linux/fs/mpage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/mpage.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains functions related to preparing and submitting BIOs which contain
   8 * multiple pagecache pages.
   9 *
  10 * 15May2002    Andrew Morton
  11 *              Initial version
  12 * 27Jun2002    axboe@suse.de
  13 *              use bio_add_page() to build bio's just the right size
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/mm.h>
  19#include <linux/kdev_t.h>
  20#include <linux/gfp.h>
  21#include <linux/bio.h>
  22#include <linux/fs.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/highmem.h>
  26#include <linux/prefetch.h>
  27#include <linux/mpage.h>
  28#include <linux/mm_inline.h>
  29#include <linux/writeback.h>
  30#include <linux/backing-dev.h>
  31#include <linux/pagevec.h>
  32#include <linux/cleancache.h>
  33#include "internal.h"
  34
  35/*
  36 * I/O completion handler for multipage BIOs.
  37 *
  38 * The mpage code never puts partial pages into a BIO (except for end-of-file).
  39 * If a page does not map to a contiguous run of blocks then it simply falls
  40 * back to block_read_full_page().
  41 *
  42 * Why is this?  If a page's completion depends on a number of different BIOs
  43 * which can complete in any order (or at the same time) then determining the
  44 * status of that page is hard.  See end_buffer_async_read() for the details.
  45 * There is no point in duplicating all that complexity.
  46 */
  47static void mpage_end_io(struct bio *bio)
  48{
  49        struct bio_vec *bv;
  50        int i;
  51
  52        bio_for_each_segment_all(bv, bio, i) {
  53                struct page *page = bv->bv_page;
  54                page_endio(page, op_is_write(bio_op(bio)),
  55                                blk_status_to_errno(bio->bi_status));
  56        }
  57
  58        bio_put(bio);
  59}
  60
  61static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
  62{
  63        bio->bi_end_io = mpage_end_io;
  64        bio_set_op_attrs(bio, op, op_flags);
  65        guard_bio_eod(op, bio);
  66        submit_bio(bio);
  67        return NULL;
  68}
  69
  70static struct bio *
  71mpage_alloc(struct block_device *bdev,
  72                sector_t first_sector, int nr_vecs,
  73                gfp_t gfp_flags)
  74{
  75        struct bio *bio;
  76
  77        /* Restrict the given (page cache) mask for slab allocations */
  78        gfp_flags &= GFP_KERNEL;
  79        bio = bio_alloc(gfp_flags, nr_vecs);
  80
  81        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  82                while (!bio && (nr_vecs /= 2))
  83                        bio = bio_alloc(gfp_flags, nr_vecs);
  84        }
  85
  86        if (bio) {
  87                bio_set_dev(bio, bdev);
  88                bio->bi_iter.bi_sector = first_sector;
  89        }
  90        return bio;
  91}
  92
  93/*
  94 * support function for mpage_readpages.  The fs supplied get_block might
  95 * return an up to date buffer.  This is used to map that buffer into
  96 * the page, which allows readpage to avoid triggering a duplicate call
  97 * to get_block.
  98 *
  99 * The idea is to avoid adding buffers to pages that don't already have
 100 * them.  So when the buffer is up to date and the page size == block size,
 101 * this marks the page up to date instead of adding new buffers.
 102 */
 103static void 
 104map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
 105{
 106        struct inode *inode = page->mapping->host;
 107        struct buffer_head *page_bh, *head;
 108        int block = 0;
 109
 110        if (!page_has_buffers(page)) {
 111                /*
 112                 * don't make any buffers if there is only one buffer on
 113                 * the page and the page just needs to be set up to date
 114                 */
 115                if (inode->i_blkbits == PAGE_SHIFT &&
 116                    buffer_uptodate(bh)) {
 117                        SetPageUptodate(page);    
 118                        return;
 119                }
 120                create_empty_buffers(page, i_blocksize(inode), 0);
 121        }
 122        head = page_buffers(page);
 123        page_bh = head;
 124        do {
 125                if (block == page_block) {
 126                        page_bh->b_state = bh->b_state;
 127                        page_bh->b_bdev = bh->b_bdev;
 128                        page_bh->b_blocknr = bh->b_blocknr;
 129                        break;
 130                }
 131                page_bh = page_bh->b_this_page;
 132                block++;
 133        } while (page_bh != head);
 134}
 135
 136/*
 137 * This is the worker routine which does all the work of mapping the disk
 138 * blocks and constructs largest possible bios, submits them for IO if the
 139 * blocks are not contiguous on the disk.
 140 *
 141 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
 142 * represent the validity of its disk mapping and to decide when to do the next
 143 * get_block() call.
 144 */
 145static struct bio *
 146do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
 147                sector_t *last_block_in_bio, struct buffer_head *map_bh,
 148                unsigned long *first_logical_block, get_block_t get_block,
 149                gfp_t gfp)
 150{
 151        struct inode *inode = page->mapping->host;
 152        const unsigned blkbits = inode->i_blkbits;
 153        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 154        const unsigned blocksize = 1 << blkbits;
 155        sector_t block_in_file;
 156        sector_t last_block;
 157        sector_t last_block_in_file;
 158        sector_t blocks[MAX_BUF_PER_PAGE];
 159        unsigned page_block;
 160        unsigned first_hole = blocks_per_page;
 161        struct block_device *bdev = NULL;
 162        int length;
 163        int fully_mapped = 1;
 164        unsigned nblocks;
 165        unsigned relative_block;
 166
 167        if (page_has_buffers(page))
 168                goto confused;
 169
 170        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 171        last_block = block_in_file + nr_pages * blocks_per_page;
 172        last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
 173        if (last_block > last_block_in_file)
 174                last_block = last_block_in_file;
 175        page_block = 0;
 176
 177        /*
 178         * Map blocks using the result from the previous get_blocks call first.
 179         */
 180        nblocks = map_bh->b_size >> blkbits;
 181        if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
 182                        block_in_file < (*first_logical_block + nblocks)) {
 183                unsigned map_offset = block_in_file - *first_logical_block;
 184                unsigned last = nblocks - map_offset;
 185
 186                for (relative_block = 0; ; relative_block++) {
 187                        if (relative_block == last) {
 188                                clear_buffer_mapped(map_bh);
 189                                break;
 190                        }
 191                        if (page_block == blocks_per_page)
 192                                break;
 193                        blocks[page_block] = map_bh->b_blocknr + map_offset +
 194                                                relative_block;
 195                        page_block++;
 196                        block_in_file++;
 197                }
 198                bdev = map_bh->b_bdev;
 199        }
 200
 201        /*
 202         * Then do more get_blocks calls until we are done with this page.
 203         */
 204        map_bh->b_page = page;
 205        while (page_block < blocks_per_page) {
 206                map_bh->b_state = 0;
 207                map_bh->b_size = 0;
 208
 209                if (block_in_file < last_block) {
 210                        map_bh->b_size = (last_block-block_in_file) << blkbits;
 211                        if (get_block(inode, block_in_file, map_bh, 0))
 212                                goto confused;
 213                        *first_logical_block = block_in_file;
 214                }
 215
 216                if (!buffer_mapped(map_bh)) {
 217                        fully_mapped = 0;
 218                        if (first_hole == blocks_per_page)
 219                                first_hole = page_block;
 220                        page_block++;
 221                        block_in_file++;
 222                        continue;
 223                }
 224
 225                /* some filesystems will copy data into the page during
 226                 * the get_block call, in which case we don't want to
 227                 * read it again.  map_buffer_to_page copies the data
 228                 * we just collected from get_block into the page's buffers
 229                 * so readpage doesn't have to repeat the get_block call
 230                 */
 231                if (buffer_uptodate(map_bh)) {
 232                        map_buffer_to_page(page, map_bh, page_block);
 233                        goto confused;
 234                }
 235        
 236                if (first_hole != blocks_per_page)
 237                        goto confused;          /* hole -> non-hole */
 238
 239                /* Contiguous blocks? */
 240                if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 241                        goto confused;
 242                nblocks = map_bh->b_size >> blkbits;
 243                for (relative_block = 0; ; relative_block++) {
 244                        if (relative_block == nblocks) {
 245                                clear_buffer_mapped(map_bh);
 246                                break;
 247                        } else if (page_block == blocks_per_page)
 248                                break;
 249                        blocks[page_block] = map_bh->b_blocknr+relative_block;
 250                        page_block++;
 251                        block_in_file++;
 252                }
 253                bdev = map_bh->b_bdev;
 254        }
 255
 256        if (first_hole != blocks_per_page) {
 257                zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
 258                if (first_hole == 0) {
 259                        SetPageUptodate(page);
 260                        unlock_page(page);
 261                        goto out;
 262                }
 263        } else if (fully_mapped) {
 264                SetPageMappedToDisk(page);
 265        }
 266
 267        if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
 268            cleancache_get_page(page) == 0) {
 269                SetPageUptodate(page);
 270                goto confused;
 271        }
 272
 273        /*
 274         * This page will go to BIO.  Do we need to send this BIO off first?
 275         */
 276        if (bio && (*last_block_in_bio != blocks[0] - 1))
 277                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 278
 279alloc_new:
 280        if (bio == NULL) {
 281                if (first_hole == blocks_per_page) {
 282                        if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
 283                                                                page))
 284                                goto out;
 285                }
 286                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 287                                min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
 288                if (bio == NULL)
 289                        goto confused;
 290        }
 291
 292        length = first_hole << blkbits;
 293        if (bio_add_page(bio, page, length, 0) < length) {
 294                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 295                goto alloc_new;
 296        }
 297
 298        relative_block = block_in_file - *first_logical_block;
 299        nblocks = map_bh->b_size >> blkbits;
 300        if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
 301            (first_hole != blocks_per_page))
 302                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 303        else
 304                *last_block_in_bio = blocks[blocks_per_page - 1];
 305out:
 306        return bio;
 307
 308confused:
 309        if (bio)
 310                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 311        if (!PageUptodate(page))
 312                block_read_full_page(page, get_block);
 313        else
 314                unlock_page(page);
 315        goto out;
 316}
 317
 318/**
 319 * mpage_readpages - populate an address space with some pages & start reads against them
 320 * @mapping: the address_space
 321 * @pages: The address of a list_head which contains the target pages.  These
 322 *   pages have their ->index populated and are otherwise uninitialised.
 323 *   The page at @pages->prev has the lowest file offset, and reads should be
 324 *   issued in @pages->prev to @pages->next order.
 325 * @nr_pages: The number of pages at *@pages
 326 * @get_block: The filesystem's block mapper function.
 327 *
 328 * This function walks the pages and the blocks within each page, building and
 329 * emitting large BIOs.
 330 *
 331 * If anything unusual happens, such as:
 332 *
 333 * - encountering a page which has buffers
 334 * - encountering a page which has a non-hole after a hole
 335 * - encountering a page with non-contiguous blocks
 336 *
 337 * then this code just gives up and calls the buffer_head-based read function.
 338 * It does handle a page which has holes at the end - that is a common case:
 339 * the end-of-file on blocksize < PAGE_SIZE setups.
 340 *
 341 * BH_Boundary explanation:
 342 *
 343 * There is a problem.  The mpage read code assembles several pages, gets all
 344 * their disk mappings, and then submits them all.  That's fine, but obtaining
 345 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
 346 *
 347 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
 348 * submitted in the following order:
 349 *
 350 *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
 351 *
 352 * because the indirect block has to be read to get the mappings of blocks
 353 * 13,14,15,16.  Obviously, this impacts performance.
 354 *
 355 * So what we do it to allow the filesystem's get_block() function to set
 356 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
 357 * after this one will require I/O against a block which is probably close to
 358 * this one.  So you should push what I/O you have currently accumulated.
 359 *
 360 * This all causes the disk requests to be issued in the correct order.
 361 */
 362int
 363mpage_readpages(struct address_space *mapping, struct list_head *pages,
 364                                unsigned nr_pages, get_block_t get_block)
 365{
 366        struct bio *bio = NULL;
 367        unsigned page_idx;
 368        sector_t last_block_in_bio = 0;
 369        struct buffer_head map_bh;
 370        unsigned long first_logical_block = 0;
 371        gfp_t gfp = readahead_gfp_mask(mapping);
 372
 373        map_bh.b_state = 0;
 374        map_bh.b_size = 0;
 375        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 376                struct page *page = lru_to_page(pages);
 377
 378                prefetchw(&page->flags);
 379                list_del(&page->lru);
 380                if (!add_to_page_cache_lru(page, mapping,
 381                                        page->index,
 382                                        gfp)) {
 383                        bio = do_mpage_readpage(bio, page,
 384                                        nr_pages - page_idx,
 385                                        &last_block_in_bio, &map_bh,
 386                                        &first_logical_block,
 387                                        get_block, gfp);
 388                }
 389                put_page(page);
 390        }
 391        BUG_ON(!list_empty(pages));
 392        if (bio)
 393                mpage_bio_submit(REQ_OP_READ, 0, bio);
 394        return 0;
 395}
 396EXPORT_SYMBOL(mpage_readpages);
 397
 398/*
 399 * This isn't called much at all
 400 */
 401int mpage_readpage(struct page *page, get_block_t get_block)
 402{
 403        struct bio *bio = NULL;
 404        sector_t last_block_in_bio = 0;
 405        struct buffer_head map_bh;
 406        unsigned long first_logical_block = 0;
 407        gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 408
 409        map_bh.b_state = 0;
 410        map_bh.b_size = 0;
 411        bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
 412                        &map_bh, &first_logical_block, get_block, gfp);
 413        if (bio)
 414                mpage_bio_submit(REQ_OP_READ, 0, bio);
 415        return 0;
 416}
 417EXPORT_SYMBOL(mpage_readpage);
 418
 419/*
 420 * Writing is not so simple.
 421 *
 422 * If the page has buffers then they will be used for obtaining the disk
 423 * mapping.  We only support pages which are fully mapped-and-dirty, with a
 424 * special case for pages which are unmapped at the end: end-of-file.
 425 *
 426 * If the page has no buffers (preferred) then the page is mapped here.
 427 *
 428 * If all blocks are found to be contiguous then the page can go into the
 429 * BIO.  Otherwise fall back to the mapping's writepage().
 430 * 
 431 * FIXME: This code wants an estimate of how many pages are still to be
 432 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
 433 * just allocate full-size (16-page) BIOs.
 434 */
 435
 436struct mpage_data {
 437        struct bio *bio;
 438        sector_t last_block_in_bio;
 439        get_block_t *get_block;
 440        unsigned use_writepage;
 441};
 442
 443/*
 444 * We have our BIO, so we can now mark the buffers clean.  Make
 445 * sure to only clean buffers which we know we'll be writing.
 446 */
 447static void clean_buffers(struct page *page, unsigned first_unmapped)
 448{
 449        unsigned buffer_counter = 0;
 450        struct buffer_head *bh, *head;
 451        if (!page_has_buffers(page))
 452                return;
 453        head = page_buffers(page);
 454        bh = head;
 455
 456        do {
 457                if (buffer_counter++ == first_unmapped)
 458                        break;
 459                clear_buffer_dirty(bh);
 460                bh = bh->b_this_page;
 461        } while (bh != head);
 462
 463        /*
 464         * we cannot drop the bh if the page is not uptodate or a concurrent
 465         * readpage would fail to serialize with the bh and it would read from
 466         * disk before we reach the platter.
 467         */
 468        if (buffer_heads_over_limit && PageUptodate(page))
 469                try_to_free_buffers(page);
 470}
 471
 472/*
 473 * For situations where we want to clean all buffers attached to a page.
 474 * We don't need to calculate how many buffers are attached to the page,
 475 * we just need to specify a number larger than the maximum number of buffers.
 476 */
 477void clean_page_buffers(struct page *page)
 478{
 479        clean_buffers(page, ~0U);
 480}
 481
 482static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
 483                      void *data)
 484{
 485        struct mpage_data *mpd = data;
 486        struct bio *bio = mpd->bio;
 487        struct address_space *mapping = page->mapping;
 488        struct inode *inode = page->mapping->host;
 489        const unsigned blkbits = inode->i_blkbits;
 490        unsigned long end_index;
 491        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 492        sector_t last_block;
 493        sector_t block_in_file;
 494        sector_t blocks[MAX_BUF_PER_PAGE];
 495        unsigned page_block;
 496        unsigned first_unmapped = blocks_per_page;
 497        struct block_device *bdev = NULL;
 498        int boundary = 0;
 499        sector_t boundary_block = 0;
 500        struct block_device *boundary_bdev = NULL;
 501        int length;
 502        struct buffer_head map_bh;
 503        loff_t i_size = i_size_read(inode);
 504        int ret = 0;
 505        int op_flags = wbc_to_write_flags(wbc);
 506
 507        if (page_has_buffers(page)) {
 508                struct buffer_head *head = page_buffers(page);
 509                struct buffer_head *bh = head;
 510
 511                /* If they're all mapped and dirty, do it */
 512                page_block = 0;
 513                do {
 514                        BUG_ON(buffer_locked(bh));
 515                        if (!buffer_mapped(bh)) {
 516                                /*
 517                                 * unmapped dirty buffers are created by
 518                                 * __set_page_dirty_buffers -> mmapped data
 519                                 */
 520                                if (buffer_dirty(bh))
 521                                        goto confused;
 522                                if (first_unmapped == blocks_per_page)
 523                                        first_unmapped = page_block;
 524                                continue;
 525                        }
 526
 527                        if (first_unmapped != blocks_per_page)
 528                                goto confused;  /* hole -> non-hole */
 529
 530                        if (!buffer_dirty(bh) || !buffer_uptodate(bh))
 531                                goto confused;
 532                        if (page_block) {
 533                                if (bh->b_blocknr != blocks[page_block-1] + 1)
 534                                        goto confused;
 535                        }
 536                        blocks[page_block++] = bh->b_blocknr;
 537                        boundary = buffer_boundary(bh);
 538                        if (boundary) {
 539                                boundary_block = bh->b_blocknr;
 540                                boundary_bdev = bh->b_bdev;
 541                        }
 542                        bdev = bh->b_bdev;
 543                } while ((bh = bh->b_this_page) != head);
 544
 545                if (first_unmapped)
 546                        goto page_is_mapped;
 547
 548                /*
 549                 * Page has buffers, but they are all unmapped. The page was
 550                 * created by pagein or read over a hole which was handled by
 551                 * block_read_full_page().  If this address_space is also
 552                 * using mpage_readpages then this can rarely happen.
 553                 */
 554                goto confused;
 555        }
 556
 557        /*
 558         * The page has no buffers: map it to disk
 559         */
 560        BUG_ON(!PageUptodate(page));
 561        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 562        last_block = (i_size - 1) >> blkbits;
 563        map_bh.b_page = page;
 564        for (page_block = 0; page_block < blocks_per_page; ) {
 565
 566                map_bh.b_state = 0;
 567                map_bh.b_size = 1 << blkbits;
 568                if (mpd->get_block(inode, block_in_file, &map_bh, 1))
 569                        goto confused;
 570                if (buffer_new(&map_bh))
 571                        clean_bdev_bh_alias(&map_bh);
 572                if (buffer_boundary(&map_bh)) {
 573                        boundary_block = map_bh.b_blocknr;
 574                        boundary_bdev = map_bh.b_bdev;
 575                }
 576                if (page_block) {
 577                        if (map_bh.b_blocknr != blocks[page_block-1] + 1)
 578                                goto confused;
 579                }
 580                blocks[page_block++] = map_bh.b_blocknr;
 581                boundary = buffer_boundary(&map_bh);
 582                bdev = map_bh.b_bdev;
 583                if (block_in_file == last_block)
 584                        break;
 585                block_in_file++;
 586        }
 587        BUG_ON(page_block == 0);
 588
 589        first_unmapped = page_block;
 590
 591page_is_mapped:
 592        end_index = i_size >> PAGE_SHIFT;
 593        if (page->index >= end_index) {
 594                /*
 595                 * The page straddles i_size.  It must be zeroed out on each
 596                 * and every writepage invocation because it may be mmapped.
 597                 * "A file is mapped in multiples of the page size.  For a file
 598                 * that is not a multiple of the page size, the remaining memory
 599                 * is zeroed when mapped, and writes to that region are not
 600                 * written out to the file."
 601                 */
 602                unsigned offset = i_size & (PAGE_SIZE - 1);
 603
 604                if (page->index > end_index || !offset)
 605                        goto confused;
 606                zero_user_segment(page, offset, PAGE_SIZE);
 607        }
 608
 609        /*
 610         * This page will go to BIO.  Do we need to send this BIO off first?
 611         */
 612        if (bio && mpd->last_block_in_bio != blocks[0] - 1)
 613                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 614
 615alloc_new:
 616        if (bio == NULL) {
 617                if (first_unmapped == blocks_per_page) {
 618                        if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
 619                                                                page, wbc))
 620                                goto out;
 621                }
 622                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 623                                BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
 624                if (bio == NULL)
 625                        goto confused;
 626
 627                wbc_init_bio(wbc, bio);
 628                bio->bi_write_hint = inode->i_write_hint;
 629        }
 630
 631        /*
 632         * Must try to add the page before marking the buffer clean or
 633         * the confused fail path above (OOM) will be very confused when
 634         * it finds all bh marked clean (i.e. it will not write anything)
 635         */
 636        wbc_account_io(wbc, page, PAGE_SIZE);
 637        length = first_unmapped << blkbits;
 638        if (bio_add_page(bio, page, length, 0) < length) {
 639                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 640                goto alloc_new;
 641        }
 642
 643        clean_buffers(page, first_unmapped);
 644
 645        BUG_ON(PageWriteback(page));
 646        set_page_writeback(page);
 647        unlock_page(page);
 648        if (boundary || (first_unmapped != blocks_per_page)) {
 649                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 650                if (boundary_block) {
 651                        write_boundary_block(boundary_bdev,
 652                                        boundary_block, 1 << blkbits);
 653                }
 654        } else {
 655                mpd->last_block_in_bio = blocks[blocks_per_page - 1];
 656        }
 657        goto out;
 658
 659confused:
 660        if (bio)
 661                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 662
 663        if (mpd->use_writepage) {
 664                ret = mapping->a_ops->writepage(page, wbc);
 665        } else {
 666                ret = -EAGAIN;
 667                goto out;
 668        }
 669        /*
 670         * The caller has a ref on the inode, so *mapping is stable
 671         */
 672        mapping_set_error(mapping, ret);
 673out:
 674        mpd->bio = bio;
 675        return ret;
 676}
 677
 678/**
 679 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
 680 * @mapping: address space structure to write
 681 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 682 * @get_block: the filesystem's block mapper function.
 683 *             If this is NULL then use a_ops->writepage.  Otherwise, go
 684 *             direct-to-BIO.
 685 *
 686 * This is a library function, which implements the writepages()
 687 * address_space_operation.
 688 *
 689 * If a page is already under I/O, generic_writepages() skips it, even
 690 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 691 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 692 * and msync() need to guarantee that all the data which was dirty at the time
 693 * the call was made get new I/O started against them.  If wbc->sync_mode is
 694 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 695 * existing IO to complete.
 696 */
 697int
 698mpage_writepages(struct address_space *mapping,
 699                struct writeback_control *wbc, get_block_t get_block)
 700{
 701        struct blk_plug plug;
 702        int ret;
 703
 704        blk_start_plug(&plug);
 705
 706        if (!get_block)
 707                ret = generic_writepages(mapping, wbc);
 708        else {
 709                struct mpage_data mpd = {
 710                        .bio = NULL,
 711                        .last_block_in_bio = 0,
 712                        .get_block = get_block,
 713                        .use_writepage = 1,
 714                };
 715
 716                ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
 717                if (mpd.bio) {
 718                        int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 719                                  REQ_SYNC : 0);
 720                        mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 721                }
 722        }
 723        blk_finish_plug(&plug);
 724        return ret;
 725}
 726EXPORT_SYMBOL(mpage_writepages);
 727
 728int mpage_writepage(struct page *page, get_block_t get_block,
 729        struct writeback_control *wbc)
 730{
 731        struct mpage_data mpd = {
 732                .bio = NULL,
 733                .last_block_in_bio = 0,
 734                .get_block = get_block,
 735                .use_writepage = 0,
 736        };
 737        int ret = __mpage_writepage(page, wbc, &mpd);
 738        if (mpd.bio) {
 739                int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 740                          REQ_SYNC : 0);
 741                mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 742        }
 743        return ret;
 744}
 745EXPORT_SYMBOL(mpage_writepage);
 746