linux/fs/hugetlbfs/inode.c
<<
>>
Prefs
   1/*
   2 * hugetlbpage-backed filesystem.  Based on ramfs.
   3 *
   4 * Nadia Yvette Chambers, 2002
   5 *
   6 * Copyright (C) 2002 Linus Torvalds.
   7 * License: GPL
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/thread_info.h>
  13#include <asm/current.h>
  14#include <linux/sched/signal.h>         /* remove ASAP */
  15#include <linux/falloc.h>
  16#include <linux/fs.h>
  17#include <linux/mount.h>
  18#include <linux/file.h>
  19#include <linux/kernel.h>
  20#include <linux/writeback.h>
  21#include <linux/pagemap.h>
  22#include <linux/highmem.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/capability.h>
  26#include <linux/ctype.h>
  27#include <linux/backing-dev.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagevec.h>
  30#include <linux/parser.h>
  31#include <linux/mman.h>
  32#include <linux/slab.h>
  33#include <linux/dnotify.h>
  34#include <linux/statfs.h>
  35#include <linux/security.h>
  36#include <linux/magic.h>
  37#include <linux/migrate.h>
  38#include <linux/uio.h>
  39
  40#include <linux/uaccess.h>
  41
  42static const struct super_operations hugetlbfs_ops;
  43static const struct address_space_operations hugetlbfs_aops;
  44const struct file_operations hugetlbfs_file_operations;
  45static const struct inode_operations hugetlbfs_dir_inode_operations;
  46static const struct inode_operations hugetlbfs_inode_operations;
  47
  48struct hugetlbfs_config {
  49        struct hstate           *hstate;
  50        long                    max_hpages;
  51        long                    nr_inodes;
  52        long                    min_hpages;
  53        kuid_t                  uid;
  54        kgid_t                  gid;
  55        umode_t                 mode;
  56};
  57
  58int sysctl_hugetlb_shm_group;
  59
  60enum {
  61        Opt_size, Opt_nr_inodes,
  62        Opt_mode, Opt_uid, Opt_gid,
  63        Opt_pagesize, Opt_min_size,
  64        Opt_err,
  65};
  66
  67static const match_table_t tokens = {
  68        {Opt_size,      "size=%s"},
  69        {Opt_nr_inodes, "nr_inodes=%s"},
  70        {Opt_mode,      "mode=%o"},
  71        {Opt_uid,       "uid=%u"},
  72        {Opt_gid,       "gid=%u"},
  73        {Opt_pagesize,  "pagesize=%s"},
  74        {Opt_min_size,  "min_size=%s"},
  75        {Opt_err,       NULL},
  76};
  77
  78#ifdef CONFIG_NUMA
  79static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  80                                        struct inode *inode, pgoff_t index)
  81{
  82        vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
  83                                                        index);
  84}
  85
  86static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  87{
  88        mpol_cond_put(vma->vm_policy);
  89}
  90#else
  91static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  92                                        struct inode *inode, pgoff_t index)
  93{
  94}
  95
  96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  97{
  98}
  99#endif
 100
 101static void huge_pagevec_release(struct pagevec *pvec)
 102{
 103        int i;
 104
 105        for (i = 0; i < pagevec_count(pvec); ++i)
 106                put_page(pvec->pages[i]);
 107
 108        pagevec_reinit(pvec);
 109}
 110
 111/*
 112 * Mask used when checking the page offset value passed in via system
 113 * calls.  This value will be converted to a loff_t which is signed.
 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 115 * value.  The extra bit (- 1 in the shift value) is to take the sign
 116 * bit into account.
 117 */
 118#define PGOFF_LOFFT_MAX \
 119        (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 120
 121static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 122{
 123        struct inode *inode = file_inode(file);
 124        loff_t len, vma_len;
 125        int ret;
 126        struct hstate *h = hstate_file(file);
 127
 128        /*
 129         * vma address alignment (but not the pgoff alignment) has
 130         * already been checked by prepare_hugepage_range.  If you add
 131         * any error returns here, do so after setting VM_HUGETLB, so
 132         * is_vm_hugetlb_page tests below unmap_region go the right
 133         * way when do_mmap_pgoff unwinds (may be important on powerpc
 134         * and ia64).
 135         */
 136        vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 137        vma->vm_ops = &hugetlb_vm_ops;
 138
 139        /*
 140         * page based offset in vm_pgoff could be sufficiently large to
 141         * overflow a loff_t when converted to byte offset.  This can
 142         * only happen on architectures where sizeof(loff_t) ==
 143         * sizeof(unsigned long).  So, only check in those instances.
 144         */
 145        if (sizeof(unsigned long) == sizeof(loff_t)) {
 146                if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 147                        return -EINVAL;
 148        }
 149
 150        /* must be huge page aligned */
 151        if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 152                return -EINVAL;
 153
 154        vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 155        len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 156        /* check for overflow */
 157        if (len < vma_len)
 158                return -EINVAL;
 159
 160        inode_lock(inode);
 161        file_accessed(file);
 162
 163        ret = -ENOMEM;
 164        if (hugetlb_reserve_pages(inode,
 165                                vma->vm_pgoff >> huge_page_order(h),
 166                                len >> huge_page_shift(h), vma,
 167                                vma->vm_flags))
 168                goto out;
 169
 170        ret = 0;
 171        if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 172                i_size_write(inode, len);
 173out:
 174        inode_unlock(inode);
 175
 176        return ret;
 177}
 178
 179/*
 180 * Called under down_write(mmap_sem).
 181 */
 182
 183#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 184static unsigned long
 185hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 186                unsigned long len, unsigned long pgoff, unsigned long flags)
 187{
 188        struct mm_struct *mm = current->mm;
 189        struct vm_area_struct *vma;
 190        struct hstate *h = hstate_file(file);
 191        struct vm_unmapped_area_info info;
 192
 193        if (len & ~huge_page_mask(h))
 194                return -EINVAL;
 195        if (len > TASK_SIZE)
 196                return -ENOMEM;
 197
 198        if (flags & MAP_FIXED) {
 199                if (prepare_hugepage_range(file, addr, len))
 200                        return -EINVAL;
 201                return addr;
 202        }
 203
 204        if (addr) {
 205                addr = ALIGN(addr, huge_page_size(h));
 206                vma = find_vma(mm, addr);
 207                if (TASK_SIZE - len >= addr &&
 208                    (!vma || addr + len <= vm_start_gap(vma)))
 209                        return addr;
 210        }
 211
 212        info.flags = 0;
 213        info.length = len;
 214        info.low_limit = TASK_UNMAPPED_BASE;
 215        info.high_limit = TASK_SIZE;
 216        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 217        info.align_offset = 0;
 218        return vm_unmapped_area(&info);
 219}
 220#endif
 221
 222static size_t
 223hugetlbfs_read_actor(struct page *page, unsigned long offset,
 224                        struct iov_iter *to, unsigned long size)
 225{
 226        size_t copied = 0;
 227        int i, chunksize;
 228
 229        /* Find which 4k chunk and offset with in that chunk */
 230        i = offset >> PAGE_SHIFT;
 231        offset = offset & ~PAGE_MASK;
 232
 233        while (size) {
 234                size_t n;
 235                chunksize = PAGE_SIZE;
 236                if (offset)
 237                        chunksize -= offset;
 238                if (chunksize > size)
 239                        chunksize = size;
 240                n = copy_page_to_iter(&page[i], offset, chunksize, to);
 241                copied += n;
 242                if (n != chunksize)
 243                        return copied;
 244                offset = 0;
 245                size -= chunksize;
 246                i++;
 247        }
 248        return copied;
 249}
 250
 251/*
 252 * Support for read() - Find the page attached to f_mapping and copy out the
 253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
 254 * since it has PAGE_SIZE assumptions.
 255 */
 256static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 257{
 258        struct file *file = iocb->ki_filp;
 259        struct hstate *h = hstate_file(file);
 260        struct address_space *mapping = file->f_mapping;
 261        struct inode *inode = mapping->host;
 262        unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 263        unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 264        unsigned long end_index;
 265        loff_t isize;
 266        ssize_t retval = 0;
 267
 268        while (iov_iter_count(to)) {
 269                struct page *page;
 270                size_t nr, copied;
 271
 272                /* nr is the maximum number of bytes to copy from this page */
 273                nr = huge_page_size(h);
 274                isize = i_size_read(inode);
 275                if (!isize)
 276                        break;
 277                end_index = (isize - 1) >> huge_page_shift(h);
 278                if (index > end_index)
 279                        break;
 280                if (index == end_index) {
 281                        nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 282                        if (nr <= offset)
 283                                break;
 284                }
 285                nr = nr - offset;
 286
 287                /* Find the page */
 288                page = find_lock_page(mapping, index);
 289                if (unlikely(page == NULL)) {
 290                        /*
 291                         * We have a HOLE, zero out the user-buffer for the
 292                         * length of the hole or request.
 293                         */
 294                        copied = iov_iter_zero(nr, to);
 295                } else {
 296                        unlock_page(page);
 297
 298                        /*
 299                         * We have the page, copy it to user space buffer.
 300                         */
 301                        copied = hugetlbfs_read_actor(page, offset, to, nr);
 302                        put_page(page);
 303                }
 304                offset += copied;
 305                retval += copied;
 306                if (copied != nr && iov_iter_count(to)) {
 307                        if (!retval)
 308                                retval = -EFAULT;
 309                        break;
 310                }
 311                index += offset >> huge_page_shift(h);
 312                offset &= ~huge_page_mask(h);
 313        }
 314        iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 315        return retval;
 316}
 317
 318static int hugetlbfs_write_begin(struct file *file,
 319                        struct address_space *mapping,
 320                        loff_t pos, unsigned len, unsigned flags,
 321                        struct page **pagep, void **fsdata)
 322{
 323        return -EINVAL;
 324}
 325
 326static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 327                        loff_t pos, unsigned len, unsigned copied,
 328                        struct page *page, void *fsdata)
 329{
 330        BUG();
 331        return -EINVAL;
 332}
 333
 334static void remove_huge_page(struct page *page)
 335{
 336        ClearPageDirty(page);
 337        ClearPageUptodate(page);
 338        delete_from_page_cache(page);
 339}
 340
 341static void
 342hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
 343{
 344        struct vm_area_struct *vma;
 345
 346        /*
 347         * end == 0 indicates that the entire range after
 348         * start should be unmapped.
 349         */
 350        vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
 351                unsigned long v_offset;
 352                unsigned long v_end;
 353
 354                /*
 355                 * Can the expression below overflow on 32-bit arches?
 356                 * No, because the interval tree returns us only those vmas
 357                 * which overlap the truncated area starting at pgoff,
 358                 * and no vma on a 32-bit arch can span beyond the 4GB.
 359                 */
 360                if (vma->vm_pgoff < start)
 361                        v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 362                else
 363                        v_offset = 0;
 364
 365                if (!end)
 366                        v_end = vma->vm_end;
 367                else {
 368                        v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
 369                                                        + vma->vm_start;
 370                        if (v_end > vma->vm_end)
 371                                v_end = vma->vm_end;
 372                }
 373
 374                unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
 375                                                                        NULL);
 376        }
 377}
 378
 379/*
 380 * remove_inode_hugepages handles two distinct cases: truncation and hole
 381 * punch.  There are subtle differences in operation for each case.
 382 *
 383 * truncation is indicated by end of range being LLONG_MAX
 384 *      In this case, we first scan the range and release found pages.
 385 *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
 386 *      maps and global counts.  Page faults can not race with truncation
 387 *      in this routine.  hugetlb_no_page() prevents page faults in the
 388 *      truncated range.  It checks i_size before allocation, and again after
 389 *      with the page table lock for the page held.  The same lock must be
 390 *      acquired to unmap a page.
 391 * hole punch is indicated if end is not LLONG_MAX
 392 *      In the hole punch case we scan the range and release found pages.
 393 *      Only when releasing a page is the associated region/reserv map
 394 *      deleted.  The region/reserv map for ranges without associated
 395 *      pages are not modified.  Page faults can race with hole punch.
 396 *      This is indicated if we find a mapped page.
 397 * Note: If the passed end of range value is beyond the end of file, but
 398 * not LLONG_MAX this routine still performs a hole punch operation.
 399 */
 400static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 401                                   loff_t lend)
 402{
 403        struct hstate *h = hstate_inode(inode);
 404        struct address_space *mapping = &inode->i_data;
 405        const pgoff_t start = lstart >> huge_page_shift(h);
 406        const pgoff_t end = lend >> huge_page_shift(h);
 407        struct vm_area_struct pseudo_vma;
 408        struct pagevec pvec;
 409        pgoff_t next, index;
 410        int i, freed = 0;
 411        bool truncate_op = (lend == LLONG_MAX);
 412
 413        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 414        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 415        pagevec_init(&pvec);
 416        next = start;
 417        while (next < end) {
 418                /*
 419                 * When no more pages are found, we are done.
 420                 */
 421                if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
 422                        break;
 423
 424                for (i = 0; i < pagevec_count(&pvec); ++i) {
 425                        struct page *page = pvec.pages[i];
 426                        u32 hash;
 427
 428                        index = page->index;
 429                        hash = hugetlb_fault_mutex_hash(h, current->mm,
 430                                                        &pseudo_vma,
 431                                                        mapping, index, 0);
 432                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
 433
 434                        /*
 435                         * If page is mapped, it was faulted in after being
 436                         * unmapped in caller.  Unmap (again) now after taking
 437                         * the fault mutex.  The mutex will prevent faults
 438                         * until we finish removing the page.
 439                         *
 440                         * This race can only happen in the hole punch case.
 441                         * Getting here in a truncate operation is a bug.
 442                         */
 443                        if (unlikely(page_mapped(page))) {
 444                                BUG_ON(truncate_op);
 445
 446                                i_mmap_lock_write(mapping);
 447                                hugetlb_vmdelete_list(&mapping->i_mmap,
 448                                        index * pages_per_huge_page(h),
 449                                        (index + 1) * pages_per_huge_page(h));
 450                                i_mmap_unlock_write(mapping);
 451                        }
 452
 453                        lock_page(page);
 454                        /*
 455                         * We must free the huge page and remove from page
 456                         * cache (remove_huge_page) BEFORE removing the
 457                         * region/reserve map (hugetlb_unreserve_pages).  In
 458                         * rare out of memory conditions, removal of the
 459                         * region/reserve map could fail. Correspondingly,
 460                         * the subpool and global reserve usage count can need
 461                         * to be adjusted.
 462                         */
 463                        VM_BUG_ON(PagePrivate(page));
 464                        remove_huge_page(page);
 465                        freed++;
 466                        if (!truncate_op) {
 467                                if (unlikely(hugetlb_unreserve_pages(inode,
 468                                                        index, index + 1, 1)))
 469                                        hugetlb_fix_reserve_counts(inode);
 470                        }
 471
 472                        unlock_page(page);
 473                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 474                }
 475                huge_pagevec_release(&pvec);
 476                cond_resched();
 477        }
 478
 479        if (truncate_op)
 480                (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 481}
 482
 483static void hugetlbfs_evict_inode(struct inode *inode)
 484{
 485        struct resv_map *resv_map;
 486
 487        remove_inode_hugepages(inode, 0, LLONG_MAX);
 488        resv_map = (struct resv_map *)inode->i_mapping->private_data;
 489        /* root inode doesn't have the resv_map, so we should check it */
 490        if (resv_map)
 491                resv_map_release(&resv_map->refs);
 492        clear_inode(inode);
 493}
 494
 495static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 496{
 497        pgoff_t pgoff;
 498        struct address_space *mapping = inode->i_mapping;
 499        struct hstate *h = hstate_inode(inode);
 500
 501        BUG_ON(offset & ~huge_page_mask(h));
 502        pgoff = offset >> PAGE_SHIFT;
 503
 504        i_size_write(inode, offset);
 505        i_mmap_lock_write(mapping);
 506        if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 507                hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
 508        i_mmap_unlock_write(mapping);
 509        remove_inode_hugepages(inode, offset, LLONG_MAX);
 510        return 0;
 511}
 512
 513static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 514{
 515        struct hstate *h = hstate_inode(inode);
 516        loff_t hpage_size = huge_page_size(h);
 517        loff_t hole_start, hole_end;
 518
 519        /*
 520         * For hole punch round up the beginning offset of the hole and
 521         * round down the end.
 522         */
 523        hole_start = round_up(offset, hpage_size);
 524        hole_end = round_down(offset + len, hpage_size);
 525
 526        if (hole_end > hole_start) {
 527                struct address_space *mapping = inode->i_mapping;
 528                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 529
 530                inode_lock(inode);
 531
 532                /* protected by i_mutex */
 533                if (info->seals & F_SEAL_WRITE) {
 534                        inode_unlock(inode);
 535                        return -EPERM;
 536                }
 537
 538                i_mmap_lock_write(mapping);
 539                if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 540                        hugetlb_vmdelete_list(&mapping->i_mmap,
 541                                                hole_start >> PAGE_SHIFT,
 542                                                hole_end  >> PAGE_SHIFT);
 543                i_mmap_unlock_write(mapping);
 544                remove_inode_hugepages(inode, hole_start, hole_end);
 545                inode_unlock(inode);
 546        }
 547
 548        return 0;
 549}
 550
 551static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 552                                loff_t len)
 553{
 554        struct inode *inode = file_inode(file);
 555        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 556        struct address_space *mapping = inode->i_mapping;
 557        struct hstate *h = hstate_inode(inode);
 558        struct vm_area_struct pseudo_vma;
 559        struct mm_struct *mm = current->mm;
 560        loff_t hpage_size = huge_page_size(h);
 561        unsigned long hpage_shift = huge_page_shift(h);
 562        pgoff_t start, index, end;
 563        int error;
 564        u32 hash;
 565
 566        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 567                return -EOPNOTSUPP;
 568
 569        if (mode & FALLOC_FL_PUNCH_HOLE)
 570                return hugetlbfs_punch_hole(inode, offset, len);
 571
 572        /*
 573         * Default preallocate case.
 574         * For this range, start is rounded down and end is rounded up
 575         * as well as being converted to page offsets.
 576         */
 577        start = offset >> hpage_shift;
 578        end = (offset + len + hpage_size - 1) >> hpage_shift;
 579
 580        inode_lock(inode);
 581
 582        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 583        error = inode_newsize_ok(inode, offset + len);
 584        if (error)
 585                goto out;
 586
 587        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 588                error = -EPERM;
 589                goto out;
 590        }
 591
 592        /*
 593         * Initialize a pseudo vma as this is required by the huge page
 594         * allocation routines.  If NUMA is configured, use page index
 595         * as input to create an allocation policy.
 596         */
 597        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 598        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 599        pseudo_vma.vm_file = file;
 600
 601        for (index = start; index < end; index++) {
 602                /*
 603                 * This is supposed to be the vaddr where the page is being
 604                 * faulted in, but we have no vaddr here.
 605                 */
 606                struct page *page;
 607                unsigned long addr;
 608                int avoid_reserve = 0;
 609
 610                cond_resched();
 611
 612                /*
 613                 * fallocate(2) manpage permits EINTR; we may have been
 614                 * interrupted because we are using up too much memory.
 615                 */
 616                if (signal_pending(current)) {
 617                        error = -EINTR;
 618                        break;
 619                }
 620
 621                /* Set numa allocation policy based on index */
 622                hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 623
 624                /* addr is the offset within the file (zero based) */
 625                addr = index * hpage_size;
 626
 627                /* mutex taken here, fault path and hole punch */
 628                hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
 629                                                index, addr);
 630                mutex_lock(&hugetlb_fault_mutex_table[hash]);
 631
 632                /* See if already present in mapping to avoid alloc/free */
 633                page = find_get_page(mapping, index);
 634                if (page) {
 635                        put_page(page);
 636                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 637                        hugetlb_drop_vma_policy(&pseudo_vma);
 638                        continue;
 639                }
 640
 641                /* Allocate page and add to page cache */
 642                page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
 643                hugetlb_drop_vma_policy(&pseudo_vma);
 644                if (IS_ERR(page)) {
 645                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 646                        error = PTR_ERR(page);
 647                        goto out;
 648                }
 649                clear_huge_page(page, addr, pages_per_huge_page(h));
 650                __SetPageUptodate(page);
 651                error = huge_add_to_page_cache(page, mapping, index);
 652                if (unlikely(error)) {
 653                        put_page(page);
 654                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 655                        goto out;
 656                }
 657
 658                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 659
 660                /*
 661                 * unlock_page because locked by add_to_page_cache()
 662                 * page_put due to reference from alloc_huge_page()
 663                 */
 664                unlock_page(page);
 665                put_page(page);
 666        }
 667
 668        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 669                i_size_write(inode, offset + len);
 670        inode->i_ctime = current_time(inode);
 671out:
 672        inode_unlock(inode);
 673        return error;
 674}
 675
 676static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
 677{
 678        struct inode *inode = d_inode(dentry);
 679        struct hstate *h = hstate_inode(inode);
 680        int error;
 681        unsigned int ia_valid = attr->ia_valid;
 682        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 683
 684        BUG_ON(!inode);
 685
 686        error = setattr_prepare(dentry, attr);
 687        if (error)
 688                return error;
 689
 690        if (ia_valid & ATTR_SIZE) {
 691                loff_t oldsize = inode->i_size;
 692                loff_t newsize = attr->ia_size;
 693
 694                if (newsize & ~huge_page_mask(h))
 695                        return -EINVAL;
 696                /* protected by i_mutex */
 697                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 698                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 699                        return -EPERM;
 700                error = hugetlb_vmtruncate(inode, newsize);
 701                if (error)
 702                        return error;
 703        }
 704
 705        setattr_copy(inode, attr);
 706        mark_inode_dirty(inode);
 707        return 0;
 708}
 709
 710static struct inode *hugetlbfs_get_root(struct super_block *sb,
 711                                        struct hugetlbfs_config *config)
 712{
 713        struct inode *inode;
 714
 715        inode = new_inode(sb);
 716        if (inode) {
 717                inode->i_ino = get_next_ino();
 718                inode->i_mode = S_IFDIR | config->mode;
 719                inode->i_uid = config->uid;
 720                inode->i_gid = config->gid;
 721                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 722                inode->i_op = &hugetlbfs_dir_inode_operations;
 723                inode->i_fop = &simple_dir_operations;
 724                /* directory inodes start off with i_nlink == 2 (for "." entry) */
 725                inc_nlink(inode);
 726                lockdep_annotate_inode_mutex_key(inode);
 727        }
 728        return inode;
 729}
 730
 731/*
 732 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 733 * be taken from reclaim -- unlike regular filesystems. This needs an
 734 * annotation because huge_pmd_share() does an allocation under hugetlb's
 735 * i_mmap_rwsem.
 736 */
 737static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 738
 739static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 740                                        struct inode *dir,
 741                                        umode_t mode, dev_t dev)
 742{
 743        struct inode *inode;
 744        struct resv_map *resv_map;
 745
 746        resv_map = resv_map_alloc();
 747        if (!resv_map)
 748                return NULL;
 749
 750        inode = new_inode(sb);
 751        if (inode) {
 752                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 753
 754                inode->i_ino = get_next_ino();
 755                inode_init_owner(inode, dir, mode);
 756                lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 757                                &hugetlbfs_i_mmap_rwsem_key);
 758                inode->i_mapping->a_ops = &hugetlbfs_aops;
 759                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 760                inode->i_mapping->private_data = resv_map;
 761                info->seals = F_SEAL_SEAL;
 762                switch (mode & S_IFMT) {
 763                default:
 764                        init_special_inode(inode, mode, dev);
 765                        break;
 766                case S_IFREG:
 767                        inode->i_op = &hugetlbfs_inode_operations;
 768                        inode->i_fop = &hugetlbfs_file_operations;
 769                        break;
 770                case S_IFDIR:
 771                        inode->i_op = &hugetlbfs_dir_inode_operations;
 772                        inode->i_fop = &simple_dir_operations;
 773
 774                        /* directory inodes start off with i_nlink == 2 (for "." entry) */
 775                        inc_nlink(inode);
 776                        break;
 777                case S_IFLNK:
 778                        inode->i_op = &page_symlink_inode_operations;
 779                        inode_nohighmem(inode);
 780                        break;
 781                }
 782                lockdep_annotate_inode_mutex_key(inode);
 783        } else
 784                kref_put(&resv_map->refs, resv_map_release);
 785
 786        return inode;
 787}
 788
 789/*
 790 * File creation. Allocate an inode, and we're done..
 791 */
 792static int hugetlbfs_mknod(struct inode *dir,
 793                        struct dentry *dentry, umode_t mode, dev_t dev)
 794{
 795        struct inode *inode;
 796        int error = -ENOSPC;
 797
 798        inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 799        if (inode) {
 800                dir->i_ctime = dir->i_mtime = current_time(dir);
 801                d_instantiate(dentry, inode);
 802                dget(dentry);   /* Extra count - pin the dentry in core */
 803                error = 0;
 804        }
 805        return error;
 806}
 807
 808static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 809{
 810        int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
 811        if (!retval)
 812                inc_nlink(dir);
 813        return retval;
 814}
 815
 816static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
 817{
 818        return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
 819}
 820
 821static int hugetlbfs_symlink(struct inode *dir,
 822                        struct dentry *dentry, const char *symname)
 823{
 824        struct inode *inode;
 825        int error = -ENOSPC;
 826
 827        inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 828        if (inode) {
 829                int l = strlen(symname)+1;
 830                error = page_symlink(inode, symname, l);
 831                if (!error) {
 832                        d_instantiate(dentry, inode);
 833                        dget(dentry);
 834                } else
 835                        iput(inode);
 836        }
 837        dir->i_ctime = dir->i_mtime = current_time(dir);
 838
 839        return error;
 840}
 841
 842/*
 843 * mark the head page dirty
 844 */
 845static int hugetlbfs_set_page_dirty(struct page *page)
 846{
 847        struct page *head = compound_head(page);
 848
 849        SetPageDirty(head);
 850        return 0;
 851}
 852
 853static int hugetlbfs_migrate_page(struct address_space *mapping,
 854                                struct page *newpage, struct page *page,
 855                                enum migrate_mode mode)
 856{
 857        int rc;
 858
 859        rc = migrate_huge_page_move_mapping(mapping, newpage, page);
 860        if (rc != MIGRATEPAGE_SUCCESS)
 861                return rc;
 862        if (mode != MIGRATE_SYNC_NO_COPY)
 863                migrate_page_copy(newpage, page);
 864        else
 865                migrate_page_states(newpage, page);
 866
 867        return MIGRATEPAGE_SUCCESS;
 868}
 869
 870static int hugetlbfs_error_remove_page(struct address_space *mapping,
 871                                struct page *page)
 872{
 873        struct inode *inode = mapping->host;
 874        pgoff_t index = page->index;
 875
 876        remove_huge_page(page);
 877        if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
 878                hugetlb_fix_reserve_counts(inode);
 879
 880        return 0;
 881}
 882
 883/*
 884 * Display the mount options in /proc/mounts.
 885 */
 886static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
 887{
 888        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
 889        struct hugepage_subpool *spool = sbinfo->spool;
 890        unsigned long hpage_size = huge_page_size(sbinfo->hstate);
 891        unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
 892        char mod;
 893
 894        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 895                seq_printf(m, ",uid=%u",
 896                           from_kuid_munged(&init_user_ns, sbinfo->uid));
 897        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 898                seq_printf(m, ",gid=%u",
 899                           from_kgid_munged(&init_user_ns, sbinfo->gid));
 900        if (sbinfo->mode != 0755)
 901                seq_printf(m, ",mode=%o", sbinfo->mode);
 902        if (sbinfo->max_inodes != -1)
 903                seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
 904
 905        hpage_size /= 1024;
 906        mod = 'K';
 907        if (hpage_size >= 1024) {
 908                hpage_size /= 1024;
 909                mod = 'M';
 910        }
 911        seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
 912        if (spool) {
 913                if (spool->max_hpages != -1)
 914                        seq_printf(m, ",size=%llu",
 915                                   (unsigned long long)spool->max_hpages << hpage_shift);
 916                if (spool->min_hpages != -1)
 917                        seq_printf(m, ",min_size=%llu",
 918                                   (unsigned long long)spool->min_hpages << hpage_shift);
 919        }
 920        return 0;
 921}
 922
 923static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 924{
 925        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 926        struct hstate *h = hstate_inode(d_inode(dentry));
 927
 928        buf->f_type = HUGETLBFS_MAGIC;
 929        buf->f_bsize = huge_page_size(h);
 930        if (sbinfo) {
 931                spin_lock(&sbinfo->stat_lock);
 932                /* If no limits set, just report 0 for max/free/used
 933                 * blocks, like simple_statfs() */
 934                if (sbinfo->spool) {
 935                        long free_pages;
 936
 937                        spin_lock(&sbinfo->spool->lock);
 938                        buf->f_blocks = sbinfo->spool->max_hpages;
 939                        free_pages = sbinfo->spool->max_hpages
 940                                - sbinfo->spool->used_hpages;
 941                        buf->f_bavail = buf->f_bfree = free_pages;
 942                        spin_unlock(&sbinfo->spool->lock);
 943                        buf->f_files = sbinfo->max_inodes;
 944                        buf->f_ffree = sbinfo->free_inodes;
 945                }
 946                spin_unlock(&sbinfo->stat_lock);
 947        }
 948        buf->f_namelen = NAME_MAX;
 949        return 0;
 950}
 951
 952static void hugetlbfs_put_super(struct super_block *sb)
 953{
 954        struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 955
 956        if (sbi) {
 957                sb->s_fs_info = NULL;
 958
 959                if (sbi->spool)
 960                        hugepage_put_subpool(sbi->spool);
 961
 962                kfree(sbi);
 963        }
 964}
 965
 966static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 967{
 968        if (sbinfo->free_inodes >= 0) {
 969                spin_lock(&sbinfo->stat_lock);
 970                if (unlikely(!sbinfo->free_inodes)) {
 971                        spin_unlock(&sbinfo->stat_lock);
 972                        return 0;
 973                }
 974                sbinfo->free_inodes--;
 975                spin_unlock(&sbinfo->stat_lock);
 976        }
 977
 978        return 1;
 979}
 980
 981static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 982{
 983        if (sbinfo->free_inodes >= 0) {
 984                spin_lock(&sbinfo->stat_lock);
 985                sbinfo->free_inodes++;
 986                spin_unlock(&sbinfo->stat_lock);
 987        }
 988}
 989
 990
 991static struct kmem_cache *hugetlbfs_inode_cachep;
 992
 993static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
 994{
 995        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
 996        struct hugetlbfs_inode_info *p;
 997
 998        if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
 999                return NULL;
1000        p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1001        if (unlikely(!p)) {
1002                hugetlbfs_inc_free_inodes(sbinfo);
1003                return NULL;
1004        }
1005
1006        /*
1007         * Any time after allocation, hugetlbfs_destroy_inode can be called
1008         * for the inode.  mpol_free_shared_policy is unconditionally called
1009         * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1010         * in case of a quick call to destroy.
1011         *
1012         * Note that the policy is initialized even if we are creating a
1013         * private inode.  This simplifies hugetlbfs_destroy_inode.
1014         */
1015        mpol_shared_policy_init(&p->policy, NULL);
1016
1017        return &p->vfs_inode;
1018}
1019
1020static void hugetlbfs_i_callback(struct rcu_head *head)
1021{
1022        struct inode *inode = container_of(head, struct inode, i_rcu);
1023        kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1024}
1025
1026static void hugetlbfs_destroy_inode(struct inode *inode)
1027{
1028        hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1029        mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1030        call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1031}
1032
1033static const struct address_space_operations hugetlbfs_aops = {
1034        .write_begin    = hugetlbfs_write_begin,
1035        .write_end      = hugetlbfs_write_end,
1036        .set_page_dirty = hugetlbfs_set_page_dirty,
1037        .migratepage    = hugetlbfs_migrate_page,
1038        .error_remove_page      = hugetlbfs_error_remove_page,
1039};
1040
1041
1042static void init_once(void *foo)
1043{
1044        struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1045
1046        inode_init_once(&ei->vfs_inode);
1047}
1048
1049const struct file_operations hugetlbfs_file_operations = {
1050        .read_iter              = hugetlbfs_read_iter,
1051        .mmap                   = hugetlbfs_file_mmap,
1052        .fsync                  = noop_fsync,
1053        .get_unmapped_area      = hugetlb_get_unmapped_area,
1054        .llseek                 = default_llseek,
1055        .fallocate              = hugetlbfs_fallocate,
1056};
1057
1058static const struct inode_operations hugetlbfs_dir_inode_operations = {
1059        .create         = hugetlbfs_create,
1060        .lookup         = simple_lookup,
1061        .link           = simple_link,
1062        .unlink         = simple_unlink,
1063        .symlink        = hugetlbfs_symlink,
1064        .mkdir          = hugetlbfs_mkdir,
1065        .rmdir          = simple_rmdir,
1066        .mknod          = hugetlbfs_mknod,
1067        .rename         = simple_rename,
1068        .setattr        = hugetlbfs_setattr,
1069};
1070
1071static const struct inode_operations hugetlbfs_inode_operations = {
1072        .setattr        = hugetlbfs_setattr,
1073};
1074
1075static const struct super_operations hugetlbfs_ops = {
1076        .alloc_inode    = hugetlbfs_alloc_inode,
1077        .destroy_inode  = hugetlbfs_destroy_inode,
1078        .evict_inode    = hugetlbfs_evict_inode,
1079        .statfs         = hugetlbfs_statfs,
1080        .put_super      = hugetlbfs_put_super,
1081        .show_options   = hugetlbfs_show_options,
1082};
1083
1084enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1085
1086/*
1087 * Convert size option passed from command line to number of huge pages
1088 * in the pool specified by hstate.  Size option could be in bytes
1089 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1090 */
1091static long
1092hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1093                         enum hugetlbfs_size_type val_type)
1094{
1095        if (val_type == NO_SIZE)
1096                return -1;
1097
1098        if (val_type == SIZE_PERCENT) {
1099                size_opt <<= huge_page_shift(h);
1100                size_opt *= h->max_huge_pages;
1101                do_div(size_opt, 100);
1102        }
1103
1104        size_opt >>= huge_page_shift(h);
1105        return size_opt;
1106}
1107
1108static int
1109hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1110{
1111        char *p, *rest;
1112        substring_t args[MAX_OPT_ARGS];
1113        int option;
1114        unsigned long long max_size_opt = 0, min_size_opt = 0;
1115        enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1116
1117        if (!options)
1118                return 0;
1119
1120        while ((p = strsep(&options, ",")) != NULL) {
1121                int token;
1122                if (!*p)
1123                        continue;
1124
1125                token = match_token(p, tokens, args);
1126                switch (token) {
1127                case Opt_uid:
1128                        if (match_int(&args[0], &option))
1129                                goto bad_val;
1130                        pconfig->uid = make_kuid(current_user_ns(), option);
1131                        if (!uid_valid(pconfig->uid))
1132                                goto bad_val;
1133                        break;
1134
1135                case Opt_gid:
1136                        if (match_int(&args[0], &option))
1137                                goto bad_val;
1138                        pconfig->gid = make_kgid(current_user_ns(), option);
1139                        if (!gid_valid(pconfig->gid))
1140                                goto bad_val;
1141                        break;
1142
1143                case Opt_mode:
1144                        if (match_octal(&args[0], &option))
1145                                goto bad_val;
1146                        pconfig->mode = option & 01777U;
1147                        break;
1148
1149                case Opt_size: {
1150                        /* memparse() will accept a K/M/G without a digit */
1151                        if (!isdigit(*args[0].from))
1152                                goto bad_val;
1153                        max_size_opt = memparse(args[0].from, &rest);
1154                        max_val_type = SIZE_STD;
1155                        if (*rest == '%')
1156                                max_val_type = SIZE_PERCENT;
1157                        break;
1158                }
1159
1160                case Opt_nr_inodes:
1161                        /* memparse() will accept a K/M/G without a digit */
1162                        if (!isdigit(*args[0].from))
1163                                goto bad_val;
1164                        pconfig->nr_inodes = memparse(args[0].from, &rest);
1165                        break;
1166
1167                case Opt_pagesize: {
1168                        unsigned long ps;
1169                        ps = memparse(args[0].from, &rest);
1170                        pconfig->hstate = size_to_hstate(ps);
1171                        if (!pconfig->hstate) {
1172                                pr_err("Unsupported page size %lu MB\n",
1173                                        ps >> 20);
1174                                return -EINVAL;
1175                        }
1176                        break;
1177                }
1178
1179                case Opt_min_size: {
1180                        /* memparse() will accept a K/M/G without a digit */
1181                        if (!isdigit(*args[0].from))
1182                                goto bad_val;
1183                        min_size_opt = memparse(args[0].from, &rest);
1184                        min_val_type = SIZE_STD;
1185                        if (*rest == '%')
1186                                min_val_type = SIZE_PERCENT;
1187                        break;
1188                }
1189
1190                default:
1191                        pr_err("Bad mount option: \"%s\"\n", p);
1192                        return -EINVAL;
1193                        break;
1194                }
1195        }
1196
1197        /*
1198         * Use huge page pool size (in hstate) to convert the size
1199         * options to number of huge pages.  If NO_SIZE, -1 is returned.
1200         */
1201        pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1202                                                max_size_opt, max_val_type);
1203        pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1204                                                min_size_opt, min_val_type);
1205
1206        /*
1207         * If max_size was specified, then min_size must be smaller
1208         */
1209        if (max_val_type > NO_SIZE &&
1210            pconfig->min_hpages > pconfig->max_hpages) {
1211                pr_err("minimum size can not be greater than maximum size\n");
1212                return -EINVAL;
1213        }
1214
1215        return 0;
1216
1217bad_val:
1218        pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1219        return -EINVAL;
1220}
1221
1222static int
1223hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1224{
1225        int ret;
1226        struct hugetlbfs_config config;
1227        struct hugetlbfs_sb_info *sbinfo;
1228
1229        config.max_hpages = -1; /* No limit on size by default */
1230        config.nr_inodes = -1; /* No limit on number of inodes by default */
1231        config.uid = current_fsuid();
1232        config.gid = current_fsgid();
1233        config.mode = 0755;
1234        config.hstate = &default_hstate;
1235        config.min_hpages = -1; /* No default minimum size */
1236        ret = hugetlbfs_parse_options(data, &config);
1237        if (ret)
1238                return ret;
1239
1240        sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1241        if (!sbinfo)
1242                return -ENOMEM;
1243        sb->s_fs_info = sbinfo;
1244        sbinfo->hstate = config.hstate;
1245        spin_lock_init(&sbinfo->stat_lock);
1246        sbinfo->max_inodes = config.nr_inodes;
1247        sbinfo->free_inodes = config.nr_inodes;
1248        sbinfo->spool = NULL;
1249        sbinfo->uid = config.uid;
1250        sbinfo->gid = config.gid;
1251        sbinfo->mode = config.mode;
1252
1253        /*
1254         * Allocate and initialize subpool if maximum or minimum size is
1255         * specified.  Any needed reservations (for minimim size) are taken
1256         * taken when the subpool is created.
1257         */
1258        if (config.max_hpages != -1 || config.min_hpages != -1) {
1259                sbinfo->spool = hugepage_new_subpool(config.hstate,
1260                                                        config.max_hpages,
1261                                                        config.min_hpages);
1262                if (!sbinfo->spool)
1263                        goto out_free;
1264        }
1265        sb->s_maxbytes = MAX_LFS_FILESIZE;
1266        sb->s_blocksize = huge_page_size(config.hstate);
1267        sb->s_blocksize_bits = huge_page_shift(config.hstate);
1268        sb->s_magic = HUGETLBFS_MAGIC;
1269        sb->s_op = &hugetlbfs_ops;
1270        sb->s_time_gran = 1;
1271        sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1272        if (!sb->s_root)
1273                goto out_free;
1274        return 0;
1275out_free:
1276        kfree(sbinfo->spool);
1277        kfree(sbinfo);
1278        return -ENOMEM;
1279}
1280
1281static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1282        int flags, const char *dev_name, void *data)
1283{
1284        return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1285}
1286
1287static struct file_system_type hugetlbfs_fs_type = {
1288        .name           = "hugetlbfs",
1289        .mount          = hugetlbfs_mount,
1290        .kill_sb        = kill_litter_super,
1291};
1292
1293static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1294
1295static int can_do_hugetlb_shm(void)
1296{
1297        kgid_t shm_group;
1298        shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1299        return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1300}
1301
1302static int get_hstate_idx(int page_size_log)
1303{
1304        struct hstate *h = hstate_sizelog(page_size_log);
1305
1306        if (!h)
1307                return -1;
1308        return h - hstates;
1309}
1310
1311static const struct dentry_operations anon_ops = {
1312        .d_dname = simple_dname
1313};
1314
1315/*
1316 * Note that size should be aligned to proper hugepage size in caller side,
1317 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1318 */
1319struct file *hugetlb_file_setup(const char *name, size_t size,
1320                                vm_flags_t acctflag, struct user_struct **user,
1321                                int creat_flags, int page_size_log)
1322{
1323        struct file *file = ERR_PTR(-ENOMEM);
1324        struct inode *inode;
1325        struct path path;
1326        struct super_block *sb;
1327        struct qstr quick_string;
1328        int hstate_idx;
1329
1330        hstate_idx = get_hstate_idx(page_size_log);
1331        if (hstate_idx < 0)
1332                return ERR_PTR(-ENODEV);
1333
1334        *user = NULL;
1335        if (!hugetlbfs_vfsmount[hstate_idx])
1336                return ERR_PTR(-ENOENT);
1337
1338        if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1339                *user = current_user();
1340                if (user_shm_lock(size, *user)) {
1341                        task_lock(current);
1342                        pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1343                                current->comm, current->pid);
1344                        task_unlock(current);
1345                } else {
1346                        *user = NULL;
1347                        return ERR_PTR(-EPERM);
1348                }
1349        }
1350
1351        sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1352        quick_string.name = name;
1353        quick_string.len = strlen(quick_string.name);
1354        quick_string.hash = 0;
1355        path.dentry = d_alloc_pseudo(sb, &quick_string);
1356        if (!path.dentry)
1357                goto out_shm_unlock;
1358
1359        d_set_d_op(path.dentry, &anon_ops);
1360        path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1361        file = ERR_PTR(-ENOSPC);
1362        inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1363        if (!inode)
1364                goto out_dentry;
1365        if (creat_flags == HUGETLB_SHMFS_INODE)
1366                inode->i_flags |= S_PRIVATE;
1367
1368        file = ERR_PTR(-ENOMEM);
1369        if (hugetlb_reserve_pages(inode, 0,
1370                        size >> huge_page_shift(hstate_inode(inode)), NULL,
1371                        acctflag))
1372                goto out_inode;
1373
1374        d_instantiate(path.dentry, inode);
1375        inode->i_size = size;
1376        clear_nlink(inode);
1377
1378        file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1379                        &hugetlbfs_file_operations);
1380        if (IS_ERR(file))
1381                goto out_dentry; /* inode is already attached */
1382
1383        return file;
1384
1385out_inode:
1386        iput(inode);
1387out_dentry:
1388        path_put(&path);
1389out_shm_unlock:
1390        if (*user) {
1391                user_shm_unlock(size, *user);
1392                *user = NULL;
1393        }
1394        return file;
1395}
1396
1397static int __init init_hugetlbfs_fs(void)
1398{
1399        struct hstate *h;
1400        int error;
1401        int i;
1402
1403        if (!hugepages_supported()) {
1404                pr_info("disabling because there are no supported hugepage sizes\n");
1405                return -ENOTSUPP;
1406        }
1407
1408        error = -ENOMEM;
1409        hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1410                                        sizeof(struct hugetlbfs_inode_info),
1411                                        0, SLAB_ACCOUNT, init_once);
1412        if (hugetlbfs_inode_cachep == NULL)
1413                goto out2;
1414
1415        error = register_filesystem(&hugetlbfs_fs_type);
1416        if (error)
1417                goto out;
1418
1419        i = 0;
1420        for_each_hstate(h) {
1421                char buf[50];
1422                unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1423
1424                snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1425                hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1426                                                        buf);
1427
1428                if (IS_ERR(hugetlbfs_vfsmount[i])) {
1429                        pr_err("Cannot mount internal hugetlbfs for "
1430                                "page size %uK", ps_kb);
1431                        error = PTR_ERR(hugetlbfs_vfsmount[i]);
1432                        hugetlbfs_vfsmount[i] = NULL;
1433                }
1434                i++;
1435        }
1436        /* Non default hstates are optional */
1437        if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1438                return 0;
1439
1440 out:
1441        kmem_cache_destroy(hugetlbfs_inode_cachep);
1442 out2:
1443        return error;
1444}
1445fs_initcall(init_hugetlbfs_fs)
1446