linux/fs/ext4/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *      (jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51#define MPAGE_DA_EXTENT_TAIL 0x01
  52
  53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  54                              struct ext4_inode_info *ei)
  55{
  56        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  57        __u32 csum;
  58        __u16 dummy_csum = 0;
  59        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  60        unsigned int csum_size = sizeof(dummy_csum);
  61
  62        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  63        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  64        offset += csum_size;
  65        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  66                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  67
  68        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  69                offset = offsetof(struct ext4_inode, i_checksum_hi);
  70                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  71                                   EXT4_GOOD_OLD_INODE_SIZE,
  72                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  73                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  74                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  75                                           csum_size);
  76                        offset += csum_size;
  77                }
  78                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  79                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  80        }
  81
  82        return csum;
  83}
  84
  85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  86                                  struct ext4_inode_info *ei)
  87{
  88        __u32 provided, calculated;
  89
  90        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  91            cpu_to_le32(EXT4_OS_LINUX) ||
  92            !ext4_has_metadata_csum(inode->i_sb))
  93                return 1;
  94
  95        provided = le16_to_cpu(raw->i_checksum_lo);
  96        calculated = ext4_inode_csum(inode, raw, ei);
  97        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  98            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  99                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 100        else
 101                calculated &= 0xFFFF;
 102
 103        return provided == calculated;
 104}
 105
 106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 107                                struct ext4_inode_info *ei)
 108{
 109        __u32 csum;
 110
 111        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 112            cpu_to_le32(EXT4_OS_LINUX) ||
 113            !ext4_has_metadata_csum(inode->i_sb))
 114                return;
 115
 116        csum = ext4_inode_csum(inode, raw, ei);
 117        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 118        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 119            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 120                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 121}
 122
 123static inline int ext4_begin_ordered_truncate(struct inode *inode,
 124                                              loff_t new_size)
 125{
 126        trace_ext4_begin_ordered_truncate(inode, new_size);
 127        /*
 128         * If jinode is zero, then we never opened the file for
 129         * writing, so there's no need to call
 130         * jbd2_journal_begin_ordered_truncate() since there's no
 131         * outstanding writes we need to flush.
 132         */
 133        if (!EXT4_I(inode)->jinode)
 134                return 0;
 135        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 136                                                   EXT4_I(inode)->jinode,
 137                                                   new_size);
 138}
 139
 140static void ext4_invalidatepage(struct page *page, unsigned int offset,
 141                                unsigned int length);
 142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145                                  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153        if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154                int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155                                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157                if (ext4_has_inline_data(inode))
 158                        return 0;
 159
 160                return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161        }
 162        return S_ISLNK(inode->i_mode) && inode->i_size &&
 163               (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 172                                 int nblocks)
 173{
 174        int ret;
 175
 176        /*
 177         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 178         * moment, get_block can be called only for blocks inside i_size since
 179         * page cache has been already dropped and writes are blocked by
 180         * i_mutex. So we can safely drop the i_data_sem here.
 181         */
 182        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 183        jbd_debug(2, "restarting handle %p\n", handle);
 184        up_write(&EXT4_I(inode)->i_data_sem);
 185        ret = ext4_journal_restart(handle, nblocks);
 186        down_write(&EXT4_I(inode)->i_data_sem);
 187        ext4_discard_preallocations(inode);
 188
 189        return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext4_evict_inode(struct inode *inode)
 196{
 197        handle_t *handle;
 198        int err;
 199        int extra_credits = 3;
 200        struct ext4_xattr_inode_array *ea_inode_array = NULL;
 201
 202        trace_ext4_evict_inode(inode);
 203
 204        if (inode->i_nlink) {
 205                /*
 206                 * When journalling data dirty buffers are tracked only in the
 207                 * journal. So although mm thinks everything is clean and
 208                 * ready for reaping the inode might still have some pages to
 209                 * write in the running transaction or waiting to be
 210                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 211                 * (via truncate_inode_pages()) to discard these buffers can
 212                 * cause data loss. Also even if we did not discard these
 213                 * buffers, we would have no way to find them after the inode
 214                 * is reaped and thus user could see stale data if he tries to
 215                 * read them before the transaction is checkpointed. So be
 216                 * careful and force everything to disk here... We use
 217                 * ei->i_datasync_tid to store the newest transaction
 218                 * containing inode's data.
 219                 *
 220                 * Note that directories do not have this problem because they
 221                 * don't use page cache.
 222                 */
 223                if (inode->i_ino != EXT4_JOURNAL_INO &&
 224                    ext4_should_journal_data(inode) &&
 225                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 226                    inode->i_data.nrpages) {
 227                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 228                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 229
 230                        jbd2_complete_transaction(journal, commit_tid);
 231                        filemap_write_and_wait(&inode->i_data);
 232                }
 233                truncate_inode_pages_final(&inode->i_data);
 234
 235                goto no_delete;
 236        }
 237
 238        if (is_bad_inode(inode))
 239                goto no_delete;
 240        dquot_initialize(inode);
 241
 242        if (ext4_should_order_data(inode))
 243                ext4_begin_ordered_truncate(inode, 0);
 244        truncate_inode_pages_final(&inode->i_data);
 245
 246        /*
 247         * Protect us against freezing - iput() caller didn't have to have any
 248         * protection against it
 249         */
 250        sb_start_intwrite(inode->i_sb);
 251
 252        if (!IS_NOQUOTA(inode))
 253                extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 254
 255        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 256                                 ext4_blocks_for_truncate(inode)+extra_credits);
 257        if (IS_ERR(handle)) {
 258                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 259                /*
 260                 * If we're going to skip the normal cleanup, we still need to
 261                 * make sure that the in-core orphan linked list is properly
 262                 * cleaned up.
 263                 */
 264                ext4_orphan_del(NULL, inode);
 265                sb_end_intwrite(inode->i_sb);
 266                goto no_delete;
 267        }
 268
 269        if (IS_SYNC(inode))
 270                ext4_handle_sync(handle);
 271
 272        /*
 273         * Set inode->i_size to 0 before calling ext4_truncate(). We need
 274         * special handling of symlinks here because i_size is used to
 275         * determine whether ext4_inode_info->i_data contains symlink data or
 276         * block mappings. Setting i_size to 0 will remove its fast symlink
 277         * status. Erase i_data so that it becomes a valid empty block map.
 278         */
 279        if (ext4_inode_is_fast_symlink(inode))
 280                memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 281        inode->i_size = 0;
 282        err = ext4_mark_inode_dirty(handle, inode);
 283        if (err) {
 284                ext4_warning(inode->i_sb,
 285                             "couldn't mark inode dirty (err %d)", err);
 286                goto stop_handle;
 287        }
 288        if (inode->i_blocks) {
 289                err = ext4_truncate(inode);
 290                if (err) {
 291                        ext4_error(inode->i_sb,
 292                                   "couldn't truncate inode %lu (err %d)",
 293                                   inode->i_ino, err);
 294                        goto stop_handle;
 295                }
 296        }
 297
 298        /* Remove xattr references. */
 299        err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 300                                      extra_credits);
 301        if (err) {
 302                ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 303stop_handle:
 304                ext4_journal_stop(handle);
 305                ext4_orphan_del(NULL, inode);
 306                sb_end_intwrite(inode->i_sb);
 307                ext4_xattr_inode_array_free(ea_inode_array);
 308                goto no_delete;
 309        }
 310
 311        /*
 312         * Kill off the orphan record which ext4_truncate created.
 313         * AKPM: I think this can be inside the above `if'.
 314         * Note that ext4_orphan_del() has to be able to cope with the
 315         * deletion of a non-existent orphan - this is because we don't
 316         * know if ext4_truncate() actually created an orphan record.
 317         * (Well, we could do this if we need to, but heck - it works)
 318         */
 319        ext4_orphan_del(handle, inode);
 320        EXT4_I(inode)->i_dtime  = get_seconds();
 321
 322        /*
 323         * One subtle ordering requirement: if anything has gone wrong
 324         * (transaction abort, IO errors, whatever), then we can still
 325         * do these next steps (the fs will already have been marked as
 326         * having errors), but we can't free the inode if the mark_dirty
 327         * fails.
 328         */
 329        if (ext4_mark_inode_dirty(handle, inode))
 330                /* If that failed, just do the required in-core inode clear. */
 331                ext4_clear_inode(inode);
 332        else
 333                ext4_free_inode(handle, inode);
 334        ext4_journal_stop(handle);
 335        sb_end_intwrite(inode->i_sb);
 336        ext4_xattr_inode_array_free(ea_inode_array);
 337        return;
 338no_delete:
 339        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 340}
 341
 342#ifdef CONFIG_QUOTA
 343qsize_t *ext4_get_reserved_space(struct inode *inode)
 344{
 345        return &EXT4_I(inode)->i_reserved_quota;
 346}
 347#endif
 348
 349/*
 350 * Called with i_data_sem down, which is important since we can call
 351 * ext4_discard_preallocations() from here.
 352 */
 353void ext4_da_update_reserve_space(struct inode *inode,
 354                                        int used, int quota_claim)
 355{
 356        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 357        struct ext4_inode_info *ei = EXT4_I(inode);
 358
 359        spin_lock(&ei->i_block_reservation_lock);
 360        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 361        if (unlikely(used > ei->i_reserved_data_blocks)) {
 362                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 363                         "with only %d reserved data blocks",
 364                         __func__, inode->i_ino, used,
 365                         ei->i_reserved_data_blocks);
 366                WARN_ON(1);
 367                used = ei->i_reserved_data_blocks;
 368        }
 369
 370        /* Update per-inode reservations */
 371        ei->i_reserved_data_blocks -= used;
 372        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 373
 374        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 375
 376        /* Update quota subsystem for data blocks */
 377        if (quota_claim)
 378                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 379        else {
 380                /*
 381                 * We did fallocate with an offset that is already delayed
 382                 * allocated. So on delayed allocated writeback we should
 383                 * not re-claim the quota for fallocated blocks.
 384                 */
 385                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 386        }
 387
 388        /*
 389         * If we have done all the pending block allocations and if
 390         * there aren't any writers on the inode, we can discard the
 391         * inode's preallocations.
 392         */
 393        if ((ei->i_reserved_data_blocks == 0) &&
 394            (atomic_read(&inode->i_writecount) == 0))
 395                ext4_discard_preallocations(inode);
 396}
 397
 398static int __check_block_validity(struct inode *inode, const char *func,
 399                                unsigned int line,
 400                                struct ext4_map_blocks *map)
 401{
 402        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 403                                   map->m_len)) {
 404                ext4_error_inode(inode, func, line, map->m_pblk,
 405                                 "lblock %lu mapped to illegal pblock "
 406                                 "(length %d)", (unsigned long) map->m_lblk,
 407                                 map->m_len);
 408                return -EFSCORRUPTED;
 409        }
 410        return 0;
 411}
 412
 413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 414                       ext4_lblk_t len)
 415{
 416        int ret;
 417
 418        if (ext4_encrypted_inode(inode))
 419                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 420
 421        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 422        if (ret > 0)
 423                ret = 0;
 424
 425        return ret;
 426}
 427
 428#define check_block_validity(inode, map)        \
 429        __check_block_validity((inode), __func__, __LINE__, (map))
 430
 431#ifdef ES_AGGRESSIVE_TEST
 432static void ext4_map_blocks_es_recheck(handle_t *handle,
 433                                       struct inode *inode,
 434                                       struct ext4_map_blocks *es_map,
 435                                       struct ext4_map_blocks *map,
 436                                       int flags)
 437{
 438        int retval;
 439
 440        map->m_flags = 0;
 441        /*
 442         * There is a race window that the result is not the same.
 443         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 444         * is that we lookup a block mapping in extent status tree with
 445         * out taking i_data_sem.  So at the time the unwritten extent
 446         * could be converted.
 447         */
 448        down_read(&EXT4_I(inode)->i_data_sem);
 449        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 450                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 451                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 452        } else {
 453                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 454                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 455        }
 456        up_read((&EXT4_I(inode)->i_data_sem));
 457
 458        /*
 459         * We don't check m_len because extent will be collpased in status
 460         * tree.  So the m_len might not equal.
 461         */
 462        if (es_map->m_lblk != map->m_lblk ||
 463            es_map->m_flags != map->m_flags ||
 464            es_map->m_pblk != map->m_pblk) {
 465                printk("ES cache assertion failed for inode: %lu "
 466                       "es_cached ex [%d/%d/%llu/%x] != "
 467                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 468                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 469                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 470                       map->m_len, map->m_pblk, map->m_flags,
 471                       retval, flags);
 472        }
 473}
 474#endif /* ES_AGGRESSIVE_TEST */
 475
 476/*
 477 * The ext4_map_blocks() function tries to look up the requested blocks,
 478 * and returns if the blocks are already mapped.
 479 *
 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 481 * and store the allocated blocks in the result buffer head and mark it
 482 * mapped.
 483 *
 484 * If file type is extents based, it will call ext4_ext_map_blocks(),
 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 486 * based files
 487 *
 488 * On success, it returns the number of blocks being mapped or allocated.  if
 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 491 *
 492 * It returns 0 if plain look up failed (blocks have not been allocated), in
 493 * that case, @map is returned as unmapped but we still do fill map->m_len to
 494 * indicate the length of a hole starting at map->m_lblk.
 495 *
 496 * It returns the error in case of allocation failure.
 497 */
 498int ext4_map_blocks(handle_t *handle, struct inode *inode,
 499                    struct ext4_map_blocks *map, int flags)
 500{
 501        struct extent_status es;
 502        int retval;
 503        int ret = 0;
 504#ifdef ES_AGGRESSIVE_TEST
 505        struct ext4_map_blocks orig_map;
 506
 507        memcpy(&orig_map, map, sizeof(*map));
 508#endif
 509
 510        map->m_flags = 0;
 511        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 512                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 513                  (unsigned long) map->m_lblk);
 514
 515        /*
 516         * ext4_map_blocks returns an int, and m_len is an unsigned int
 517         */
 518        if (unlikely(map->m_len > INT_MAX))
 519                map->m_len = INT_MAX;
 520
 521        /* We can handle the block number less than EXT_MAX_BLOCKS */
 522        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 523                return -EFSCORRUPTED;
 524
 525        /* Lookup extent status tree firstly */
 526        if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 527                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 528                        map->m_pblk = ext4_es_pblock(&es) +
 529                                        map->m_lblk - es.es_lblk;
 530                        map->m_flags |= ext4_es_is_written(&es) ?
 531                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 532                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 533                        if (retval > map->m_len)
 534                                retval = map->m_len;
 535                        map->m_len = retval;
 536                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 537                        map->m_pblk = 0;
 538                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 539                        if (retval > map->m_len)
 540                                retval = map->m_len;
 541                        map->m_len = retval;
 542                        retval = 0;
 543                } else {
 544                        BUG_ON(1);
 545                }
 546#ifdef ES_AGGRESSIVE_TEST
 547                ext4_map_blocks_es_recheck(handle, inode, map,
 548                                           &orig_map, flags);
 549#endif
 550                goto found;
 551        }
 552
 553        /*
 554         * Try to see if we can get the block without requesting a new
 555         * file system block.
 556         */
 557        down_read(&EXT4_I(inode)->i_data_sem);
 558        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 559                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 560                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 561        } else {
 562                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 563                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 564        }
 565        if (retval > 0) {
 566                unsigned int status;
 567
 568                if (unlikely(retval != map->m_len)) {
 569                        ext4_warning(inode->i_sb,
 570                                     "ES len assertion failed for inode "
 571                                     "%lu: retval %d != map->m_len %d",
 572                                     inode->i_ino, retval, map->m_len);
 573                        WARN_ON(1);
 574                }
 575
 576                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 577                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 578                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 579                    !(status & EXTENT_STATUS_WRITTEN) &&
 580                    ext4_find_delalloc_range(inode, map->m_lblk,
 581                                             map->m_lblk + map->m_len - 1))
 582                        status |= EXTENT_STATUS_DELAYED;
 583                ret = ext4_es_insert_extent(inode, map->m_lblk,
 584                                            map->m_len, map->m_pblk, status);
 585                if (ret < 0)
 586                        retval = ret;
 587        }
 588        up_read((&EXT4_I(inode)->i_data_sem));
 589
 590found:
 591        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 592                ret = check_block_validity(inode, map);
 593                if (ret != 0)
 594                        return ret;
 595        }
 596
 597        /* If it is only a block(s) look up */
 598        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 599                return retval;
 600
 601        /*
 602         * Returns if the blocks have already allocated
 603         *
 604         * Note that if blocks have been preallocated
 605         * ext4_ext_get_block() returns the create = 0
 606         * with buffer head unmapped.
 607         */
 608        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 609                /*
 610                 * If we need to convert extent to unwritten
 611                 * we continue and do the actual work in
 612                 * ext4_ext_map_blocks()
 613                 */
 614                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 615                        return retval;
 616
 617        /*
 618         * Here we clear m_flags because after allocating an new extent,
 619         * it will be set again.
 620         */
 621        map->m_flags &= ~EXT4_MAP_FLAGS;
 622
 623        /*
 624         * New blocks allocate and/or writing to unwritten extent
 625         * will possibly result in updating i_data, so we take
 626         * the write lock of i_data_sem, and call get_block()
 627         * with create == 1 flag.
 628         */
 629        down_write(&EXT4_I(inode)->i_data_sem);
 630
 631        /*
 632         * We need to check for EXT4 here because migrate
 633         * could have changed the inode type in between
 634         */
 635        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 636                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 637        } else {
 638                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 639
 640                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 641                        /*
 642                         * We allocated new blocks which will result in
 643                         * i_data's format changing.  Force the migrate
 644                         * to fail by clearing migrate flags
 645                         */
 646                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 647                }
 648
 649                /*
 650                 * Update reserved blocks/metadata blocks after successful
 651                 * block allocation which had been deferred till now. We don't
 652                 * support fallocate for non extent files. So we can update
 653                 * reserve space here.
 654                 */
 655                if ((retval > 0) &&
 656                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 657                        ext4_da_update_reserve_space(inode, retval, 1);
 658        }
 659
 660        if (retval > 0) {
 661                unsigned int status;
 662
 663                if (unlikely(retval != map->m_len)) {
 664                        ext4_warning(inode->i_sb,
 665                                     "ES len assertion failed for inode "
 666                                     "%lu: retval %d != map->m_len %d",
 667                                     inode->i_ino, retval, map->m_len);
 668                        WARN_ON(1);
 669                }
 670
 671                /*
 672                 * We have to zeroout blocks before inserting them into extent
 673                 * status tree. Otherwise someone could look them up there and
 674                 * use them before they are really zeroed. We also have to
 675                 * unmap metadata before zeroing as otherwise writeback can
 676                 * overwrite zeros with stale data from block device.
 677                 */
 678                if (flags & EXT4_GET_BLOCKS_ZERO &&
 679                    map->m_flags & EXT4_MAP_MAPPED &&
 680                    map->m_flags & EXT4_MAP_NEW) {
 681                        clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 682                                           map->m_len);
 683                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 684                                                 map->m_pblk, map->m_len);
 685                        if (ret) {
 686                                retval = ret;
 687                                goto out_sem;
 688                        }
 689                }
 690
 691                /*
 692                 * If the extent has been zeroed out, we don't need to update
 693                 * extent status tree.
 694                 */
 695                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696                    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 697                        if (ext4_es_is_written(&es))
 698                                goto out_sem;
 699                }
 700                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703                    !(status & EXTENT_STATUS_WRITTEN) &&
 704                    ext4_find_delalloc_range(inode, map->m_lblk,
 705                                             map->m_lblk + map->m_len - 1))
 706                        status |= EXTENT_STATUS_DELAYED;
 707                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708                                            map->m_pblk, status);
 709                if (ret < 0) {
 710                        retval = ret;
 711                        goto out_sem;
 712                }
 713        }
 714
 715out_sem:
 716        up_write((&EXT4_I(inode)->i_data_sem));
 717        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718                ret = check_block_validity(inode, map);
 719                if (ret != 0)
 720                        return ret;
 721
 722                /*
 723                 * Inodes with freshly allocated blocks where contents will be
 724                 * visible after transaction commit must be on transaction's
 725                 * ordered data list.
 726                 */
 727                if (map->m_flags & EXT4_MAP_NEW &&
 728                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730                    !ext4_is_quota_file(inode) &&
 731                    ext4_should_order_data(inode)) {
 732                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 733                                ret = ext4_jbd2_inode_add_wait(handle, inode);
 734                        else
 735                                ret = ext4_jbd2_inode_add_write(handle, inode);
 736                        if (ret)
 737                                return ret;
 738                }
 739        }
 740        return retval;
 741}
 742
 743/*
 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 745 * we have to be careful as someone else may be manipulating b_state as well.
 746 */
 747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 748{
 749        unsigned long old_state;
 750        unsigned long new_state;
 751
 752        flags &= EXT4_MAP_FLAGS;
 753
 754        /* Dummy buffer_head? Set non-atomically. */
 755        if (!bh->b_page) {
 756                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 757                return;
 758        }
 759        /*
 760         * Someone else may be modifying b_state. Be careful! This is ugly but
 761         * once we get rid of using bh as a container for mapping information
 762         * to pass to / from get_block functions, this can go away.
 763         */
 764        do {
 765                old_state = READ_ONCE(bh->b_state);
 766                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 767        } while (unlikely(
 768                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 769}
 770
 771static int _ext4_get_block(struct inode *inode, sector_t iblock,
 772                           struct buffer_head *bh, int flags)
 773{
 774        struct ext4_map_blocks map;
 775        int ret = 0;
 776
 777        if (ext4_has_inline_data(inode))
 778                return -ERANGE;
 779
 780        map.m_lblk = iblock;
 781        map.m_len = bh->b_size >> inode->i_blkbits;
 782
 783        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 784                              flags);
 785        if (ret > 0) {
 786                map_bh(bh, inode->i_sb, map.m_pblk);
 787                ext4_update_bh_state(bh, map.m_flags);
 788                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 789                ret = 0;
 790        } else if (ret == 0) {
 791                /* hole case, need to fill in bh->b_size */
 792                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 793        }
 794        return ret;
 795}
 796
 797int ext4_get_block(struct inode *inode, sector_t iblock,
 798                   struct buffer_head *bh, int create)
 799{
 800        return _ext4_get_block(inode, iblock, bh,
 801                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 802}
 803
 804/*
 805 * Get block function used when preparing for buffered write if we require
 806 * creating an unwritten extent if blocks haven't been allocated.  The extent
 807 * will be converted to written after the IO is complete.
 808 */
 809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 810                             struct buffer_head *bh_result, int create)
 811{
 812        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813                   inode->i_ino, create);
 814        return _ext4_get_block(inode, iblock, bh_result,
 815                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 816}
 817
 818/* Maximum number of blocks we map for direct IO at once. */
 819#define DIO_MAX_BLOCKS 4096
 820
 821/*
 822 * Get blocks function for the cases that need to start a transaction -
 823 * generally difference cases of direct IO and DAX IO. It also handles retries
 824 * in case of ENOSPC.
 825 */
 826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 827                                struct buffer_head *bh_result, int flags)
 828{
 829        int dio_credits;
 830        handle_t *handle;
 831        int retries = 0;
 832        int ret;
 833
 834        /* Trim mapping request to maximum we can map at once for DIO */
 835        if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 836                bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 837        dio_credits = ext4_chunk_trans_blocks(inode,
 838                                      bh_result->b_size >> inode->i_blkbits);
 839retry:
 840        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 841        if (IS_ERR(handle))
 842                return PTR_ERR(handle);
 843
 844        ret = _ext4_get_block(inode, iblock, bh_result, flags);
 845        ext4_journal_stop(handle);
 846
 847        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 848                goto retry;
 849        return ret;
 850}
 851
 852/* Get block function for DIO reads and writes to inodes without extents */
 853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 854                       struct buffer_head *bh, int create)
 855{
 856        /* We don't expect handle for direct IO */
 857        WARN_ON_ONCE(ext4_journal_current_handle());
 858
 859        if (!create)
 860                return _ext4_get_block(inode, iblock, bh, 0);
 861        return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 862}
 863
 864/*
 865 * Get block function for AIO DIO writes when we create unwritten extent if
 866 * blocks are not allocated yet. The extent will be converted to written
 867 * after IO is complete.
 868 */
 869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 870                sector_t iblock, struct buffer_head *bh_result, int create)
 871{
 872        int ret;
 873
 874        /* We don't expect handle for direct IO */
 875        WARN_ON_ONCE(ext4_journal_current_handle());
 876
 877        ret = ext4_get_block_trans(inode, iblock, bh_result,
 878                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 879
 880        /*
 881         * When doing DIO using unwritten extents, we need io_end to convert
 882         * unwritten extents to written on IO completion. We allocate io_end
 883         * once we spot unwritten extent and store it in b_private. Generic
 884         * DIO code keeps b_private set and furthermore passes the value to
 885         * our completion callback in 'private' argument.
 886         */
 887        if (!ret && buffer_unwritten(bh_result)) {
 888                if (!bh_result->b_private) {
 889                        ext4_io_end_t *io_end;
 890
 891                        io_end = ext4_init_io_end(inode, GFP_KERNEL);
 892                        if (!io_end)
 893                                return -ENOMEM;
 894                        bh_result->b_private = io_end;
 895                        ext4_set_io_unwritten_flag(inode, io_end);
 896                }
 897                set_buffer_defer_completion(bh_result);
 898        }
 899
 900        return ret;
 901}
 902
 903/*
 904 * Get block function for non-AIO DIO writes when we create unwritten extent if
 905 * blocks are not allocated yet. The extent will be converted to written
 906 * after IO is complete by ext4_direct_IO_write().
 907 */
 908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 909                sector_t iblock, struct buffer_head *bh_result, int create)
 910{
 911        int ret;
 912
 913        /* We don't expect handle for direct IO */
 914        WARN_ON_ONCE(ext4_journal_current_handle());
 915
 916        ret = ext4_get_block_trans(inode, iblock, bh_result,
 917                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 918
 919        /*
 920         * Mark inode as having pending DIO writes to unwritten extents.
 921         * ext4_direct_IO_write() checks this flag and converts extents to
 922         * written.
 923         */
 924        if (!ret && buffer_unwritten(bh_result))
 925                ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 926
 927        return ret;
 928}
 929
 930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 931                   struct buffer_head *bh_result, int create)
 932{
 933        int ret;
 934
 935        ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 936                   inode->i_ino, create);
 937        /* We don't expect handle for direct IO */
 938        WARN_ON_ONCE(ext4_journal_current_handle());
 939
 940        ret = _ext4_get_block(inode, iblock, bh_result, 0);
 941        /*
 942         * Blocks should have been preallocated! ext4_file_write_iter() checks
 943         * that.
 944         */
 945        WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 946
 947        return ret;
 948}
 949
 950
 951/*
 952 * `handle' can be NULL if create is zero
 953 */
 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 955                                ext4_lblk_t block, int map_flags)
 956{
 957        struct ext4_map_blocks map;
 958        struct buffer_head *bh;
 959        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 960        int err;
 961
 962        J_ASSERT(handle != NULL || create == 0);
 963
 964        map.m_lblk = block;
 965        map.m_len = 1;
 966        err = ext4_map_blocks(handle, inode, &map, map_flags);
 967
 968        if (err == 0)
 969                return create ? ERR_PTR(-ENOSPC) : NULL;
 970        if (err < 0)
 971                return ERR_PTR(err);
 972
 973        bh = sb_getblk(inode->i_sb, map.m_pblk);
 974        if (unlikely(!bh))
 975                return ERR_PTR(-ENOMEM);
 976        if (map.m_flags & EXT4_MAP_NEW) {
 977                J_ASSERT(create != 0);
 978                J_ASSERT(handle != NULL);
 979
 980                /*
 981                 * Now that we do not always journal data, we should
 982                 * keep in mind whether this should always journal the
 983                 * new buffer as metadata.  For now, regular file
 984                 * writes use ext4_get_block instead, so it's not a
 985                 * problem.
 986                 */
 987                lock_buffer(bh);
 988                BUFFER_TRACE(bh, "call get_create_access");
 989                err = ext4_journal_get_create_access(handle, bh);
 990                if (unlikely(err)) {
 991                        unlock_buffer(bh);
 992                        goto errout;
 993                }
 994                if (!buffer_uptodate(bh)) {
 995                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 996                        set_buffer_uptodate(bh);
 997                }
 998                unlock_buffer(bh);
 999                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000                err = ext4_handle_dirty_metadata(handle, inode, bh);
1001                if (unlikely(err))
1002                        goto errout;
1003        } else
1004                BUFFER_TRACE(bh, "not a new buffer");
1005        return bh;
1006errout:
1007        brelse(bh);
1008        return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012                               ext4_lblk_t block, int map_flags)
1013{
1014        struct buffer_head *bh;
1015
1016        bh = ext4_getblk(handle, inode, block, map_flags);
1017        if (IS_ERR(bh))
1018                return bh;
1019        if (!bh || buffer_uptodate(bh))
1020                return bh;
1021        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022        wait_on_buffer(bh);
1023        if (buffer_uptodate(bh))
1024                return bh;
1025        put_bh(bh);
1026        return ERR_PTR(-EIO);
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031                     bool wait, struct buffer_head **bhs)
1032{
1033        int i, err;
1034
1035        for (i = 0; i < bh_count; i++) {
1036                bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037                if (IS_ERR(bhs[i])) {
1038                        err = PTR_ERR(bhs[i]);
1039                        bh_count = i;
1040                        goto out_brelse;
1041                }
1042        }
1043
1044        for (i = 0; i < bh_count; i++)
1045                /* Note that NULL bhs[i] is valid because of holes. */
1046                if (bhs[i] && !buffer_uptodate(bhs[i]))
1047                        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048                                    &bhs[i]);
1049
1050        if (!wait)
1051                return 0;
1052
1053        for (i = 0; i < bh_count; i++)
1054                if (bhs[i])
1055                        wait_on_buffer(bhs[i]);
1056
1057        for (i = 0; i < bh_count; i++) {
1058                if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059                        err = -EIO;
1060                        goto out_brelse;
1061                }
1062        }
1063        return 0;
1064
1065out_brelse:
1066        for (i = 0; i < bh_count; i++) {
1067                brelse(bhs[i]);
1068                bhs[i] = NULL;
1069        }
1070        return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074                           struct buffer_head *head,
1075                           unsigned from,
1076                           unsigned to,
1077                           int *partial,
1078                           int (*fn)(handle_t *handle,
1079                                     struct buffer_head *bh))
1080{
1081        struct buffer_head *bh;
1082        unsigned block_start, block_end;
1083        unsigned blocksize = head->b_size;
1084        int err, ret = 0;
1085        struct buffer_head *next;
1086
1087        for (bh = head, block_start = 0;
1088             ret == 0 && (bh != head || !block_start);
1089             block_start = block_end, bh = next) {
1090                next = bh->b_this_page;
1091                block_end = block_start + blocksize;
1092                if (block_end <= from || block_start >= to) {
1093                        if (partial && !buffer_uptodate(bh))
1094                                *partial = 1;
1095                        continue;
1096                }
1097                err = (*fn)(handle, bh);
1098                if (!ret)
1099                        ret = err;
1100        }
1101        return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction.  We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write().  So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage().  In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page.  So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes.  If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated.  We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
1129                                struct buffer_head *bh)
1130{
1131        int dirty = buffer_dirty(bh);
1132        int ret;
1133
1134        if (!buffer_mapped(bh) || buffer_freed(bh))
1135                return 0;
1136        /*
1137         * __block_write_begin() could have dirtied some buffers. Clean
1138         * the dirty bit as jbd2_journal_get_write_access() could complain
1139         * otherwise about fs integrity issues. Setting of the dirty bit
1140         * by __block_write_begin() isn't a real problem here as we clear
1141         * the bit before releasing a page lock and thus writeback cannot
1142         * ever write the buffer.
1143         */
1144        if (dirty)
1145                clear_buffer_dirty(bh);
1146        BUFFER_TRACE(bh, "get write access");
1147        ret = ext4_journal_get_write_access(handle, bh);
1148        if (!ret && dirty)
1149                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150        return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155                                  get_block_t *get_block)
1156{
1157        unsigned from = pos & (PAGE_SIZE - 1);
1158        unsigned to = from + len;
1159        struct inode *inode = page->mapping->host;
1160        unsigned block_start, block_end;
1161        sector_t block;
1162        int err = 0;
1163        unsigned blocksize = inode->i_sb->s_blocksize;
1164        unsigned bbits;
1165        struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166        bool decrypt = false;
1167
1168        BUG_ON(!PageLocked(page));
1169        BUG_ON(from > PAGE_SIZE);
1170        BUG_ON(to > PAGE_SIZE);
1171        BUG_ON(from > to);
1172
1173        if (!page_has_buffers(page))
1174                create_empty_buffers(page, blocksize, 0);
1175        head = page_buffers(page);
1176        bbits = ilog2(blocksize);
1177        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179        for (bh = head, block_start = 0; bh != head || !block_start;
1180            block++, block_start = block_end, bh = bh->b_this_page) {
1181                block_end = block_start + blocksize;
1182                if (block_end <= from || block_start >= to) {
1183                        if (PageUptodate(page)) {
1184                                if (!buffer_uptodate(bh))
1185                                        set_buffer_uptodate(bh);
1186                        }
1187                        continue;
1188                }
1189                if (buffer_new(bh))
1190                        clear_buffer_new(bh);
1191                if (!buffer_mapped(bh)) {
1192                        WARN_ON(bh->b_size != blocksize);
1193                        err = get_block(inode, block, bh, 1);
1194                        if (err)
1195                                break;
1196                        if (buffer_new(bh)) {
1197                                clean_bdev_bh_alias(bh);
1198                                if (PageUptodate(page)) {
1199                                        clear_buffer_new(bh);
1200                                        set_buffer_uptodate(bh);
1201                                        mark_buffer_dirty(bh);
1202                                        continue;
1203                                }
1204                                if (block_end > to || block_start < from)
1205                                        zero_user_segments(page, to, block_end,
1206                                                           block_start, from);
1207                                continue;
1208                        }
1209                }
1210                if (PageUptodate(page)) {
1211                        if (!buffer_uptodate(bh))
1212                                set_buffer_uptodate(bh);
1213                        continue;
1214                }
1215                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216                    !buffer_unwritten(bh) &&
1217                    (block_start < from || block_end > to)) {
1218                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219                        *wait_bh++ = bh;
1220                        decrypt = ext4_encrypted_inode(inode) &&
1221                                S_ISREG(inode->i_mode);
1222                }
1223        }
1224        /*
1225         * If we issued read requests, let them complete.
1226         */
1227        while (wait_bh > wait) {
1228                wait_on_buffer(*--wait_bh);
1229                if (!buffer_uptodate(*wait_bh))
1230                        err = -EIO;
1231        }
1232        if (unlikely(err))
1233                page_zero_new_buffers(page, from, to);
1234        else if (decrypt)
1235                err = fscrypt_decrypt_page(page->mapping->host, page,
1236                                PAGE_SIZE, 0, page->index);
1237        return err;
1238}
1239#endif
1240
1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242                            loff_t pos, unsigned len, unsigned flags,
1243                            struct page **pagep, void **fsdata)
1244{
1245        struct inode *inode = mapping->host;
1246        int ret, needed_blocks;
1247        handle_t *handle;
1248        int retries = 0;
1249        struct page *page;
1250        pgoff_t index;
1251        unsigned from, to;
1252
1253        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254                return -EIO;
1255
1256        trace_ext4_write_begin(inode, pos, len, flags);
1257        /*
1258         * Reserve one block more for addition to orphan list in case
1259         * we allocate blocks but write fails for some reason
1260         */
1261        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262        index = pos >> PAGE_SHIFT;
1263        from = pos & (PAGE_SIZE - 1);
1264        to = from + len;
1265
1266        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268                                                    flags, pagep);
1269                if (ret < 0)
1270                        return ret;
1271                if (ret == 1)
1272                        return 0;
1273        }
1274
1275        /*
1276         * grab_cache_page_write_begin() can take a long time if the
1277         * system is thrashing due to memory pressure, or if the page
1278         * is being written back.  So grab it first before we start
1279         * the transaction handle.  This also allows us to allocate
1280         * the page (if needed) without using GFP_NOFS.
1281         */
1282retry_grab:
1283        page = grab_cache_page_write_begin(mapping, index, flags);
1284        if (!page)
1285                return -ENOMEM;
1286        unlock_page(page);
1287
1288retry_journal:
1289        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290        if (IS_ERR(handle)) {
1291                put_page(page);
1292                return PTR_ERR(handle);
1293        }
1294
1295        lock_page(page);
1296        if (page->mapping != mapping) {
1297                /* The page got truncated from under us */
1298                unlock_page(page);
1299                put_page(page);
1300                ext4_journal_stop(handle);
1301                goto retry_grab;
1302        }
1303        /* In case writeback began while the page was unlocked */
1304        wait_for_stable_page(page);
1305
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307        if (ext4_should_dioread_nolock(inode))
1308                ret = ext4_block_write_begin(page, pos, len,
1309                                             ext4_get_block_unwritten);
1310        else
1311                ret = ext4_block_write_begin(page, pos, len,
1312                                             ext4_get_block);
1313#else
1314        if (ext4_should_dioread_nolock(inode))
1315                ret = __block_write_begin(page, pos, len,
1316                                          ext4_get_block_unwritten);
1317        else
1318                ret = __block_write_begin(page, pos, len, ext4_get_block);
1319#endif
1320        if (!ret && ext4_should_journal_data(inode)) {
1321                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322                                             from, to, NULL,
1323                                             do_journal_get_write_access);
1324        }
1325
1326        if (ret) {
1327                unlock_page(page);
1328                /*
1329                 * __block_write_begin may have instantiated a few blocks
1330                 * outside i_size.  Trim these off again. Don't need
1331                 * i_size_read because we hold i_mutex.
1332                 *
1333                 * Add inode to orphan list in case we crash before
1334                 * truncate finishes
1335                 */
1336                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337                        ext4_orphan_add(handle, inode);
1338
1339                ext4_journal_stop(handle);
1340                if (pos + len > inode->i_size) {
1341                        ext4_truncate_failed_write(inode);
1342                        /*
1343                         * If truncate failed early the inode might
1344                         * still be on the orphan list; we need to
1345                         * make sure the inode is removed from the
1346                         * orphan list in that case.
1347                         */
1348                        if (inode->i_nlink)
1349                                ext4_orphan_del(NULL, inode);
1350                }
1351
1352                if (ret == -ENOSPC &&
1353                    ext4_should_retry_alloc(inode->i_sb, &retries))
1354                        goto retry_journal;
1355                put_page(page);
1356                return ret;
1357        }
1358        *pagep = page;
1359        return ret;
1360}
1361
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364{
1365        int ret;
1366        if (!buffer_mapped(bh) || buffer_freed(bh))
1367                return 0;
1368        set_buffer_uptodate(bh);
1369        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370        clear_buffer_meta(bh);
1371        clear_buffer_prio(bh);
1372        return ret;
1373}
1374
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383                          struct address_space *mapping,
1384                          loff_t pos, unsigned len, unsigned copied,
1385                          struct page *page, void *fsdata)
1386{
1387        handle_t *handle = ext4_journal_current_handle();
1388        struct inode *inode = mapping->host;
1389        loff_t old_size = inode->i_size;
1390        int ret = 0, ret2;
1391        int i_size_changed = 0;
1392
1393        trace_ext4_write_end(inode, pos, len, copied);
1394        if (ext4_has_inline_data(inode)) {
1395                ret = ext4_write_inline_data_end(inode, pos, len,
1396                                                 copied, page);
1397                if (ret < 0) {
1398                        unlock_page(page);
1399                        put_page(page);
1400                        goto errout;
1401                }
1402                copied = ret;
1403        } else
1404                copied = block_write_end(file, mapping, pos,
1405                                         len, copied, page, fsdata);
1406        /*
1407         * it's important to update i_size while still holding page lock:
1408         * page writeout could otherwise come in and zero beyond i_size.
1409         */
1410        i_size_changed = ext4_update_inode_size(inode, pos + copied);
1411        unlock_page(page);
1412        put_page(page);
1413
1414        if (old_size < pos)
1415                pagecache_isize_extended(inode, old_size, pos);
1416        /*
1417         * Don't mark the inode dirty under page lock. First, it unnecessarily
1418         * makes the holding time of page lock longer. Second, it forces lock
1419         * ordering of page lock and transaction start for journaling
1420         * filesystems.
1421         */
1422        if (i_size_changed)
1423                ext4_mark_inode_dirty(handle, inode);
1424
1425        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426                /* if we have allocated more blocks and copied
1427                 * less. We will have blocks allocated outside
1428                 * inode->i_size. So truncate them
1429                 */
1430                ext4_orphan_add(handle, inode);
1431errout:
1432        ret2 = ext4_journal_stop(handle);
1433        if (!ret)
1434                ret = ret2;
1435
1436        if (pos + len > inode->i_size) {
1437                ext4_truncate_failed_write(inode);
1438                /*
1439                 * If truncate failed early the inode might still be
1440                 * on the orphan list; we need to make sure the inode
1441                 * is removed from the orphan list in that case.
1442                 */
1443                if (inode->i_nlink)
1444                        ext4_orphan_del(NULL, inode);
1445        }
1446
1447        return ret ? ret : copied;
1448}
1449
1450/*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
1455static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456                                            struct page *page,
1457                                            unsigned from, unsigned to)
1458{
1459        unsigned int block_start = 0, block_end;
1460        struct buffer_head *head, *bh;
1461
1462        bh = head = page_buffers(page);
1463        do {
1464                block_end = block_start + bh->b_size;
1465                if (buffer_new(bh)) {
1466                        if (block_end > from && block_start < to) {
1467                                if (!PageUptodate(page)) {
1468                                        unsigned start, size;
1469
1470                                        start = max(from, block_start);
1471                                        size = min(to, block_end) - start;
1472
1473                                        zero_user(page, start, size);
1474                                        write_end_fn(handle, bh);
1475                                }
1476                                clear_buffer_new(bh);
1477                        }
1478                }
1479                block_start = block_end;
1480                bh = bh->b_this_page;
1481        } while (bh != head);
1482}
1483
1484static int ext4_journalled_write_end(struct file *file,
1485                                     struct address_space *mapping,
1486                                     loff_t pos, unsigned len, unsigned copied,
1487                                     struct page *page, void *fsdata)
1488{
1489        handle_t *handle = ext4_journal_current_handle();
1490        struct inode *inode = mapping->host;
1491        loff_t old_size = inode->i_size;
1492        int ret = 0, ret2;
1493        int partial = 0;
1494        unsigned from, to;
1495        int size_changed = 0;
1496
1497        trace_ext4_journalled_write_end(inode, pos, len, copied);
1498        from = pos & (PAGE_SIZE - 1);
1499        to = from + len;
1500
1501        BUG_ON(!ext4_handle_valid(handle));
1502
1503        if (ext4_has_inline_data(inode)) {
1504                ret = ext4_write_inline_data_end(inode, pos, len,
1505                                                 copied, page);
1506                if (ret < 0) {
1507                        unlock_page(page);
1508                        put_page(page);
1509                        goto errout;
1510                }
1511                copied = ret;
1512        } else if (unlikely(copied < len) && !PageUptodate(page)) {
1513                copied = 0;
1514                ext4_journalled_zero_new_buffers(handle, page, from, to);
1515        } else {
1516                if (unlikely(copied < len))
1517                        ext4_journalled_zero_new_buffers(handle, page,
1518                                                         from + copied, to);
1519                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520                                             from + copied, &partial,
1521                                             write_end_fn);
1522                if (!partial)
1523                        SetPageUptodate(page);
1524        }
1525        size_changed = ext4_update_inode_size(inode, pos + copied);
1526        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528        unlock_page(page);
1529        put_page(page);
1530
1531        if (old_size < pos)
1532                pagecache_isize_extended(inode, old_size, pos);
1533
1534        if (size_changed) {
1535                ret2 = ext4_mark_inode_dirty(handle, inode);
1536                if (!ret)
1537                        ret = ret2;
1538        }
1539
1540        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541                /* if we have allocated more blocks and copied
1542                 * less. We will have blocks allocated outside
1543                 * inode->i_size. So truncate them
1544                 */
1545                ext4_orphan_add(handle, inode);
1546
1547errout:
1548        ret2 = ext4_journal_stop(handle);
1549        if (!ret)
1550                ret = ret2;
1551        if (pos + len > inode->i_size) {
1552                ext4_truncate_failed_write(inode);
1553                /*
1554                 * If truncate failed early the inode might still be
1555                 * on the orphan list; we need to make sure the inode
1556                 * is removed from the orphan list in that case.
1557                 */
1558                if (inode->i_nlink)
1559                        ext4_orphan_del(NULL, inode);
1560        }
1561
1562        return ret ? ret : copied;
1563}
1564
1565/*
1566 * Reserve space for a single cluster
1567 */
1568static int ext4_da_reserve_space(struct inode *inode)
1569{
1570        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571        struct ext4_inode_info *ei = EXT4_I(inode);
1572        int ret;
1573
1574        /*
1575         * We will charge metadata quota at writeout time; this saves
1576         * us from metadata over-estimation, though we may go over by
1577         * a small amount in the end.  Here we just reserve for data.
1578         */
1579        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580        if (ret)
1581                return ret;
1582
1583        spin_lock(&ei->i_block_reservation_lock);
1584        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585                spin_unlock(&ei->i_block_reservation_lock);
1586                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587                return -ENOSPC;
1588        }
1589        ei->i_reserved_data_blocks++;
1590        trace_ext4_da_reserve_space(inode);
1591        spin_unlock(&ei->i_block_reservation_lock);
1592
1593        return 0;       /* success */
1594}
1595
1596static void ext4_da_release_space(struct inode *inode, int to_free)
1597{
1598        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599        struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601        if (!to_free)
1602                return;         /* Nothing to release, exit */
1603
1604        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606        trace_ext4_da_release_space(inode, to_free);
1607        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608                /*
1609                 * if there aren't enough reserved blocks, then the
1610                 * counter is messed up somewhere.  Since this
1611                 * function is called from invalidate page, it's
1612                 * harmless to return without any action.
1613                 */
1614                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615                         "ino %lu, to_free %d with only %d reserved "
1616                         "data blocks", inode->i_ino, to_free,
1617                         ei->i_reserved_data_blocks);
1618                WARN_ON(1);
1619                to_free = ei->i_reserved_data_blocks;
1620        }
1621        ei->i_reserved_data_blocks -= to_free;
1622
1623        /* update fs dirty data blocks counter */
1624        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629}
1630
1631static void ext4_da_page_release_reservation(struct page *page,
1632                                             unsigned int offset,
1633                                             unsigned int length)
1634{
1635        int to_release = 0, contiguous_blks = 0;
1636        struct buffer_head *head, *bh;
1637        unsigned int curr_off = 0;
1638        struct inode *inode = page->mapping->host;
1639        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640        unsigned int stop = offset + length;
1641        int num_clusters;
1642        ext4_fsblk_t lblk;
1643
1644        BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646        head = page_buffers(page);
1647        bh = head;
1648        do {
1649                unsigned int next_off = curr_off + bh->b_size;
1650
1651                if (next_off > stop)
1652                        break;
1653
1654                if ((offset <= curr_off) && (buffer_delay(bh))) {
1655                        to_release++;
1656                        contiguous_blks++;
1657                        clear_buffer_delay(bh);
1658                } else if (contiguous_blks) {
1659                        lblk = page->index <<
1660                               (PAGE_SHIFT - inode->i_blkbits);
1661                        lblk += (curr_off >> inode->i_blkbits) -
1662                                contiguous_blks;
1663                        ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664                        contiguous_blks = 0;
1665                }
1666                curr_off = next_off;
1667        } while ((bh = bh->b_this_page) != head);
1668
1669        if (contiguous_blks) {
1670                lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671                lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672                ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673        }
1674
1675        /* If we have released all the blocks belonging to a cluster, then we
1676         * need to release the reserved space for that cluster. */
1677        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678        while (num_clusters > 0) {
1679                lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680                        ((num_clusters - 1) << sbi->s_cluster_bits);
1681                if (sbi->s_cluster_ratio == 1 ||
1682                    !ext4_find_delalloc_cluster(inode, lblk))
1683                        ext4_da_release_space(inode, 1);
1684
1685                num_clusters--;
1686        }
1687}
1688
1689/*
1690 * Delayed allocation stuff
1691 */
1692
1693struct mpage_da_data {
1694        struct inode *inode;
1695        struct writeback_control *wbc;
1696
1697        pgoff_t first_page;     /* The first page to write */
1698        pgoff_t next_page;      /* Current page to examine */
1699        pgoff_t last_page;      /* Last page to examine */
1700        /*
1701         * Extent to map - this can be after first_page because that can be
1702         * fully mapped. We somewhat abuse m_flags to store whether the extent
1703         * is delalloc or unwritten.
1704         */
1705        struct ext4_map_blocks map;
1706        struct ext4_io_submit io_submit;        /* IO submission data */
1707        unsigned int do_map:1;
1708};
1709
1710static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711                                       bool invalidate)
1712{
1713        int nr_pages, i;
1714        pgoff_t index, end;
1715        struct pagevec pvec;
1716        struct inode *inode = mpd->inode;
1717        struct address_space *mapping = inode->i_mapping;
1718
1719        /* This is necessary when next_page == 0. */
1720        if (mpd->first_page >= mpd->next_page)
1721                return;
1722
1723        index = mpd->first_page;
1724        end   = mpd->next_page - 1;
1725        if (invalidate) {
1726                ext4_lblk_t start, last;
1727                start = index << (PAGE_SHIFT - inode->i_blkbits);
1728                last = end << (PAGE_SHIFT - inode->i_blkbits);
1729                ext4_es_remove_extent(inode, start, last - start + 1);
1730        }
1731
1732        pagevec_init(&pvec);
1733        while (index <= end) {
1734                nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735                if (nr_pages == 0)
1736                        break;
1737                for (i = 0; i < nr_pages; i++) {
1738                        struct page *page = pvec.pages[i];
1739
1740                        BUG_ON(!PageLocked(page));
1741                        BUG_ON(PageWriteback(page));
1742                        if (invalidate) {
1743                                if (page_mapped(page))
1744                                        clear_page_dirty_for_io(page);
1745                                block_invalidatepage(page, 0, PAGE_SIZE);
1746                                ClearPageUptodate(page);
1747                        }
1748                        unlock_page(page);
1749                }
1750                pagevec_release(&pvec);
1751        }
1752}
1753
1754static void ext4_print_free_blocks(struct inode *inode)
1755{
1756        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757        struct super_block *sb = inode->i_sb;
1758        struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761               EXT4_C2B(EXT4_SB(inode->i_sb),
1762                        ext4_count_free_clusters(sb)));
1763        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765               (long long) EXT4_C2B(EXT4_SB(sb),
1766                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768               (long long) EXT4_C2B(EXT4_SB(sb),
1769                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772                 ei->i_reserved_data_blocks);
1773        return;
1774}
1775
1776static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777{
1778        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779}
1780
1781/*
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
1786 */
1787static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788                              struct ext4_map_blocks *map,
1789                              struct buffer_head *bh)
1790{
1791        struct extent_status es;
1792        int retval;
1793        sector_t invalid_block = ~((sector_t) 0xffff);
1794#ifdef ES_AGGRESSIVE_TEST
1795        struct ext4_map_blocks orig_map;
1796
1797        memcpy(&orig_map, map, sizeof(*map));
1798#endif
1799
1800        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801                invalid_block = ~0;
1802
1803        map->m_flags = 0;
1804        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805                  "logical block %lu\n", inode->i_ino, map->m_len,
1806                  (unsigned long) map->m_lblk);
1807
1808        /* Lookup extent status tree firstly */
1809        if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810                if (ext4_es_is_hole(&es)) {
1811                        retval = 0;
1812                        down_read(&EXT4_I(inode)->i_data_sem);
1813                        goto add_delayed;
1814                }
1815
1816                /*
1817                 * Delayed extent could be allocated by fallocate.
1818                 * So we need to check it.
1819                 */
1820                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821                        map_bh(bh, inode->i_sb, invalid_block);
1822                        set_buffer_new(bh);
1823                        set_buffer_delay(bh);
1824                        return 0;
1825                }
1826
1827                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828                retval = es.es_len - (iblock - es.es_lblk);
1829                if (retval > map->m_len)
1830                        retval = map->m_len;
1831                map->m_len = retval;
1832                if (ext4_es_is_written(&es))
1833                        map->m_flags |= EXT4_MAP_MAPPED;
1834                else if (ext4_es_is_unwritten(&es))
1835                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1836                else
1837                        BUG_ON(1);
1838
1839#ifdef ES_AGGRESSIVE_TEST
1840                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841#endif
1842                return retval;
1843        }
1844
1845        /*
1846         * Try to see if we can get the block without requesting a new
1847         * file system block.
1848         */
1849        down_read(&EXT4_I(inode)->i_data_sem);
1850        if (ext4_has_inline_data(inode))
1851                retval = 0;
1852        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854        else
1855                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856
1857add_delayed:
1858        if (retval == 0) {
1859                int ret;
1860                /*
1861                 * XXX: __block_prepare_write() unmaps passed block,
1862                 * is it OK?
1863                 */
1864                /*
1865                 * If the block was allocated from previously allocated cluster,
1866                 * then we don't need to reserve it again. However we still need
1867                 * to reserve metadata for every block we're going to write.
1868                 */
1869                if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870                    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871                        ret = ext4_da_reserve_space(inode);
1872                        if (ret) {
1873                                /* not enough space to reserve */
1874                                retval = ret;
1875                                goto out_unlock;
1876                        }
1877                }
1878
1879                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880                                            ~0, EXTENT_STATUS_DELAYED);
1881                if (ret) {
1882                        retval = ret;
1883                        goto out_unlock;
1884                }
1885
1886                map_bh(bh, inode->i_sb, invalid_block);
1887                set_buffer_new(bh);
1888                set_buffer_delay(bh);
1889        } else if (retval > 0) {
1890                int ret;
1891                unsigned int status;
1892
1893                if (unlikely(retval != map->m_len)) {
1894                        ext4_warning(inode->i_sb,
1895                                     "ES len assertion failed for inode "
1896                                     "%lu: retval %d != map->m_len %d",
1897                                     inode->i_ino, retval, map->m_len);
1898                        WARN_ON(1);
1899                }
1900
1901                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904                                            map->m_pblk, status);
1905                if (ret != 0)
1906                        retval = ret;
1907        }
1908
1909out_unlock:
1910        up_read((&EXT4_I(inode)->i_data_sem));
1911
1912        return retval;
1913}
1914
1915/*
1916 * This is a special get_block_t callback which is used by
1917 * ext4_da_write_begin().  It will either return mapped block or
1918 * reserve space for a single block.
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
1926 */
1927int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928                           struct buffer_head *bh, int create)
1929{
1930        struct ext4_map_blocks map;
1931        int ret = 0;
1932
1933        BUG_ON(create == 0);
1934        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936        map.m_lblk = iblock;
1937        map.m_len = 1;
1938
1939        /*
1940         * first, we need to know whether the block is allocated already
1941         * preallocated blocks are unmapped but should treated
1942         * the same as allocated blocks.
1943         */
1944        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945        if (ret <= 0)
1946                return ret;
1947
1948        map_bh(bh, inode->i_sb, map.m_pblk);
1949        ext4_update_bh_state(bh, map.m_flags);
1950
1951        if (buffer_unwritten(bh)) {
1952                /* A delayed write to unwritten bh should be marked
1953                 * new and mapped.  Mapped ensures that we don't do
1954                 * get_block multiple times when we write to the same
1955                 * offset and new ensures that we do proper zero out
1956                 * for partial write.
1957                 */
1958                set_buffer_new(bh);
1959                set_buffer_mapped(bh);
1960        }
1961        return 0;
1962}
1963
1964static int bget_one(handle_t *handle, struct buffer_head *bh)
1965{
1966        get_bh(bh);
1967        return 0;
1968}
1969
1970static int bput_one(handle_t *handle, struct buffer_head *bh)
1971{
1972        put_bh(bh);
1973        return 0;
1974}
1975
1976static int __ext4_journalled_writepage(struct page *page,
1977                                       unsigned int len)
1978{
1979        struct address_space *mapping = page->mapping;
1980        struct inode *inode = mapping->host;
1981        struct buffer_head *page_bufs = NULL;
1982        handle_t *handle = NULL;
1983        int ret = 0, err = 0;
1984        int inline_data = ext4_has_inline_data(inode);
1985        struct buffer_head *inode_bh = NULL;
1986
1987        ClearPageChecked(page);
1988
1989        if (inline_data) {
1990                BUG_ON(page->index != 0);
1991                BUG_ON(len > ext4_get_max_inline_size(inode));
1992                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993                if (inode_bh == NULL)
1994                        goto out;
1995        } else {
1996                page_bufs = page_buffers(page);
1997                if (!page_bufs) {
1998                        BUG();
1999                        goto out;
2000                }
2001                ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002                                       NULL, bget_one);
2003        }
2004        /*
2005         * We need to release the page lock before we start the
2006         * journal, so grab a reference so the page won't disappear
2007         * out from under us.
2008         */
2009        get_page(page);
2010        unlock_page(page);
2011
2012        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013                                    ext4_writepage_trans_blocks(inode));
2014        if (IS_ERR(handle)) {
2015                ret = PTR_ERR(handle);
2016                put_page(page);
2017                goto out_no_pagelock;
2018        }
2019        BUG_ON(!ext4_handle_valid(handle));
2020
2021        lock_page(page);
2022        put_page(page);
2023        if (page->mapping != mapping) {
2024                /* The page got truncated from under us */
2025                ext4_journal_stop(handle);
2026                ret = 0;
2027                goto out;
2028        }
2029
2030        if (inline_data) {
2031                BUFFER_TRACE(inode_bh, "get write access");
2032                ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034                err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036        } else {
2037                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038                                             do_journal_get_write_access);
2039
2040                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041                                             write_end_fn);
2042        }
2043        if (ret == 0)
2044                ret = err;
2045        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046        err = ext4_journal_stop(handle);
2047        if (!ret)
2048                ret = err;
2049
2050        if (!ext4_has_inline_data(inode))
2051                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052                                       NULL, bput_one);
2053        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054out:
2055        unlock_page(page);
2056out_no_pagelock:
2057        brelse(inode_bh);
2058        return ret;
2059}
2060
2061/*
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
2066 * we are writing back data modified via mmap(), no one guarantees in which
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
2071 * This function can get called via...
2072 *   - ext4_writepages after taking page lock (have journal handle)
2073 *   - journal_submit_inode_data_buffers (no journal handle)
2074 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075 *   - grab_page_cache when doing write_begin (have journal handle)
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 *              ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101 */
2102static int ext4_writepage(struct page *page,
2103                          struct writeback_control *wbc)
2104{
2105        int ret = 0;
2106        loff_t size;
2107        unsigned int len;
2108        struct buffer_head *page_bufs = NULL;
2109        struct inode *inode = page->mapping->host;
2110        struct ext4_io_submit io_submit;
2111        bool keep_towrite = false;
2112
2113        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114                ext4_invalidatepage(page, 0, PAGE_SIZE);
2115                unlock_page(page);
2116                return -EIO;
2117        }
2118
2119        trace_ext4_writepage(page);
2120        size = i_size_read(inode);
2121        if (page->index == size >> PAGE_SHIFT)
2122                len = size & ~PAGE_MASK;
2123        else
2124                len = PAGE_SIZE;
2125
2126        page_bufs = page_buffers(page);
2127        /*
2128         * We cannot do block allocation or other extent handling in this
2129         * function. If there are buffers needing that, we have to redirty
2130         * the page. But we may reach here when we do a journal commit via
2131         * journal_submit_inode_data_buffers() and in that case we must write
2132         * allocated buffers to achieve data=ordered mode guarantees.
2133         *
2134         * Also, if there is only one buffer per page (the fs block
2135         * size == the page size), if one buffer needs block
2136         * allocation or needs to modify the extent tree to clear the
2137         * unwritten flag, we know that the page can't be written at
2138         * all, so we might as well refuse the write immediately.
2139         * Unfortunately if the block size != page size, we can't as
2140         * easily detect this case using ext4_walk_page_buffers(), but
2141         * for the extremely common case, this is an optimization that
2142         * skips a useless round trip through ext4_bio_write_page().
2143         */
2144        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145                                   ext4_bh_delay_or_unwritten)) {
2146                redirty_page_for_writepage(wbc, page);
2147                if ((current->flags & PF_MEMALLOC) ||
2148                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149                        /*
2150                         * For memory cleaning there's no point in writing only
2151                         * some buffers. So just bail out. Warn if we came here
2152                         * from direct reclaim.
2153                         */
2154                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155                                                        == PF_MEMALLOC);
2156                        unlock_page(page);
2157                        return 0;
2158                }
2159                keep_towrite = true;
2160        }
2161
2162        if (PageChecked(page) && ext4_should_journal_data(inode))
2163                /*
2164                 * It's mmapped pagecache.  Add buffers and journal it.  There
2165                 * doesn't seem much point in redirtying the page here.
2166                 */
2167                return __ext4_journalled_writepage(page, len);
2168
2169        ext4_io_submit_init(&io_submit, wbc);
2170        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171        if (!io_submit.io_end) {
2172                redirty_page_for_writepage(wbc, page);
2173                unlock_page(page);
2174                return -ENOMEM;
2175        }
2176        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177        ext4_io_submit(&io_submit);
2178        /* Drop io_end reference we got from init */
2179        ext4_put_io_end_defer(io_submit.io_end);
2180        return ret;
2181}
2182
2183static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184{
2185        int len;
2186        loff_t size;
2187        int err;
2188
2189        BUG_ON(page->index != mpd->first_page);
2190        clear_page_dirty_for_io(page);
2191        /*
2192         * We have to be very careful here!  Nothing protects writeback path
2193         * against i_size changes and the page can be writeably mapped into
2194         * page tables. So an application can be growing i_size and writing
2195         * data through mmap while writeback runs. clear_page_dirty_for_io()
2196         * write-protects our page in page tables and the page cannot get
2197         * written to again until we release page lock. So only after
2198         * clear_page_dirty_for_io() we are safe to sample i_size for
2199         * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200         * on the barrier provided by TestClearPageDirty in
2201         * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202         * after page tables are updated.
2203         */
2204        size = i_size_read(mpd->inode);
2205        if (page->index == size >> PAGE_SHIFT)
2206                len = size & ~PAGE_MASK;
2207        else
2208                len = PAGE_SIZE;
2209        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210        if (!err)
2211                mpd->wbc->nr_to_write--;
2212        mpd->first_page++;
2213
2214        return err;
2215}
2216
2217#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219/*
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222 * The rest of mballoc seems to handle chunks up to full group size.
2223 */
2224#define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226/*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
2231 * @bh - buffer head we want to add to the extent
2232 *
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
2239 */
2240static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241                                   struct buffer_head *bh)
2242{
2243        struct ext4_map_blocks *map = &mpd->map;
2244
2245        /* Buffer that doesn't need mapping for writeback? */
2246        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248                /* So far no extent to map => we write the buffer right away */
2249                if (map->m_len == 0)
2250                        return true;
2251                return false;
2252        }
2253
2254        /* First block in the extent? */
2255        if (map->m_len == 0) {
2256                /* We cannot map unless handle is started... */
2257                if (!mpd->do_map)
2258                        return false;
2259                map->m_lblk = lblk;
2260                map->m_len = 1;
2261                map->m_flags = bh->b_state & BH_FLAGS;
2262                return true;
2263        }
2264
2265        /* Don't go larger than mballoc is willing to allocate */
2266        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267                return false;
2268
2269        /* Can we merge the block to our big extent? */
2270        if (lblk == map->m_lblk + map->m_len &&
2271            (bh->b_state & BH_FLAGS) == map->m_flags) {
2272                map->m_len++;
2273                return true;
2274        }
2275        return false;
2276}
2277
2278/*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295                                   struct buffer_head *head,
2296                                   struct buffer_head *bh,
2297                                   ext4_lblk_t lblk)
2298{
2299        struct inode *inode = mpd->inode;
2300        int err;
2301        ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302                                                        >> inode->i_blkbits;
2303
2304        do {
2305                BUG_ON(buffer_locked(bh));
2306
2307                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308                        /* Found extent to map? */
2309                        if (mpd->map.m_len)
2310                                return 0;
2311                        /* Buffer needs mapping and handle is not started? */
2312                        if (!mpd->do_map)
2313                                return 0;
2314                        /* Everything mapped so far and we hit EOF */
2315                        break;
2316                }
2317        } while (lblk++, (bh = bh->b_this_page) != head);
2318        /* So far everything mapped? Submit the page for IO. */
2319        if (mpd->map.m_len == 0) {
2320                err = mpage_submit_page(mpd, head->b_page);
2321                if (err < 0)
2322                        return err;
2323        }
2324        return lblk < blocks;
2325}
2326
2327/*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 *                     submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342{
2343        struct pagevec pvec;
2344        int nr_pages, i;
2345        struct inode *inode = mpd->inode;
2346        struct buffer_head *head, *bh;
2347        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348        pgoff_t start, end;
2349        ext4_lblk_t lblk;
2350        sector_t pblock;
2351        int err;
2352
2353        start = mpd->map.m_lblk >> bpp_bits;
2354        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355        lblk = start << bpp_bits;
2356        pblock = mpd->map.m_pblk;
2357
2358        pagevec_init(&pvec);
2359        while (start <= end) {
2360                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361                                                &start, end);
2362                if (nr_pages == 0)
2363                        break;
2364                for (i = 0; i < nr_pages; i++) {
2365                        struct page *page = pvec.pages[i];
2366
2367                        bh = head = page_buffers(page);
2368                        do {
2369                                if (lblk < mpd->map.m_lblk)
2370                                        continue;
2371                                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372                                        /*
2373                                         * Buffer after end of mapped extent.
2374                                         * Find next buffer in the page to map.
2375                                         */
2376                                        mpd->map.m_len = 0;
2377                                        mpd->map.m_flags = 0;
2378                                        /*
2379                                         * FIXME: If dioread_nolock supports
2380                                         * blocksize < pagesize, we need to make
2381                                         * sure we add size mapped so far to
2382                                         * io_end->size as the following call
2383                                         * can submit the page for IO.
2384                                         */
2385                                        err = mpage_process_page_bufs(mpd, head,
2386                                                                      bh, lblk);
2387                                        pagevec_release(&pvec);
2388                                        if (err > 0)
2389                                                err = 0;
2390                                        return err;
2391                                }
2392                                if (buffer_delay(bh)) {
2393                                        clear_buffer_delay(bh);
2394                                        bh->b_blocknr = pblock++;
2395                                }
2396                                clear_buffer_unwritten(bh);
2397                        } while (lblk++, (bh = bh->b_this_page) != head);
2398
2399                        /*
2400                         * FIXME: This is going to break if dioread_nolock
2401                         * supports blocksize < pagesize as we will try to
2402                         * convert potentially unmapped parts of inode.
2403                         */
2404                        mpd->io_submit.io_end->size += PAGE_SIZE;
2405                        /* Page fully mapped - let IO run! */
2406                        err = mpage_submit_page(mpd, page);
2407                        if (err < 0) {
2408                                pagevec_release(&pvec);
2409                                return err;
2410                        }
2411                }
2412                pagevec_release(&pvec);
2413        }
2414        /* Extent fully mapped and matches with page boundary. We are done. */
2415        mpd->map.m_len = 0;
2416        mpd->map.m_flags = 0;
2417        return 0;
2418}
2419
2420static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421{
2422        struct inode *inode = mpd->inode;
2423        struct ext4_map_blocks *map = &mpd->map;
2424        int get_blocks_flags;
2425        int err, dioread_nolock;
2426
2427        trace_ext4_da_write_pages_extent(inode, map);
2428        /*
2429         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430         * to convert an unwritten extent to be initialized (in the case
2431         * where we have written into one or more preallocated blocks).  It is
2432         * possible that we're going to need more metadata blocks than
2433         * previously reserved. However we must not fail because we're in
2434         * writeback and there is nothing we can do about it so it might result
2435         * in data loss.  So use reserved blocks to allocate metadata if
2436         * possible.
2437         *
2438         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439         * the blocks in question are delalloc blocks.  This indicates
2440         * that the blocks and quotas has already been checked when
2441         * the data was copied into the page cache.
2442         */
2443        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445                           EXT4_GET_BLOCKS_IO_SUBMIT;
2446        dioread_nolock = ext4_should_dioread_nolock(inode);
2447        if (dioread_nolock)
2448                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449        if (map->m_flags & (1 << BH_Delay))
2450                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453        if (err < 0)
2454                return err;
2455        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456                if (!mpd->io_submit.io_end->handle &&
2457                    ext4_handle_valid(handle)) {
2458                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459                        handle->h_rsv_handle = NULL;
2460                }
2461                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462        }
2463
2464        BUG_ON(map->m_len == 0);
2465        if (map->m_flags & EXT4_MAP_NEW) {
2466                clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467                                   map->m_len);
2468        }
2469        return 0;
2470}
2471
2472/*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 *                               mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 *                     is no hope of writing the data. The caller should discard
2480 *                     dirty pages to avoid infinite loops.
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492static int mpage_map_and_submit_extent(handle_t *handle,
2493                                       struct mpage_da_data *mpd,
2494                                       bool *give_up_on_write)
2495{
2496        struct inode *inode = mpd->inode;
2497        struct ext4_map_blocks *map = &mpd->map;
2498        int err;
2499        loff_t disksize;
2500        int progress = 0;
2501
2502        mpd->io_submit.io_end->offset =
2503                                ((loff_t)map->m_lblk) << inode->i_blkbits;
2504        do {
2505                err = mpage_map_one_extent(handle, mpd);
2506                if (err < 0) {
2507                        struct super_block *sb = inode->i_sb;
2508
2509                        if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510                            EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511                                goto invalidate_dirty_pages;
2512                        /*
2513                         * Let the uper layers retry transient errors.
2514                         * In the case of ENOSPC, if ext4_count_free_blocks()
2515                         * is non-zero, a commit should free up blocks.
2516                         */
2517                        if ((err == -ENOMEM) ||
2518                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519                                if (progress)
2520                                        goto update_disksize;
2521                                return err;
2522                        }
2523                        ext4_msg(sb, KERN_CRIT,
2524                                 "Delayed block allocation failed for "
2525                                 "inode %lu at logical offset %llu with"
2526                                 " max blocks %u with error %d",
2527                                 inode->i_ino,
2528                                 (unsigned long long)map->m_lblk,
2529                                 (unsigned)map->m_len, -err);
2530                        ext4_msg(sb, KERN_CRIT,
2531                                 "This should not happen!! Data will "
2532                                 "be lost\n");
2533                        if (err == -ENOSPC)
2534                                ext4_print_free_blocks(inode);
2535                invalidate_dirty_pages:
2536                        *give_up_on_write = true;
2537                        return err;
2538                }
2539                progress = 1;
2540                /*
2541                 * Update buffer state, submit mapped pages, and get us new
2542                 * extent to map
2543                 */
2544                err = mpage_map_and_submit_buffers(mpd);
2545                if (err < 0)
2546                        goto update_disksize;
2547        } while (map->m_len);
2548
2549update_disksize:
2550        /*
2551         * Update on-disk size after IO is submitted.  Races with
2552         * truncate are avoided by checking i_size under i_data_sem.
2553         */
2554        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555        if (disksize > EXT4_I(inode)->i_disksize) {
2556                int err2;
2557                loff_t i_size;
2558
2559                down_write(&EXT4_I(inode)->i_data_sem);
2560                i_size = i_size_read(inode);
2561                if (disksize > i_size)
2562                        disksize = i_size;
2563                if (disksize > EXT4_I(inode)->i_disksize)
2564                        EXT4_I(inode)->i_disksize = disksize;
2565                up_write(&EXT4_I(inode)->i_data_sem);
2566                err2 = ext4_mark_inode_dirty(handle, inode);
2567                if (err2)
2568                        ext4_error(inode->i_sb,
2569                                   "Failed to mark inode %lu dirty",
2570                                   inode->i_ino);
2571                if (!err)
2572                        err = err2;
2573        }
2574        return err;
2575}
2576
2577/*
2578 * Calculate the total number of credits to reserve for one writepages
2579 * iteration. This is called from ext4_writepages(). We map an extent of
2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
2584static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585{
2586        int bpp = ext4_journal_blocks_per_page(inode);
2587
2588        return ext4_meta_trans_blocks(inode,
2589                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590}
2591
2592/*
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 *                               and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
2609 */
2610static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611{
2612        struct address_space *mapping = mpd->inode->i_mapping;
2613        struct pagevec pvec;
2614        unsigned int nr_pages;
2615        long left = mpd->wbc->nr_to_write;
2616        pgoff_t index = mpd->first_page;
2617        pgoff_t end = mpd->last_page;
2618        int tag;
2619        int i, err = 0;
2620        int blkbits = mpd->inode->i_blkbits;
2621        ext4_lblk_t lblk;
2622        struct buffer_head *head;
2623
2624        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625                tag = PAGECACHE_TAG_TOWRITE;
2626        else
2627                tag = PAGECACHE_TAG_DIRTY;
2628
2629        pagevec_init(&pvec);
2630        mpd->map.m_len = 0;
2631        mpd->next_page = index;
2632        while (index <= end) {
2633                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634                                tag);
2635                if (nr_pages == 0)
2636                        goto out;
2637
2638                for (i = 0; i < nr_pages; i++) {
2639                        struct page *page = pvec.pages[i];
2640
2641                        /*
2642                         * Accumulated enough dirty pages? This doesn't apply
2643                         * to WB_SYNC_ALL mode. For integrity sync we have to
2644                         * keep going because someone may be concurrently
2645                         * dirtying pages, and we might have synced a lot of
2646                         * newly appeared dirty pages, but have not synced all
2647                         * of the old dirty pages.
2648                         */
2649                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650                                goto out;
2651
2652                        /* If we can't merge this page, we are done. */
2653                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654                                goto out;
2655
2656                        lock_page(page);
2657                        /*
2658                         * If the page is no longer dirty, or its mapping no
2659                         * longer corresponds to inode we are writing (which
2660                         * means it has been truncated or invalidated), or the
2661                         * page is already under writeback and we are not doing
2662                         * a data integrity writeback, skip the page
2663                         */
2664                        if (!PageDirty(page) ||
2665                            (PageWriteback(page) &&
2666                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667                            unlikely(page->mapping != mapping)) {
2668                                unlock_page(page);
2669                                continue;
2670                        }
2671
2672                        wait_on_page_writeback(page);
2673                        BUG_ON(PageWriteback(page));
2674
2675                        if (mpd->map.m_len == 0)
2676                                mpd->first_page = page->index;
2677                        mpd->next_page = page->index + 1;
2678                        /* Add all dirty buffers to mpd */
2679                        lblk = ((ext4_lblk_t)page->index) <<
2680                                (PAGE_SHIFT - blkbits);
2681                        head = page_buffers(page);
2682                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2683                        if (err <= 0)
2684                                goto out;
2685                        err = 0;
2686                        left--;
2687                }
2688                pagevec_release(&pvec);
2689                cond_resched();
2690        }
2691        return 0;
2692out:
2693        pagevec_release(&pvec);
2694        return err;
2695}
2696
2697static int ext4_writepages(struct address_space *mapping,
2698                           struct writeback_control *wbc)
2699{
2700        pgoff_t writeback_index = 0;
2701        long nr_to_write = wbc->nr_to_write;
2702        int range_whole = 0;
2703        int cycled = 1;
2704        handle_t *handle = NULL;
2705        struct mpage_da_data mpd;
2706        struct inode *inode = mapping->host;
2707        int needed_blocks, rsv_blocks = 0, ret = 0;
2708        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709        bool done;
2710        struct blk_plug plug;
2711        bool give_up_on_write = false;
2712
2713        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714                return -EIO;
2715
2716        percpu_down_read(&sbi->s_journal_flag_rwsem);
2717        trace_ext4_writepages(inode, wbc);
2718
2719        /*
2720         * No pages to write? This is mainly a kludge to avoid starting
2721         * a transaction for special inodes like journal inode on last iput()
2722         * because that could violate lock ordering on umount
2723         */
2724        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2725                goto out_writepages;
2726
2727        if (ext4_should_journal_data(inode)) {
2728                ret = generic_writepages(mapping, wbc);
2729                goto out_writepages;
2730        }
2731
2732        /*
2733         * If the filesystem has aborted, it is read-only, so return
2734         * right away instead of dumping stack traces later on that
2735         * will obscure the real source of the problem.  We test
2736         * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2737         * the latter could be true if the filesystem is mounted
2738         * read-only, and in that case, ext4_writepages should
2739         * *never* be called, so if that ever happens, we would want
2740         * the stack trace.
2741         */
2742        if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743                     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2744                ret = -EROFS;
2745                goto out_writepages;
2746        }
2747
2748        if (ext4_should_dioread_nolock(inode)) {
2749                /*
2750                 * We may need to convert up to one extent per block in
2751                 * the page and we may dirty the inode.
2752                 */
2753                rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2754        }
2755
2756        /*
2757         * If we have inline data and arrive here, it means that
2758         * we will soon create the block for the 1st page, so
2759         * we'd better clear the inline data here.
2760         */
2761        if (ext4_has_inline_data(inode)) {
2762                /* Just inode will be modified... */
2763                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764                if (IS_ERR(handle)) {
2765                        ret = PTR_ERR(handle);
2766                        goto out_writepages;
2767                }
2768                BUG_ON(ext4_test_inode_state(inode,
2769                                EXT4_STATE_MAY_INLINE_DATA));
2770                ext4_destroy_inline_data(handle, inode);
2771                ext4_journal_stop(handle);
2772        }
2773
2774        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775                range_whole = 1;
2776
2777        if (wbc->range_cyclic) {
2778                writeback_index = mapping->writeback_index;
2779                if (writeback_index)
2780                        cycled = 0;
2781                mpd.first_page = writeback_index;
2782                mpd.last_page = -1;
2783        } else {
2784                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786        }
2787
2788        mpd.inode = inode;
2789        mpd.wbc = wbc;
2790        ext4_io_submit_init(&mpd.io_submit, wbc);
2791retry:
2792        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794        done = false;
2795        blk_start_plug(&plug);
2796
2797        /*
2798         * First writeback pages that don't need mapping - we can avoid
2799         * starting a transaction unnecessarily and also avoid being blocked
2800         * in the block layer on device congestion while having transaction
2801         * started.
2802         */
2803        mpd.do_map = 0;
2804        mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805        if (!mpd.io_submit.io_end) {
2806                ret = -ENOMEM;
2807                goto unplug;
2808        }
2809        ret = mpage_prepare_extent_to_map(&mpd);
2810        /* Submit prepared bio */
2811        ext4_io_submit(&mpd.io_submit);
2812        ext4_put_io_end_defer(mpd.io_submit.io_end);
2813        mpd.io_submit.io_end = NULL;
2814        /* Unlock pages we didn't use */
2815        mpage_release_unused_pages(&mpd, false);
2816        if (ret < 0)
2817                goto unplug;
2818
2819        while (!done && mpd.first_page <= mpd.last_page) {
2820                /* For each extent of pages we use new io_end */
2821                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822                if (!mpd.io_submit.io_end) {
2823                        ret = -ENOMEM;
2824                        break;
2825                }
2826
2827                /*
2828                 * We have two constraints: We find one extent to map and we
2829                 * must always write out whole page (makes a difference when
2830                 * blocksize < pagesize) so that we don't block on IO when we
2831                 * try to write out the rest of the page. Journalled mode is
2832                 * not supported by delalloc.
2833                 */
2834                BUG_ON(ext4_should_journal_data(inode));
2835                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837                /* start a new transaction */
2838                handle = ext4_journal_start_with_reserve(inode,
2839                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840                if (IS_ERR(handle)) {
2841                        ret = PTR_ERR(handle);
2842                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843                               "%ld pages, ino %lu; err %d", __func__,
2844                                wbc->nr_to_write, inode->i_ino, ret);
2845                        /* Release allocated io_end */
2846                        ext4_put_io_end(mpd.io_submit.io_end);
2847                        mpd.io_submit.io_end = NULL;
2848                        break;
2849                }
2850                mpd.do_map = 1;
2851
2852                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853                ret = mpage_prepare_extent_to_map(&mpd);
2854                if (!ret) {
2855                        if (mpd.map.m_len)
2856                                ret = mpage_map_and_submit_extent(handle, &mpd,
2857                                        &give_up_on_write);
2858                        else {
2859                                /*
2860                                 * We scanned the whole range (or exhausted
2861                                 * nr_to_write), submitted what was mapped and
2862                                 * didn't find anything needing mapping. We are
2863                                 * done.
2864                                 */
2865                                done = true;
2866                        }
2867                }
2868                /*
2869                 * Caution: If the handle is synchronous,
2870                 * ext4_journal_stop() can wait for transaction commit
2871                 * to finish which may depend on writeback of pages to
2872                 * complete or on page lock to be released.  In that
2873                 * case, we have to wait until after after we have
2874                 * submitted all the IO, released page locks we hold,
2875                 * and dropped io_end reference (for extent conversion
2876                 * to be able to complete) before stopping the handle.
2877                 */
2878                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879                        ext4_journal_stop(handle);
2880                        handle = NULL;
2881                        mpd.do_map = 0;
2882                }
2883                /* Submit prepared bio */
2884                ext4_io_submit(&mpd.io_submit);
2885                /* Unlock pages we didn't use */
2886                mpage_release_unused_pages(&mpd, give_up_on_write);
2887                /*
2888                 * Drop our io_end reference we got from init. We have
2889                 * to be careful and use deferred io_end finishing if
2890                 * we are still holding the transaction as we can
2891                 * release the last reference to io_end which may end
2892                 * up doing unwritten extent conversion.
2893                 */
2894                if (handle) {
2895                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2896                        ext4_journal_stop(handle);
2897                } else
2898                        ext4_put_io_end(mpd.io_submit.io_end);
2899                mpd.io_submit.io_end = NULL;
2900
2901                if (ret == -ENOSPC && sbi->s_journal) {
2902                        /*
2903                         * Commit the transaction which would
2904                         * free blocks released in the transaction
2905                         * and try again
2906                         */
2907                        jbd2_journal_force_commit_nested(sbi->s_journal);
2908                        ret = 0;
2909                        continue;
2910                }
2911                /* Fatal error - ENOMEM, EIO... */
2912                if (ret)
2913                        break;
2914        }
2915unplug:
2916        blk_finish_plug(&plug);
2917        if (!ret && !cycled && wbc->nr_to_write > 0) {
2918                cycled = 1;
2919                mpd.last_page = writeback_index - 1;
2920                mpd.first_page = 0;
2921                goto retry;
2922        }
2923
2924        /* Update index */
2925        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926                /*
2927                 * Set the writeback_index so that range_cyclic
2928                 * mode will write it back later
2929                 */
2930                mapping->writeback_index = mpd.first_page;
2931
2932out_writepages:
2933        trace_ext4_writepages_result(inode, wbc, ret,
2934                                     nr_to_write - wbc->nr_to_write);
2935        percpu_up_read(&sbi->s_journal_flag_rwsem);
2936        return ret;
2937}
2938
2939static int ext4_dax_writepages(struct address_space *mapping,
2940                               struct writeback_control *wbc)
2941{
2942        int ret;
2943        long nr_to_write = wbc->nr_to_write;
2944        struct inode *inode = mapping->host;
2945        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948                return -EIO;
2949
2950        percpu_down_read(&sbi->s_journal_flag_rwsem);
2951        trace_ext4_writepages(inode, wbc);
2952
2953        ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2954        trace_ext4_writepages_result(inode, wbc, ret,
2955                                     nr_to_write - wbc->nr_to_write);
2956        percpu_up_read(&sbi->s_journal_flag_rwsem);
2957        return ret;
2958}
2959
2960static int ext4_nonda_switch(struct super_block *sb)
2961{
2962        s64 free_clusters, dirty_clusters;
2963        struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965        /*
2966         * switch to non delalloc mode if we are running low
2967         * on free block. The free block accounting via percpu
2968         * counters can get slightly wrong with percpu_counter_batch getting
2969         * accumulated on each CPU without updating global counters
2970         * Delalloc need an accurate free block accounting. So switch
2971         * to non delalloc when we are near to error range.
2972         */
2973        free_clusters =
2974                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975        dirty_clusters =
2976                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977        /*
2978         * Start pushing delalloc when 1/2 of free blocks are dirty.
2979         */
2980        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983        if (2 * free_clusters < 3 * dirty_clusters ||
2984            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985                /*
2986                 * free block count is less than 150% of dirty blocks
2987                 * or free blocks is less than watermark
2988                 */
2989                return 1;
2990        }
2991        return 0;
2992}
2993
2994/* We always reserve for an inode update; the superblock could be there too */
2995static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996{
2997        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998                return 1;
2999
3000        if (pos + len <= 0x7fffffffULL)
3001                return 1;
3002
3003        /* We might need to update the superblock to set LARGE_FILE */
3004        return 2;
3005}
3006
3007static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008                               loff_t pos, unsigned len, unsigned flags,
3009                               struct page **pagep, void **fsdata)
3010{
3011        int ret, retries = 0;
3012        struct page *page;
3013        pgoff_t index;
3014        struct inode *inode = mapping->host;
3015        handle_t *handle;
3016
3017        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018                return -EIO;
3019
3020        index = pos >> PAGE_SHIFT;
3021
3022        if (ext4_nonda_switch(inode->i_sb) ||
3023            S_ISLNK(inode->i_mode)) {
3024                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025                return ext4_write_begin(file, mapping, pos,
3026                                        len, flags, pagep, fsdata);
3027        }
3028        *fsdata = (void *)0;
3029        trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032                ret = ext4_da_write_inline_data_begin(mapping, inode,
3033                                                      pos, len, flags,
3034                                                      pagep, fsdata);
3035                if (ret < 0)
3036                        return ret;
3037                if (ret == 1)
3038                        return 0;
3039        }
3040
3041        /*
3042         * grab_cache_page_write_begin() can take a long time if the
3043         * system is thrashing due to memory pressure, or if the page
3044         * is being written back.  So grab it first before we start
3045         * the transaction handle.  This also allows us to allocate
3046         * the page (if needed) without using GFP_NOFS.
3047         */
3048retry_grab:
3049        page = grab_cache_page_write_begin(mapping, index, flags);
3050        if (!page)
3051                return -ENOMEM;
3052        unlock_page(page);
3053
3054        /*
3055         * With delayed allocation, we don't log the i_disksize update
3056         * if there is delayed block allocation. But we still need
3057         * to journalling the i_disksize update if writes to the end
3058         * of file which has an already mapped buffer.
3059         */
3060retry_journal:
3061        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062                                ext4_da_write_credits(inode, pos, len));
3063        if (IS_ERR(handle)) {
3064                put_page(page);
3065                return PTR_ERR(handle);
3066        }
3067
3068        lock_page(page);
3069        if (page->mapping != mapping) {
3070                /* The page got truncated from under us */
3071                unlock_page(page);
3072                put_page(page);
3073                ext4_journal_stop(handle);
3074                goto retry_grab;
3075        }
3076        /* In case writeback began while the page was unlocked */
3077        wait_for_stable_page(page);
3078
3079#ifdef CONFIG_EXT4_FS_ENCRYPTION
3080        ret = ext4_block_write_begin(page, pos, len,
3081                                     ext4_da_get_block_prep);
3082#else
3083        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084#endif
3085        if (ret < 0) {
3086                unlock_page(page);
3087                ext4_journal_stop(handle);
3088                /*
3089                 * block_write_begin may have instantiated a few blocks
3090                 * outside i_size.  Trim these off again. Don't need
3091                 * i_size_read because we hold i_mutex.
3092                 */
3093                if (pos + len > inode->i_size)
3094                        ext4_truncate_failed_write(inode);
3095
3096                if (ret == -ENOSPC &&
3097                    ext4_should_retry_alloc(inode->i_sb, &retries))
3098                        goto retry_journal;
3099
3100                put_page(page);
3101                return ret;
3102        }
3103
3104        *pagep = page;
3105        return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113                                            unsigned long offset)
3114{
3115        struct buffer_head *bh;
3116        struct inode *inode = page->mapping->host;
3117        unsigned int idx;
3118        int i;
3119
3120        bh = page_buffers(page);
3121        idx = offset >> inode->i_blkbits;
3122
3123        for (i = 0; i < idx; i++)
3124                bh = bh->b_this_page;
3125
3126        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127                return 0;
3128        return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132                             struct address_space *mapping,
3133                             loff_t pos, unsigned len, unsigned copied,
3134                             struct page *page, void *fsdata)
3135{
3136        struct inode *inode = mapping->host;
3137        int ret = 0, ret2;
3138        handle_t *handle = ext4_journal_current_handle();
3139        loff_t new_i_size;
3140        unsigned long start, end;
3141        int write_mode = (int)(unsigned long)fsdata;
3142
3143        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144                return ext4_write_end(file, mapping, pos,
3145                                      len, copied, page, fsdata);
3146
3147        trace_ext4_da_write_end(inode, pos, len, copied);
3148        start = pos & (PAGE_SIZE - 1);
3149        end = start + copied - 1;
3150
3151        /*
3152         * generic_write_end() will run mark_inode_dirty() if i_size
3153         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3154         * into that.
3155         */
3156        new_i_size = pos + copied;
3157        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158                if (ext4_has_inline_data(inode) ||
3159                    ext4_da_should_update_i_disksize(page, end)) {
3160                        ext4_update_i_disksize(inode, new_i_size);
3161                        /* We need to mark inode dirty even if
3162                         * new_i_size is less that inode->i_size
3163                         * bu greater than i_disksize.(hint delalloc)
3164                         */
3165                        ext4_mark_inode_dirty(handle, inode);
3166                }
3167        }
3168
3169        if (write_mode != CONVERT_INLINE_DATA &&
3170            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171            ext4_has_inline_data(inode))
3172                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173                                                     page);
3174        else
3175                ret2 = generic_write_end(file, mapping, pos, len, copied,
3176                                                        page, fsdata);
3177
3178        copied = ret2;
3179        if (ret2 < 0)
3180                ret = ret2;
3181        ret2 = ext4_journal_stop(handle);
3182        if (!ret)
3183                ret = ret2;
3184
3185        return ret ? ret : copied;
3186}
3187
3188static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189                                   unsigned int length)
3190{
3191        /*
3192         * Drop reserved blocks
3193         */
3194        BUG_ON(!PageLocked(page));
3195        if (!page_has_buffers(page))
3196                goto out;
3197
3198        ext4_da_page_release_reservation(page, offset, length);
3199
3200out:
3201        ext4_invalidatepage(page, offset, length);
3202
3203        return;
3204}
3205
3206/*
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3208 */
3209int ext4_alloc_da_blocks(struct inode *inode)
3210{
3211        trace_ext4_alloc_da_blocks(inode);
3212
3213        if (!EXT4_I(inode)->i_reserved_data_blocks)
3214                return 0;
3215
3216        /*
3217         * We do something simple for now.  The filemap_flush() will
3218         * also start triggering a write of the data blocks, which is
3219         * not strictly speaking necessary (and for users of
3220         * laptop_mode, not even desirable).  However, to do otherwise
3221         * would require replicating code paths in:
3222         *
3223         * ext4_writepages() ->
3224         *    write_cache_pages() ---> (via passed in callback function)
3225         *        __mpage_da_writepage() -->
3226         *           mpage_add_bh_to_extent()
3227         *           mpage_da_map_blocks()
3228         *
3229         * The problem is that write_cache_pages(), located in
3230         * mm/page-writeback.c, marks pages clean in preparation for
3231         * doing I/O, which is not desirable if we're not planning on
3232         * doing I/O at all.
3233         *
3234         * We could call write_cache_pages(), and then redirty all of
3235         * the pages by calling redirty_page_for_writepage() but that
3236         * would be ugly in the extreme.  So instead we would need to
3237         * replicate parts of the code in the above functions,
3238         * simplifying them because we wouldn't actually intend to
3239         * write out the pages, but rather only collect contiguous
3240         * logical block extents, call the multi-block allocator, and
3241         * then update the buffer heads with the block allocations.
3242         *
3243         * For now, though, we'll cheat by calling filemap_flush(),
3244         * which will map the blocks, and start the I/O, but not
3245         * actually wait for the I/O to complete.
3246         */
3247        return filemap_flush(inode->i_mapping);
3248}
3249
3250/*
3251 * bmap() is special.  It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3253 *
3254 * Naturally, this is dangerous if the block concerned is still in the
3255 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3260 *
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3263 */
3264static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265{
3266        struct inode *inode = mapping->host;
3267        journal_t *journal;
3268        int err;
3269
3270        /*
3271         * We can get here for an inline file via the FIBMAP ioctl
3272         */
3273        if (ext4_has_inline_data(inode))
3274                return 0;
3275
3276        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277                        test_opt(inode->i_sb, DELALLOC)) {
3278                /*
3279                 * With delalloc we want to sync the file
3280                 * so that we can make sure we allocate
3281                 * blocks for file
3282                 */
3283                filemap_write_and_wait(mapping);
3284        }
3285
3286        if (EXT4_JOURNAL(inode) &&
3287            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288                /*
3289                 * This is a REALLY heavyweight approach, but the use of
3290                 * bmap on dirty files is expected to be extremely rare:
3291                 * only if we run lilo or swapon on a freshly made file
3292                 * do we expect this to happen.
3293                 *
3294                 * (bmap requires CAP_SYS_RAWIO so this does not
3295                 * represent an unprivileged user DOS attack --- we'd be
3296                 * in trouble if mortal users could trigger this path at
3297                 * will.)
3298                 *
3299                 * NB. EXT4_STATE_JDATA is not set on files other than
3300                 * regular files.  If somebody wants to bmap a directory
3301                 * or symlink and gets confused because the buffer
3302                 * hasn't yet been flushed to disk, they deserve
3303                 * everything they get.
3304                 */
3305
3306                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307                journal = EXT4_JOURNAL(inode);
3308                jbd2_journal_lock_updates(journal);
3309                err = jbd2_journal_flush(journal);
3310                jbd2_journal_unlock_updates(journal);
3311
3312                if (err)
3313                        return 0;
3314        }
3315
3316        return generic_block_bmap(mapping, block, ext4_get_block);
3317}
3318
3319static int ext4_readpage(struct file *file, struct page *page)
3320{
3321        int ret = -EAGAIN;
3322        struct inode *inode = page->mapping->host;
3323
3324        trace_ext4_readpage(page);
3325
3326        if (ext4_has_inline_data(inode))
3327                ret = ext4_readpage_inline(inode, page);
3328
3329        if (ret == -EAGAIN)
3330                return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332        return ret;
3333}
3334
3335static int
3336ext4_readpages(struct file *file, struct address_space *mapping,
3337                struct list_head *pages, unsigned nr_pages)
3338{
3339        struct inode *inode = mapping->host;
3340
3341        /* If the file has inline data, no need to do readpages. */
3342        if (ext4_has_inline_data(inode))
3343                return 0;
3344
3345        return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346}
3347
3348static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349                                unsigned int length)
3350{
3351        trace_ext4_invalidatepage(page, offset, length);
3352
3353        /* No journalling happens on data buffers when this function is used */
3354        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356        block_invalidatepage(page, offset, length);
3357}
3358
3359static int __ext4_journalled_invalidatepage(struct page *page,
3360                                            unsigned int offset,
3361                                            unsigned int length)
3362{
3363        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365        trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367        /*
3368         * If it's a full truncate we just forget about the pending dirtying
3369         */
3370        if (offset == 0 && length == PAGE_SIZE)
3371                ClearPageChecked(page);
3372
3373        return jbd2_journal_invalidatepage(journal, page, offset, length);
3374}
3375
3376/* Wrapper for aops... */
3377static void ext4_journalled_invalidatepage(struct page *page,
3378                                           unsigned int offset,
3379                                           unsigned int length)
3380{
3381        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382}
3383
3384static int ext4_releasepage(struct page *page, gfp_t wait)
3385{
3386        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388        trace_ext4_releasepage(page);
3389
3390        /* Page has dirty journalled data -> cannot release */
3391        if (PageChecked(page))
3392                return 0;
3393        if (journal)
3394                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395        else
3396                return try_to_free_buffers(page);
3397}
3398
3399static bool ext4_inode_datasync_dirty(struct inode *inode)
3400{
3401        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403        if (journal)
3404                return !jbd2_transaction_committed(journal,
3405                                        EXT4_I(inode)->i_datasync_tid);
3406        /* Any metadata buffers to write? */
3407        if (!list_empty(&inode->i_mapping->private_list))
3408                return true;
3409        return inode->i_state & I_DIRTY_DATASYNC;
3410}
3411
3412static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413                            unsigned flags, struct iomap *iomap)
3414{
3415        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3416        unsigned int blkbits = inode->i_blkbits;
3417        unsigned long first_block = offset >> blkbits;
3418        unsigned long last_block = (offset + length - 1) >> blkbits;
3419        struct ext4_map_blocks map;
3420        bool delalloc = false;
3421        int ret;
3422
3423
3424        if (flags & IOMAP_REPORT) {
3425                if (ext4_has_inline_data(inode)) {
3426                        ret = ext4_inline_data_iomap(inode, iomap);
3427                        if (ret != -EAGAIN) {
3428                                if (ret == 0 && offset >= iomap->length)
3429                                        ret = -ENOENT;
3430                                return ret;
3431                        }
3432                }
3433        } else {
3434                if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435                        return -ERANGE;
3436        }
3437
3438        map.m_lblk = first_block;
3439        map.m_len = last_block - first_block + 1;
3440
3441        if (flags & IOMAP_REPORT) {
3442                ret = ext4_map_blocks(NULL, inode, &map, 0);
3443                if (ret < 0)
3444                        return ret;
3445
3446                if (ret == 0) {
3447                        ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448                        struct extent_status es;
3449
3450                        ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452                        if (!es.es_len || es.es_lblk > end) {
3453                                /* entire range is a hole */
3454                        } else if (es.es_lblk > map.m_lblk) {
3455                                /* range starts with a hole */
3456                                map.m_len = es.es_lblk - map.m_lblk;
3457                        } else {
3458                                ext4_lblk_t offs = 0;
3459
3460                                if (es.es_lblk < map.m_lblk)
3461                                        offs = map.m_lblk - es.es_lblk;
3462                                map.m_lblk = es.es_lblk + offs;
3463                                map.m_len = es.es_len - offs;
3464                                delalloc = true;
3465                        }
3466                }
3467        } else if (flags & IOMAP_WRITE) {
3468                int dio_credits;
3469                handle_t *handle;
3470                int retries = 0;
3471
3472                /* Trim mapping request to maximum we can map at once for DIO */
3473                if (map.m_len > DIO_MAX_BLOCKS)
3474                        map.m_len = DIO_MAX_BLOCKS;
3475                dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476retry:
3477                /*
3478                 * Either we allocate blocks and then we don't get unwritten
3479                 * extent so we have reserved enough credits, or the blocks
3480                 * are already allocated and unwritten and in that case
3481                 * extent conversion fits in the credits as well.
3482                 */
3483                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484                                            dio_credits);
3485                if (IS_ERR(handle))
3486                        return PTR_ERR(handle);
3487
3488                ret = ext4_map_blocks(handle, inode, &map,
3489                                      EXT4_GET_BLOCKS_CREATE_ZERO);
3490                if (ret < 0) {
3491                        ext4_journal_stop(handle);
3492                        if (ret == -ENOSPC &&
3493                            ext4_should_retry_alloc(inode->i_sb, &retries))
3494                                goto retry;
3495                        return ret;
3496                }
3497
3498                /*
3499                 * If we added blocks beyond i_size, we need to make sure they
3500                 * will get truncated if we crash before updating i_size in
3501                 * ext4_iomap_end(). For faults we don't need to do that (and
3502                 * even cannot because for orphan list operations inode_lock is
3503                 * required) - if we happen to instantiate block beyond i_size,
3504                 * it is because we race with truncate which has already added
3505                 * the inode to the orphan list.
3506                 */
3507                if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508                    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3509                        int err;
3510
3511                        err = ext4_orphan_add(handle, inode);
3512                        if (err < 0) {
3513                                ext4_journal_stop(handle);
3514                                return err;
3515                        }
3516                }
3517                ext4_journal_stop(handle);
3518        } else {
3519                ret = ext4_map_blocks(NULL, inode, &map, 0);
3520                if (ret < 0)
3521                        return ret;
3522        }
3523
3524        iomap->flags = 0;
3525        if (ext4_inode_datasync_dirty(inode))
3526                iomap->flags |= IOMAP_F_DIRTY;
3527        iomap->bdev = inode->i_sb->s_bdev;
3528        iomap->dax_dev = sbi->s_daxdev;
3529        iomap->offset = (u64)first_block << blkbits;
3530        iomap->length = (u64)map.m_len << blkbits;
3531
3532        if (ret == 0) {
3533                iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3534                iomap->addr = IOMAP_NULL_ADDR;
3535        } else {
3536                if (map.m_flags & EXT4_MAP_MAPPED) {
3537                        iomap->type = IOMAP_MAPPED;
3538                } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539                        iomap->type = IOMAP_UNWRITTEN;
3540                } else {
3541                        WARN_ON_ONCE(1);
3542                        return -EIO;
3543                }
3544                iomap->addr = (u64)map.m_pblk << blkbits;
3545        }
3546
3547        if (map.m_flags & EXT4_MAP_NEW)
3548                iomap->flags |= IOMAP_F_NEW;
3549
3550        return 0;
3551}
3552
3553static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554                          ssize_t written, unsigned flags, struct iomap *iomap)
3555{
3556        int ret = 0;
3557        handle_t *handle;
3558        int blkbits = inode->i_blkbits;
3559        bool truncate = false;
3560
3561        if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3562                return 0;
3563
3564        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565        if (IS_ERR(handle)) {
3566                ret = PTR_ERR(handle);
3567                goto orphan_del;
3568        }
3569        if (ext4_update_inode_size(inode, offset + written))
3570                ext4_mark_inode_dirty(handle, inode);
3571        /*
3572         * We may need to truncate allocated but not written blocks beyond EOF.
3573         */
3574        if (iomap->offset + iomap->length > 
3575            ALIGN(inode->i_size, 1 << blkbits)) {
3576                ext4_lblk_t written_blk, end_blk;
3577
3578                written_blk = (offset + written) >> blkbits;
3579                end_blk = (offset + length) >> blkbits;
3580                if (written_blk < end_blk && ext4_can_truncate(inode))
3581                        truncate = true;
3582        }
3583        /*
3584         * Remove inode from orphan list if we were extending a inode and
3585         * everything went fine.
3586         */
3587        if (!truncate && inode->i_nlink &&
3588            !list_empty(&EXT4_I(inode)->i_orphan))
3589                ext4_orphan_del(handle, inode);
3590        ext4_journal_stop(handle);
3591        if (truncate) {
3592                ext4_truncate_failed_write(inode);
3593orphan_del:
3594                /*
3595                 * If truncate failed early the inode might still be on the
3596                 * orphan list; we need to make sure the inode is removed from
3597                 * the orphan list in that case.
3598                 */
3599                if (inode->i_nlink)
3600                        ext4_orphan_del(NULL, inode);
3601        }
3602        return ret;
3603}
3604
3605const struct iomap_ops ext4_iomap_ops = {
3606        .iomap_begin            = ext4_iomap_begin,
3607        .iomap_end              = ext4_iomap_end,
3608};
3609
3610static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3611                            ssize_t size, void *private)
3612{
3613        ext4_io_end_t *io_end = private;
3614
3615        /* if not async direct IO just return */
3616        if (!io_end)
3617                return 0;
3618
3619        ext_debug("ext4_end_io_dio(): io_end 0x%p "
3620                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3621                  io_end, io_end->inode->i_ino, iocb, offset, size);
3622
3623        /*
3624         * Error during AIO DIO. We cannot convert unwritten extents as the
3625         * data was not written. Just clear the unwritten flag and drop io_end.
3626         */
3627        if (size <= 0) {
3628                ext4_clear_io_unwritten_flag(io_end);
3629                size = 0;
3630        }
3631        io_end->offset = offset;
3632        io_end->size = size;
3633        ext4_put_io_end(io_end);
3634
3635        return 0;
3636}
3637
3638/*
3639 * Handling of direct IO writes.
3640 *
3641 * For ext4 extent files, ext4 will do direct-io write even to holes,
3642 * preallocated extents, and those write extend the file, no need to
3643 * fall back to buffered IO.
3644 *
3645 * For holes, we fallocate those blocks, mark them as unwritten
3646 * If those blocks were preallocated, we mark sure they are split, but
3647 * still keep the range to write as unwritten.
3648 *
3649 * The unwritten extents will be converted to written when DIO is completed.
3650 * For async direct IO, since the IO may still pending when return, we
3651 * set up an end_io call back function, which will do the conversion
3652 * when async direct IO completed.
3653 *
3654 * If the O_DIRECT write will extend the file then add this inode to the
3655 * orphan list.  So recovery will truncate it back to the original size
3656 * if the machine crashes during the write.
3657 *
3658 */
3659static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3660{
3661        struct file *file = iocb->ki_filp;
3662        struct inode *inode = file->f_mapping->host;
3663        struct ext4_inode_info *ei = EXT4_I(inode);
3664        ssize_t ret;
3665        loff_t offset = iocb->ki_pos;
3666        size_t count = iov_iter_count(iter);
3667        int overwrite = 0;
3668        get_block_t *get_block_func = NULL;
3669        int dio_flags = 0;
3670        loff_t final_size = offset + count;
3671        int orphan = 0;
3672        handle_t *handle;
3673
3674        if (final_size > inode->i_size || final_size > ei->i_disksize) {
3675                /* Credits for sb + inode write */
3676                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677                if (IS_ERR(handle)) {
3678                        ret = PTR_ERR(handle);
3679                        goto out;
3680                }
3681                ret = ext4_orphan_add(handle, inode);
3682                if (ret) {
3683                        ext4_journal_stop(handle);
3684                        goto out;
3685                }
3686                orphan = 1;
3687                ext4_update_i_disksize(inode, inode->i_size);
3688                ext4_journal_stop(handle);
3689        }
3690
3691        BUG_ON(iocb->private == NULL);
3692
3693        /*
3694         * Make all waiters for direct IO properly wait also for extent
3695         * conversion. This also disallows race between truncate() and
3696         * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697         */
3698        inode_dio_begin(inode);
3699
3700        /* If we do a overwrite dio, i_mutex locking can be released */
3701        overwrite = *((int *)iocb->private);
3702
3703        if (overwrite)
3704                inode_unlock(inode);
3705
3706        /*
3707         * For extent mapped files we could direct write to holes and fallocate.
3708         *
3709         * Allocated blocks to fill the hole are marked as unwritten to prevent
3710         * parallel buffered read to expose the stale data before DIO complete
3711         * the data IO.
3712         *
3713         * As to previously fallocated extents, ext4 get_block will just simply
3714         * mark the buffer mapped but still keep the extents unwritten.
3715         *
3716         * For non AIO case, we will convert those unwritten extents to written
3717         * after return back from blockdev_direct_IO. That way we save us from
3718         * allocating io_end structure and also the overhead of offloading
3719         * the extent convertion to a workqueue.
3720         *
3721         * For async DIO, the conversion needs to be deferred when the
3722         * IO is completed. The ext4 end_io callback function will be
3723         * called to take care of the conversion work.  Here for async
3724         * case, we allocate an io_end structure to hook to the iocb.
3725         */
3726        iocb->private = NULL;
3727        if (overwrite)
3728                get_block_func = ext4_dio_get_block_overwrite;
3729        else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3730                   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3731                get_block_func = ext4_dio_get_block;
3732                dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733        } else if (is_sync_kiocb(iocb)) {
3734                get_block_func = ext4_dio_get_block_unwritten_sync;
3735                dio_flags = DIO_LOCKING;
3736        } else {
3737                get_block_func = ext4_dio_get_block_unwritten_async;
3738                dio_flags = DIO_LOCKING;
3739        }
3740        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741                                   get_block_func, ext4_end_io_dio, NULL,
3742                                   dio_flags);
3743
3744        if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3745                                                EXT4_STATE_DIO_UNWRITTEN)) {
3746                int err;
3747                /*
3748                 * for non AIO case, since the IO is already
3749                 * completed, we could do the conversion right here
3750                 */
3751                err = ext4_convert_unwritten_extents(NULL, inode,
3752                                                     offset, ret);
3753                if (err < 0)
3754                        ret = err;
3755                ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756        }
3757
3758        inode_dio_end(inode);
3759        /* take i_mutex locking again if we do a ovewrite dio */
3760        if (overwrite)
3761                inode_lock(inode);
3762
3763        if (ret < 0 && final_size > inode->i_size)
3764                ext4_truncate_failed_write(inode);
3765
3766        /* Handle extending of i_size after direct IO write */
3767        if (orphan) {
3768                int err;
3769
3770                /* Credits for sb + inode write */
3771                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772                if (IS_ERR(handle)) {
3773                        /*
3774                         * We wrote the data but cannot extend
3775                         * i_size. Bail out. In async io case, we do
3776                         * not return error here because we have
3777                         * already submmitted the corresponding
3778                         * bio. Returning error here makes the caller
3779                         * think that this IO is done and failed
3780                         * resulting in race with bio's completion
3781                         * handler.
3782                         */
3783                        if (!ret)
3784                                ret = PTR_ERR(handle);
3785                        if (inode->i_nlink)
3786                                ext4_orphan_del(NULL, inode);
3787
3788                        goto out;
3789                }
3790                if (inode->i_nlink)
3791                        ext4_orphan_del(handle, inode);
3792                if (ret > 0) {
3793                        loff_t end = offset + ret;
3794                        if (end > inode->i_size || end > ei->i_disksize) {
3795                                ext4_update_i_disksize(inode, end);
3796                                if (end > inode->i_size)
3797                                        i_size_write(inode, end);
3798                                /*
3799                                 * We're going to return a positive `ret'
3800                                 * here due to non-zero-length I/O, so there's
3801                                 * no way of reporting error returns from
3802                                 * ext4_mark_inode_dirty() to userspace.  So
3803                                 * ignore it.
3804                                 */
3805                                ext4_mark_inode_dirty(handle, inode);
3806                        }
3807                }
3808                err = ext4_journal_stop(handle);
3809                if (ret == 0)
3810                        ret = err;
3811        }
3812out:
3813        return ret;
3814}
3815
3816static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817{
3818        struct address_space *mapping = iocb->ki_filp->f_mapping;
3819        struct inode *inode = mapping->host;
3820        size_t count = iov_iter_count(iter);
3821        ssize_t ret;
3822
3823        /*
3824         * Shared inode_lock is enough for us - it protects against concurrent
3825         * writes & truncates and since we take care of writing back page cache,
3826         * we are protected against page writeback as well.
3827         */
3828        inode_lock_shared(inode);
3829        ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3830                                           iocb->ki_pos + count - 1);
3831        if (ret)
3832                goto out_unlock;
3833        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834                                   iter, ext4_dio_get_block, NULL, NULL, 0);
3835out_unlock:
3836        inode_unlock_shared(inode);
3837        return ret;
3838}
3839
3840static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3841{
3842        struct file *file = iocb->ki_filp;
3843        struct inode *inode = file->f_mapping->host;
3844        size_t count = iov_iter_count(iter);
3845        loff_t offset = iocb->ki_pos;
3846        ssize_t ret;
3847
3848#ifdef CONFIG_EXT4_FS_ENCRYPTION
3849        if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850                return 0;
3851#endif
3852
3853        /*
3854         * If we are doing data journalling we don't support O_DIRECT
3855         */
3856        if (ext4_should_journal_data(inode))
3857                return 0;
3858
3859        /* Let buffer I/O handle the inline data case. */
3860        if (ext4_has_inline_data(inode))
3861                return 0;
3862
3863        trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864        if (iov_iter_rw(iter) == READ)
3865                ret = ext4_direct_IO_read(iocb, iter);
3866        else
3867                ret = ext4_direct_IO_write(iocb, iter);
3868        trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3869        return ret;
3870}
3871
3872/*
3873 * Pages can be marked dirty completely asynchronously from ext4's journalling
3874 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3875 * much here because ->set_page_dirty is called under VFS locks.  The page is
3876 * not necessarily locked.
3877 *
3878 * We cannot just dirty the page and leave attached buffers clean, because the
3879 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3880 * or jbddirty because all the journalling code will explode.
3881 *
3882 * So what we do is to mark the page "pending dirty" and next time writepage
3883 * is called, propagate that into the buffers appropriately.
3884 */
3885static int ext4_journalled_set_page_dirty(struct page *page)
3886{
3887        SetPageChecked(page);
3888        return __set_page_dirty_nobuffers(page);
3889}
3890
3891static int ext4_set_page_dirty(struct page *page)
3892{
3893        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894        WARN_ON_ONCE(!page_has_buffers(page));
3895        return __set_page_dirty_buffers(page);
3896}
3897
3898static const struct address_space_operations ext4_aops = {
3899        .readpage               = ext4_readpage,
3900        .readpages              = ext4_readpages,
3901        .writepage              = ext4_writepage,
3902        .writepages             = ext4_writepages,
3903        .write_begin            = ext4_write_begin,
3904        .write_end              = ext4_write_end,
3905        .set_page_dirty         = ext4_set_page_dirty,
3906        .bmap                   = ext4_bmap,
3907        .invalidatepage         = ext4_invalidatepage,
3908        .releasepage            = ext4_releasepage,
3909        .direct_IO              = ext4_direct_IO,
3910        .migratepage            = buffer_migrate_page,
3911        .is_partially_uptodate  = block_is_partially_uptodate,
3912        .error_remove_page      = generic_error_remove_page,
3913};
3914
3915static const struct address_space_operations ext4_journalled_aops = {
3916        .readpage               = ext4_readpage,
3917        .readpages              = ext4_readpages,
3918        .writepage              = ext4_writepage,
3919        .writepages             = ext4_writepages,
3920        .write_begin            = ext4_write_begin,
3921        .write_end              = ext4_journalled_write_end,
3922        .set_page_dirty         = ext4_journalled_set_page_dirty,
3923        .bmap                   = ext4_bmap,
3924        .invalidatepage         = ext4_journalled_invalidatepage,
3925        .releasepage            = ext4_releasepage,
3926        .direct_IO              = ext4_direct_IO,
3927        .is_partially_uptodate  = block_is_partially_uptodate,
3928        .error_remove_page      = generic_error_remove_page,
3929};
3930
3931static const struct address_space_operations ext4_da_aops = {
3932        .readpage               = ext4_readpage,
3933        .readpages              = ext4_readpages,
3934        .writepage              = ext4_writepage,
3935        .writepages             = ext4_writepages,
3936        .write_begin            = ext4_da_write_begin,
3937        .write_end              = ext4_da_write_end,
3938        .set_page_dirty         = ext4_set_page_dirty,
3939        .bmap                   = ext4_bmap,
3940        .invalidatepage         = ext4_da_invalidatepage,
3941        .releasepage            = ext4_releasepage,
3942        .direct_IO              = ext4_direct_IO,
3943        .migratepage            = buffer_migrate_page,
3944        .is_partially_uptodate  = block_is_partially_uptodate,
3945        .error_remove_page      = generic_error_remove_page,
3946};
3947
3948static const struct address_space_operations ext4_dax_aops = {
3949        .writepages             = ext4_dax_writepages,
3950        .direct_IO              = noop_direct_IO,
3951        .set_page_dirty         = noop_set_page_dirty,
3952        .invalidatepage         = noop_invalidatepage,
3953};
3954
3955void ext4_set_aops(struct inode *inode)
3956{
3957        switch (ext4_inode_journal_mode(inode)) {
3958        case EXT4_INODE_ORDERED_DATA_MODE:
3959        case EXT4_INODE_WRITEBACK_DATA_MODE:
3960                break;
3961        case EXT4_INODE_JOURNAL_DATA_MODE:
3962                inode->i_mapping->a_ops = &ext4_journalled_aops;
3963                return;
3964        default:
3965                BUG();
3966        }
3967        if (IS_DAX(inode))
3968                inode->i_mapping->a_ops = &ext4_dax_aops;
3969        else if (test_opt(inode->i_sb, DELALLOC))
3970                inode->i_mapping->a_ops = &ext4_da_aops;
3971        else
3972                inode->i_mapping->a_ops = &ext4_aops;
3973}
3974
3975static int __ext4_block_zero_page_range(handle_t *handle,
3976                struct address_space *mapping, loff_t from, loff_t length)
3977{
3978        ext4_fsblk_t index = from >> PAGE_SHIFT;
3979        unsigned offset = from & (PAGE_SIZE-1);
3980        unsigned blocksize, pos;
3981        ext4_lblk_t iblock;
3982        struct inode *inode = mapping->host;
3983        struct buffer_head *bh;
3984        struct page *page;
3985        int err = 0;
3986
3987        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3988                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3989        if (!page)
3990                return -ENOMEM;
3991
3992        blocksize = inode->i_sb->s_blocksize;
3993
3994        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3995
3996        if (!page_has_buffers(page))
3997                create_empty_buffers(page, blocksize, 0);
3998
3999        /* Find the buffer that contains "offset" */
4000        bh = page_buffers(page);
4001        pos = blocksize;
4002        while (offset >= pos) {
4003                bh = bh->b_this_page;
4004                iblock++;
4005                pos += blocksize;
4006        }
4007        if (buffer_freed(bh)) {
4008                BUFFER_TRACE(bh, "freed: skip");
4009                goto unlock;
4010        }
4011        if (!buffer_mapped(bh)) {
4012                BUFFER_TRACE(bh, "unmapped");
4013                ext4_get_block(inode, iblock, bh, 0);
4014                /* unmapped? It's a hole - nothing to do */
4015                if (!buffer_mapped(bh)) {
4016                        BUFFER_TRACE(bh, "still unmapped");
4017                        goto unlock;
4018                }
4019        }
4020
4021        /* Ok, it's mapped. Make sure it's up-to-date */
4022        if (PageUptodate(page))
4023                set_buffer_uptodate(bh);
4024
4025        if (!buffer_uptodate(bh)) {
4026                err = -EIO;
4027                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4028                wait_on_buffer(bh);
4029                /* Uhhuh. Read error. Complain and punt. */
4030                if (!buffer_uptodate(bh))
4031                        goto unlock;
4032                if (S_ISREG(inode->i_mode) &&
4033                    ext4_encrypted_inode(inode)) {
4034                        /* We expect the key to be set. */
4035                        BUG_ON(!fscrypt_has_encryption_key(inode));
4036                        BUG_ON(blocksize != PAGE_SIZE);
4037                        WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4038                                                page, PAGE_SIZE, 0, page->index));
4039                }
4040        }
4041        if (ext4_should_journal_data(inode)) {
4042                BUFFER_TRACE(bh, "get write access");
4043                err = ext4_journal_get_write_access(handle, bh);
4044                if (err)
4045                        goto unlock;
4046        }
4047        zero_user(page, offset, length);
4048        BUFFER_TRACE(bh, "zeroed end of block");
4049
4050        if (ext4_should_journal_data(inode)) {
4051                err = ext4_handle_dirty_metadata(handle, inode, bh);
4052        } else {
4053                err = 0;
4054                mark_buffer_dirty(bh);
4055                if (ext4_should_order_data(inode))
4056                        err = ext4_jbd2_inode_add_write(handle, inode);
4057        }
4058
4059unlock:
4060        unlock_page(page);
4061        put_page(page);
4062        return err;
4063}
4064
4065/*
4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067 * starting from file offset 'from'.  The range to be zero'd must
4068 * be contained with in one block.  If the specified range exceeds
4069 * the end of the block it will be shortened to end of the block
4070 * that cooresponds to 'from'
4071 */
4072static int ext4_block_zero_page_range(handle_t *handle,
4073                struct address_space *mapping, loff_t from, loff_t length)
4074{
4075        struct inode *inode = mapping->host;
4076        unsigned offset = from & (PAGE_SIZE-1);
4077        unsigned blocksize = inode->i_sb->s_blocksize;
4078        unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080        /*
4081         * correct length if it does not fall between
4082         * 'from' and the end of the block
4083         */
4084        if (length > max || length < 0)
4085                length = max;
4086
4087        if (IS_DAX(inode)) {
4088                return iomap_zero_range(inode, from, length, NULL,
4089                                        &ext4_iomap_ops);
4090        }
4091        return __ext4_block_zero_page_range(handle, mapping, from, length);
4092}
4093
4094/*
4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096 * up to the end of the block which corresponds to `from'.
4097 * This required during truncate. We need to physically zero the tail end
4098 * of that block so it doesn't yield old data if the file is later grown.
4099 */
4100static int ext4_block_truncate_page(handle_t *handle,
4101                struct address_space *mapping, loff_t from)
4102{
4103        unsigned offset = from & (PAGE_SIZE-1);
4104        unsigned length;
4105        unsigned blocksize;
4106        struct inode *inode = mapping->host;
4107
4108        /* If we are processing an encrypted inode during orphan list handling */
4109        if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110                return 0;
4111
4112        blocksize = inode->i_sb->s_blocksize;
4113        length = blocksize - (offset & (blocksize - 1));
4114
4115        return ext4_block_zero_page_range(handle, mapping, from, length);
4116}
4117
4118int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119                             loff_t lstart, loff_t length)
4120{
4121        struct super_block *sb = inode->i_sb;
4122        struct address_space *mapping = inode->i_mapping;
4123        unsigned partial_start, partial_end;
4124        ext4_fsblk_t start, end;
4125        loff_t byte_end = (lstart + length - 1);
4126        int err = 0;
4127
4128        partial_start = lstart & (sb->s_blocksize - 1);
4129        partial_end = byte_end & (sb->s_blocksize - 1);
4130
4131        start = lstart >> sb->s_blocksize_bits;
4132        end = byte_end >> sb->s_blocksize_bits;
4133
4134        /* Handle partial zero within the single block */
4135        if (start == end &&
4136            (partial_start || (partial_end != sb->s_blocksize - 1))) {
4137                err = ext4_block_zero_page_range(handle, mapping,
4138                                                 lstart, length);
4139                return err;
4140        }
4141        /* Handle partial zero out on the start of the range */
4142        if (partial_start) {
4143                err = ext4_block_zero_page_range(handle, mapping,
4144                                                 lstart, sb->s_blocksize);
4145                if (err)
4146                        return err;
4147        }
4148        /* Handle partial zero out on the end of the range */
4149        if (partial_end != sb->s_blocksize - 1)
4150                err = ext4_block_zero_page_range(handle, mapping,
4151                                                 byte_end - partial_end,
4152                                                 partial_end + 1);
4153        return err;
4154}
4155
4156int ext4_can_truncate(struct inode *inode)
4157{
4158        if (S_ISREG(inode->i_mode))
4159                return 1;
4160        if (S_ISDIR(inode->i_mode))
4161                return 1;
4162        if (S_ISLNK(inode->i_mode))
4163                return !ext4_inode_is_fast_symlink(inode);
4164        return 0;
4165}
4166
4167/*
4168 * We have to make sure i_disksize gets properly updated before we truncate
4169 * page cache due to hole punching or zero range. Otherwise i_disksize update
4170 * can get lost as it may have been postponed to submission of writeback but
4171 * that will never happen after we truncate page cache.
4172 */
4173int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174                                      loff_t len)
4175{
4176        handle_t *handle;
4177        loff_t size = i_size_read(inode);
4178
4179        WARN_ON(!inode_is_locked(inode));
4180        if (offset > size || offset + len < size)
4181                return 0;
4182
4183        if (EXT4_I(inode)->i_disksize >= size)
4184                return 0;
4185
4186        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187        if (IS_ERR(handle))
4188                return PTR_ERR(handle);
4189        ext4_update_i_disksize(inode, size);
4190        ext4_mark_inode_dirty(handle, inode);
4191        ext4_journal_stop(handle);
4192
4193        return 0;
4194}
4195
4196/*
4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4198 * associated with the given offset and length
4199 *
4200 * @inode:  File inode
4201 * @offset: The offset where the hole will begin
4202 * @len:    The length of the hole
4203 *
4204 * Returns: 0 on success or negative on failure
4205 */
4206
4207int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4208{
4209        struct super_block *sb = inode->i_sb;
4210        ext4_lblk_t first_block, stop_block;
4211        struct address_space *mapping = inode->i_mapping;
4212        loff_t first_block_offset, last_block_offset;
4213        handle_t *handle;
4214        unsigned int credits;
4215        int ret = 0;
4216
4217        if (!S_ISREG(inode->i_mode))
4218                return -EOPNOTSUPP;
4219
4220        trace_ext4_punch_hole(inode, offset, length, 0);
4221
4222        /*
4223         * Write out all dirty pages to avoid race conditions
4224         * Then release them.
4225         */
4226        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4227                ret = filemap_write_and_wait_range(mapping, offset,
4228                                                   offset + length - 1);
4229                if (ret)
4230                        return ret;
4231        }
4232
4233        inode_lock(inode);
4234
4235        /* No need to punch hole beyond i_size */
4236        if (offset >= inode->i_size)
4237                goto out_mutex;
4238
4239        /*
4240         * If the hole extends beyond i_size, set the hole
4241         * to end after the page that contains i_size
4242         */
4243        if (offset + length > inode->i_size) {
4244                length = inode->i_size +
4245                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4246                   offset;
4247        }
4248
4249        if (offset & (sb->s_blocksize - 1) ||
4250            (offset + length) & (sb->s_blocksize - 1)) {
4251                /*
4252                 * Attach jinode to inode for jbd2 if we do any zeroing of
4253                 * partial block
4254                 */
4255                ret = ext4_inode_attach_jinode(inode);
4256                if (ret < 0)
4257                        goto out_mutex;
4258
4259        }
4260
4261        /* Wait all existing dio workers, newcomers will block on i_mutex */
4262        inode_dio_wait(inode);
4263
4264        /*
4265         * Prevent page faults from reinstantiating pages we have released from
4266         * page cache.
4267         */
4268        down_write(&EXT4_I(inode)->i_mmap_sem);
4269        first_block_offset = round_up(offset, sb->s_blocksize);
4270        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4271
4272        /* Now release the pages and zero block aligned part of pages*/
4273        if (last_block_offset > first_block_offset) {
4274                ret = ext4_update_disksize_before_punch(inode, offset, length);
4275                if (ret)
4276                        goto out_dio;
4277                truncate_pagecache_range(inode, first_block_offset,
4278                                         last_block_offset);
4279        }
4280
4281        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282                credits = ext4_writepage_trans_blocks(inode);
4283        else
4284                credits = ext4_blocks_for_truncate(inode);
4285        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286        if (IS_ERR(handle)) {
4287                ret = PTR_ERR(handle);
4288                ext4_std_error(sb, ret);
4289                goto out_dio;
4290        }
4291
4292        ret = ext4_zero_partial_blocks(handle, inode, offset,
4293                                       length);
4294        if (ret)
4295                goto out_stop;
4296
4297        first_block = (offset + sb->s_blocksize - 1) >>
4298                EXT4_BLOCK_SIZE_BITS(sb);
4299        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
4301        /* If there are no blocks to remove, return now */
4302        if (first_block >= stop_block)
4303                goto out_stop;
4304
4305        down_write(&EXT4_I(inode)->i_data_sem);
4306        ext4_discard_preallocations(inode);
4307
4308        ret = ext4_es_remove_extent(inode, first_block,
4309                                    stop_block - first_block);
4310        if (ret) {
4311                up_write(&EXT4_I(inode)->i_data_sem);
4312                goto out_stop;
4313        }
4314
4315        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4316                ret = ext4_ext_remove_space(inode, first_block,
4317                                            stop_block - 1);
4318        else
4319                ret = ext4_ind_remove_space(handle, inode, first_block,
4320                                            stop_block);
4321
4322        up_write(&EXT4_I(inode)->i_data_sem);
4323        if (IS_SYNC(inode))
4324                ext4_handle_sync(handle);
4325
4326        inode->i_mtime = inode->i_ctime = current_time(inode);
4327        ext4_mark_inode_dirty(handle, inode);
4328        if (ret >= 0)
4329                ext4_update_inode_fsync_trans(handle, inode, 1);
4330out_stop:
4331        ext4_journal_stop(handle);
4332out_dio:
4333        up_write(&EXT4_I(inode)->i_mmap_sem);
4334out_mutex:
4335        inode_unlock(inode);
4336        return ret;
4337}
4338
4339int ext4_inode_attach_jinode(struct inode *inode)
4340{
4341        struct ext4_inode_info *ei = EXT4_I(inode);
4342        struct jbd2_inode *jinode;
4343
4344        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345                return 0;
4346
4347        jinode = jbd2_alloc_inode(GFP_KERNEL);
4348        spin_lock(&inode->i_lock);
4349        if (!ei->jinode) {
4350                if (!jinode) {
4351                        spin_unlock(&inode->i_lock);
4352                        return -ENOMEM;
4353                }
4354                ei->jinode = jinode;
4355                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356                jinode = NULL;
4357        }
4358        spin_unlock(&inode->i_lock);
4359        if (unlikely(jinode != NULL))
4360                jbd2_free_inode(jinode);
4361        return 0;
4362}
4363
4364/*
4365 * ext4_truncate()
4366 *
4367 * We block out ext4_get_block() block instantiations across the entire
4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4369 * simultaneously on behalf of the same inode.
4370 *
4371 * As we work through the truncate and commit bits of it to the journal there
4372 * is one core, guiding principle: the file's tree must always be consistent on
4373 * disk.  We must be able to restart the truncate after a crash.
4374 *
4375 * The file's tree may be transiently inconsistent in memory (although it
4376 * probably isn't), but whenever we close off and commit a journal transaction,
4377 * the contents of (the filesystem + the journal) must be consistent and
4378 * restartable.  It's pretty simple, really: bottom up, right to left (although
4379 * left-to-right works OK too).
4380 *
4381 * Note that at recovery time, journal replay occurs *before* the restart of
4382 * truncate against the orphan inode list.
4383 *
4384 * The committed inode has the new, desired i_size (which is the same as
4385 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4386 * that this inode's truncate did not complete and it will again call
4387 * ext4_truncate() to have another go.  So there will be instantiated blocks
4388 * to the right of the truncation point in a crashed ext4 filesystem.  But
4389 * that's fine - as long as they are linked from the inode, the post-crash
4390 * ext4_truncate() run will find them and release them.
4391 */
4392int ext4_truncate(struct inode *inode)
4393{
4394        struct ext4_inode_info *ei = EXT4_I(inode);
4395        unsigned int credits;
4396        int err = 0;
4397        handle_t *handle;
4398        struct address_space *mapping = inode->i_mapping;
4399
4400        /*
4401         * There is a possibility that we're either freeing the inode
4402         * or it's a completely new inode. In those cases we might not
4403         * have i_mutex locked because it's not necessary.
4404         */
4405        if (!(inode->i_state & (I_NEW|I_FREEING)))
4406                WARN_ON(!inode_is_locked(inode));
4407        trace_ext4_truncate_enter(inode);
4408
4409        if (!ext4_can_truncate(inode))
4410                return 0;
4411
4412        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4413
4414        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4416
4417        if (ext4_has_inline_data(inode)) {
4418                int has_inline = 1;
4419
4420                err = ext4_inline_data_truncate(inode, &has_inline);
4421                if (err)
4422                        return err;
4423                if (has_inline)
4424                        return 0;
4425        }
4426
4427        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429                if (ext4_inode_attach_jinode(inode) < 0)
4430                        return 0;
4431        }
4432
4433        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434                credits = ext4_writepage_trans_blocks(inode);
4435        else
4436                credits = ext4_blocks_for_truncate(inode);
4437
4438        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4439        if (IS_ERR(handle))
4440                return PTR_ERR(handle);
4441
4442        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443                ext4_block_truncate_page(handle, mapping, inode->i_size);
4444
4445        /*
4446         * We add the inode to the orphan list, so that if this
4447         * truncate spans multiple transactions, and we crash, we will
4448         * resume the truncate when the filesystem recovers.  It also
4449         * marks the inode dirty, to catch the new size.
4450         *
4451         * Implication: the file must always be in a sane, consistent
4452         * truncatable state while each transaction commits.
4453         */
4454        err = ext4_orphan_add(handle, inode);
4455        if (err)
4456                goto out_stop;
4457
4458        down_write(&EXT4_I(inode)->i_data_sem);
4459
4460        ext4_discard_preallocations(inode);
4461
4462        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4463                err = ext4_ext_truncate(handle, inode);
4464        else
4465                ext4_ind_truncate(handle, inode);
4466
4467        up_write(&ei->i_data_sem);
4468        if (err)
4469                goto out_stop;
4470
4471        if (IS_SYNC(inode))
4472                ext4_handle_sync(handle);
4473
4474out_stop:
4475        /*
4476         * If this was a simple ftruncate() and the file will remain alive,
4477         * then we need to clear up the orphan record which we created above.
4478         * However, if this was a real unlink then we were called by
4479         * ext4_evict_inode(), and we allow that function to clean up the
4480         * orphan info for us.
4481         */
4482        if (inode->i_nlink)
4483                ext4_orphan_del(handle, inode);
4484
4485        inode->i_mtime = inode->i_ctime = current_time(inode);
4486        ext4_mark_inode_dirty(handle, inode);
4487        ext4_journal_stop(handle);
4488
4489        trace_ext4_truncate_exit(inode);
4490        return err;
4491}
4492
4493/*
4494 * ext4_get_inode_loc returns with an extra refcount against the inode's
4495 * underlying buffer_head on success. If 'in_mem' is true, we have all
4496 * data in memory that is needed to recreate the on-disk version of this
4497 * inode.
4498 */
4499static int __ext4_get_inode_loc(struct inode *inode,
4500                                struct ext4_iloc *iloc, int in_mem)
4501{
4502        struct ext4_group_desc  *gdp;
4503        struct buffer_head      *bh;
4504        struct super_block      *sb = inode->i_sb;
4505        ext4_fsblk_t            block;
4506        int                     inodes_per_block, inode_offset;
4507
4508        iloc->bh = NULL;
4509        if (!ext4_valid_inum(sb, inode->i_ino))
4510                return -EFSCORRUPTED;
4511
4512        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4513        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4514        if (!gdp)
4515                return -EIO;
4516
4517        /*
4518         * Figure out the offset within the block group inode table
4519         */
4520        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4521        inode_offset = ((inode->i_ino - 1) %
4522                        EXT4_INODES_PER_GROUP(sb));
4523        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4524        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4525
4526        bh = sb_getblk(sb, block);
4527        if (unlikely(!bh))
4528                return -ENOMEM;
4529        if (!buffer_uptodate(bh)) {
4530                lock_buffer(bh);
4531
4532                /*
4533                 * If the buffer has the write error flag, we have failed
4534                 * to write out another inode in the same block.  In this
4535                 * case, we don't have to read the block because we may
4536                 * read the old inode data successfully.
4537                 */
4538                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4539                        set_buffer_uptodate(bh);
4540
4541                if (buffer_uptodate(bh)) {
4542                        /* someone brought it uptodate while we waited */
4543                        unlock_buffer(bh);
4544                        goto has_buffer;
4545                }
4546
4547                /*
4548                 * If we have all information of the inode in memory and this
4549                 * is the only valid inode in the block, we need not read the
4550                 * block.
4551                 */
4552                if (in_mem) {
4553                        struct buffer_head *bitmap_bh;
4554                        int i, start;
4555
4556                        start = inode_offset & ~(inodes_per_block - 1);
4557
4558                        /* Is the inode bitmap in cache? */
4559                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4560                        if (unlikely(!bitmap_bh))
4561                                goto make_io;
4562
4563                        /*
4564                         * If the inode bitmap isn't in cache then the
4565                         * optimisation may end up performing two reads instead
4566                         * of one, so skip it.
4567                         */
4568                        if (!buffer_uptodate(bitmap_bh)) {
4569                                brelse(bitmap_bh);
4570                                goto make_io;
4571                        }
4572                        for (i = start; i < start + inodes_per_block; i++) {
4573                                if (i == inode_offset)
4574                                        continue;
4575                                if (ext4_test_bit(i, bitmap_bh->b_data))
4576                                        break;
4577                        }
4578                        brelse(bitmap_bh);
4579                        if (i == start + inodes_per_block) {
4580                                /* all other inodes are free, so skip I/O */
4581                                memset(bh->b_data, 0, bh->b_size);
4582                                set_buffer_uptodate(bh);
4583                                unlock_buffer(bh);
4584                                goto has_buffer;
4585                        }
4586                }
4587
4588make_io:
4589                /*
4590                 * If we need to do any I/O, try to pre-readahead extra
4591                 * blocks from the inode table.
4592                 */
4593                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4594                        ext4_fsblk_t b, end, table;
4595                        unsigned num;
4596                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4597
4598                        table = ext4_inode_table(sb, gdp);
4599                        /* s_inode_readahead_blks is always a power of 2 */
4600                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4601                        if (table > b)
4602                                b = table;
4603                        end = b + ra_blks;
4604                        num = EXT4_INODES_PER_GROUP(sb);
4605                        if (ext4_has_group_desc_csum(sb))
4606                                num -= ext4_itable_unused_count(sb, gdp);
4607                        table += num / inodes_per_block;
4608                        if (end > table)
4609                                end = table;
4610                        while (b <= end)
4611                                sb_breadahead(sb, b++);
4612                }
4613
4614                /*
4615                 * There are other valid inodes in the buffer, this inode
4616                 * has in-inode xattrs, or we don't have this inode in memory.
4617                 * Read the block from disk.
4618                 */
4619                trace_ext4_load_inode(inode);
4620                get_bh(bh);
4621                bh->b_end_io = end_buffer_read_sync;
4622                submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4623                wait_on_buffer(bh);
4624                if (!buffer_uptodate(bh)) {
4625                        EXT4_ERROR_INODE_BLOCK(inode, block,
4626                                               "unable to read itable block");
4627                        brelse(bh);
4628                        return -EIO;
4629                }
4630        }
4631has_buffer:
4632        iloc->bh = bh;
4633        return 0;
4634}
4635
4636int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4637{
4638        /* We have all inode data except xattrs in memory here. */
4639        return __ext4_get_inode_loc(inode, iloc,
4640                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4641}
4642
4643static bool ext4_should_use_dax(struct inode *inode)
4644{
4645        if (!test_opt(inode->i_sb, DAX))
4646                return false;
4647        if (!S_ISREG(inode->i_mode))
4648                return false;
4649        if (ext4_should_journal_data(inode))
4650                return false;
4651        if (ext4_has_inline_data(inode))
4652                return false;
4653        if (ext4_encrypted_inode(inode))
4654                return false;
4655        return true;
4656}
4657
4658void ext4_set_inode_flags(struct inode *inode)
4659{
4660        unsigned int flags = EXT4_I(inode)->i_flags;
4661        unsigned int new_fl = 0;
4662
4663        if (flags & EXT4_SYNC_FL)
4664                new_fl |= S_SYNC;
4665        if (flags & EXT4_APPEND_FL)
4666                new_fl |= S_APPEND;
4667        if (flags & EXT4_IMMUTABLE_FL)
4668                new_fl |= S_IMMUTABLE;
4669        if (flags & EXT4_NOATIME_FL)
4670                new_fl |= S_NOATIME;
4671        if (flags & EXT4_DIRSYNC_FL)
4672                new_fl |= S_DIRSYNC;
4673        if (ext4_should_use_dax(inode))
4674                new_fl |= S_DAX;
4675        if (flags & EXT4_ENCRYPT_FL)
4676                new_fl |= S_ENCRYPTED;
4677        inode_set_flags(inode, new_fl,
4678                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4679                        S_ENCRYPTED);
4680}
4681
4682static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4683                                  struct ext4_inode_info *ei)
4684{
4685        blkcnt_t i_blocks ;
4686        struct inode *inode = &(ei->vfs_inode);
4687        struct super_block *sb = inode->i_sb;
4688
4689        if (ext4_has_feature_huge_file(sb)) {
4690                /* we are using combined 48 bit field */
4691                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4692                                        le32_to_cpu(raw_inode->i_blocks_lo);
4693                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4694                        /* i_blocks represent file system block size */
4695                        return i_blocks  << (inode->i_blkbits - 9);
4696                } else {
4697                        return i_blocks;
4698                }
4699        } else {
4700                return le32_to_cpu(raw_inode->i_blocks_lo);
4701        }
4702}
4703
4704static inline void ext4_iget_extra_inode(struct inode *inode,
4705                                         struct ext4_inode *raw_inode,
4706                                         struct ext4_inode_info *ei)
4707{
4708        __le32 *magic = (void *)raw_inode +
4709                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4710        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711            EXT4_INODE_SIZE(inode->i_sb) &&
4712            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4713                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714                ext4_find_inline_data_nolock(inode);
4715        } else
4716                EXT4_I(inode)->i_inline_off = 0;
4717}
4718
4719int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4720{
4721        if (!ext4_has_feature_project(inode->i_sb))
4722                return -EOPNOTSUPP;
4723        *projid = EXT4_I(inode)->i_projid;
4724        return 0;
4725}
4726
4727struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4728{
4729        struct ext4_iloc iloc;
4730        struct ext4_inode *raw_inode;
4731        struct ext4_inode_info *ei;
4732        struct inode *inode;
4733        journal_t *journal = EXT4_SB(sb)->s_journal;
4734        long ret;
4735        loff_t size;
4736        int block;
4737        uid_t i_uid;
4738        gid_t i_gid;
4739        projid_t i_projid;
4740
4741        inode = iget_locked(sb, ino);
4742        if (!inode)
4743                return ERR_PTR(-ENOMEM);
4744        if (!(inode->i_state & I_NEW))
4745                return inode;
4746
4747        ei = EXT4_I(inode);
4748        iloc.bh = NULL;
4749
4750        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4751        if (ret < 0)
4752                goto bad_inode;
4753        raw_inode = ext4_raw_inode(&iloc);
4754
4755        if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4756                EXT4_ERROR_INODE(inode, "root inode unallocated");
4757                ret = -EFSCORRUPTED;
4758                goto bad_inode;
4759        }
4760
4761        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4762                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4763                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4764                        EXT4_INODE_SIZE(inode->i_sb) ||
4765                    (ei->i_extra_isize & 3)) {
4766                        EXT4_ERROR_INODE(inode,
4767                                         "bad extra_isize %u (inode size %u)",
4768                                         ei->i_extra_isize,
4769                                         EXT4_INODE_SIZE(inode->i_sb));
4770                        ret = -EFSCORRUPTED;
4771                        goto bad_inode;
4772                }
4773        } else
4774                ei->i_extra_isize = 0;
4775
4776        /* Precompute checksum seed for inode metadata */
4777        if (ext4_has_metadata_csum(sb)) {
4778                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4779                __u32 csum;
4780                __le32 inum = cpu_to_le32(inode->i_ino);
4781                __le32 gen = raw_inode->i_generation;
4782                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4783                                   sizeof(inum));
4784                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4785                                              sizeof(gen));
4786        }
4787
4788        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4789                EXT4_ERROR_INODE(inode, "checksum invalid");
4790                ret = -EFSBADCRC;
4791                goto bad_inode;
4792        }
4793
4794        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4795        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4796        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4797        if (ext4_has_feature_project(sb) &&
4798            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4799            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4800                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4801        else
4802                i_projid = EXT4_DEF_PROJID;
4803
4804        if (!(test_opt(inode->i_sb, NO_UID32))) {
4805                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4806                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4807        }
4808        i_uid_write(inode, i_uid);
4809        i_gid_write(inode, i_gid);
4810        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4811        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4812
4813        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4814        ei->i_inline_off = 0;
4815        ei->i_dir_start_lookup = 0;
4816        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4817        /* We now have enough fields to check if the inode was active or not.
4818         * This is needed because nfsd might try to access dead inodes
4819         * the test is that same one that e2fsck uses
4820         * NeilBrown 1999oct15
4821         */
4822        if (inode->i_nlink == 0) {
4823                if ((inode->i_mode == 0 ||
4824                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4825                    ino != EXT4_BOOT_LOADER_INO) {
4826                        /* this inode is deleted */
4827                        ret = -ESTALE;
4828                        goto bad_inode;
4829                }
4830                /* The only unlinked inodes we let through here have
4831                 * valid i_mode and are being read by the orphan
4832                 * recovery code: that's fine, we're about to complete
4833                 * the process of deleting those.
4834                 * OR it is the EXT4_BOOT_LOADER_INO which is
4835                 * not initialized on a new filesystem. */
4836        }
4837        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4838        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840        if (ext4_has_feature_64bit(sb))
4841                ei->i_file_acl |=
4842                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843        inode->i_size = ext4_isize(sb, raw_inode);
4844        if ((size = i_size_read(inode)) < 0) {
4845                EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4846                ret = -EFSCORRUPTED;
4847                goto bad_inode;
4848        }
4849        ei->i_disksize = inode->i_size;
4850#ifdef CONFIG_QUOTA
4851        ei->i_reserved_quota = 0;
4852#endif
4853        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854        ei->i_block_group = iloc.block_group;
4855        ei->i_last_alloc_group = ~0;
4856        /*
4857         * NOTE! The in-memory inode i_data array is in little-endian order
4858         * even on big-endian machines: we do NOT byteswap the block numbers!
4859         */
4860        for (block = 0; block < EXT4_N_BLOCKS; block++)
4861                ei->i_data[block] = raw_inode->i_block[block];
4862        INIT_LIST_HEAD(&ei->i_orphan);
4863
4864        /*
4865         * Set transaction id's of transactions that have to be committed
4866         * to finish f[data]sync. We set them to currently running transaction
4867         * as we cannot be sure that the inode or some of its metadata isn't
4868         * part of the transaction - the inode could have been reclaimed and
4869         * now it is reread from disk.
4870         */
4871        if (journal) {
4872                transaction_t *transaction;
4873                tid_t tid;
4874
4875                read_lock(&journal->j_state_lock);
4876                if (journal->j_running_transaction)
4877                        transaction = journal->j_running_transaction;
4878                else
4879                        transaction = journal->j_committing_transaction;
4880                if (transaction)
4881                        tid = transaction->t_tid;
4882                else
4883                        tid = journal->j_commit_sequence;
4884                read_unlock(&journal->j_state_lock);
4885                ei->i_sync_tid = tid;
4886                ei->i_datasync_tid = tid;
4887        }
4888
4889        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890                if (ei->i_extra_isize == 0) {
4891                        /* The extra space is currently unused. Use it. */
4892                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4893                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4894                                            EXT4_GOOD_OLD_INODE_SIZE;
4895                } else {
4896                        ext4_iget_extra_inode(inode, raw_inode, ei);
4897                }
4898        }
4899
4900        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906                u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907
4908                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910                                ivers |=
4911                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912                }
4913                inode_set_iversion_queried(inode, ivers);
4914        }
4915
4916        ret = 0;
4917        if (ei->i_file_acl &&
4918            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4919                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4920                                 ei->i_file_acl);
4921                ret = -EFSCORRUPTED;
4922                goto bad_inode;
4923        } else if (!ext4_has_inline_data(inode)) {
4924                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4925                        if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4926                            (S_ISLNK(inode->i_mode) &&
4927                             !ext4_inode_is_fast_symlink(inode))))
4928                                /* Validate extent which is part of inode */
4929                                ret = ext4_ext_check_inode(inode);
4930                } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4931                           (S_ISLNK(inode->i_mode) &&
4932                            !ext4_inode_is_fast_symlink(inode))) {
4933                        /* Validate block references which are part of inode */
4934                        ret = ext4_ind_check_inode(inode);
4935                }
4936        }
4937        if (ret)
4938                goto bad_inode;
4939
4940        if (S_ISREG(inode->i_mode)) {
4941                inode->i_op = &ext4_file_inode_operations;
4942                inode->i_fop = &ext4_file_operations;
4943                ext4_set_aops(inode);
4944        } else if (S_ISDIR(inode->i_mode)) {
4945                inode->i_op = &ext4_dir_inode_operations;
4946                inode->i_fop = &ext4_dir_operations;
4947        } else if (S_ISLNK(inode->i_mode)) {
4948                if (ext4_encrypted_inode(inode)) {
4949                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4950                        ext4_set_aops(inode);
4951                } else if (ext4_inode_is_fast_symlink(inode)) {
4952                        inode->i_link = (char *)ei->i_data;
4953                        inode->i_op = &ext4_fast_symlink_inode_operations;
4954                        nd_terminate_link(ei->i_data, inode->i_size,
4955                                sizeof(ei->i_data) - 1);
4956                } else {
4957                        inode->i_op = &ext4_symlink_inode_operations;
4958                        ext4_set_aops(inode);
4959                }
4960                inode_nohighmem(inode);
4961        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963                inode->i_op = &ext4_special_inode_operations;
4964                if (raw_inode->i_block[0])
4965                        init_special_inode(inode, inode->i_mode,
4966                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967                else
4968                        init_special_inode(inode, inode->i_mode,
4969                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970        } else if (ino == EXT4_BOOT_LOADER_INO) {
4971                make_bad_inode(inode);
4972        } else {
4973                ret = -EFSCORRUPTED;
4974                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4975                goto bad_inode;
4976        }
4977        brelse(iloc.bh);
4978        ext4_set_inode_flags(inode);
4979
4980        unlock_new_inode(inode);
4981        return inode;
4982
4983bad_inode:
4984        brelse(iloc.bh);
4985        iget_failed(inode);
4986        return ERR_PTR(ret);
4987}
4988
4989struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4990{
4991        if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4992                return ERR_PTR(-EFSCORRUPTED);
4993        return ext4_iget(sb, ino);
4994}
4995
4996static int ext4_inode_blocks_set(handle_t *handle,
4997                                struct ext4_inode *raw_inode,
4998                                struct ext4_inode_info *ei)
4999{
5000        struct inode *inode = &(ei->vfs_inode);
5001        u64 i_blocks = inode->i_blocks;
5002        struct super_block *sb = inode->i_sb;
5003
5004        if (i_blocks <= ~0U) {
5005                /*
5006                 * i_blocks can be represented in a 32 bit variable
5007                 * as multiple of 512 bytes
5008                 */
5009                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010                raw_inode->i_blocks_high = 0;
5011                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012                return 0;
5013        }
5014        if (!ext4_has_feature_huge_file(sb))
5015                return -EFBIG;
5016
5017        if (i_blocks <= 0xffffffffffffULL) {
5018                /*
5019                 * i_blocks can be represented in a 48 bit variable
5020                 * as multiple of 512 bytes
5021                 */
5022                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5023                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5024                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5025        } else {
5026                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5027                /* i_block is stored in file system block size */
5028                i_blocks = i_blocks >> (inode->i_blkbits - 9);
5029                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5030                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5031        }
5032        return 0;
5033}
5034
5035struct other_inode {
5036        unsigned long           orig_ino;
5037        struct ext4_inode       *raw_inode;
5038};
5039
5040static int other_inode_match(struct inode * inode, unsigned long ino,
5041                             void *data)
5042{
5043        struct other_inode *oi = (struct other_inode *) data;
5044
5045        if ((inode->i_ino != ino) ||
5046            (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5047                               I_DIRTY_INODE)) ||
5048            ((inode->i_state & I_DIRTY_TIME) == 0))
5049                return 0;
5050        spin_lock(&inode->i_lock);
5051        if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5052                                I_DIRTY_INODE)) == 0) &&
5053            (inode->i_state & I_DIRTY_TIME)) {
5054                struct ext4_inode_info  *ei = EXT4_I(inode);
5055
5056                inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5057                spin_unlock(&inode->i_lock);
5058
5059                spin_lock(&ei->i_raw_lock);
5060                EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5061                EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5062                EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5063                ext4_inode_csum_set(inode, oi->raw_inode, ei);
5064                spin_unlock(&ei->i_raw_lock);
5065                trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5066                return -1;
5067        }
5068        spin_unlock(&inode->i_lock);
5069        return -1;
5070}
5071
5072/*
5073 * Opportunistically update the other time fields for other inodes in
5074 * the same inode table block.
5075 */
5076static void ext4_update_other_inodes_time(struct super_block *sb,
5077                                          unsigned long orig_ino, char *buf)
5078{
5079        struct other_inode oi;
5080        unsigned long ino;
5081        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5082        int inode_size = EXT4_INODE_SIZE(sb);
5083
5084        oi.orig_ino = orig_ino;
5085        /*
5086         * Calculate the first inode in the inode table block.  Inode
5087         * numbers are one-based.  That is, the first inode in a block
5088         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5089         */
5090        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5091        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5092                if (ino == orig_ino)
5093                        continue;
5094                oi.raw_inode = (struct ext4_inode *) buf;
5095                (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5096        }
5097}
5098
5099/*
5100 * Post the struct inode info into an on-disk inode location in the
5101 * buffer-cache.  This gobbles the caller's reference to the
5102 * buffer_head in the inode location struct.
5103 *
5104 * The caller must have write access to iloc->bh.
5105 */
5106static int ext4_do_update_inode(handle_t *handle,
5107                                struct inode *inode,
5108                                struct ext4_iloc *iloc)
5109{
5110        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5111        struct ext4_inode_info *ei = EXT4_I(inode);
5112        struct buffer_head *bh = iloc->bh;
5113        struct super_block *sb = inode->i_sb;
5114        int err = 0, rc, block;
5115        int need_datasync = 0, set_large_file = 0;
5116        uid_t i_uid;
5117        gid_t i_gid;
5118        projid_t i_projid;
5119
5120        spin_lock(&ei->i_raw_lock);
5121
5122        /* For fields not tracked in the in-memory inode,
5123         * initialise them to zero for new inodes. */
5124        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5125                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5126
5127        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5128        i_uid = i_uid_read(inode);
5129        i_gid = i_gid_read(inode);
5130        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5131        if (!(test_opt(inode->i_sb, NO_UID32))) {
5132                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5133                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5134/*
5135 * Fix up interoperability with old kernels. Otherwise, old inodes get
5136 * re-used with the upper 16 bits of the uid/gid intact
5137 */
5138                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5139                        raw_inode->i_uid_high = 0;
5140                        raw_inode->i_gid_high = 0;
5141                } else {
5142                        raw_inode->i_uid_high =
5143                                cpu_to_le16(high_16_bits(i_uid));
5144                        raw_inode->i_gid_high =
5145                                cpu_to_le16(high_16_bits(i_gid));
5146                }
5147        } else {
5148                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5149                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5150                raw_inode->i_uid_high = 0;
5151                raw_inode->i_gid_high = 0;
5152        }
5153        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5154
5155        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5156        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5157        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5158        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5159
5160        err = ext4_inode_blocks_set(handle, raw_inode, ei);
5161        if (err) {
5162                spin_unlock(&ei->i_raw_lock);
5163                goto out_brelse;
5164        }
5165        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5166        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5167        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5168                raw_inode->i_file_acl_high =
5169                        cpu_to_le16(ei->i_file_acl >> 32);
5170        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5171        if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5172                ext4_isize_set(raw_inode, ei->i_disksize);
5173                need_datasync = 1;
5174        }
5175        if (ei->i_disksize > 0x7fffffffULL) {
5176                if (!ext4_has_feature_large_file(sb) ||
5177                                EXT4_SB(sb)->s_es->s_rev_level ==
5178                    cpu_to_le32(EXT4_GOOD_OLD_REV))
5179                        set_large_file = 1;
5180        }
5181        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183                if (old_valid_dev(inode->i_rdev)) {
5184                        raw_inode->i_block[0] =
5185                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5186                        raw_inode->i_block[1] = 0;
5187                } else {
5188                        raw_inode->i_block[0] = 0;
5189                        raw_inode->i_block[1] =
5190                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5191                        raw_inode->i_block[2] = 0;
5192                }
5193        } else if (!ext4_has_inline_data(inode)) {
5194                for (block = 0; block < EXT4_N_BLOCKS; block++)
5195                        raw_inode->i_block[block] = ei->i_data[block];
5196        }
5197
5198        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5199                u64 ivers = inode_peek_iversion(inode);
5200
5201                raw_inode->i_disk_version = cpu_to_le32(ivers);
5202                if (ei->i_extra_isize) {
5203                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5204                                raw_inode->i_version_hi =
5205                                        cpu_to_le32(ivers >> 32);
5206                        raw_inode->i_extra_isize =
5207                                cpu_to_le16(ei->i_extra_isize);
5208                }
5209        }
5210
5211        BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5212               i_projid != EXT4_DEF_PROJID);
5213
5214        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5215            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5216                raw_inode->i_projid = cpu_to_le32(i_projid);
5217
5218        ext4_inode_csum_set(inode, raw_inode, ei);
5219        spin_unlock(&ei->i_raw_lock);
5220        if (inode->i_sb->s_flags & SB_LAZYTIME)
5221                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5222                                              bh->b_data);
5223
5224        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5225        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5226        if (!err)
5227                err = rc;
5228        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5229        if (set_large_file) {
5230                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5231                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5232                if (err)
5233                        goto out_brelse;
5234                ext4_update_dynamic_rev(sb);
5235                ext4_set_feature_large_file(sb);
5236                ext4_handle_sync(handle);
5237                err = ext4_handle_dirty_super(handle, sb);
5238        }
5239        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5240out_brelse:
5241        brelse(bh);
5242        ext4_std_error(inode->i_sb, err);
5243        return err;
5244}
5245
5246/*
5247 * ext4_write_inode()
5248 *
5249 * We are called from a few places:
5250 *
5251 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5252 *   Here, there will be no transaction running. We wait for any running
5253 *   transaction to commit.
5254 *
5255 * - Within flush work (sys_sync(), kupdate and such).
5256 *   We wait on commit, if told to.
5257 *
5258 * - Within iput_final() -> write_inode_now()
5259 *   We wait on commit, if told to.
5260 *
5261 * In all cases it is actually safe for us to return without doing anything,
5262 * because the inode has been copied into a raw inode buffer in
5263 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5264 * writeback.
5265 *
5266 * Note that we are absolutely dependent upon all inode dirtiers doing the
5267 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5268 * which we are interested.
5269 *
5270 * It would be a bug for them to not do this.  The code:
5271 *
5272 *      mark_inode_dirty(inode)
5273 *      stuff();
5274 *      inode->i_size = expr;
5275 *
5276 * is in error because write_inode() could occur while `stuff()' is running,
5277 * and the new i_size will be lost.  Plus the inode will no longer be on the
5278 * superblock's dirty inode list.
5279 */
5280int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5281{
5282        int err;
5283
5284        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5285                return 0;
5286
5287        if (EXT4_SB(inode->i_sb)->s_journal) {
5288                if (ext4_journal_current_handle()) {
5289                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290                        dump_stack();
5291                        return -EIO;
5292                }
5293
5294                /*
5295                 * No need to force transaction in WB_SYNC_NONE mode. Also
5296                 * ext4_sync_fs() will force the commit after everything is
5297                 * written.
5298                 */
5299                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300                        return 0;
5301
5302                err = ext4_force_commit(inode->i_sb);
5303        } else {
5304                struct ext4_iloc iloc;
5305
5306                err = __ext4_get_inode_loc(inode, &iloc, 0);
5307                if (err)
5308                        return err;
5309                /*
5310                 * sync(2) will flush the whole buffer cache. No need to do
5311                 * it here separately for each inode.
5312                 */
5313                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5314                        sync_dirty_buffer(iloc.bh);
5315                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5316                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5317                                         "IO error syncing inode");
5318                        err = -EIO;
5319                }
5320                brelse(iloc.bh);
5321        }
5322        return err;
5323}
5324
5325/*
5326 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5327 * buffers that are attached to a page stradding i_size and are undergoing
5328 * commit. In that case we have to wait for commit to finish and try again.
5329 */
5330static void ext4_wait_for_tail_page_commit(struct inode *inode)
5331{
5332        struct page *page;
5333        unsigned offset;
5334        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5335        tid_t commit_tid = 0;
5336        int ret;
5337
5338        offset = inode->i_size & (PAGE_SIZE - 1);
5339        /*
5340         * All buffers in the last page remain valid? Then there's nothing to
5341         * do. We do the check mainly to optimize the common PAGE_SIZE ==
5342         * blocksize case
5343         */
5344        if (offset > PAGE_SIZE - i_blocksize(inode))
5345                return;
5346        while (1) {
5347                page = find_lock_page(inode->i_mapping,
5348                                      inode->i_size >> PAGE_SHIFT);
5349                if (!page)
5350                        return;
5351                ret = __ext4_journalled_invalidatepage(page, offset,
5352                                                PAGE_SIZE - offset);
5353                unlock_page(page);
5354                put_page(page);
5355                if (ret != -EBUSY)
5356                        return;
5357                commit_tid = 0;
5358                read_lock(&journal->j_state_lock);
5359                if (journal->j_committing_transaction)
5360                        commit_tid = journal->j_committing_transaction->t_tid;
5361                read_unlock(&journal->j_state_lock);
5362                if (commit_tid)
5363                        jbd2_log_wait_commit(journal, commit_tid);
5364        }
5365}
5366
5367/*
5368 * ext4_setattr()
5369 *
5370 * Called from notify_change.
5371 *
5372 * We want to trap VFS attempts to truncate the file as soon as
5373 * possible.  In particular, we want to make sure that when the VFS
5374 * shrinks i_size, we put the inode on the orphan list and modify
5375 * i_disksize immediately, so that during the subsequent flushing of
5376 * dirty pages and freeing of disk blocks, we can guarantee that any
5377 * commit will leave the blocks being flushed in an unused state on
5378 * disk.  (On recovery, the inode will get truncated and the blocks will
5379 * be freed, so we have a strong guarantee that no future commit will
5380 * leave these blocks visible to the user.)
5381 *
5382 * Another thing we have to assure is that if we are in ordered mode
5383 * and inode is still attached to the committing transaction, we must
5384 * we start writeout of all the dirty pages which are being truncated.
5385 * This way we are sure that all the data written in the previous
5386 * transaction are already on disk (truncate waits for pages under
5387 * writeback).
5388 *
5389 * Called with inode->i_mutex down.
5390 */
5391int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5392{
5393        struct inode *inode = d_inode(dentry);
5394        int error, rc = 0;
5395        int orphan = 0;
5396        const unsigned int ia_valid = attr->ia_valid;
5397
5398        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5399                return -EIO;
5400
5401        error = setattr_prepare(dentry, attr);
5402        if (error)
5403                return error;
5404
5405        error = fscrypt_prepare_setattr(dentry, attr);
5406        if (error)
5407                return error;
5408
5409        if (is_quota_modification(inode, attr)) {
5410                error = dquot_initialize(inode);
5411                if (error)
5412                        return error;
5413        }
5414        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5415            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5416                handle_t *handle;
5417
5418                /* (user+group)*(old+new) structure, inode write (sb,
5419                 * inode block, ? - but truncate inode update has it) */
5420                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5421                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5422                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5423                if (IS_ERR(handle)) {
5424                        error = PTR_ERR(handle);
5425                        goto err_out;
5426                }
5427
5428                /* dquot_transfer() calls back ext4_get_inode_usage() which
5429                 * counts xattr inode references.
5430                 */
5431                down_read(&EXT4_I(inode)->xattr_sem);
5432                error = dquot_transfer(inode, attr);
5433                up_read(&EXT4_I(inode)->xattr_sem);
5434
5435                if (error) {
5436                        ext4_journal_stop(handle);
5437                        return error;
5438                }
5439                /* Update corresponding info in inode so that everything is in
5440                 * one transaction */
5441                if (attr->ia_valid & ATTR_UID)
5442                        inode->i_uid = attr->ia_uid;
5443                if (attr->ia_valid & ATTR_GID)
5444                        inode->i_gid = attr->ia_gid;
5445                error = ext4_mark_inode_dirty(handle, inode);
5446                ext4_journal_stop(handle);
5447        }
5448
5449        if (attr->ia_valid & ATTR_SIZE) {
5450                handle_t *handle;
5451                loff_t oldsize = inode->i_size;
5452                int shrink = (attr->ia_size <= inode->i_size);
5453
5454                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5455                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5456
5457                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
5458                                return -EFBIG;
5459                }
5460                if (!S_ISREG(inode->i_mode))
5461                        return -EINVAL;
5462
5463                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5464                        inode_inc_iversion(inode);
5465
5466                if (ext4_should_order_data(inode) &&
5467                    (attr->ia_size < inode->i_size)) {
5468                        error = ext4_begin_ordered_truncate(inode,
5469                                                            attr->ia_size);
5470                        if (error)
5471                                goto err_out;
5472                }
5473                if (attr->ia_size != inode->i_size) {
5474                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5475                        if (IS_ERR(handle)) {
5476                                error = PTR_ERR(handle);
5477                                goto err_out;
5478                        }
5479                        if (ext4_handle_valid(handle) && shrink) {
5480                                error = ext4_orphan_add(handle, inode);
5481                                orphan = 1;
5482                        }
5483                        /*
5484                         * Update c/mtime on truncate up, ext4_truncate() will
5485                         * update c/mtime in shrink case below
5486                         */
5487                        if (!shrink) {
5488                                inode->i_mtime = current_time(inode);
5489                                inode->i_ctime = inode->i_mtime;
5490                        }
5491                        down_write(&EXT4_I(inode)->i_data_sem);
5492                        EXT4_I(inode)->i_disksize = attr->ia_size;
5493                        rc = ext4_mark_inode_dirty(handle, inode);
5494                        if (!error)
5495                                error = rc;
5496                        /*
5497                         * We have to update i_size under i_data_sem together
5498                         * with i_disksize to avoid races with writeback code
5499                         * running ext4_wb_update_i_disksize().
5500                         */
5501                        if (!error)
5502                                i_size_write(inode, attr->ia_size);
5503                        up_write(&EXT4_I(inode)->i_data_sem);
5504                        ext4_journal_stop(handle);
5505                        if (error) {
5506                                if (orphan)
5507                                        ext4_orphan_del(NULL, inode);
5508                                goto err_out;
5509                        }
5510                }
5511                if (!shrink)
5512                        pagecache_isize_extended(inode, oldsize, inode->i_size);
5513
5514                /*
5515                 * Blocks are going to be removed from the inode. Wait
5516                 * for dio in flight.  Temporarily disable
5517                 * dioread_nolock to prevent livelock.
5518                 */
5519                if (orphan) {
5520                        if (!ext4_should_journal_data(inode)) {
5521                                inode_dio_wait(inode);
5522                        } else
5523                                ext4_wait_for_tail_page_commit(inode);
5524                }
5525                down_write(&EXT4_I(inode)->i_mmap_sem);
5526                /*
5527                 * Truncate pagecache after we've waited for commit
5528                 * in data=journal mode to make pages freeable.
5529                 */
5530                truncate_pagecache(inode, inode->i_size);
5531                if (shrink) {
5532                        rc = ext4_truncate(inode);
5533                        if (rc)
5534                                error = rc;
5535                }
5536                up_write(&EXT4_I(inode)->i_mmap_sem);
5537        }
5538
5539        if (!error) {
5540                setattr_copy(inode, attr);
5541                mark_inode_dirty(inode);
5542        }
5543
5544        /*
5545         * If the call to ext4_truncate failed to get a transaction handle at
5546         * all, we need to clean up the in-core orphan list manually.
5547         */
5548        if (orphan && inode->i_nlink)
5549                ext4_orphan_del(NULL, inode);
5550
5551        if (!error && (ia_valid & ATTR_MODE))
5552                rc = posix_acl_chmod(inode, inode->i_mode);
5553
5554err_out:
5555        ext4_std_error(inode->i_sb, error);
5556        if (!error)
5557                error = rc;
5558        return error;
5559}
5560
5561int ext4_getattr(const struct path *path, struct kstat *stat,
5562                 u32 request_mask, unsigned int query_flags)
5563{
5564        struct inode *inode = d_inode(path->dentry);
5565        struct ext4_inode *raw_inode;
5566        struct ext4_inode_info *ei = EXT4_I(inode);
5567        unsigned int flags;
5568
5569        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5570                stat->result_mask |= STATX_BTIME;
5571                stat->btime.tv_sec = ei->i_crtime.tv_sec;
5572                stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5573        }
5574
5575        flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5576        if (flags & EXT4_APPEND_FL)
5577                stat->attributes |= STATX_ATTR_APPEND;
5578        if (flags & EXT4_COMPR_FL)
5579                stat->attributes |= STATX_ATTR_COMPRESSED;
5580        if (flags & EXT4_ENCRYPT_FL)
5581                stat->attributes |= STATX_ATTR_ENCRYPTED;
5582        if (flags & EXT4_IMMUTABLE_FL)
5583                stat->attributes |= STATX_ATTR_IMMUTABLE;
5584        if (flags & EXT4_NODUMP_FL)
5585                stat->attributes |= STATX_ATTR_NODUMP;
5586
5587        stat->attributes_mask |= (STATX_ATTR_APPEND |
5588                                  STATX_ATTR_COMPRESSED |
5589                                  STATX_ATTR_ENCRYPTED |
5590                                  STATX_ATTR_IMMUTABLE |
5591                                  STATX_ATTR_NODUMP);
5592
5593        generic_fillattr(inode, stat);
5594        return 0;
5595}
5596
5597int ext4_file_getattr(const struct path *path, struct kstat *stat,
5598                      u32 request_mask, unsigned int query_flags)
5599{
5600        struct inode *inode = d_inode(path->dentry);
5601        u64 delalloc_blocks;
5602
5603        ext4_getattr(path, stat, request_mask, query_flags);
5604
5605        /*
5606         * If there is inline data in the inode, the inode will normally not
5607         * have data blocks allocated (it may have an external xattr block).
5608         * Report at least one sector for such files, so tools like tar, rsync,
5609         * others don't incorrectly think the file is completely sparse.
5610         */
5611        if (unlikely(ext4_has_inline_data(inode)))
5612                stat->blocks += (stat->size + 511) >> 9;
5613
5614        /*
5615         * We can't update i_blocks if the block allocation is delayed
5616         * otherwise in the case of system crash before the real block
5617         * allocation is done, we will have i_blocks inconsistent with
5618         * on-disk file blocks.
5619         * We always keep i_blocks updated together with real
5620         * allocation. But to not confuse with user, stat
5621         * will return the blocks that include the delayed allocation
5622         * blocks for this file.
5623         */
5624        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5625                                   EXT4_I(inode)->i_reserved_data_blocks);
5626        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5627        return 0;
5628}
5629
5630static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5631                                   int pextents)
5632{
5633        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5634                return ext4_ind_trans_blocks(inode, lblocks);
5635        return ext4_ext_index_trans_blocks(inode, pextents);
5636}
5637
5638/*
5639 * Account for index blocks, block groups bitmaps and block group
5640 * descriptor blocks if modify datablocks and index blocks
5641 * worse case, the indexs blocks spread over different block groups
5642 *
5643 * If datablocks are discontiguous, they are possible to spread over
5644 * different block groups too. If they are contiguous, with flexbg,
5645 * they could still across block group boundary.
5646 *
5647 * Also account for superblock, inode, quota and xattr blocks
5648 */
5649static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5650                                  int pextents)
5651{
5652        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5653        int gdpblocks;
5654        int idxblocks;
5655        int ret = 0;
5656
5657        /*
5658         * How many index blocks need to touch to map @lblocks logical blocks
5659         * to @pextents physical extents?
5660         */
5661        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5662
5663        ret = idxblocks;
5664
5665        /*
5666         * Now let's see how many group bitmaps and group descriptors need
5667         * to account
5668         */
5669        groups = idxblocks + pextents;
5670        gdpblocks = groups;
5671        if (groups > ngroups)
5672                groups = ngroups;
5673        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5674                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5675
5676        /* bitmaps and block group descriptor blocks */
5677        ret += groups + gdpblocks;
5678
5679        /* Blocks for super block, inode, quota and xattr blocks */
5680        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5681
5682        return ret;
5683}
5684
5685/*
5686 * Calculate the total number of credits to reserve to fit
5687 * the modification of a single pages into a single transaction,
5688 * which may include multiple chunks of block allocations.
5689 *
5690 * This could be called via ext4_write_begin()
5691 *
5692 * We need to consider the worse case, when
5693 * one new block per extent.
5694 */
5695int ext4_writepage_trans_blocks(struct inode *inode)
5696{
5697        int bpp = ext4_journal_blocks_per_page(inode);
5698        int ret;
5699
5700        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5701
5702        /* Account for data blocks for journalled mode */
5703        if (ext4_should_journal_data(inode))
5704                ret += bpp;
5705        return ret;
5706}
5707
5708/*
5709 * Calculate the journal credits for a chunk of data modification.
5710 *
5711 * This is called from DIO, fallocate or whoever calling
5712 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5713 *
5714 * journal buffers for data blocks are not included here, as DIO
5715 * and fallocate do no need to journal data buffers.
5716 */
5717int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5718{
5719        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5720}
5721
5722/*
5723 * The caller must have previously called ext4_reserve_inode_write().
5724 * Give this, we know that the caller already has write access to iloc->bh.
5725 */
5726int ext4_mark_iloc_dirty(handle_t *handle,
5727                         struct inode *inode, struct ext4_iloc *iloc)
5728{
5729        int err = 0;
5730
5731        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5732                return -EIO;
5733
5734        if (IS_I_VERSION(inode))
5735                inode_inc_iversion(inode);
5736
5737        /* the do_update_inode consumes one bh->b_count */
5738        get_bh(iloc->bh);
5739
5740        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741        err = ext4_do_update_inode(handle, inode, iloc);
5742        put_bh(iloc->bh);
5743        return err;
5744}
5745
5746/*
5747 * On success, We end up with an outstanding reference count against
5748 * iloc->bh.  This _must_ be cleaned up later.
5749 */
5750
5751int
5752ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753                         struct ext4_iloc *iloc)
5754{
5755        int err;
5756
5757        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758                return -EIO;
5759
5760        err = ext4_get_inode_loc(inode, iloc);
5761        if (!err) {
5762                BUFFER_TRACE(iloc->bh, "get_write_access");
5763                err = ext4_journal_get_write_access(handle, iloc->bh);
5764                if (err) {
5765                        brelse(iloc->bh);
5766                        iloc->bh = NULL;
5767                }
5768        }
5769        ext4_std_error(inode->i_sb, err);
5770        return err;
5771}
5772
5773static int __ext4_expand_extra_isize(struct inode *inode,
5774                                     unsigned int new_extra_isize,
5775                                     struct ext4_iloc *iloc,
5776                                     handle_t *handle, int *no_expand)
5777{
5778        struct ext4_inode *raw_inode;
5779        struct ext4_xattr_ibody_header *header;
5780        int error;
5781
5782        raw_inode = ext4_raw_inode(iloc);
5783
5784        header = IHDR(inode, raw_inode);
5785
5786        /* No extended attributes present */
5787        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790                       EXT4_I(inode)->i_extra_isize, 0,
5791                       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793                return 0;
5794        }
5795
5796        /* try to expand with EAs present */
5797        error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798                                           raw_inode, handle);
5799        if (error) {
5800                /*
5801                 * Inode size expansion failed; don't try again
5802                 */
5803                *no_expand = 1;
5804        }
5805
5806        return error;
5807}
5808
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814                                          unsigned int new_extra_isize,
5815                                          struct ext4_iloc iloc,
5816                                          handle_t *handle)
5817{
5818        int no_expand;
5819        int error;
5820
5821        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822                return -EOVERFLOW;
5823
5824        /*
5825         * In nojournal mode, we can immediately attempt to expand
5826         * the inode.  When journaled, we first need to obtain extra
5827         * buffer credits since we may write into the EA block
5828         * with this same handle. If journal_extend fails, then it will
5829         * only result in a minor loss of functionality for that inode.
5830         * If this is felt to be critical, then e2fsck should be run to
5831         * force a large enough s_min_extra_isize.
5832         */
5833        if (ext4_handle_valid(handle) &&
5834            jbd2_journal_extend(handle,
5835                                EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5836                return -ENOSPC;
5837
5838        if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5839                return -EBUSY;
5840
5841        error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5842                                          handle, &no_expand);
5843        ext4_write_unlock_xattr(inode, &no_expand);
5844
5845        return error;
5846}
5847
5848int ext4_expand_extra_isize(struct inode *inode,
5849                            unsigned int new_extra_isize,
5850                            struct ext4_iloc *iloc)
5851{
5852        handle_t *handle;
5853        int no_expand;
5854        int error, rc;
5855
5856        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5857                brelse(iloc->bh);
5858                return -EOVERFLOW;
5859        }
5860
5861        handle = ext4_journal_start(inode, EXT4_HT_INODE,
5862                                    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5863        if (IS_ERR(handle)) {
5864                error = PTR_ERR(handle);
5865                brelse(iloc->bh);
5866                return error;
5867        }
5868
5869        ext4_write_lock_xattr(inode, &no_expand);
5870
5871        BUFFER_TRACE(iloc.bh, "get_write_access");
5872        error = ext4_journal_get_write_access(handle, iloc->bh);
5873        if (error) {
5874                brelse(iloc->bh);
5875                goto out_stop;
5876        }
5877
5878        error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5879                                          handle, &no_expand);
5880
5881        rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5882        if (!error)
5883                error = rc;
5884
5885        ext4_write_unlock_xattr(inode, &no_expand);
5886out_stop:
5887        ext4_journal_stop(handle);
5888        return error;
5889}
5890
5891/*
5892 * What we do here is to mark the in-core inode as clean with respect to inode
5893 * dirtiness (it may still be data-dirty).
5894 * This means that the in-core inode may be reaped by prune_icache
5895 * without having to perform any I/O.  This is a very good thing,
5896 * because *any* task may call prune_icache - even ones which
5897 * have a transaction open against a different journal.
5898 *
5899 * Is this cheating?  Not really.  Sure, we haven't written the
5900 * inode out, but prune_icache isn't a user-visible syncing function.
5901 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5902 * we start and wait on commits.
5903 */
5904int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5905{
5906        struct ext4_iloc iloc;
5907        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908        int err;
5909
5910        might_sleep();
5911        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912        err = ext4_reserve_inode_write(handle, inode, &iloc);
5913        if (err)
5914                return err;
5915
5916        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917                ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918                                               iloc, handle);
5919
5920        return ext4_mark_iloc_dirty(handle, inode, &iloc);
5921}
5922
5923/*
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5925 *
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5929 *
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5932 *
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5936 *
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5940 */
5941void ext4_dirty_inode(struct inode *inode, int flags)
5942{
5943        handle_t *handle;
5944
5945        if (flags == I_DIRTY_TIME)
5946                return;
5947        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948        if (IS_ERR(handle))
5949                goto out;
5950
5951        ext4_mark_inode_dirty(handle, inode);
5952
5953        ext4_journal_stop(handle);
5954out:
5955        return;
5956}
5957
5958#if 0
5959/*
5960 * Bind an inode's backing buffer_head into this transaction, to prevent
5961 * it from being flushed to disk early.  Unlike
5962 * ext4_reserve_inode_write, this leaves behind no bh reference and
5963 * returns no iloc structure, so the caller needs to repeat the iloc
5964 * lookup to mark the inode dirty later.
5965 */
5966static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5967{
5968        struct ext4_iloc iloc;
5969
5970        int err = 0;
5971        if (handle) {
5972                err = ext4_get_inode_loc(inode, &iloc);
5973                if (!err) {
5974                        BUFFER_TRACE(iloc.bh, "get_write_access");
5975                        err = jbd2_journal_get_write_access(handle, iloc.bh);
5976                        if (!err)
5977                                err = ext4_handle_dirty_metadata(handle,
5978                                                                 NULL,
5979                                                                 iloc.bh);
5980                        brelse(iloc.bh);
5981                }
5982        }
5983        ext4_std_error(inode->i_sb, err);
5984        return err;
5985}
5986#endif
5987
5988int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989{
5990        journal_t *journal;
5991        handle_t *handle;
5992        int err;
5993        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994
5995        /*
5996         * We have to be very careful here: changing a data block's
5997         * journaling status dynamically is dangerous.  If we write a
5998         * data block to the journal, change the status and then delete
5999         * that block, we risk forgetting to revoke the old log record
6000         * from the journal and so a subsequent replay can corrupt data.
6001         * So, first we make sure that the journal is empty and that
6002         * nobody is changing anything.
6003         */
6004
6005        journal = EXT4_JOURNAL(inode);
6006        if (!journal)
6007                return 0;
6008        if (is_journal_aborted(journal))
6009                return -EROFS;
6010
6011        /* Wait for all existing dio workers */
6012        inode_dio_wait(inode);
6013
6014        /*
6015         * Before flushing the journal and switching inode's aops, we have
6016         * to flush all dirty data the inode has. There can be outstanding
6017         * delayed allocations, there can be unwritten extents created by
6018         * fallocate or buffered writes in dioread_nolock mode covered by
6019         * dirty data which can be converted only after flushing the dirty
6020         * data (and journalled aops don't know how to handle these cases).
6021         */
6022        if (val) {
6023                down_write(&EXT4_I(inode)->i_mmap_sem);
6024                err = filemap_write_and_wait(inode->i_mapping);
6025                if (err < 0) {
6026                        up_write(&EXT4_I(inode)->i_mmap_sem);
6027                        return err;
6028                }
6029        }
6030
6031        percpu_down_write(&sbi->s_journal_flag_rwsem);
6032        jbd2_journal_lock_updates(journal);
6033
6034        /*
6035         * OK, there are no updates running now, and all cached data is
6036         * synced to disk.  We are now in a completely consistent state
6037         * which doesn't have anything in the journal, and we know that
6038         * no filesystem updates are running, so it is safe to modify
6039         * the inode's in-core data-journaling state flag now.
6040         */
6041
6042        if (val)
6043                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044        else {
6045                err = jbd2_journal_flush(journal);
6046                if (err < 0) {
6047                        jbd2_journal_unlock_updates(journal);
6048                        percpu_up_write(&sbi->s_journal_flag_rwsem);
6049                        return err;
6050                }
6051                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052        }
6053        ext4_set_aops(inode);
6054
6055        jbd2_journal_unlock_updates(journal);
6056        percpu_up_write(&sbi->s_journal_flag_rwsem);
6057
6058        if (val)
6059                up_write(&EXT4_I(inode)->i_mmap_sem);
6060
6061        /* Finally we can mark the inode as dirty. */
6062
6063        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064        if (IS_ERR(handle))
6065                return PTR_ERR(handle);
6066
6067        err = ext4_mark_inode_dirty(handle, inode);
6068        ext4_handle_sync(handle);
6069        ext4_journal_stop(handle);
6070        ext4_std_error(inode->i_sb, err);
6071
6072        return err;
6073}
6074
6075static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6076{
6077        return !buffer_mapped(bh);
6078}
6079
6080int ext4_page_mkwrite(struct vm_fault *vmf)
6081{
6082        struct vm_area_struct *vma = vmf->vma;
6083        struct page *page = vmf->page;
6084        loff_t size;
6085        unsigned long len;
6086        int ret;
6087        struct file *file = vma->vm_file;
6088        struct inode *inode = file_inode(file);
6089        struct address_space *mapping = inode->i_mapping;
6090        handle_t *handle;
6091        get_block_t *get_block;
6092        int retries = 0;
6093
6094        sb_start_pagefault(inode->i_sb);
6095        file_update_time(vma->vm_file);
6096
6097        down_read(&EXT4_I(inode)->i_mmap_sem);
6098
6099        ret = ext4_convert_inline_data(inode);
6100        if (ret)
6101                goto out_ret;
6102
6103        /* Delalloc case is easy... */
6104        if (test_opt(inode->i_sb, DELALLOC) &&
6105            !ext4_should_journal_data(inode) &&
6106            !ext4_nonda_switch(inode->i_sb)) {
6107                do {
6108                        ret = block_page_mkwrite(vma, vmf,
6109                                                   ext4_da_get_block_prep);
6110                } while (ret == -ENOSPC &&
6111                       ext4_should_retry_alloc(inode->i_sb, &retries));
6112                goto out_ret;
6113        }
6114
6115        lock_page(page);
6116        size = i_size_read(inode);
6117        /* Page got truncated from under us? */
6118        if (page->mapping != mapping || page_offset(page) > size) {
6119                unlock_page(page);
6120                ret = VM_FAULT_NOPAGE;
6121                goto out;
6122        }
6123
6124        if (page->index == size >> PAGE_SHIFT)
6125                len = size & ~PAGE_MASK;
6126        else
6127                len = PAGE_SIZE;
6128        /*
6129         * Return if we have all the buffers mapped. This avoids the need to do
6130         * journal_start/journal_stop which can block and take a long time
6131         */
6132        if (page_has_buffers(page)) {
6133                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6134                                            0, len, NULL,
6135                                            ext4_bh_unmapped)) {
6136                        /* Wait so that we don't change page under IO */
6137                        wait_for_stable_page(page);
6138                        ret = VM_FAULT_LOCKED;
6139                        goto out;
6140                }
6141        }
6142        unlock_page(page);
6143        /* OK, we need to fill the hole... */
6144        if (ext4_should_dioread_nolock(inode))
6145                get_block = ext4_get_block_unwritten;
6146        else
6147                get_block = ext4_get_block;
6148retry_alloc:
6149        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150                                    ext4_writepage_trans_blocks(inode));
6151        if (IS_ERR(handle)) {
6152                ret = VM_FAULT_SIGBUS;
6153                goto out;
6154        }
6155        ret = block_page_mkwrite(vma, vmf, get_block);
6156        if (!ret && ext4_should_journal_data(inode)) {
6157                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6158                          PAGE_SIZE, NULL, do_journal_get_write_access)) {
6159                        unlock_page(page);
6160                        ret = VM_FAULT_SIGBUS;
6161                        ext4_journal_stop(handle);
6162                        goto out;
6163                }
6164                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165        }
6166        ext4_journal_stop(handle);
6167        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6168                goto retry_alloc;
6169out_ret:
6170        ret = block_page_mkwrite_return(ret);
6171out:
6172        up_read(&EXT4_I(inode)->i_mmap_sem);
6173        sb_end_pagefault(inode->i_sb);
6174        return ret;
6175}
6176
6177int ext4_filemap_fault(struct vm_fault *vmf)
6178{
6179        struct inode *inode = file_inode(vmf->vma->vm_file);
6180        int err;
6181
6182        down_read(&EXT4_I(inode)->i_mmap_sem);
6183        err = filemap_fault(vmf);
6184        up_read(&EXT4_I(inode)->i_mmap_sem);
6185
6186        return err;
6187}
6188