linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39#include <linux/prefetch.h>
  40
  41/*
  42 * How many user pages to map in one call to get_user_pages().  This determines
  43 * the size of a structure in the slab cache
  44 */
  45#define DIO_PAGES       64
  46
  47/*
  48 * Flags for dio_complete()
  49 */
  50#define DIO_COMPLETE_ASYNC              0x01    /* This is async IO */
  51#define DIO_COMPLETE_INVALIDATE         0x02    /* Can invalidate pages */
  52
  53/*
  54 * This code generally works in units of "dio_blocks".  A dio_block is
  55 * somewhere between the hard sector size and the filesystem block size.  it
  56 * is determined on a per-invocation basis.   When talking to the filesystem
  57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  58 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  59 * to bio_block quantities by shifting left by blkfactor.
  60 *
  61 * If blkfactor is zero then the user's request was aligned to the filesystem's
  62 * blocksize.
  63 */
  64
  65/* dio_state only used in the submission path */
  66
  67struct dio_submit {
  68        struct bio *bio;                /* bio under assembly */
  69        unsigned blkbits;               /* doesn't change */
  70        unsigned blkfactor;             /* When we're using an alignment which
  71                                           is finer than the filesystem's soft
  72                                           blocksize, this specifies how much
  73                                           finer.  blkfactor=2 means 1/4-block
  74                                           alignment.  Does not change */
  75        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  76                                           been performed at the start of a
  77                                           write */
  78        int pages_in_io;                /* approximate total IO pages */
  79        sector_t block_in_file;         /* Current offset into the underlying
  80                                           file in dio_block units. */
  81        unsigned blocks_available;      /* At block_in_file.  changes */
  82        int reap_counter;               /* rate limit reaping */
  83        sector_t final_block_in_request;/* doesn't change */
  84        int boundary;                   /* prev block is at a boundary */
  85        get_block_t *get_block;         /* block mapping function */
  86        dio_submit_t *submit_io;        /* IO submition function */
  87
  88        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  89        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  90        sector_t next_block_for_io;     /* next block to be put under IO,
  91                                           in dio_blocks units */
  92
  93        /*
  94         * Deferred addition of a page to the dio.  These variables are
  95         * private to dio_send_cur_page(), submit_page_section() and
  96         * dio_bio_add_page().
  97         */
  98        struct page *cur_page;          /* The page */
  99        unsigned cur_page_offset;       /* Offset into it, in bytes */
 100        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
 101        sector_t cur_page_block;        /* Where it starts */
 102        loff_t cur_page_fs_offset;      /* Offset in file */
 103
 104        struct iov_iter *iter;
 105        /*
 106         * Page queue.  These variables belong to dio_refill_pages() and
 107         * dio_get_page().
 108         */
 109        unsigned head;                  /* next page to process */
 110        unsigned tail;                  /* last valid page + 1 */
 111        size_t from, to;
 112};
 113
 114/* dio_state communicated between submission path and end_io */
 115struct dio {
 116        int flags;                      /* doesn't change */
 117        int op;
 118        int op_flags;
 119        blk_qc_t bio_cookie;
 120        struct gendisk *bio_disk;
 121        struct inode *inode;
 122        loff_t i_size;                  /* i_size when submitted */
 123        dio_iodone_t *end_io;           /* IO completion function */
 124
 125        void *private;                  /* copy from map_bh.b_private */
 126
 127        /* BIO completion state */
 128        spinlock_t bio_lock;            /* protects BIO fields below */
 129        int page_errors;                /* errno from get_user_pages() */
 130        int is_async;                   /* is IO async ? */
 131        bool defer_completion;          /* defer AIO completion to workqueue? */
 132        bool should_dirty;              /* if pages should be dirtied */
 133        int io_error;                   /* IO error in completion path */
 134        unsigned long refcount;         /* direct_io_worker() and bios */
 135        struct bio *bio_list;           /* singly linked via bi_private */
 136        struct task_struct *waiter;     /* waiting task (NULL if none) */
 137
 138        /* AIO related stuff */
 139        struct kiocb *iocb;             /* kiocb */
 140        ssize_t result;                 /* IO result */
 141
 142        /*
 143         * pages[] (and any fields placed after it) are not zeroed out at
 144         * allocation time.  Don't add new fields after pages[] unless you
 145         * wish that they not be zeroed.
 146         */
 147        union {
 148                struct page *pages[DIO_PAGES];  /* page buffer */
 149                struct work_struct complete_work;/* deferred AIO completion */
 150        };
 151} ____cacheline_aligned_in_smp;
 152
 153static struct kmem_cache *dio_cache __read_mostly;
 154
 155/*
 156 * How many pages are in the queue?
 157 */
 158static inline unsigned dio_pages_present(struct dio_submit *sdio)
 159{
 160        return sdio->tail - sdio->head;
 161}
 162
 163/*
 164 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 165 */
 166static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 167{
 168        ssize_t ret;
 169
 170        ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
 171                                &sdio->from);
 172
 173        if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
 174                struct page *page = ZERO_PAGE(0);
 175                /*
 176                 * A memory fault, but the filesystem has some outstanding
 177                 * mapped blocks.  We need to use those blocks up to avoid
 178                 * leaking stale data in the file.
 179                 */
 180                if (dio->page_errors == 0)
 181                        dio->page_errors = ret;
 182                get_page(page);
 183                dio->pages[0] = page;
 184                sdio->head = 0;
 185                sdio->tail = 1;
 186                sdio->from = 0;
 187                sdio->to = PAGE_SIZE;
 188                return 0;
 189        }
 190
 191        if (ret >= 0) {
 192                iov_iter_advance(sdio->iter, ret);
 193                ret += sdio->from;
 194                sdio->head = 0;
 195                sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
 196                sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
 197                return 0;
 198        }
 199        return ret;     
 200}
 201
 202/*
 203 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 204 * buffered inside the dio so that we can call get_user_pages() against a
 205 * decent number of pages, less frequently.  To provide nicer use of the
 206 * L1 cache.
 207 */
 208static inline struct page *dio_get_page(struct dio *dio,
 209                                        struct dio_submit *sdio)
 210{
 211        if (dio_pages_present(sdio) == 0) {
 212                int ret;
 213
 214                ret = dio_refill_pages(dio, sdio);
 215                if (ret)
 216                        return ERR_PTR(ret);
 217                BUG_ON(dio_pages_present(sdio) == 0);
 218        }
 219        return dio->pages[sdio->head];
 220}
 221
 222/*
 223 * Warn about a page cache invalidation failure during a direct io write.
 224 */
 225void dio_warn_stale_pagecache(struct file *filp)
 226{
 227        static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
 228        char pathname[128];
 229        struct inode *inode = file_inode(filp);
 230        char *path;
 231
 232        errseq_set(&inode->i_mapping->wb_err, -EIO);
 233        if (__ratelimit(&_rs)) {
 234                path = file_path(filp, pathname, sizeof(pathname));
 235                if (IS_ERR(path))
 236                        path = "(unknown)";
 237                pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
 238                pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
 239                        current->comm);
 240        }
 241}
 242
 243/**
 244 * dio_complete() - called when all DIO BIO I/O has been completed
 245 * @offset: the byte offset in the file of the completed operation
 246 *
 247 * This drops i_dio_count, lets interested parties know that a DIO operation
 248 * has completed, and calculates the resulting return code for the operation.
 249 *
 250 * It lets the filesystem know if it registered an interest earlier via
 251 * get_block.  Pass the private field of the map buffer_head so that
 252 * filesystems can use it to hold additional state between get_block calls and
 253 * dio_complete.
 254 */
 255static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
 256{
 257        loff_t offset = dio->iocb->ki_pos;
 258        ssize_t transferred = 0;
 259        int err;
 260
 261        /*
 262         * AIO submission can race with bio completion to get here while
 263         * expecting to have the last io completed by bio completion.
 264         * In that case -EIOCBQUEUED is in fact not an error we want
 265         * to preserve through this call.
 266         */
 267        if (ret == -EIOCBQUEUED)
 268                ret = 0;
 269
 270        if (dio->result) {
 271                transferred = dio->result;
 272
 273                /* Check for short read case */
 274                if ((dio->op == REQ_OP_READ) &&
 275                    ((offset + transferred) > dio->i_size))
 276                        transferred = dio->i_size - offset;
 277                /* ignore EFAULT if some IO has been done */
 278                if (unlikely(ret == -EFAULT) && transferred)
 279                        ret = 0;
 280        }
 281
 282        if (ret == 0)
 283                ret = dio->page_errors;
 284        if (ret == 0)
 285                ret = dio->io_error;
 286        if (ret == 0)
 287                ret = transferred;
 288
 289        if (dio->end_io) {
 290                // XXX: ki_pos??
 291                err = dio->end_io(dio->iocb, offset, ret, dio->private);
 292                if (err)
 293                        ret = err;
 294        }
 295
 296        /*
 297         * Try again to invalidate clean pages which might have been cached by
 298         * non-direct readahead, or faulted in by get_user_pages() if the source
 299         * of the write was an mmap'ed region of the file we're writing.  Either
 300         * one is a pretty crazy thing to do, so we don't support it 100%.  If
 301         * this invalidation fails, tough, the write still worked...
 302         *
 303         * And this page cache invalidation has to be after dio->end_io(), as
 304         * some filesystems convert unwritten extents to real allocations in
 305         * end_io() when necessary, otherwise a racing buffer read would cache
 306         * zeros from unwritten extents.
 307         */
 308        if (flags & DIO_COMPLETE_INVALIDATE &&
 309            ret > 0 && dio->op == REQ_OP_WRITE &&
 310            dio->inode->i_mapping->nrpages) {
 311                err = invalidate_inode_pages2_range(dio->inode->i_mapping,
 312                                        offset >> PAGE_SHIFT,
 313                                        (offset + ret - 1) >> PAGE_SHIFT);
 314                if (err)
 315                        dio_warn_stale_pagecache(dio->iocb->ki_filp);
 316        }
 317
 318        inode_dio_end(dio->inode);
 319
 320        if (flags & DIO_COMPLETE_ASYNC) {
 321                /*
 322                 * generic_write_sync expects ki_pos to have been updated
 323                 * already, but the submission path only does this for
 324                 * synchronous I/O.
 325                 */
 326                dio->iocb->ki_pos += transferred;
 327
 328                if (dio->op == REQ_OP_WRITE)
 329                        ret = generic_write_sync(dio->iocb,  transferred);
 330                dio->iocb->ki_complete(dio->iocb, ret, 0);
 331        }
 332
 333        kmem_cache_free(dio_cache, dio);
 334        return ret;
 335}
 336
 337static void dio_aio_complete_work(struct work_struct *work)
 338{
 339        struct dio *dio = container_of(work, struct dio, complete_work);
 340
 341        dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
 342}
 343
 344static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
 345
 346/*
 347 * Asynchronous IO callback. 
 348 */
 349static void dio_bio_end_aio(struct bio *bio)
 350{
 351        struct dio *dio = bio->bi_private;
 352        unsigned long remaining;
 353        unsigned long flags;
 354        bool defer_completion = false;
 355
 356        /* cleanup the bio */
 357        dio_bio_complete(dio, bio);
 358
 359        spin_lock_irqsave(&dio->bio_lock, flags);
 360        remaining = --dio->refcount;
 361        if (remaining == 1 && dio->waiter)
 362                wake_up_process(dio->waiter);
 363        spin_unlock_irqrestore(&dio->bio_lock, flags);
 364
 365        if (remaining == 0) {
 366                /*
 367                 * Defer completion when defer_completion is set or
 368                 * when the inode has pages mapped and this is AIO write.
 369                 * We need to invalidate those pages because there is a
 370                 * chance they contain stale data in the case buffered IO
 371                 * went in between AIO submission and completion into the
 372                 * same region.
 373                 */
 374                if (dio->result)
 375                        defer_completion = dio->defer_completion ||
 376                                           (dio->op == REQ_OP_WRITE &&
 377                                            dio->inode->i_mapping->nrpages);
 378                if (defer_completion) {
 379                        INIT_WORK(&dio->complete_work, dio_aio_complete_work);
 380                        queue_work(dio->inode->i_sb->s_dio_done_wq,
 381                                   &dio->complete_work);
 382                } else {
 383                        dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
 384                }
 385        }
 386}
 387
 388/*
 389 * The BIO completion handler simply queues the BIO up for the process-context
 390 * handler.
 391 *
 392 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 393 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 394 */
 395static void dio_bio_end_io(struct bio *bio)
 396{
 397        struct dio *dio = bio->bi_private;
 398        unsigned long flags;
 399
 400        spin_lock_irqsave(&dio->bio_lock, flags);
 401        bio->bi_private = dio->bio_list;
 402        dio->bio_list = bio;
 403        if (--dio->refcount == 1 && dio->waiter)
 404                wake_up_process(dio->waiter);
 405        spin_unlock_irqrestore(&dio->bio_lock, flags);
 406}
 407
 408/**
 409 * dio_end_io - handle the end io action for the given bio
 410 * @bio: The direct io bio thats being completed
 411 *
 412 * This is meant to be called by any filesystem that uses their own dio_submit_t
 413 * so that the DIO specific endio actions are dealt with after the filesystem
 414 * has done it's completion work.
 415 */
 416void dio_end_io(struct bio *bio)
 417{
 418        struct dio *dio = bio->bi_private;
 419
 420        if (dio->is_async)
 421                dio_bio_end_aio(bio);
 422        else
 423                dio_bio_end_io(bio);
 424}
 425EXPORT_SYMBOL_GPL(dio_end_io);
 426
 427static inline void
 428dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 429              struct block_device *bdev,
 430              sector_t first_sector, int nr_vecs)
 431{
 432        struct bio *bio;
 433
 434        /*
 435         * bio_alloc() is guaranteed to return a bio when called with
 436         * __GFP_RECLAIM and we request a valid number of vectors.
 437         */
 438        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 439
 440        bio_set_dev(bio, bdev);
 441        bio->bi_iter.bi_sector = first_sector;
 442        bio_set_op_attrs(bio, dio->op, dio->op_flags);
 443        if (dio->is_async)
 444                bio->bi_end_io = dio_bio_end_aio;
 445        else
 446                bio->bi_end_io = dio_bio_end_io;
 447
 448        bio->bi_write_hint = dio->iocb->ki_hint;
 449
 450        sdio->bio = bio;
 451        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 452}
 453
 454/*
 455 * In the AIO read case we speculatively dirty the pages before starting IO.
 456 * During IO completion, any of these pages which happen to have been written
 457 * back will be redirtied by bio_check_pages_dirty().
 458 *
 459 * bios hold a dio reference between submit_bio and ->end_io.
 460 */
 461static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 462{
 463        struct bio *bio = sdio->bio;
 464        unsigned long flags;
 465
 466        bio->bi_private = dio;
 467
 468        spin_lock_irqsave(&dio->bio_lock, flags);
 469        dio->refcount++;
 470        spin_unlock_irqrestore(&dio->bio_lock, flags);
 471
 472        if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
 473                bio_set_pages_dirty(bio);
 474
 475        dio->bio_disk = bio->bi_disk;
 476
 477        if (sdio->submit_io) {
 478                sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
 479                dio->bio_cookie = BLK_QC_T_NONE;
 480        } else
 481                dio->bio_cookie = submit_bio(bio);
 482
 483        sdio->bio = NULL;
 484        sdio->boundary = 0;
 485        sdio->logical_offset_in_bio = 0;
 486}
 487
 488/*
 489 * Release any resources in case of a failure
 490 */
 491static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 492{
 493        while (sdio->head < sdio->tail)
 494                put_page(dio->pages[sdio->head++]);
 495}
 496
 497/*
 498 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 499 * returned once all BIOs have been completed.  This must only be called once
 500 * all bios have been issued so that dio->refcount can only decrease.  This
 501 * requires that that the caller hold a reference on the dio.
 502 */
 503static struct bio *dio_await_one(struct dio *dio)
 504{
 505        unsigned long flags;
 506        struct bio *bio = NULL;
 507
 508        spin_lock_irqsave(&dio->bio_lock, flags);
 509
 510        /*
 511         * Wait as long as the list is empty and there are bios in flight.  bio
 512         * completion drops the count, maybe adds to the list, and wakes while
 513         * holding the bio_lock so we don't need set_current_state()'s barrier
 514         * and can call it after testing our condition.
 515         */
 516        while (dio->refcount > 1 && dio->bio_list == NULL) {
 517                __set_current_state(TASK_UNINTERRUPTIBLE);
 518                dio->waiter = current;
 519                spin_unlock_irqrestore(&dio->bio_lock, flags);
 520                if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
 521                    !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
 522                        io_schedule();
 523                /* wake up sets us TASK_RUNNING */
 524                spin_lock_irqsave(&dio->bio_lock, flags);
 525                dio->waiter = NULL;
 526        }
 527        if (dio->bio_list) {
 528                bio = dio->bio_list;
 529                dio->bio_list = bio->bi_private;
 530        }
 531        spin_unlock_irqrestore(&dio->bio_lock, flags);
 532        return bio;
 533}
 534
 535/*
 536 * Process one completed BIO.  No locks are held.
 537 */
 538static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
 539{
 540        struct bio_vec *bvec;
 541        unsigned i;
 542        blk_status_t err = bio->bi_status;
 543
 544        if (err) {
 545                if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
 546                        dio->io_error = -EAGAIN;
 547                else
 548                        dio->io_error = -EIO;
 549        }
 550
 551        if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
 552                bio_check_pages_dirty(bio);     /* transfers ownership */
 553        } else {
 554                bio_for_each_segment_all(bvec, bio, i) {
 555                        struct page *page = bvec->bv_page;
 556
 557                        if (dio->op == REQ_OP_READ && !PageCompound(page) &&
 558                                        dio->should_dirty)
 559                                set_page_dirty_lock(page);
 560                        put_page(page);
 561                }
 562                bio_put(bio);
 563        }
 564        return err;
 565}
 566
 567/*
 568 * Wait on and process all in-flight BIOs.  This must only be called once
 569 * all bios have been issued so that the refcount can only decrease.
 570 * This just waits for all bios to make it through dio_bio_complete.  IO
 571 * errors are propagated through dio->io_error and should be propagated via
 572 * dio_complete().
 573 */
 574static void dio_await_completion(struct dio *dio)
 575{
 576        struct bio *bio;
 577        do {
 578                bio = dio_await_one(dio);
 579                if (bio)
 580                        dio_bio_complete(dio, bio);
 581        } while (bio);
 582}
 583
 584/*
 585 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 586 * to keep the memory consumption sane we periodically reap any completed BIOs
 587 * during the BIO generation phase.
 588 *
 589 * This also helps to limit the peak amount of pinned userspace memory.
 590 */
 591static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 592{
 593        int ret = 0;
 594
 595        if (sdio->reap_counter++ >= 64) {
 596                while (dio->bio_list) {
 597                        unsigned long flags;
 598                        struct bio *bio;
 599                        int ret2;
 600
 601                        spin_lock_irqsave(&dio->bio_lock, flags);
 602                        bio = dio->bio_list;
 603                        dio->bio_list = bio->bi_private;
 604                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 605                        ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
 606                        if (ret == 0)
 607                                ret = ret2;
 608                }
 609                sdio->reap_counter = 0;
 610        }
 611        return ret;
 612}
 613
 614/*
 615 * Create workqueue for deferred direct IO completions. We allocate the
 616 * workqueue when it's first needed. This avoids creating workqueue for
 617 * filesystems that don't need it and also allows us to create the workqueue
 618 * late enough so the we can include s_id in the name of the workqueue.
 619 */
 620int sb_init_dio_done_wq(struct super_block *sb)
 621{
 622        struct workqueue_struct *old;
 623        struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 624                                                      WQ_MEM_RECLAIM, 0,
 625                                                      sb->s_id);
 626        if (!wq)
 627                return -ENOMEM;
 628        /*
 629         * This has to be atomic as more DIOs can race to create the workqueue
 630         */
 631        old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 632        /* Someone created workqueue before us? Free ours... */
 633        if (old)
 634                destroy_workqueue(wq);
 635        return 0;
 636}
 637
 638static int dio_set_defer_completion(struct dio *dio)
 639{
 640        struct super_block *sb = dio->inode->i_sb;
 641
 642        if (dio->defer_completion)
 643                return 0;
 644        dio->defer_completion = true;
 645        if (!sb->s_dio_done_wq)
 646                return sb_init_dio_done_wq(sb);
 647        return 0;
 648}
 649
 650/*
 651 * Call into the fs to map some more disk blocks.  We record the current number
 652 * of available blocks at sdio->blocks_available.  These are in units of the
 653 * fs blocksize, i_blocksize(inode).
 654 *
 655 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 656 * it uses the passed inode-relative block number as the file offset, as usual.
 657 *
 658 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 659 * has remaining to do.  The fs should not map more than this number of blocks.
 660 *
 661 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 662 * indicate how much contiguous disk space has been made available at
 663 * bh->b_blocknr.
 664 *
 665 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 666 * This isn't very efficient...
 667 *
 668 * In the case of filesystem holes: the fs may return an arbitrarily-large
 669 * hole by returning an appropriate value in b_size and by clearing
 670 * buffer_mapped().  However the direct-io code will only process holes one
 671 * block at a time - it will repeatedly call get_block() as it walks the hole.
 672 */
 673static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 674                           struct buffer_head *map_bh)
 675{
 676        int ret;
 677        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 678        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 679        unsigned long fs_count; /* Number of filesystem-sized blocks */
 680        int create;
 681        unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
 682
 683        /*
 684         * If there was a memory error and we've overwritten all the
 685         * mapped blocks then we can now return that memory error
 686         */
 687        ret = dio->page_errors;
 688        if (ret == 0) {
 689                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 690                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 691                fs_endblk = (sdio->final_block_in_request - 1) >>
 692                                        sdio->blkfactor;
 693                fs_count = fs_endblk - fs_startblk + 1;
 694
 695                map_bh->b_state = 0;
 696                map_bh->b_size = fs_count << i_blkbits;
 697
 698                /*
 699                 * For writes that could fill holes inside i_size on a
 700                 * DIO_SKIP_HOLES filesystem we forbid block creations: only
 701                 * overwrites are permitted. We will return early to the caller
 702                 * once we see an unmapped buffer head returned, and the caller
 703                 * will fall back to buffered I/O.
 704                 *
 705                 * Otherwise the decision is left to the get_blocks method,
 706                 * which may decide to handle it or also return an unmapped
 707                 * buffer head.
 708                 */
 709                create = dio->op == REQ_OP_WRITE;
 710                if (dio->flags & DIO_SKIP_HOLES) {
 711                        if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
 712                                                        i_blkbits))
 713                                create = 0;
 714                }
 715
 716                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 717                                                map_bh, create);
 718
 719                /* Store for completion */
 720                dio->private = map_bh->b_private;
 721
 722                if (ret == 0 && buffer_defer_completion(map_bh))
 723                        ret = dio_set_defer_completion(dio);
 724        }
 725        return ret;
 726}
 727
 728/*
 729 * There is no bio.  Make one now.
 730 */
 731static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 732                sector_t start_sector, struct buffer_head *map_bh)
 733{
 734        sector_t sector;
 735        int ret, nr_pages;
 736
 737        ret = dio_bio_reap(dio, sdio);
 738        if (ret)
 739                goto out;
 740        sector = start_sector << (sdio->blkbits - 9);
 741        nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
 742        BUG_ON(nr_pages <= 0);
 743        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 744        sdio->boundary = 0;
 745out:
 746        return ret;
 747}
 748
 749/*
 750 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 751 * that was successful then update final_block_in_bio and take a ref against
 752 * the just-added page.
 753 *
 754 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 755 */
 756static inline int dio_bio_add_page(struct dio_submit *sdio)
 757{
 758        int ret;
 759
 760        ret = bio_add_page(sdio->bio, sdio->cur_page,
 761                        sdio->cur_page_len, sdio->cur_page_offset);
 762        if (ret == sdio->cur_page_len) {
 763                /*
 764                 * Decrement count only, if we are done with this page
 765                 */
 766                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 767                        sdio->pages_in_io--;
 768                get_page(sdio->cur_page);
 769                sdio->final_block_in_bio = sdio->cur_page_block +
 770                        (sdio->cur_page_len >> sdio->blkbits);
 771                ret = 0;
 772        } else {
 773                ret = 1;
 774        }
 775        return ret;
 776}
 777                
 778/*
 779 * Put cur_page under IO.  The section of cur_page which is described by
 780 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 781 * starts on-disk at cur_page_block.
 782 *
 783 * We take a ref against the page here (on behalf of its presence in the bio).
 784 *
 785 * The caller of this function is responsible for removing cur_page from the
 786 * dio, and for dropping the refcount which came from that presence.
 787 */
 788static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 789                struct buffer_head *map_bh)
 790{
 791        int ret = 0;
 792
 793        if (sdio->bio) {
 794                loff_t cur_offset = sdio->cur_page_fs_offset;
 795                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 796                        sdio->bio->bi_iter.bi_size;
 797
 798                /*
 799                 * See whether this new request is contiguous with the old.
 800                 *
 801                 * Btrfs cannot handle having logically non-contiguous requests
 802                 * submitted.  For example if you have
 803                 *
 804                 * Logical:  [0-4095][HOLE][8192-12287]
 805                 * Physical: [0-4095]      [4096-8191]
 806                 *
 807                 * We cannot submit those pages together as one BIO.  So if our
 808                 * current logical offset in the file does not equal what would
 809                 * be the next logical offset in the bio, submit the bio we
 810                 * have.
 811                 */
 812                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 813                    cur_offset != bio_next_offset)
 814                        dio_bio_submit(dio, sdio);
 815        }
 816
 817        if (sdio->bio == NULL) {
 818                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 819                if (ret)
 820                        goto out;
 821        }
 822
 823        if (dio_bio_add_page(sdio) != 0) {
 824                dio_bio_submit(dio, sdio);
 825                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 826                if (ret == 0) {
 827                        ret = dio_bio_add_page(sdio);
 828                        BUG_ON(ret != 0);
 829                }
 830        }
 831out:
 832        return ret;
 833}
 834
 835/*
 836 * An autonomous function to put a chunk of a page under deferred IO.
 837 *
 838 * The caller doesn't actually know (or care) whether this piece of page is in
 839 * a BIO, or is under IO or whatever.  We just take care of all possible 
 840 * situations here.  The separation between the logic of do_direct_IO() and
 841 * that of submit_page_section() is important for clarity.  Please don't break.
 842 *
 843 * The chunk of page starts on-disk at blocknr.
 844 *
 845 * We perform deferred IO, by recording the last-submitted page inside our
 846 * private part of the dio structure.  If possible, we just expand the IO
 847 * across that page here.
 848 *
 849 * If that doesn't work out then we put the old page into the bio and add this
 850 * page to the dio instead.
 851 */
 852static inline int
 853submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 854                    unsigned offset, unsigned len, sector_t blocknr,
 855                    struct buffer_head *map_bh)
 856{
 857        int ret = 0;
 858
 859        if (dio->op == REQ_OP_WRITE) {
 860                /*
 861                 * Read accounting is performed in submit_bio()
 862                 */
 863                task_io_account_write(len);
 864        }
 865
 866        /*
 867         * Can we just grow the current page's presence in the dio?
 868         */
 869        if (sdio->cur_page == page &&
 870            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 871            sdio->cur_page_block +
 872            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 873                sdio->cur_page_len += len;
 874                goto out;
 875        }
 876
 877        /*
 878         * If there's a deferred page already there then send it.
 879         */
 880        if (sdio->cur_page) {
 881                ret = dio_send_cur_page(dio, sdio, map_bh);
 882                put_page(sdio->cur_page);
 883                sdio->cur_page = NULL;
 884                if (ret)
 885                        return ret;
 886        }
 887
 888        get_page(page);         /* It is in dio */
 889        sdio->cur_page = page;
 890        sdio->cur_page_offset = offset;
 891        sdio->cur_page_len = len;
 892        sdio->cur_page_block = blocknr;
 893        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 894out:
 895        /*
 896         * If sdio->boundary then we want to schedule the IO now to
 897         * avoid metadata seeks.
 898         */
 899        if (sdio->boundary) {
 900                ret = dio_send_cur_page(dio, sdio, map_bh);
 901                if (sdio->bio)
 902                        dio_bio_submit(dio, sdio);
 903                put_page(sdio->cur_page);
 904                sdio->cur_page = NULL;
 905        }
 906        return ret;
 907}
 908
 909/*
 910 * If we are not writing the entire block and get_block() allocated
 911 * the block for us, we need to fill-in the unused portion of the
 912 * block with zeros. This happens only if user-buffer, fileoffset or
 913 * io length is not filesystem block-size multiple.
 914 *
 915 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 916 * IO.
 917 */
 918static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 919                int end, struct buffer_head *map_bh)
 920{
 921        unsigned dio_blocks_per_fs_block;
 922        unsigned this_chunk_blocks;     /* In dio_blocks */
 923        unsigned this_chunk_bytes;
 924        struct page *page;
 925
 926        sdio->start_zero_done = 1;
 927        if (!sdio->blkfactor || !buffer_new(map_bh))
 928                return;
 929
 930        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 931        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 932
 933        if (!this_chunk_blocks)
 934                return;
 935
 936        /*
 937         * We need to zero out part of an fs block.  It is either at the
 938         * beginning or the end of the fs block.
 939         */
 940        if (end) 
 941                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 942
 943        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 944
 945        page = ZERO_PAGE(0);
 946        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 947                                sdio->next_block_for_io, map_bh))
 948                return;
 949
 950        sdio->next_block_for_io += this_chunk_blocks;
 951}
 952
 953/*
 954 * Walk the user pages, and the file, mapping blocks to disk and generating
 955 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 956 * into submit_page_section(), which takes care of the next stage of submission
 957 *
 958 * Direct IO against a blockdev is different from a file.  Because we can
 959 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 960 * blockdev IO be able to have fine alignment and large sizes.
 961 *
 962 * So what we do is to permit the ->get_block function to populate bh.b_size
 963 * with the size of IO which is permitted at this offset and this i_blkbits.
 964 *
 965 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 966 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 967 * fine alignment but still allows this function to work in PAGE_SIZE units.
 968 */
 969static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 970                        struct buffer_head *map_bh)
 971{
 972        const unsigned blkbits = sdio->blkbits;
 973        const unsigned i_blkbits = blkbits + sdio->blkfactor;
 974        int ret = 0;
 975
 976        while (sdio->block_in_file < sdio->final_block_in_request) {
 977                struct page *page;
 978                size_t from, to;
 979
 980                page = dio_get_page(dio, sdio);
 981                if (IS_ERR(page)) {
 982                        ret = PTR_ERR(page);
 983                        goto out;
 984                }
 985                from = sdio->head ? 0 : sdio->from;
 986                to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
 987                sdio->head++;
 988
 989                while (from < to) {
 990                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 991                        unsigned this_chunk_blocks;     /* # of blocks */
 992                        unsigned u;
 993
 994                        if (sdio->blocks_available == 0) {
 995                                /*
 996                                 * Need to go and map some more disk
 997                                 */
 998                                unsigned long blkmask;
 999                                unsigned long dio_remainder;
1000
1001                                ret = get_more_blocks(dio, sdio, map_bh);
1002                                if (ret) {
1003                                        put_page(page);
1004                                        goto out;
1005                                }
1006                                if (!buffer_mapped(map_bh))
1007                                        goto do_holes;
1008
1009                                sdio->blocks_available =
1010                                                map_bh->b_size >> blkbits;
1011                                sdio->next_block_for_io =
1012                                        map_bh->b_blocknr << sdio->blkfactor;
1013                                if (buffer_new(map_bh)) {
1014                                        clean_bdev_aliases(
1015                                                map_bh->b_bdev,
1016                                                map_bh->b_blocknr,
1017                                                map_bh->b_size >> i_blkbits);
1018                                }
1019
1020                                if (!sdio->blkfactor)
1021                                        goto do_holes;
1022
1023                                blkmask = (1 << sdio->blkfactor) - 1;
1024                                dio_remainder = (sdio->block_in_file & blkmask);
1025
1026                                /*
1027                                 * If we are at the start of IO and that IO
1028                                 * starts partway into a fs-block,
1029                                 * dio_remainder will be non-zero.  If the IO
1030                                 * is a read then we can simply advance the IO
1031                                 * cursor to the first block which is to be
1032                                 * read.  But if the IO is a write and the
1033                                 * block was newly allocated we cannot do that;
1034                                 * the start of the fs block must be zeroed out
1035                                 * on-disk
1036                                 */
1037                                if (!buffer_new(map_bh))
1038                                        sdio->next_block_for_io += dio_remainder;
1039                                sdio->blocks_available -= dio_remainder;
1040                        }
1041do_holes:
1042                        /* Handle holes */
1043                        if (!buffer_mapped(map_bh)) {
1044                                loff_t i_size_aligned;
1045
1046                                /* AKPM: eargh, -ENOTBLK is a hack */
1047                                if (dio->op == REQ_OP_WRITE) {
1048                                        put_page(page);
1049                                        return -ENOTBLK;
1050                                }
1051
1052                                /*
1053                                 * Be sure to account for a partial block as the
1054                                 * last block in the file
1055                                 */
1056                                i_size_aligned = ALIGN(i_size_read(dio->inode),
1057                                                        1 << blkbits);
1058                                if (sdio->block_in_file >=
1059                                                i_size_aligned >> blkbits) {
1060                                        /* We hit eof */
1061                                        put_page(page);
1062                                        goto out;
1063                                }
1064                                zero_user(page, from, 1 << blkbits);
1065                                sdio->block_in_file++;
1066                                from += 1 << blkbits;
1067                                dio->result += 1 << blkbits;
1068                                goto next_block;
1069                        }
1070
1071                        /*
1072                         * If we're performing IO which has an alignment which
1073                         * is finer than the underlying fs, go check to see if
1074                         * we must zero out the start of this block.
1075                         */
1076                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1077                                dio_zero_block(dio, sdio, 0, map_bh);
1078
1079                        /*
1080                         * Work out, in this_chunk_blocks, how much disk we
1081                         * can add to this page
1082                         */
1083                        this_chunk_blocks = sdio->blocks_available;
1084                        u = (to - from) >> blkbits;
1085                        if (this_chunk_blocks > u)
1086                                this_chunk_blocks = u;
1087                        u = sdio->final_block_in_request - sdio->block_in_file;
1088                        if (this_chunk_blocks > u)
1089                                this_chunk_blocks = u;
1090                        this_chunk_bytes = this_chunk_blocks << blkbits;
1091                        BUG_ON(this_chunk_bytes == 0);
1092
1093                        if (this_chunk_blocks == sdio->blocks_available)
1094                                sdio->boundary = buffer_boundary(map_bh);
1095                        ret = submit_page_section(dio, sdio, page,
1096                                                  from,
1097                                                  this_chunk_bytes,
1098                                                  sdio->next_block_for_io,
1099                                                  map_bh);
1100                        if (ret) {
1101                                put_page(page);
1102                                goto out;
1103                        }
1104                        sdio->next_block_for_io += this_chunk_blocks;
1105
1106                        sdio->block_in_file += this_chunk_blocks;
1107                        from += this_chunk_bytes;
1108                        dio->result += this_chunk_bytes;
1109                        sdio->blocks_available -= this_chunk_blocks;
1110next_block:
1111                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1112                        if (sdio->block_in_file == sdio->final_block_in_request)
1113                                break;
1114                }
1115
1116                /* Drop the ref which was taken in get_user_pages() */
1117                put_page(page);
1118        }
1119out:
1120        return ret;
1121}
1122
1123static inline int drop_refcount(struct dio *dio)
1124{
1125        int ret2;
1126        unsigned long flags;
1127
1128        /*
1129         * Sync will always be dropping the final ref and completing the
1130         * operation.  AIO can if it was a broken operation described above or
1131         * in fact if all the bios race to complete before we get here.  In
1132         * that case dio_complete() translates the EIOCBQUEUED into the proper
1133         * return code that the caller will hand to ->complete().
1134         *
1135         * This is managed by the bio_lock instead of being an atomic_t so that
1136         * completion paths can drop their ref and use the remaining count to
1137         * decide to wake the submission path atomically.
1138         */
1139        spin_lock_irqsave(&dio->bio_lock, flags);
1140        ret2 = --dio->refcount;
1141        spin_unlock_irqrestore(&dio->bio_lock, flags);
1142        return ret2;
1143}
1144
1145/*
1146 * This is a library function for use by filesystem drivers.
1147 *
1148 * The locking rules are governed by the flags parameter:
1149 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1150 *    scheme for dumb filesystems.
1151 *    For writes this function is called under i_mutex and returns with
1152 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1153 *    taken and dropped again before returning.
1154 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1155 *    internal locking but rather rely on the filesystem to synchronize
1156 *    direct I/O reads/writes versus each other and truncate.
1157 *
1158 * To help with locking against truncate we incremented the i_dio_count
1159 * counter before starting direct I/O, and decrement it once we are done.
1160 * Truncate can wait for it to reach zero to provide exclusion.  It is
1161 * expected that filesystem provide exclusion between new direct I/O
1162 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1163 * but other filesystems need to take care of this on their own.
1164 *
1165 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1166 * is always inlined. Otherwise gcc is unable to split the structure into
1167 * individual fields and will generate much worse code. This is important
1168 * for the whole file.
1169 */
1170static inline ssize_t
1171do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1172                      struct block_device *bdev, struct iov_iter *iter,
1173                      get_block_t get_block, dio_iodone_t end_io,
1174                      dio_submit_t submit_io, int flags)
1175{
1176        unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1177        unsigned blkbits = i_blkbits;
1178        unsigned blocksize_mask = (1 << blkbits) - 1;
1179        ssize_t retval = -EINVAL;
1180        const size_t count = iov_iter_count(iter);
1181        loff_t offset = iocb->ki_pos;
1182        const loff_t end = offset + count;
1183        struct dio *dio;
1184        struct dio_submit sdio = { 0, };
1185        struct buffer_head map_bh = { 0, };
1186        struct blk_plug plug;
1187        unsigned long align = offset | iov_iter_alignment(iter);
1188
1189        /*
1190         * Avoid references to bdev if not absolutely needed to give
1191         * the early prefetch in the caller enough time.
1192         */
1193
1194        if (align & blocksize_mask) {
1195                if (bdev)
1196                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1197                blocksize_mask = (1 << blkbits) - 1;
1198                if (align & blocksize_mask)
1199                        goto out;
1200        }
1201
1202        /* watch out for a 0 len io from a tricksy fs */
1203        if (iov_iter_rw(iter) == READ && !count)
1204                return 0;
1205
1206        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1207        retval = -ENOMEM;
1208        if (!dio)
1209                goto out;
1210        /*
1211         * Believe it or not, zeroing out the page array caused a .5%
1212         * performance regression in a database benchmark.  So, we take
1213         * care to only zero out what's needed.
1214         */
1215        memset(dio, 0, offsetof(struct dio, pages));
1216
1217        dio->flags = flags;
1218        if (dio->flags & DIO_LOCKING) {
1219                if (iov_iter_rw(iter) == READ) {
1220                        struct address_space *mapping =
1221                                        iocb->ki_filp->f_mapping;
1222
1223                        /* will be released by direct_io_worker */
1224                        inode_lock(inode);
1225
1226                        retval = filemap_write_and_wait_range(mapping, offset,
1227                                                              end - 1);
1228                        if (retval) {
1229                                inode_unlock(inode);
1230                                kmem_cache_free(dio_cache, dio);
1231                                goto out;
1232                        }
1233                }
1234        }
1235
1236        /* Once we sampled i_size check for reads beyond EOF */
1237        dio->i_size = i_size_read(inode);
1238        if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1239                if (dio->flags & DIO_LOCKING)
1240                        inode_unlock(inode);
1241                kmem_cache_free(dio_cache, dio);
1242                retval = 0;
1243                goto out;
1244        }
1245
1246        /*
1247         * For file extending writes updating i_size before data writeouts
1248         * complete can expose uninitialized blocks in dumb filesystems.
1249         * In that case we need to wait for I/O completion even if asked
1250         * for an asynchronous write.
1251         */
1252        if (is_sync_kiocb(iocb))
1253                dio->is_async = false;
1254        else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1255                dio->is_async = false;
1256        else
1257                dio->is_async = true;
1258
1259        dio->inode = inode;
1260        if (iov_iter_rw(iter) == WRITE) {
1261                dio->op = REQ_OP_WRITE;
1262                dio->op_flags = REQ_SYNC | REQ_IDLE;
1263                if (iocb->ki_flags & IOCB_NOWAIT)
1264                        dio->op_flags |= REQ_NOWAIT;
1265        } else {
1266                dio->op = REQ_OP_READ;
1267        }
1268
1269        /*
1270         * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1271         * so that we can call ->fsync.
1272         */
1273        if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1274                retval = 0;
1275                if (iocb->ki_flags & IOCB_DSYNC)
1276                        retval = dio_set_defer_completion(dio);
1277                else if (!dio->inode->i_sb->s_dio_done_wq) {
1278                        /*
1279                         * In case of AIO write racing with buffered read we
1280                         * need to defer completion. We can't decide this now,
1281                         * however the workqueue needs to be initialized here.
1282                         */
1283                        retval = sb_init_dio_done_wq(dio->inode->i_sb);
1284                }
1285                if (retval) {
1286                        /*
1287                         * We grab i_mutex only for reads so we don't have
1288                         * to release it here
1289                         */
1290                        kmem_cache_free(dio_cache, dio);
1291                        goto out;
1292                }
1293        }
1294
1295        /*
1296         * Will be decremented at I/O completion time.
1297         */
1298        inode_dio_begin(inode);
1299
1300        retval = 0;
1301        sdio.blkbits = blkbits;
1302        sdio.blkfactor = i_blkbits - blkbits;
1303        sdio.block_in_file = offset >> blkbits;
1304
1305        sdio.get_block = get_block;
1306        dio->end_io = end_io;
1307        sdio.submit_io = submit_io;
1308        sdio.final_block_in_bio = -1;
1309        sdio.next_block_for_io = -1;
1310
1311        dio->iocb = iocb;
1312
1313        spin_lock_init(&dio->bio_lock);
1314        dio->refcount = 1;
1315
1316        dio->should_dirty = (iter->type == ITER_IOVEC);
1317        sdio.iter = iter;
1318        sdio.final_block_in_request = end >> blkbits;
1319
1320        /*
1321         * In case of non-aligned buffers, we may need 2 more
1322         * pages since we need to zero out first and last block.
1323         */
1324        if (unlikely(sdio.blkfactor))
1325                sdio.pages_in_io = 2;
1326
1327        sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1328
1329        blk_start_plug(&plug);
1330
1331        retval = do_direct_IO(dio, &sdio, &map_bh);
1332        if (retval)
1333                dio_cleanup(dio, &sdio);
1334
1335        if (retval == -ENOTBLK) {
1336                /*
1337                 * The remaining part of the request will be
1338                 * be handled by buffered I/O when we return
1339                 */
1340                retval = 0;
1341        }
1342        /*
1343         * There may be some unwritten disk at the end of a part-written
1344         * fs-block-sized block.  Go zero that now.
1345         */
1346        dio_zero_block(dio, &sdio, 1, &map_bh);
1347
1348        if (sdio.cur_page) {
1349                ssize_t ret2;
1350
1351                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1352                if (retval == 0)
1353                        retval = ret2;
1354                put_page(sdio.cur_page);
1355                sdio.cur_page = NULL;
1356        }
1357        if (sdio.bio)
1358                dio_bio_submit(dio, &sdio);
1359
1360        blk_finish_plug(&plug);
1361
1362        /*
1363         * It is possible that, we return short IO due to end of file.
1364         * In that case, we need to release all the pages we got hold on.
1365         */
1366        dio_cleanup(dio, &sdio);
1367
1368        /*
1369         * All block lookups have been performed. For READ requests
1370         * we can let i_mutex go now that its achieved its purpose
1371         * of protecting us from looking up uninitialized blocks.
1372         */
1373        if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1374                inode_unlock(dio->inode);
1375
1376        /*
1377         * The only time we want to leave bios in flight is when a successful
1378         * partial aio read or full aio write have been setup.  In that case
1379         * bio completion will call aio_complete.  The only time it's safe to
1380         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1381         * This had *better* be the only place that raises -EIOCBQUEUED.
1382         */
1383        BUG_ON(retval == -EIOCBQUEUED);
1384        if (dio->is_async && retval == 0 && dio->result &&
1385            (iov_iter_rw(iter) == READ || dio->result == count))
1386                retval = -EIOCBQUEUED;
1387        else
1388                dio_await_completion(dio);
1389
1390        if (drop_refcount(dio) == 0) {
1391                retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1392        } else
1393                BUG_ON(retval != -EIOCBQUEUED);
1394
1395out:
1396        return retval;
1397}
1398
1399ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1400                             struct block_device *bdev, struct iov_iter *iter,
1401                             get_block_t get_block,
1402                             dio_iodone_t end_io, dio_submit_t submit_io,
1403                             int flags)
1404{
1405        /*
1406         * The block device state is needed in the end to finally
1407         * submit everything.  Since it's likely to be cache cold
1408         * prefetch it here as first thing to hide some of the
1409         * latency.
1410         *
1411         * Attempt to prefetch the pieces we likely need later.
1412         */
1413        prefetch(&bdev->bd_disk->part_tbl);
1414        prefetch(bdev->bd_queue);
1415        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1416
1417        return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1418                                     end_io, submit_io, flags);
1419}
1420
1421EXPORT_SYMBOL(__blockdev_direct_IO);
1422
1423static __init int dio_init(void)
1424{
1425        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1426        return 0;
1427}
1428module_init(dio_init)
1429