delete too small dev_stats item for device %s failed %d",
7198                                      rcu_str_deref(device->name), ret);
7199                        goto out;
7200                }
7201                ret = 1;
7202        }
7203
7204        if (ret == 1) {
7205                /* need to insert a new item */
7206                btrfs_release_path(path);
7207                ret = btrfs_insert_empty_item(trans, dev_root, path,
7208                                              &key, sizeof(*ptr));
7209                if (ret < 0) {
7210                        btrfs_warn_in_rcu(fs_info,
7211                                "insert dev_stats item for device %s failed %d",
7212                                rcu_str_deref(device->name), ret);
7213                        goto out;
7214                }
7215        }
7216
7217        eb = path->nodes[0];
7218        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7219        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7220                btrfs_set_dev_stats_value(eb, ptr, i,
7221                                          btrfs_dev_stat_read(device, i));
7222        btrfs_mark_buffer_dirty(eb);
7223
7224out:
7225        btrfs_free_path(path);
7226        return ret;
7227}
7228
7229/*
7230 * called from commit_transaction. Writes all changed device stats to disk.
7231 */
7232int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7233                        struct btrfs_fs_info *fs_info)
7234{
7235        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7236        struct btrfs_device *device;
7237        int stats_cnt;
7238        int ret = 0;
7239
7240        mutex_lock(&fs_devices->device_list_mutex);
7241        list_for_each_entry(device, &fs_devices->devices, dev_list) {
7242                stats_cnt = atomic_read(&device->dev_stats_ccnt);
7243                if (!device->dev_stats_valid || stats_cnt == 0)
7244                        continue;
7245
7246
7247                /*
7248                 * There is a LOAD-LOAD control dependency between the value of
7249                 * dev_stats_ccnt and updating the on-disk values which requires
7250                 * reading the in-memory counters. Such control dependencies
7251                 * require explicit read memory barriers.
7252                 *
7253                 * This memory barriers pairs with smp_mb__before_atomic in
7254                 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7255                 * barrier implied by atomic_xchg in
7256                 * btrfs_dev_stats_read_and_reset
7257                 */
7258                smp_rmb();
7259
7260                ret = update_dev_stat_item(trans, fs_info, device);
7261                if (!ret)
7262                        atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7263        }
7264        mutex_unlock(&fs_devices->device_list_mutex);
7265
7266        return ret;
7267}
7268
7269void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7270{
7271        btrfs_dev_stat_inc(dev, index);
7272        btrfs_dev_stat_print_on_error(dev);
7273}
7274
7275static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7276{
7277        if (!dev->dev_stats_valid)
7278                return;
7279        btrfs_err_rl_in_rcu(dev->fs_info,
7280                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7281                           rcu_str_deref(dev->name),
7282                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7283                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7284                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7285                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7286                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7287}
7288
7289static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7290{
7291        int i;
7292
7293        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7294                if (btrfs_dev_stat_read(dev, i) != 0)
7295                        break;
7296        if (i == BTRFS_DEV_STAT_VALUES_MAX)
7297                return; /* all values == 0, suppress message */
7298
7299        btrfs_info_in_rcu(dev->fs_info,
7300                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7301               rcu_str_deref(dev->name),
7302               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7303               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7304               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7305               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7306               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7307}
7308
7309int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7310                        struct btrfs_ioctl_get_dev_stats *stats)
7311{
7312        struct btrfs_device *dev;
7313        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7314        int i;
7315
7316        mutex_lock(&fs_devices->device_list_mutex);
7317        dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7318        mutex_unlock(&fs_devices->device_list_mutex);
7319
7320        if (!dev) {
7321                btrfs_warn(fs_info, "get dev_stats failed, device not found");
7322                return -ENODEV;
7323        } else if (!dev->dev_stats_valid) {
7324                btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7325                return -ENODEV;
7326        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7327                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7328                        if (stats->nr_items > i)
7329                                stats->values[i] =
7330                                        btrfs_dev_stat_read_and_reset(dev, i);
7331                        else
7332                                btrfs_dev_stat_reset(dev, i);
7333                }
7334        } else {
7335                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7336                        if (stats->nr_items > i)
7337                                stats->values[i] = btrfs_dev_stat_read(dev, i);
7338        }
7339        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7340                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7341        return 0;
7342}
7343
7344void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7345{
7346        struct buffer_head *bh;
7347        struct btrfs_super_block *disk_super;
7348        int copy_num;
7349
7350        if (!bdev)
7351                return;
7352
7353        for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7354                copy_num++) {
7355
7356                if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7357                        continue;
7358
7359                disk_super = (struct btrfs_super_block *)bh->b_data;
7360
7361                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7362                set_buffer_dirty(bh);
7363                sync_dirty_buffer(bh);
7364                brelse(bh);
7365        }
7366
7367        /* Notify udev that device has changed */
7368        btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7369
7370        /* Update ctime/mtime for device path for libblkid */
7371        update_dev_time(device_path);
7372}
7373
7374/*
7375 * Update the size of all devices, which is used for writing out the
7376 * super blocks.
7377 */
7378void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7379{
7380        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7381        struct btrfs_device *curr, *next;
7382
7383        if (list_empty(&fs_devices->resized_devices))
7384                return;
7385
7386        mutex_lock(&fs_devices->device_list_mutex);
7387        mutex_lock(&fs_info->chunk_mutex);
7388        list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7389                                 resized_list) {
7390                list_del_init(&curr->resized_list);
7391                curr->commit_total_bytes = curr->disk_total_bytes;
7392        }
7393        mutex_unlock(&fs_info->chunk_mutex);
7394        mutex_unlock(&fs_devices->device_list_mutex);
7395}
7396
7397/* Must be invoked during the transaction commit */
7398void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7399{
7400        struct btrfs_fs_info *fs_info = trans->fs_info;
7401        struct extent_map *em;
7402        struct map_lookup *map;
7403        struct btrfs_device *dev;
7404        int i;
7405
7406        if (list_empty(&trans->pending_chunks))
7407                return;
7408
7409        /* In order to kick the device replace finish process */
7410        mutex_lock(&fs_info->chunk_mutex);
7411        list_for_each_entry(em, &trans->pending_chunks, list) {
7412                map = em->map_lookup;
7413
7414                for (i = 0; i < map->num_stripes; i++) {
7415                        dev = map->stripes[i].dev;
7416                        dev->commit_bytes_used = dev->bytes_used;
7417                }
7418        }
7419        mutex_unlock(&fs_info->chunk_mutex);
7420}
7421
7422void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7423{
7424        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7425        while (fs_devices) {
7426                fs_devices->fs_info = fs_info;
7427                fs_devices = fs_devices->seed;
7428        }
7429}
7430
7431void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7432{
7433        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7434        while (fs_devices) {
7435                fs_devices->fs_info = NULL;
7436                fs_devices = fs_devices->seed;
7437        }
7438}
7439