linux/fs/fs-writeback.c
<<
>>
Prefs
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Split out of fs/inode.c
  13 *              Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39        atomic_t                cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46        long nr_pages;
  47        struct super_block *sb;
  48        unsigned long *older_than_this;
  49        enum writeback_sync_modes sync_mode;
  50        unsigned int tagged_writepages:1;
  51        unsigned int for_kupdate:1;
  52        unsigned int range_cyclic:1;
  53        unsigned int for_background:1;
  54        unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
  55        unsigned int auto_free:1;       /* free on completion */
  56        enum wb_reason reason;          /* why was writeback initiated? */
  57
  58        struct list_head list;          /* pending work list */
  59        struct wb_completion *done;     /* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
  70        struct wb_completion cmpl = {                                   \
  71                .cnt            = ATOMIC_INIT(1),                       \
  72        }
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89        return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104        if (wb_has_dirty_io(wb)) {
 105                return false;
 106        } else {
 107                set_bit(WB_has_dirty_io, &wb->state);
 108                WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109                atomic_long_add(wb->avg_write_bandwidth,
 110                                &wb->bdi->tot_write_bandwidth);
 111                return true;
 112        }
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117        if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118            list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119                clear_bit(WB_has_dirty_io, &wb->state);
 120                WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121                                        &wb->bdi->tot_write_bandwidth) < 0);
 122        }
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136                                      struct bdi_writeback *wb,
 137                                      struct list_head *head)
 138{
 139        assert_spin_locked(&wb->list_lock);
 140
 141        list_move(&inode->i_io_list, head);
 142
 143        /* dirty_time doesn't count as dirty_io until expiration */
 144        if (head != &wb->b_dirty_time)
 145                return wb_io_lists_populated(wb);
 146
 147        wb_io_lists_depopulated(wb);
 148        return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160                                     struct bdi_writeback *wb)
 161{
 162        assert_spin_locked(&wb->list_lock);
 163
 164        list_del_init(&inode->i_io_list);
 165        wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170        spin_lock_bh(&wb->work_lock);
 171        if (test_bit(WB_registered, &wb->state))
 172                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173        spin_unlock_bh(&wb->work_lock);
 174}
 175
 176static void finish_writeback_work(struct bdi_writeback *wb,
 177                                  struct wb_writeback_work *work)
 178{
 179        struct wb_completion *done = work->done;
 180
 181        if (work->auto_free)
 182                kfree(work);
 183        if (done && atomic_dec_and_test(&done->cnt))
 184                wake_up_all(&wb->bdi->wb_waitq);
 185}
 186
 187static void wb_queue_work(struct bdi_writeback *wb,
 188                          struct wb_writeback_work *work)
 189{
 190        trace_writeback_queue(wb, work);
 191
 192        if (work->done)
 193                atomic_inc(&work->done->cnt);
 194
 195        spin_lock_bh(&wb->work_lock);
 196
 197        if (test_bit(WB_registered, &wb->state)) {
 198                list_add_tail(&work->list, &wb->work_list);
 199                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 200        } else
 201                finish_writeback_work(wb, work);
 202
 203        spin_unlock_bh(&wb->work_lock);
 204}
 205
 206/**
 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 208 * @bdi: bdi work items were issued to
 209 * @done: target wb_completion
 210 *
 211 * Wait for one or more work items issued to @bdi with their ->done field
 212 * set to @done, which should have been defined with
 213 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 214 * work items are completed.  Work items which are waited upon aren't freed
 215 * automatically on completion.
 216 */
 217static void wb_wait_for_completion(struct backing_dev_info *bdi,
 218                                   struct wb_completion *done)
 219{
 220        atomic_dec(&done->cnt);         /* put down the initial count */
 221        wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 222}
 223
 224#ifdef CONFIG_CGROUP_WRITEBACK
 225
 226/* parameters for foreign inode detection, see wb_detach_inode() */
 227#define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
 228#define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
 229#define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
 230#define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
 231
 232#define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
 233#define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 234                                        /* each slot's duration is 2s / 16 */
 235#define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
 236                                        /* if foreign slots >= 8, switch */
 237#define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
 238                                        /* one round can affect upto 5 slots */
 239
 240static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 241static struct workqueue_struct *isw_wq;
 242
 243void __inode_attach_wb(struct inode *inode, struct page *page)
 244{
 245        struct backing_dev_info *bdi = inode_to_bdi(inode);
 246        struct bdi_writeback *wb = NULL;
 247
 248        if (inode_cgwb_enabled(inode)) {
 249                struct cgroup_subsys_state *memcg_css;
 250
 251                if (page) {
 252                        memcg_css = mem_cgroup_css_from_page(page);
 253                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 254                } else {
 255                        /* must pin memcg_css, see wb_get_create() */
 256                        memcg_css = task_get_css(current, memory_cgrp_id);
 257                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 258                        css_put(memcg_css);
 259                }
 260        }
 261
 262        if (!wb)
 263                wb = &bdi->wb;
 264
 265        /*
 266         * There may be multiple instances of this function racing to
 267         * update the same inode.  Use cmpxchg() to tell the winner.
 268         */
 269        if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 270                wb_put(wb);
 271}
 272
 273/**
 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 275 * @inode: inode of interest with i_lock held
 276 *
 277 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 278 * held on entry and is released on return.  The returned wb is guaranteed
 279 * to stay @inode's associated wb until its list_lock is released.
 280 */
 281static struct bdi_writeback *
 282locked_inode_to_wb_and_lock_list(struct inode *inode)
 283        __releases(&inode->i_lock)
 284        __acquires(&wb->list_lock)
 285{
 286        while (true) {
 287                struct bdi_writeback *wb = inode_to_wb(inode);
 288
 289                /*
 290                 * inode_to_wb() association is protected by both
 291                 * @inode->i_lock and @wb->list_lock but list_lock nests
 292                 * outside i_lock.  Drop i_lock and verify that the
 293                 * association hasn't changed after acquiring list_lock.
 294                 */
 295                wb_get(wb);
 296                spin_unlock(&inode->i_lock);
 297                spin_lock(&wb->list_lock);
 298
 299                /* i_wb may have changed inbetween, can't use inode_to_wb() */
 300                if (likely(wb == inode->i_wb)) {
 301                        wb_put(wb);     /* @inode already has ref */
 302                        return wb;
 303                }
 304
 305                spin_unlock(&wb->list_lock);
 306                wb_put(wb);
 307                cpu_relax();
 308                spin_lock(&inode->i_lock);
 309        }
 310}
 311
 312/**
 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 314 * @inode: inode of interest
 315 *
 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 317 * on entry.
 318 */
 319static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 320        __acquires(&wb->list_lock)
 321{
 322        spin_lock(&inode->i_lock);
 323        return locked_inode_to_wb_and_lock_list(inode);
 324}
 325
 326struct inode_switch_wbs_context {
 327        struct inode            *inode;
 328        struct bdi_writeback    *new_wb;
 329
 330        struct rcu_head         rcu_head;
 331        struct work_struct      work;
 332};
 333
 334static void inode_switch_wbs_work_fn(struct work_struct *work)
 335{
 336        struct inode_switch_wbs_context *isw =
 337                container_of(work, struct inode_switch_wbs_context, work);
 338        struct inode *inode = isw->inode;
 339        struct address_space *mapping = inode->i_mapping;
 340        struct bdi_writeback *old_wb = inode->i_wb;
 341        struct bdi_writeback *new_wb = isw->new_wb;
 342        struct radix_tree_iter iter;
 343        bool switched = false;
 344        void **slot;
 345
 346        /*
 347         * By the time control reaches here, RCU grace period has passed
 348         * since I_WB_SWITCH assertion and all wb stat update transactions
 349         * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 350         * synchronizing against the i_pages lock.
 351         *
 352         * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
 353         * gives us exclusion against all wb related operations on @inode
 354         * including IO list manipulations and stat updates.
 355         */
 356        if (old_wb < new_wb) {
 357                spin_lock(&old_wb->list_lock);
 358                spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 359        } else {
 360                spin_lock(&new_wb->list_lock);
 361                spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 362        }
 363        spin_lock(&inode->i_lock);
 364        xa_lock_irq(&mapping->i_pages);
 365
 366        /*
 367         * Once I_FREEING is visible under i_lock, the eviction path owns
 368         * the inode and we shouldn't modify ->i_io_list.
 369         */
 370        if (unlikely(inode->i_state & I_FREEING))
 371                goto skip_switch;
 372
 373        /*
 374         * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 375         * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 376         * pages actually under writeback.
 377         */
 378        radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
 379                                   PAGECACHE_TAG_DIRTY) {
 380                struct page *page = radix_tree_deref_slot_protected(slot,
 381                                                &mapping->i_pages.xa_lock);
 382                if (likely(page) && PageDirty(page)) {
 383                        dec_wb_stat(old_wb, WB_RECLAIMABLE);
 384                        inc_wb_stat(new_wb, WB_RECLAIMABLE);
 385                }
 386        }
 387
 388        radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
 389                                   PAGECACHE_TAG_WRITEBACK) {
 390                struct page *page = radix_tree_deref_slot_protected(slot,
 391                                                &mapping->i_pages.xa_lock);
 392                if (likely(page)) {
 393                        WARN_ON_ONCE(!PageWriteback(page));
 394                        dec_wb_stat(old_wb, WB_WRITEBACK);
 395                        inc_wb_stat(new_wb, WB_WRITEBACK);
 396                }
 397        }
 398
 399        wb_get(new_wb);
 400
 401        /*
 402         * Transfer to @new_wb's IO list if necessary.  The specific list
 403         * @inode was on is ignored and the inode is put on ->b_dirty which
 404         * is always correct including from ->b_dirty_time.  The transfer
 405         * preserves @inode->dirtied_when ordering.
 406         */
 407        if (!list_empty(&inode->i_io_list)) {
 408                struct inode *pos;
 409
 410                inode_io_list_del_locked(inode, old_wb);
 411                inode->i_wb = new_wb;
 412                list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 413                        if (time_after_eq(inode->dirtied_when,
 414                                          pos->dirtied_when))
 415                                break;
 416                inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 417        } else {
 418                inode->i_wb = new_wb;
 419        }
 420
 421        /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 422        inode->i_wb_frn_winner = 0;
 423        inode->i_wb_frn_avg_time = 0;
 424        inode->i_wb_frn_history = 0;
 425        switched = true;
 426skip_switch:
 427        /*
 428         * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 429         * ensures that the new wb is visible if they see !I_WB_SWITCH.
 430         */
 431        smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 432
 433        xa_unlock_irq(&mapping->i_pages);
 434        spin_unlock(&inode->i_lock);
 435        spin_unlock(&new_wb->list_lock);
 436        spin_unlock(&old_wb->list_lock);
 437
 438        if (switched) {
 439                wb_wakeup(new_wb);
 440                wb_put(old_wb);
 441        }
 442        wb_put(new_wb);
 443
 444        iput(inode);
 445        kfree(isw);
 446
 447        atomic_dec(&isw_nr_in_flight);
 448}
 449
 450static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 451{
 452        struct inode_switch_wbs_context *isw = container_of(rcu_head,
 453                                struct inode_switch_wbs_context, rcu_head);
 454
 455        /* needs to grab bh-unsafe locks, bounce to work item */
 456        INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 457        queue_work(isw_wq, &isw->work);
 458}
 459
 460/**
 461 * inode_switch_wbs - change the wb association of an inode
 462 * @inode: target inode
 463 * @new_wb_id: ID of the new wb
 464 *
 465 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 466 * switching is performed asynchronously and may fail silently.
 467 */
 468static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 469{
 470        struct backing_dev_info *bdi = inode_to_bdi(inode);
 471        struct cgroup_subsys_state *memcg_css;
 472        struct inode_switch_wbs_context *isw;
 473
 474        /* noop if seems to be already in progress */
 475        if (inode->i_state & I_WB_SWITCH)
 476                return;
 477
 478        isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 479        if (!isw)
 480                return;
 481
 482        /* find and pin the new wb */
 483        rcu_read_lock();
 484        memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 485        if (memcg_css)
 486                isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 487        rcu_read_unlock();
 488        if (!isw->new_wb)
 489                goto out_free;
 490
 491        /* while holding I_WB_SWITCH, no one else can update the association */
 492        spin_lock(&inode->i_lock);
 493        if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
 494            inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 495            inode_to_wb(inode) == isw->new_wb) {
 496                spin_unlock(&inode->i_lock);
 497                goto out_free;
 498        }
 499        inode->i_state |= I_WB_SWITCH;
 500        __iget(inode);
 501        spin_unlock(&inode->i_lock);
 502
 503        isw->inode = inode;
 504
 505        atomic_inc(&isw_nr_in_flight);
 506
 507        /*
 508         * In addition to synchronizing among switchers, I_WB_SWITCH tells
 509         * the RCU protected stat update paths to grab the i_page
 510         * lock so that stat transfer can synchronize against them.
 511         * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 512         */
 513        call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 514        return;
 515
 516out_free:
 517        if (isw->new_wb)
 518                wb_put(isw->new_wb);
 519        kfree(isw);
 520}
 521
 522/**
 523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 524 * @wbc: writeback_control of interest
 525 * @inode: target inode
 526 *
 527 * @inode is locked and about to be written back under the control of @wbc.
 528 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 529 * writeback completion, wbc_detach_inode() should be called.  This is used
 530 * to track the cgroup writeback context.
 531 */
 532void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 533                                 struct inode *inode)
 534{
 535        if (!inode_cgwb_enabled(inode)) {
 536                spin_unlock(&inode->i_lock);
 537                return;
 538        }
 539
 540        wbc->wb = inode_to_wb(inode);
 541        wbc->inode = inode;
 542
 543        wbc->wb_id = wbc->wb->memcg_css->id;
 544        wbc->wb_lcand_id = inode->i_wb_frn_winner;
 545        wbc->wb_tcand_id = 0;
 546        wbc->wb_bytes = 0;
 547        wbc->wb_lcand_bytes = 0;
 548        wbc->wb_tcand_bytes = 0;
 549
 550        wb_get(wbc->wb);
 551        spin_unlock(&inode->i_lock);
 552
 553        /*
 554         * A dying wb indicates that the memcg-blkcg mapping has changed
 555         * and a new wb is already serving the memcg.  Switch immediately.
 556         */
 557        if (unlikely(wb_dying(wbc->wb)))
 558                inode_switch_wbs(inode, wbc->wb_id);
 559}
 560
 561/**
 562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 563 * @wbc: writeback_control of the just finished writeback
 564 *
 565 * To be called after a writeback attempt of an inode finishes and undoes
 566 * wbc_attach_and_unlock_inode().  Can be called under any context.
 567 *
 568 * As concurrent write sharing of an inode is expected to be very rare and
 569 * memcg only tracks page ownership on first-use basis severely confining
 570 * the usefulness of such sharing, cgroup writeback tracks ownership
 571 * per-inode.  While the support for concurrent write sharing of an inode
 572 * is deemed unnecessary, an inode being written to by different cgroups at
 573 * different points in time is a lot more common, and, more importantly,
 574 * charging only by first-use can too readily lead to grossly incorrect
 575 * behaviors (single foreign page can lead to gigabytes of writeback to be
 576 * incorrectly attributed).
 577 *
 578 * To resolve this issue, cgroup writeback detects the majority dirtier of
 579 * an inode and transfers the ownership to it.  To avoid unnnecessary
 580 * oscillation, the detection mechanism keeps track of history and gives
 581 * out the switch verdict only if the foreign usage pattern is stable over
 582 * a certain amount of time and/or writeback attempts.
 583 *
 584 * On each writeback attempt, @wbc tries to detect the majority writer
 585 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 586 * count from the majority voting, it also counts the bytes written for the
 587 * current wb and the last round's winner wb (max of last round's current
 588 * wb, the winner from two rounds ago, and the last round's majority
 589 * candidate).  Keeping track of the historical winner helps the algorithm
 590 * to semi-reliably detect the most active writer even when it's not the
 591 * absolute majority.
 592 *
 593 * Once the winner of the round is determined, whether the winner is
 594 * foreign or not and how much IO time the round consumed is recorded in
 595 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 596 * over a certain threshold, the switch verdict is given.
 597 */
 598void wbc_detach_inode(struct writeback_control *wbc)
 599{
 600        struct bdi_writeback *wb = wbc->wb;
 601        struct inode *inode = wbc->inode;
 602        unsigned long avg_time, max_bytes, max_time;
 603        u16 history;
 604        int max_id;
 605
 606        if (!wb)
 607                return;
 608
 609        history = inode->i_wb_frn_history;
 610        avg_time = inode->i_wb_frn_avg_time;
 611
 612        /* pick the winner of this round */
 613        if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 614            wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 615                max_id = wbc->wb_id;
 616                max_bytes = wbc->wb_bytes;
 617        } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 618                max_id = wbc->wb_lcand_id;
 619                max_bytes = wbc->wb_lcand_bytes;
 620        } else {
 621                max_id = wbc->wb_tcand_id;
 622                max_bytes = wbc->wb_tcand_bytes;
 623        }
 624
 625        /*
 626         * Calculate the amount of IO time the winner consumed and fold it
 627         * into the running average kept per inode.  If the consumed IO
 628         * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 629         * deciding whether to switch or not.  This is to prevent one-off
 630         * small dirtiers from skewing the verdict.
 631         */
 632        max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 633                                wb->avg_write_bandwidth);
 634        if (avg_time)
 635                avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 636                            (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 637        else
 638                avg_time = max_time;    /* immediate catch up on first run */
 639
 640        if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 641                int slots;
 642
 643                /*
 644                 * The switch verdict is reached if foreign wb's consume
 645                 * more than a certain proportion of IO time in a
 646                 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 647                 * history mask where each bit represents one sixteenth of
 648                 * the period.  Determine the number of slots to shift into
 649                 * history from @max_time.
 650                 */
 651                slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 652                            (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 653                history <<= slots;
 654                if (wbc->wb_id != max_id)
 655                        history |= (1U << slots) - 1;
 656
 657                /*
 658                 * Switch if the current wb isn't the consistent winner.
 659                 * If there are multiple closely competing dirtiers, the
 660                 * inode may switch across them repeatedly over time, which
 661                 * is okay.  The main goal is avoiding keeping an inode on
 662                 * the wrong wb for an extended period of time.
 663                 */
 664                if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 665                        inode_switch_wbs(inode, max_id);
 666        }
 667
 668        /*
 669         * Multiple instances of this function may race to update the
 670         * following fields but we don't mind occassional inaccuracies.
 671         */
 672        inode->i_wb_frn_winner = max_id;
 673        inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 674        inode->i_wb_frn_history = history;
 675
 676        wb_put(wbc->wb);
 677        wbc->wb = NULL;
 678}
 679
 680/**
 681 * wbc_account_io - account IO issued during writeback
 682 * @wbc: writeback_control of the writeback in progress
 683 * @page: page being written out
 684 * @bytes: number of bytes being written out
 685 *
 686 * @bytes from @page are about to written out during the writeback
 687 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 688 * wbc_detach_inode().
 689 */
 690void wbc_account_io(struct writeback_control *wbc, struct page *page,
 691                    size_t bytes)
 692{
 693        int id;
 694
 695        /*
 696         * pageout() path doesn't attach @wbc to the inode being written
 697         * out.  This is intentional as we don't want the function to block
 698         * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 699         * regular writeback instead of writing things out itself.
 700         */
 701        if (!wbc->wb)
 702                return;
 703
 704        id = mem_cgroup_css_from_page(page)->id;
 705
 706        if (id == wbc->wb_id) {
 707                wbc->wb_bytes += bytes;
 708                return;
 709        }
 710
 711        if (id == wbc->wb_lcand_id)
 712                wbc->wb_lcand_bytes += bytes;
 713
 714        /* Boyer-Moore majority vote algorithm */
 715        if (!wbc->wb_tcand_bytes)
 716                wbc->wb_tcand_id = id;
 717        if (id == wbc->wb_tcand_id)
 718                wbc->wb_tcand_bytes += bytes;
 719        else
 720                wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 721}
 722EXPORT_SYMBOL_GPL(wbc_account_io);
 723
 724/**
 725 * inode_congested - test whether an inode is congested
 726 * @inode: inode to test for congestion (may be NULL)
 727 * @cong_bits: mask of WB_[a]sync_congested bits to test
 728 *
 729 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 730 * bits to test and the return value is the mask of set bits.
 731 *
 732 * If cgroup writeback is enabled for @inode, the congestion state is
 733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 734 * associated with @inode is congested; otherwise, the root wb's congestion
 735 * state is used.
 736 *
 737 * @inode is allowed to be NULL as this function is often called on
 738 * mapping->host which is NULL for the swapper space.
 739 */
 740int inode_congested(struct inode *inode, int cong_bits)
 741{
 742        /*
 743         * Once set, ->i_wb never becomes NULL while the inode is alive.
 744         * Start transaction iff ->i_wb is visible.
 745         */
 746        if (inode && inode_to_wb_is_valid(inode)) {
 747                struct bdi_writeback *wb;
 748                struct wb_lock_cookie lock_cookie = {};
 749                bool congested;
 750
 751                wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
 752                congested = wb_congested(wb, cong_bits);
 753                unlocked_inode_to_wb_end(inode, &lock_cookie);
 754                return congested;
 755        }
 756
 757        return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 758}
 759EXPORT_SYMBOL_GPL(inode_congested);
 760
 761/**
 762 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 763 * @wb: target bdi_writeback to split @nr_pages to
 764 * @nr_pages: number of pages to write for the whole bdi
 765 *
 766 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 767 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 768 * @wb->bdi.
 769 */
 770static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 771{
 772        unsigned long this_bw = wb->avg_write_bandwidth;
 773        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 774
 775        if (nr_pages == LONG_MAX)
 776                return LONG_MAX;
 777
 778        /*
 779         * This may be called on clean wb's and proportional distribution
 780         * may not make sense, just use the original @nr_pages in those
 781         * cases.  In general, we wanna err on the side of writing more.
 782         */
 783        if (!tot_bw || this_bw >= tot_bw)
 784                return nr_pages;
 785        else
 786                return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 787}
 788
 789/**
 790 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 791 * @bdi: target backing_dev_info
 792 * @base_work: wb_writeback_work to issue
 793 * @skip_if_busy: skip wb's which already have writeback in progress
 794 *
 795 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 796 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 797 * distributed to the busy wbs according to each wb's proportion in the
 798 * total active write bandwidth of @bdi.
 799 */
 800static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 801                                  struct wb_writeback_work *base_work,
 802                                  bool skip_if_busy)
 803{
 804        struct bdi_writeback *last_wb = NULL;
 805        struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 806                                              struct bdi_writeback, bdi_node);
 807
 808        might_sleep();
 809restart:
 810        rcu_read_lock();
 811        list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 812                DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 813                struct wb_writeback_work fallback_work;
 814                struct wb_writeback_work *work;
 815                long nr_pages;
 816
 817                if (last_wb) {
 818                        wb_put(last_wb);
 819                        last_wb = NULL;
 820                }
 821
 822                /* SYNC_ALL writes out I_DIRTY_TIME too */
 823                if (!wb_has_dirty_io(wb) &&
 824                    (base_work->sync_mode == WB_SYNC_NONE ||
 825                     list_empty(&wb->b_dirty_time)))
 826                        continue;
 827                if (skip_if_busy && writeback_in_progress(wb))
 828                        continue;
 829
 830                nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 831
 832                work = kmalloc(sizeof(*work), GFP_ATOMIC);
 833                if (work) {
 834                        *work = *base_work;
 835                        work->nr_pages = nr_pages;
 836                        work->auto_free = 1;
 837                        wb_queue_work(wb, work);
 838                        continue;
 839                }
 840
 841                /* alloc failed, execute synchronously using on-stack fallback */
 842                work = &fallback_work;
 843                *work = *base_work;
 844                work->nr_pages = nr_pages;
 845                work->auto_free = 0;
 846                work->done = &fallback_work_done;
 847
 848                wb_queue_work(wb, work);
 849
 850                /*
 851                 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 852                 * continuing iteration from @wb after dropping and
 853                 * regrabbing rcu read lock.
 854                 */
 855                wb_get(wb);
 856                last_wb = wb;
 857
 858                rcu_read_unlock();
 859                wb_wait_for_completion(bdi, &fallback_work_done);
 860                goto restart;
 861        }
 862        rcu_read_unlock();
 863
 864        if (last_wb)
 865                wb_put(last_wb);
 866}
 867
 868/**
 869 * cgroup_writeback_umount - flush inode wb switches for umount
 870 *
 871 * This function is called when a super_block is about to be destroyed and
 872 * flushes in-flight inode wb switches.  An inode wb switch goes through
 873 * RCU and then workqueue, so the two need to be flushed in order to ensure
 874 * that all previously scheduled switches are finished.  As wb switches are
 875 * rare occurrences and synchronize_rcu() can take a while, perform
 876 * flushing iff wb switches are in flight.
 877 */
 878void cgroup_writeback_umount(void)
 879{
 880        if (atomic_read(&isw_nr_in_flight)) {
 881                synchronize_rcu();
 882                flush_workqueue(isw_wq);
 883        }
 884}
 885
 886static int __init cgroup_writeback_init(void)
 887{
 888        isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 889        if (!isw_wq)
 890                return -ENOMEM;
 891        return 0;
 892}
 893fs_initcall(cgroup_writeback_init);
 894
 895#else   /* CONFIG_CGROUP_WRITEBACK */
 896
 897static struct bdi_writeback *
 898locked_inode_to_wb_and_lock_list(struct inode *inode)
 899        __releases(&inode->i_lock)
 900        __acquires(&wb->list_lock)
 901{
 902        struct bdi_writeback *wb = inode_to_wb(inode);
 903
 904        spin_unlock(&inode->i_lock);
 905        spin_lock(&wb->list_lock);
 906        return wb;
 907}
 908
 909static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 910        __acquires(&wb->list_lock)
 911{
 912        struct bdi_writeback *wb = inode_to_wb(inode);
 913
 914        spin_lock(&wb->list_lock);
 915        return wb;
 916}
 917
 918static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 919{
 920        return nr_pages;
 921}
 922
 923static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 924                                  struct wb_writeback_work *base_work,
 925                                  bool skip_if_busy)
 926{
 927        might_sleep();
 928
 929        if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 930                base_work->auto_free = 0;
 931                wb_queue_work(&bdi->wb, base_work);
 932        }
 933}
 934
 935#endif  /* CONFIG_CGROUP_WRITEBACK */
 936
 937/*
 938 * Add in the number of potentially dirty inodes, because each inode
 939 * write can dirty pagecache in the underlying blockdev.
 940 */
 941static unsigned long get_nr_dirty_pages(void)
 942{
 943        return global_node_page_state(NR_FILE_DIRTY) +
 944                global_node_page_state(NR_UNSTABLE_NFS) +
 945                get_nr_dirty_inodes();
 946}
 947
 948static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
 949{
 950        if (!wb_has_dirty_io(wb))
 951                return;
 952
 953        /*
 954         * All callers of this function want to start writeback of all
 955         * dirty pages. Places like vmscan can call this at a very
 956         * high frequency, causing pointless allocations of tons of
 957         * work items and keeping the flusher threads busy retrieving
 958         * that work. Ensure that we only allow one of them pending and
 959         * inflight at the time.
 960         */
 961        if (test_bit(WB_start_all, &wb->state) ||
 962            test_and_set_bit(WB_start_all, &wb->state))
 963                return;
 964
 965        wb->start_all_reason = reason;
 966        wb_wakeup(wb);
 967}
 968
 969/**
 970 * wb_start_background_writeback - start background writeback
 971 * @wb: bdi_writback to write from
 972 *
 973 * Description:
 974 *   This makes sure WB_SYNC_NONE background writeback happens. When
 975 *   this function returns, it is only guaranteed that for given wb
 976 *   some IO is happening if we are over background dirty threshold.
 977 *   Caller need not hold sb s_umount semaphore.
 978 */
 979void wb_start_background_writeback(struct bdi_writeback *wb)
 980{
 981        /*
 982         * We just wake up the flusher thread. It will perform background
 983         * writeback as soon as there is no other work to do.
 984         */
 985        trace_writeback_wake_background(wb);
 986        wb_wakeup(wb);
 987}
 988
 989/*
 990 * Remove the inode from the writeback list it is on.
 991 */
 992void inode_io_list_del(struct inode *inode)
 993{
 994        struct bdi_writeback *wb;
 995
 996        wb = inode_to_wb_and_lock_list(inode);
 997        inode_io_list_del_locked(inode, wb);
 998        spin_unlock(&wb->list_lock);
 999}
1000
1001/*
1002 * mark an inode as under writeback on the sb
1003 */
1004void sb_mark_inode_writeback(struct inode *inode)
1005{
1006        struct super_block *sb = inode->i_sb;
1007        unsigned long flags;
1008
1009        if (list_empty(&inode->i_wb_list)) {
1010                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011                if (list_empty(&inode->i_wb_list)) {
1012                        list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1013                        trace_sb_mark_inode_writeback(inode);
1014                }
1015                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016        }
1017}
1018
1019/*
1020 * clear an inode as under writeback on the sb
1021 */
1022void sb_clear_inode_writeback(struct inode *inode)
1023{
1024        struct super_block *sb = inode->i_sb;
1025        unsigned long flags;
1026
1027        if (!list_empty(&inode->i_wb_list)) {
1028                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1029                if (!list_empty(&inode->i_wb_list)) {
1030                        list_del_init(&inode->i_wb_list);
1031                        trace_sb_clear_inode_writeback(inode);
1032                }
1033                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1034        }
1035}
1036
1037/*
1038 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1039 * furthest end of its superblock's dirty-inode list.
1040 *
1041 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1042 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1043 * the case then the inode must have been redirtied while it was being written
1044 * out and we don't reset its dirtied_when.
1045 */
1046static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1047{
1048        if (!list_empty(&wb->b_dirty)) {
1049                struct inode *tail;
1050
1051                tail = wb_inode(wb->b_dirty.next);
1052                if (time_before(inode->dirtied_when, tail->dirtied_when))
1053                        inode->dirtied_when = jiffies;
1054        }
1055        inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1056}
1057
1058/*
1059 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1060 */
1061static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1062{
1063        inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1064}
1065
1066static void inode_sync_complete(struct inode *inode)
1067{
1068        inode->i_state &= ~I_SYNC;
1069        /* If inode is clean an unused, put it into LRU now... */
1070        inode_add_lru(inode);
1071        /* Waiters must see I_SYNC cleared before being woken up */
1072        smp_mb();
1073        wake_up_bit(&inode->i_state, __I_SYNC);
1074}
1075
1076static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1077{
1078        bool ret = time_after(inode->dirtied_when, t);
1079#ifndef CONFIG_64BIT
1080        /*
1081         * For inodes being constantly redirtied, dirtied_when can get stuck.
1082         * It _appears_ to be in the future, but is actually in distant past.
1083         * This test is necessary to prevent such wrapped-around relative times
1084         * from permanently stopping the whole bdi writeback.
1085         */
1086        ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1087#endif
1088        return ret;
1089}
1090
1091#define EXPIRE_DIRTY_ATIME 0x0001
1092
1093/*
1094 * Move expired (dirtied before work->older_than_this) dirty inodes from
1095 * @delaying_queue to @dispatch_queue.
1096 */
1097static int move_expired_inodes(struct list_head *delaying_queue,
1098                               struct list_head *dispatch_queue,
1099                               int flags,
1100                               struct wb_writeback_work *work)
1101{
1102        unsigned long *older_than_this = NULL;
1103        unsigned long expire_time;
1104        LIST_HEAD(tmp);
1105        struct list_head *pos, *node;
1106        struct super_block *sb = NULL;
1107        struct inode *inode;
1108        int do_sb_sort = 0;
1109        int moved = 0;
1110
1111        if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1112                older_than_this = work->older_than_this;
1113        else if (!work->for_sync) {
1114                expire_time = jiffies - (dirtytime_expire_interval * HZ);
1115                older_than_this = &expire_time;
1116        }
1117        while (!list_empty(delaying_queue)) {
1118                inode = wb_inode(delaying_queue->prev);
1119                if (older_than_this &&
1120                    inode_dirtied_after(inode, *older_than_this))
1121                        break;
1122                list_move(&inode->i_io_list, &tmp);
1123                moved++;
1124                if (flags & EXPIRE_DIRTY_ATIME)
1125                        set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1126                if (sb_is_blkdev_sb(inode->i_sb))
1127                        continue;
1128                if (sb && sb != inode->i_sb)
1129                        do_sb_sort = 1;
1130                sb = inode->i_sb;
1131        }
1132
1133        /* just one sb in list, splice to dispatch_queue and we're done */
1134        if (!do_sb_sort) {
1135                list_splice(&tmp, dispatch_queue);
1136                goto out;
1137        }
1138
1139        /* Move inodes from one superblock together */
1140        while (!list_empty(&tmp)) {
1141                sb = wb_inode(tmp.prev)->i_sb;
1142                list_for_each_prev_safe(pos, node, &tmp) {
1143                        inode = wb_inode(pos);
1144                        if (inode->i_sb == sb)
1145                                list_move(&inode->i_io_list, dispatch_queue);
1146                }
1147        }
1148out:
1149        return moved;
1150}
1151
1152/*
1153 * Queue all expired dirty inodes for io, eldest first.
1154 * Before
1155 *         newly dirtied     b_dirty    b_io    b_more_io
1156 *         =============>    gf         edc     BA
1157 * After
1158 *         newly dirtied     b_dirty    b_io    b_more_io
1159 *         =============>    g          fBAedc
1160 *                                           |
1161 *                                           +--> dequeue for IO
1162 */
1163static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1164{
1165        int moved;
1166
1167        assert_spin_locked(&wb->list_lock);
1168        list_splice_init(&wb->b_more_io, &wb->b_io);
1169        moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1170        moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1171                                     EXPIRE_DIRTY_ATIME, work);
1172        if (moved)
1173                wb_io_lists_populated(wb);
1174        trace_writeback_queue_io(wb, work, moved);
1175}
1176
1177static int write_inode(struct inode *inode, struct writeback_control *wbc)
1178{
1179        int ret;
1180
1181        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1182                trace_writeback_write_inode_start(inode, wbc);
1183                ret = inode->i_sb->s_op->write_inode(inode, wbc);
1184                trace_writeback_write_inode(inode, wbc);
1185                return ret;
1186        }
1187        return 0;
1188}
1189
1190/*
1191 * Wait for writeback on an inode to complete. Called with i_lock held.
1192 * Caller must make sure inode cannot go away when we drop i_lock.
1193 */
1194static void __inode_wait_for_writeback(struct inode *inode)
1195        __releases(inode->i_lock)
1196        __acquires(inode->i_lock)
1197{
1198        DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1199        wait_queue_head_t *wqh;
1200
1201        wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1202        while (inode->i_state & I_SYNC) {
1203                spin_unlock(&inode->i_lock);
1204                __wait_on_bit(wqh, &wq, bit_wait,
1205                              TASK_UNINTERRUPTIBLE);
1206                spin_lock(&inode->i_lock);
1207        }
1208}
1209
1210/*
1211 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1212 */
1213void inode_wait_for_writeback(struct inode *inode)
1214{
1215        spin_lock(&inode->i_lock);
1216        __inode_wait_for_writeback(inode);
1217        spin_unlock(&inode->i_lock);
1218}
1219
1220/*
1221 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1222 * held and drops it. It is aimed for callers not holding any inode reference
1223 * so once i_lock is dropped, inode can go away.
1224 */
1225static void inode_sleep_on_writeback(struct inode *inode)
1226        __releases(inode->i_lock)
1227{
1228        DEFINE_WAIT(wait);
1229        wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1230        int sleep;
1231
1232        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1233        sleep = inode->i_state & I_SYNC;
1234        spin_unlock(&inode->i_lock);
1235        if (sleep)
1236                schedule();
1237        finish_wait(wqh, &wait);
1238}
1239
1240/*
1241 * Find proper writeback list for the inode depending on its current state and
1242 * possibly also change of its state while we were doing writeback.  Here we
1243 * handle things such as livelock prevention or fairness of writeback among
1244 * inodes. This function can be called only by flusher thread - noone else
1245 * processes all inodes in writeback lists and requeueing inodes behind flusher
1246 * thread's back can have unexpected consequences.
1247 */
1248static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1249                          struct writeback_control *wbc)
1250{
1251        if (inode->i_state & I_FREEING)
1252                return;
1253
1254        /*
1255         * Sync livelock prevention. Each inode is tagged and synced in one
1256         * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1257         * the dirty time to prevent enqueue and sync it again.
1258         */
1259        if ((inode->i_state & I_DIRTY) &&
1260            (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1261                inode->dirtied_when = jiffies;
1262
1263        if (wbc->pages_skipped) {
1264                /*
1265                 * writeback is not making progress due to locked
1266                 * buffers. Skip this inode for now.
1267                 */
1268                redirty_tail(inode, wb);
1269                return;
1270        }
1271
1272        if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1273                /*
1274                 * We didn't write back all the pages.  nfs_writepages()
1275                 * sometimes bales out without doing anything.
1276                 */
1277                if (wbc->nr_to_write <= 0) {
1278                        /* Slice used up. Queue for next turn. */
1279                        requeue_io(inode, wb);
1280                } else {
1281                        /*
1282                         * Writeback blocked by something other than
1283                         * congestion. Delay the inode for some time to
1284                         * avoid spinning on the CPU (100% iowait)
1285                         * retrying writeback of the dirty page/inode
1286                         * that cannot be performed immediately.
1287                         */
1288                        redirty_tail(inode, wb);
1289                }
1290        } else if (inode->i_state & I_DIRTY) {
1291                /*
1292                 * Filesystems can dirty the inode during writeback operations,
1293                 * such as delayed allocation during submission or metadata
1294                 * updates after data IO completion.
1295                 */
1296                redirty_tail(inode, wb);
1297        } else if (inode->i_state & I_DIRTY_TIME) {
1298                inode->dirtied_when = jiffies;
1299                inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1300        } else {
1301                /* The inode is clean. Remove from writeback lists. */
1302                inode_io_list_del_locked(inode, wb);
1303        }
1304}
1305
1306/*
1307 * Write out an inode and its dirty pages. Do not update the writeback list
1308 * linkage. That is left to the caller. The caller is also responsible for
1309 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1310 */
1311static int
1312__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1313{
1314        struct address_space *mapping = inode->i_mapping;
1315        long nr_to_write = wbc->nr_to_write;
1316        unsigned dirty;
1317        int ret;
1318
1319        WARN_ON(!(inode->i_state & I_SYNC));
1320
1321        trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1322
1323        ret = do_writepages(mapping, wbc);
1324
1325        /*
1326         * Make sure to wait on the data before writing out the metadata.
1327         * This is important for filesystems that modify metadata on data
1328         * I/O completion. We don't do it for sync(2) writeback because it has a
1329         * separate, external IO completion path and ->sync_fs for guaranteeing
1330         * inode metadata is written back correctly.
1331         */
1332        if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1333                int err = filemap_fdatawait(mapping);
1334                if (ret == 0)
1335                        ret = err;
1336        }
1337
1338        /*
1339         * Some filesystems may redirty the inode during the writeback
1340         * due to delalloc, clear dirty metadata flags right before
1341         * write_inode()
1342         */
1343        spin_lock(&inode->i_lock);
1344
1345        dirty = inode->i_state & I_DIRTY;
1346        if (inode->i_state & I_DIRTY_TIME) {
1347                if ((dirty & I_DIRTY_INODE) ||
1348                    wbc->sync_mode == WB_SYNC_ALL ||
1349                    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1350                    unlikely(time_after(jiffies,
1351                                        (inode->dirtied_time_when +
1352                                         dirtytime_expire_interval * HZ)))) {
1353                        dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1354                        trace_writeback_lazytime(inode);
1355                }
1356        } else
1357                inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1358        inode->i_state &= ~dirty;
1359
1360        /*
1361         * Paired with smp_mb() in __mark_inode_dirty().  This allows
1362         * __mark_inode_dirty() to test i_state without grabbing i_lock -
1363         * either they see the I_DIRTY bits cleared or we see the dirtied
1364         * inode.
1365         *
1366         * I_DIRTY_PAGES is always cleared together above even if @mapping
1367         * still has dirty pages.  The flag is reinstated after smp_mb() if
1368         * necessary.  This guarantees that either __mark_inode_dirty()
1369         * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1370         */
1371        smp_mb();
1372
1373        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1374                inode->i_state |= I_DIRTY_PAGES;
1375
1376        spin_unlock(&inode->i_lock);
1377
1378        if (dirty & I_DIRTY_TIME)
1379                mark_inode_dirty_sync(inode);
1380        /* Don't write the inode if only I_DIRTY_PAGES was set */
1381        if (dirty & ~I_DIRTY_PAGES) {
1382                int err = write_inode(inode, wbc);
1383                if (ret == 0)
1384                        ret = err;
1385        }
1386        trace_writeback_single_inode(inode, wbc, nr_to_write);
1387        return ret;
1388}
1389
1390/*
1391 * Write out an inode's dirty pages. Either the caller has an active reference
1392 * on the inode or the inode has I_WILL_FREE set.
1393 *
1394 * This function is designed to be called for writing back one inode which
1395 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1396 * and does more profound writeback list handling in writeback_sb_inodes().
1397 */
1398static int writeback_single_inode(struct inode *inode,
1399                                  struct writeback_control *wbc)
1400{
1401        struct bdi_writeback *wb;
1402        int ret = 0;
1403
1404        spin_lock(&inode->i_lock);
1405        if (!atomic_read(&inode->i_count))
1406                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1407        else
1408                WARN_ON(inode->i_state & I_WILL_FREE);
1409
1410        if (inode->i_state & I_SYNC) {
1411                if (wbc->sync_mode != WB_SYNC_ALL)
1412                        goto out;
1413                /*
1414                 * It's a data-integrity sync. We must wait. Since callers hold
1415                 * inode reference or inode has I_WILL_FREE set, it cannot go
1416                 * away under us.
1417                 */
1418                __inode_wait_for_writeback(inode);
1419        }
1420        WARN_ON(inode->i_state & I_SYNC);
1421        /*
1422         * Skip inode if it is clean and we have no outstanding writeback in
1423         * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1424         * function since flusher thread may be doing for example sync in
1425         * parallel and if we move the inode, it could get skipped. So here we
1426         * make sure inode is on some writeback list and leave it there unless
1427         * we have completely cleaned the inode.
1428         */
1429        if (!(inode->i_state & I_DIRTY_ALL) &&
1430            (wbc->sync_mode != WB_SYNC_ALL ||
1431             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1432                goto out;
1433        inode->i_state |= I_SYNC;
1434        wbc_attach_and_unlock_inode(wbc, inode);
1435
1436        ret = __writeback_single_inode(inode, wbc);
1437
1438        wbc_detach_inode(wbc);
1439
1440        wb = inode_to_wb_and_lock_list(inode);
1441        spin_lock(&inode->i_lock);
1442        /*
1443         * If inode is clean, remove it from writeback lists. Otherwise don't
1444         * touch it. See comment above for explanation.
1445         */
1446        if (!(inode->i_state & I_DIRTY_ALL))
1447                inode_io_list_del_locked(inode, wb);
1448        spin_unlock(&wb->list_lock);
1449        inode_sync_complete(inode);
1450out:
1451        spin_unlock(&inode->i_lock);
1452        return ret;
1453}
1454
1455static long writeback_chunk_size(struct bdi_writeback *wb,
1456                                 struct wb_writeback_work *work)
1457{
1458        long pages;
1459
1460        /*
1461         * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1462         * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1463         * here avoids calling into writeback_inodes_wb() more than once.
1464         *
1465         * The intended call sequence for WB_SYNC_ALL writeback is:
1466         *
1467         *      wb_writeback()
1468         *          writeback_sb_inodes()       <== called only once
1469         *              write_cache_pages()     <== called once for each inode
1470         *                   (quickly) tag currently dirty pages
1471         *                   (maybe slowly) sync all tagged pages
1472         */
1473        if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1474                pages = LONG_MAX;
1475        else {
1476                pages = min(wb->avg_write_bandwidth / 2,
1477                            global_wb_domain.dirty_limit / DIRTY_SCOPE);
1478                pages = min(pages, work->nr_pages);
1479                pages = round_down(pages + MIN_WRITEBACK_PAGES,
1480                                   MIN_WRITEBACK_PAGES);
1481        }
1482
1483        return pages;
1484}
1485
1486/*
1487 * Write a portion of b_io inodes which belong to @sb.
1488 *
1489 * Return the number of pages and/or inodes written.
1490 *
1491 * NOTE! This is called with wb->list_lock held, and will
1492 * unlock and relock that for each inode it ends up doing
1493 * IO for.
1494 */
1495static long writeback_sb_inodes(struct super_block *sb,
1496                                struct bdi_writeback *wb,
1497                                struct wb_writeback_work *work)
1498{
1499        struct writeback_control wbc = {
1500                .sync_mode              = work->sync_mode,
1501                .tagged_writepages      = work->tagged_writepages,
1502                .for_kupdate            = work->for_kupdate,
1503                .for_background         = work->for_background,
1504                .for_sync               = work->for_sync,
1505                .range_cyclic           = work->range_cyclic,
1506                .range_start            = 0,
1507                .range_end              = LLONG_MAX,
1508        };
1509        unsigned long start_time = jiffies;
1510        long write_chunk;
1511        long wrote = 0;  /* count both pages and inodes */
1512
1513        while (!list_empty(&wb->b_io)) {
1514                struct inode *inode = wb_inode(wb->b_io.prev);
1515                struct bdi_writeback *tmp_wb;
1516
1517                if (inode->i_sb != sb) {
1518                        if (work->sb) {
1519                                /*
1520                                 * We only want to write back data for this
1521                                 * superblock, move all inodes not belonging
1522                                 * to it back onto the dirty list.
1523                                 */
1524                                redirty_tail(inode, wb);
1525                                continue;
1526                        }
1527
1528                        /*
1529                         * The inode belongs to a different superblock.
1530                         * Bounce back to the caller to unpin this and
1531                         * pin the next superblock.
1532                         */
1533                        break;
1534                }
1535
1536                /*
1537                 * Don't bother with new inodes or inodes being freed, first
1538                 * kind does not need periodic writeout yet, and for the latter
1539                 * kind writeout is handled by the freer.
1540                 */
1541                spin_lock(&inode->i_lock);
1542                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1543                        spin_unlock(&inode->i_lock);
1544                        redirty_tail(inode, wb);
1545                        continue;
1546                }
1547                if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1548                        /*
1549                         * If this inode is locked for writeback and we are not
1550                         * doing writeback-for-data-integrity, move it to
1551                         * b_more_io so that writeback can proceed with the
1552                         * other inodes on s_io.
1553                         *
1554                         * We'll have another go at writing back this inode
1555                         * when we completed a full scan of b_io.
1556                         */
1557                        spin_unlock(&inode->i_lock);
1558                        requeue_io(inode, wb);
1559                        trace_writeback_sb_inodes_requeue(inode);
1560                        continue;
1561                }
1562                spin_unlock(&wb->list_lock);
1563
1564                /*
1565                 * We already requeued the inode if it had I_SYNC set and we
1566                 * are doing WB_SYNC_NONE writeback. So this catches only the
1567                 * WB_SYNC_ALL case.
1568                 */
1569                if (inode->i_state & I_SYNC) {
1570                        /* Wait for I_SYNC. This function drops i_lock... */
1571                        inode_sleep_on_writeback(inode);
1572                        /* Inode may be gone, start again */
1573                        spin_lock(&wb->list_lock);
1574                        continue;
1575                }
1576                inode->i_state |= I_SYNC;
1577                wbc_attach_and_unlock_inode(&wbc, inode);
1578
1579                write_chunk = writeback_chunk_size(wb, work);
1580                wbc.nr_to_write = write_chunk;
1581                wbc.pages_skipped = 0;
1582
1583                /*
1584                 * We use I_SYNC to pin the inode in memory. While it is set
1585                 * evict_inode() will wait so the inode cannot be freed.
1586                 */
1587                __writeback_single_inode(inode, &wbc);
1588
1589                wbc_detach_inode(&wbc);
1590                work->nr_pages -= write_chunk - wbc.nr_to_write;
1591                wrote += write_chunk - wbc.nr_to_write;
1592
1593                if (need_resched()) {
1594                        /*
1595                         * We're trying to balance between building up a nice
1596                         * long list of IOs to improve our merge rate, and
1597                         * getting those IOs out quickly for anyone throttling
1598                         * in balance_dirty_pages().  cond_resched() doesn't
1599                         * unplug, so get our IOs out the door before we
1600                         * give up the CPU.
1601                         */
1602                        blk_flush_plug(current);
1603                        cond_resched();
1604                }
1605
1606                /*
1607                 * Requeue @inode if still dirty.  Be careful as @inode may
1608                 * have been switched to another wb in the meantime.
1609                 */
1610                tmp_wb = inode_to_wb_and_lock_list(inode);
1611                spin_lock(&inode->i_lock);
1612                if (!(inode->i_state & I_DIRTY_ALL))
1613                        wrote++;
1614                requeue_inode(inode, tmp_wb, &wbc);
1615                inode_sync_complete(inode);
1616                spin_unlock(&inode->i_lock);
1617
1618                if (unlikely(tmp_wb != wb)) {
1619                        spin_unlock(&tmp_wb->list_lock);
1620                        spin_lock(&wb->list_lock);
1621                }
1622
1623                /*
1624                 * bail out to wb_writeback() often enough to check
1625                 * background threshold and other termination conditions.
1626                 */
1627                if (wrote) {
1628                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1629                                break;
1630                        if (work->nr_pages <= 0)
1631                                break;
1632                }
1633        }
1634        return wrote;
1635}
1636
1637static long __writeback_inodes_wb(struct bdi_writeback *wb,
1638                                  struct wb_writeback_work *work)
1639{
1640        unsigned long start_time = jiffies;
1641        long wrote = 0;
1642
1643        while (!list_empty(&wb->b_io)) {
1644                struct inode *inode = wb_inode(wb->b_io.prev);
1645                struct super_block *sb = inode->i_sb;
1646
1647                if (!trylock_super(sb)) {
1648                        /*
1649                         * trylock_super() may fail consistently due to
1650                         * s_umount being grabbed by someone else. Don't use
1651                         * requeue_io() to avoid busy retrying the inode/sb.
1652                         */
1653                        redirty_tail(inode, wb);
1654                        continue;
1655                }
1656                wrote += writeback_sb_inodes(sb, wb, work);
1657                up_read(&sb->s_umount);
1658
1659                /* refer to the same tests at the end of writeback_sb_inodes */
1660                if (wrote) {
1661                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1662                                break;
1663                        if (work->nr_pages <= 0)
1664                                break;
1665                }
1666        }
1667        /* Leave any unwritten inodes on b_io */
1668        return wrote;
1669}
1670
1671static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1672                                enum wb_reason reason)
1673{
1674        struct wb_writeback_work work = {
1675                .nr_pages       = nr_pages,
1676                .sync_mode      = WB_SYNC_NONE,
1677                .range_cyclic   = 1,
1678                .reason         = reason,
1679        };
1680        struct blk_plug plug;
1681
1682        blk_start_plug(&plug);
1683        spin_lock(&wb->list_lock);
1684        if (list_empty(&wb->b_io))
1685                queue_io(wb, &work);
1686        __writeback_inodes_wb(wb, &work);
1687        spin_unlock(&wb->list_lock);
1688        blk_finish_plug(&plug);
1689
1690        return nr_pages - work.nr_pages;
1691}
1692
1693/*
1694 * Explicit flushing or periodic writeback of "old" data.
1695 *
1696 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1697 * dirtying-time in the inode's address_space.  So this periodic writeback code
1698 * just walks the superblock inode list, writing back any inodes which are
1699 * older than a specific point in time.
1700 *
1701 * Try to run once per dirty_writeback_interval.  But if a writeback event
1702 * takes longer than a dirty_writeback_interval interval, then leave a
1703 * one-second gap.
1704 *
1705 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1706 * all dirty pages if they are all attached to "old" mappings.
1707 */
1708static long wb_writeback(struct bdi_writeback *wb,
1709                         struct wb_writeback_work *work)
1710{
1711        unsigned long wb_start = jiffies;
1712        long nr_pages = work->nr_pages;
1713        unsigned long oldest_jif;
1714        struct inode *inode;
1715        long progress;
1716        struct blk_plug plug;
1717
1718        oldest_jif = jiffies;
1719        work->older_than_this = &oldest_jif;
1720
1721        blk_start_plug(&plug);
1722        spin_lock(&wb->list_lock);
1723        for (;;) {
1724                /*
1725                 * Stop writeback when nr_pages has been consumed
1726                 */
1727                if (work->nr_pages <= 0)
1728                        break;
1729
1730                /*
1731                 * Background writeout and kupdate-style writeback may
1732                 * run forever. Stop them if there is other work to do
1733                 * so that e.g. sync can proceed. They'll be restarted
1734                 * after the other works are all done.
1735                 */
1736                if ((work->for_background || work->for_kupdate) &&
1737                    !list_empty(&wb->work_list))
1738                        break;
1739
1740                /*
1741                 * For background writeout, stop when we are below the
1742                 * background dirty threshold
1743                 */
1744                if (work->for_background && !wb_over_bg_thresh(wb))
1745                        break;
1746
1747                /*
1748                 * Kupdate and background works are special and we want to
1749                 * include all inodes that need writing. Livelock avoidance is
1750                 * handled by these works yielding to any other work so we are
1751                 * safe.
1752                 */
1753                if (work->for_kupdate) {
1754                        oldest_jif = jiffies -
1755                                msecs_to_jiffies(dirty_expire_interval * 10);
1756                } else if (work->for_background)
1757                        oldest_jif = jiffies;
1758
1759                trace_writeback_start(wb, work);
1760                if (list_empty(&wb->b_io))
1761                        queue_io(wb, work);
1762                if (work->sb)
1763                        progress = writeback_sb_inodes(work->sb, wb, work);
1764                else
1765                        progress = __writeback_inodes_wb(wb, work);
1766                trace_writeback_written(wb, work);
1767
1768                wb_update_bandwidth(wb, wb_start);
1769
1770                /*
1771                 * Did we write something? Try for more
1772                 *
1773                 * Dirty inodes are moved to b_io for writeback in batches.
1774                 * The completion of the current batch does not necessarily
1775                 * mean the overall work is done. So we keep looping as long
1776                 * as made some progress on cleaning pages or inodes.
1777                 */
1778                if (progress)
1779                        continue;
1780                /*
1781                 * No more inodes for IO, bail
1782                 */
1783                if (list_empty(&wb->b_more_io))
1784                        break;
1785                /*
1786                 * Nothing written. Wait for some inode to
1787                 * become available for writeback. Otherwise
1788                 * we'll just busyloop.
1789                 */
1790                trace_writeback_wait(wb, work);
1791                inode = wb_inode(wb->b_more_io.prev);
1792                spin_lock(&inode->i_lock);
1793                spin_unlock(&wb->list_lock);
1794                /* This function drops i_lock... */
1795                inode_sleep_on_writeback(inode);
1796                spin_lock(&wb->list_lock);
1797        }
1798        spin_unlock(&wb->list_lock);
1799        blk_finish_plug(&plug);
1800
1801        return nr_pages - work->nr_pages;
1802}
1803
1804/*
1805 * Return the next wb_writeback_work struct that hasn't been processed yet.
1806 */
1807static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1808{
1809        struct wb_writeback_work *work = NULL;
1810
1811        spin_lock_bh(&wb->work_lock);
1812        if (!list_empty(&wb->work_list)) {
1813                work = list_entry(wb->work_list.next,
1814                                  struct wb_writeback_work, list);
1815                list_del_init(&work->list);
1816        }
1817        spin_unlock_bh(&wb->work_lock);
1818        return work;
1819}
1820
1821static long wb_check_background_flush(struct bdi_writeback *wb)
1822{
1823        if (wb_over_bg_thresh(wb)) {
1824
1825                struct wb_writeback_work work = {
1826                        .nr_pages       = LONG_MAX,
1827                        .sync_mode      = WB_SYNC_NONE,
1828                        .for_background = 1,
1829                        .range_cyclic   = 1,
1830                        .reason         = WB_REASON_BACKGROUND,
1831                };
1832
1833                return wb_writeback(wb, &work);
1834        }
1835
1836        return 0;
1837}
1838
1839static long wb_check_old_data_flush(struct bdi_writeback *wb)
1840{
1841        unsigned long expired;
1842        long nr_pages;
1843
1844        /*
1845         * When set to zero, disable periodic writeback
1846         */
1847        if (!dirty_writeback_interval)
1848                return 0;
1849
1850        expired = wb->last_old_flush +
1851                        msecs_to_jiffies(dirty_writeback_interval * 10);
1852        if (time_before(jiffies, expired))
1853                return 0;
1854
1855        wb->last_old_flush = jiffies;
1856        nr_pages = get_nr_dirty_pages();
1857
1858        if (nr_pages) {
1859                struct wb_writeback_work work = {
1860                        .nr_pages       = nr_pages,
1861                        .sync_mode      = WB_SYNC_NONE,
1862                        .for_kupdate    = 1,
1863                        .range_cyclic   = 1,
1864                        .reason         = WB_REASON_PERIODIC,
1865                };
1866
1867                return wb_writeback(wb, &work);
1868        }
1869
1870        return 0;
1871}
1872
1873static long wb_check_start_all(struct bdi_writeback *wb)
1874{
1875        long nr_pages;
1876
1877        if (!test_bit(WB_start_all, &wb->state))
1878                return 0;
1879
1880        nr_pages = get_nr_dirty_pages();
1881        if (nr_pages) {
1882                struct wb_writeback_work work = {
1883                        .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
1884                        .sync_mode      = WB_SYNC_NONE,
1885                        .range_cyclic   = 1,
1886                        .reason         = wb->start_all_reason,
1887                };
1888
1889                nr_pages = wb_writeback(wb, &work);
1890        }
1891
1892        clear_bit(WB_start_all, &wb->state);
1893        return nr_pages;
1894}
1895
1896
1897/*
1898 * Retrieve work items and do the writeback they describe
1899 */
1900static long wb_do_writeback(struct bdi_writeback *wb)
1901{
1902        struct wb_writeback_work *work;
1903        long wrote = 0;
1904
1905        set_bit(WB_writeback_running, &wb->state);
1906        while ((work = get_next_work_item(wb)) != NULL) {
1907                trace_writeback_exec(wb, work);
1908                wrote += wb_writeback(wb, work);
1909                finish_writeback_work(wb, work);
1910        }
1911
1912        /*
1913         * Check for a flush-everything request
1914         */
1915        wrote += wb_check_start_all(wb);
1916
1917        /*
1918         * Check for periodic writeback, kupdated() style
1919         */
1920        wrote += wb_check_old_data_flush(wb);
1921        wrote += wb_check_background_flush(wb);
1922        clear_bit(WB_writeback_running, &wb->state);
1923
1924        return wrote;
1925}
1926
1927/*
1928 * Handle writeback of dirty data for the device backed by this bdi. Also
1929 * reschedules periodically and does kupdated style flushing.
1930 */
1931void wb_workfn(struct work_struct *work)
1932{
1933        struct bdi_writeback *wb = container_of(to_delayed_work(work),
1934                                                struct bdi_writeback, dwork);
1935        long pages_written;
1936
1937        set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1938        current->flags |= PF_SWAPWRITE;
1939
1940        if (likely(!current_is_workqueue_rescuer() ||
1941                   !test_bit(WB_registered, &wb->state))) {
1942                /*
1943                 * The normal path.  Keep writing back @wb until its
1944                 * work_list is empty.  Note that this path is also taken
1945                 * if @wb is shutting down even when we're running off the
1946                 * rescuer as work_list needs to be drained.
1947                 */
1948                do {
1949                        pages_written = wb_do_writeback(wb);
1950                        trace_writeback_pages_written(pages_written);
1951                } while (!list_empty(&wb->work_list));
1952        } else {
1953                /*
1954                 * bdi_wq can't get enough workers and we're running off
1955                 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1956                 * enough for efficient IO.
1957                 */
1958                pages_written = writeback_inodes_wb(wb, 1024,
1959                                                    WB_REASON_FORKER_THREAD);
1960                trace_writeback_pages_written(pages_written);
1961        }
1962
1963        if (!list_empty(&wb->work_list))
1964                wb_wakeup(wb);
1965        else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1966                wb_wakeup_delayed(wb);
1967
1968        current->flags &= ~PF_SWAPWRITE;
1969}
1970
1971/*
1972 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1973 * write back the whole world.
1974 */
1975static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1976                                         enum wb_reason reason)
1977{
1978        struct bdi_writeback *wb;
1979
1980        if (!bdi_has_dirty_io(bdi))
1981                return;
1982
1983        list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1984                wb_start_writeback(wb, reason);
1985}
1986
1987void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1988                                enum wb_reason reason)
1989{
1990        rcu_read_lock();
1991        __wakeup_flusher_threads_bdi(bdi, reason);
1992        rcu_read_unlock();
1993}
1994
1995/*
1996 * Wakeup the flusher threads to start writeback of all currently dirty pages
1997 */
1998void wakeup_flusher_threads(enum wb_reason reason)
1999{
2000        struct backing_dev_info *bdi;
2001
2002        /*
2003         * If we are expecting writeback progress we must submit plugged IO.
2004         */
2005        if (blk_needs_flush_plug(current))
2006                blk_schedule_flush_plug(current);
2007
2008        rcu_read_lock();
2009        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2010                __wakeup_flusher_threads_bdi(bdi, reason);
2011        rcu_read_unlock();
2012}
2013
2014/*
2015 * Wake up bdi's periodically to make sure dirtytime inodes gets
2016 * written back periodically.  We deliberately do *not* check the
2017 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2018 * kernel to be constantly waking up once there are any dirtytime
2019 * inodes on the system.  So instead we define a separate delayed work
2020 * function which gets called much more rarely.  (By default, only
2021 * once every 12 hours.)
2022 *
2023 * If there is any other write activity going on in the file system,
2024 * this function won't be necessary.  But if the only thing that has
2025 * happened on the file system is a dirtytime inode caused by an atime
2026 * update, we need this infrastructure below to make sure that inode
2027 * eventually gets pushed out to disk.
2028 */
2029static void wakeup_dirtytime_writeback(struct work_struct *w);
2030static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2031
2032static void wakeup_dirtytime_writeback(struct work_struct *w)
2033{
2034        struct backing_dev_info *bdi;
2035
2036        rcu_read_lock();
2037        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2038                struct bdi_writeback *wb;
2039
2040                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2041                        if (!list_empty(&wb->b_dirty_time))
2042                                wb_wakeup(wb);
2043        }
2044        rcu_read_unlock();
2045        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2046}
2047
2048static int __init start_dirtytime_writeback(void)
2049{
2050        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2051        return 0;
2052}
2053__initcall(start_dirtytime_writeback);
2054
2055int dirtytime_interval_handler(struct ctl_table *table, int write,
2056                               void __user *buffer, size_t *lenp, loff_t *ppos)
2057{
2058        int ret;
2059
2060        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2061        if (ret == 0 && write)
2062                mod_delayed_work(system_wq, &dirtytime_work, 0);
2063        return ret;
2064}
2065
2066static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2067{
2068        if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2069                struct dentry *dentry;
2070                const char *name = "?";
2071
2072                dentry = d_find_alias(inode);
2073                if (dentry) {
2074                        spin_lock(&dentry->d_lock);
2075                        name = (const char *) dentry->d_name.name;
2076                }
2077                printk(KERN_DEBUG
2078                       "%s(%d): dirtied inode %lu (%s) on %s\n",
2079                       current->comm, task_pid_nr(current), inode->i_ino,
2080                       name, inode->i_sb->s_id);
2081                if (dentry) {
2082                        spin_unlock(&dentry->d_lock);
2083                        dput(dentry);
2084                }
2085        }
2086}
2087
2088/**
2089 * __mark_inode_dirty - internal function
2090 *
2091 * @inode: inode to mark
2092 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2093 *
2094 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2095 * mark_inode_dirty_sync.
2096 *
2097 * Put the inode on the super block's dirty list.
2098 *
2099 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2100 * dirty list only if it is hashed or if it refers to a blockdev.
2101 * If it was not hashed, it will never be added to the dirty list
2102 * even if it is later hashed, as it will have been marked dirty already.
2103 *
2104 * In short, make sure you hash any inodes _before_ you start marking
2105 * them dirty.
2106 *
2107 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2108 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2109 * the kernel-internal blockdev inode represents the dirtying time of the
2110 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2111 * page->mapping->host, so the page-dirtying time is recorded in the internal
2112 * blockdev inode.
2113 */
2114void __mark_inode_dirty(struct inode *inode, int flags)
2115{
2116        struct super_block *sb = inode->i_sb;
2117        int dirtytime;
2118
2119        trace_writeback_mark_inode_dirty(inode, flags);
2120
2121        /*
2122         * Don't do this for I_DIRTY_PAGES - that doesn't actually
2123         * dirty the inode itself
2124         */
2125        if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2126                trace_writeback_dirty_inode_start(inode, flags);
2127
2128                if (sb->s_op->dirty_inode)
2129                        sb->s_op->dirty_inode(inode, flags);
2130
2131                trace_writeback_dirty_inode(inode, flags);
2132        }
2133        if (flags & I_DIRTY_INODE)
2134                flags &= ~I_DIRTY_TIME;
2135        dirtytime = flags & I_DIRTY_TIME;
2136
2137        /*
2138         * Paired with smp_mb() in __writeback_single_inode() for the
2139         * following lockless i_state test.  See there for details.
2140         */
2141        smp_mb();
2142
2143        if (((inode->i_state & flags) == flags) ||
2144            (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2145                return;
2146
2147        if (unlikely(block_dump))
2148                block_dump___mark_inode_dirty(inode);
2149
2150        spin_lock(&inode->i_lock);
2151        if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2152                goto out_unlock_inode;
2153        if ((inode->i_state & flags) != flags) {
2154                const int was_dirty = inode->i_state & I_DIRTY;
2155
2156                inode_attach_wb(inode, NULL);
2157
2158                if (flags & I_DIRTY_INODE)
2159                        inode->i_state &= ~I_DIRTY_TIME;
2160                inode->i_state |= flags;
2161
2162                /*
2163                 * If the inode is being synced, just update its dirty state.
2164                 * The unlocker will place the inode on the appropriate
2165                 * superblock list, based upon its state.
2166                 */
2167                if (inode->i_state & I_SYNC)
2168                        goto out_unlock_inode;
2169
2170                /*
2171                 * Only add valid (hashed) inodes to the superblock's
2172                 * dirty list.  Add blockdev inodes as well.
2173                 */
2174                if (!S_ISBLK(inode->i_mode)) {
2175                        if (inode_unhashed(inode))
2176                                goto out_unlock_inode;
2177                }
2178                if (inode->i_state & I_FREEING)
2179                        goto out_unlock_inode;
2180
2181                /*
2182                 * If the inode was already on b_dirty/b_io/b_more_io, don't
2183                 * reposition it (that would break b_dirty time-ordering).
2184                 */
2185                if (!was_dirty) {
2186                        struct bdi_writeback *wb;
2187                        struct list_head *dirty_list;
2188                        bool wakeup_bdi = false;
2189
2190                        wb = locked_inode_to_wb_and_lock_list(inode);
2191
2192                        WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2193                             !test_bit(WB_registered, &wb->state),
2194                             "bdi-%s not registered\n", wb->bdi->name);
2195
2196                        inode->dirtied_when = jiffies;
2197                        if (dirtytime)
2198                                inode->dirtied_time_when = jiffies;
2199
2200                        if (inode->i_state & I_DIRTY)
2201                                dirty_list = &wb->b_dirty;
2202                        else
2203                                dirty_list = &wb->b_dirty_time;
2204
2205                        wakeup_bdi = inode_io_list_move_locked(inode, wb,
2206                                                               dirty_list);
2207
2208                        spin_unlock(&wb->list_lock);
2209                        trace_writeback_dirty_inode_enqueue(inode);
2210
2211                        /*
2212                         * If this is the first dirty inode for this bdi,
2213                         * we have to wake-up the corresponding bdi thread
2214                         * to make sure background write-back happens
2215                         * later.
2216                         */
2217                        if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2218                                wb_wakeup_delayed(wb);
2219                        return;
2220                }
2221        }
2222out_unlock_inode:
2223        spin_unlock(&inode->i_lock);
2224}
2225EXPORT_SYMBOL(__mark_inode_dirty);
2226
2227/*
2228 * The @s_sync_lock is used to serialise concurrent sync operations
2229 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2230 * Concurrent callers will block on the s_sync_lock rather than doing contending
2231 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2232 * has been issued up to the time this function is enter is guaranteed to be
2233 * completed by the time we have gained the lock and waited for all IO that is
2234 * in progress regardless of the order callers are granted the lock.
2235 */
2236static void wait_sb_inodes(struct super_block *sb)
2237{
2238        LIST_HEAD(sync_list);
2239
2240        /*
2241         * We need to be protected against the filesystem going from
2242         * r/o to r/w or vice versa.
2243         */
2244        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2245
2246        mutex_lock(&sb->s_sync_lock);
2247
2248        /*
2249         * Splice the writeback list onto a temporary list to avoid waiting on
2250         * inodes that have started writeback after this point.
2251         *
2252         * Use rcu_read_lock() to keep the inodes around until we have a
2253         * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2254         * the local list because inodes can be dropped from either by writeback
2255         * completion.
2256         */
2257        rcu_read_lock();
2258        spin_lock_irq(&sb->s_inode_wblist_lock);
2259        list_splice_init(&sb->s_inodes_wb, &sync_list);
2260
2261        /*
2262         * Data integrity sync. Must wait for all pages under writeback, because
2263         * there may have been pages dirtied before our sync call, but which had
2264         * writeout started before we write it out.  In which case, the inode
2265         * may not be on the dirty list, but we still have to wait for that
2266         * writeout.
2267         */
2268        while (!list_empty(&sync_list)) {
2269                struct inode *inode = list_first_entry(&sync_list, struct inode,
2270                                                       i_wb_list);
2271                struct address_space *mapping = inode->i_mapping;
2272
2273                /*
2274                 * Move each inode back to the wb list before we drop the lock
2275                 * to preserve consistency between i_wb_list and the mapping
2276                 * writeback tag. Writeback completion is responsible to remove
2277                 * the inode from either list once the writeback tag is cleared.
2278                 */
2279                list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2280
2281                /*
2282                 * The mapping can appear untagged while still on-list since we
2283                 * do not have the mapping lock. Skip it here, wb completion
2284                 * will remove it.
2285                 */
2286                if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2287                        continue;
2288
2289                spin_unlock_irq(&sb->s_inode_wblist_lock);
2290
2291                spin_lock(&inode->i_lock);
2292                if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2293                        spin_unlock(&inode->i_lock);
2294
2295                        spin_lock_irq(&sb->s_inode_wblist_lock);
2296                        continue;
2297                }
2298                __iget(inode);
2299                spin_unlock(&inode->i_lock);
2300                rcu_read_unlock();
2301
2302                /*
2303                 * We keep the error status of individual mapping so that
2304                 * applications can catch the writeback error using fsync(2).
2305                 * See filemap_fdatawait_keep_errors() for details.
2306                 */
2307                filemap_fdatawait_keep_errors(mapping);
2308
2309                cond_resched();
2310
2311                iput(inode);
2312
2313                rcu_read_lock();
2314                spin_lock_irq(&sb->s_inode_wblist_lock);
2315        }
2316        spin_unlock_irq(&sb->s_inode_wblist_lock);
2317        rcu_read_unlock();
2318        mutex_unlock(&sb->s_sync_lock);
2319}
2320
2321static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2322                                     enum wb_reason reason, bool skip_if_busy)
2323{
2324        DEFINE_WB_COMPLETION_ONSTACK(done);
2325        struct wb_writeback_work work = {
2326                .sb                     = sb,
2327                .sync_mode              = WB_SYNC_NONE,
2328                .tagged_writepages      = 1,
2329                .done                   = &done,
2330                .nr_pages               = nr,
2331                .reason                 = reason,
2332        };
2333        struct backing_dev_info *bdi = sb->s_bdi;
2334
2335        if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2336                return;
2337        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2338
2339        bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2340        wb_wait_for_completion(bdi, &done);
2341}
2342
2343/**
2344 * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2345 * @sb: the superblock
2346 * @nr: the number of pages to write
2347 * @reason: reason why some writeback work initiated
2348 *
2349 * Start writeback on some inodes on this super_block. No guarantees are made
2350 * on how many (if any) will be written, and this function does not wait
2351 * for IO completion of submitted IO.
2352 */
2353void writeback_inodes_sb_nr(struct super_block *sb,
2354                            unsigned long nr,
2355                            enum wb_reason reason)
2356{
2357        __writeback_inodes_sb_nr(sb, nr, reason, false);
2358}
2359EXPORT_SYMBOL(writeback_inodes_sb_nr);
2360
2361/**
2362 * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2363 * @sb: the superblock
2364 * @reason: reason why some writeback work was initiated
2365 *
2366 * Start writeback on some inodes on this super_block. No guarantees are made
2367 * on how many (if any) will be written, and this function does not wait
2368 * for IO completion of submitted IO.
2369 */
2370void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2371{
2372        return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2373}
2374EXPORT_SYMBOL(writeback_inodes_sb);
2375
2376/**
2377 * try_to_writeback_inodes_sb - try to start writeback if none underway
2378 * @sb: the superblock
2379 * @reason: reason why some writeback work was initiated
2380 *
2381 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2382 */
2383void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2384{
2385        if (!down_read_trylock(&sb->s_umount))
2386                return;
2387
2388        __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2389        up_read(&sb->s_umount);
2390}
2391EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2392
2393/**
2394 * sync_inodes_sb       -       sync sb inode pages
2395 * @sb: the superblock
2396 *
2397 * This function writes and waits on any dirty inode belonging to this
2398 * super_block.
2399 */
2400void sync_inodes_sb(struct super_block *sb)
2401{
2402        DEFINE_WB_COMPLETION_ONSTACK(done);
2403        struct wb_writeback_work work = {
2404                .sb             = sb,
2405                .sync_mode      = WB_SYNC_ALL,
2406                .nr_pages       = LONG_MAX,
2407                .range_cyclic   = 0,
2408                .done           = &done,
2409                .reason         = WB_REASON_SYNC,
2410                .for_sync       = 1,
2411        };
2412        struct backing_dev_info *bdi = sb->s_bdi;
2413
2414        /*
2415         * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2416         * inodes under writeback and I_DIRTY_TIME inodes ignored by
2417         * bdi_has_dirty() need to be written out too.
2418         */
2419        if (bdi == &noop_backing_dev_info)
2420                return;
2421        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2422
2423        bdi_split_work_to_wbs(bdi, &work, false);
2424        wb_wait_for_completion(bdi, &done);
2425
2426        wait_sb_inodes(sb);
2427}
2428EXPORT_SYMBOL(sync_inodes_sb);
2429
2430/**
2431 * write_inode_now      -       write an inode to disk
2432 * @inode: inode to write to disk
2433 * @sync: whether the write should be synchronous or not
2434 *
2435 * This function commits an inode to disk immediately if it is dirty. This is
2436 * primarily needed by knfsd.
2437 *
2438 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2439 */
2440int write_inode_now(struct inode *inode, int sync)
2441{
2442        struct writeback_control wbc = {
2443                .nr_to_write = LONG_MAX,
2444                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2445                .range_start = 0,
2446                .range_end = LLONG_MAX,
2447        };
2448
2449        if (!mapping_cap_writeback_dirty(inode->i_mapping))
2450                wbc.nr_to_write = 0;
2451
2452        might_sleep();
2453        return writeback_single_inode(inode, &wbc);
2454}
2455EXPORT_SYMBOL(write_inode_now);
2456
2457/**
2458 * sync_inode - write an inode and its pages to disk.
2459 * @inode: the inode to sync
2460 * @wbc: controls the writeback mode
2461 *
2462 * sync_inode() will write an inode and its pages to disk.  It will also
2463 * correctly update the inode on its superblock's dirty inode lists and will
2464 * update inode->i_state.
2465 *
2466 * The caller must have a ref on the inode.
2467 */
2468int sync_inode(struct inode *inode, struct writeback_control *wbc)
2469{
2470        return writeback_single_inode(inode, wbc);
2471}
2472EXPORT_SYMBOL(sync_inode);
2473
2474/**
2475 * sync_inode_metadata - write an inode to disk
2476 * @inode: the inode to sync
2477 * @wait: wait for I/O to complete.
2478 *
2479 * Write an inode to disk and adjust its dirty state after completion.
2480 *
2481 * Note: only writes the actual inode, no associated data or other metadata.
2482 */
2483int sync_inode_metadata(struct inode *inode, int wait)
2484{
2485        struct writeback_control wbc = {
2486                .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2487                .nr_to_write = 0, /* metadata-only */
2488        };
2489
2490        return sync_inode(inode, &wbc);
2491}
2492EXPORT_SYMBOL(sync_inode_metadata);
2493