linux/fs/buffer.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/sched/signal.h>
  23#include <linux/syscalls.h>
  24#include <linux/fs.h>
  25#include <linux/iomap.h>
  26#include <linux/mm.h>
  27#include <linux/percpu.h>
  28#include <linux/slab.h>
  29#include <linux/capability.h>
  30#include <linux/blkdev.h>
  31#include <linux/file.h>
  32#include <linux/quotaops.h>
  33#include <linux/highmem.h>
  34#include <linux/export.h>
  35#include <linux/backing-dev.h>
  36#include <linux/writeback.h>
  37#include <linux/hash.h>
  38#include <linux/suspend.h>
  39#include <linux/buffer_head.h>
  40#include <linux/task_io_accounting_ops.h>
  41#include <linux/bio.h>
  42#include <linux/notifier.h>
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <trace/events/block.h>
  49
  50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  52                         enum rw_hint hint, struct writeback_control *wbc);
  53
  54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  55
  56inline void touch_buffer(struct buffer_head *bh)
  57{
  58        trace_block_touch_buffer(bh);
  59        mark_page_accessed(bh->b_page);
  60}
  61EXPORT_SYMBOL(touch_buffer);
  62
  63void __lock_buffer(struct buffer_head *bh)
  64{
  65        wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  66}
  67EXPORT_SYMBOL(__lock_buffer);
  68
  69void unlock_buffer(struct buffer_head *bh)
  70{
  71        clear_bit_unlock(BH_Lock, &bh->b_state);
  72        smp_mb__after_atomic();
  73        wake_up_bit(&bh->b_state, BH_Lock);
  74}
  75EXPORT_SYMBOL(unlock_buffer);
  76
  77/*
  78 * Returns if the page has dirty or writeback buffers. If all the buffers
  79 * are unlocked and clean then the PageDirty information is stale. If
  80 * any of the pages are locked, it is assumed they are locked for IO.
  81 */
  82void buffer_check_dirty_writeback(struct page *page,
  83                                     bool *dirty, bool *writeback)
  84{
  85        struct buffer_head *head, *bh;
  86        *dirty = false;
  87        *writeback = false;
  88
  89        BUG_ON(!PageLocked(page));
  90
  91        if (!page_has_buffers(page))
  92                return;
  93
  94        if (PageWriteback(page))
  95                *writeback = true;
  96
  97        head = page_buffers(page);
  98        bh = head;
  99        do {
 100                if (buffer_locked(bh))
 101                        *writeback = true;
 102
 103                if (buffer_dirty(bh))
 104                        *dirty = true;
 105
 106                bh = bh->b_this_page;
 107        } while (bh != head);
 108}
 109EXPORT_SYMBOL(buffer_check_dirty_writeback);
 110
 111/*
 112 * Block until a buffer comes unlocked.  This doesn't stop it
 113 * from becoming locked again - you have to lock it yourself
 114 * if you want to preserve its state.
 115 */
 116void __wait_on_buffer(struct buffer_head * bh)
 117{
 118        wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 119}
 120EXPORT_SYMBOL(__wait_on_buffer);
 121
 122static void
 123__clear_page_buffers(struct page *page)
 124{
 125        ClearPagePrivate(page);
 126        set_page_private(page, 0);
 127        put_page(page);
 128}
 129
 130static void buffer_io_error(struct buffer_head *bh, char *msg)
 131{
 132        if (!test_bit(BH_Quiet, &bh->b_state))
 133                printk_ratelimited(KERN_ERR
 134                        "Buffer I/O error on dev %pg, logical block %llu%s\n",
 135                        bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 136}
 137
 138/*
 139 * End-of-IO handler helper function which does not touch the bh after
 140 * unlocking it.
 141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 142 * a race there is benign: unlock_buffer() only use the bh's address for
 143 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 144 * itself.
 145 */
 146static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 147{
 148        if (uptodate) {
 149                set_buffer_uptodate(bh);
 150        } else {
 151                /* This happens, due to failed read-ahead attempts. */
 152                clear_buffer_uptodate(bh);
 153        }
 154        unlock_buffer(bh);
 155}
 156
 157/*
 158 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 159 * unlock the buffer. This is what ll_rw_block uses too.
 160 */
 161void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 162{
 163        __end_buffer_read_notouch(bh, uptodate);
 164        put_bh(bh);
 165}
 166EXPORT_SYMBOL(end_buffer_read_sync);
 167
 168void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 169{
 170        if (uptodate) {
 171                set_buffer_uptodate(bh);
 172        } else {
 173                buffer_io_error(bh, ", lost sync page write");
 174                mark_buffer_write_io_error(bh);
 175                clear_buffer_uptodate(bh);
 176        }
 177        unlock_buffer(bh);
 178        put_bh(bh);
 179}
 180EXPORT_SYMBOL(end_buffer_write_sync);
 181
 182/*
 183 * Various filesystems appear to want __find_get_block to be non-blocking.
 184 * But it's the page lock which protects the buffers.  To get around this,
 185 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 186 * private_lock.
 187 *
 188 * Hack idea: for the blockdev mapping, private_lock contention
 189 * may be quite high.  This code could TryLock the page, and if that
 190 * succeeds, there is no need to take private_lock.
 191 */
 192static struct buffer_head *
 193__find_get_block_slow(struct block_device *bdev, sector_t block)
 194{
 195        struct inode *bd_inode = bdev->bd_inode;
 196        struct address_space *bd_mapping = bd_inode->i_mapping;
 197        struct buffer_head *ret = NULL;
 198        pgoff_t index;
 199        struct buffer_head *bh;
 200        struct buffer_head *head;
 201        struct page *page;
 202        int all_mapped = 1;
 203
 204        index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 205        page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 206        if (!page)
 207                goto out;
 208
 209        spin_lock(&bd_mapping->private_lock);
 210        if (!page_has_buffers(page))
 211                goto out_unlock;
 212        head = page_buffers(page);
 213        bh = head;
 214        do {
 215                if (!buffer_mapped(bh))
 216                        all_mapped = 0;
 217                else if (bh->b_blocknr == block) {
 218                        ret = bh;
 219                        get_bh(bh);
 220                        goto out_unlock;
 221                }
 222                bh = bh->b_this_page;
 223        } while (bh != head);
 224
 225        /* we might be here because some of the buffers on this page are
 226         * not mapped.  This is due to various races between
 227         * file io on the block device and getblk.  It gets dealt with
 228         * elsewhere, don't buffer_error if we had some unmapped buffers
 229         */
 230        if (all_mapped) {
 231                printk("__find_get_block_slow() failed. "
 232                        "block=%llu, b_blocknr=%llu\n",
 233                        (unsigned long long)block,
 234                        (unsigned long long)bh->b_blocknr);
 235                printk("b_state=0x%08lx, b_size=%zu\n",
 236                        bh->b_state, bh->b_size);
 237                printk("device %pg blocksize: %d\n", bdev,
 238                        1 << bd_inode->i_blkbits);
 239        }
 240out_unlock:
 241        spin_unlock(&bd_mapping->private_lock);
 242        put_page(page);
 243out:
 244        return ret;
 245}
 246
 247/*
 248 * I/O completion handler for block_read_full_page() - pages
 249 * which come unlocked at the end of I/O.
 250 */
 251static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 252{
 253        unsigned long flags;
 254        struct buffer_head *first;
 255        struct buffer_head *tmp;
 256        struct page *page;
 257        int page_uptodate = 1;
 258
 259        BUG_ON(!buffer_async_read(bh));
 260
 261        page = bh->b_page;
 262        if (uptodate) {
 263                set_buffer_uptodate(bh);
 264        } else {
 265                clear_buffer_uptodate(bh);
 266                buffer_io_error(bh, ", async page read");
 267                SetPageError(page);
 268        }
 269
 270        /*
 271         * Be _very_ careful from here on. Bad things can happen if
 272         * two buffer heads end IO at almost the same time and both
 273         * decide that the page is now completely done.
 274         */
 275        first = page_buffers(page);
 276        local_irq_save(flags);
 277        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 278        clear_buffer_async_read(bh);
 279        unlock_buffer(bh);
 280        tmp = bh;
 281        do {
 282                if (!buffer_uptodate(tmp))
 283                        page_uptodate = 0;
 284                if (buffer_async_read(tmp)) {
 285                        BUG_ON(!buffer_locked(tmp));
 286                        goto still_busy;
 287                }
 288                tmp = tmp->b_this_page;
 289        } while (tmp != bh);
 290        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 291        local_irq_restore(flags);
 292
 293        /*
 294         * If none of the buffers had errors and they are all
 295         * uptodate then we can set the page uptodate.
 296         */
 297        if (page_uptodate && !PageError(page))
 298                SetPageUptodate(page);
 299        unlock_page(page);
 300        return;
 301
 302still_busy:
 303        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 304        local_irq_restore(flags);
 305        return;
 306}
 307
 308/*
 309 * Completion handler for block_write_full_page() - pages which are unlocked
 310 * during I/O, and which have PageWriteback cleared upon I/O completion.
 311 */
 312void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 313{
 314        unsigned long flags;
 315        struct buffer_head *first;
 316        struct buffer_head *tmp;
 317        struct page *page;
 318
 319        BUG_ON(!buffer_async_write(bh));
 320
 321        page = bh->b_page;
 322        if (uptodate) {
 323                set_buffer_uptodate(bh);
 324        } else {
 325                buffer_io_error(bh, ", lost async page write");
 326                mark_buffer_write_io_error(bh);
 327                clear_buffer_uptodate(bh);
 328                SetPageError(page);
 329        }
 330
 331        first = page_buffers(page);
 332        local_irq_save(flags);
 333        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 334
 335        clear_buffer_async_write(bh);
 336        unlock_buffer(bh);
 337        tmp = bh->b_this_page;
 338        while (tmp != bh) {
 339                if (buffer_async_write(tmp)) {
 340                        BUG_ON(!buffer_locked(tmp));
 341                        goto still_busy;
 342                }
 343                tmp = tmp->b_this_page;
 344        }
 345        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 346        local_irq_restore(flags);
 347        end_page_writeback(page);
 348        return;
 349
 350still_busy:
 351        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 352        local_irq_restore(flags);
 353        return;
 354}
 355EXPORT_SYMBOL(end_buffer_async_write);
 356
 357/*
 358 * If a page's buffers are under async readin (end_buffer_async_read
 359 * completion) then there is a possibility that another thread of
 360 * control could lock one of the buffers after it has completed
 361 * but while some of the other buffers have not completed.  This
 362 * locked buffer would confuse end_buffer_async_read() into not unlocking
 363 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 364 * that this buffer is not under async I/O.
 365 *
 366 * The page comes unlocked when it has no locked buffer_async buffers
 367 * left.
 368 *
 369 * PageLocked prevents anyone starting new async I/O reads any of
 370 * the buffers.
 371 *
 372 * PageWriteback is used to prevent simultaneous writeout of the same
 373 * page.
 374 *
 375 * PageLocked prevents anyone from starting writeback of a page which is
 376 * under read I/O (PageWriteback is only ever set against a locked page).
 377 */
 378static void mark_buffer_async_read(struct buffer_head *bh)
 379{
 380        bh->b_end_io = end_buffer_async_read;
 381        set_buffer_async_read(bh);
 382}
 383
 384static void mark_buffer_async_write_endio(struct buffer_head *bh,
 385                                          bh_end_io_t *handler)
 386{
 387        bh->b_end_io = handler;
 388        set_buffer_async_write(bh);
 389}
 390
 391void mark_buffer_async_write(struct buffer_head *bh)
 392{
 393        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 394}
 395EXPORT_SYMBOL(mark_buffer_async_write);
 396
 397
 398/*
 399 * fs/buffer.c contains helper functions for buffer-backed address space's
 400 * fsync functions.  A common requirement for buffer-based filesystems is
 401 * that certain data from the backing blockdev needs to be written out for
 402 * a successful fsync().  For example, ext2 indirect blocks need to be
 403 * written back and waited upon before fsync() returns.
 404 *
 405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 407 * management of a list of dependent buffers at ->i_mapping->private_list.
 408 *
 409 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 410 * from their controlling inode's queue when they are being freed.  But
 411 * try_to_free_buffers() will be operating against the *blockdev* mapping
 412 * at the time, not against the S_ISREG file which depends on those buffers.
 413 * So the locking for private_list is via the private_lock in the address_space
 414 * which backs the buffers.  Which is different from the address_space 
 415 * against which the buffers are listed.  So for a particular address_space,
 416 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 417 * mapping->private_list will always be protected by the backing blockdev's
 418 * ->private_lock.
 419 *
 420 * Which introduces a requirement: all buffers on an address_space's
 421 * ->private_list must be from the same address_space: the blockdev's.
 422 *
 423 * address_spaces which do not place buffers at ->private_list via these
 424 * utility functions are free to use private_lock and private_list for
 425 * whatever they want.  The only requirement is that list_empty(private_list)
 426 * be true at clear_inode() time.
 427 *
 428 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 429 * filesystems should do that.  invalidate_inode_buffers() should just go
 430 * BUG_ON(!list_empty).
 431 *
 432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 433 * take an address_space, not an inode.  And it should be called
 434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 435 * queued up.
 436 *
 437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 438 * list if it is already on a list.  Because if the buffer is on a list,
 439 * it *must* already be on the right one.  If not, the filesystem is being
 440 * silly.  This will save a ton of locking.  But first we have to ensure
 441 * that buffers are taken *off* the old inode's list when they are freed
 442 * (presumably in truncate).  That requires careful auditing of all
 443 * filesystems (do it inside bforget()).  It could also be done by bringing
 444 * b_inode back.
 445 */
 446
 447/*
 448 * The buffer's backing address_space's private_lock must be held
 449 */
 450static void __remove_assoc_queue(struct buffer_head *bh)
 451{
 452        list_del_init(&bh->b_assoc_buffers);
 453        WARN_ON(!bh->b_assoc_map);
 454        bh->b_assoc_map = NULL;
 455}
 456
 457int inode_has_buffers(struct inode *inode)
 458{
 459        return !list_empty(&inode->i_data.private_list);
 460}
 461
 462/*
 463 * osync is designed to support O_SYNC io.  It waits synchronously for
 464 * all already-submitted IO to complete, but does not queue any new
 465 * writes to the disk.
 466 *
 467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 468 * you dirty the buffers, and then use osync_inode_buffers to wait for
 469 * completion.  Any other dirty buffers which are not yet queued for
 470 * write will not be flushed to disk by the osync.
 471 */
 472static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 473{
 474        struct buffer_head *bh;
 475        struct list_head *p;
 476        int err = 0;
 477
 478        spin_lock(lock);
 479repeat:
 480        list_for_each_prev(p, list) {
 481                bh = BH_ENTRY(p);
 482                if (buffer_locked(bh)) {
 483                        get_bh(bh);
 484                        spin_unlock(lock);
 485                        wait_on_buffer(bh);
 486                        if (!buffer_uptodate(bh))
 487                                err = -EIO;
 488                        brelse(bh);
 489                        spin_lock(lock);
 490                        goto repeat;
 491                }
 492        }
 493        spin_unlock(lock);
 494        return err;
 495}
 496
 497void emergency_thaw_bdev(struct super_block *sb)
 498{
 499        while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 500                printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 501}
 502
 503/**
 504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 505 * @mapping: the mapping which wants those buffers written
 506 *
 507 * Starts I/O against the buffers at mapping->private_list, and waits upon
 508 * that I/O.
 509 *
 510 * Basically, this is a convenience function for fsync().
 511 * @mapping is a file or directory which needs those buffers to be written for
 512 * a successful fsync().
 513 */
 514int sync_mapping_buffers(struct address_space *mapping)
 515{
 516        struct address_space *buffer_mapping = mapping->private_data;
 517
 518        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 519                return 0;
 520
 521        return fsync_buffers_list(&buffer_mapping->private_lock,
 522                                        &mapping->private_list);
 523}
 524EXPORT_SYMBOL(sync_mapping_buffers);
 525
 526/*
 527 * Called when we've recently written block `bblock', and it is known that
 528 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 529 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 530 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 531 */
 532void write_boundary_block(struct block_device *bdev,
 533                        sector_t bblock, unsigned blocksize)
 534{
 535        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 536        if (bh) {
 537                if (buffer_dirty(bh))
 538                        ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 539                put_bh(bh);
 540        }
 541}
 542
 543void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 544{
 545        struct address_space *mapping = inode->i_mapping;
 546        struct address_space *buffer_mapping = bh->b_page->mapping;
 547
 548        mark_buffer_dirty(bh);
 549        if (!mapping->private_data) {
 550                mapping->private_data = buffer_mapping;
 551        } else {
 552                BUG_ON(mapping->private_data != buffer_mapping);
 553        }
 554        if (!bh->b_assoc_map) {
 555                spin_lock(&buffer_mapping->private_lock);
 556                list_move_tail(&bh->b_assoc_buffers,
 557                                &mapping->private_list);
 558                bh->b_assoc_map = mapping;
 559                spin_unlock(&buffer_mapping->private_lock);
 560        }
 561}
 562EXPORT_SYMBOL(mark_buffer_dirty_inode);
 563
 564/*
 565 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 566 * dirty.
 567 *
 568 * If warn is true, then emit a warning if the page is not uptodate and has
 569 * not been truncated.
 570 *
 571 * The caller must hold lock_page_memcg().
 572 */
 573void __set_page_dirty(struct page *page, struct address_space *mapping,
 574                             int warn)
 575{
 576        unsigned long flags;
 577
 578        xa_lock_irqsave(&mapping->i_pages, flags);
 579        if (page->mapping) {    /* Race with truncate? */
 580                WARN_ON_ONCE(warn && !PageUptodate(page));
 581                account_page_dirtied(page, mapping);
 582                radix_tree_tag_set(&mapping->i_pages,
 583                                page_index(page), PAGECACHE_TAG_DIRTY);
 584        }
 585        xa_unlock_irqrestore(&mapping->i_pages, flags);
 586}
 587EXPORT_SYMBOL_GPL(__set_page_dirty);
 588
 589/*
 590 * Add a page to the dirty page list.
 591 *
 592 * It is a sad fact of life that this function is called from several places
 593 * deeply under spinlocking.  It may not sleep.
 594 *
 595 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 596 * dirty-state coherency between the page and the buffers.  It the page does
 597 * not have buffers then when they are later attached they will all be set
 598 * dirty.
 599 *
 600 * The buffers are dirtied before the page is dirtied.  There's a small race
 601 * window in which a writepage caller may see the page cleanness but not the
 602 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 603 * before the buffers, a concurrent writepage caller could clear the page dirty
 604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 605 * page on the dirty page list.
 606 *
 607 * We use private_lock to lock against try_to_free_buffers while using the
 608 * page's buffer list.  Also use this to protect against clean buffers being
 609 * added to the page after it was set dirty.
 610 *
 611 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 612 * address_space though.
 613 */
 614int __set_page_dirty_buffers(struct page *page)
 615{
 616        int newly_dirty;
 617        struct address_space *mapping = page_mapping(page);
 618
 619        if (unlikely(!mapping))
 620                return !TestSetPageDirty(page);
 621
 622        spin_lock(&mapping->private_lock);
 623        if (page_has_buffers(page)) {
 624                struct buffer_head *head = page_buffers(page);
 625                struct buffer_head *bh = head;
 626
 627                do {
 628                        set_buffer_dirty(bh);
 629                        bh = bh->b_this_page;
 630                } while (bh != head);
 631        }
 632        /*
 633         * Lock out page->mem_cgroup migration to keep PageDirty
 634         * synchronized with per-memcg dirty page counters.
 635         */
 636        lock_page_memcg(page);
 637        newly_dirty = !TestSetPageDirty(page);
 638        spin_unlock(&mapping->private_lock);
 639
 640        if (newly_dirty)
 641                __set_page_dirty(page, mapping, 1);
 642
 643        unlock_page_memcg(page);
 644
 645        if (newly_dirty)
 646                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 647
 648        return newly_dirty;
 649}
 650EXPORT_SYMBOL(__set_page_dirty_buffers);
 651
 652/*
 653 * Write out and wait upon a list of buffers.
 654 *
 655 * We have conflicting pressures: we want to make sure that all
 656 * initially dirty buffers get waited on, but that any subsequently
 657 * dirtied buffers don't.  After all, we don't want fsync to last
 658 * forever if somebody is actively writing to the file.
 659 *
 660 * Do this in two main stages: first we copy dirty buffers to a
 661 * temporary inode list, queueing the writes as we go.  Then we clean
 662 * up, waiting for those writes to complete.
 663 * 
 664 * During this second stage, any subsequent updates to the file may end
 665 * up refiling the buffer on the original inode's dirty list again, so
 666 * there is a chance we will end up with a buffer queued for write but
 667 * not yet completed on that list.  So, as a final cleanup we go through
 668 * the osync code to catch these locked, dirty buffers without requeuing
 669 * any newly dirty buffers for write.
 670 */
 671static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 672{
 673        struct buffer_head *bh;
 674        struct list_head tmp;
 675        struct address_space *mapping;
 676        int err = 0, err2;
 677        struct blk_plug plug;
 678
 679        INIT_LIST_HEAD(&tmp);
 680        blk_start_plug(&plug);
 681
 682        spin_lock(lock);
 683        while (!list_empty(list)) {
 684                bh = BH_ENTRY(list->next);
 685                mapping = bh->b_assoc_map;
 686                __remove_assoc_queue(bh);
 687                /* Avoid race with mark_buffer_dirty_inode() which does
 688                 * a lockless check and we rely on seeing the dirty bit */
 689                smp_mb();
 690                if (buffer_dirty(bh) || buffer_locked(bh)) {
 691                        list_add(&bh->b_assoc_buffers, &tmp);
 692                        bh->b_assoc_map = mapping;
 693                        if (buffer_dirty(bh)) {
 694                                get_bh(bh);
 695                                spin_unlock(lock);
 696                                /*
 697                                 * Ensure any pending I/O completes so that
 698                                 * write_dirty_buffer() actually writes the
 699                                 * current contents - it is a noop if I/O is
 700                                 * still in flight on potentially older
 701                                 * contents.
 702                                 */
 703                                write_dirty_buffer(bh, REQ_SYNC);
 704
 705                                /*
 706                                 * Kick off IO for the previous mapping. Note
 707                                 * that we will not run the very last mapping,
 708                                 * wait_on_buffer() will do that for us
 709                                 * through sync_buffer().
 710                                 */
 711                                brelse(bh);
 712                                spin_lock(lock);
 713                        }
 714                }
 715        }
 716
 717        spin_unlock(lock);
 718        blk_finish_plug(&plug);
 719        spin_lock(lock);
 720
 721        while (!list_empty(&tmp)) {
 722                bh = BH_ENTRY(tmp.prev);
 723                get_bh(bh);
 724                mapping = bh->b_assoc_map;
 725                __remove_assoc_queue(bh);
 726                /* Avoid race with mark_buffer_dirty_inode() which does
 727                 * a lockless check and we rely on seeing the dirty bit */
 728                smp_mb();
 729                if (buffer_dirty(bh)) {
 730                        list_add(&bh->b_assoc_buffers,
 731                                 &mapping->private_list);
 732                        bh->b_assoc_map = mapping;
 733                }
 734                spin_unlock(lock);
 735                wait_on_buffer(bh);
 736                if (!buffer_uptodate(bh))
 737                        err = -EIO;
 738                brelse(bh);
 739                spin_lock(lock);
 740        }
 741        
 742        spin_unlock(lock);
 743        err2 = osync_buffers_list(lock, list);
 744        if (err)
 745                return err;
 746        else
 747                return err2;
 748}
 749
 750/*
 751 * Invalidate any and all dirty buffers on a given inode.  We are
 752 * probably unmounting the fs, but that doesn't mean we have already
 753 * done a sync().  Just drop the buffers from the inode list.
 754 *
 755 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 756 * assumes that all the buffers are against the blockdev.  Not true
 757 * for reiserfs.
 758 */
 759void invalidate_inode_buffers(struct inode *inode)
 760{
 761        if (inode_has_buffers(inode)) {
 762                struct address_space *mapping = &inode->i_data;
 763                struct list_head *list = &mapping->private_list;
 764                struct address_space *buffer_mapping = mapping->private_data;
 765
 766                spin_lock(&buffer_mapping->private_lock);
 767                while (!list_empty(list))
 768                        __remove_assoc_queue(BH_ENTRY(list->next));
 769                spin_unlock(&buffer_mapping->private_lock);
 770        }
 771}
 772EXPORT_SYMBOL(invalidate_inode_buffers);
 773
 774/*
 775 * Remove any clean buffers from the inode's buffer list.  This is called
 776 * when we're trying to free the inode itself.  Those buffers can pin it.
 777 *
 778 * Returns true if all buffers were removed.
 779 */
 780int remove_inode_buffers(struct inode *inode)
 781{
 782        int ret = 1;
 783
 784        if (inode_has_buffers(inode)) {
 785                struct address_space *mapping = &inode->i_data;
 786                struct list_head *list = &mapping->private_list;
 787                struct address_space *buffer_mapping = mapping->private_data;
 788
 789                spin_lock(&buffer_mapping->private_lock);
 790                while (!list_empty(list)) {
 791                        struct buffer_head *bh = BH_ENTRY(list->next);
 792                        if (buffer_dirty(bh)) {
 793                                ret = 0;
 794                                break;
 795                        }
 796                        __remove_assoc_queue(bh);
 797                }
 798                spin_unlock(&buffer_mapping->private_lock);
 799        }
 800        return ret;
 801}
 802
 803/*
 804 * Create the appropriate buffers when given a page for data area and
 805 * the size of each buffer.. Use the bh->b_this_page linked list to
 806 * follow the buffers created.  Return NULL if unable to create more
 807 * buffers.
 808 *
 809 * The retry flag is used to differentiate async IO (paging, swapping)
 810 * which may not fail from ordinary buffer allocations.
 811 */
 812struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 813                bool retry)
 814{
 815        struct buffer_head *bh, *head;
 816        gfp_t gfp = GFP_NOFS;
 817        long offset;
 818
 819        if (retry)
 820                gfp |= __GFP_NOFAIL;
 821
 822        head = NULL;
 823        offset = PAGE_SIZE;
 824        while ((offset -= size) >= 0) {
 825                bh = alloc_buffer_head(gfp);
 826                if (!bh)
 827                        goto no_grow;
 828
 829                bh->b_this_page = head;
 830                bh->b_blocknr = -1;
 831                head = bh;
 832
 833                bh->b_size = size;
 834
 835                /* Link the buffer to its page */
 836                set_bh_page(bh, page, offset);
 837        }
 838        return head;
 839/*
 840 * In case anything failed, we just free everything we got.
 841 */
 842no_grow:
 843        if (head) {
 844                do {
 845                        bh = head;
 846                        head = head->b_this_page;
 847                        free_buffer_head(bh);
 848                } while (head);
 849        }
 850
 851        return NULL;
 852}
 853EXPORT_SYMBOL_GPL(alloc_page_buffers);
 854
 855static inline void
 856link_dev_buffers(struct page *page, struct buffer_head *head)
 857{
 858        struct buffer_head *bh, *tail;
 859
 860        bh = head;
 861        do {
 862                tail = bh;
 863                bh = bh->b_this_page;
 864        } while (bh);
 865        tail->b_this_page = head;
 866        attach_page_buffers(page, head);
 867}
 868
 869static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 870{
 871        sector_t retval = ~((sector_t)0);
 872        loff_t sz = i_size_read(bdev->bd_inode);
 873
 874        if (sz) {
 875                unsigned int sizebits = blksize_bits(size);
 876                retval = (sz >> sizebits);
 877        }
 878        return retval;
 879}
 880
 881/*
 882 * Initialise the state of a blockdev page's buffers.
 883 */ 
 884static sector_t
 885init_page_buffers(struct page *page, struct block_device *bdev,
 886                        sector_t block, int size)
 887{
 888        struct buffer_head *head = page_buffers(page);
 889        struct buffer_head *bh = head;
 890        int uptodate = PageUptodate(page);
 891        sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 892
 893        do {
 894                if (!buffer_mapped(bh)) {
 895                        bh->b_end_io = NULL;
 896                        bh->b_private = NULL;
 897                        bh->b_bdev = bdev;
 898                        bh->b_blocknr = block;
 899                        if (uptodate)
 900                                set_buffer_uptodate(bh);
 901                        if (block < end_block)
 902                                set_buffer_mapped(bh);
 903                }
 904                block++;
 905                bh = bh->b_this_page;
 906        } while (bh != head);
 907
 908        /*
 909         * Caller needs to validate requested block against end of device.
 910         */
 911        return end_block;
 912}
 913
 914/*
 915 * Create the page-cache page that contains the requested block.
 916 *
 917 * This is used purely for blockdev mappings.
 918 */
 919static int
 920grow_dev_page(struct block_device *bdev, sector_t block,
 921              pgoff_t index, int size, int sizebits, gfp_t gfp)
 922{
 923        struct inode *inode = bdev->bd_inode;
 924        struct page *page;
 925        struct buffer_head *bh;
 926        sector_t end_block;
 927        int ret = 0;            /* Will call free_more_memory() */
 928        gfp_t gfp_mask;
 929
 930        gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 931
 932        /*
 933         * XXX: __getblk_slow() can not really deal with failure and
 934         * will endlessly loop on improvised global reclaim.  Prefer
 935         * looping in the allocator rather than here, at least that
 936         * code knows what it's doing.
 937         */
 938        gfp_mask |= __GFP_NOFAIL;
 939
 940        page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 941
 942        BUG_ON(!PageLocked(page));
 943
 944        if (page_has_buffers(page)) {
 945                bh = page_buffers(page);
 946                if (bh->b_size == size) {
 947                        end_block = init_page_buffers(page, bdev,
 948                                                (sector_t)index << sizebits,
 949                                                size);
 950                        goto done;
 951                }
 952                if (!try_to_free_buffers(page))
 953                        goto failed;
 954        }
 955
 956        /*
 957         * Allocate some buffers for this page
 958         */
 959        bh = alloc_page_buffers(page, size, true);
 960
 961        /*
 962         * Link the page to the buffers and initialise them.  Take the
 963         * lock to be atomic wrt __find_get_block(), which does not
 964         * run under the page lock.
 965         */
 966        spin_lock(&inode->i_mapping->private_lock);
 967        link_dev_buffers(page, bh);
 968        end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
 969                        size);
 970        spin_unlock(&inode->i_mapping->private_lock);
 971done:
 972        ret = (block < end_block) ? 1 : -ENXIO;
 973failed:
 974        unlock_page(page);
 975        put_page(page);
 976        return ret;
 977}
 978
 979/*
 980 * Create buffers for the specified block device block's page.  If
 981 * that page was dirty, the buffers are set dirty also.
 982 */
 983static int
 984grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
 985{
 986        pgoff_t index;
 987        int sizebits;
 988
 989        sizebits = -1;
 990        do {
 991                sizebits++;
 992        } while ((size << sizebits) < PAGE_SIZE);
 993
 994        index = block >> sizebits;
 995
 996        /*
 997         * Check for a block which wants to lie outside our maximum possible
 998         * pagecache index.  (this comparison is done using sector_t types).
 999         */
1000        if (unlikely(index != block >> sizebits)) {
1001                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1002                        "device %pg\n",
1003                        __func__, (unsigned long long)block,
1004                        bdev);
1005                return -EIO;
1006        }
1007
1008        /* Create a page with the proper size buffers.. */
1009        return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1010}
1011
1012static struct buffer_head *
1013__getblk_slow(struct block_device *bdev, sector_t block,
1014             unsigned size, gfp_t gfp)
1015{
1016        /* Size must be multiple of hard sectorsize */
1017        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1018                        (size < 512 || size > PAGE_SIZE))) {
1019                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1020                                        size);
1021                printk(KERN_ERR "logical block size: %d\n",
1022                                        bdev_logical_block_size(bdev));
1023
1024                dump_stack();
1025                return NULL;
1026        }
1027
1028        for (;;) {
1029                struct buffer_head *bh;
1030                int ret;
1031
1032                bh = __find_get_block(bdev, block, size);
1033                if (bh)
1034                        return bh;
1035
1036                ret = grow_buffers(bdev, block, size, gfp);
1037                if (ret < 0)
1038                        return NULL;
1039        }
1040}
1041
1042/*
1043 * The relationship between dirty buffers and dirty pages:
1044 *
1045 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1046 * the page is tagged dirty in its radix tree.
1047 *
1048 * At all times, the dirtiness of the buffers represents the dirtiness of
1049 * subsections of the page.  If the page has buffers, the page dirty bit is
1050 * merely a hint about the true dirty state.
1051 *
1052 * When a page is set dirty in its entirety, all its buffers are marked dirty
1053 * (if the page has buffers).
1054 *
1055 * When a buffer is marked dirty, its page is dirtied, but the page's other
1056 * buffers are not.
1057 *
1058 * Also.  When blockdev buffers are explicitly read with bread(), they
1059 * individually become uptodate.  But their backing page remains not
1060 * uptodate - even if all of its buffers are uptodate.  A subsequent
1061 * block_read_full_page() against that page will discover all the uptodate
1062 * buffers, will set the page uptodate and will perform no I/O.
1063 */
1064
1065/**
1066 * mark_buffer_dirty - mark a buffer_head as needing writeout
1067 * @bh: the buffer_head to mark dirty
1068 *
1069 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1070 * backing page dirty, then tag the page as dirty in its address_space's radix
1071 * tree and then attach the address_space's inode to its superblock's dirty
1072 * inode list.
1073 *
1074 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1075 * i_pages lock and mapping->host->i_lock.
1076 */
1077void mark_buffer_dirty(struct buffer_head *bh)
1078{
1079        WARN_ON_ONCE(!buffer_uptodate(bh));
1080
1081        trace_block_dirty_buffer(bh);
1082
1083        /*
1084         * Very *carefully* optimize the it-is-already-dirty case.
1085         *
1086         * Don't let the final "is it dirty" escape to before we
1087         * perhaps modified the buffer.
1088         */
1089        if (buffer_dirty(bh)) {
1090                smp_mb();
1091                if (buffer_dirty(bh))
1092                        return;
1093        }
1094
1095        if (!test_set_buffer_dirty(bh)) {
1096                struct page *page = bh->b_page;
1097                struct address_space *mapping = NULL;
1098
1099                lock_page_memcg(page);
1100                if (!TestSetPageDirty(page)) {
1101                        mapping = page_mapping(page);
1102                        if (mapping)
1103                                __set_page_dirty(page, mapping, 0);
1104                }
1105                unlock_page_memcg(page);
1106                if (mapping)
1107                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1108        }
1109}
1110EXPORT_SYMBOL(mark_buffer_dirty);
1111
1112void mark_buffer_write_io_error(struct buffer_head *bh)
1113{
1114        set_buffer_write_io_error(bh);
1115        /* FIXME: do we need to set this in both places? */
1116        if (bh->b_page && bh->b_page->mapping)
1117                mapping_set_error(bh->b_page->mapping, -EIO);
1118        if (bh->b_assoc_map)
1119                mapping_set_error(bh->b_assoc_map, -EIO);
1120}
1121EXPORT_SYMBOL(mark_buffer_write_io_error);
1122
1123/*
1124 * Decrement a buffer_head's reference count.  If all buffers against a page
1125 * have zero reference count, are clean and unlocked, and if the page is clean
1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128 * a page but it ends up not being freed, and buffers may later be reattached).
1129 */
1130void __brelse(struct buffer_head * buf)
1131{
1132        if (atomic_read(&buf->b_count)) {
1133                put_bh(buf);
1134                return;
1135        }
1136        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1137}
1138EXPORT_SYMBOL(__brelse);
1139
1140/*
1141 * bforget() is like brelse(), except it discards any
1142 * potentially dirty data.
1143 */
1144void __bforget(struct buffer_head *bh)
1145{
1146        clear_buffer_dirty(bh);
1147        if (bh->b_assoc_map) {
1148                struct address_space *buffer_mapping = bh->b_page->mapping;
1149
1150                spin_lock(&buffer_mapping->private_lock);
1151                list_del_init(&bh->b_assoc_buffers);
1152                bh->b_assoc_map = NULL;
1153                spin_unlock(&buffer_mapping->private_lock);
1154        }
1155        __brelse(bh);
1156}
1157EXPORT_SYMBOL(__bforget);
1158
1159static struct buffer_head *__bread_slow(struct buffer_head *bh)
1160{
1161        lock_buffer(bh);
1162        if (buffer_uptodate(bh)) {
1163                unlock_buffer(bh);
1164                return bh;
1165        } else {
1166                get_bh(bh);
1167                bh->b_end_io = end_buffer_read_sync;
1168                submit_bh(REQ_OP_READ, 0, bh);
1169                wait_on_buffer(bh);
1170                if (buffer_uptodate(bh))
1171                        return bh;
1172        }
1173        brelse(bh);
1174        return NULL;
1175}
1176
1177/*
1178 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1179 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1180 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1181 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1182 * CPU's LRUs at the same time.
1183 *
1184 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1185 * sb_find_get_block().
1186 *
1187 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1188 * a local interrupt disable for that.
1189 */
1190
1191#define BH_LRU_SIZE     16
1192
1193struct bh_lru {
1194        struct buffer_head *bhs[BH_LRU_SIZE];
1195};
1196
1197static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1198
1199#ifdef CONFIG_SMP
1200#define bh_lru_lock()   local_irq_disable()
1201#define bh_lru_unlock() local_irq_enable()
1202#else
1203#define bh_lru_lock()   preempt_disable()
1204#define bh_lru_unlock() preempt_enable()
1205#endif
1206
1207static inline void check_irqs_on(void)
1208{
1209#ifdef irqs_disabled
1210        BUG_ON(irqs_disabled());
1211#endif
1212}
1213
1214/*
1215 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1216 * inserted at the front, and the buffer_head at the back if any is evicted.
1217 * Or, if already in the LRU it is moved to the front.
1218 */
1219static void bh_lru_install(struct buffer_head *bh)
1220{
1221        struct buffer_head *evictee = bh;
1222        struct bh_lru *b;
1223        int i;
1224
1225        check_irqs_on();
1226        bh_lru_lock();
1227
1228        b = this_cpu_ptr(&bh_lrus);
1229        for (i = 0; i < BH_LRU_SIZE; i++) {
1230                swap(evictee, b->bhs[i]);
1231                if (evictee == bh) {
1232                        bh_lru_unlock();
1233                        return;
1234                }
1235        }
1236
1237        get_bh(bh);
1238        bh_lru_unlock();
1239        brelse(evictee);
1240}
1241
1242/*
1243 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1244 */
1245static struct buffer_head *
1246lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1247{
1248        struct buffer_head *ret = NULL;
1249        unsigned int i;
1250
1251        check_irqs_on();
1252        bh_lru_lock();
1253        for (i = 0; i < BH_LRU_SIZE; i++) {
1254                struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1255
1256                if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1257                    bh->b_size == size) {
1258                        if (i) {
1259                                while (i) {
1260                                        __this_cpu_write(bh_lrus.bhs[i],
1261                                                __this_cpu_read(bh_lrus.bhs[i - 1]));
1262                                        i--;
1263                                }
1264                                __this_cpu_write(bh_lrus.bhs[0], bh);
1265                        }
1266                        get_bh(bh);
1267                        ret = bh;
1268                        break;
1269                }
1270        }
1271        bh_lru_unlock();
1272        return ret;
1273}
1274
1275/*
1276 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1277 * it in the LRU and mark it as accessed.  If it is not present then return
1278 * NULL
1279 */
1280struct buffer_head *
1281__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1282{
1283        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1284
1285        if (bh == NULL) {
1286                /* __find_get_block_slow will mark the page accessed */
1287                bh = __find_get_block_slow(bdev, block);
1288                if (bh)
1289                        bh_lru_install(bh);
1290        } else
1291                touch_buffer(bh);
1292
1293        return bh;
1294}
1295EXPORT_SYMBOL(__find_get_block);
1296
1297/*
1298 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1299 * which corresponds to the passed block_device, block and size. The
1300 * returned buffer has its reference count incremented.
1301 *
1302 * __getblk_gfp() will lock up the machine if grow_dev_page's
1303 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1304 */
1305struct buffer_head *
1306__getblk_gfp(struct block_device *bdev, sector_t block,
1307             unsigned size, gfp_t gfp)
1308{
1309        struct buffer_head *bh = __find_get_block(bdev, block, size);
1310
1311        might_sleep();
1312        if (bh == NULL)
1313                bh = __getblk_slow(bdev, block, size, gfp);
1314        return bh;
1315}
1316EXPORT_SYMBOL(__getblk_gfp);
1317
1318/*
1319 * Do async read-ahead on a buffer..
1320 */
1321void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1322{
1323        struct buffer_head *bh = __getblk(bdev, block, size);
1324        if (likely(bh)) {
1325                ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1326                brelse(bh);
1327        }
1328}
1329EXPORT_SYMBOL(__breadahead);
1330
1331/**
1332 *  __bread_gfp() - reads a specified block and returns the bh
1333 *  @bdev: the block_device to read from
1334 *  @block: number of block
1335 *  @size: size (in bytes) to read
1336 *  @gfp: page allocation flag
1337 *
1338 *  Reads a specified block, and returns buffer head that contains it.
1339 *  The page cache can be allocated from non-movable area
1340 *  not to prevent page migration if you set gfp to zero.
1341 *  It returns NULL if the block was unreadable.
1342 */
1343struct buffer_head *
1344__bread_gfp(struct block_device *bdev, sector_t block,
1345                   unsigned size, gfp_t gfp)
1346{
1347        struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1348
1349        if (likely(bh) && !buffer_uptodate(bh))
1350                bh = __bread_slow(bh);
1351        return bh;
1352}
1353EXPORT_SYMBOL(__bread_gfp);
1354
1355/*
1356 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1357 * This doesn't race because it runs in each cpu either in irq
1358 * or with preempt disabled.
1359 */
1360static void invalidate_bh_lru(void *arg)
1361{
1362        struct bh_lru *b = &get_cpu_var(bh_lrus);
1363        int i;
1364
1365        for (i = 0; i < BH_LRU_SIZE; i++) {
1366                brelse(b->bhs[i]);
1367                b->bhs[i] = NULL;
1368        }
1369        put_cpu_var(bh_lrus);
1370}
1371
1372static bool has_bh_in_lru(int cpu, void *dummy)
1373{
1374        struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1375        int i;
1376        
1377        for (i = 0; i < BH_LRU_SIZE; i++) {
1378                if (b->bhs[i])
1379                        return 1;
1380        }
1381
1382        return 0;
1383}
1384
1385void invalidate_bh_lrus(void)
1386{
1387        on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1388}
1389EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1390
1391void set_bh_page(struct buffer_head *bh,
1392                struct page *page, unsigned long offset)
1393{
1394        bh->b_page = page;
1395        BUG_ON(offset >= PAGE_SIZE);
1396        if (PageHighMem(page))
1397                /*
1398                 * This catches illegal uses and preserves the offset:
1399                 */
1400                bh->b_data = (char *)(0 + offset);
1401        else
1402                bh->b_data = page_address(page) + offset;
1403}
1404EXPORT_SYMBOL(set_bh_page);
1405
1406/*
1407 * Called when truncating a buffer on a page completely.
1408 */
1409
1410/* Bits that are cleared during an invalidate */
1411#define BUFFER_FLAGS_DISCARD \
1412        (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1413         1 << BH_Delay | 1 << BH_Unwritten)
1414
1415static void discard_buffer(struct buffer_head * bh)
1416{
1417        unsigned long b_state, b_state_old;
1418
1419        lock_buffer(bh);
1420        clear_buffer_dirty(bh);
1421        bh->b_bdev = NULL;
1422        b_state = bh->b_state;
1423        for (;;) {
1424                b_state_old = cmpxchg(&bh->b_state, b_state,
1425                                      (b_state & ~BUFFER_FLAGS_DISCARD));
1426                if (b_state_old == b_state)
1427                        break;
1428                b_state = b_state_old;
1429        }
1430        unlock_buffer(bh);
1431}
1432
1433/**
1434 * block_invalidatepage - invalidate part or all of a buffer-backed page
1435 *
1436 * @page: the page which is affected
1437 * @offset: start of the range to invalidate
1438 * @length: length of the range to invalidate
1439 *
1440 * block_invalidatepage() is called when all or part of the page has become
1441 * invalidated by a truncate operation.
1442 *
1443 * block_invalidatepage() does not have to release all buffers, but it must
1444 * ensure that no dirty buffer is left outside @offset and that no I/O
1445 * is underway against any of the blocks which are outside the truncation
1446 * point.  Because the caller is about to free (and possibly reuse) those
1447 * blocks on-disk.
1448 */
1449void block_invalidatepage(struct page *page, unsigned int offset,
1450                          unsigned int length)
1451{
1452        struct buffer_head *head, *bh, *next;
1453        unsigned int curr_off = 0;
1454        unsigned int stop = length + offset;
1455
1456        BUG_ON(!PageLocked(page));
1457        if (!page_has_buffers(page))
1458                goto out;
1459
1460        /*
1461         * Check for overflow
1462         */
1463        BUG_ON(stop > PAGE_SIZE || stop < length);
1464
1465        head = page_buffers(page);
1466        bh = head;
1467        do {
1468                unsigned int next_off = curr_off + bh->b_size;
1469                next = bh->b_this_page;
1470
1471                /*
1472                 * Are we still fully in range ?
1473                 */
1474                if (next_off > stop)
1475                        goto out;
1476
1477                /*
1478                 * is this block fully invalidated?
1479                 */
1480                if (offset <= curr_off)
1481                        discard_buffer(bh);
1482                curr_off = next_off;
1483                bh = next;
1484        } while (bh != head);
1485
1486        /*
1487         * We release buffers only if the entire page is being invalidated.
1488         * The get_block cached value has been unconditionally invalidated,
1489         * so real IO is not possible anymore.
1490         */
1491        if (length == PAGE_SIZE)
1492                try_to_release_page(page, 0);
1493out:
1494        return;
1495}
1496EXPORT_SYMBOL(block_invalidatepage);
1497
1498
1499/*
1500 * We attach and possibly dirty the buffers atomically wrt
1501 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1502 * is already excluded via the page lock.
1503 */
1504void create_empty_buffers(struct page *page,
1505                        unsigned long blocksize, unsigned long b_state)
1506{
1507        struct buffer_head *bh, *head, *tail;
1508
1509        head = alloc_page_buffers(page, blocksize, true);
1510        bh = head;
1511        do {
1512                bh->b_state |= b_state;
1513                tail = bh;
1514                bh = bh->b_this_page;
1515        } while (bh);
1516        tail->b_this_page = head;
1517
1518        spin_lock(&page->mapping->private_lock);
1519        if (PageUptodate(page) || PageDirty(page)) {
1520                bh = head;
1521                do {
1522                        if (PageDirty(page))
1523                                set_buffer_dirty(bh);
1524                        if (PageUptodate(page))
1525                                set_buffer_uptodate(bh);
1526                        bh = bh->b_this_page;
1527                } while (bh != head);
1528        }
1529        attach_page_buffers(page, head);
1530        spin_unlock(&page->mapping->private_lock);
1531}
1532EXPORT_SYMBOL(create_empty_buffers);
1533
1534/**
1535 * clean_bdev_aliases: clean a range of buffers in block device
1536 * @bdev: Block device to clean buffers in
1537 * @block: Start of a range of blocks to clean
1538 * @len: Number of blocks to clean
1539 *
1540 * We are taking a range of blocks for data and we don't want writeback of any
1541 * buffer-cache aliases starting from return from this function and until the
1542 * moment when something will explicitly mark the buffer dirty (hopefully that
1543 * will not happen until we will free that block ;-) We don't even need to mark
1544 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1545 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1546 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1547 * would confuse anyone who might pick it with bread() afterwards...
1548 *
1549 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1550 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1551 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1552 * need to.  That happens here.
1553 */
1554void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1555{
1556        struct inode *bd_inode = bdev->bd_inode;
1557        struct address_space *bd_mapping = bd_inode->i_mapping;
1558        struct pagevec pvec;
1559        pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1560        pgoff_t end;
1561        int i, count;
1562        struct buffer_head *bh;
1563        struct buffer_head *head;
1564
1565        end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1566        pagevec_init(&pvec);
1567        while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1568                count = pagevec_count(&pvec);
1569                for (i = 0; i < count; i++) {
1570                        struct page *page = pvec.pages[i];
1571
1572                        if (!page_has_buffers(page))
1573                                continue;
1574                        /*
1575                         * We use page lock instead of bd_mapping->private_lock
1576                         * to pin buffers here since we can afford to sleep and
1577                         * it scales better than a global spinlock lock.
1578                         */
1579                        lock_page(page);
1580                        /* Recheck when the page is locked which pins bhs */
1581                        if (!page_has_buffers(page))
1582                                goto unlock_page;
1583                        head = page_buffers(page);
1584                        bh = head;
1585                        do {
1586                                if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1587                                        goto next;
1588                                if (bh->b_blocknr >= block + len)
1589                                        break;
1590                                clear_buffer_dirty(bh);
1591                                wait_on_buffer(bh);
1592                                clear_buffer_req(bh);
1593next:
1594                                bh = bh->b_this_page;
1595                        } while (bh != head);
1596unlock_page:
1597                        unlock_page(page);
1598                }
1599                pagevec_release(&pvec);
1600                cond_resched();
1601                /* End of range already reached? */
1602                if (index > end || !index)
1603                        break;
1604        }
1605}
1606EXPORT_SYMBOL(clean_bdev_aliases);
1607
1608/*
1609 * Size is a power-of-two in the range 512..PAGE_SIZE,
1610 * and the case we care about most is PAGE_SIZE.
1611 *
1612 * So this *could* possibly be written with those
1613 * constraints in mind (relevant mostly if some
1614 * architecture has a slow bit-scan instruction)
1615 */
1616static inline int block_size_bits(unsigned int blocksize)
1617{
1618        return ilog2(blocksize);
1619}
1620
1621static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1622{
1623        BUG_ON(!PageLocked(page));
1624
1625        if (!page_has_buffers(page))
1626                create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1627                                     b_state);
1628        return page_buffers(page);
1629}
1630
1631/*
1632 * NOTE! All mapped/uptodate combinations are valid:
1633 *
1634 *      Mapped  Uptodate        Meaning
1635 *
1636 *      No      No              "unknown" - must do get_block()
1637 *      No      Yes             "hole" - zero-filled
1638 *      Yes     No              "allocated" - allocated on disk, not read in
1639 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1640 *
1641 * "Dirty" is valid only with the last case (mapped+uptodate).
1642 */
1643
1644/*
1645 * While block_write_full_page is writing back the dirty buffers under
1646 * the page lock, whoever dirtied the buffers may decide to clean them
1647 * again at any time.  We handle that by only looking at the buffer
1648 * state inside lock_buffer().
1649 *
1650 * If block_write_full_page() is called for regular writeback
1651 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1652 * locked buffer.   This only can happen if someone has written the buffer
1653 * directly, with submit_bh().  At the address_space level PageWriteback
1654 * prevents this contention from occurring.
1655 *
1656 * If block_write_full_page() is called with wbc->sync_mode ==
1657 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1658 * causes the writes to be flagged as synchronous writes.
1659 */
1660int __block_write_full_page(struct inode *inode, struct page *page,
1661                        get_block_t *get_block, struct writeback_control *wbc,
1662                        bh_end_io_t *handler)
1663{
1664        int err;
1665        sector_t block;
1666        sector_t last_block;
1667        struct buffer_head *bh, *head;
1668        unsigned int blocksize, bbits;
1669        int nr_underway = 0;
1670        int write_flags = wbc_to_write_flags(wbc);
1671
1672        head = create_page_buffers(page, inode,
1673                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1674
1675        /*
1676         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1677         * here, and the (potentially unmapped) buffers may become dirty at
1678         * any time.  If a buffer becomes dirty here after we've inspected it
1679         * then we just miss that fact, and the page stays dirty.
1680         *
1681         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1682         * handle that here by just cleaning them.
1683         */
1684
1685        bh = head;
1686        blocksize = bh->b_size;
1687        bbits = block_size_bits(blocksize);
1688
1689        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1690        last_block = (i_size_read(inode) - 1) >> bbits;
1691
1692        /*
1693         * Get all the dirty buffers mapped to disk addresses and
1694         * handle any aliases from the underlying blockdev's mapping.
1695         */
1696        do {
1697                if (block > last_block) {
1698                        /*
1699                         * mapped buffers outside i_size will occur, because
1700                         * this page can be outside i_size when there is a
1701                         * truncate in progress.
1702                         */
1703                        /*
1704                         * The buffer was zeroed by block_write_full_page()
1705                         */
1706                        clear_buffer_dirty(bh);
1707                        set_buffer_uptodate(bh);
1708                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1709                           buffer_dirty(bh)) {
1710                        WARN_ON(bh->b_size != blocksize);
1711                        err = get_block(inode, block, bh, 1);
1712                        if (err)
1713                                goto recover;
1714                        clear_buffer_delay(bh);
1715                        if (buffer_new(bh)) {
1716                                /* blockdev mappings never come here */
1717                                clear_buffer_new(bh);
1718                                clean_bdev_bh_alias(bh);
1719                        }
1720                }
1721                bh = bh->b_this_page;
1722                block++;
1723        } while (bh != head);
1724
1725        do {
1726                if (!buffer_mapped(bh))
1727                        continue;
1728                /*
1729                 * If it's a fully non-blocking write attempt and we cannot
1730                 * lock the buffer then redirty the page.  Note that this can
1731                 * potentially cause a busy-wait loop from writeback threads
1732                 * and kswapd activity, but those code paths have their own
1733                 * higher-level throttling.
1734                 */
1735                if (wbc->sync_mode != WB_SYNC_NONE) {
1736                        lock_buffer(bh);
1737                } else if (!trylock_buffer(bh)) {
1738                        redirty_page_for_writepage(wbc, page);
1739                        continue;
1740                }
1741                if (test_clear_buffer_dirty(bh)) {
1742                        mark_buffer_async_write_endio(bh, handler);
1743                } else {
1744                        unlock_buffer(bh);
1745                }
1746        } while ((bh = bh->b_this_page) != head);
1747
1748        /*
1749         * The page and its buffers are protected by PageWriteback(), so we can
1750         * drop the bh refcounts early.
1751         */
1752        BUG_ON(PageWriteback(page));
1753        set_page_writeback(page);
1754
1755        do {
1756                struct buffer_head *next = bh->b_this_page;
1757                if (buffer_async_write(bh)) {
1758                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1759                                        inode->i_write_hint, wbc);
1760                        nr_underway++;
1761                }
1762                bh = next;
1763        } while (bh != head);
1764        unlock_page(page);
1765
1766        err = 0;
1767done:
1768        if (nr_underway == 0) {
1769                /*
1770                 * The page was marked dirty, but the buffers were
1771                 * clean.  Someone wrote them back by hand with
1772                 * ll_rw_block/submit_bh.  A rare case.
1773                 */
1774                end_page_writeback(page);
1775
1776                /*
1777                 * The page and buffer_heads can be released at any time from
1778                 * here on.
1779                 */
1780        }
1781        return err;
1782
1783recover:
1784        /*
1785         * ENOSPC, or some other error.  We may already have added some
1786         * blocks to the file, so we need to write these out to avoid
1787         * exposing stale data.
1788         * The page is currently locked and not marked for writeback
1789         */
1790        bh = head;
1791        /* Recovery: lock and submit the mapped buffers */
1792        do {
1793                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1794                    !buffer_delay(bh)) {
1795                        lock_buffer(bh);
1796                        mark_buffer_async_write_endio(bh, handler);
1797                } else {
1798                        /*
1799                         * The buffer may have been set dirty during
1800                         * attachment to a dirty page.
1801                         */
1802                        clear_buffer_dirty(bh);
1803                }
1804        } while ((bh = bh->b_this_page) != head);
1805        SetPageError(page);
1806        BUG_ON(PageWriteback(page));
1807        mapping_set_error(page->mapping, err);
1808        set_page_writeback(page);
1809        do {
1810                struct buffer_head *next = bh->b_this_page;
1811                if (buffer_async_write(bh)) {
1812                        clear_buffer_dirty(bh);
1813                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1814                                        inode->i_write_hint, wbc);
1815                        nr_underway++;
1816                }
1817                bh = next;
1818        } while (bh != head);
1819        unlock_page(page);
1820        goto done;
1821}
1822EXPORT_SYMBOL(__block_write_full_page);
1823
1824/*
1825 * If a page has any new buffers, zero them out here, and mark them uptodate
1826 * and dirty so they'll be written out (in order to prevent uninitialised
1827 * block data from leaking). And clear the new bit.
1828 */
1829void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1830{
1831        unsigned int block_start, block_end;
1832        struct buffer_head *head, *bh;
1833
1834        BUG_ON(!PageLocked(page));
1835        if (!page_has_buffers(page))
1836                return;
1837
1838        bh = head = page_buffers(page);
1839        block_start = 0;
1840        do {
1841                block_end = block_start + bh->b_size;
1842
1843                if (buffer_new(bh)) {
1844                        if (block_end > from && block_start < to) {
1845                                if (!PageUptodate(page)) {
1846                                        unsigned start, size;
1847
1848                                        start = max(from, block_start);
1849                                        size = min(to, block_end) - start;
1850
1851                                        zero_user(page, start, size);
1852                                        set_buffer_uptodate(bh);
1853                                }
1854
1855                                clear_buffer_new(bh);
1856                                mark_buffer_dirty(bh);
1857                        }
1858                }
1859
1860                block_start = block_end;
1861                bh = bh->b_this_page;
1862        } while (bh != head);
1863}
1864EXPORT_SYMBOL(page_zero_new_buffers);
1865
1866static void
1867iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1868                struct iomap *iomap)
1869{
1870        loff_t offset = block << inode->i_blkbits;
1871
1872        bh->b_bdev = iomap->bdev;
1873
1874        /*
1875         * Block points to offset in file we need to map, iomap contains
1876         * the offset at which the map starts. If the map ends before the
1877         * current block, then do not map the buffer and let the caller
1878         * handle it.
1879         */
1880        BUG_ON(offset >= iomap->offset + iomap->length);
1881
1882        switch (iomap->type) {
1883        case IOMAP_HOLE:
1884                /*
1885                 * If the buffer is not up to date or beyond the current EOF,
1886                 * we need to mark it as new to ensure sub-block zeroing is
1887                 * executed if necessary.
1888                 */
1889                if (!buffer_uptodate(bh) ||
1890                    (offset >= i_size_read(inode)))
1891                        set_buffer_new(bh);
1892                break;
1893        case IOMAP_DELALLOC:
1894                if (!buffer_uptodate(bh) ||
1895                    (offset >= i_size_read(inode)))
1896                        set_buffer_new(bh);
1897                set_buffer_uptodate(bh);
1898                set_buffer_mapped(bh);
1899                set_buffer_delay(bh);
1900                break;
1901        case IOMAP_UNWRITTEN:
1902                /*
1903                 * For unwritten regions, we always need to ensure that
1904                 * sub-block writes cause the regions in the block we are not
1905                 * writing to are zeroed. Set the buffer as new to ensure this.
1906                 */
1907                set_buffer_new(bh);
1908                set_buffer_unwritten(bh);
1909                /* FALLTHRU */
1910        case IOMAP_MAPPED:
1911                if (offset >= i_size_read(inode))
1912                        set_buffer_new(bh);
1913                bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1914                                inode->i_blkbits;
1915                set_buffer_mapped(bh);
1916                break;
1917        }
1918}
1919
1920int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1921                get_block_t *get_block, struct iomap *iomap)
1922{
1923        unsigned from = pos & (PAGE_SIZE - 1);
1924        unsigned to = from + len;
1925        struct inode *inode = page->mapping->host;
1926        unsigned block_start, block_end;
1927        sector_t block;
1928        int err = 0;
1929        unsigned blocksize, bbits;
1930        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1931
1932        BUG_ON(!PageLocked(page));
1933        BUG_ON(from > PAGE_SIZE);
1934        BUG_ON(to > PAGE_SIZE);
1935        BUG_ON(from > to);
1936
1937        head = create_page_buffers(page, inode, 0);
1938        blocksize = head->b_size;
1939        bbits = block_size_bits(blocksize);
1940
1941        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1942
1943        for(bh = head, block_start = 0; bh != head || !block_start;
1944            block++, block_start=block_end, bh = bh->b_this_page) {
1945                block_end = block_start + blocksize;
1946                if (block_end <= from || block_start >= to) {
1947                        if (PageUptodate(page)) {
1948                                if (!buffer_uptodate(bh))
1949                                        set_buffer_uptodate(bh);
1950                        }
1951                        continue;
1952                }
1953                if (buffer_new(bh))
1954                        clear_buffer_new(bh);
1955                if (!buffer_mapped(bh)) {
1956                        WARN_ON(bh->b_size != blocksize);
1957                        if (get_block) {
1958                                err = get_block(inode, block, bh, 1);
1959                                if (err)
1960                                        break;
1961                        } else {
1962                                iomap_to_bh(inode, block, bh, iomap);
1963                        }
1964
1965                        if (buffer_new(bh)) {
1966                                clean_bdev_bh_alias(bh);
1967                                if (PageUptodate(page)) {
1968                                        clear_buffer_new(bh);
1969                                        set_buffer_uptodate(bh);
1970                                        mark_buffer_dirty(bh);
1971                                        continue;
1972                                }
1973                                if (block_end > to || block_start < from)
1974                                        zero_user_segments(page,
1975                                                to, block_end,
1976                                                block_start, from);
1977                                continue;
1978                        }
1979                }
1980                if (PageUptodate(page)) {
1981                        if (!buffer_uptodate(bh))
1982                                set_buffer_uptodate(bh);
1983                        continue; 
1984                }
1985                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1986                    !buffer_unwritten(bh) &&
1987                     (block_start < from || block_end > to)) {
1988                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1989                        *wait_bh++=bh;
1990                }
1991        }
1992        /*
1993         * If we issued read requests - let them complete.
1994         */
1995        while(wait_bh > wait) {
1996                wait_on_buffer(*--wait_bh);
1997                if (!buffer_uptodate(*wait_bh))
1998                        err = -EIO;
1999        }
2000        if (unlikely(err))
2001                page_zero_new_buffers(page, from, to);
2002        return err;
2003}
2004
2005int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2006                get_block_t *get_block)
2007{
2008        return __block_write_begin_int(page, pos, len, get_block, NULL);
2009}
2010EXPORT_SYMBOL(__block_write_begin);
2011
2012static int __block_commit_write(struct inode *inode, struct page *page,
2013                unsigned from, unsigned to)
2014{
2015        unsigned block_start, block_end;
2016        int partial = 0;
2017        unsigned blocksize;
2018        struct buffer_head *bh, *head;
2019
2020        bh = head = page_buffers(page);
2021        blocksize = bh->b_size;
2022
2023        block_start = 0;
2024        do {
2025                block_end = block_start + blocksize;
2026                if (block_end <= from || block_start >= to) {
2027                        if (!buffer_uptodate(bh))
2028                                partial = 1;
2029                } else {
2030                        set_buffer_uptodate(bh);
2031                        mark_buffer_dirty(bh);
2032                }
2033                clear_buffer_new(bh);
2034
2035                block_start = block_end;
2036                bh = bh->b_this_page;
2037        } while (bh != head);
2038
2039        /*
2040         * If this is a partial write which happened to make all buffers
2041         * uptodate then we can optimize away a bogus readpage() for
2042         * the next read(). Here we 'discover' whether the page went
2043         * uptodate as a result of this (potentially partial) write.
2044         */
2045        if (!partial)
2046                SetPageUptodate(page);
2047        return 0;
2048}
2049
2050/*
2051 * block_write_begin takes care of the basic task of block allocation and
2052 * bringing partial write blocks uptodate first.
2053 *
2054 * The filesystem needs to handle block truncation upon failure.
2055 */
2056int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2057                unsigned flags, struct page **pagep, get_block_t *get_block)
2058{
2059        pgoff_t index = pos >> PAGE_SHIFT;
2060        struct page *page;
2061        int status;
2062
2063        page = grab_cache_page_write_begin(mapping, index, flags);
2064        if (!page)
2065                return -ENOMEM;
2066
2067        status = __block_write_begin(page, pos, len, get_block);
2068        if (unlikely(status)) {
2069                unlock_page(page);
2070                put_page(page);
2071                page = NULL;
2072        }
2073
2074        *pagep = page;
2075        return status;
2076}
2077EXPORT_SYMBOL(block_write_begin);
2078
2079int block_write_end(struct file *file, struct address_space *mapping,
2080                        loff_t pos, unsigned len, unsigned copied,
2081                        struct page *page, void *fsdata)
2082{
2083        struct inode *inode = mapping->host;
2084        unsigned start;
2085
2086        start = pos & (PAGE_SIZE - 1);
2087
2088        if (unlikely(copied < len)) {
2089                /*
2090                 * The buffers that were written will now be uptodate, so we
2091                 * don't have to worry about a readpage reading them and
2092                 * overwriting a partial write. However if we have encountered
2093                 * a short write and only partially written into a buffer, it
2094                 * will not be marked uptodate, so a readpage might come in and
2095                 * destroy our partial write.
2096                 *
2097                 * Do the simplest thing, and just treat any short write to a
2098                 * non uptodate page as a zero-length write, and force the
2099                 * caller to redo the whole thing.
2100                 */
2101                if (!PageUptodate(page))
2102                        copied = 0;
2103
2104                page_zero_new_buffers(page, start+copied, start+len);
2105        }
2106        flush_dcache_page(page);
2107
2108        /* This could be a short (even 0-length) commit */
2109        __block_commit_write(inode, page, start, start+copied);
2110
2111        return copied;
2112}
2113EXPORT_SYMBOL(block_write_end);
2114
2115int generic_write_end(struct file *file, struct address_space *mapping,
2116                        loff_t pos, unsigned len, unsigned copied,
2117                        struct page *page, void *fsdata)
2118{
2119        struct inode *inode = mapping->host;
2120        loff_t old_size = inode->i_size;
2121        int i_size_changed = 0;
2122
2123        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2124
2125        /*
2126         * No need to use i_size_read() here, the i_size
2127         * cannot change under us because we hold i_mutex.
2128         *
2129         * But it's important to update i_size while still holding page lock:
2130         * page writeout could otherwise come in and zero beyond i_size.
2131         */
2132        if (pos+copied > inode->i_size) {
2133                i_size_write(inode, pos+copied);
2134                i_size_changed = 1;
2135        }
2136
2137        unlock_page(page);
2138        put_page(page);
2139
2140        if (old_size < pos)
2141                pagecache_isize_extended(inode, old_size, pos);
2142        /*
2143         * Don't mark the inode dirty under page lock. First, it unnecessarily
2144         * makes the holding time of page lock longer. Second, it forces lock
2145         * ordering of page lock and transaction start for journaling
2146         * filesystems.
2147         */
2148        if (i_size_changed)
2149                mark_inode_dirty(inode);
2150
2151        return copied;
2152}
2153EXPORT_SYMBOL(generic_write_end);
2154
2155/*
2156 * block_is_partially_uptodate checks whether buffers within a page are
2157 * uptodate or not.
2158 *
2159 * Returns true if all buffers which correspond to a file portion
2160 * we want to read are uptodate.
2161 */
2162int block_is_partially_uptodate(struct page *page, unsigned long from,
2163                                        unsigned long count)
2164{
2165        unsigned block_start, block_end, blocksize;
2166        unsigned to;
2167        struct buffer_head *bh, *head;
2168        int ret = 1;
2169
2170        if (!page_has_buffers(page))
2171                return 0;
2172
2173        head = page_buffers(page);
2174        blocksize = head->b_size;
2175        to = min_t(unsigned, PAGE_SIZE - from, count);
2176        to = from + to;
2177        if (from < blocksize && to > PAGE_SIZE - blocksize)
2178                return 0;
2179
2180        bh = head;
2181        block_start = 0;
2182        do {
2183                block_end = block_start + blocksize;
2184                if (block_end > from && block_start < to) {
2185                        if (!buffer_uptodate(bh)) {
2186                                ret = 0;
2187                                break;
2188                        }
2189                        if (block_end >= to)
2190                                break;
2191                }
2192                block_start = block_end;
2193                bh = bh->b_this_page;
2194        } while (bh != head);
2195
2196        return ret;
2197}
2198EXPORT_SYMBOL(block_is_partially_uptodate);
2199
2200/*
2201 * Generic "read page" function for block devices that have the normal
2202 * get_block functionality. This is most of the block device filesystems.
2203 * Reads the page asynchronously --- the unlock_buffer() and
2204 * set/clear_buffer_uptodate() functions propagate buffer state into the
2205 * page struct once IO has completed.
2206 */
2207int block_read_full_page(struct page *page, get_block_t *get_block)
2208{
2209        struct inode *inode = page->mapping->host;
2210        sector_t iblock, lblock;
2211        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2212        unsigned int blocksize, bbits;
2213        int nr, i;
2214        int fully_mapped = 1;
2215
2216        head = create_page_buffers(page, inode, 0);
2217        blocksize = head->b_size;
2218        bbits = block_size_bits(blocksize);
2219
2220        iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2221        lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2222        bh = head;
2223        nr = 0;
2224        i = 0;
2225
2226        do {
2227                if (buffer_uptodate(bh))
2228                        continue;
2229
2230                if (!buffer_mapped(bh)) {
2231                        int err = 0;
2232
2233                        fully_mapped = 0;
2234                        if (iblock < lblock) {
2235                                WARN_ON(bh->b_size != blocksize);
2236                                err = get_block(inode, iblock, bh, 0);
2237                                if (err)
2238                                        SetPageError(page);
2239                        }
2240                        if (!buffer_mapped(bh)) {
2241                                zero_user(page, i * blocksize, blocksize);
2242                                if (!err)
2243                                        set_buffer_uptodate(bh);
2244                                continue;
2245                        }
2246                        /*
2247                         * get_block() might have updated the buffer
2248                         * synchronously
2249                         */
2250                        if (buffer_uptodate(bh))
2251                                continue;
2252                }
2253                arr[nr++] = bh;
2254        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2255
2256        if (fully_mapped)
2257                SetPageMappedToDisk(page);
2258
2259        if (!nr) {
2260                /*
2261                 * All buffers are uptodate - we can set the page uptodate
2262                 * as well. But not if get_block() returned an error.
2263                 */
2264                if (!PageError(page))
2265                        SetPageUptodate(page);
2266                unlock_page(page);
2267                return 0;
2268        }
2269
2270        /* Stage two: lock the buffers */
2271        for (i = 0; i < nr; i++) {
2272                bh = arr[i];
2273                lock_buffer(bh);
2274                mark_buffer_async_read(bh);
2275        }
2276
2277        /*
2278         * Stage 3: start the IO.  Check for uptodateness
2279         * inside the buffer lock in case another process reading
2280         * the underlying blockdev brought it uptodate (the sct fix).
2281         */
2282        for (i = 0; i < nr; i++) {
2283                bh = arr[i];
2284                if (buffer_uptodate(bh))
2285                        end_buffer_async_read(bh, 1);
2286                else
2287                        submit_bh(REQ_OP_READ, 0, bh);
2288        }
2289        return 0;
2290}
2291EXPORT_SYMBOL(block_read_full_page);
2292
2293/* utility function for filesystems that need to do work on expanding
2294 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2295 * deal with the hole.  
2296 */
2297int generic_cont_expand_simple(struct inode *inode, loff_t size)
2298{
2299        struct address_space *mapping = inode->i_mapping;
2300        struct page *page;
2301        void *fsdata;
2302        int err;
2303
2304        err = inode_newsize_ok(inode, size);
2305        if (err)
2306                goto out;
2307
2308        err = pagecache_write_begin(NULL, mapping, size, 0,
2309                                    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2310        if (err)
2311                goto out;
2312
2313        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2314        BUG_ON(err > 0);
2315
2316out:
2317        return err;
2318}
2319EXPORT_SYMBOL(generic_cont_expand_simple);
2320
2321static int cont_expand_zero(struct file *file, struct address_space *mapping,
2322                            loff_t pos, loff_t *bytes)
2323{
2324        struct inode *inode = mapping->host;
2325        unsigned int blocksize = i_blocksize(inode);
2326        struct page *page;
2327        void *fsdata;
2328        pgoff_t index, curidx;
2329        loff_t curpos;
2330        unsigned zerofrom, offset, len;
2331        int err = 0;
2332
2333        index = pos >> PAGE_SHIFT;
2334        offset = pos & ~PAGE_MASK;
2335
2336        while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2337                zerofrom = curpos & ~PAGE_MASK;
2338                if (zerofrom & (blocksize-1)) {
2339                        *bytes |= (blocksize-1);
2340                        (*bytes)++;
2341                }
2342                len = PAGE_SIZE - zerofrom;
2343
2344                err = pagecache_write_begin(file, mapping, curpos, len, 0,
2345                                            &page, &fsdata);
2346                if (err)
2347                        goto out;
2348                zero_user(page, zerofrom, len);
2349                err = pagecache_write_end(file, mapping, curpos, len, len,
2350                                                page, fsdata);
2351                if (err < 0)
2352                        goto out;
2353                BUG_ON(err != len);
2354                err = 0;
2355
2356                balance_dirty_pages_ratelimited(mapping);
2357
2358                if (unlikely(fatal_signal_pending(current))) {
2359                        err = -EINTR;
2360                        goto out;
2361                }
2362        }
2363
2364        /* page covers the boundary, find the boundary offset */
2365        if (index == curidx) {
2366                zerofrom = curpos & ~PAGE_MASK;
2367                /* if we will expand the thing last block will be filled */
2368                if (offset <= zerofrom) {
2369                        goto out;
2370                }
2371                if (zerofrom & (blocksize-1)) {
2372                        *bytes |= (blocksize-1);
2373                        (*bytes)++;
2374                }
2375                len = offset - zerofrom;
2376
2377                err = pagecache_write_begin(file, mapping, curpos, len, 0,
2378                                            &page, &fsdata);
2379                if (err)
2380                        goto out;
2381                zero_user(page, zerofrom, len);
2382                err = pagecache_write_end(file, mapping, curpos, len, len,
2383                                                page, fsdata);
2384                if (err < 0)
2385                        goto out;
2386                BUG_ON(err != len);
2387                err = 0;
2388        }
2389out:
2390        return err;
2391}
2392
2393/*
2394 * For moronic filesystems that do not allow holes in file.
2395 * We may have to extend the file.
2396 */
2397int cont_write_begin(struct file *file, struct address_space *mapping,
2398                        loff_t pos, unsigned len, unsigned flags,
2399                        struct page **pagep, void **fsdata,
2400                        get_block_t *get_block, loff_t *bytes)
2401{
2402        struct inode *inode = mapping->host;
2403        unsigned int blocksize = i_blocksize(inode);
2404        unsigned int zerofrom;
2405        int err;
2406
2407        err = cont_expand_zero(file, mapping, pos, bytes);
2408        if (err)
2409                return err;
2410
2411        zerofrom = *bytes & ~PAGE_MASK;
2412        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2413                *bytes |= (blocksize-1);
2414                (*bytes)++;
2415        }
2416
2417        return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2418}
2419EXPORT_SYMBOL(cont_write_begin);
2420
2421int block_commit_write(struct page *page, unsigned from, unsigned to)
2422{
2423        struct inode *inode = page->mapping->host;
2424        __block_commit_write(inode,page,from,to);
2425        return 0;
2426}
2427EXPORT_SYMBOL(block_commit_write);
2428
2429/*
2430 * block_page_mkwrite() is not allowed to change the file size as it gets
2431 * called from a page fault handler when a page is first dirtied. Hence we must
2432 * be careful to check for EOF conditions here. We set the page up correctly
2433 * for a written page which means we get ENOSPC checking when writing into
2434 * holes and correct delalloc and unwritten extent mapping on filesystems that
2435 * support these features.
2436 *
2437 * We are not allowed to take the i_mutex here so we have to play games to
2438 * protect against truncate races as the page could now be beyond EOF.  Because
2439 * truncate writes the inode size before removing pages, once we have the
2440 * page lock we can determine safely if the page is beyond EOF. If it is not
2441 * beyond EOF, then the page is guaranteed safe against truncation until we
2442 * unlock the page.
2443 *
2444 * Direct callers of this function should protect against filesystem freezing
2445 * using sb_start_pagefault() - sb_end_pagefault() functions.
2446 */
2447int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2448                         get_block_t get_block)
2449{
2450        struct page *page = vmf->page;
2451        struct inode *inode = file_inode(vma->vm_file);
2452        unsigned long end;
2453        loff_t size;
2454        int ret;
2455
2456        lock_page(page);
2457        size = i_size_read(inode);
2458        if ((page->mapping != inode->i_mapping) ||
2459            (page_offset(page) > size)) {
2460                /* We overload EFAULT to mean page got truncated */
2461                ret = -EFAULT;
2462                goto out_unlock;
2463        }
2464
2465        /* page is wholly or partially inside EOF */
2466        if (((page->index + 1) << PAGE_SHIFT) > size)
2467                end = size & ~PAGE_MASK;
2468        else
2469                end = PAGE_SIZE;
2470
2471        ret = __block_write_begin(page, 0, end, get_block);
2472        if (!ret)
2473                ret = block_commit_write(page, 0, end);
2474
2475        if (unlikely(ret < 0))
2476                goto out_unlock;
2477        set_page_dirty(page);
2478        wait_for_stable_page(page);
2479        return 0;
2480out_unlock:
2481        unlock_page(page);
2482        return ret;
2483}
2484EXPORT_SYMBOL(block_page_mkwrite);
2485
2486/*
2487 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2488 * immediately, while under the page lock.  So it needs a special end_io
2489 * handler which does not touch the bh after unlocking it.
2490 */
2491static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2492{
2493        __end_buffer_read_notouch(bh, uptodate);
2494}
2495
2496/*
2497 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2498 * the page (converting it to circular linked list and taking care of page
2499 * dirty races).
2500 */
2501static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2502{
2503        struct buffer_head *bh;
2504
2505        BUG_ON(!PageLocked(page));
2506
2507        spin_lock(&page->mapping->private_lock);
2508        bh = head;
2509        do {
2510                if (PageDirty(page))
2511                        set_buffer_dirty(bh);
2512                if (!bh->b_this_page)
2513                        bh->b_this_page = head;
2514                bh = bh->b_this_page;
2515        } while (bh != head);
2516        attach_page_buffers(page, head);
2517        spin_unlock(&page->mapping->private_lock);
2518}
2519
2520/*
2521 * On entry, the page is fully not uptodate.
2522 * On exit the page is fully uptodate in the areas outside (from,to)
2523 * The filesystem needs to handle block truncation upon failure.
2524 */
2525int nobh_write_begin(struct address_space *mapping,
2526                        loff_t pos, unsigned len, unsigned flags,
2527                        struct page **pagep, void **fsdata,
2528                        get_block_t *get_block)
2529{
2530        struct inode *inode = mapping->host;
2531        const unsigned blkbits = inode->i_blkbits;
2532        const unsigned blocksize = 1 << blkbits;
2533        struct buffer_head *head, *bh;
2534        struct page *page;
2535        pgoff_t index;
2536        unsigned from, to;
2537        unsigned block_in_page;
2538        unsigned block_start, block_end;
2539        sector_t block_in_file;
2540        int nr_reads = 0;
2541        int ret = 0;
2542        int is_mapped_to_disk = 1;
2543
2544        index = pos >> PAGE_SHIFT;
2545        from = pos & (PAGE_SIZE - 1);
2546        to = from + len;
2547
2548        page = grab_cache_page_write_begin(mapping, index, flags);
2549        if (!page)
2550                return -ENOMEM;
2551        *pagep = page;
2552        *fsdata = NULL;
2553
2554        if (page_has_buffers(page)) {
2555                ret = __block_write_begin(page, pos, len, get_block);
2556                if (unlikely(ret))
2557                        goto out_release;
2558                return ret;
2559        }
2560
2561        if (PageMappedToDisk(page))
2562                return 0;
2563
2564        /*
2565         * Allocate buffers so that we can keep track of state, and potentially
2566         * attach them to the page if an error occurs. In the common case of
2567         * no error, they will just be freed again without ever being attached
2568         * to the page (which is all OK, because we're under the page lock).
2569         *
2570         * Be careful: the buffer linked list is a NULL terminated one, rather
2571         * than the circular one we're used to.
2572         */
2573        head = alloc_page_buffers(page, blocksize, false);
2574        if (!head) {
2575                ret = -ENOMEM;
2576                goto out_release;
2577        }
2578
2579        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2580
2581        /*
2582         * We loop across all blocks in the page, whether or not they are
2583         * part of the affected region.  This is so we can discover if the
2584         * page is fully mapped-to-disk.
2585         */
2586        for (block_start = 0, block_in_page = 0, bh = head;
2587                  block_start < PAGE_SIZE;
2588                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2589                int create;
2590
2591                block_end = block_start + blocksize;
2592                bh->b_state = 0;
2593                create = 1;
2594                if (block_start >= to)
2595                        create = 0;
2596                ret = get_block(inode, block_in_file + block_in_page,
2597                                        bh, create);
2598                if (ret)
2599                        goto failed;
2600                if (!buffer_mapped(bh))
2601                        is_mapped_to_disk = 0;
2602                if (buffer_new(bh))
2603                        clean_bdev_bh_alias(bh);
2604                if (PageUptodate(page)) {
2605                        set_buffer_uptodate(bh);
2606                        continue;
2607                }
2608                if (buffer_new(bh) || !buffer_mapped(bh)) {
2609                        zero_user_segments(page, block_start, from,
2610                                                        to, block_end);
2611                        continue;
2612                }
2613                if (buffer_uptodate(bh))
2614                        continue;       /* reiserfs does this */
2615                if (block_start < from || block_end > to) {
2616                        lock_buffer(bh);
2617                        bh->b_end_io = end_buffer_read_nobh;
2618                        submit_bh(REQ_OP_READ, 0, bh);
2619                        nr_reads++;
2620                }
2621        }
2622
2623        if (nr_reads) {
2624                /*
2625                 * The page is locked, so these buffers are protected from
2626                 * any VM or truncate activity.  Hence we don't need to care
2627                 * for the buffer_head refcounts.
2628                 */
2629                for (bh = head; bh; bh = bh->b_this_page) {
2630                        wait_on_buffer(bh);
2631                        if (!buffer_uptodate(bh))
2632                                ret = -EIO;
2633                }
2634                if (ret)
2635                        goto failed;
2636        }
2637
2638        if (is_mapped_to_disk)
2639                SetPageMappedToDisk(page);
2640
2641        *fsdata = head; /* to be released by nobh_write_end */
2642
2643        return 0;
2644
2645failed:
2646        BUG_ON(!ret);
2647        /*
2648         * Error recovery is a bit difficult. We need to zero out blocks that
2649         * were newly allocated, and dirty them to ensure they get written out.
2650         * Buffers need to be attached to the page at this point, otherwise
2651         * the handling of potential IO errors during writeout would be hard
2652         * (could try doing synchronous writeout, but what if that fails too?)
2653         */
2654        attach_nobh_buffers(page, head);
2655        page_zero_new_buffers(page, from, to);
2656
2657out_release:
2658        unlock_page(page);
2659        put_page(page);
2660        *pagep = NULL;
2661
2662        return ret;
2663}
2664EXPORT_SYMBOL(nobh_write_begin);
2665
2666int nobh_write_end(struct file *file, struct address_space *mapping,
2667                        loff_t pos, unsigned len, unsigned copied,
2668                        struct page *page, void *fsdata)
2669{
2670        struct inode *inode = page->mapping->host;
2671        struct buffer_head *head = fsdata;
2672        struct buffer_head *bh;
2673        BUG_ON(fsdata != NULL && page_has_buffers(page));
2674
2675        if (unlikely(copied < len) && head)
2676                attach_nobh_buffers(page, head);
2677        if (page_has_buffers(page))
2678                return generic_write_end(file, mapping, pos, len,
2679                                        copied, page, fsdata);
2680
2681        SetPageUptodate(page);
2682        set_page_dirty(page);
2683        if (pos+copied > inode->i_size) {
2684                i_size_write(inode, pos+copied);
2685                mark_inode_dirty(inode);
2686        }
2687
2688        unlock_page(page);
2689        put_page(page);
2690
2691        while (head) {
2692                bh = head;
2693                head = head->b_this_page;
2694                free_buffer_head(bh);
2695        }
2696
2697        return copied;
2698}
2699EXPORT_SYMBOL(nobh_write_end);
2700
2701/*
2702 * nobh_writepage() - based on block_full_write_page() except
2703 * that it tries to operate without attaching bufferheads to
2704 * the page.
2705 */
2706int nobh_writepage(struct page *page, get_block_t *get_block,
2707                        struct writeback_control *wbc)
2708{
2709        struct inode * const inode = page->mapping->host;
2710        loff_t i_size = i_size_read(inode);
2711        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2712        unsigned offset;
2713        int ret;
2714
2715        /* Is the page fully inside i_size? */
2716        if (page->index < end_index)
2717                goto out;
2718
2719        /* Is the page fully outside i_size? (truncate in progress) */
2720        offset = i_size & (PAGE_SIZE-1);
2721        if (page->index >= end_index+1 || !offset) {
2722                /*
2723                 * The page may have dirty, unmapped buffers.  For example,
2724                 * they may have been added in ext3_writepage().  Make them
2725                 * freeable here, so the page does not leak.
2726                 */
2727#if 0
2728                /* Not really sure about this  - do we need this ? */
2729                if (page->mapping->a_ops->invalidatepage)
2730                        page->mapping->a_ops->invalidatepage(page, offset);
2731#endif
2732                unlock_page(page);
2733                return 0; /* don't care */
2734        }
2735
2736        /*
2737         * The page straddles i_size.  It must be zeroed out on each and every
2738         * writepage invocation because it may be mmapped.  "A file is mapped
2739         * in multiples of the page size.  For a file that is not a multiple of
2740         * the  page size, the remaining memory is zeroed when mapped, and
2741         * writes to that region are not written out to the file."
2742         */
2743        zero_user_segment(page, offset, PAGE_SIZE);
2744out:
2745        ret = mpage_writepage(page, get_block, wbc);
2746        if (ret == -EAGAIN)
2747                ret = __block_write_full_page(inode, page, get_block, wbc,
2748                                              end_buffer_async_write);
2749        return ret;
2750}
2751EXPORT_SYMBOL(nobh_writepage);
2752
2753int nobh_truncate_page(struct address_space *mapping,
2754                        loff_t from, get_block_t *get_block)
2755{
2756        pgoff_t index = from >> PAGE_SHIFT;
2757        unsigned offset = from & (PAGE_SIZE-1);
2758        unsigned blocksize;
2759        sector_t iblock;
2760        unsigned length, pos;
2761        struct inode *inode = mapping->host;
2762        struct page *page;
2763        struct buffer_head map_bh;
2764        int err;
2765
2766        blocksize = i_blocksize(inode);
2767        length = offset & (blocksize - 1);
2768
2769        /* Block boundary? Nothing to do */
2770        if (!length)
2771                return 0;
2772
2773        length = blocksize - length;
2774        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2775
2776        page = grab_cache_page(mapping, index);
2777        err = -ENOMEM;
2778        if (!page)
2779                goto out;
2780
2781        if (page_has_buffers(page)) {
2782has_buffers:
2783                unlock_page(page);
2784                put_page(page);
2785                return block_truncate_page(mapping, from, get_block);
2786        }
2787
2788        /* Find the buffer that contains "offset" */
2789        pos = blocksize;
2790        while (offset >= pos) {
2791                iblock++;
2792                pos += blocksize;
2793        }
2794
2795        map_bh.b_size = blocksize;
2796        map_bh.b_state = 0;
2797        err = get_block(inode, iblock, &map_bh, 0);
2798        if (err)
2799                goto unlock;
2800        /* unmapped? It's a hole - nothing to do */
2801        if (!buffer_mapped(&map_bh))
2802                goto unlock;
2803
2804        /* Ok, it's mapped. Make sure it's up-to-date */
2805        if (!PageUptodate(page)) {
2806                err = mapping->a_ops->readpage(NULL, page);
2807                if (err) {
2808                        put_page(page);
2809                        goto out;
2810                }
2811                lock_page(page);
2812                if (!PageUptodate(page)) {
2813                        err = -EIO;
2814                        goto unlock;
2815                }
2816                if (page_has_buffers(page))
2817                        goto has_buffers;
2818        }
2819        zero_user(page, offset, length);
2820        set_page_dirty(page);
2821        err = 0;
2822
2823unlock:
2824        unlock_page(page);
2825        put_page(page);
2826out:
2827        return err;
2828}
2829EXPORT_SYMBOL(nobh_truncate_page);
2830
2831int block_truncate_page(struct address_space *mapping,
2832                        loff_t from, get_block_t *get_block)
2833{
2834        pgoff_t index = from >> PAGE_SHIFT;
2835        unsigned offset = from & (PAGE_SIZE-1);
2836        unsigned blocksize;
2837        sector_t iblock;
2838        unsigned length, pos;
2839        struct inode *inode = mapping->host;
2840        struct page *page;
2841        struct buffer_head *bh;
2842        int err;
2843
2844        blocksize = i_blocksize(inode);
2845        length = offset & (blocksize - 1);
2846
2847        /* Block boundary? Nothing to do */
2848        if (!length)
2849                return 0;
2850
2851        length = blocksize - length;
2852        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2853        
2854        page = grab_cache_page(mapping, index);
2855        err = -ENOMEM;
2856        if (!page)
2857                goto out;
2858
2859        if (!page_has_buffers(page))
2860                create_empty_buffers(page, blocksize, 0);
2861
2862        /* Find the buffer that contains "offset" */
2863        bh = page_buffers(page);
2864        pos = blocksize;
2865        while (offset >= pos) {
2866                bh = bh->b_this_page;
2867                iblock++;
2868                pos += blocksize;
2869        }
2870
2871        err = 0;
2872        if (!buffer_mapped(bh)) {
2873                WARN_ON(bh->b_size != blocksize);
2874                err = get_block(inode, iblock, bh, 0);
2875                if (err)
2876                        goto unlock;
2877                /* unmapped? It's a hole - nothing to do */
2878                if (!buffer_mapped(bh))
2879                        goto unlock;
2880        }
2881
2882        /* Ok, it's mapped. Make sure it's up-to-date */
2883        if (PageUptodate(page))
2884                set_buffer_uptodate(bh);
2885
2886        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2887                err = -EIO;
2888                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2889                wait_on_buffer(bh);
2890                /* Uhhuh. Read error. Complain and punt. */
2891                if (!buffer_uptodate(bh))
2892                        goto unlock;
2893        }
2894
2895        zero_user(page, offset, length);
2896        mark_buffer_dirty(bh);
2897        err = 0;
2898
2899unlock:
2900        unlock_page(page);
2901        put_page(page);
2902out:
2903        return err;
2904}
2905EXPORT_SYMBOL(block_truncate_page);
2906
2907/*
2908 * The generic ->writepage function for buffer-backed address_spaces
2909 */
2910int block_write_full_page(struct page *page, get_block_t *get_block,
2911                        struct writeback_control *wbc)
2912{
2913        struct inode * const inode = page->mapping->host;
2914        loff_t i_size = i_size_read(inode);
2915        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2916        unsigned offset;
2917
2918        /* Is the page fully inside i_size? */
2919        if (page->index < end_index)
2920                return __block_write_full_page(inode, page, get_block, wbc,
2921                                               end_buffer_async_write);
2922
2923        /* Is the page fully outside i_size? (truncate in progress) */
2924        offset = i_size & (PAGE_SIZE-1);
2925        if (page->index >= end_index+1 || !offset) {
2926                /*
2927                 * The page may have dirty, unmapped buffers.  For example,
2928                 * they may have been added in ext3_writepage().  Make them
2929                 * freeable here, so the page does not leak.
2930                 */
2931                do_invalidatepage(page, 0, PAGE_SIZE);
2932                unlock_page(page);
2933                return 0; /* don't care */
2934        }
2935
2936        /*
2937         * The page straddles i_size.  It must be zeroed out on each and every
2938         * writepage invocation because it may be mmapped.  "A file is mapped
2939         * in multiples of the page size.  For a file that is not a multiple of
2940         * the  page size, the remaining memory is zeroed when mapped, and
2941         * writes to that region are not written out to the file."
2942         */
2943        zero_user_segment(page, offset, PAGE_SIZE);
2944        return __block_write_full_page(inode, page, get_block, wbc,
2945                                                        end_buffer_async_write);
2946}
2947EXPORT_SYMBOL(block_write_full_page);
2948
2949sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2950                            get_block_t *get_block)
2951{
2952        struct inode *inode = mapping->host;
2953        struct buffer_head tmp = {
2954                .b_size = i_blocksize(inode),
2955        };
2956
2957        get_block(inode, block, &tmp, 0);
2958        return tmp.b_blocknr;
2959}
2960EXPORT_SYMBOL(generic_block_bmap);
2961
2962static void end_bio_bh_io_sync(struct bio *bio)
2963{
2964        struct buffer_head *bh = bio->bi_private;
2965
2966        if (unlikely(bio_flagged(bio, BIO_QUIET)))
2967                set_bit(BH_Quiet, &bh->b_state);
2968
2969        bh->b_end_io(bh, !bio->bi_status);
2970        bio_put(bio);
2971}
2972
2973/*
2974 * This allows us to do IO even on the odd last sectors
2975 * of a device, even if the block size is some multiple
2976 * of the physical sector size.
2977 *
2978 * We'll just truncate the bio to the size of the device,
2979 * and clear the end of the buffer head manually.
2980 *
2981 * Truly out-of-range accesses will turn into actual IO
2982 * errors, this only handles the "we need to be able to
2983 * do IO at the final sector" case.
2984 */
2985void guard_bio_eod(int op, struct bio *bio)
2986{
2987        sector_t maxsector;
2988        struct bio_vec *bvec = bio_last_bvec_all(bio);
2989        unsigned truncated_bytes;
2990        struct hd_struct *part;
2991
2992        rcu_read_lock();
2993        part = __disk_get_part(bio->bi_disk, bio->bi_partno);
2994        if (part)
2995                maxsector = part_nr_sects_read(part);
2996        else
2997                maxsector = get_capacity(bio->bi_disk);
2998        rcu_read_unlock();
2999
3000        if (!maxsector)
3001                return;
3002
3003        /*
3004         * If the *whole* IO is past the end of the device,
3005         * let it through, and the IO layer will turn it into
3006         * an EIO.
3007         */
3008        if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3009                return;
3010
3011        maxsector -= bio->bi_iter.bi_sector;
3012        if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3013                return;
3014
3015        /* Uhhuh. We've got a bio that straddles the device size! */
3016        truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3017
3018        /* Truncate the bio.. */
3019        bio->bi_iter.bi_size -= truncated_bytes;
3020        bvec->bv_len -= truncated_bytes;
3021
3022        /* ..and clear the end of the buffer for reads */
3023        if (op == REQ_OP_READ) {
3024                zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3025                                truncated_bytes);
3026        }
3027}
3028
3029static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3030                         enum rw_hint write_hint, struct writeback_control *wbc)
3031{
3032        struct bio *bio;
3033
3034        BUG_ON(!buffer_locked(bh));
3035        BUG_ON(!buffer_mapped(bh));
3036        BUG_ON(!bh->b_end_io);
3037        BUG_ON(buffer_delay(bh));
3038        BUG_ON(buffer_unwritten(bh));
3039
3040        /*
3041         * Only clear out a write error when rewriting
3042         */
3043        if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3044                clear_buffer_write_io_error(bh);
3045
3046        /*
3047         * from here on down, it's all bio -- do the initial mapping,
3048         * submit_bio -> generic_make_request may further map this bio around
3049         */
3050        bio = bio_alloc(GFP_NOIO, 1);
3051
3052        if (wbc) {
3053                wbc_init_bio(wbc, bio);
3054                wbc_account_io(wbc, bh->b_page, bh->b_size);
3055        }
3056
3057        bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3058        bio_set_dev(bio, bh->b_bdev);
3059        bio->bi_write_hint = write_hint;
3060
3061        bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3062        BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3063
3064        bio->bi_end_io = end_bio_bh_io_sync;
3065        bio->bi_private = bh;
3066
3067        /* Take care of bh's that straddle the end of the device */
3068        guard_bio_eod(op, bio);
3069
3070        if (buffer_meta(bh))
3071                op_flags |= REQ_META;
3072        if (buffer_prio(bh))
3073                op_flags |= REQ_PRIO;
3074        bio_set_op_attrs(bio, op, op_flags);
3075
3076        submit_bio(bio);
3077        return 0;
3078}
3079
3080int submit_bh(int op, int op_flags, struct buffer_head *bh)
3081{
3082        return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3083}
3084EXPORT_SYMBOL(submit_bh);
3085
3086/**
3087 * ll_rw_block: low-level access to block devices (DEPRECATED)
3088 * @op: whether to %READ or %WRITE
3089 * @op_flags: req_flag_bits
3090 * @nr: number of &struct buffer_heads in the array
3091 * @bhs: array of pointers to &struct buffer_head
3092 *
3093 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3094 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3095 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3096 * %REQ_RAHEAD.
3097 *
3098 * This function drops any buffer that it cannot get a lock on (with the
3099 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3100 * request, and any buffer that appears to be up-to-date when doing read
3101 * request.  Further it marks as clean buffers that are processed for
3102 * writing (the buffer cache won't assume that they are actually clean
3103 * until the buffer gets unlocked).
3104 *
3105 * ll_rw_block sets b_end_io to simple completion handler that marks
3106 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3107 * any waiters. 
3108 *
3109 * All of the buffers must be for the same device, and must also be a
3110 * multiple of the current approved size for the device.
3111 */
3112void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3113{
3114        int i;
3115
3116        for (i = 0; i < nr; i++) {
3117                struct buffer_head *bh = bhs[i];
3118
3119                if (!trylock_buffer(bh))
3120                        continue;
3121                if (op == WRITE) {
3122                        if (test_clear_buffer_dirty(bh)) {
3123                                bh->b_end_io = end_buffer_write_sync;
3124                                get_bh(bh);
3125                                submit_bh(op, op_flags, bh);
3126                                continue;
3127                        }
3128                } else {
3129                        if (!buffer_uptodate(bh)) {
3130                                bh->b_end_io = end_buffer_read_sync;
3131                                get_bh(bh);
3132                                submit_bh(op, op_flags, bh);
3133                                continue;
3134                        }
3135                }
3136                unlock_buffer(bh);
3137        }
3138}
3139EXPORT_SYMBOL(ll_rw_block);
3140
3141void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3142{
3143        lock_buffer(bh);
3144        if (!test_clear_buffer_dirty(bh)) {
3145                unlock_buffer(bh);
3146                return;
3147        }
3148        bh->b_end_io = end_buffer_write_sync;
3149        get_bh(bh);
3150        submit_bh(REQ_OP_WRITE, op_flags, bh);
3151}
3152EXPORT_SYMBOL(write_dirty_buffer);
3153
3154/*
3155 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3156 * and then start new I/O and then wait upon it.  The caller must have a ref on
3157 * the buffer_head.
3158 */
3159int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3160{
3161        int ret = 0;
3162
3163        WARN_ON(atomic_read(&bh->b_count) < 1);
3164        lock_buffer(bh);
3165        if (test_clear_buffer_dirty(bh)) {
3166                get_bh(bh);
3167                bh->b_end_io = end_buffer_write_sync;
3168                ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3169                wait_on_buffer(bh);
3170                if (!ret && !buffer_uptodate(bh))
3171                        ret = -EIO;
3172        } else {
3173                unlock_buffer(bh);
3174        }
3175        return ret;
3176}
3177EXPORT_SYMBOL(__sync_dirty_buffer);
3178
3179int sync_dirty_buffer(struct buffer_head *bh)
3180{
3181        return __sync_dirty_buffer(bh, REQ_SYNC);
3182}
3183EXPORT_SYMBOL(sync_dirty_buffer);
3184
3185/*
3186 * try_to_free_buffers() checks if all the buffers on this particular page
3187 * are unused, and releases them if so.
3188 *
3189 * Exclusion against try_to_free_buffers may be obtained by either
3190 * locking the page or by holding its mapping's private_lock.
3191 *
3192 * If the page is dirty but all the buffers are clean then we need to
3193 * be sure to mark the page clean as well.  This is because the page
3194 * may be against a block device, and a later reattachment of buffers
3195 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3196 * filesystem data on the same device.
3197 *
3198 * The same applies to regular filesystem pages: if all the buffers are
3199 * clean then we set the page clean and proceed.  To do that, we require
3200 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3201 * private_lock.
3202 *
3203 * try_to_free_buffers() is non-blocking.
3204 */
3205static inline int buffer_busy(struct buffer_head *bh)
3206{
3207        return atomic_read(&bh->b_count) |
3208                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3209}
3210
3211static int
3212drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3213{
3214        struct buffer_head *head = page_buffers(page);
3215        struct buffer_head *bh;
3216
3217        bh = head;
3218        do {
3219                if (buffer_busy(bh))
3220                        goto failed;
3221                bh = bh->b_this_page;
3222        } while (bh != head);
3223
3224        do {
3225                struct buffer_head *next = bh->b_this_page;
3226
3227                if (bh->b_assoc_map)
3228                        __remove_assoc_queue(bh);
3229                bh = next;
3230        } while (bh != head);
3231        *buffers_to_free = head;
3232        __clear_page_buffers(page);
3233        return 1;
3234failed:
3235        return 0;
3236}
3237
3238int try_to_free_buffers(struct page *page)
3239{
3240        struct address_space * const mapping = page->mapping;
3241        struct buffer_head *buffers_to_free = NULL;
3242        int ret = 0;
3243
3244        BUG_ON(!PageLocked(page));
3245        if (PageWriteback(page))
3246                return 0;
3247
3248        if (mapping == NULL) {          /* can this still happen? */
3249                ret = drop_buffers(page, &buffers_to_free);
3250                goto out;
3251        }
3252
3253        spin_lock(&mapping->private_lock);
3254        ret = drop_buffers(page, &buffers_to_free);
3255
3256        /*
3257         * If the filesystem writes its buffers by hand (eg ext3)
3258         * then we can have clean buffers against a dirty page.  We
3259         * clean the page here; otherwise the VM will never notice
3260         * that the filesystem did any IO at all.
3261         *
3262         * Also, during truncate, discard_buffer will have marked all
3263         * the page's buffers clean.  We discover that here and clean
3264         * the page also.
3265         *
3266         * private_lock must be held over this entire operation in order
3267         * to synchronise against __set_page_dirty_buffers and prevent the
3268         * dirty bit from being lost.
3269         */
3270        if (ret)
3271                cancel_dirty_page(page);
3272        spin_unlock(&mapping->private_lock);
3273out:
3274        if (buffers_to_free) {
3275                struct buffer_head *bh = buffers_to_free;
3276
3277                do {
3278                        struct buffer_head *next = bh->b_this_page;
3279                        free_buffer_head(bh);
3280                        bh = next;
3281                } while (bh != buffers_to_free);
3282        }
3283        return ret;
3284}
3285EXPORT_SYMBOL(try_to_free_buffers);
3286
3287/*
3288 * There are no bdflush tunables left.  But distributions are
3289 * still running obsolete flush daemons, so we terminate them here.
3290 *
3291 * Use of bdflush() is deprecated and will be removed in a future kernel.
3292 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3293 */
3294SYSCALL_DEFINE2(bdflush, int, func, long, data)
3295{
3296        static int msg_count;
3297
3298        if (!capable(CAP_SYS_ADMIN))
3299                return -EPERM;
3300
3301        if (msg_count < 5) {
3302                msg_count++;
3303                printk(KERN_INFO
3304                        "warning: process `%s' used the obsolete bdflush"
3305                        " system call\n", current->comm);
3306                printk(KERN_INFO "Fix your initscripts?\n");
3307        }
3308
3309        if (func == 1)
3310                do_exit(0);
3311        return 0;
3312}
3313
3314/*
3315 * Buffer-head allocation
3316 */
3317static struct kmem_cache *bh_cachep __read_mostly;
3318
3319/*
3320 * Once the number of bh's in the machine exceeds this level, we start
3321 * stripping them in writeback.
3322 */
3323static unsigned long max_buffer_heads;
3324
3325int buffer_heads_over_limit;
3326
3327struct bh_accounting {
3328        int nr;                 /* Number of live bh's */
3329        int ratelimit;          /* Limit cacheline bouncing */
3330};
3331
3332static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3333
3334static void recalc_bh_state(void)
3335{
3336        int i;
3337        int tot = 0;
3338
3339        if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3340                return;
3341        __this_cpu_write(bh_accounting.ratelimit, 0);
3342        for_each_online_cpu(i)
3343                tot += per_cpu(bh_accounting, i).nr;
3344        buffer_heads_over_limit = (tot > max_buffer_heads);
3345}
3346
3347struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3348{
3349        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3350        if (ret) {
3351                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3352                preempt_disable();
3353                __this_cpu_inc(bh_accounting.nr);
3354                recalc_bh_state();
3355                preempt_enable();
3356        }
3357        return ret;
3358}
3359EXPORT_SYMBOL(alloc_buffer_head);
3360
3361void free_buffer_head(struct buffer_head *bh)
3362{
3363        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3364        kmem_cache_free(bh_cachep, bh);
3365        preempt_disable();
3366        __this_cpu_dec(bh_accounting.nr);
3367        recalc_bh_state();
3368        preempt_enable();
3369}
3370EXPORT_SYMBOL(free_buffer_head);
3371
3372static int buffer_exit_cpu_dead(unsigned int cpu)
3373{
3374        int i;
3375        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3376
3377        for (i = 0; i < BH_LRU_SIZE; i++) {
3378                brelse(b->bhs[i]);
3379                b->bhs[i] = NULL;
3380        }
3381        this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3382        per_cpu(bh_accounting, cpu).nr = 0;
3383        return 0;
3384}
3385
3386/**
3387 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3388 * @bh: struct buffer_head
3389 *
3390 * Return true if the buffer is up-to-date and false,
3391 * with the buffer locked, if not.
3392 */
3393int bh_uptodate_or_lock(struct buffer_head *bh)
3394{
3395        if (!buffer_uptodate(bh)) {
3396                lock_buffer(bh);
3397                if (!buffer_uptodate(bh))
3398                        return 0;
3399                unlock_buffer(bh);
3400        }
3401        return 1;
3402}
3403EXPORT_SYMBOL(bh_uptodate_or_lock);
3404
3405/**
3406 * bh_submit_read - Submit a locked buffer for reading
3407 * @bh: struct buffer_head
3408 *
3409 * Returns zero on success and -EIO on error.
3410 */
3411int bh_submit_read(struct buffer_head *bh)
3412{
3413        BUG_ON(!buffer_locked(bh));
3414
3415        if (buffer_uptodate(bh)) {
3416                unlock_buffer(bh);
3417                return 0;
3418        }
3419
3420        get_bh(bh);
3421        bh->b_end_io = end_buffer_read_sync;
3422        submit_bh(REQ_OP_READ, 0, bh);
3423        wait_on_buffer(bh);
3424        if (buffer_uptodate(bh))
3425                return 0;
3426        return -EIO;
3427}
3428EXPORT_SYMBOL(bh_submit_read);
3429
3430/*
3431 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3432 *
3433 * Returns the offset within the file on success, and -ENOENT otherwise.
3434 */
3435static loff_t
3436page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3437{
3438        loff_t offset = page_offset(page);
3439        struct buffer_head *bh, *head;
3440        bool seek_data = whence == SEEK_DATA;
3441
3442        if (lastoff < offset)
3443                lastoff = offset;
3444
3445        bh = head = page_buffers(page);
3446        do {
3447                offset += bh->b_size;
3448                if (lastoff >= offset)
3449                        continue;
3450
3451                /*
3452                 * Unwritten extents that have data in the page cache covering
3453                 * them can be identified by the BH_Unwritten state flag.
3454                 * Pages with multiple buffers might have a mix of holes, data
3455                 * and unwritten extents - any buffer with valid data in it
3456                 * should have BH_Uptodate flag set on it.
3457                 */
3458
3459                if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3460                        return lastoff;
3461
3462                lastoff = offset;
3463        } while ((bh = bh->b_this_page) != head);
3464        return -ENOENT;
3465}
3466
3467/*
3468 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3469 *
3470 * Within unwritten extents, the page cache determines which parts are holes
3471 * and which are data: unwritten and uptodate buffer heads count as data;
3472 * everything else counts as a hole.
3473 *
3474 * Returns the resulting offset on successs, and -ENOENT otherwise.
3475 */
3476loff_t
3477page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3478                          int whence)
3479{
3480        pgoff_t index = offset >> PAGE_SHIFT;
3481        pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3482        loff_t lastoff = offset;
3483        struct pagevec pvec;
3484
3485        if (length <= 0)
3486                return -ENOENT;
3487
3488        pagevec_init(&pvec);
3489
3490        do {
3491                unsigned nr_pages, i;
3492
3493                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3494                                                end - 1);
3495                if (nr_pages == 0)
3496                        break;
3497
3498                for (i = 0; i < nr_pages; i++) {
3499                        struct page *page = pvec.pages[i];
3500
3501                        /*
3502                         * At this point, the page may be truncated or
3503                         * invalidated (changing page->mapping to NULL), or
3504                         * even swizzled back from swapper_space to tmpfs file
3505                         * mapping.  However, page->index will not change
3506                         * because we have a reference on the page.
3507                         *
3508                         * If current page offset is beyond where we've ended,
3509                         * we've found a hole.
3510                         */
3511                        if (whence == SEEK_HOLE &&
3512                            lastoff < page_offset(page))
3513                                goto check_range;
3514
3515                        lock_page(page);
3516                        if (likely(page->mapping == inode->i_mapping) &&
3517                            page_has_buffers(page)) {
3518                                lastoff = page_seek_hole_data(page, lastoff, whence);
3519                                if (lastoff >= 0) {
3520                                        unlock_page(page);
3521                                        goto check_range;
3522                                }
3523                        }
3524                        unlock_page(page);
3525                        lastoff = page_offset(page) + PAGE_SIZE;
3526                }
3527                pagevec_release(&pvec);
3528        } while (index < end);
3529
3530        /* When no page at lastoff and we are not done, we found a hole. */
3531        if (whence != SEEK_HOLE)
3532                goto not_found;
3533
3534check_range:
3535        if (lastoff < offset + length)
3536                goto out;
3537not_found:
3538        lastoff = -ENOENT;
3539out:
3540        pagevec_release(&pvec);
3541        return lastoff;
3542}
3543
3544void __init buffer_init(void)
3545{
3546        unsigned long nrpages;
3547        int ret;
3548
3549        bh_cachep = kmem_cache_create("buffer_head",
3550                        sizeof(struct buffer_head), 0,
3551                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3552                                SLAB_MEM_SPREAD),
3553                                NULL);
3554
3555        /*
3556         * Limit the bh occupancy to 10% of ZONE_NORMAL
3557         */
3558        nrpages = (nr_free_buffer_pages() * 10) / 100;
3559        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3560        ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3561                                        NULL, buffer_exit_cpu_dead);
3562        WARN_ON(ret < 0);
3563}
3564