linux/fs/dcache.c
<<
>>
Prefs
   1/*
   2 * fs/dcache.c
   3 *
   4 * Complete reimplementation
   5 * (C) 1997 Thomas Schoebel-Theuer,
   6 * with heavy changes by Linus Torvalds
   7 */
   8
   9/*
  10 * Notes on the allocation strategy:
  11 *
  12 * The dcache is a master of the icache - whenever a dcache entry
  13 * exists, the inode will always exist. "iput()" is done either when
  14 * the dcache entry is deleted or garbage collected.
  15 */
  16
  17#include <linux/ratelimit.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/fs.h>
  21#include <linux/fsnotify.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/cache.h>
  26#include <linux/export.h>
  27#include <linux/security.h>
  28#include <linux/seqlock.h>
  29#include <linux/bootmem.h>
  30#include <linux/bit_spinlock.h>
  31#include <linux/rculist_bl.h>
  32#include <linux/list_lru.h>
  33#include "internal.h"
  34#include "mount.h"
  35
  36/*
  37 * Usage:
  38 * dcache->d_inode->i_lock protects:
  39 *   - i_dentry, d_u.d_alias, d_inode of aliases
  40 * dcache_hash_bucket lock protects:
  41 *   - the dcache hash table
  42 * s_roots bl list spinlock protects:
  43 *   - the s_roots list (see __d_drop)
  44 * dentry->d_sb->s_dentry_lru_lock protects:
  45 *   - the dcache lru lists and counters
  46 * d_lock protects:
  47 *   - d_flags
  48 *   - d_name
  49 *   - d_lru
  50 *   - d_count
  51 *   - d_unhashed()
  52 *   - d_parent and d_subdirs
  53 *   - childrens' d_child and d_parent
  54 *   - d_u.d_alias, d_inode
  55 *
  56 * Ordering:
  57 * dentry->d_inode->i_lock
  58 *   dentry->d_lock
  59 *     dentry->d_sb->s_dentry_lru_lock
  60 *     dcache_hash_bucket lock
  61 *     s_roots lock
  62 *
  63 * If there is an ancestor relationship:
  64 * dentry->d_parent->...->d_parent->d_lock
  65 *   ...
  66 *     dentry->d_parent->d_lock
  67 *       dentry->d_lock
  68 *
  69 * If no ancestor relationship:
  70 * arbitrary, since it's serialized on rename_lock
  71 */
  72int sysctl_vfs_cache_pressure __read_mostly = 100;
  73EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  74
  75__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  76
  77EXPORT_SYMBOL(rename_lock);
  78
  79static struct kmem_cache *dentry_cache __read_mostly;
  80
  81const struct qstr empty_name = QSTR_INIT("", 0);
  82EXPORT_SYMBOL(empty_name);
  83const struct qstr slash_name = QSTR_INIT("/", 1);
  84EXPORT_SYMBOL(slash_name);
  85
  86/*
  87 * This is the single most critical data structure when it comes
  88 * to the dcache: the hashtable for lookups. Somebody should try
  89 * to make this good - I've just made it work.
  90 *
  91 * This hash-function tries to avoid losing too many bits of hash
  92 * information, yet avoid using a prime hash-size or similar.
  93 */
  94
  95static unsigned int d_hash_shift __read_mostly;
  96
  97static struct hlist_bl_head *dentry_hashtable __read_mostly;
  98
  99static inline struct hlist_bl_head *d_hash(unsigned int hash)
 100{
 101        return dentry_hashtable + (hash >> d_hash_shift);
 102}
 103
 104#define IN_LOOKUP_SHIFT 10
 105static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 106
 107static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 108                                        unsigned int hash)
 109{
 110        hash += (unsigned long) parent / L1_CACHE_BYTES;
 111        return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 112}
 113
 114
 115/* Statistics gathering. */
 116struct dentry_stat_t dentry_stat = {
 117        .age_limit = 45,
 118};
 119
 120static DEFINE_PER_CPU(long, nr_dentry);
 121static DEFINE_PER_CPU(long, nr_dentry_unused);
 122
 123#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 124
 125/*
 126 * Here we resort to our own counters instead of using generic per-cpu counters
 127 * for consistency with what the vfs inode code does. We are expected to harvest
 128 * better code and performance by having our own specialized counters.
 129 *
 130 * Please note that the loop is done over all possible CPUs, not over all online
 131 * CPUs. The reason for this is that we don't want to play games with CPUs going
 132 * on and off. If one of them goes off, we will just keep their counters.
 133 *
 134 * glommer: See cffbc8a for details, and if you ever intend to change this,
 135 * please update all vfs counters to match.
 136 */
 137static long get_nr_dentry(void)
 138{
 139        int i;
 140        long sum = 0;
 141        for_each_possible_cpu(i)
 142                sum += per_cpu(nr_dentry, i);
 143        return sum < 0 ? 0 : sum;
 144}
 145
 146static long get_nr_dentry_unused(void)
 147{
 148        int i;
 149        long sum = 0;
 150        for_each_possible_cpu(i)
 151                sum += per_cpu(nr_dentry_unused, i);
 152        return sum < 0 ? 0 : sum;
 153}
 154
 155int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
 156                   size_t *lenp, loff_t *ppos)
 157{
 158        dentry_stat.nr_dentry = get_nr_dentry();
 159        dentry_stat.nr_unused = get_nr_dentry_unused();
 160        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 161}
 162#endif
 163
 164/*
 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 166 * The strings are both count bytes long, and count is non-zero.
 167 */
 168#ifdef CONFIG_DCACHE_WORD_ACCESS
 169
 170#include <asm/word-at-a-time.h>
 171/*
 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 173 * aligned allocation for this particular component. We don't
 174 * strictly need the load_unaligned_zeropad() safety, but it
 175 * doesn't hurt either.
 176 *
 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 178 * need the careful unaligned handling.
 179 */
 180static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 181{
 182        unsigned long a,b,mask;
 183
 184        for (;;) {
 185                a = read_word_at_a_time(cs);
 186                b = load_unaligned_zeropad(ct);
 187                if (tcount < sizeof(unsigned long))
 188                        break;
 189                if (unlikely(a != b))
 190                        return 1;
 191                cs += sizeof(unsigned long);
 192                ct += sizeof(unsigned long);
 193                tcount -= sizeof(unsigned long);
 194                if (!tcount)
 195                        return 0;
 196        }
 197        mask = bytemask_from_count(tcount);
 198        return unlikely(!!((a ^ b) & mask));
 199}
 200
 201#else
 202
 203static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 204{
 205        do {
 206                if (*cs != *ct)
 207                        return 1;
 208                cs++;
 209                ct++;
 210                tcount--;
 211        } while (tcount);
 212        return 0;
 213}
 214
 215#endif
 216
 217static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 218{
 219        /*
 220         * Be careful about RCU walk racing with rename:
 221         * use 'READ_ONCE' to fetch the name pointer.
 222         *
 223         * NOTE! Even if a rename will mean that the length
 224         * was not loaded atomically, we don't care. The
 225         * RCU walk will check the sequence count eventually,
 226         * and catch it. And we won't overrun the buffer,
 227         * because we're reading the name pointer atomically,
 228         * and a dentry name is guaranteed to be properly
 229         * terminated with a NUL byte.
 230         *
 231         * End result: even if 'len' is wrong, we'll exit
 232         * early because the data cannot match (there can
 233         * be no NUL in the ct/tcount data)
 234         */
 235        const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 236
 237        return dentry_string_cmp(cs, ct, tcount);
 238}
 239
 240struct external_name {
 241        union {
 242                atomic_t count;
 243                struct rcu_head head;
 244        } u;
 245        unsigned char name[];
 246};
 247
 248static inline struct external_name *external_name(struct dentry *dentry)
 249{
 250        return container_of(dentry->d_name.name, struct external_name, name[0]);
 251}
 252
 253static void __d_free(struct rcu_head *head)
 254{
 255        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 256
 257        kmem_cache_free(dentry_cache, dentry); 
 258}
 259
 260static void __d_free_external_name(struct rcu_head *head)
 261{
 262        struct external_name *name = container_of(head, struct external_name,
 263                                                  u.head);
 264
 265        mod_node_page_state(page_pgdat(virt_to_page(name)),
 266                            NR_INDIRECTLY_RECLAIMABLE_BYTES,
 267                            -ksize(name));
 268
 269        kfree(name);
 270}
 271
 272static void __d_free_external(struct rcu_head *head)
 273{
 274        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 275
 276        __d_free_external_name(&external_name(dentry)->u.head);
 277
 278        kmem_cache_free(dentry_cache, dentry);
 279}
 280
 281static inline int dname_external(const struct dentry *dentry)
 282{
 283        return dentry->d_name.name != dentry->d_iname;
 284}
 285
 286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 287{
 288        spin_lock(&dentry->d_lock);
 289        if (unlikely(dname_external(dentry))) {
 290                struct external_name *p = external_name(dentry);
 291                atomic_inc(&p->u.count);
 292                spin_unlock(&dentry->d_lock);
 293                name->name = p->name;
 294        } else {
 295                memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
 296                spin_unlock(&dentry->d_lock);
 297                name->name = name->inline_name;
 298        }
 299}
 300EXPORT_SYMBOL(take_dentry_name_snapshot);
 301
 302void release_dentry_name_snapshot(struct name_snapshot *name)
 303{
 304        if (unlikely(name->name != name->inline_name)) {
 305                struct external_name *p;
 306                p = container_of(name->name, struct external_name, name[0]);
 307                if (unlikely(atomic_dec_and_test(&p->u.count)))
 308                        call_rcu(&p->u.head, __d_free_external_name);
 309        }
 310}
 311EXPORT_SYMBOL(release_dentry_name_snapshot);
 312
 313static inline void __d_set_inode_and_type(struct dentry *dentry,
 314                                          struct inode *inode,
 315                                          unsigned type_flags)
 316{
 317        unsigned flags;
 318
 319        dentry->d_inode = inode;
 320        flags = READ_ONCE(dentry->d_flags);
 321        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 322        flags |= type_flags;
 323        WRITE_ONCE(dentry->d_flags, flags);
 324}
 325
 326static inline void __d_clear_type_and_inode(struct dentry *dentry)
 327{
 328        unsigned flags = READ_ONCE(dentry->d_flags);
 329
 330        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 331        WRITE_ONCE(dentry->d_flags, flags);
 332        dentry->d_inode = NULL;
 333}
 334
 335static void dentry_free(struct dentry *dentry)
 336{
 337        WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 338        if (unlikely(dname_external(dentry))) {
 339                struct external_name *p = external_name(dentry);
 340                if (likely(atomic_dec_and_test(&p->u.count))) {
 341                        call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 342                        return;
 343                }
 344        }
 345        /* if dentry was never visible to RCU, immediate free is OK */
 346        if (!(dentry->d_flags & DCACHE_RCUACCESS))
 347                __d_free(&dentry->d_u.d_rcu);
 348        else
 349                call_rcu(&dentry->d_u.d_rcu, __d_free);
 350}
 351
 352/*
 353 * Release the dentry's inode, using the filesystem
 354 * d_iput() operation if defined.
 355 */
 356static void dentry_unlink_inode(struct dentry * dentry)
 357        __releases(dentry->d_lock)
 358        __releases(dentry->d_inode->i_lock)
 359{
 360        struct inode *inode = dentry->d_inode;
 361        bool hashed = !d_unhashed(dentry);
 362
 363        if (hashed)
 364                raw_write_seqcount_begin(&dentry->d_seq);
 365        __d_clear_type_and_inode(dentry);
 366        hlist_del_init(&dentry->d_u.d_alias);
 367        if (hashed)
 368                raw_write_seqcount_end(&dentry->d_seq);
 369        spin_unlock(&dentry->d_lock);
 370        spin_unlock(&inode->i_lock);
 371        if (!inode->i_nlink)
 372                fsnotify_inoderemove(inode);
 373        if (dentry->d_op && dentry->d_op->d_iput)
 374                dentry->d_op->d_iput(dentry, inode);
 375        else
 376                iput(inode);
 377}
 378
 379/*
 380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 381 * is in use - which includes both the "real" per-superblock
 382 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 383 *
 384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 385 * on the shrink list (ie not on the superblock LRU list).
 386 *
 387 * The per-cpu "nr_dentry_unused" counters are updated with
 388 * the DCACHE_LRU_LIST bit.
 389 *
 390 * These helper functions make sure we always follow the
 391 * rules. d_lock must be held by the caller.
 392 */
 393#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 394static void d_lru_add(struct dentry *dentry)
 395{
 396        D_FLAG_VERIFY(dentry, 0);
 397        dentry->d_flags |= DCACHE_LRU_LIST;
 398        this_cpu_inc(nr_dentry_unused);
 399        WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 400}
 401
 402static void d_lru_del(struct dentry *dentry)
 403{
 404        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 405        dentry->d_flags &= ~DCACHE_LRU_LIST;
 406        this_cpu_dec(nr_dentry_unused);
 407        WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 408}
 409
 410static void d_shrink_del(struct dentry *dentry)
 411{
 412        D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 413        list_del_init(&dentry->d_lru);
 414        dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 415        this_cpu_dec(nr_dentry_unused);
 416}
 417
 418static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 419{
 420        D_FLAG_VERIFY(dentry, 0);
 421        list_add(&dentry->d_lru, list);
 422        dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 423        this_cpu_inc(nr_dentry_unused);
 424}
 425
 426/*
 427 * These can only be called under the global LRU lock, ie during the
 428 * callback for freeing the LRU list. "isolate" removes it from the
 429 * LRU lists entirely, while shrink_move moves it to the indicated
 430 * private list.
 431 */
 432static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 433{
 434        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 435        dentry->d_flags &= ~DCACHE_LRU_LIST;
 436        this_cpu_dec(nr_dentry_unused);
 437        list_lru_isolate(lru, &dentry->d_lru);
 438}
 439
 440static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 441                              struct list_head *list)
 442{
 443        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 444        dentry->d_flags |= DCACHE_SHRINK_LIST;
 445        list_lru_isolate_move(lru, &dentry->d_lru, list);
 446}
 447
 448/**
 449 * d_drop - drop a dentry
 450 * @dentry: dentry to drop
 451 *
 452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 453 * be found through a VFS lookup any more. Note that this is different from
 454 * deleting the dentry - d_delete will try to mark the dentry negative if
 455 * possible, giving a successful _negative_ lookup, while d_drop will
 456 * just make the cache lookup fail.
 457 *
 458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 459 * reason (NFS timeouts or autofs deletes).
 460 *
 461 * __d_drop requires dentry->d_lock
 462 * ___d_drop doesn't mark dentry as "unhashed"
 463 *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 464 */
 465static void ___d_drop(struct dentry *dentry)
 466{
 467        struct hlist_bl_head *b;
 468        /*
 469         * Hashed dentries are normally on the dentry hashtable,
 470         * with the exception of those newly allocated by
 471         * d_obtain_root, which are always IS_ROOT:
 472         */
 473        if (unlikely(IS_ROOT(dentry)))
 474                b = &dentry->d_sb->s_roots;
 475        else
 476                b = d_hash(dentry->d_name.hash);
 477
 478        hlist_bl_lock(b);
 479        __hlist_bl_del(&dentry->d_hash);
 480        hlist_bl_unlock(b);
 481}
 482
 483void __d_drop(struct dentry *dentry)
 484{
 485        if (!d_unhashed(dentry)) {
 486                ___d_drop(dentry);
 487                dentry->d_hash.pprev = NULL;
 488                write_seqcount_invalidate(&dentry->d_seq);
 489        }
 490}
 491EXPORT_SYMBOL(__d_drop);
 492
 493void d_drop(struct dentry *dentry)
 494{
 495        spin_lock(&dentry->d_lock);
 496        __d_drop(dentry);
 497        spin_unlock(&dentry->d_lock);
 498}
 499EXPORT_SYMBOL(d_drop);
 500
 501static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
 502{
 503        struct dentry *next;
 504        /*
 505         * Inform d_walk() and shrink_dentry_list() that we are no longer
 506         * attached to the dentry tree
 507         */
 508        dentry->d_flags |= DCACHE_DENTRY_KILLED;
 509        if (unlikely(list_empty(&dentry->d_child)))
 510                return;
 511        __list_del_entry(&dentry->d_child);
 512        /*
 513         * Cursors can move around the list of children.  While we'd been
 514         * a normal list member, it didn't matter - ->d_child.next would've
 515         * been updated.  However, from now on it won't be and for the
 516         * things like d_walk() it might end up with a nasty surprise.
 517         * Normally d_walk() doesn't care about cursors moving around -
 518         * ->d_lock on parent prevents that and since a cursor has no children
 519         * of its own, we get through it without ever unlocking the parent.
 520         * There is one exception, though - if we ascend from a child that
 521         * gets killed as soon as we unlock it, the next sibling is found
 522         * using the value left in its ->d_child.next.  And if _that_
 523         * pointed to a cursor, and cursor got moved (e.g. by lseek())
 524         * before d_walk() regains parent->d_lock, we'll end up skipping
 525         * everything the cursor had been moved past.
 526         *
 527         * Solution: make sure that the pointer left behind in ->d_child.next
 528         * points to something that won't be moving around.  I.e. skip the
 529         * cursors.
 530         */
 531        while (dentry->d_child.next != &parent->d_subdirs) {
 532                next = list_entry(dentry->d_child.next, struct dentry, d_child);
 533                if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 534                        break;
 535                dentry->d_child.next = next->d_child.next;
 536        }
 537}
 538
 539static void __dentry_kill(struct dentry *dentry)
 540{
 541        struct dentry *parent = NULL;
 542        bool can_free = true;
 543        if (!IS_ROOT(dentry))
 544                parent = dentry->d_parent;
 545
 546        /*
 547         * The dentry is now unrecoverably dead to the world.
 548         */
 549        lockref_mark_dead(&dentry->d_lockref);
 550
 551        /*
 552         * inform the fs via d_prune that this dentry is about to be
 553         * unhashed and destroyed.
 554         */
 555        if (dentry->d_flags & DCACHE_OP_PRUNE)
 556                dentry->d_op->d_prune(dentry);
 557
 558        if (dentry->d_flags & DCACHE_LRU_LIST) {
 559                if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 560                        d_lru_del(dentry);
 561        }
 562        /* if it was on the hash then remove it */
 563        __d_drop(dentry);
 564        dentry_unlist(dentry, parent);
 565        if (parent)
 566                spin_unlock(&parent->d_lock);
 567        if (dentry->d_inode)
 568                dentry_unlink_inode(dentry);
 569        else
 570                spin_unlock(&dentry->d_lock);
 571        this_cpu_dec(nr_dentry);
 572        if (dentry->d_op && dentry->d_op->d_release)
 573                dentry->d_op->d_release(dentry);
 574
 575        spin_lock(&dentry->d_lock);
 576        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 577                dentry->d_flags |= DCACHE_MAY_FREE;
 578                can_free = false;
 579        }
 580        spin_unlock(&dentry->d_lock);
 581        if (likely(can_free))
 582                dentry_free(dentry);
 583}
 584
 585static struct dentry *__lock_parent(struct dentry *dentry)
 586{
 587        struct dentry *parent;
 588        rcu_read_lock();
 589        spin_unlock(&dentry->d_lock);
 590again:
 591        parent = READ_ONCE(dentry->d_parent);
 592        spin_lock(&parent->d_lock);
 593        /*
 594         * We can't blindly lock dentry until we are sure
 595         * that we won't violate the locking order.
 596         * Any changes of dentry->d_parent must have
 597         * been done with parent->d_lock held, so
 598         * spin_lock() above is enough of a barrier
 599         * for checking if it's still our child.
 600         */
 601        if (unlikely(parent != dentry->d_parent)) {
 602                spin_unlock(&parent->d_lock);
 603                goto again;
 604        }
 605        rcu_read_unlock();
 606        if (parent != dentry)
 607                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 608        else
 609                parent = NULL;
 610        return parent;
 611}
 612
 613static inline struct dentry *lock_parent(struct dentry *dentry)
 614{
 615        struct dentry *parent = dentry->d_parent;
 616        if (IS_ROOT(dentry))
 617                return NULL;
 618        if (likely(spin_trylock(&parent->d_lock)))
 619                return parent;
 620        return __lock_parent(dentry);
 621}
 622
 623static inline bool retain_dentry(struct dentry *dentry)
 624{
 625        WARN_ON(d_in_lookup(dentry));
 626
 627        /* Unreachable? Get rid of it */
 628        if (unlikely(d_unhashed(dentry)))
 629                return false;
 630
 631        if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 632                return false;
 633
 634        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
 635                if (dentry->d_op->d_delete(dentry))
 636                        return false;
 637        }
 638        /* retain; LRU fodder */
 639        dentry->d_lockref.count--;
 640        if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
 641                d_lru_add(dentry);
 642        else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
 643                dentry->d_flags |= DCACHE_REFERENCED;
 644        return true;
 645}
 646
 647/*
 648 * Finish off a dentry we've decided to kill.
 649 * dentry->d_lock must be held, returns with it unlocked.
 650 * Returns dentry requiring refcount drop, or NULL if we're done.
 651 */
 652static struct dentry *dentry_kill(struct dentry *dentry)
 653        __releases(dentry->d_lock)
 654{
 655        struct inode *inode = dentry->d_inode;
 656        struct dentry *parent = NULL;
 657
 658        if (inode && unlikely(!spin_trylock(&inode->i_lock)))
 659                goto slow_positive;
 660
 661        if (!IS_ROOT(dentry)) {
 662                parent = dentry->d_parent;
 663                if (unlikely(!spin_trylock(&parent->d_lock))) {
 664                        parent = __lock_parent(dentry);
 665                        if (likely(inode || !dentry->d_inode))
 666                                goto got_locks;
 667                        /* negative that became positive */
 668                        if (parent)
 669                                spin_unlock(&parent->d_lock);
 670                        inode = dentry->d_inode;
 671                        goto slow_positive;
 672                }
 673        }
 674        __dentry_kill(dentry);
 675        return parent;
 676
 677slow_positive:
 678        spin_unlock(&dentry->d_lock);
 679        spin_lock(&inode->i_lock);
 680        spin_lock(&dentry->d_lock);
 681        parent = lock_parent(dentry);
 682got_locks:
 683        if (unlikely(dentry->d_lockref.count != 1)) {
 684                dentry->d_lockref.count--;
 685        } else if (likely(!retain_dentry(dentry))) {
 686                __dentry_kill(dentry);
 687                return parent;
 688        }
 689        /* we are keeping it, after all */
 690        if (inode)
 691                spin_unlock(&inode->i_lock);
 692        if (parent)
 693                spin_unlock(&parent->d_lock);
 694        spin_unlock(&dentry->d_lock);
 695        return NULL;
 696}
 697
 698/*
 699 * Try to do a lockless dput(), and return whether that was successful.
 700 *
 701 * If unsuccessful, we return false, having already taken the dentry lock.
 702 *
 703 * The caller needs to hold the RCU read lock, so that the dentry is
 704 * guaranteed to stay around even if the refcount goes down to zero!
 705 */
 706static inline bool fast_dput(struct dentry *dentry)
 707{
 708        int ret;
 709        unsigned int d_flags;
 710
 711        /*
 712         * If we have a d_op->d_delete() operation, we sould not
 713         * let the dentry count go to zero, so use "put_or_lock".
 714         */
 715        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
 716                return lockref_put_or_lock(&dentry->d_lockref);
 717
 718        /*
 719         * .. otherwise, we can try to just decrement the
 720         * lockref optimistically.
 721         */
 722        ret = lockref_put_return(&dentry->d_lockref);
 723
 724        /*
 725         * If the lockref_put_return() failed due to the lock being held
 726         * by somebody else, the fast path has failed. We will need to
 727         * get the lock, and then check the count again.
 728         */
 729        if (unlikely(ret < 0)) {
 730                spin_lock(&dentry->d_lock);
 731                if (dentry->d_lockref.count > 1) {
 732                        dentry->d_lockref.count--;
 733                        spin_unlock(&dentry->d_lock);
 734                        return 1;
 735                }
 736                return 0;
 737        }
 738
 739        /*
 740         * If we weren't the last ref, we're done.
 741         */
 742        if (ret)
 743                return 1;
 744
 745        /*
 746         * Careful, careful. The reference count went down
 747         * to zero, but we don't hold the dentry lock, so
 748         * somebody else could get it again, and do another
 749         * dput(), and we need to not race with that.
 750         *
 751         * However, there is a very special and common case
 752         * where we don't care, because there is nothing to
 753         * do: the dentry is still hashed, it does not have
 754         * a 'delete' op, and it's referenced and already on
 755         * the LRU list.
 756         *
 757         * NOTE! Since we aren't locked, these values are
 758         * not "stable". However, it is sufficient that at
 759         * some point after we dropped the reference the
 760         * dentry was hashed and the flags had the proper
 761         * value. Other dentry users may have re-gotten
 762         * a reference to the dentry and change that, but
 763         * our work is done - we can leave the dentry
 764         * around with a zero refcount.
 765         */
 766        smp_rmb();
 767        d_flags = READ_ONCE(dentry->d_flags);
 768        d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
 769
 770        /* Nothing to do? Dropping the reference was all we needed? */
 771        if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
 772                return 1;
 773
 774        /*
 775         * Not the fast normal case? Get the lock. We've already decremented
 776         * the refcount, but we'll need to re-check the situation after
 777         * getting the lock.
 778         */
 779        spin_lock(&dentry->d_lock);
 780
 781        /*
 782         * Did somebody else grab a reference to it in the meantime, and
 783         * we're no longer the last user after all? Alternatively, somebody
 784         * else could have killed it and marked it dead. Either way, we
 785         * don't need to do anything else.
 786         */
 787        if (dentry->d_lockref.count) {
 788                spin_unlock(&dentry->d_lock);
 789                return 1;
 790        }
 791
 792        /*
 793         * Re-get the reference we optimistically dropped. We hold the
 794         * lock, and we just tested that it was zero, so we can just
 795         * set it to 1.
 796         */
 797        dentry->d_lockref.count = 1;
 798        return 0;
 799}
 800
 801
 802/* 
 803 * This is dput
 804 *
 805 * This is complicated by the fact that we do not want to put
 806 * dentries that are no longer on any hash chain on the unused
 807 * list: we'd much rather just get rid of them immediately.
 808 *
 809 * However, that implies that we have to traverse the dentry
 810 * tree upwards to the parents which might _also_ now be
 811 * scheduled for deletion (it may have been only waiting for
 812 * its last child to go away).
 813 *
 814 * This tail recursion is done by hand as we don't want to depend
 815 * on the compiler to always get this right (gcc generally doesn't).
 816 * Real recursion would eat up our stack space.
 817 */
 818
 819/*
 820 * dput - release a dentry
 821 * @dentry: dentry to release 
 822 *
 823 * Release a dentry. This will drop the usage count and if appropriate
 824 * call the dentry unlink method as well as removing it from the queues and
 825 * releasing its resources. If the parent dentries were scheduled for release
 826 * they too may now get deleted.
 827 */
 828void dput(struct dentry *dentry)
 829{
 830        if (unlikely(!dentry))
 831                return;
 832
 833repeat:
 834        might_sleep();
 835
 836        rcu_read_lock();
 837        if (likely(fast_dput(dentry))) {
 838                rcu_read_unlock();
 839                return;
 840        }
 841
 842        /* Slow case: now with the dentry lock held */
 843        rcu_read_unlock();
 844
 845        if (likely(retain_dentry(dentry))) {
 846                spin_unlock(&dentry->d_lock);
 847                return;
 848        }
 849
 850        dentry = dentry_kill(dentry);
 851        if (dentry) {
 852                cond_resched();
 853                goto repeat;
 854        }
 855}
 856EXPORT_SYMBOL(dput);
 857
 858
 859/* This must be called with d_lock held */
 860static inline void __dget_dlock(struct dentry *dentry)
 861{
 862        dentry->d_lockref.count++;
 863}
 864
 865static inline void __dget(struct dentry *dentry)
 866{
 867        lockref_get(&dentry->d_lockref);
 868}
 869
 870struct dentry *dget_parent(struct dentry *dentry)
 871{
 872        int gotref;
 873        struct dentry *ret;
 874
 875        /*
 876         * Do optimistic parent lookup without any
 877         * locking.
 878         */
 879        rcu_read_lock();
 880        ret = READ_ONCE(dentry->d_parent);
 881        gotref = lockref_get_not_zero(&ret->d_lockref);
 882        rcu_read_unlock();
 883        if (likely(gotref)) {
 884                if (likely(ret == READ_ONCE(dentry->d_parent)))
 885                        return ret;
 886                dput(ret);
 887        }
 888
 889repeat:
 890        /*
 891         * Don't need rcu_dereference because we re-check it was correct under
 892         * the lock.
 893         */
 894        rcu_read_lock();
 895        ret = dentry->d_parent;
 896        spin_lock(&ret->d_lock);
 897        if (unlikely(ret != dentry->d_parent)) {
 898                spin_unlock(&ret->d_lock);
 899                rcu_read_unlock();
 900                goto repeat;
 901        }
 902        rcu_read_unlock();
 903        BUG_ON(!ret->d_lockref.count);
 904        ret->d_lockref.count++;
 905        spin_unlock(&ret->d_lock);
 906        return ret;
 907}
 908EXPORT_SYMBOL(dget_parent);
 909
 910/**
 911 * d_find_alias - grab a hashed alias of inode
 912 * @inode: inode in question
 913 *
 914 * If inode has a hashed alias, or is a directory and has any alias,
 915 * acquire the reference to alias and return it. Otherwise return NULL.
 916 * Notice that if inode is a directory there can be only one alias and
 917 * it can be unhashed only if it has no children, or if it is the root
 918 * of a filesystem, or if the directory was renamed and d_revalidate
 919 * was the first vfs operation to notice.
 920 *
 921 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 922 * any other hashed alias over that one.
 923 */
 924static struct dentry *__d_find_alias(struct inode *inode)
 925{
 926        struct dentry *alias, *discon_alias;
 927
 928again:
 929        discon_alias = NULL;
 930        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 931                spin_lock(&alias->d_lock);
 932                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 933                        if (IS_ROOT(alias) &&
 934                            (alias->d_flags & DCACHE_DISCONNECTED)) {
 935                                discon_alias = alias;
 936                        } else {
 937                                __dget_dlock(alias);
 938                                spin_unlock(&alias->d_lock);
 939                                return alias;
 940                        }
 941                }
 942                spin_unlock(&alias->d_lock);
 943        }
 944        if (discon_alias) {
 945                alias = discon_alias;
 946                spin_lock(&alias->d_lock);
 947                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 948                        __dget_dlock(alias);
 949                        spin_unlock(&alias->d_lock);
 950                        return alias;
 951                }
 952                spin_unlock(&alias->d_lock);
 953                goto again;
 954        }
 955        return NULL;
 956}
 957
 958struct dentry *d_find_alias(struct inode *inode)
 959{
 960        struct dentry *de = NULL;
 961
 962        if (!hlist_empty(&inode->i_dentry)) {
 963                spin_lock(&inode->i_lock);
 964                de = __d_find_alias(inode);
 965                spin_unlock(&inode->i_lock);
 966        }
 967        return de;
 968}
 969EXPORT_SYMBOL(d_find_alias);
 970
 971/*
 972 *      Try to kill dentries associated with this inode.
 973 * WARNING: you must own a reference to inode.
 974 */
 975void d_prune_aliases(struct inode *inode)
 976{
 977        struct dentry *dentry;
 978restart:
 979        spin_lock(&inode->i_lock);
 980        hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
 981                spin_lock(&dentry->d_lock);
 982                if (!dentry->d_lockref.count) {
 983                        struct dentry *parent = lock_parent(dentry);
 984                        if (likely(!dentry->d_lockref.count)) {
 985                                __dentry_kill(dentry);
 986                                dput(parent);
 987                                goto restart;
 988                        }
 989                        if (parent)
 990                                spin_unlock(&parent->d_lock);
 991                }
 992                spin_unlock(&dentry->d_lock);
 993        }
 994        spin_unlock(&inode->i_lock);
 995}
 996EXPORT_SYMBOL(d_prune_aliases);
 997
 998/*
 999 * Lock a dentry from shrink list.
1000 * Called under rcu_read_lock() and dentry->d_lock; the former
1001 * guarantees that nothing we access will be freed under us.
1002 * Note that dentry is *not* protected from concurrent dentry_kill(),
1003 * d_delete(), etc.
1004 *
1005 * Return false if dentry has been disrupted or grabbed, leaving
1006 * the caller to kick it off-list.  Otherwise, return true and have
1007 * that dentry's inode and parent both locked.
1008 */
1009static bool shrink_lock_dentry(struct dentry *dentry)
1010{
1011        struct inode *inode;
1012        struct dentry *parent;
1013
1014        if (dentry->d_lockref.count)
1015                return false;
1016
1017        inode = dentry->d_inode;
1018        if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1019                spin_unlock(&dentry->d_lock);
1020                spin_lock(&inode->i_lock);
1021                spin_lock(&dentry->d_lock);
1022                if (unlikely(dentry->d_lockref.count))
1023                        goto out;
1024                /* changed inode means that somebody had grabbed it */
1025                if (unlikely(inode != dentry->d_inode))
1026                        goto out;
1027        }
1028
1029        parent = dentry->d_parent;
1030        if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1031                return true;
1032
1033        spin_unlock(&dentry->d_lock);
1034        spin_lock(&parent->d_lock);
1035        if (unlikely(parent != dentry->d_parent)) {
1036                spin_unlock(&parent->d_lock);
1037                spin_lock(&dentry->d_lock);
1038                goto out;
1039        }
1040        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1041        if (likely(!dentry->d_lockref.count))
1042                return true;
1043        spin_unlock(&parent->d_lock);
1044out:
1045        if (inode)
1046                spin_unlock(&inode->i_lock);
1047        return false;
1048}
1049
1050static void shrink_dentry_list(struct list_head *list)
1051{
1052        while (!list_empty(list)) {
1053                struct dentry *dentry, *parent;
1054
1055                cond_resched();
1056
1057                dentry = list_entry(list->prev, struct dentry, d_lru);
1058                spin_lock(&dentry->d_lock);
1059                rcu_read_lock();
1060                if (!shrink_lock_dentry(dentry)) {
1061                        bool can_free = false;
1062                        rcu_read_unlock();
1063                        d_shrink_del(dentry);
1064                        if (dentry->d_lockref.count < 0)
1065                                can_free = dentry->d_flags & DCACHE_MAY_FREE;
1066                        spin_unlock(&dentry->d_lock);
1067                        if (can_free)
1068                                dentry_free(dentry);
1069                        continue;
1070                }
1071                rcu_read_unlock();
1072                d_shrink_del(dentry);
1073                parent = dentry->d_parent;
1074                __dentry_kill(dentry);
1075                if (parent == dentry)
1076                        continue;
1077                /*
1078                 * We need to prune ancestors too. This is necessary to prevent
1079                 * quadratic behavior of shrink_dcache_parent(), but is also
1080                 * expected to be beneficial in reducing dentry cache
1081                 * fragmentation.
1082                 */
1083                dentry = parent;
1084                while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1085                        dentry = dentry_kill(dentry);
1086        }
1087}
1088
1089static enum lru_status dentry_lru_isolate(struct list_head *item,
1090                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1091{
1092        struct list_head *freeable = arg;
1093        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1094
1095
1096        /*
1097         * we are inverting the lru lock/dentry->d_lock here,
1098         * so use a trylock. If we fail to get the lock, just skip
1099         * it
1100         */
1101        if (!spin_trylock(&dentry->d_lock))
1102                return LRU_SKIP;
1103
1104        /*
1105         * Referenced dentries are still in use. If they have active
1106         * counts, just remove them from the LRU. Otherwise give them
1107         * another pass through the LRU.
1108         */
1109        if (dentry->d_lockref.count) {
1110                d_lru_isolate(lru, dentry);
1111                spin_unlock(&dentry->d_lock);
1112                return LRU_REMOVED;
1113        }
1114
1115        if (dentry->d_flags & DCACHE_REFERENCED) {
1116                dentry->d_flags &= ~DCACHE_REFERENCED;
1117                spin_unlock(&dentry->d_lock);
1118
1119                /*
1120                 * The list move itself will be made by the common LRU code. At
1121                 * this point, we've dropped the dentry->d_lock but keep the
1122                 * lru lock. This is safe to do, since every list movement is
1123                 * protected by the lru lock even if both locks are held.
1124                 *
1125                 * This is guaranteed by the fact that all LRU management
1126                 * functions are intermediated by the LRU API calls like
1127                 * list_lru_add and list_lru_del. List movement in this file
1128                 * only ever occur through this functions or through callbacks
1129                 * like this one, that are called from the LRU API.
1130                 *
1131                 * The only exceptions to this are functions like
1132                 * shrink_dentry_list, and code that first checks for the
1133                 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1134                 * operating only with stack provided lists after they are
1135                 * properly isolated from the main list.  It is thus, always a
1136                 * local access.
1137                 */
1138                return LRU_ROTATE;
1139        }
1140
1141        d_lru_shrink_move(lru, dentry, freeable);
1142        spin_unlock(&dentry->d_lock);
1143
1144        return LRU_REMOVED;
1145}
1146
1147/**
1148 * prune_dcache_sb - shrink the dcache
1149 * @sb: superblock
1150 * @sc: shrink control, passed to list_lru_shrink_walk()
1151 *
1152 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1153 * is done when we need more memory and called from the superblock shrinker
1154 * function.
1155 *
1156 * This function may fail to free any resources if all the dentries are in
1157 * use.
1158 */
1159long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1160{
1161        LIST_HEAD(dispose);
1162        long freed;
1163
1164        freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1165                                     dentry_lru_isolate, &dispose);
1166        shrink_dentry_list(&dispose);
1167        return freed;
1168}
1169
1170static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1171                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1172{
1173        struct list_head *freeable = arg;
1174        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1175
1176        /*
1177         * we are inverting the lru lock/dentry->d_lock here,
1178         * so use a trylock. If we fail to get the lock, just skip
1179         * it
1180         */
1181        if (!spin_trylock(&dentry->d_lock))
1182                return LRU_SKIP;
1183
1184        d_lru_shrink_move(lru, dentry, freeable);
1185        spin_unlock(&dentry->d_lock);
1186
1187        return LRU_REMOVED;
1188}
1189
1190
1191/**
1192 * shrink_dcache_sb - shrink dcache for a superblock
1193 * @sb: superblock
1194 *
1195 * Shrink the dcache for the specified super block. This is used to free
1196 * the dcache before unmounting a file system.
1197 */
1198void shrink_dcache_sb(struct super_block *sb)
1199{
1200        long freed;
1201
1202        do {
1203                LIST_HEAD(dispose);
1204
1205                freed = list_lru_walk(&sb->s_dentry_lru,
1206                        dentry_lru_isolate_shrink, &dispose, 1024);
1207
1208                this_cpu_sub(nr_dentry_unused, freed);
1209                shrink_dentry_list(&dispose);
1210        } while (list_lru_count(&sb->s_dentry_lru) > 0);
1211}
1212EXPORT_SYMBOL(shrink_dcache_sb);
1213
1214/**
1215 * enum d_walk_ret - action to talke during tree walk
1216 * @D_WALK_CONTINUE:    contrinue walk
1217 * @D_WALK_QUIT:        quit walk
1218 * @D_WALK_NORETRY:     quit when retry is needed
1219 * @D_WALK_SKIP:        skip this dentry and its children
1220 */
1221enum d_walk_ret {
1222        D_WALK_CONTINUE,
1223        D_WALK_QUIT,
1224        D_WALK_NORETRY,
1225        D_WALK_SKIP,
1226};
1227
1228/**
1229 * d_walk - walk the dentry tree
1230 * @parent:     start of walk
1231 * @data:       data passed to @enter() and @finish()
1232 * @enter:      callback when first entering the dentry
1233 * @finish:     callback when successfully finished the walk
1234 *
1235 * The @enter() and @finish() callbacks are called with d_lock held.
1236 */
1237static void d_walk(struct dentry *parent, void *data,
1238                   enum d_walk_ret (*enter)(void *, struct dentry *),
1239                   void (*finish)(void *))
1240{
1241        struct dentry *this_parent;
1242        struct list_head *next;
1243        unsigned seq = 0;
1244        enum d_walk_ret ret;
1245        bool retry = true;
1246
1247again:
1248        read_seqbegin_or_lock(&rename_lock, &seq);
1249        this_parent = parent;
1250        spin_lock(&this_parent->d_lock);
1251
1252        ret = enter(data, this_parent);
1253        switch (ret) {
1254        case D_WALK_CONTINUE:
1255                break;
1256        case D_WALK_QUIT:
1257        case D_WALK_SKIP:
1258                goto out_unlock;
1259        case D_WALK_NORETRY:
1260                retry = false;
1261                break;
1262        }
1263repeat:
1264        next = this_parent->d_subdirs.next;
1265resume:
1266        while (next != &this_parent->d_subdirs) {
1267                struct list_head *tmp = next;
1268                struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1269                next = tmp->next;
1270
1271                if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1272                        continue;
1273
1274                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1275
1276                ret = enter(data, dentry);
1277                switch (ret) {
1278                case D_WALK_CONTINUE:
1279                        break;
1280                case D_WALK_QUIT:
1281                        spin_unlock(&dentry->d_lock);
1282                        goto out_unlock;
1283                case D_WALK_NORETRY:
1284                        retry = false;
1285                        break;
1286                case D_WALK_SKIP:
1287                        spin_unlock(&dentry->d_lock);
1288                        continue;
1289                }
1290
1291                if (!list_empty(&dentry->d_subdirs)) {
1292                        spin_unlock(&this_parent->d_lock);
1293                        spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1294                        this_parent = dentry;
1295                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1296                        goto repeat;
1297                }
1298                spin_unlock(&dentry->d_lock);
1299        }
1300        /*
1301         * All done at this level ... ascend and resume the search.
1302         */
1303        rcu_read_lock();
1304ascend:
1305        if (this_parent != parent) {
1306                struct dentry *child = this_parent;
1307                this_parent = child->d_parent;
1308
1309                spin_unlock(&child->d_lock);
1310                spin_lock(&this_parent->d_lock);
1311
1312                /* might go back up the wrong parent if we have had a rename. */
1313                if (need_seqretry(&rename_lock, seq))
1314                        goto rename_retry;
1315                /* go into the first sibling still alive */
1316                do {
1317                        next = child->d_child.next;
1318                        if (next == &this_parent->d_subdirs)
1319                                goto ascend;
1320                        child = list_entry(next, struct dentry, d_child);
1321                } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1322                rcu_read_unlock();
1323                goto resume;
1324        }
1325        if (need_seqretry(&rename_lock, seq))
1326                goto rename_retry;
1327        rcu_read_unlock();
1328        if (finish)
1329                finish(data);
1330
1331out_unlock:
1332        spin_unlock(&this_parent->d_lock);
1333        done_seqretry(&rename_lock, seq);
1334        return;
1335
1336rename_retry:
1337        spin_unlock(&this_parent->d_lock);
1338        rcu_read_unlock();
1339        BUG_ON(seq & 1);
1340        if (!retry)
1341                return;
1342        seq = 1;
1343        goto again;
1344}
1345
1346struct check_mount {
1347        struct vfsmount *mnt;
1348        unsigned int mounted;
1349};
1350
1351static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352{
1353        struct check_mount *info = data;
1354        struct path path = { .mnt = info->mnt, .dentry = dentry };
1355
1356        if (likely(!d_mountpoint(dentry)))
1357                return D_WALK_CONTINUE;
1358        if (__path_is_mountpoint(&path)) {
1359                info->mounted = 1;
1360                return D_WALK_QUIT;
1361        }
1362        return D_WALK_CONTINUE;
1363}
1364
1365/**
1366 * path_has_submounts - check for mounts over a dentry in the
1367 *                      current namespace.
1368 * @parent: path to check.
1369 *
1370 * Return true if the parent or its subdirectories contain
1371 * a mount point in the current namespace.
1372 */
1373int path_has_submounts(const struct path *parent)
1374{
1375        struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376
1377        read_seqlock_excl(&mount_lock);
1378        d_walk(parent->dentry, &data, path_check_mount, NULL);
1379        read_sequnlock_excl(&mount_lock);
1380
1381        return data.mounted;
1382}
1383EXPORT_SYMBOL(path_has_submounts);
1384
1385/*
1386 * Called by mount code to set a mountpoint and check if the mountpoint is
1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388 * subtree can become unreachable).
1389 *
1390 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1391 * this reason take rename_lock and d_lock on dentry and ancestors.
1392 */
1393int d_set_mounted(struct dentry *dentry)
1394{
1395        struct dentry *p;
1396        int ret = -ENOENT;
1397        write_seqlock(&rename_lock);
1398        for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1399                /* Need exclusion wrt. d_invalidate() */
1400                spin_lock(&p->d_lock);
1401                if (unlikely(d_unhashed(p))) {
1402                        spin_unlock(&p->d_lock);
1403                        goto out;
1404                }
1405                spin_unlock(&p->d_lock);
1406        }
1407        spin_lock(&dentry->d_lock);
1408        if (!d_unlinked(dentry)) {
1409                ret = -EBUSY;
1410                if (!d_mountpoint(dentry)) {
1411                        dentry->d_flags |= DCACHE_MOUNTED;
1412                        ret = 0;
1413                }
1414        }
1415        spin_unlock(&dentry->d_lock);
1416out:
1417        write_sequnlock(&rename_lock);
1418        return ret;
1419}
1420
1421/*
1422 * Search the dentry child list of the specified parent,
1423 * and move any unused dentries to the end of the unused
1424 * list for prune_dcache(). We descend to the next level
1425 * whenever the d_subdirs list is non-empty and continue
1426 * searching.
1427 *
1428 * It returns zero iff there are no unused children,
1429 * otherwise  it returns the number of children moved to
1430 * the end of the unused list. This may not be the total
1431 * number of unused children, because select_parent can
1432 * drop the lock and return early due to latency
1433 * constraints.
1434 */
1435
1436struct select_data {
1437        struct dentry *start;
1438        struct list_head dispose;
1439        int found;
1440};
1441
1442static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443{
1444        struct select_data *data = _data;
1445        enum d_walk_ret ret = D_WALK_CONTINUE;
1446
1447        if (data->start == dentry)
1448                goto out;
1449
1450        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1451                data->found++;
1452        } else {
1453                if (dentry->d_flags & DCACHE_LRU_LIST)
1454                        d_lru_del(dentry);
1455                if (!dentry->d_lockref.count) {
1456                        d_shrink_add(dentry, &data->dispose);
1457                        data->found++;
1458                }
1459        }
1460        /*
1461         * We can return to the caller if we have found some (this
1462         * ensures forward progress). We'll be coming back to find
1463         * the rest.
1464         */
1465        if (!list_empty(&data->dispose))
1466                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1467out:
1468        return ret;
1469}
1470
1471/**
1472 * shrink_dcache_parent - prune dcache
1473 * @parent: parent of entries to prune
1474 *
1475 * Prune the dcache to remove unused children of the parent dentry.
1476 */
1477void shrink_dcache_parent(struct dentry *parent)
1478{
1479        for (;;) {
1480                struct select_data data;
1481
1482                INIT_LIST_HEAD(&data.dispose);
1483                data.start = parent;
1484                data.found = 0;
1485
1486                d_walk(parent, &data, select_collect, NULL);
1487                if (!data.found)
1488                        break;
1489
1490                shrink_dentry_list(&data.dispose);
1491        }
1492}
1493EXPORT_SYMBOL(shrink_dcache_parent);
1494
1495static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1496{
1497        /* it has busy descendents; complain about those instead */
1498        if (!list_empty(&dentry->d_subdirs))
1499                return D_WALK_CONTINUE;
1500
1501        /* root with refcount 1 is fine */
1502        if (dentry == _data && dentry->d_lockref.count == 1)
1503                return D_WALK_CONTINUE;
1504
1505        printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1506                        " still in use (%d) [unmount of %s %s]\n",
1507                       dentry,
1508                       dentry->d_inode ?
1509                       dentry->d_inode->i_ino : 0UL,
1510                       dentry,
1511                       dentry->d_lockref.count,
1512                       dentry->d_sb->s_type->name,
1513                       dentry->d_sb->s_id);
1514        WARN_ON(1);
1515        return D_WALK_CONTINUE;
1516}
1517
1518static void do_one_tree(struct dentry *dentry)
1519{
1520        shrink_dcache_parent(dentry);
1521        d_walk(dentry, dentry, umount_check, NULL);
1522        d_drop(dentry);
1523        dput(dentry);
1524}
1525
1526/*
1527 * destroy the dentries attached to a superblock on unmounting
1528 */
1529void shrink_dcache_for_umount(struct super_block *sb)
1530{
1531        struct dentry *dentry;
1532
1533        WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1534
1535        dentry = sb->s_root;
1536        sb->s_root = NULL;
1537        do_one_tree(dentry);
1538
1539        while (!hlist_bl_empty(&sb->s_roots)) {
1540                dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1541                do_one_tree(dentry);
1542        }
1543}
1544
1545struct detach_data {
1546        struct select_data select;
1547        struct dentry *mountpoint;
1548};
1549static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1550{
1551        struct detach_data *data = _data;
1552
1553        if (d_mountpoint(dentry)) {
1554                __dget_dlock(dentry);
1555                data->mountpoint = dentry;
1556                return D_WALK_QUIT;
1557        }
1558
1559        return select_collect(&data->select, dentry);
1560}
1561
1562static void check_and_drop(void *_data)
1563{
1564        struct detach_data *data = _data;
1565
1566        if (!data->mountpoint && list_empty(&data->select.dispose))
1567                __d_drop(data->select.start);
1568}
1569
1570/**
1571 * d_invalidate - detach submounts, prune dcache, and drop
1572 * @dentry: dentry to invalidate (aka detach, prune and drop)
1573 *
1574 * no dcache lock.
1575 *
1576 * The final d_drop is done as an atomic operation relative to
1577 * rename_lock ensuring there are no races with d_set_mounted.  This
1578 * ensures there are no unhashed dentries on the path to a mountpoint.
1579 */
1580void d_invalidate(struct dentry *dentry)
1581{
1582        /*
1583         * If it's already been dropped, return OK.
1584         */
1585        spin_lock(&dentry->d_lock);
1586        if (d_unhashed(dentry)) {
1587                spin_unlock(&dentry->d_lock);
1588                return;
1589        }
1590        spin_unlock(&dentry->d_lock);
1591
1592        /* Negative dentries can be dropped without further checks */
1593        if (!dentry->d_inode) {
1594                d_drop(dentry);
1595                return;
1596        }
1597
1598        for (;;) {
1599                struct detach_data data;
1600
1601                data.mountpoint = NULL;
1602                INIT_LIST_HEAD(&data.select.dispose);
1603                data.select.start = dentry;
1604                data.select.found = 0;
1605
1606                d_walk(dentry, &data, detach_and_collect, check_and_drop);
1607
1608                if (!list_empty(&data.select.dispose))
1609                        shrink_dentry_list(&data.select.dispose);
1610                else if (!data.mountpoint)
1611                        return;
1612
1613                if (data.mountpoint) {
1614                        detach_mounts(data.mountpoint);
1615                        dput(data.mountpoint);
1616                }
1617        }
1618}
1619EXPORT_SYMBOL(d_invalidate);
1620
1621/**
1622 * __d_alloc    -       allocate a dcache entry
1623 * @sb: filesystem it will belong to
1624 * @name: qstr of the name
1625 *
1626 * Allocates a dentry. It returns %NULL if there is insufficient memory
1627 * available. On a success the dentry is returned. The name passed in is
1628 * copied and the copy passed in may be reused after this call.
1629 */
1630 
1631struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1632{
1633        struct external_name *ext = NULL;
1634        struct dentry *dentry;
1635        char *dname;
1636        int err;
1637
1638        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1639        if (!dentry)
1640                return NULL;
1641
1642        /*
1643         * We guarantee that the inline name is always NUL-terminated.
1644         * This way the memcpy() done by the name switching in rename
1645         * will still always have a NUL at the end, even if we might
1646         * be overwriting an internal NUL character
1647         */
1648        dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1649        if (unlikely(!name)) {
1650                name = &slash_name;
1651                dname = dentry->d_iname;
1652        } else if (name->len > DNAME_INLINE_LEN-1) {
1653                size_t size = offsetof(struct external_name, name[1]);
1654
1655                ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1656                if (!ext) {
1657                        kmem_cache_free(dentry_cache, dentry); 
1658                        return NULL;
1659                }
1660                atomic_set(&ext->u.count, 1);
1661                dname = ext->name;
1662        } else  {
1663                dname = dentry->d_iname;
1664        }       
1665
1666        dentry->d_name.len = name->len;
1667        dentry->d_name.hash = name->hash;
1668        memcpy(dname, name->name, name->len);
1669        dname[name->len] = 0;
1670
1671        /* Make sure we always see the terminating NUL character */
1672        smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1673
1674        dentry->d_lockref.count = 1;
1675        dentry->d_flags = 0;
1676        spin_lock_init(&dentry->d_lock);
1677        seqcount_init(&dentry->d_seq);
1678        dentry->d_inode = NULL;
1679        dentry->d_parent = dentry;
1680        dentry->d_sb = sb;
1681        dentry->d_op = NULL;
1682        dentry->d_fsdata = NULL;
1683        INIT_HLIST_BL_NODE(&dentry->d_hash);
1684        INIT_LIST_HEAD(&dentry->d_lru);
1685        INIT_LIST_HEAD(&dentry->d_subdirs);
1686        INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687        INIT_LIST_HEAD(&dentry->d_child);
1688        d_set_d_op(dentry, dentry->d_sb->s_d_op);
1689
1690        if (dentry->d_op && dentry->d_op->d_init) {
1691                err = dentry->d_op->d_init(dentry);
1692                if (err) {
1693                        if (dname_external(dentry))
1694                                kfree(external_name(dentry));
1695                        kmem_cache_free(dentry_cache, dentry);
1696                        return NULL;
1697                }
1698        }
1699
1700        if (unlikely(ext)) {
1701                pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1702                mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1703                                    ksize(ext));
1704        }
1705
1706        this_cpu_inc(nr_dentry);
1707
1708        return dentry;
1709}
1710
1711/**
1712 * d_alloc      -       allocate a dcache entry
1713 * @parent: parent of entry to allocate
1714 * @name: qstr of the name
1715 *
1716 * Allocates a dentry. It returns %NULL if there is insufficient memory
1717 * available. On a success the dentry is returned. The name passed in is
1718 * copied and the copy passed in may be reused after this call.
1719 */
1720struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1721{
1722        struct dentry *dentry = __d_alloc(parent->d_sb, name);
1723        if (!dentry)
1724                return NULL;
1725        dentry->d_flags |= DCACHE_RCUACCESS;
1726        spin_lock(&parent->d_lock);
1727        /*
1728         * don't need child lock because it is not subject
1729         * to concurrency here
1730         */
1731        __dget_dlock(parent);
1732        dentry->d_parent = parent;
1733        list_add(&dentry->d_child, &parent->d_subdirs);
1734        spin_unlock(&parent->d_lock);
1735
1736        return dentry;
1737}
1738EXPORT_SYMBOL(d_alloc);
1739
1740struct dentry *d_alloc_anon(struct super_block *sb)
1741{
1742        return __d_alloc(sb, NULL);
1743}
1744EXPORT_SYMBOL(d_alloc_anon);
1745
1746struct dentry *d_alloc_cursor(struct dentry * parent)
1747{
1748        struct dentry *dentry = d_alloc_anon(parent->d_sb);
1749        if (dentry) {
1750                dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1751                dentry->d_parent = dget(parent);
1752        }
1753        return dentry;
1754}
1755
1756/**
1757 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1758 * @sb: the superblock
1759 * @name: qstr of the name
1760 *
1761 * For a filesystem that just pins its dentries in memory and never
1762 * performs lookups at all, return an unhashed IS_ROOT dentry.
1763 */
1764struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1765{
1766        return __d_alloc(sb, name);
1767}
1768EXPORT_SYMBOL(d_alloc_pseudo);
1769
1770struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1771{
1772        struct qstr q;
1773
1774        q.name = name;
1775        q.hash_len = hashlen_string(parent, name);
1776        return d_alloc(parent, &q);
1777}
1778EXPORT_SYMBOL(d_alloc_name);
1779
1780void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1781{
1782        WARN_ON_ONCE(dentry->d_op);
1783        WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1784                                DCACHE_OP_COMPARE       |
1785                                DCACHE_OP_REVALIDATE    |
1786                                DCACHE_OP_WEAK_REVALIDATE       |
1787                                DCACHE_OP_DELETE        |
1788                                DCACHE_OP_REAL));
1789        dentry->d_op = op;
1790        if (!op)
1791                return;
1792        if (op->d_hash)
1793                dentry->d_flags |= DCACHE_OP_HASH;
1794        if (op->d_compare)
1795                dentry->d_flags |= DCACHE_OP_COMPARE;
1796        if (op->d_revalidate)
1797                dentry->d_flags |= DCACHE_OP_REVALIDATE;
1798        if (op->d_weak_revalidate)
1799                dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1800        if (op->d_delete)
1801                dentry->d_flags |= DCACHE_OP_DELETE;
1802        if (op->d_prune)
1803                dentry->d_flags |= DCACHE_OP_PRUNE;
1804        if (op->d_real)
1805                dentry->d_flags |= DCACHE_OP_REAL;
1806
1807}
1808EXPORT_SYMBOL(d_set_d_op);
1809
1810
1811/*
1812 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1813 * @dentry - The dentry to mark
1814 *
1815 * Mark a dentry as falling through to the lower layer (as set with
1816 * d_pin_lower()).  This flag may be recorded on the medium.
1817 */
1818void d_set_fallthru(struct dentry *dentry)
1819{
1820        spin_lock(&dentry->d_lock);
1821        dentry->d_flags |= DCACHE_FALLTHRU;
1822        spin_unlock(&dentry->d_lock);
1823}
1824EXPORT_SYMBOL(d_set_fallthru);
1825
1826static unsigned d_flags_for_inode(struct inode *inode)
1827{
1828        unsigned add_flags = DCACHE_REGULAR_TYPE;
1829
1830        if (!inode)
1831                return DCACHE_MISS_TYPE;
1832
1833        if (S_ISDIR(inode->i_mode)) {
1834                add_flags = DCACHE_DIRECTORY_TYPE;
1835                if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1836                        if (unlikely(!inode->i_op->lookup))
1837                                add_flags = DCACHE_AUTODIR_TYPE;
1838                        else
1839                                inode->i_opflags |= IOP_LOOKUP;
1840                }
1841                goto type_determined;
1842        }
1843
1844        if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1845                if (unlikely(inode->i_op->get_link)) {
1846                        add_flags = DCACHE_SYMLINK_TYPE;
1847                        goto type_determined;
1848                }
1849                inode->i_opflags |= IOP_NOFOLLOW;
1850        }
1851
1852        if (unlikely(!S_ISREG(inode->i_mode)))
1853                add_flags = DCACHE_SPECIAL_TYPE;
1854
1855type_determined:
1856        if (unlikely(IS_AUTOMOUNT(inode)))
1857                add_flags |= DCACHE_NEED_AUTOMOUNT;
1858        return add_flags;
1859}
1860
1861static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1862{
1863        unsigned add_flags = d_flags_for_inode(inode);
1864        WARN_ON(d_in_lookup(dentry));
1865
1866        spin_lock(&dentry->d_lock);
1867        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1868        raw_write_seqcount_begin(&dentry->d_seq);
1869        __d_set_inode_and_type(dentry, inode, add_flags);
1870        raw_write_seqcount_end(&dentry->d_seq);
1871        fsnotify_update_flags(dentry);
1872        spin_unlock(&dentry->d_lock);
1873}
1874
1875/**
1876 * d_instantiate - fill in inode information for a dentry
1877 * @entry: dentry to complete
1878 * @inode: inode to attach to this dentry
1879 *
1880 * Fill in inode information in the entry.
1881 *
1882 * This turns negative dentries into productive full members
1883 * of society.
1884 *
1885 * NOTE! This assumes that the inode count has been incremented
1886 * (or otherwise set) by the caller to indicate that it is now
1887 * in use by the dcache.
1888 */
1889 
1890void d_instantiate(struct dentry *entry, struct inode * inode)
1891{
1892        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1893        if (inode) {
1894                security_d_instantiate(entry, inode);
1895                spin_lock(&inode->i_lock);
1896                __d_instantiate(entry, inode);
1897                spin_unlock(&inode->i_lock);
1898        }
1899}
1900EXPORT_SYMBOL(d_instantiate);
1901
1902/*
1903 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1904 * with lockdep-related part of unlock_new_inode() done before
1905 * anything else.  Use that instead of open-coding d_instantiate()/
1906 * unlock_new_inode() combinations.
1907 */
1908void d_instantiate_new(struct dentry *entry, struct inode *inode)
1909{
1910        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1911        BUG_ON(!inode);
1912        lockdep_annotate_inode_mutex_key(inode);
1913        security_d_instantiate(entry, inode);
1914        spin_lock(&inode->i_lock);
1915        __d_instantiate(entry, inode);
1916        WARN_ON(!(inode->i_state & I_NEW));
1917        inode->i_state &= ~I_NEW;
1918        smp_mb();
1919        wake_up_bit(&inode->i_state, __I_NEW);
1920        spin_unlock(&inode->i_lock);
1921}
1922EXPORT_SYMBOL(d_instantiate_new);
1923
1924/**
1925 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1926 * @entry: dentry to complete
1927 * @inode: inode to attach to this dentry
1928 *
1929 * Fill in inode information in the entry.  If a directory alias is found, then
1930 * return an error (and drop inode).  Together with d_materialise_unique() this
1931 * guarantees that a directory inode may never have more than one alias.
1932 */
1933int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1934{
1935        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1936
1937        security_d_instantiate(entry, inode);
1938        spin_lock(&inode->i_lock);
1939        if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1940                spin_unlock(&inode->i_lock);
1941                iput(inode);
1942                return -EBUSY;
1943        }
1944        __d_instantiate(entry, inode);
1945        spin_unlock(&inode->i_lock);
1946
1947        return 0;
1948}
1949EXPORT_SYMBOL(d_instantiate_no_diralias);
1950
1951struct dentry *d_make_root(struct inode *root_inode)
1952{
1953        struct dentry *res = NULL;
1954
1955        if (root_inode) {
1956                res = d_alloc_anon(root_inode->i_sb);
1957                if (res)
1958                        d_instantiate(res, root_inode);
1959                else
1960                        iput(root_inode);
1961        }
1962        return res;
1963}
1964EXPORT_SYMBOL(d_make_root);
1965
1966static struct dentry * __d_find_any_alias(struct inode *inode)
1967{
1968        struct dentry *alias;
1969
1970        if (hlist_empty(&inode->i_dentry))
1971                return NULL;
1972        alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1973        __dget(alias);
1974        return alias;
1975}
1976
1977/**
1978 * d_find_any_alias - find any alias for a given inode
1979 * @inode: inode to find an alias for
1980 *
1981 * If any aliases exist for the given inode, take and return a
1982 * reference for one of them.  If no aliases exist, return %NULL.
1983 */
1984struct dentry *d_find_any_alias(struct inode *inode)
1985{
1986        struct dentry *de;
1987
1988        spin_lock(&inode->i_lock);
1989        de = __d_find_any_alias(inode);
1990        spin_unlock(&inode->i_lock);
1991        return de;
1992}
1993EXPORT_SYMBOL(d_find_any_alias);
1994
1995static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1996                                           struct inode *inode,
1997                                           bool disconnected)
1998{
1999        struct dentry *res;
2000        unsigned add_flags;
2001
2002        security_d_instantiate(dentry, inode);
2003        spin_lock(&inode->i_lock);
2004        res = __d_find_any_alias(inode);
2005        if (res) {
2006                spin_unlock(&inode->i_lock);
2007                dput(dentry);
2008                goto out_iput;
2009        }
2010
2011        /* attach a disconnected dentry */
2012        add_flags = d_flags_for_inode(inode);
2013
2014        if (disconnected)
2015                add_flags |= DCACHE_DISCONNECTED;
2016
2017        spin_lock(&dentry->d_lock);
2018        __d_set_inode_and_type(dentry, inode, add_flags);
2019        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2020        if (!disconnected) {
2021                hlist_bl_lock(&dentry->d_sb->s_roots);
2022                hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2023                hlist_bl_unlock(&dentry->d_sb->s_roots);
2024        }
2025        spin_unlock(&dentry->d_lock);
2026        spin_unlock(&inode->i_lock);
2027
2028        return dentry;
2029
2030 out_iput:
2031        iput(inode);
2032        return res;
2033}
2034
2035struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2036{
2037        return __d_instantiate_anon(dentry, inode, true);
2038}
2039EXPORT_SYMBOL(d_instantiate_anon);
2040
2041static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2042{
2043        struct dentry *tmp;
2044        struct dentry *res;
2045
2046        if (!inode)
2047                return ERR_PTR(-ESTALE);
2048        if (IS_ERR(inode))
2049                return ERR_CAST(inode);
2050
2051        res = d_find_any_alias(inode);
2052        if (res)
2053                goto out_iput;
2054
2055        tmp = d_alloc_anon(inode->i_sb);
2056        if (!tmp) {
2057                res = ERR_PTR(-ENOMEM);
2058                goto out_iput;
2059        }
2060
2061        return __d_instantiate_anon(tmp, inode, disconnected);
2062
2063out_iput:
2064        iput(inode);
2065        return res;
2066}
2067
2068/**
2069 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2070 * @inode: inode to allocate the dentry for
2071 *
2072 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2073 * similar open by handle operations.  The returned dentry may be anonymous,
2074 * or may have a full name (if the inode was already in the cache).
2075 *
2076 * When called on a directory inode, we must ensure that the inode only ever
2077 * has one dentry.  If a dentry is found, that is returned instead of
2078 * allocating a new one.
2079 *
2080 * On successful return, the reference to the inode has been transferred
2081 * to the dentry.  In case of an error the reference on the inode is released.
2082 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2083 * be passed in and the error will be propagated to the return value,
2084 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2085 */
2086struct dentry *d_obtain_alias(struct inode *inode)
2087{
2088        return __d_obtain_alias(inode, true);
2089}
2090EXPORT_SYMBOL(d_obtain_alias);
2091
2092/**
2093 * d_obtain_root - find or allocate a dentry for a given inode
2094 * @inode: inode to allocate the dentry for
2095 *
2096 * Obtain an IS_ROOT dentry for the root of a filesystem.
2097 *
2098 * We must ensure that directory inodes only ever have one dentry.  If a
2099 * dentry is found, that is returned instead of allocating a new one.
2100 *
2101 * On successful return, the reference to the inode has been transferred
2102 * to the dentry.  In case of an error the reference on the inode is
2103 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2104 * error will be propagate to the return value, with a %NULL @inode
2105 * replaced by ERR_PTR(-ESTALE).
2106 */
2107struct dentry *d_obtain_root(struct inode *inode)
2108{
2109        return __d_obtain_alias(inode, false);
2110}
2111EXPORT_SYMBOL(d_obtain_root);
2112
2113/**
2114 * d_add_ci - lookup or allocate new dentry with case-exact name
2115 * @inode:  the inode case-insensitive lookup has found
2116 * @dentry: the negative dentry that was passed to the parent's lookup func
2117 * @name:   the case-exact name to be associated with the returned dentry
2118 *
2119 * This is to avoid filling the dcache with case-insensitive names to the
2120 * same inode, only the actual correct case is stored in the dcache for
2121 * case-insensitive filesystems.
2122 *
2123 * For a case-insensitive lookup match and if the the case-exact dentry
2124 * already exists in in the dcache, use it and return it.
2125 *
2126 * If no entry exists with the exact case name, allocate new dentry with
2127 * the exact case, and return the spliced entry.
2128 */
2129struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2130                        struct qstr *name)
2131{
2132        struct dentry *found, *res;
2133
2134        /*
2135         * First check if a dentry matching the name already exists,
2136         * if not go ahead and create it now.
2137         */
2138        found = d_hash_and_lookup(dentry->d_parent, name);
2139        if (found) {
2140                iput(inode);
2141                return found;
2142        }
2143        if (d_in_lookup(dentry)) {
2144                found = d_alloc_parallel(dentry->d_parent, name,
2145                                        dentry->d_wait);
2146                if (IS_ERR(found) || !d_in_lookup(found)) {
2147                        iput(inode);
2148                        return found;
2149                }
2150        } else {
2151                found = d_alloc(dentry->d_parent, name);
2152                if (!found) {
2153                        iput(inode);
2154                        return ERR_PTR(-ENOMEM);
2155                } 
2156        }
2157        res = d_splice_alias(inode, found);
2158        if (res) {
2159                dput(found);
2160                return res;
2161        }
2162        return found;
2163}
2164EXPORT_SYMBOL(d_add_ci);
2165
2166
2167static inline bool d_same_name(const struct dentry *dentry,
2168                                const struct dentry *parent,
2169                                const struct qstr *name)
2170{
2171        if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2172                if (dentry->d_name.len != name->len)
2173                        return false;
2174                return dentry_cmp(dentry, name->name, name->len) == 0;
2175        }
2176        return parent->d_op->d_compare(dentry,
2177                                       dentry->d_name.len, dentry->d_name.name,
2178                                       name) == 0;
2179}
2180
2181/**
2182 * __d_lookup_rcu - search for a dentry (racy, store-free)
2183 * @parent: parent dentry
2184 * @name: qstr of name we wish to find
2185 * @seqp: returns d_seq value at the point where the dentry was found
2186 * Returns: dentry, or NULL
2187 *
2188 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2189 * resolution (store-free path walking) design described in
2190 * Documentation/filesystems/path-lookup.txt.
2191 *
2192 * This is not to be used outside core vfs.
2193 *
2194 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2195 * held, and rcu_read_lock held. The returned dentry must not be stored into
2196 * without taking d_lock and checking d_seq sequence count against @seq
2197 * returned here.
2198 *
2199 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2200 * function.
2201 *
2202 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2203 * the returned dentry, so long as its parent's seqlock is checked after the
2204 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2205 * is formed, giving integrity down the path walk.
2206 *
2207 * NOTE! The caller *has* to check the resulting dentry against the sequence
2208 * number we've returned before using any of the resulting dentry state!
2209 */
2210struct dentry *__d_lookup_rcu(const struct dentry *parent,
2211                                const struct qstr *name,
2212                                unsigned *seqp)
2213{
2214        u64 hashlen = name->hash_len;
2215        const unsigned char *str = name->name;
2216        struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2217        struct hlist_bl_node *node;
2218        struct dentry *dentry;
2219
2220        /*
2221         * Note: There is significant duplication with __d_lookup_rcu which is
2222         * required to prevent single threaded performance regressions
2223         * especially on architectures where smp_rmb (in seqcounts) are costly.
2224         * Keep the two functions in sync.
2225         */
2226
2227        /*
2228         * The hash list is protected using RCU.
2229         *
2230         * Carefully use d_seq when comparing a candidate dentry, to avoid
2231         * races with d_move().
2232         *
2233         * It is possible that concurrent renames can mess up our list
2234         * walk here and result in missing our dentry, resulting in the
2235         * false-negative result. d_lookup() protects against concurrent
2236         * renames using rename_lock seqlock.
2237         *
2238         * See Documentation/filesystems/path-lookup.txt for more details.
2239         */
2240        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2241                unsigned seq;
2242
2243seqretry:
2244                /*
2245                 * The dentry sequence count protects us from concurrent
2246                 * renames, and thus protects parent and name fields.
2247                 *
2248                 * The caller must perform a seqcount check in order
2249                 * to do anything useful with the returned dentry.
2250                 *
2251                 * NOTE! We do a "raw" seqcount_begin here. That means that
2252                 * we don't wait for the sequence count to stabilize if it
2253                 * is in the middle of a sequence change. If we do the slow
2254                 * dentry compare, we will do seqretries until it is stable,
2255                 * and if we end up with a successful lookup, we actually
2256                 * want to exit RCU lookup anyway.
2257                 *
2258                 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2259                 * we are still guaranteed NUL-termination of ->d_name.name.
2260                 */
2261                seq = raw_seqcount_begin(&dentry->d_seq);
2262                if (dentry->d_parent != parent)
2263                        continue;
2264                if (d_unhashed(dentry))
2265                        continue;
2266
2267                if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2268                        int tlen;
2269                        const char *tname;
2270                        if (dentry->d_name.hash != hashlen_hash(hashlen))
2271                                continue;
2272                        tlen = dentry->d_name.len;
2273                        tname = dentry->d_name.name;
2274                        /* we want a consistent (name,len) pair */
2275                        if (read_seqcount_retry(&dentry->d_seq, seq)) {
2276                                cpu_relax();
2277                                goto seqretry;
2278                        }
2279                        if (parent->d_op->d_compare(dentry,
2280                                                    tlen, tname, name) != 0)
2281                                continue;
2282                } else {
2283                        if (dentry->d_name.hash_len != hashlen)
2284                                continue;
2285                        if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2286                                continue;
2287                }
2288                *seqp = seq;
2289                return dentry;
2290        }
2291        return NULL;
2292}
2293
2294/**
2295 * d_lookup - search for a dentry
2296 * @parent: parent dentry
2297 * @name: qstr of name we wish to find
2298 * Returns: dentry, or NULL
2299 *
2300 * d_lookup searches the children of the parent dentry for the name in
2301 * question. If the dentry is found its reference count is incremented and the
2302 * dentry is returned. The caller must use dput to free the entry when it has
2303 * finished using it. %NULL is returned if the dentry does not exist.
2304 */
2305struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2306{
2307        struct dentry *dentry;
2308        unsigned seq;
2309
2310        do {
2311                seq = read_seqbegin(&rename_lock);
2312                dentry = __d_lookup(parent, name);
2313                if (dentry)
2314                        break;
2315        } while (read_seqretry(&rename_lock, seq));
2316        return dentry;
2317}
2318EXPORT_SYMBOL(d_lookup);
2319
2320/**
2321 * __d_lookup - search for a dentry (racy)
2322 * @parent: parent dentry
2323 * @name: qstr of name we wish to find
2324 * Returns: dentry, or NULL
2325 *
2326 * __d_lookup is like d_lookup, however it may (rarely) return a
2327 * false-negative result due to unrelated rename activity.
2328 *
2329 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2330 * however it must be used carefully, eg. with a following d_lookup in
2331 * the case of failure.
2332 *
2333 * __d_lookup callers must be commented.
2334 */
2335struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2336{
2337        unsigned int hash = name->hash;
2338        struct hlist_bl_head *b = d_hash(hash);
2339        struct hlist_bl_node *node;
2340        struct dentry *found = NULL;
2341        struct dentry *dentry;
2342
2343        /*
2344         * Note: There is significant duplication with __d_lookup_rcu which is
2345         * required to prevent single threaded performance regressions
2346         * especially on architectures where smp_rmb (in seqcounts) are costly.
2347         * Keep the two functions in sync.
2348         */
2349
2350        /*
2351         * The hash list is protected using RCU.
2352         *
2353         * Take d_lock when comparing a candidate dentry, to avoid races
2354         * with d_move().
2355         *
2356         * It is possible that concurrent renames can mess up our list
2357         * walk here and result in missing our dentry, resulting in the
2358         * false-negative result. d_lookup() protects against concurrent
2359         * renames using rename_lock seqlock.
2360         *
2361         * See Documentation/filesystems/path-lookup.txt for more details.
2362         */
2363        rcu_read_lock();
2364        
2365        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2366
2367                if (dentry->d_name.hash != hash)
2368                        continue;
2369
2370                spin_lock(&dentry->d_lock);
2371                if (dentry->d_parent != parent)
2372                        goto next;
2373                if (d_unhashed(dentry))
2374                        goto next;
2375
2376                if (!d_same_name(dentry, parent, name))
2377                        goto next;
2378
2379                dentry->d_lockref.count++;
2380                found = dentry;
2381                spin_unlock(&dentry->d_lock);
2382                break;
2383next:
2384                spin_unlock(&dentry->d_lock);
2385        }
2386        rcu_read_unlock();
2387
2388        return found;
2389}
2390
2391/**
2392 * d_hash_and_lookup - hash the qstr then search for a dentry
2393 * @dir: Directory to search in
2394 * @name: qstr of name we wish to find
2395 *
2396 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2397 */
2398struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2399{
2400        /*
2401         * Check for a fs-specific hash function. Note that we must
2402         * calculate the standard hash first, as the d_op->d_hash()
2403         * routine may choose to leave the hash value unchanged.
2404         */
2405        name->hash = full_name_hash(dir, name->name, name->len);
2406        if (dir->d_flags & DCACHE_OP_HASH) {
2407                int err = dir->d_op->d_hash(dir, name);
2408                if (unlikely(err < 0))
2409                        return ERR_PTR(err);
2410        }
2411        return d_lookup(dir, name);
2412}
2413EXPORT_SYMBOL(d_hash_and_lookup);
2414
2415/*
2416 * When a file is deleted, we have two options:
2417 * - turn this dentry into a negative dentry
2418 * - unhash this dentry and free it.
2419 *
2420 * Usually, we want to just turn this into
2421 * a negative dentry, but if anybody else is
2422 * currently using the dentry or the inode
2423 * we can't do that and we fall back on removing
2424 * it from the hash queues and waiting for
2425 * it to be deleted later when it has no users
2426 */
2427 
2428/**
2429 * d_delete - delete a dentry
2430 * @dentry: The dentry to delete
2431 *
2432 * Turn the dentry into a negative dentry if possible, otherwise
2433 * remove it from the hash queues so it can be deleted later
2434 */
2435 
2436void d_delete(struct dentry * dentry)
2437{
2438        struct inode *inode = dentry->d_inode;
2439        int isdir = d_is_dir(dentry);
2440
2441        spin_lock(&inode->i_lock);
2442        spin_lock(&dentry->d_lock);
2443        /*
2444         * Are we the only user?
2445         */
2446        if (dentry->d_lockref.count == 1) {
2447                dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2448                dentry_unlink_inode(dentry);
2449        } else {
2450                __d_drop(dentry);
2451                spin_unlock(&dentry->d_lock);
2452                spin_unlock(&inode->i_lock);
2453        }
2454        fsnotify_nameremove(dentry, isdir);
2455}
2456EXPORT_SYMBOL(d_delete);
2457
2458static void __d_rehash(struct dentry *entry)
2459{
2460        struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2461
2462        hlist_bl_lock(b);
2463        hlist_bl_add_head_rcu(&entry->d_hash, b);
2464        hlist_bl_unlock(b);
2465}
2466
2467/**
2468 * d_rehash     - add an entry back to the hash
2469 * @entry: dentry to add to the hash
2470 *
2471 * Adds a dentry to the hash according to its name.
2472 */
2473 
2474void d_rehash(struct dentry * entry)
2475{
2476        spin_lock(&entry->d_lock);
2477        __d_rehash(entry);
2478        spin_unlock(&entry->d_lock);
2479}
2480EXPORT_SYMBOL(d_rehash);
2481
2482static inline unsigned start_dir_add(struct inode *dir)
2483{
2484
2485        for (;;) {
2486                unsigned n = dir->i_dir_seq;
2487                if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2488                        return n;
2489                cpu_relax();
2490        }
2491}
2492
2493static inline void end_dir_add(struct inode *dir, unsigned n)
2494{
2495        smp_store_release(&dir->i_dir_seq, n + 2);
2496}
2497
2498static void d_wait_lookup(struct dentry *dentry)
2499{
2500        if (d_in_lookup(dentry)) {
2501                DECLARE_WAITQUEUE(wait, current);
2502                add_wait_queue(dentry->d_wait, &wait);
2503                do {
2504                        set_current_state(TASK_UNINTERRUPTIBLE);
2505                        spin_unlock(&dentry->d_lock);
2506                        schedule();
2507                        spin_lock(&dentry->d_lock);
2508                } while (d_in_lookup(dentry));
2509        }
2510}
2511
2512struct dentry *d_alloc_parallel(struct dentry *parent,
2513                                const struct qstr *name,
2514                                wait_queue_head_t *wq)
2515{
2516        unsigned int hash = name->hash;
2517        struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2518        struct hlist_bl_node *node;
2519        struct dentry *new = d_alloc(parent, name);
2520        struct dentry *dentry;
2521        unsigned seq, r_seq, d_seq;
2522
2523        if (unlikely(!new))
2524                return ERR_PTR(-ENOMEM);
2525
2526retry:
2527        rcu_read_lock();
2528        seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2529        r_seq = read_seqbegin(&rename_lock);
2530        dentry = __d_lookup_rcu(parent, name, &d_seq);
2531        if (unlikely(dentry)) {
2532                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2533                        rcu_read_unlock();
2534                        goto retry;
2535                }
2536                if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2537                        rcu_read_unlock();
2538                        dput(dentry);
2539                        goto retry;
2540                }
2541                rcu_read_unlock();
2542                dput(new);
2543                return dentry;
2544        }
2545        if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2546                rcu_read_unlock();
2547                goto retry;
2548        }
2549
2550        if (unlikely(seq & 1)) {
2551                rcu_read_unlock();
2552                goto retry;
2553        }
2554
2555        hlist_bl_lock(b);
2556        if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2557                hlist_bl_unlock(b);
2558                rcu_read_unlock();
2559                goto retry;
2560        }
2561        /*
2562         * No changes for the parent since the beginning of d_lookup().
2563         * Since all removals from the chain happen with hlist_bl_lock(),
2564         * any potential in-lookup matches are going to stay here until
2565         * we unlock the chain.  All fields are stable in everything
2566         * we encounter.
2567         */
2568        hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2569                if (dentry->d_name.hash != hash)
2570                        continue;
2571                if (dentry->d_parent != parent)
2572                        continue;
2573                if (!d_same_name(dentry, parent, name))
2574                        continue;
2575                hlist_bl_unlock(b);
2576                /* now we can try to grab a reference */
2577                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2578                        rcu_read_unlock();
2579                        goto retry;
2580                }
2581
2582                rcu_read_unlock();
2583                /*
2584                 * somebody is likely to be still doing lookup for it;
2585                 * wait for them to finish
2586                 */
2587                spin_lock(&dentry->d_lock);
2588                d_wait_lookup(dentry);
2589                /*
2590                 * it's not in-lookup anymore; in principle we should repeat
2591                 * everything from dcache lookup, but it's likely to be what
2592                 * d_lookup() would've found anyway.  If it is, just return it;
2593                 * otherwise we really have to repeat the whole thing.
2594                 */
2595                if (unlikely(dentry->d_name.hash != hash))
2596                        goto mismatch;
2597                if (unlikely(dentry->d_parent != parent))
2598                        goto mismatch;
2599                if (unlikely(d_unhashed(dentry)))
2600                        goto mismatch;
2601                if (unlikely(!d_same_name(dentry, parent, name)))
2602                        goto mismatch;
2603                /* OK, it *is* a hashed match; return it */
2604                spin_unlock(&dentry->d_lock);
2605                dput(new);
2606                return dentry;
2607        }
2608        rcu_read_unlock();
2609        /* we can't take ->d_lock here; it's OK, though. */
2610        new->d_flags |= DCACHE_PAR_LOOKUP;
2611        new->d_wait = wq;
2612        hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2613        hlist_bl_unlock(b);
2614        return new;
2615mismatch:
2616        spin_unlock(&dentry->d_lock);
2617        dput(dentry);
2618        goto retry;
2619}
2620EXPORT_SYMBOL(d_alloc_parallel);
2621
2622void __d_lookup_done(struct dentry *dentry)
2623{
2624        struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2625                                                 dentry->d_name.hash);
2626        hlist_bl_lock(b);
2627        dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2628        __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2629        wake_up_all(dentry->d_wait);
2630        dentry->d_wait = NULL;
2631        hlist_bl_unlock(b);
2632        INIT_HLIST_NODE(&dentry->d_u.d_alias);
2633        INIT_LIST_HEAD(&dentry->d_lru);
2634}
2635EXPORT_SYMBOL(__d_lookup_done);
2636
2637/* inode->i_lock held if inode is non-NULL */
2638
2639static inline void __d_add(struct dentry *dentry, struct inode *inode)
2640{
2641        struct inode *dir = NULL;
2642        unsigned n;
2643        spin_lock(&dentry->d_lock);
2644        if (unlikely(d_in_lookup(dentry))) {
2645                dir = dentry->d_parent->d_inode;
2646                n = start_dir_add(dir);
2647                __d_lookup_done(dentry);
2648        }
2649        if (inode) {
2650                unsigned add_flags = d_flags_for_inode(inode);
2651                hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2652                raw_write_seqcount_begin(&dentry->d_seq);
2653                __d_set_inode_and_type(dentry, inode, add_flags);
2654                raw_write_seqcount_end(&dentry->d_seq);
2655                fsnotify_update_flags(dentry);
2656        }
2657        __d_rehash(dentry);
2658        if (dir)
2659                end_dir_add(dir, n);
2660        spin_unlock(&dentry->d_lock);
2661        if (inode)
2662                spin_unlock(&inode->i_lock);
2663}
2664
2665/**
2666 * d_add - add dentry to hash queues
2667 * @entry: dentry to add
2668 * @inode: The inode to attach to this dentry
2669 *
2670 * This adds the entry to the hash queues and initializes @inode.
2671 * The entry was actually filled in earlier during d_alloc().
2672 */
2673
2674void d_add(struct dentry *entry, struct inode *inode)
2675{
2676        if (inode) {
2677                security_d_instantiate(entry, inode);
2678                spin_lock(&inode->i_lock);
2679        }
2680        __d_add(entry, inode);
2681}
2682EXPORT_SYMBOL(d_add);
2683
2684/**
2685 * d_exact_alias - find and hash an exact unhashed alias
2686 * @entry: dentry to add
2687 * @inode: The inode to go with this dentry
2688 *
2689 * If an unhashed dentry with the same name/parent and desired
2690 * inode already exists, hash and return it.  Otherwise, return
2691 * NULL.
2692 *
2693 * Parent directory should be locked.
2694 */
2695struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2696{
2697        struct dentry *alias;
2698        unsigned int hash = entry->d_name.hash;
2699
2700        spin_lock(&inode->i_lock);
2701        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2702                /*
2703                 * Don't need alias->d_lock here, because aliases with
2704                 * d_parent == entry->d_parent are not subject to name or
2705                 * parent changes, because the parent inode i_mutex is held.
2706                 */
2707                if (alias->d_name.hash != hash)
2708                        continue;
2709                if (alias->d_parent != entry->d_parent)
2710                        continue;
2711                if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2712                        continue;
2713                spin_lock(&alias->d_lock);
2714                if (!d_unhashed(alias)) {
2715                        spin_unlock(&alias->d_lock);
2716                        alias = NULL;
2717                } else {
2718                        __dget_dlock(alias);
2719                        __d_rehash(alias);
2720                        spin_unlock(&alias->d_lock);
2721                }
2722                spin_unlock(&inode->i_lock);
2723                return alias;
2724        }
2725        spin_unlock(&inode->i_lock);
2726        return NULL;
2727}
2728EXPORT_SYMBOL(d_exact_alias);
2729
2730/**
2731 * dentry_update_name_case - update case insensitive dentry with a new name
2732 * @dentry: dentry to be updated
2733 * @name: new name
2734 *
2735 * Update a case insensitive dentry with new case of name.
2736 *
2737 * dentry must have been returned by d_lookup with name @name. Old and new
2738 * name lengths must match (ie. no d_compare which allows mismatched name
2739 * lengths).
2740 *
2741 * Parent inode i_mutex must be held over d_lookup and into this call (to
2742 * keep renames and concurrent inserts, and readdir(2) away).
2743 */
2744void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2745{
2746        BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2747        BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2748
2749        spin_lock(&dentry->d_lock);
2750        write_seqcount_begin(&dentry->d_seq);
2751        memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2752        write_seqcount_end(&dentry->d_seq);
2753        spin_unlock(&dentry->d_lock);
2754}
2755EXPORT_SYMBOL(dentry_update_name_case);
2756
2757static void swap_names(struct dentry *dentry, struct dentry *target)
2758{
2759        if (unlikely(dname_external(target))) {
2760                if (unlikely(dname_external(dentry))) {
2761                        /*
2762                         * Both external: swap the pointers
2763                         */
2764                        swap(target->d_name.name, dentry->d_name.name);
2765                } else {
2766                        /*
2767                         * dentry:internal, target:external.  Steal target's
2768                         * storage and make target internal.
2769                         */
2770                        memcpy(target->d_iname, dentry->d_name.name,
2771                                        dentry->d_name.len + 1);
2772                        dentry->d_name.name = target->d_name.name;
2773                        target->d_name.name = target->d_iname;
2774                }
2775        } else {
2776                if (unlikely(dname_external(dentry))) {
2777                        /*
2778                         * dentry:external, target:internal.  Give dentry's
2779                         * storage to target and make dentry internal
2780                         */
2781                        memcpy(dentry->d_iname, target->d_name.name,
2782                                        target->d_name.len + 1);
2783                        target->d_name.name = dentry->d_name.name;
2784                        dentry->d_name.name = dentry->d_iname;
2785                } else {
2786                        /*
2787                         * Both are internal.
2788                         */
2789                        unsigned int i;
2790                        BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2791                        for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2792                                swap(((long *) &dentry->d_iname)[i],
2793                                     ((long *) &target->d_iname)[i]);
2794                        }
2795                }
2796        }
2797        swap(dentry->d_name.hash_len, target->d_name.hash_len);
2798}
2799
2800static void copy_name(struct dentry *dentry, struct dentry *target)
2801{
2802        struct external_name *old_name = NULL;
2803        if (unlikely(dname_external(dentry)))
2804                old_name = external_name(dentry);
2805        if (unlikely(dname_external(target))) {
2806                atomic_inc(&external_name(target)->u.count);
2807                dentry->d_name = target->d_name;
2808        } else {
2809                memcpy(dentry->d_iname, target->d_name.name,
2810                                target->d_name.len + 1);
2811                dentry->d_name.name = dentry->d_iname;
2812                dentry->d_name.hash_len = target->d_name.hash_len;
2813        }
2814        if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2815                call_rcu(&old_name->u.head, __d_free_external_name);
2816}
2817
2818/*
2819 * __d_move - move a dentry
2820 * @dentry: entry to move
2821 * @target: new dentry
2822 * @exchange: exchange the two dentries
2823 *
2824 * Update the dcache to reflect the move of a file name. Negative
2825 * dcache entries should not be moved in this way. Caller must hold
2826 * rename_lock, the i_mutex of the source and target directories,
2827 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2828 */
2829static void __d_move(struct dentry *dentry, struct dentry *target,
2830                     bool exchange)
2831{
2832        struct dentry *old_parent, *p;
2833        struct inode *dir = NULL;
2834        unsigned n;
2835
2836        WARN_ON(!dentry->d_inode);
2837        if (WARN_ON(dentry == target))
2838                return;
2839
2840        BUG_ON(d_ancestor(target, dentry));
2841        old_parent = dentry->d_parent;
2842        p = d_ancestor(old_parent, target);
2843        if (IS_ROOT(dentry)) {
2844                BUG_ON(p);
2845                spin_lock(&target->d_parent->d_lock);
2846        } else if (!p) {
2847                /* target is not a descendent of dentry->d_parent */
2848                spin_lock(&target->d_parent->d_lock);
2849                spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2850        } else {
2851                BUG_ON(p == dentry);
2852                spin_lock(&old_parent->d_lock);
2853                if (p != target)
2854                        spin_lock_nested(&target->d_parent->d_lock,
2855                                        DENTRY_D_LOCK_NESTED);
2856        }
2857        spin_lock_nested(&dentry->d_lock, 2);
2858        spin_lock_nested(&target->d_lock, 3);
2859
2860        if (unlikely(d_in_lookup(target))) {
2861                dir = target->d_parent->d_inode;
2862                n = start_dir_add(dir);
2863                __d_lookup_done(target);
2864        }
2865
2866        write_seqcount_begin(&dentry->d_seq);
2867        write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2868
2869        /* unhash both */
2870        if (!d_unhashed(dentry))
2871                ___d_drop(dentry);
2872        if (!d_unhashed(target))
2873                ___d_drop(target);
2874
2875        /* ... and switch them in the tree */
2876        dentry->d_parent = target->d_parent;
2877        if (!exchange) {
2878                copy_name(dentry, target);
2879                target->d_hash.pprev = NULL;
2880                dentry->d_parent->d_lockref.count++;
2881                if (dentry == old_parent)
2882                        dentry->d_flags |= DCACHE_RCUACCESS;
2883                else
2884                        WARN_ON(!--old_parent->d_lockref.count);
2885        } else {
2886                target->d_parent = old_parent;
2887                swap_names(dentry, target);
2888                list_move(&target->d_child, &target->d_parent->d_subdirs);
2889                __d_rehash(target);
2890                fsnotify_update_flags(target);
2891        }
2892        list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2893        __d_rehash(dentry);
2894        fsnotify_update_flags(dentry);
2895
2896        write_seqcount_end(&target->d_seq);
2897        write_seqcount_end(&dentry->d_seq);
2898
2899        if (dir)
2900                end_dir_add(dir, n);
2901
2902        if (dentry->d_parent != old_parent)
2903                spin_unlock(&dentry->d_parent->d_lock);
2904        if (dentry != old_parent)
2905                spin_unlock(&old_parent->d_lock);
2906        spin_unlock(&target->d_lock);
2907        spin_unlock(&dentry->d_lock);
2908}
2909
2910/*
2911 * d_move - move a dentry
2912 * @dentry: entry to move
2913 * @target: new dentry
2914 *
2915 * Update the dcache to reflect the move of a file name. Negative
2916 * dcache entries should not be moved in this way. See the locking
2917 * requirements for __d_move.
2918 */
2919void d_move(struct dentry *dentry, struct dentry *target)
2920{
2921        write_seqlock(&rename_lock);
2922        __d_move(dentry, target, false);
2923        write_sequnlock(&rename_lock);
2924}
2925EXPORT_SYMBOL(d_move);
2926
2927/*
2928 * d_exchange - exchange two dentries
2929 * @dentry1: first dentry
2930 * @dentry2: second dentry
2931 */
2932void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2933{
2934        write_seqlock(&rename_lock);
2935
2936        WARN_ON(!dentry1->d_inode);
2937        WARN_ON(!dentry2->d_inode);
2938        WARN_ON(IS_ROOT(dentry1));
2939        WARN_ON(IS_ROOT(dentry2));
2940
2941        __d_move(dentry1, dentry2, true);
2942
2943        write_sequnlock(&rename_lock);
2944}
2945
2946/**
2947 * d_ancestor - search for an ancestor
2948 * @p1: ancestor dentry
2949 * @p2: child dentry
2950 *
2951 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2952 * an ancestor of p2, else NULL.
2953 */
2954struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2955{
2956        struct dentry *p;
2957
2958        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2959                if (p->d_parent == p1)
2960                        return p;
2961        }
2962        return NULL;
2963}
2964
2965/*
2966 * This helper attempts to cope with remotely renamed directories
2967 *
2968 * It assumes that the caller is already holding
2969 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2970 *
2971 * Note: If ever the locking in lock_rename() changes, then please
2972 * remember to update this too...
2973 */
2974static int __d_unalias(struct inode *inode,
2975                struct dentry *dentry, struct dentry *alias)
2976{
2977        struct mutex *m1 = NULL;
2978        struct rw_semaphore *m2 = NULL;
2979        int ret = -ESTALE;
2980
2981        /* If alias and dentry share a parent, then no extra locks required */
2982        if (alias->d_parent == dentry->d_parent)
2983                goto out_unalias;
2984
2985        /* See lock_rename() */
2986        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2987                goto out_err;
2988        m1 = &dentry->d_sb->s_vfs_rename_mutex;
2989        if (!inode_trylock_shared(alias->d_parent->d_inode))
2990                goto out_err;
2991        m2 = &alias->d_parent->d_inode->i_rwsem;
2992out_unalias:
2993        __d_move(alias, dentry, false);
2994        ret = 0;
2995out_err:
2996        if (m2)
2997                up_read(m2);
2998        if (m1)
2999                mutex_unlock(m1);
3000        return ret;
3001}
3002
3003/**
3004 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3005 * @inode:  the inode which may have a disconnected dentry
3006 * @dentry: a negative dentry which we want to point to the inode.
3007 *
3008 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3009 * place of the given dentry and return it, else simply d_add the inode
3010 * to the dentry and return NULL.
3011 *
3012 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3013 * we should error out: directories can't have multiple aliases.
3014 *
3015 * This is needed in the lookup routine of any filesystem that is exportable
3016 * (via knfsd) so that we can build dcache paths to directories effectively.
3017 *
3018 * If a dentry was found and moved, then it is returned.  Otherwise NULL
3019 * is returned.  This matches the expected return value of ->lookup.
3020 *
3021 * Cluster filesystems may call this function with a negative, hashed dentry.
3022 * In that case, we know that the inode will be a regular file, and also this
3023 * will only occur during atomic_open. So we need to check for the dentry
3024 * being already hashed only in the final case.
3025 */
3026struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3027{
3028        if (IS_ERR(inode))
3029                return ERR_CAST(inode);
3030
3031        BUG_ON(!d_unhashed(dentry));
3032
3033        if (!inode)
3034                goto out;
3035
3036        security_d_instantiate(dentry, inode);
3037        spin_lock(&inode->i_lock);
3038        if (S_ISDIR(inode->i_mode)) {
3039                struct dentry *new = __d_find_any_alias(inode);
3040                if (unlikely(new)) {
3041                        /* The reference to new ensures it remains an alias */
3042                        spin_unlock(&inode->i_lock);
3043                        write_seqlock(&rename_lock);
3044                        if (unlikely(d_ancestor(new, dentry))) {
3045                                write_sequnlock(&rename_lock);
3046                                dput(new);
3047                                new = ERR_PTR(-ELOOP);
3048                                pr_warn_ratelimited(
3049                                        "VFS: Lookup of '%s' in %s %s"
3050                                        " would have caused loop\n",
3051                                        dentry->d_name.name,
3052                                        inode->i_sb->s_type->name,
3053                                        inode->i_sb->s_id);
3054                        } else if (!IS_ROOT(new)) {
3055                                struct dentry *old_parent = dget(new->d_parent);
3056                                int err = __d_unalias(inode, dentry, new);
3057                                write_sequnlock(&rename_lock);
3058                                if (err) {
3059                                        dput(new);
3060                                        new = ERR_PTR(err);
3061                                }
3062                                dput(old_parent);
3063                        } else {
3064                                __d_move(new, dentry, false);
3065                                write_sequnlock(&rename_lock);
3066                        }
3067                        iput(inode);
3068                        return new;
3069                }
3070        }
3071out:
3072        __d_add(dentry, inode);
3073        return NULL;
3074}
3075EXPORT_SYMBOL(d_splice_alias);
3076
3077/*
3078 * Test whether new_dentry is a subdirectory of old_dentry.
3079 *
3080 * Trivially implemented using the dcache structure
3081 */
3082
3083/**
3084 * is_subdir - is new dentry a subdirectory of old_dentry
3085 * @new_dentry: new dentry
3086 * @old_dentry: old dentry
3087 *
3088 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3089 * Returns false otherwise.
3090 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3091 */
3092  
3093bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3094{
3095        bool result;
3096        unsigned seq;
3097
3098        if (new_dentry == old_dentry)
3099                return true;
3100
3101        do {
3102                /* for restarting inner loop in case of seq retry */
3103                seq = read_seqbegin(&rename_lock);
3104                /*
3105                 * Need rcu_readlock to protect against the d_parent trashing
3106                 * due to d_move
3107                 */
3108                rcu_read_lock();
3109                if (d_ancestor(old_dentry, new_dentry))
3110                        result = true;
3111                else
3112                        result = false;
3113                rcu_read_unlock();
3114        } while (read_seqretry(&rename_lock, seq));
3115
3116        return result;
3117}
3118EXPORT_SYMBOL(is_subdir);
3119
3120static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3121{
3122        struct dentry *root = data;
3123        if (dentry != root) {
3124                if (d_unhashed(dentry) || !dentry->d_inode)
3125                        return D_WALK_SKIP;
3126
3127                if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3128                        dentry->d_flags |= DCACHE_GENOCIDE;
3129                        dentry->d_lockref.count--;
3130                }
3131        }
3132        return D_WALK_CONTINUE;
3133}
3134
3135void d_genocide(struct dentry *parent)
3136{
3137        d_walk(parent, parent, d_genocide_kill, NULL);
3138}
3139
3140EXPORT_SYMBOL(d_genocide);
3141
3142void d_tmpfile(struct dentry *dentry, struct inode *inode)
3143{
3144        inode_dec_link_count(inode);
3145        BUG_ON(dentry->d_name.name != dentry->d_iname ||
3146                !hlist_unhashed(&dentry->d_u.d_alias) ||
3147                !d_unlinked(dentry));
3148        spin_lock(&dentry->d_parent->d_lock);
3149        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3150        dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3151                                (unsigned long long)inode->i_ino);
3152        spin_unlock(&dentry->d_lock);
3153        spin_unlock(&dentry->d_parent->d_lock);
3154        d_instantiate(dentry, inode);
3155}
3156EXPORT_SYMBOL(d_tmpfile);
3157
3158static __initdata unsigned long dhash_entries;
3159static int __init set_dhash_entries(char *str)
3160{
3161        if (!str)
3162                return 0;
3163        dhash_entries = simple_strtoul(str, &str, 0);
3164        return 1;
3165}
3166__setup("dhash_entries=", set_dhash_entries);
3167
3168static void __init dcache_init_early(void)
3169{
3170        /* If hashes are distributed across NUMA nodes, defer
3171         * hash allocation until vmalloc space is available.
3172         */
3173        if (hashdist)
3174                return;
3175
3176        dentry_hashtable =
3177                alloc_large_system_hash("Dentry cache",
3178                                        sizeof(struct hlist_bl_head),
3179                                        dhash_entries,
3180                                        13,
3181                                        HASH_EARLY | HASH_ZERO,
3182                                        &d_hash_shift,
3183                                        NULL,
3184                                        0,
3185                                        0);
3186        d_hash_shift = 32 - d_hash_shift;
3187}
3188
3189static void __init dcache_init(void)
3190{
3191        /*
3192         * A constructor could be added for stable state like the lists,
3193         * but it is probably not worth it because of the cache nature
3194         * of the dcache.
3195         */
3196        dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3197                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3198                d_iname);
3199
3200        /* Hash may have been set up in dcache_init_early */
3201        if (!hashdist)
3202                return;
3203
3204        dentry_hashtable =
3205                alloc_large_system_hash("Dentry cache",
3206                                        sizeof(struct hlist_bl_head),
3207                                        dhash_entries,
3208                                        13,
3209                                        HASH_ZERO,
3210                                        &d_hash_shift,
3211                                        NULL,
3212                                        0,
3213                                        0);
3214        d_hash_shift = 32 - d_hash_shift;
3215}
3216
3217/* SLAB cache for __getname() consumers */
3218struct kmem_cache *names_cachep __read_mostly;
3219EXPORT_SYMBOL(names_cachep);
3220
3221void __init vfs_caches_init_early(void)
3222{
3223        int i;
3224
3225        for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3226                INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3227
3228        dcache_init_early();
3229        inode_init_early();
3230}
3231
3232void __init vfs_caches_init(void)
3233{
3234        names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3235                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3236
3237        dcache_init();
3238        inode_init();
3239        files_init();
3240        files_maxfiles_init();
3241        mnt_init();
3242        bdev_cache_init();
3243        chrdev_init();
3244}
3245