linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/uaccess.h>
  24#include <linux/proc_ns.h>
  25#include <linux/magic.h>
  26#include <linux/bootmem.h>
  27#include <linux/task_work.h>
  28#include <linux/sched/task.h>
  29
  30#include "pnode.h"
  31#include "internal.h"
  32
  33/* Maximum number of mounts in a mount namespace */
  34unsigned int sysctl_mount_max __read_mostly = 100000;
  35
  36static unsigned int m_hash_mask __read_mostly;
  37static unsigned int m_hash_shift __read_mostly;
  38static unsigned int mp_hash_mask __read_mostly;
  39static unsigned int mp_hash_shift __read_mostly;
  40
  41static __initdata unsigned long mhash_entries;
  42static int __init set_mhash_entries(char *str)
  43{
  44        if (!str)
  45                return 0;
  46        mhash_entries = simple_strtoul(str, &str, 0);
  47        return 1;
  48}
  49__setup("mhash_entries=", set_mhash_entries);
  50
  51static __initdata unsigned long mphash_entries;
  52static int __init set_mphash_entries(char *str)
  53{
  54        if (!str)
  55                return 0;
  56        mphash_entries = simple_strtoul(str, &str, 0);
  57        return 1;
  58}
  59__setup("mphash_entries=", set_mphash_entries);
  60
  61static u64 event;
  62static DEFINE_IDA(mnt_id_ida);
  63static DEFINE_IDA(mnt_group_ida);
  64static DEFINE_SPINLOCK(mnt_id_lock);
  65static int mnt_id_start = 0;
  66static int mnt_group_start = 1;
  67
  68static struct hlist_head *mount_hashtable __read_mostly;
  69static struct hlist_head *mountpoint_hashtable __read_mostly;
  70static struct kmem_cache *mnt_cache __read_mostly;
  71static DECLARE_RWSEM(namespace_sem);
  72
  73/* /sys/fs */
  74struct kobject *fs_kobj;
  75EXPORT_SYMBOL_GPL(fs_kobj);
  76
  77/*
  78 * vfsmount lock may be taken for read to prevent changes to the
  79 * vfsmount hash, ie. during mountpoint lookups or walking back
  80 * up the tree.
  81 *
  82 * It should be taken for write in all cases where the vfsmount
  83 * tree or hash is modified or when a vfsmount structure is modified.
  84 */
  85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  86
  87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  88{
  89        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  90        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  91        tmp = tmp + (tmp >> m_hash_shift);
  92        return &mount_hashtable[tmp & m_hash_mask];
  93}
  94
  95static inline struct hlist_head *mp_hash(struct dentry *dentry)
  96{
  97        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  98        tmp = tmp + (tmp >> mp_hash_shift);
  99        return &mountpoint_hashtable[tmp & mp_hash_mask];
 100}
 101
 102static int mnt_alloc_id(struct mount *mnt)
 103{
 104        int res;
 105
 106retry:
 107        ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 108        spin_lock(&mnt_id_lock);
 109        res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 110        if (!res)
 111                mnt_id_start = mnt->mnt_id + 1;
 112        spin_unlock(&mnt_id_lock);
 113        if (res == -EAGAIN)
 114                goto retry;
 115
 116        return res;
 117}
 118
 119static void mnt_free_id(struct mount *mnt)
 120{
 121        int id = mnt->mnt_id;
 122        spin_lock(&mnt_id_lock);
 123        ida_remove(&mnt_id_ida, id);
 124        if (mnt_id_start > id)
 125                mnt_id_start = id;
 126        spin_unlock(&mnt_id_lock);
 127}
 128
 129/*
 130 * Allocate a new peer group ID
 131 *
 132 * mnt_group_ida is protected by namespace_sem
 133 */
 134static int mnt_alloc_group_id(struct mount *mnt)
 135{
 136        int res;
 137
 138        if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 139                return -ENOMEM;
 140
 141        res = ida_get_new_above(&mnt_group_ida,
 142                                mnt_group_start,
 143                                &mnt->mnt_group_id);
 144        if (!res)
 145                mnt_group_start = mnt->mnt_group_id + 1;
 146
 147        return res;
 148}
 149
 150/*
 151 * Release a peer group ID
 152 */
 153void mnt_release_group_id(struct mount *mnt)
 154{
 155        int id = mnt->mnt_group_id;
 156        ida_remove(&mnt_group_ida, id);
 157        if (mnt_group_start > id)
 158                mnt_group_start = id;
 159        mnt->mnt_group_id = 0;
 160}
 161
 162/*
 163 * vfsmount lock must be held for read
 164 */
 165static inline void mnt_add_count(struct mount *mnt, int n)
 166{
 167#ifdef CONFIG_SMP
 168        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 169#else
 170        preempt_disable();
 171        mnt->mnt_count += n;
 172        preempt_enable();
 173#endif
 174}
 175
 176/*
 177 * vfsmount lock must be held for write
 178 */
 179unsigned int mnt_get_count(struct mount *mnt)
 180{
 181#ifdef CONFIG_SMP
 182        unsigned int count = 0;
 183        int cpu;
 184
 185        for_each_possible_cpu(cpu) {
 186                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 187        }
 188
 189        return count;
 190#else
 191        return mnt->mnt_count;
 192#endif
 193}
 194
 195static void drop_mountpoint(struct fs_pin *p)
 196{
 197        struct mount *m = container_of(p, struct mount, mnt_umount);
 198        dput(m->mnt_ex_mountpoint);
 199        pin_remove(p);
 200        mntput(&m->mnt);
 201}
 202
 203static struct mount *alloc_vfsmnt(const char *name)
 204{
 205        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 206        if (mnt) {
 207                int err;
 208
 209                err = mnt_alloc_id(mnt);
 210                if (err)
 211                        goto out_free_cache;
 212
 213                if (name) {
 214                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 215                        if (!mnt->mnt_devname)
 216                                goto out_free_id;
 217                }
 218
 219#ifdef CONFIG_SMP
 220                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 221                if (!mnt->mnt_pcp)
 222                        goto out_free_devname;
 223
 224                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 225#else
 226                mnt->mnt_count = 1;
 227                mnt->mnt_writers = 0;
 228#endif
 229
 230                INIT_HLIST_NODE(&mnt->mnt_hash);
 231                INIT_LIST_HEAD(&mnt->mnt_child);
 232                INIT_LIST_HEAD(&mnt->mnt_mounts);
 233                INIT_LIST_HEAD(&mnt->mnt_list);
 234                INIT_LIST_HEAD(&mnt->mnt_expire);
 235                INIT_LIST_HEAD(&mnt->mnt_share);
 236                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 237                INIT_LIST_HEAD(&mnt->mnt_slave);
 238                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 239                INIT_LIST_HEAD(&mnt->mnt_umounting);
 240                init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
 241        }
 242        return mnt;
 243
 244#ifdef CONFIG_SMP
 245out_free_devname:
 246        kfree_const(mnt->mnt_devname);
 247#endif
 248out_free_id:
 249        mnt_free_id(mnt);
 250out_free_cache:
 251        kmem_cache_free(mnt_cache, mnt);
 252        return NULL;
 253}
 254
 255/*
 256 * Most r/o checks on a fs are for operations that take
 257 * discrete amounts of time, like a write() or unlink().
 258 * We must keep track of when those operations start
 259 * (for permission checks) and when they end, so that
 260 * we can determine when writes are able to occur to
 261 * a filesystem.
 262 */
 263/*
 264 * __mnt_is_readonly: check whether a mount is read-only
 265 * @mnt: the mount to check for its write status
 266 *
 267 * This shouldn't be used directly ouside of the VFS.
 268 * It does not guarantee that the filesystem will stay
 269 * r/w, just that it is right *now*.  This can not and
 270 * should not be used in place of IS_RDONLY(inode).
 271 * mnt_want/drop_write() will _keep_ the filesystem
 272 * r/w.
 273 */
 274int __mnt_is_readonly(struct vfsmount *mnt)
 275{
 276        if (mnt->mnt_flags & MNT_READONLY)
 277                return 1;
 278        if (sb_rdonly(mnt->mnt_sb))
 279                return 1;
 280        return 0;
 281}
 282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 283
 284static inline void mnt_inc_writers(struct mount *mnt)
 285{
 286#ifdef CONFIG_SMP
 287        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 288#else
 289        mnt->mnt_writers++;
 290#endif
 291}
 292
 293static inline void mnt_dec_writers(struct mount *mnt)
 294{
 295#ifdef CONFIG_SMP
 296        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 297#else
 298        mnt->mnt_writers--;
 299#endif
 300}
 301
 302static unsigned int mnt_get_writers(struct mount *mnt)
 303{
 304#ifdef CONFIG_SMP
 305        unsigned int count = 0;
 306        int cpu;
 307
 308        for_each_possible_cpu(cpu) {
 309                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 310        }
 311
 312        return count;
 313#else
 314        return mnt->mnt_writers;
 315#endif
 316}
 317
 318static int mnt_is_readonly(struct vfsmount *mnt)
 319{
 320        if (mnt->mnt_sb->s_readonly_remount)
 321                return 1;
 322        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 323        smp_rmb();
 324        return __mnt_is_readonly(mnt);
 325}
 326
 327/*
 328 * Most r/o & frozen checks on a fs are for operations that take discrete
 329 * amounts of time, like a write() or unlink().  We must keep track of when
 330 * those operations start (for permission checks) and when they end, so that we
 331 * can determine when writes are able to occur to a filesystem.
 332 */
 333/**
 334 * __mnt_want_write - get write access to a mount without freeze protection
 335 * @m: the mount on which to take a write
 336 *
 337 * This tells the low-level filesystem that a write is about to be performed to
 338 * it, and makes sure that writes are allowed (mnt it read-write) before
 339 * returning success. This operation does not protect against filesystem being
 340 * frozen. When the write operation is finished, __mnt_drop_write() must be
 341 * called. This is effectively a refcount.
 342 */
 343int __mnt_want_write(struct vfsmount *m)
 344{
 345        struct mount *mnt = real_mount(m);
 346        int ret = 0;
 347
 348        preempt_disable();
 349        mnt_inc_writers(mnt);
 350        /*
 351         * The store to mnt_inc_writers must be visible before we pass
 352         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 353         * incremented count after it has set MNT_WRITE_HOLD.
 354         */
 355        smp_mb();
 356        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 357                cpu_relax();
 358        /*
 359         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 360         * be set to match its requirements. So we must not load that until
 361         * MNT_WRITE_HOLD is cleared.
 362         */
 363        smp_rmb();
 364        if (mnt_is_readonly(m)) {
 365                mnt_dec_writers(mnt);
 366                ret = -EROFS;
 367        }
 368        preempt_enable();
 369
 370        return ret;
 371}
 372
 373/**
 374 * mnt_want_write - get write access to a mount
 375 * @m: the mount on which to take a write
 376 *
 377 * This tells the low-level filesystem that a write is about to be performed to
 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 379 * is not frozen) before returning success.  When the write operation is
 380 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 381 */
 382int mnt_want_write(struct vfsmount *m)
 383{
 384        int ret;
 385
 386        sb_start_write(m->mnt_sb);
 387        ret = __mnt_want_write(m);
 388        if (ret)
 389                sb_end_write(m->mnt_sb);
 390        return ret;
 391}
 392EXPORT_SYMBOL_GPL(mnt_want_write);
 393
 394/**
 395 * mnt_clone_write - get write access to a mount
 396 * @mnt: the mount on which to take a write
 397 *
 398 * This is effectively like mnt_want_write, except
 399 * it must only be used to take an extra write reference
 400 * on a mountpoint that we already know has a write reference
 401 * on it. This allows some optimisation.
 402 *
 403 * After finished, mnt_drop_write must be called as usual to
 404 * drop the reference.
 405 */
 406int mnt_clone_write(struct vfsmount *mnt)
 407{
 408        /* superblock may be r/o */
 409        if (__mnt_is_readonly(mnt))
 410                return -EROFS;
 411        preempt_disable();
 412        mnt_inc_writers(real_mount(mnt));
 413        preempt_enable();
 414        return 0;
 415}
 416EXPORT_SYMBOL_GPL(mnt_clone_write);
 417
 418/**
 419 * __mnt_want_write_file - get write access to a file's mount
 420 * @file: the file who's mount on which to take a write
 421 *
 422 * This is like __mnt_want_write, but it takes a file and can
 423 * do some optimisations if the file is open for write already
 424 */
 425int __mnt_want_write_file(struct file *file)
 426{
 427        if (!(file->f_mode & FMODE_WRITER))
 428                return __mnt_want_write(file->f_path.mnt);
 429        else
 430                return mnt_clone_write(file->f_path.mnt);
 431}
 432
 433/**
 434 * mnt_want_write_file_path - get write access to a file's mount
 435 * @file: the file who's mount on which to take a write
 436 *
 437 * This is like mnt_want_write, but it takes a file and can
 438 * do some optimisations if the file is open for write already
 439 *
 440 * Called by the vfs for cases when we have an open file at hand, but will do an
 441 * inode operation on it (important distinction for files opened on overlayfs,
 442 * since the file operations will come from the real underlying file, while
 443 * inode operations come from the overlay).
 444 */
 445int mnt_want_write_file_path(struct file *file)
 446{
 447        int ret;
 448
 449        sb_start_write(file->f_path.mnt->mnt_sb);
 450        ret = __mnt_want_write_file(file);
 451        if (ret)
 452                sb_end_write(file->f_path.mnt->mnt_sb);
 453        return ret;
 454}
 455
 456static inline int may_write_real(struct file *file)
 457{
 458        struct dentry *dentry = file->f_path.dentry;
 459        struct dentry *upperdentry;
 460
 461        /* Writable file? */
 462        if (file->f_mode & FMODE_WRITER)
 463                return 0;
 464
 465        /* Not overlayfs? */
 466        if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
 467                return 0;
 468
 469        /* File refers to upper, writable layer? */
 470        upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
 471        if (upperdentry &&
 472            (file_inode(file) == d_inode(upperdentry) ||
 473             file_inode(file) == d_inode(dentry)))
 474                return 0;
 475
 476        /* Lower layer: can't write to real file, sorry... */
 477        return -EPERM;
 478}
 479
 480/**
 481 * mnt_want_write_file - get write access to a file's mount
 482 * @file: the file who's mount on which to take a write
 483 *
 484 * This is like mnt_want_write, but it takes a file and can
 485 * do some optimisations if the file is open for write already
 486 *
 487 * Mostly called by filesystems from their ioctl operation before performing
 488 * modification.  On overlayfs this needs to check if the file is on a read-only
 489 * lower layer and deny access in that case.
 490 */
 491int mnt_want_write_file(struct file *file)
 492{
 493        int ret;
 494
 495        ret = may_write_real(file);
 496        if (!ret) {
 497                sb_start_write(file_inode(file)->i_sb);
 498                ret = __mnt_want_write_file(file);
 499                if (ret)
 500                        sb_end_write(file_inode(file)->i_sb);
 501        }
 502        return ret;
 503}
 504EXPORT_SYMBOL_GPL(mnt_want_write_file);
 505
 506/**
 507 * __mnt_drop_write - give up write access to a mount
 508 * @mnt: the mount on which to give up write access
 509 *
 510 * Tells the low-level filesystem that we are done
 511 * performing writes to it.  Must be matched with
 512 * __mnt_want_write() call above.
 513 */
 514void __mnt_drop_write(struct vfsmount *mnt)
 515{
 516        preempt_disable();
 517        mnt_dec_writers(real_mount(mnt));
 518        preempt_enable();
 519}
 520
 521/**
 522 * mnt_drop_write - give up write access to a mount
 523 * @mnt: the mount on which to give up write access
 524 *
 525 * Tells the low-level filesystem that we are done performing writes to it and
 526 * also allows filesystem to be frozen again.  Must be matched with
 527 * mnt_want_write() call above.
 528 */
 529void mnt_drop_write(struct vfsmount *mnt)
 530{
 531        __mnt_drop_write(mnt);
 532        sb_end_write(mnt->mnt_sb);
 533}
 534EXPORT_SYMBOL_GPL(mnt_drop_write);
 535
 536void __mnt_drop_write_file(struct file *file)
 537{
 538        __mnt_drop_write(file->f_path.mnt);
 539}
 540
 541void mnt_drop_write_file_path(struct file *file)
 542{
 543        mnt_drop_write(file->f_path.mnt);
 544}
 545
 546void mnt_drop_write_file(struct file *file)
 547{
 548        __mnt_drop_write(file->f_path.mnt);
 549        sb_end_write(file_inode(file)->i_sb);
 550}
 551EXPORT_SYMBOL(mnt_drop_write_file);
 552
 553static int mnt_make_readonly(struct mount *mnt)
 554{
 555        int ret = 0;
 556
 557        lock_mount_hash();
 558        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 559        /*
 560         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 561         * should be visible before we do.
 562         */
 563        smp_mb();
 564
 565        /*
 566         * With writers on hold, if this value is zero, then there are
 567         * definitely no active writers (although held writers may subsequently
 568         * increment the count, they'll have to wait, and decrement it after
 569         * seeing MNT_READONLY).
 570         *
 571         * It is OK to have counter incremented on one CPU and decremented on
 572         * another: the sum will add up correctly. The danger would be when we
 573         * sum up each counter, if we read a counter before it is incremented,
 574         * but then read another CPU's count which it has been subsequently
 575         * decremented from -- we would see more decrements than we should.
 576         * MNT_WRITE_HOLD protects against this scenario, because
 577         * mnt_want_write first increments count, then smp_mb, then spins on
 578         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 579         * we're counting up here.
 580         */
 581        if (mnt_get_writers(mnt) > 0)
 582                ret = -EBUSY;
 583        else
 584                mnt->mnt.mnt_flags |= MNT_READONLY;
 585        /*
 586         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 587         * that become unheld will see MNT_READONLY.
 588         */
 589        smp_wmb();
 590        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 591        unlock_mount_hash();
 592        return ret;
 593}
 594
 595static void __mnt_unmake_readonly(struct mount *mnt)
 596{
 597        lock_mount_hash();
 598        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 599        unlock_mount_hash();
 600}
 601
 602int sb_prepare_remount_readonly(struct super_block *sb)
 603{
 604        struct mount *mnt;
 605        int err = 0;
 606
 607        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 608        if (atomic_long_read(&sb->s_remove_count))
 609                return -EBUSY;
 610
 611        lock_mount_hash();
 612        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 613                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 614                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 615                        smp_mb();
 616                        if (mnt_get_writers(mnt) > 0) {
 617                                err = -EBUSY;
 618                                break;
 619                        }
 620                }
 621        }
 622        if (!err && atomic_long_read(&sb->s_remove_count))
 623                err = -EBUSY;
 624
 625        if (!err) {
 626                sb->s_readonly_remount = 1;
 627                smp_wmb();
 628        }
 629        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 630                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 631                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 632        }
 633        unlock_mount_hash();
 634
 635        return err;
 636}
 637
 638static void free_vfsmnt(struct mount *mnt)
 639{
 640        kfree_const(mnt->mnt_devname);
 641#ifdef CONFIG_SMP
 642        free_percpu(mnt->mnt_pcp);
 643#endif
 644        kmem_cache_free(mnt_cache, mnt);
 645}
 646
 647static void delayed_free_vfsmnt(struct rcu_head *head)
 648{
 649        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 650}
 651
 652/* call under rcu_read_lock */
 653int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 654{
 655        struct mount *mnt;
 656        if (read_seqretry(&mount_lock, seq))
 657                return 1;
 658        if (bastard == NULL)
 659                return 0;
 660        mnt = real_mount(bastard);
 661        mnt_add_count(mnt, 1);
 662        if (likely(!read_seqretry(&mount_lock, seq)))
 663                return 0;
 664        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 665                mnt_add_count(mnt, -1);
 666                return 1;
 667        }
 668        return -1;
 669}
 670
 671/* call under rcu_read_lock */
 672bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 673{
 674        int res = __legitimize_mnt(bastard, seq);
 675        if (likely(!res))
 676                return true;
 677        if (unlikely(res < 0)) {
 678                rcu_read_unlock();
 679                mntput(bastard);
 680                rcu_read_lock();
 681        }
 682        return false;
 683}
 684
 685/*
 686 * find the first mount at @dentry on vfsmount @mnt.
 687 * call under rcu_read_lock()
 688 */
 689struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 690{
 691        struct hlist_head *head = m_hash(mnt, dentry);
 692        struct mount *p;
 693
 694        hlist_for_each_entry_rcu(p, head, mnt_hash)
 695                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 696                        return p;
 697        return NULL;
 698}
 699
 700/*
 701 * lookup_mnt - Return the first child mount mounted at path
 702 *
 703 * "First" means first mounted chronologically.  If you create the
 704 * following mounts:
 705 *
 706 * mount /dev/sda1 /mnt
 707 * mount /dev/sda2 /mnt
 708 * mount /dev/sda3 /mnt
 709 *
 710 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 711 * return successively the root dentry and vfsmount of /dev/sda1, then
 712 * /dev/sda2, then /dev/sda3, then NULL.
 713 *
 714 * lookup_mnt takes a reference to the found vfsmount.
 715 */
 716struct vfsmount *lookup_mnt(const struct path *path)
 717{
 718        struct mount *child_mnt;
 719        struct vfsmount *m;
 720        unsigned seq;
 721
 722        rcu_read_lock();
 723        do {
 724                seq = read_seqbegin(&mount_lock);
 725                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 726                m = child_mnt ? &child_mnt->mnt : NULL;
 727        } while (!legitimize_mnt(m, seq));
 728        rcu_read_unlock();
 729        return m;
 730}
 731
 732/*
 733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 734 *                         current mount namespace.
 735 *
 736 * The common case is dentries are not mountpoints at all and that
 737 * test is handled inline.  For the slow case when we are actually
 738 * dealing with a mountpoint of some kind, walk through all of the
 739 * mounts in the current mount namespace and test to see if the dentry
 740 * is a mountpoint.
 741 *
 742 * The mount_hashtable is not usable in the context because we
 743 * need to identify all mounts that may be in the current mount
 744 * namespace not just a mount that happens to have some specified
 745 * parent mount.
 746 */
 747bool __is_local_mountpoint(struct dentry *dentry)
 748{
 749        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 750        struct mount *mnt;
 751        bool is_covered = false;
 752
 753        if (!d_mountpoint(dentry))
 754                goto out;
 755
 756        down_read(&namespace_sem);
 757        list_for_each_entry(mnt, &ns->list, mnt_list) {
 758                is_covered = (mnt->mnt_mountpoint == dentry);
 759                if (is_covered)
 760                        break;
 761        }
 762        up_read(&namespace_sem);
 763out:
 764        return is_covered;
 765}
 766
 767static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 768{
 769        struct hlist_head *chain = mp_hash(dentry);
 770        struct mountpoint *mp;
 771
 772        hlist_for_each_entry(mp, chain, m_hash) {
 773                if (mp->m_dentry == dentry) {
 774                        /* might be worth a WARN_ON() */
 775                        if (d_unlinked(dentry))
 776                                return ERR_PTR(-ENOENT);
 777                        mp->m_count++;
 778                        return mp;
 779                }
 780        }
 781        return NULL;
 782}
 783
 784static struct mountpoint *get_mountpoint(struct dentry *dentry)
 785{
 786        struct mountpoint *mp, *new = NULL;
 787        int ret;
 788
 789        if (d_mountpoint(dentry)) {
 790mountpoint:
 791                read_seqlock_excl(&mount_lock);
 792                mp = lookup_mountpoint(dentry);
 793                read_sequnlock_excl(&mount_lock);
 794                if (mp)
 795                        goto done;
 796        }
 797
 798        if (!new)
 799                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 800        if (!new)
 801                return ERR_PTR(-ENOMEM);
 802
 803
 804        /* Exactly one processes may set d_mounted */
 805        ret = d_set_mounted(dentry);
 806
 807        /* Someone else set d_mounted? */
 808        if (ret == -EBUSY)
 809                goto mountpoint;
 810
 811        /* The dentry is not available as a mountpoint? */
 812        mp = ERR_PTR(ret);
 813        if (ret)
 814                goto done;
 815
 816        /* Add the new mountpoint to the hash table */
 817        read_seqlock_excl(&mount_lock);
 818        new->m_dentry = dentry;
 819        new->m_count = 1;
 820        hlist_add_head(&new->m_hash, mp_hash(dentry));
 821        INIT_HLIST_HEAD(&new->m_list);
 822        read_sequnlock_excl(&mount_lock);
 823
 824        mp = new;
 825        new = NULL;
 826done:
 827        kfree(new);
 828        return mp;
 829}
 830
 831static void put_mountpoint(struct mountpoint *mp)
 832{
 833        if (!--mp->m_count) {
 834                struct dentry *dentry = mp->m_dentry;
 835                BUG_ON(!hlist_empty(&mp->m_list));
 836                spin_lock(&dentry->d_lock);
 837                dentry->d_flags &= ~DCACHE_MOUNTED;
 838                spin_unlock(&dentry->d_lock);
 839                hlist_del(&mp->m_hash);
 840                kfree(mp);
 841        }
 842}
 843
 844static inline int check_mnt(struct mount *mnt)
 845{
 846        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 847}
 848
 849/*
 850 * vfsmount lock must be held for write
 851 */
 852static void touch_mnt_namespace(struct mnt_namespace *ns)
 853{
 854        if (ns) {
 855                ns->event = ++event;
 856                wake_up_interruptible(&ns->poll);
 857        }
 858}
 859
 860/*
 861 * vfsmount lock must be held for write
 862 */
 863static void __touch_mnt_namespace(struct mnt_namespace *ns)
 864{
 865        if (ns && ns->event != event) {
 866                ns->event = event;
 867                wake_up_interruptible(&ns->poll);
 868        }
 869}
 870
 871/*
 872 * vfsmount lock must be held for write
 873 */
 874static void unhash_mnt(struct mount *mnt)
 875{
 876        mnt->mnt_parent = mnt;
 877        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 878        list_del_init(&mnt->mnt_child);
 879        hlist_del_init_rcu(&mnt->mnt_hash);
 880        hlist_del_init(&mnt->mnt_mp_list);
 881        put_mountpoint(mnt->mnt_mp);
 882        mnt->mnt_mp = NULL;
 883}
 884
 885/*
 886 * vfsmount lock must be held for write
 887 */
 888static void detach_mnt(struct mount *mnt, struct path *old_path)
 889{
 890        old_path->dentry = mnt->mnt_mountpoint;
 891        old_path->mnt = &mnt->mnt_parent->mnt;
 892        unhash_mnt(mnt);
 893}
 894
 895/*
 896 * vfsmount lock must be held for write
 897 */
 898static void umount_mnt(struct mount *mnt)
 899{
 900        /* old mountpoint will be dropped when we can do that */
 901        mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
 902        unhash_mnt(mnt);
 903}
 904
 905/*
 906 * vfsmount lock must be held for write
 907 */
 908void mnt_set_mountpoint(struct mount *mnt,
 909                        struct mountpoint *mp,
 910                        struct mount *child_mnt)
 911{
 912        mp->m_count++;
 913        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 914        child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 915        child_mnt->mnt_parent = mnt;
 916        child_mnt->mnt_mp = mp;
 917        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 918}
 919
 920static void __attach_mnt(struct mount *mnt, struct mount *parent)
 921{
 922        hlist_add_head_rcu(&mnt->mnt_hash,
 923                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 924        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 925}
 926
 927/*
 928 * vfsmount lock must be held for write
 929 */
 930static void attach_mnt(struct mount *mnt,
 931                        struct mount *parent,
 932                        struct mountpoint *mp)
 933{
 934        mnt_set_mountpoint(parent, mp, mnt);
 935        __attach_mnt(mnt, parent);
 936}
 937
 938void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 939{
 940        struct mountpoint *old_mp = mnt->mnt_mp;
 941        struct dentry *old_mountpoint = mnt->mnt_mountpoint;
 942        struct mount *old_parent = mnt->mnt_parent;
 943
 944        list_del_init(&mnt->mnt_child);
 945        hlist_del_init(&mnt->mnt_mp_list);
 946        hlist_del_init_rcu(&mnt->mnt_hash);
 947
 948        attach_mnt(mnt, parent, mp);
 949
 950        put_mountpoint(old_mp);
 951
 952        /*
 953         * Safely avoid even the suggestion this code might sleep or
 954         * lock the mount hash by taking advantage of the knowledge that
 955         * mnt_change_mountpoint will not release the final reference
 956         * to a mountpoint.
 957         *
 958         * During mounting, the mount passed in as the parent mount will
 959         * continue to use the old mountpoint and during unmounting, the
 960         * old mountpoint will continue to exist until namespace_unlock,
 961         * which happens well after mnt_change_mountpoint.
 962         */
 963        spin_lock(&old_mountpoint->d_lock);
 964        old_mountpoint->d_lockref.count--;
 965        spin_unlock(&old_mountpoint->d_lock);
 966
 967        mnt_add_count(old_parent, -1);
 968}
 969
 970/*
 971 * vfsmount lock must be held for write
 972 */
 973static void commit_tree(struct mount *mnt)
 974{
 975        struct mount *parent = mnt->mnt_parent;
 976        struct mount *m;
 977        LIST_HEAD(head);
 978        struct mnt_namespace *n = parent->mnt_ns;
 979
 980        BUG_ON(parent == mnt);
 981
 982        list_add_tail(&head, &mnt->mnt_list);
 983        list_for_each_entry(m, &head, mnt_list)
 984                m->mnt_ns = n;
 985
 986        list_splice(&head, n->list.prev);
 987
 988        n->mounts += n->pending_mounts;
 989        n->pending_mounts = 0;
 990
 991        __attach_mnt(mnt, parent);
 992        touch_mnt_namespace(n);
 993}
 994
 995static struct mount *next_mnt(struct mount *p, struct mount *root)
 996{
 997        struct list_head *next = p->mnt_mounts.next;
 998        if (next == &p->mnt_mounts) {
 999                while (1) {
1000                        if (p == root)
1001                                return NULL;
1002                        next = p->mnt_child.next;
1003                        if (next != &p->mnt_parent->mnt_mounts)
1004                                break;
1005                        p = p->mnt_parent;
1006                }
1007        }
1008        return list_entry(next, struct mount, mnt_child);
1009}
1010
1011static struct mount *skip_mnt_tree(struct mount *p)
1012{
1013        struct list_head *prev = p->mnt_mounts.prev;
1014        while (prev != &p->mnt_mounts) {
1015                p = list_entry(prev, struct mount, mnt_child);
1016                prev = p->mnt_mounts.prev;
1017        }
1018        return p;
1019}
1020
1021struct vfsmount *
1022vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1023{
1024        struct mount *mnt;
1025        struct dentry *root;
1026
1027        if (!type)
1028                return ERR_PTR(-ENODEV);
1029
1030        mnt = alloc_vfsmnt(name);
1031        if (!mnt)
1032                return ERR_PTR(-ENOMEM);
1033
1034        if (flags & SB_KERNMOUNT)
1035                mnt->mnt.mnt_flags = MNT_INTERNAL;
1036
1037        root = mount_fs(type, flags, name, data);
1038        if (IS_ERR(root)) {
1039                mnt_free_id(mnt);
1040                free_vfsmnt(mnt);
1041                return ERR_CAST(root);
1042        }
1043
1044        mnt->mnt.mnt_root = root;
1045        mnt->mnt.mnt_sb = root->d_sb;
1046        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047        mnt->mnt_parent = mnt;
1048        lock_mount_hash();
1049        list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1050        unlock_mount_hash();
1051        return &mnt->mnt;
1052}
1053EXPORT_SYMBOL_GPL(vfs_kern_mount);
1054
1055struct vfsmount *
1056vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1057             const char *name, void *data)
1058{
1059        /* Until it is worked out how to pass the user namespace
1060         * through from the parent mount to the submount don't support
1061         * unprivileged mounts with submounts.
1062         */
1063        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1064                return ERR_PTR(-EPERM);
1065
1066        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1067}
1068EXPORT_SYMBOL_GPL(vfs_submount);
1069
1070static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1071                                        int flag)
1072{
1073        struct super_block *sb = old->mnt.mnt_sb;
1074        struct mount *mnt;
1075        int err;
1076
1077        mnt = alloc_vfsmnt(old->mnt_devname);
1078        if (!mnt)
1079                return ERR_PTR(-ENOMEM);
1080
1081        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1082                mnt->mnt_group_id = 0; /* not a peer of original */
1083        else
1084                mnt->mnt_group_id = old->mnt_group_id;
1085
1086        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1087                err = mnt_alloc_group_id(mnt);
1088                if (err)
1089                        goto out_free;
1090        }
1091
1092        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1093        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1094        /* Don't allow unprivileged users to change mount flags */
1095        if (flag & CL_UNPRIVILEGED) {
1096                mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1097
1098                if (mnt->mnt.mnt_flags & MNT_READONLY)
1099                        mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1100
1101                if (mnt->mnt.mnt_flags & MNT_NODEV)
1102                        mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1103
1104                if (mnt->mnt.mnt_flags & MNT_NOSUID)
1105                        mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1106
1107                if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1108                        mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1109        }
1110
1111        /* Don't allow unprivileged users to reveal what is under a mount */
1112        if ((flag & CL_UNPRIVILEGED) &&
1113            (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1114                mnt->mnt.mnt_flags |= MNT_LOCKED;
1115
1116        atomic_inc(&sb->s_active);
1117        mnt->mnt.mnt_sb = sb;
1118        mnt->mnt.mnt_root = dget(root);
1119        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120        mnt->mnt_parent = mnt;
1121        lock_mount_hash();
1122        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123        unlock_mount_hash();
1124
1125        if ((flag & CL_SLAVE) ||
1126            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128                mnt->mnt_master = old;
1129                CLEAR_MNT_SHARED(mnt);
1130        } else if (!(flag & CL_PRIVATE)) {
1131                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132                        list_add(&mnt->mnt_share, &old->mnt_share);
1133                if (IS_MNT_SLAVE(old))
1134                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1135                mnt->mnt_master = old->mnt_master;
1136        } else {
1137                CLEAR_MNT_SHARED(mnt);
1138        }
1139        if (flag & CL_MAKE_SHARED)
1140                set_mnt_shared(mnt);
1141
1142        /* stick the duplicate mount on the same expiry list
1143         * as the original if that was on one */
1144        if (flag & CL_EXPIRE) {
1145                if (!list_empty(&old->mnt_expire))
1146                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1147        }
1148
1149        return mnt;
1150
1151 out_free:
1152        mnt_free_id(mnt);
1153        free_vfsmnt(mnt);
1154        return ERR_PTR(err);
1155}
1156
1157static void cleanup_mnt(struct mount *mnt)
1158{
1159        /*
1160         * This probably indicates that somebody messed
1161         * up a mnt_want/drop_write() pair.  If this
1162         * happens, the filesystem was probably unable
1163         * to make r/w->r/o transitions.
1164         */
1165        /*
1166         * The locking used to deal with mnt_count decrement provides barriers,
1167         * so mnt_get_writers() below is safe.
1168         */
1169        WARN_ON(mnt_get_writers(mnt));
1170        if (unlikely(mnt->mnt_pins.first))
1171                mnt_pin_kill(mnt);
1172        fsnotify_vfsmount_delete(&mnt->mnt);
1173        dput(mnt->mnt.mnt_root);
1174        deactivate_super(mnt->mnt.mnt_sb);
1175        mnt_free_id(mnt);
1176        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1177}
1178
1179static void __cleanup_mnt(struct rcu_head *head)
1180{
1181        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1182}
1183
1184static LLIST_HEAD(delayed_mntput_list);
1185static void delayed_mntput(struct work_struct *unused)
1186{
1187        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1188        struct mount *m, *t;
1189
1190        llist_for_each_entry_safe(m, t, node, mnt_llist)
1191                cleanup_mnt(m);
1192}
1193static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1194
1195static void mntput_no_expire(struct mount *mnt)
1196{
1197        rcu_read_lock();
1198        mnt_add_count(mnt, -1);
1199        if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1200                rcu_read_unlock();
1201                return;
1202        }
1203        lock_mount_hash();
1204        if (mnt_get_count(mnt)) {
1205                rcu_read_unlock();
1206                unlock_mount_hash();
1207                return;
1208        }
1209        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1210                rcu_read_unlock();
1211                unlock_mount_hash();
1212                return;
1213        }
1214        mnt->mnt.mnt_flags |= MNT_DOOMED;
1215        rcu_read_unlock();
1216
1217        list_del(&mnt->mnt_instance);
1218
1219        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1220                struct mount *p, *tmp;
1221                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1222                        umount_mnt(p);
1223                }
1224        }
1225        unlock_mount_hash();
1226
1227        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1228                struct task_struct *task = current;
1229                if (likely(!(task->flags & PF_KTHREAD))) {
1230                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1231                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1232                                return;
1233                }
1234                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1235                        schedule_delayed_work(&delayed_mntput_work, 1);
1236                return;
1237        }
1238        cleanup_mnt(mnt);
1239}
1240
1241void mntput(struct vfsmount *mnt)
1242{
1243        if (mnt) {
1244                struct mount *m = real_mount(mnt);
1245                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1246                if (unlikely(m->mnt_expiry_mark))
1247                        m->mnt_expiry_mark = 0;
1248                mntput_no_expire(m);
1249        }
1250}
1251EXPORT_SYMBOL(mntput);
1252
1253struct vfsmount *mntget(struct vfsmount *mnt)
1254{
1255        if (mnt)
1256                mnt_add_count(real_mount(mnt), 1);
1257        return mnt;
1258}
1259EXPORT_SYMBOL(mntget);
1260
1261/* path_is_mountpoint() - Check if path is a mount in the current
1262 *                          namespace.
1263 *
1264 *  d_mountpoint() can only be used reliably to establish if a dentry is
1265 *  not mounted in any namespace and that common case is handled inline.
1266 *  d_mountpoint() isn't aware of the possibility there may be multiple
1267 *  mounts using a given dentry in a different namespace. This function
1268 *  checks if the passed in path is a mountpoint rather than the dentry
1269 *  alone.
1270 */
1271bool path_is_mountpoint(const struct path *path)
1272{
1273        unsigned seq;
1274        bool res;
1275
1276        if (!d_mountpoint(path->dentry))
1277                return false;
1278
1279        rcu_read_lock();
1280        do {
1281                seq = read_seqbegin(&mount_lock);
1282                res = __path_is_mountpoint(path);
1283        } while (read_seqretry(&mount_lock, seq));
1284        rcu_read_unlock();
1285
1286        return res;
1287}
1288EXPORT_SYMBOL(path_is_mountpoint);
1289
1290struct vfsmount *mnt_clone_internal(const struct path *path)
1291{
1292        struct mount *p;
1293        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1294        if (IS_ERR(p))
1295                return ERR_CAST(p);
1296        p->mnt.mnt_flags |= MNT_INTERNAL;
1297        return &p->mnt;
1298}
1299
1300#ifdef CONFIG_PROC_FS
1301/* iterator; we want it to have access to namespace_sem, thus here... */
1302static void *m_start(struct seq_file *m, loff_t *pos)
1303{
1304        struct proc_mounts *p = m->private;
1305
1306        down_read(&namespace_sem);
1307        if (p->cached_event == p->ns->event) {
1308                void *v = p->cached_mount;
1309                if (*pos == p->cached_index)
1310                        return v;
1311                if (*pos == p->cached_index + 1) {
1312                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313                        return p->cached_mount = v;
1314                }
1315        }
1316
1317        p->cached_event = p->ns->event;
1318        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319        p->cached_index = *pos;
1320        return p->cached_mount;
1321}
1322
1323static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324{
1325        struct proc_mounts *p = m->private;
1326
1327        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328        p->cached_index = *pos;
1329        return p->cached_mount;
1330}
1331
1332static void m_stop(struct seq_file *m, void *v)
1333{
1334        up_read(&namespace_sem);
1335}
1336
1337static int m_show(struct seq_file *m, void *v)
1338{
1339        struct proc_mounts *p = m->private;
1340        struct mount *r = list_entry(v, struct mount, mnt_list);
1341        return p->show(m, &r->mnt);
1342}
1343
1344const struct seq_operations mounts_op = {
1345        .start  = m_start,
1346        .next   = m_next,
1347        .stop   = m_stop,
1348        .show   = m_show,
1349};
1350#endif  /* CONFIG_PROC_FS */
1351
1352/**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
1360int may_umount_tree(struct vfsmount *m)
1361{
1362        struct mount *mnt = real_mount(m);
1363        int actual_refs = 0;
1364        int minimum_refs = 0;
1365        struct mount *p;
1366        BUG_ON(!m);
1367
1368        /* write lock needed for mnt_get_count */
1369        lock_mount_hash();
1370        for (p = mnt; p; p = next_mnt(p, mnt)) {
1371                actual_refs += mnt_get_count(p);
1372                minimum_refs += 2;
1373        }
1374        unlock_mount_hash();
1375
1376        if (actual_refs > minimum_refs)
1377                return 0;
1378
1379        return 1;
1380}
1381
1382EXPORT_SYMBOL(may_umount_tree);
1383
1384/**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397int may_umount(struct vfsmount *mnt)
1398{
1399        int ret = 1;
1400        down_read(&namespace_sem);
1401        lock_mount_hash();
1402        if (propagate_mount_busy(real_mount(mnt), 2))
1403                ret = 0;
1404        unlock_mount_hash();
1405        up_read(&namespace_sem);
1406        return ret;
1407}
1408
1409EXPORT_SYMBOL(may_umount);
1410
1411static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1412
1413static void namespace_unlock(void)
1414{
1415        struct hlist_head head;
1416
1417        hlist_move_list(&unmounted, &head);
1418
1419        up_write(&namespace_sem);
1420
1421        if (likely(hlist_empty(&head)))
1422                return;
1423
1424        synchronize_rcu();
1425
1426        group_pin_kill(&head);
1427}
1428
1429static inline void namespace_lock(void)
1430{
1431        down_write(&namespace_sem);
1432}
1433
1434enum umount_tree_flags {
1435        UMOUNT_SYNC = 1,
1436        UMOUNT_PROPAGATE = 2,
1437        UMOUNT_CONNECTED = 4,
1438};
1439
1440static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441{
1442        /* Leaving mounts connected is only valid for lazy umounts */
1443        if (how & UMOUNT_SYNC)
1444                return true;
1445
1446        /* A mount without a parent has nothing to be connected to */
1447        if (!mnt_has_parent(mnt))
1448                return true;
1449
1450        /* Because the reference counting rules change when mounts are
1451         * unmounted and connected, umounted mounts may not be
1452         * connected to mounted mounts.
1453         */
1454        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455                return true;
1456
1457        /* Has it been requested that the mount remain connected? */
1458        if (how & UMOUNT_CONNECTED)
1459                return false;
1460
1461        /* Is the mount locked such that it needs to remain connected? */
1462        if (IS_MNT_LOCKED(mnt))
1463                return false;
1464
1465        /* By default disconnect the mount */
1466        return true;
1467}
1468
1469/*
1470 * mount_lock must be held
1471 * namespace_sem must be held for write
1472 */
1473static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1474{
1475        LIST_HEAD(tmp_list);
1476        struct mount *p;
1477
1478        if (how & UMOUNT_PROPAGATE)
1479                propagate_mount_unlock(mnt);
1480
1481        /* Gather the mounts to umount */
1482        for (p = mnt; p; p = next_mnt(p, mnt)) {
1483                p->mnt.mnt_flags |= MNT_UMOUNT;
1484                list_move(&p->mnt_list, &tmp_list);
1485        }
1486
1487        /* Hide the mounts from mnt_mounts */
1488        list_for_each_entry(p, &tmp_list, mnt_list) {
1489                list_del_init(&p->mnt_child);
1490        }
1491
1492        /* Add propogated mounts to the tmp_list */
1493        if (how & UMOUNT_PROPAGATE)
1494                propagate_umount(&tmp_list);
1495
1496        while (!list_empty(&tmp_list)) {
1497                struct mnt_namespace *ns;
1498                bool disconnect;
1499                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1500                list_del_init(&p->mnt_expire);
1501                list_del_init(&p->mnt_list);
1502                ns = p->mnt_ns;
1503                if (ns) {
1504                        ns->mounts--;
1505                        __touch_mnt_namespace(ns);
1506                }
1507                p->mnt_ns = NULL;
1508                if (how & UMOUNT_SYNC)
1509                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1510
1511                disconnect = disconnect_mount(p, how);
1512
1513                pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514                                 disconnect ? &unmounted : NULL);
1515                if (mnt_has_parent(p)) {
1516                        mnt_add_count(p->mnt_parent, -1);
1517                        if (!disconnect) {
1518                                /* Don't forget about p */
1519                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520                        } else {
1521                                umount_mnt(p);
1522                        }
1523                }
1524                change_mnt_propagation(p, MS_PRIVATE);
1525        }
1526}
1527
1528static void shrink_submounts(struct mount *mnt);
1529
1530static int do_umount(struct mount *mnt, int flags)
1531{
1532        struct super_block *sb = mnt->mnt.mnt_sb;
1533        int retval;
1534
1535        retval = security_sb_umount(&mnt->mnt, flags);
1536        if (retval)
1537                return retval;
1538
1539        /*
1540         * Allow userspace to request a mountpoint be expired rather than
1541         * unmounting unconditionally. Unmount only happens if:
1542         *  (1) the mark is already set (the mark is cleared by mntput())
1543         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544         */
1545        if (flags & MNT_EXPIRE) {
1546                if (&mnt->mnt == current->fs->root.mnt ||
1547                    flags & (MNT_FORCE | MNT_DETACH))
1548                        return -EINVAL;
1549
1550                /*
1551                 * probably don't strictly need the lock here if we examined
1552                 * all race cases, but it's a slowpath.
1553                 */
1554                lock_mount_hash();
1555                if (mnt_get_count(mnt) != 2) {
1556                        unlock_mount_hash();
1557                        return -EBUSY;
1558                }
1559                unlock_mount_hash();
1560
1561                if (!xchg(&mnt->mnt_expiry_mark, 1))
1562                        return -EAGAIN;
1563        }
1564
1565        /*
1566         * If we may have to abort operations to get out of this
1567         * mount, and they will themselves hold resources we must
1568         * allow the fs to do things. In the Unix tradition of
1569         * 'Gee thats tricky lets do it in userspace' the umount_begin
1570         * might fail to complete on the first run through as other tasks
1571         * must return, and the like. Thats for the mount program to worry
1572         * about for the moment.
1573         */
1574
1575        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1576                sb->s_op->umount_begin(sb);
1577        }
1578
1579        /*
1580         * No sense to grab the lock for this test, but test itself looks
1581         * somewhat bogus. Suggestions for better replacement?
1582         * Ho-hum... In principle, we might treat that as umount + switch
1583         * to rootfs. GC would eventually take care of the old vfsmount.
1584         * Actually it makes sense, especially if rootfs would contain a
1585         * /reboot - static binary that would close all descriptors and
1586         * call reboot(9). Then init(8) could umount root and exec /reboot.
1587         */
1588        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1589                /*
1590                 * Special case for "unmounting" root ...
1591                 * we just try to remount it readonly.
1592                 */
1593                if (!capable(CAP_SYS_ADMIN))
1594                        return -EPERM;
1595                down_write(&sb->s_umount);
1596                if (!sb_rdonly(sb))
1597                        retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1598                up_write(&sb->s_umount);
1599                return retval;
1600        }
1601
1602        namespace_lock();
1603        lock_mount_hash();
1604        event++;
1605
1606        if (flags & MNT_DETACH) {
1607                if (!list_empty(&mnt->mnt_list))
1608                        umount_tree(mnt, UMOUNT_PROPAGATE);
1609                retval = 0;
1610        } else {
1611                shrink_submounts(mnt);
1612                retval = -EBUSY;
1613                if (!propagate_mount_busy(mnt, 2)) {
1614                        if (!list_empty(&mnt->mnt_list))
1615                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1616                        retval = 0;
1617                }
1618        }
1619        unlock_mount_hash();
1620        namespace_unlock();
1621        return retval;
1622}
1623
1624/*
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1626 *
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1630 * leaking them.
1631 *
1632 * The caller may hold dentry->d_inode->i_mutex.
1633 */
1634void __detach_mounts(struct dentry *dentry)
1635{
1636        struct mountpoint *mp;
1637        struct mount *mnt;
1638
1639        namespace_lock();
1640        lock_mount_hash();
1641        mp = lookup_mountpoint(dentry);
1642        if (IS_ERR_OR_NULL(mp))
1643                goto out_unlock;
1644
1645        event++;
1646        while (!hlist_empty(&mp->m_list)) {
1647                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1648                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1649                        hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650                        umount_mnt(mnt);
1651                }
1652                else umount_tree(mnt, UMOUNT_CONNECTED);
1653        }
1654        put_mountpoint(mp);
1655out_unlock:
1656        unlock_mount_hash();
1657        namespace_unlock();
1658}
1659
1660/*
1661 * Is the caller allowed to modify his namespace?
1662 */
1663static inline bool may_mount(void)
1664{
1665        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666}
1667
1668static inline bool may_mandlock(void)
1669{
1670#ifndef CONFIG_MANDATORY_FILE_LOCKING
1671        return false;
1672#endif
1673        return capable(CAP_SYS_ADMIN);
1674}
1675
1676/*
1677 * Now umount can handle mount points as well as block devices.
1678 * This is important for filesystems which use unnamed block devices.
1679 *
1680 * We now support a flag for forced unmount like the other 'big iron'
1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682 */
1683
1684int ksys_umount(char __user *name, int flags)
1685{
1686        struct path path;
1687        struct mount *mnt;
1688        int retval;
1689        int lookup_flags = 0;
1690
1691        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692                return -EINVAL;
1693
1694        if (!may_mount())
1695                return -EPERM;
1696
1697        if (!(flags & UMOUNT_NOFOLLOW))
1698                lookup_flags |= LOOKUP_FOLLOW;
1699
1700        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1701        if (retval)
1702                goto out;
1703        mnt = real_mount(path.mnt);
1704        retval = -EINVAL;
1705        if (path.dentry != path.mnt->mnt_root)
1706                goto dput_and_out;
1707        if (!check_mnt(mnt))
1708                goto dput_and_out;
1709        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710                goto dput_and_out;
1711        retval = -EPERM;
1712        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713                goto dput_and_out;
1714
1715        retval = do_umount(mnt, flags);
1716dput_and_out:
1717        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1718        dput(path.dentry);
1719        mntput_no_expire(mnt);
1720out:
1721        return retval;
1722}
1723
1724SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1725{
1726        return ksys_umount(name, flags);
1727}
1728
1729#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1730
1731/*
1732 *      The 2.0 compatible umount. No flags.
1733 */
1734SYSCALL_DEFINE1(oldumount, char __user *, name)
1735{
1736        return ksys_umount(name, 0);
1737}
1738
1739#endif
1740
1741static bool is_mnt_ns_file(struct dentry *dentry)
1742{
1743        /* Is this a proxy for a mount namespace? */
1744        return dentry->d_op == &ns_dentry_operations &&
1745               dentry->d_fsdata == &mntns_operations;
1746}
1747
1748struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1749{
1750        return container_of(ns, struct mnt_namespace, ns);
1751}
1752
1753static bool mnt_ns_loop(struct dentry *dentry)
1754{
1755        /* Could bind mounting the mount namespace inode cause a
1756         * mount namespace loop?
1757         */
1758        struct mnt_namespace *mnt_ns;
1759        if (!is_mnt_ns_file(dentry))
1760                return false;
1761
1762        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1763        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1764}
1765
1766struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1767                                        int flag)
1768{
1769        struct mount *res, *p, *q, *r, *parent;
1770
1771        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1772                return ERR_PTR(-EINVAL);
1773
1774        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1775                return ERR_PTR(-EINVAL);
1776
1777        res = q = clone_mnt(mnt, dentry, flag);
1778        if (IS_ERR(q))
1779                return q;
1780
1781        q->mnt_mountpoint = mnt->mnt_mountpoint;
1782
1783        p = mnt;
1784        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1785                struct mount *s;
1786                if (!is_subdir(r->mnt_mountpoint, dentry))
1787                        continue;
1788
1789                for (s = r; s; s = next_mnt(s, r)) {
1790                        if (!(flag & CL_COPY_UNBINDABLE) &&
1791                            IS_MNT_UNBINDABLE(s)) {
1792                                s = skip_mnt_tree(s);
1793                                continue;
1794                        }
1795                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1796                            is_mnt_ns_file(s->mnt.mnt_root)) {
1797                                s = skip_mnt_tree(s);
1798                                continue;
1799                        }
1800                        while (p != s->mnt_parent) {
1801                                p = p->mnt_parent;
1802                                q = q->mnt_parent;
1803                        }
1804                        p = s;
1805                        parent = q;
1806                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1807                        if (IS_ERR(q))
1808                                goto out;
1809                        lock_mount_hash();
1810                        list_add_tail(&q->mnt_list, &res->mnt_list);
1811                        attach_mnt(q, parent, p->mnt_mp);
1812                        unlock_mount_hash();
1813                }
1814        }
1815        return res;
1816out:
1817        if (res) {
1818                lock_mount_hash();
1819                umount_tree(res, UMOUNT_SYNC);
1820                unlock_mount_hash();
1821        }
1822        return q;
1823}
1824
1825/* Caller should check returned pointer for errors */
1826
1827struct vfsmount *collect_mounts(const struct path *path)
1828{
1829        struct mount *tree;
1830        namespace_lock();
1831        if (!check_mnt(real_mount(path->mnt)))
1832                tree = ERR_PTR(-EINVAL);
1833        else
1834                tree = copy_tree(real_mount(path->mnt), path->dentry,
1835                                 CL_COPY_ALL | CL_PRIVATE);
1836        namespace_unlock();
1837        if (IS_ERR(tree))
1838                return ERR_CAST(tree);
1839        return &tree->mnt;
1840}
1841
1842void drop_collected_mounts(struct vfsmount *mnt)
1843{
1844        namespace_lock();
1845        lock_mount_hash();
1846        umount_tree(real_mount(mnt), UMOUNT_SYNC);
1847        unlock_mount_hash();
1848        namespace_unlock();
1849}
1850
1851/**
1852 * clone_private_mount - create a private clone of a path
1853 *
1854 * This creates a new vfsmount, which will be the clone of @path.  The new will
1855 * not be attached anywhere in the namespace and will be private (i.e. changes
1856 * to the originating mount won't be propagated into this).
1857 *
1858 * Release with mntput().
1859 */
1860struct vfsmount *clone_private_mount(const struct path *path)
1861{
1862        struct mount *old_mnt = real_mount(path->mnt);
1863        struct mount *new_mnt;
1864
1865        if (IS_MNT_UNBINDABLE(old_mnt))
1866                return ERR_PTR(-EINVAL);
1867
1868        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1869        if (IS_ERR(new_mnt))
1870                return ERR_CAST(new_mnt);
1871
1872        return &new_mnt->mnt;
1873}
1874EXPORT_SYMBOL_GPL(clone_private_mount);
1875
1876int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1877                   struct vfsmount *root)
1878{
1879        struct mount *mnt;
1880        int res = f(root, arg);
1881        if (res)
1882                return res;
1883        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1884                res = f(&mnt->mnt, arg);
1885                if (res)
1886                        return res;
1887        }
1888        return 0;
1889}
1890
1891static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1892{
1893        struct mount *p;
1894
1895        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1896                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1897                        mnt_release_group_id(p);
1898        }
1899}
1900
1901static int invent_group_ids(struct mount *mnt, bool recurse)
1902{
1903        struct mount *p;
1904
1905        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1906                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1907                        int err = mnt_alloc_group_id(p);
1908                        if (err) {
1909                                cleanup_group_ids(mnt, p);
1910                                return err;
1911                        }
1912                }
1913        }
1914
1915        return 0;
1916}
1917
1918int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1919{
1920        unsigned int max = READ_ONCE(sysctl_mount_max);
1921        unsigned int mounts = 0, old, pending, sum;
1922        struct mount *p;
1923
1924        for (p = mnt; p; p = next_mnt(p, mnt))
1925                mounts++;
1926
1927        old = ns->mounts;
1928        pending = ns->pending_mounts;
1929        sum = old + pending;
1930        if ((old > sum) ||
1931            (pending > sum) ||
1932            (max < sum) ||
1933            (mounts > (max - sum)))
1934                return -ENOSPC;
1935
1936        ns->pending_mounts = pending + mounts;
1937        return 0;
1938}
1939
1940/*
1941 *  @source_mnt : mount tree to be attached
1942 *  @nd         : place the mount tree @source_mnt is attached
1943 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1944 *                 store the parent mount and mountpoint dentry.
1945 *                 (done when source_mnt is moved)
1946 *
1947 *  NOTE: in the table below explains the semantics when a source mount
1948 *  of a given type is attached to a destination mount of a given type.
1949 * ---------------------------------------------------------------------------
1950 * |         BIND MOUNT OPERATION                                            |
1951 * |**************************************************************************
1952 * | source-->| shared        |       private  |       slave    | unbindable |
1953 * | dest     |               |                |                |            |
1954 * |   |      |               |                |                |            |
1955 * |   v      |               |                |                |            |
1956 * |**************************************************************************
1957 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1958 * |          |               |                |                |            |
1959 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1960 * ***************************************************************************
1961 * A bind operation clones the source mount and mounts the clone on the
1962 * destination mount.
1963 *
1964 * (++)  the cloned mount is propagated to all the mounts in the propagation
1965 *       tree of the destination mount and the cloned mount is added to
1966 *       the peer group of the source mount.
1967 * (+)   the cloned mount is created under the destination mount and is marked
1968 *       as shared. The cloned mount is added to the peer group of the source
1969 *       mount.
1970 * (+++) the mount is propagated to all the mounts in the propagation tree
1971 *       of the destination mount and the cloned mount is made slave
1972 *       of the same master as that of the source mount. The cloned mount
1973 *       is marked as 'shared and slave'.
1974 * (*)   the cloned mount is made a slave of the same master as that of the
1975 *       source mount.
1976 *
1977 * ---------------------------------------------------------------------------
1978 * |                    MOVE MOUNT OPERATION                                 |
1979 * |**************************************************************************
1980 * | source-->| shared        |       private  |       slave    | unbindable |
1981 * | dest     |               |                |                |            |
1982 * |   |      |               |                |                |            |
1983 * |   v      |               |                |                |            |
1984 * |**************************************************************************
1985 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1986 * |          |               |                |                |            |
1987 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1988 * ***************************************************************************
1989 *
1990 * (+)  the mount is moved to the destination. And is then propagated to
1991 *      all the mounts in the propagation tree of the destination mount.
1992 * (+*)  the mount is moved to the destination.
1993 * (+++)  the mount is moved to the destination and is then propagated to
1994 *      all the mounts belonging to the destination mount's propagation tree.
1995 *      the mount is marked as 'shared and slave'.
1996 * (*)  the mount continues to be a slave at the new location.
1997 *
1998 * if the source mount is a tree, the operations explained above is
1999 * applied to each mount in the tree.
2000 * Must be called without spinlocks held, since this function can sleep
2001 * in allocations.
2002 */
2003static int attach_recursive_mnt(struct mount *source_mnt,
2004                        struct mount *dest_mnt,
2005                        struct mountpoint *dest_mp,
2006                        struct path *parent_path)
2007{
2008        HLIST_HEAD(tree_list);
2009        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2010        struct mountpoint *smp;
2011        struct mount *child, *p;
2012        struct hlist_node *n;
2013        int err;
2014
2015        /* Preallocate a mountpoint in case the new mounts need
2016         * to be tucked under other mounts.
2017         */
2018        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2019        if (IS_ERR(smp))
2020                return PTR_ERR(smp);
2021
2022        /* Is there space to add these mounts to the mount namespace? */
2023        if (!parent_path) {
2024                err = count_mounts(ns, source_mnt);
2025                if (err)
2026                        goto out;
2027        }
2028
2029        if (IS_MNT_SHARED(dest_mnt)) {
2030                err = invent_group_ids(source_mnt, true);
2031                if (err)
2032                        goto out;
2033                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2034                lock_mount_hash();
2035                if (err)
2036                        goto out_cleanup_ids;
2037                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2038                        set_mnt_shared(p);
2039        } else {
2040                lock_mount_hash();
2041        }
2042        if (parent_path) {
2043                detach_mnt(source_mnt, parent_path);
2044                attach_mnt(source_mnt, dest_mnt, dest_mp);
2045                touch_mnt_namespace(source_mnt->mnt_ns);
2046        } else {
2047                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2048                commit_tree(source_mnt);
2049        }
2050
2051        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2052                struct mount *q;
2053                hlist_del_init(&child->mnt_hash);
2054                q = __lookup_mnt(&child->mnt_parent->mnt,
2055                                 child->mnt_mountpoint);
2056                if (q)
2057                        mnt_change_mountpoint(child, smp, q);
2058                commit_tree(child);
2059        }
2060        put_mountpoint(smp);
2061        unlock_mount_hash();
2062
2063        return 0;
2064
2065 out_cleanup_ids:
2066        while (!hlist_empty(&tree_list)) {
2067                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2068                child->mnt_parent->mnt_ns->pending_mounts = 0;
2069                umount_tree(child, UMOUNT_SYNC);
2070        }
2071        unlock_mount_hash();
2072        cleanup_group_ids(source_mnt, NULL);
2073 out:
2074        ns->pending_mounts = 0;
2075
2076        read_seqlock_excl(&mount_lock);
2077        put_mountpoint(smp);
2078        read_sequnlock_excl(&mount_lock);
2079
2080        return err;
2081}
2082
2083static struct mountpoint *lock_mount(struct path *path)
2084{
2085        struct vfsmount *mnt;
2086        struct dentry *dentry = path->dentry;
2087retry:
2088        inode_lock(dentry->d_inode);
2089        if (unlikely(cant_mount(dentry))) {
2090                inode_unlock(dentry->d_inode);
2091                return ERR_PTR(-ENOENT);
2092        }
2093        namespace_lock();
2094        mnt = lookup_mnt(path);
2095        if (likely(!mnt)) {
2096                struct mountpoint *mp = get_mountpoint(dentry);
2097                if (IS_ERR(mp)) {
2098                        namespace_unlock();
2099                        inode_unlock(dentry->d_inode);
2100                        return mp;
2101                }
2102                return mp;
2103        }
2104        namespace_unlock();
2105        inode_unlock(path->dentry->d_inode);
2106        path_put(path);
2107        path->mnt = mnt;
2108        dentry = path->dentry = dget(mnt->mnt_root);
2109        goto retry;
2110}
2111
2112static void unlock_mount(struct mountpoint *where)
2113{
2114        struct dentry *dentry = where->m_dentry;
2115
2116        read_seqlock_excl(&mount_lock);
2117        put_mountpoint(where);
2118        read_sequnlock_excl(&mount_lock);
2119
2120        namespace_unlock();
2121        inode_unlock(dentry->d_inode);
2122}
2123
2124static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2125{
2126        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2127                return -EINVAL;
2128
2129        if (d_is_dir(mp->m_dentry) !=
2130              d_is_dir(mnt->mnt.mnt_root))
2131                return -ENOTDIR;
2132
2133        return attach_recursive_mnt(mnt, p, mp, NULL);
2134}
2135
2136/*
2137 * Sanity check the flags to change_mnt_propagation.
2138 */
2139
2140static int flags_to_propagation_type(int ms_flags)
2141{
2142        int type = ms_flags & ~(MS_REC | MS_SILENT);
2143
2144        /* Fail if any non-propagation flags are set */
2145        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2146                return 0;
2147        /* Only one propagation flag should be set */
2148        if (!is_power_of_2(type))
2149                return 0;
2150        return type;
2151}
2152
2153/*
2154 * recursively change the type of the mountpoint.
2155 */
2156static int do_change_type(struct path *path, int ms_flags)
2157{
2158        struct mount *m;
2159        struct mount *mnt = real_mount(path->mnt);
2160        int recurse = ms_flags & MS_REC;
2161        int type;
2162        int err = 0;
2163
2164        if (path->dentry != path->mnt->mnt_root)
2165                return -EINVAL;
2166
2167        type = flags_to_propagation_type(ms_flags);
2168        if (!type)
2169                return -EINVAL;
2170
2171        namespace_lock();
2172        if (type == MS_SHARED) {
2173                err = invent_group_ids(mnt, recurse);
2174                if (err)
2175                        goto out_unlock;
2176        }
2177
2178        lock_mount_hash();
2179        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2180                change_mnt_propagation(m, type);
2181        unlock_mount_hash();
2182
2183 out_unlock:
2184        namespace_unlock();
2185        return err;
2186}
2187
2188static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2189{
2190        struct mount *child;
2191        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2192                if (!is_subdir(child->mnt_mountpoint, dentry))
2193                        continue;
2194
2195                if (child->mnt.mnt_flags & MNT_LOCKED)
2196                        return true;
2197        }
2198        return false;
2199}
2200
2201/*
2202 * do loopback mount.
2203 */
2204static int do_loopback(struct path *path, const char *old_name,
2205                                int recurse)
2206{
2207        struct path old_path;
2208        struct mount *mnt = NULL, *old, *parent;
2209        struct mountpoint *mp;
2210        int err;
2211        if (!old_name || !*old_name)
2212                return -EINVAL;
2213        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2214        if (err)
2215                return err;
2216
2217        err = -EINVAL;
2218        if (mnt_ns_loop(old_path.dentry))
2219                goto out;
2220
2221        mp = lock_mount(path);
2222        err = PTR_ERR(mp);
2223        if (IS_ERR(mp))
2224                goto out;
2225
2226        old = real_mount(old_path.mnt);
2227        parent = real_mount(path->mnt);
2228
2229        err = -EINVAL;
2230        if (IS_MNT_UNBINDABLE(old))
2231                goto out2;
2232
2233        if (!check_mnt(parent))
2234                goto out2;
2235
2236        if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2237                goto out2;
2238
2239        if (!recurse && has_locked_children(old, old_path.dentry))
2240                goto out2;
2241
2242        if (recurse)
2243                mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2244        else
2245                mnt = clone_mnt(old, old_path.dentry, 0);
2246
2247        if (IS_ERR(mnt)) {
2248                err = PTR_ERR(mnt);
2249                goto out2;
2250        }
2251
2252        mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2253
2254        err = graft_tree(mnt, parent, mp);
2255        if (err) {
2256                lock_mount_hash();
2257                umount_tree(mnt, UMOUNT_SYNC);
2258                unlock_mount_hash();
2259        }
2260out2:
2261        unlock_mount(mp);
2262out:
2263        path_put(&old_path);
2264        return err;
2265}
2266
2267static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2268{
2269        int error = 0;
2270        int readonly_request = 0;
2271
2272        if (ms_flags & MS_RDONLY)
2273                readonly_request = 1;
2274        if (readonly_request == __mnt_is_readonly(mnt))
2275                return 0;
2276
2277        if (readonly_request)
2278                error = mnt_make_readonly(real_mount(mnt));
2279        else
2280                __mnt_unmake_readonly(real_mount(mnt));
2281        return error;
2282}
2283
2284/*
2285 * change filesystem flags. dir should be a physical root of filesystem.
2286 * If you've mounted a non-root directory somewhere and want to do remount
2287 * on it - tough luck.
2288 */
2289static int do_remount(struct path *path, int ms_flags, int sb_flags,
2290                      int mnt_flags, void *data)
2291{
2292        int err;
2293        struct super_block *sb = path->mnt->mnt_sb;
2294        struct mount *mnt = real_mount(path->mnt);
2295
2296        if (!check_mnt(mnt))
2297                return -EINVAL;
2298
2299        if (path->dentry != path->mnt->mnt_root)
2300                return -EINVAL;
2301
2302        /* Don't allow changing of locked mnt flags.
2303         *
2304         * No locks need to be held here while testing the various
2305         * MNT_LOCK flags because those flags can never be cleared
2306         * once they are set.
2307         */
2308        if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2309            !(mnt_flags & MNT_READONLY)) {
2310                return -EPERM;
2311        }
2312        if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2313            !(mnt_flags & MNT_NODEV)) {
2314                return -EPERM;
2315        }
2316        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2317            !(mnt_flags & MNT_NOSUID)) {
2318                return -EPERM;
2319        }
2320        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2321            !(mnt_flags & MNT_NOEXEC)) {
2322                return -EPERM;
2323        }
2324        if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2325            ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2326                return -EPERM;
2327        }
2328
2329        err = security_sb_remount(sb, data);
2330        if (err)
2331                return err;
2332
2333        down_write(&sb->s_umount);
2334        if (ms_flags & MS_BIND)
2335                err = change_mount_flags(path->mnt, ms_flags);
2336        else if (!capable(CAP_SYS_ADMIN))
2337                err = -EPERM;
2338        else
2339                err = do_remount_sb(sb, sb_flags, data, 0);
2340        if (!err) {
2341                lock_mount_hash();
2342                mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2343                mnt->mnt.mnt_flags = mnt_flags;
2344                touch_mnt_namespace(mnt->mnt_ns);
2345                unlock_mount_hash();
2346        }
2347        up_write(&sb->s_umount);
2348        return err;
2349}
2350
2351static inline int tree_contains_unbindable(struct mount *mnt)
2352{
2353        struct mount *p;
2354        for (p = mnt; p; p = next_mnt(p, mnt)) {
2355                if (IS_MNT_UNBINDABLE(p))
2356                        return 1;
2357        }
2358        return 0;
2359}
2360
2361static int do_move_mount(struct path *path, const char *old_name)
2362{
2363        struct path old_path, parent_path;
2364        struct mount *p;
2365        struct mount *old;
2366        struct mountpoint *mp;
2367        int err;
2368        if (!old_name || !*old_name)
2369                return -EINVAL;
2370        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2371        if (err)
2372                return err;
2373
2374        mp = lock_mount(path);
2375        err = PTR_ERR(mp);
2376        if (IS_ERR(mp))
2377                goto out;
2378
2379        old = real_mount(old_path.mnt);
2380        p = real_mount(path->mnt);
2381
2382        err = -EINVAL;
2383        if (!check_mnt(p) || !check_mnt(old))
2384                goto out1;
2385
2386        if (old->mnt.mnt_flags & MNT_LOCKED)
2387                goto out1;
2388
2389        err = -EINVAL;
2390        if (old_path.dentry != old_path.mnt->mnt_root)
2391                goto out1;
2392
2393        if (!mnt_has_parent(old))
2394                goto out1;
2395
2396        if (d_is_dir(path->dentry) !=
2397              d_is_dir(old_path.dentry))
2398                goto out1;
2399        /*
2400         * Don't move a mount residing in a shared parent.
2401         */
2402        if (IS_MNT_SHARED(old->mnt_parent))
2403                goto out1;
2404        /*
2405         * Don't move a mount tree containing unbindable mounts to a destination
2406         * mount which is shared.
2407         */
2408        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2409                goto out1;
2410        err = -ELOOP;
2411        for (; mnt_has_parent(p); p = p->mnt_parent)
2412                if (p == old)
2413                        goto out1;
2414
2415        err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2416        if (err)
2417                goto out1;
2418
2419        /* if the mount is moved, it should no longer be expire
2420         * automatically */
2421        list_del_init(&old->mnt_expire);
2422out1:
2423        unlock_mount(mp);
2424out:
2425        if (!err)
2426                path_put(&parent_path);
2427        path_put(&old_path);
2428        return err;
2429}
2430
2431static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2432{
2433        int err;
2434        const char *subtype = strchr(fstype, '.');
2435        if (subtype) {
2436                subtype++;
2437                err = -EINVAL;
2438                if (!subtype[0])
2439                        goto err;
2440        } else
2441                subtype = "";
2442
2443        mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2444        err = -ENOMEM;
2445        if (!mnt->mnt_sb->s_subtype)
2446                goto err;
2447        return mnt;
2448
2449 err:
2450        mntput(mnt);
2451        return ERR_PTR(err);
2452}
2453
2454/*
2455 * add a mount into a namespace's mount tree
2456 */
2457static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2458{
2459        struct mountpoint *mp;
2460        struct mount *parent;
2461        int err;
2462
2463        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2464
2465        mp = lock_mount(path);
2466        if (IS_ERR(mp))
2467                return PTR_ERR(mp);
2468
2469        parent = real_mount(path->mnt);
2470        err = -EINVAL;
2471        if (unlikely(!check_mnt(parent))) {
2472                /* that's acceptable only for automounts done in private ns */
2473                if (!(mnt_flags & MNT_SHRINKABLE))
2474                        goto unlock;
2475                /* ... and for those we'd better have mountpoint still alive */
2476                if (!parent->mnt_ns)
2477                        goto unlock;
2478        }
2479
2480        /* Refuse the same filesystem on the same mount point */
2481        err = -EBUSY;
2482        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2483            path->mnt->mnt_root == path->dentry)
2484                goto unlock;
2485
2486        err = -EINVAL;
2487        if (d_is_symlink(newmnt->mnt.mnt_root))
2488                goto unlock;
2489
2490        newmnt->mnt.mnt_flags = mnt_flags;
2491        err = graft_tree(newmnt, parent, mp);
2492
2493unlock:
2494        unlock_mount(mp);
2495        return err;
2496}
2497
2498static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2499
2500/*
2501 * create a new mount for userspace and request it to be added into the
2502 * namespace's tree
2503 */
2504static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2505                        int mnt_flags, const char *name, void *data)
2506{
2507        struct file_system_type *type;
2508        struct vfsmount *mnt;
2509        int err;
2510
2511        if (!fstype)
2512                return -EINVAL;
2513
2514        type = get_fs_type(fstype);
2515        if (!type)
2516                return -ENODEV;
2517
2518        mnt = vfs_kern_mount(type, sb_flags, name, data);
2519        if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2520            !mnt->mnt_sb->s_subtype)
2521                mnt = fs_set_subtype(mnt, fstype);
2522
2523        put_filesystem(type);
2524        if (IS_ERR(mnt))
2525                return PTR_ERR(mnt);
2526
2527        if (mount_too_revealing(mnt, &mnt_flags)) {
2528                mntput(mnt);
2529                return -EPERM;
2530        }
2531
2532        err = do_add_mount(real_mount(mnt), path, mnt_flags);
2533        if (err)
2534                mntput(mnt);
2535        return err;
2536}
2537
2538int finish_automount(struct vfsmount *m, struct path *path)
2539{
2540        struct mount *mnt = real_mount(m);
2541        int err;
2542        /* The new mount record should have at least 2 refs to prevent it being
2543         * expired before we get a chance to add it
2544         */
2545        BUG_ON(mnt_get_count(mnt) < 2);
2546
2547        if (m->mnt_sb == path->mnt->mnt_sb &&
2548            m->mnt_root == path->dentry) {
2549                err = -ELOOP;
2550                goto fail;
2551        }
2552
2553        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2554        if (!err)
2555                return 0;
2556fail:
2557        /* remove m from any expiration list it may be on */
2558        if (!list_empty(&mnt->mnt_expire)) {
2559                namespace_lock();
2560                list_del_init(&mnt->mnt_expire);
2561                namespace_unlock();
2562        }
2563        mntput(m);
2564        mntput(m);
2565        return err;
2566}
2567
2568/**
2569 * mnt_set_expiry - Put a mount on an expiration list
2570 * @mnt: The mount to list.
2571 * @expiry_list: The list to add the mount to.
2572 */
2573void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2574{
2575        namespace_lock();
2576
2577        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2578
2579        namespace_unlock();
2580}
2581EXPORT_SYMBOL(mnt_set_expiry);
2582
2583/*
2584 * process a list of expirable mountpoints with the intent of discarding any
2585 * mountpoints that aren't in use and haven't been touched since last we came
2586 * here
2587 */
2588void mark_mounts_for_expiry(struct list_head *mounts)
2589{
2590        struct mount *mnt, *next;
2591        LIST_HEAD(graveyard);
2592
2593        if (list_empty(mounts))
2594                return;
2595
2596        namespace_lock();
2597        lock_mount_hash();
2598
2599        /* extract from the expiration list every vfsmount that matches the
2600         * following criteria:
2601         * - only referenced by its parent vfsmount
2602         * - still marked for expiry (marked on the last call here; marks are
2603         *   cleared by mntput())
2604         */
2605        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2606                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2607                        propagate_mount_busy(mnt, 1))
2608                        continue;
2609                list_move(&mnt->mnt_expire, &graveyard);
2610        }
2611        while (!list_empty(&graveyard)) {
2612                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2613                touch_mnt_namespace(mnt->mnt_ns);
2614                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2615        }
2616        unlock_mount_hash();
2617        namespace_unlock();
2618}
2619
2620EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2621
2622/*
2623 * Ripoff of 'select_parent()'
2624 *
2625 * search the list of submounts for a given mountpoint, and move any
2626 * shrinkable submounts to the 'graveyard' list.
2627 */
2628static int select_submounts(struct mount *parent, struct list_head *graveyard)
2629{
2630        struct mount *this_parent = parent;
2631        struct list_head *next;
2632        int found = 0;
2633
2634repeat:
2635        next = this_parent->mnt_mounts.next;
2636resume:
2637        while (next != &this_parent->mnt_mounts) {
2638                struct list_head *tmp = next;
2639                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2640
2641                next = tmp->next;
2642                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2643                        continue;
2644                /*
2645                 * Descend a level if the d_mounts list is non-empty.
2646                 */
2647                if (!list_empty(&mnt->mnt_mounts)) {
2648                        this_parent = mnt;
2649                        goto repeat;
2650                }
2651
2652                if (!propagate_mount_busy(mnt, 1)) {
2653                        list_move_tail(&mnt->mnt_expire, graveyard);
2654                        found++;
2655                }
2656        }
2657        /*
2658         * All done at this level ... ascend and resume the search
2659         */
2660        if (this_parent != parent) {
2661                next = this_parent->mnt_child.next;
2662                this_parent = this_parent->mnt_parent;
2663                goto resume;
2664        }
2665        return found;
2666}
2667
2668/*
2669 * process a list of expirable mountpoints with the intent of discarding any
2670 * submounts of a specific parent mountpoint
2671 *
2672 * mount_lock must be held for write
2673 */
2674static void shrink_submounts(struct mount *mnt)
2675{
2676        LIST_HEAD(graveyard);
2677        struct mount *m;
2678
2679        /* extract submounts of 'mountpoint' from the expiration list */
2680        while (select_submounts(mnt, &graveyard)) {
2681                while (!list_empty(&graveyard)) {
2682                        m = list_first_entry(&graveyard, struct mount,
2683                                                mnt_expire);
2684                        touch_mnt_namespace(m->mnt_ns);
2685                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2686                }
2687        }
2688}
2689
2690/*
2691 * Some copy_from_user() implementations do not return the exact number of
2692 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2693 * Note that this function differs from copy_from_user() in that it will oops
2694 * on bad values of `to', rather than returning a short copy.
2695 */
2696static long exact_copy_from_user(void *to, const void __user * from,
2697                                 unsigned long n)
2698{
2699        char *t = to;
2700        const char __user *f = from;
2701        char c;
2702
2703        if (!access_ok(VERIFY_READ, from, n))
2704                return n;
2705
2706        while (n) {
2707                if (__get_user(c, f)) {
2708                        memset(t, 0, n);
2709                        break;
2710                }
2711                *t++ = c;
2712                f++;
2713                n--;
2714        }
2715        return n;
2716}
2717
2718void *copy_mount_options(const void __user * data)
2719{
2720        int i;
2721        unsigned long size;
2722        char *copy;
2723
2724        if (!data)
2725                return NULL;
2726
2727        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2728        if (!copy)
2729                return ERR_PTR(-ENOMEM);
2730
2731        /* We only care that *some* data at the address the user
2732         * gave us is valid.  Just in case, we'll zero
2733         * the remainder of the page.
2734         */
2735        /* copy_from_user cannot cross TASK_SIZE ! */
2736        size = TASK_SIZE - (unsigned long)data;
2737        if (size > PAGE_SIZE)
2738                size = PAGE_SIZE;
2739
2740        i = size - exact_copy_from_user(copy, data, size);
2741        if (!i) {
2742                kfree(copy);
2743                return ERR_PTR(-EFAULT);
2744        }
2745        if (i != PAGE_SIZE)
2746                memset(copy + i, 0, PAGE_SIZE - i);
2747        return copy;
2748}
2749
2750char *copy_mount_string(const void __user *data)
2751{
2752        return data ? strndup_user(data, PAGE_SIZE) : NULL;
2753}
2754
2755/*
2756 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2757 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2758 *
2759 * data is a (void *) that can point to any structure up to
2760 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2761 * information (or be NULL).
2762 *
2763 * Pre-0.97 versions of mount() didn't have a flags word.
2764 * When the flags word was introduced its top half was required
2765 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2766 * Therefore, if this magic number is present, it carries no information
2767 * and must be discarded.
2768 */
2769long do_mount(const char *dev_name, const char __user *dir_name,
2770                const char *type_page, unsigned long flags, void *data_page)
2771{
2772        struct path path;
2773        unsigned int mnt_flags = 0, sb_flags;
2774        int retval = 0;
2775
2776        /* Discard magic */
2777        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2778                flags &= ~MS_MGC_MSK;
2779
2780        /* Basic sanity checks */
2781        if (data_page)
2782                ((char *)data_page)[PAGE_SIZE - 1] = 0;
2783
2784        if (flags & MS_NOUSER)
2785                return -EINVAL;
2786
2787        /* ... and get the mountpoint */
2788        retval = user_path(dir_name, &path);
2789        if (retval)
2790                return retval;
2791
2792        retval = security_sb_mount(dev_name, &path,
2793                                   type_page, flags, data_page);
2794        if (!retval && !may_mount())
2795                retval = -EPERM;
2796        if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2797                retval = -EPERM;
2798        if (retval)
2799                goto dput_out;
2800
2801        /* Default to relatime unless overriden */
2802        if (!(flags & MS_NOATIME))
2803                mnt_flags |= MNT_RELATIME;
2804
2805        /* Separate the per-mountpoint flags */
2806        if (flags & MS_NOSUID)
2807                mnt_flags |= MNT_NOSUID;
2808        if (flags & MS_NODEV)
2809                mnt_flags |= MNT_NODEV;
2810        if (flags & MS_NOEXEC)
2811                mnt_flags |= MNT_NOEXEC;
2812        if (flags & MS_NOATIME)
2813                mnt_flags |= MNT_NOATIME;
2814        if (flags & MS_NODIRATIME)
2815                mnt_flags |= MNT_NODIRATIME;
2816        if (flags & MS_STRICTATIME)
2817                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2818        if (flags & MS_RDONLY)
2819                mnt_flags |= MNT_READONLY;
2820
2821        /* The default atime for remount is preservation */
2822        if ((flags & MS_REMOUNT) &&
2823            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2824                       MS_STRICTATIME)) == 0)) {
2825                mnt_flags &= ~MNT_ATIME_MASK;
2826                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2827        }
2828
2829        sb_flags = flags & (SB_RDONLY |
2830                            SB_SYNCHRONOUS |
2831                            SB_MANDLOCK |
2832                            SB_DIRSYNC |
2833                            SB_SILENT |
2834                            SB_POSIXACL |
2835                            SB_LAZYTIME |
2836                            SB_I_VERSION);
2837
2838        if (flags & MS_REMOUNT)
2839                retval = do_remount(&path, flags, sb_flags, mnt_flags,
2840                                    data_page);
2841        else if (flags & MS_BIND)
2842                retval = do_loopback(&path, dev_name, flags & MS_REC);
2843        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2844                retval = do_change_type(&path, flags);
2845        else if (flags & MS_MOVE)
2846                retval = do_move_mount(&path, dev_name);
2847        else
2848                retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2849                                      dev_name, data_page);
2850dput_out:
2851        path_put(&path);
2852        return retval;
2853}
2854
2855static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2856{
2857        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2858}
2859
2860static void dec_mnt_namespaces(struct ucounts *ucounts)
2861{
2862        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2863}
2864
2865static void free_mnt_ns(struct mnt_namespace *ns)
2866{
2867        ns_free_inum(&ns->ns);
2868        dec_mnt_namespaces(ns->ucounts);
2869        put_user_ns(ns->user_ns);
2870        kfree(ns);
2871}
2872
2873/*
2874 * Assign a sequence number so we can detect when we attempt to bind
2875 * mount a reference to an older mount namespace into the current
2876 * mount namespace, preventing reference counting loops.  A 64bit
2877 * number incrementing at 10Ghz will take 12,427 years to wrap which
2878 * is effectively never, so we can ignore the possibility.
2879 */
2880static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2881
2882static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2883{
2884        struct mnt_namespace *new_ns;
2885        struct ucounts *ucounts;
2886        int ret;
2887
2888        ucounts = inc_mnt_namespaces(user_ns);
2889        if (!ucounts)
2890                return ERR_PTR(-ENOSPC);
2891
2892        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2893        if (!new_ns) {
2894                dec_mnt_namespaces(ucounts);
2895                return ERR_PTR(-ENOMEM);
2896        }
2897        ret = ns_alloc_inum(&new_ns->ns);
2898        if (ret) {
2899                kfree(new_ns);
2900                dec_mnt_namespaces(ucounts);
2901                return ERR_PTR(ret);
2902        }
2903        new_ns->ns.ops = &mntns_operations;
2904        new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2905        atomic_set(&new_ns->count, 1);
2906        new_ns->root = NULL;
2907        INIT_LIST_HEAD(&new_ns->list);
2908        init_waitqueue_head(&new_ns->poll);
2909        new_ns->event = 0;
2910        new_ns->user_ns = get_user_ns(user_ns);
2911        new_ns->ucounts = ucounts;
2912        new_ns->mounts = 0;
2913        new_ns->pending_mounts = 0;
2914        return new_ns;
2915}
2916
2917__latent_entropy
2918struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2919                struct user_namespace *user_ns, struct fs_struct *new_fs)
2920{
2921        struct mnt_namespace *new_ns;
2922        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2923        struct mount *p, *q;
2924        struct mount *old;
2925        struct mount *new;
2926        int copy_flags;
2927
2928        BUG_ON(!ns);
2929
2930        if (likely(!(flags & CLONE_NEWNS))) {
2931                get_mnt_ns(ns);
2932                return ns;
2933        }
2934
2935        old = ns->root;
2936
2937        new_ns = alloc_mnt_ns(user_ns);
2938        if (IS_ERR(new_ns))
2939                return new_ns;
2940
2941        namespace_lock();
2942        /* First pass: copy the tree topology */
2943        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2944        if (user_ns != ns->user_ns)
2945                copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2946        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2947        if (IS_ERR(new)) {
2948                namespace_unlock();
2949                free_mnt_ns(new_ns);
2950                return ERR_CAST(new);
2951        }
2952        new_ns->root = new;
2953        list_add_tail(&new_ns->list, &new->mnt_list);
2954
2955        /*
2956         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2957         * as belonging to new namespace.  We have already acquired a private
2958         * fs_struct, so tsk->fs->lock is not needed.
2959         */
2960        p = old;
2961        q = new;
2962        while (p) {
2963                q->mnt_ns = new_ns;
2964                new_ns->mounts++;
2965                if (new_fs) {
2966                        if (&p->mnt == new_fs->root.mnt) {
2967                                new_fs->root.mnt = mntget(&q->mnt);
2968                                rootmnt = &p->mnt;
2969                        }
2970                        if (&p->mnt == new_fs->pwd.mnt) {
2971                                new_fs->pwd.mnt = mntget(&q->mnt);
2972                                pwdmnt = &p->mnt;
2973                        }
2974                }
2975                p = next_mnt(p, old);
2976                q = next_mnt(q, new);
2977                if (!q)
2978                        break;
2979                while (p->mnt.mnt_root != q->mnt.mnt_root)
2980                        p = next_mnt(p, old);
2981        }
2982        namespace_unlock();
2983
2984        if (rootmnt)
2985                mntput(rootmnt);
2986        if (pwdmnt)
2987                mntput(pwdmnt);
2988
2989        return new_ns;
2990}
2991
2992/**
2993 * create_mnt_ns - creates a private namespace and adds a root filesystem
2994 * @mnt: pointer to the new root filesystem mountpoint
2995 */
2996static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2997{
2998        struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2999        if (!IS_ERR(new_ns)) {
3000                struct mount *mnt = real_mount(m);
3001                mnt->mnt_ns = new_ns;
3002                new_ns->root = mnt;
3003                new_ns->mounts++;
3004                list_add(&mnt->mnt_list, &new_ns->list);
3005        } else {
3006                mntput(m);
3007        }
3008        return new_ns;
3009}
3010
3011struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3012{
3013        struct mnt_namespace *ns;
3014        struct super_block *s;
3015        struct path path;
3016        int err;
3017
3018        ns = create_mnt_ns(mnt);
3019        if (IS_ERR(ns))
3020                return ERR_CAST(ns);
3021
3022        err = vfs_path_lookup(mnt->mnt_root, mnt,
3023                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3024
3025        put_mnt_ns(ns);
3026
3027        if (err)
3028                return ERR_PTR(err);
3029
3030        /* trade a vfsmount reference for active sb one */
3031        s = path.mnt->mnt_sb;
3032        atomic_inc(&s->s_active);
3033        mntput(path.mnt);
3034        /* lock the sucker */
3035        down_write(&s->s_umount);
3036        /* ... and return the root of (sub)tree on it */
3037        return path.dentry;
3038}
3039EXPORT_SYMBOL(mount_subtree);
3040
3041int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3042               unsigned long flags, void __user *data)
3043{
3044        int ret;
3045        char *kernel_type;
3046        char *kernel_dev;
3047        void *options;
3048
3049        kernel_type = copy_mount_string(type);
3050        ret = PTR_ERR(kernel_type);
3051        if (IS_ERR(kernel_type))
3052                goto out_type;
3053
3054        kernel_dev = copy_mount_string(dev_name);
3055        ret = PTR_ERR(kernel_dev);
3056        if (IS_ERR(kernel_dev))
3057                goto out_dev;
3058
3059        options = copy_mount_options(data);
3060        ret = PTR_ERR(options);
3061        if (IS_ERR(options))
3062                goto out_data;
3063
3064        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3065
3066        kfree(options);
3067out_data:
3068        kfree(kernel_dev);
3069out_dev:
3070        kfree(kernel_type);
3071out_type:
3072        return ret;
3073}
3074
3075SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3076                char __user *, type, unsigned long, flags, void __user *, data)
3077{
3078        return ksys_mount(dev_name, dir_name, type, flags, data);
3079}
3080
3081/*
3082 * Return true if path is reachable from root
3083 *
3084 * namespace_sem or mount_lock is held
3085 */
3086bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3087                         const struct path *root)
3088{
3089        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3090                dentry = mnt->mnt_mountpoint;
3091                mnt = mnt->mnt_parent;
3092        }
3093        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3094}
3095
3096bool path_is_under(const struct path *path1, const struct path *path2)
3097{
3098        bool res;
3099        read_seqlock_excl(&mount_lock);
3100        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3101        read_sequnlock_excl(&mount_lock);
3102        return res;
3103}
3104EXPORT_SYMBOL(path_is_under);
3105
3106/*
3107 * pivot_root Semantics:
3108 * Moves the root file system of the current process to the directory put_old,
3109 * makes new_root as the new root file system of the current process, and sets
3110 * root/cwd of all processes which had them on the current root to new_root.
3111 *
3112 * Restrictions:
3113 * The new_root and put_old must be directories, and  must not be on the
3114 * same file  system as the current process root. The put_old  must  be
3115 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3116 * pointed to by put_old must yield the same directory as new_root. No other
3117 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3118 *
3119 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3120 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3121 * in this situation.
3122 *
3123 * Notes:
3124 *  - we don't move root/cwd if they are not at the root (reason: if something
3125 *    cared enough to change them, it's probably wrong to force them elsewhere)
3126 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3127 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3128 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3129 *    first.
3130 */
3131SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3132                const char __user *, put_old)
3133{
3134        struct path new, old, parent_path, root_parent, root;
3135        struct mount *new_mnt, *root_mnt, *old_mnt;
3136        struct mountpoint *old_mp, *root_mp;
3137        int error;
3138
3139        if (!may_mount())
3140                return -EPERM;
3141
3142        error = user_path_dir(new_root, &new);
3143        if (error)
3144                goto out0;
3145
3146        error = user_path_dir(put_old, &old);
3147        if (error)
3148                goto out1;
3149
3150        error = security_sb_pivotroot(&old, &new);
3151        if (error)
3152                goto out2;
3153
3154        get_fs_root(current->fs, &root);
3155        old_mp = lock_mount(&old);
3156        error = PTR_ERR(old_mp);
3157        if (IS_ERR(old_mp))
3158                goto out3;
3159
3160        error = -EINVAL;
3161        new_mnt = real_mount(new.mnt);
3162        root_mnt = real_mount(root.mnt);
3163        old_mnt = real_mount(old.mnt);
3164        if (IS_MNT_SHARED(old_mnt) ||
3165                IS_MNT_SHARED(new_mnt->mnt_parent) ||
3166                IS_MNT_SHARED(root_mnt->mnt_parent))
3167                goto out4;
3168        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3169                goto out4;
3170        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3171                goto out4;
3172        error = -ENOENT;
3173        if (d_unlinked(new.dentry))
3174                goto out4;
3175        error = -EBUSY;
3176        if (new_mnt == root_mnt || old_mnt == root_mnt)
3177                goto out4; /* loop, on the same file system  */
3178        error = -EINVAL;
3179        if (root.mnt->mnt_root != root.dentry)
3180                goto out4; /* not a mountpoint */
3181        if (!mnt_has_parent(root_mnt))
3182                goto out4; /* not attached */
3183        root_mp = root_mnt->mnt_mp;
3184        if (new.mnt->mnt_root != new.dentry)
3185                goto out4; /* not a mountpoint */
3186        if (!mnt_has_parent(new_mnt))
3187                goto out4; /* not attached */
3188        /* make sure we can reach put_old from new_root */
3189        if (!is_path_reachable(old_mnt, old.dentry, &new))
3190                goto out4;
3191        /* make certain new is below the root */
3192        if (!is_path_reachable(new_mnt, new.dentry, &root))
3193                goto out4;
3194        root_mp->m_count++; /* pin it so it won't go away */
3195        lock_mount_hash();
3196        detach_mnt(new_mnt, &parent_path);
3197        detach_mnt(root_mnt, &root_parent);
3198        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3199                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3200                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3201        }
3202        /* mount old root on put_old */
3203        attach_mnt(root_mnt, old_mnt, old_mp);
3204        /* mount new_root on / */
3205        attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3206        touch_mnt_namespace(current->nsproxy->mnt_ns);
3207        /* A moved mount should not expire automatically */
3208        list_del_init(&new_mnt->mnt_expire);
3209        put_mountpoint(root_mp);
3210        unlock_mount_hash();
3211        chroot_fs_refs(&root, &new);
3212        error = 0;
3213out4:
3214        unlock_mount(old_mp);
3215        if (!error) {
3216                path_put(&root_parent);
3217                path_put(&parent_path);
3218        }
3219out3:
3220        path_put(&root);
3221out2:
3222        path_put(&old);
3223out1:
3224        path_put(&new);
3225out0:
3226        return error;
3227}
3228
3229static void __init init_mount_tree(void)
3230{
3231        struct vfsmount *mnt;
3232        struct mnt_namespace *ns;
3233        struct path root;
3234        struct file_system_type *type;
3235
3236        type = get_fs_type("rootfs");
3237        if (!type)
3238                panic("Can't find rootfs type");
3239        mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3240        put_filesystem(type);
3241        if (IS_ERR(mnt))
3242                panic("Can't create rootfs");
3243
3244        ns = create_mnt_ns(mnt);
3245        if (IS_ERR(ns))
3246                panic("Can't allocate initial namespace");
3247
3248        init_task.nsproxy->mnt_ns = ns;
3249        get_mnt_ns(ns);
3250
3251        root.mnt = mnt;
3252        root.dentry = mnt->mnt_root;
3253        mnt->mnt_flags |= MNT_LOCKED;
3254
3255        set_fs_pwd(current->fs, &root);
3256        set_fs_root(current->fs, &root);
3257}
3258
3259void __init mnt_init(void)
3260{
3261        int err;
3262
3263        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3264                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3265
3266        mount_hashtable = alloc_large_system_hash("Mount-cache",
3267                                sizeof(struct hlist_head),
3268                                mhash_entries, 19,
3269                                HASH_ZERO,
3270                                &m_hash_shift, &m_hash_mask, 0, 0);
3271        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3272                                sizeof(struct hlist_head),
3273                                mphash_entries, 19,
3274                                HASH_ZERO,
3275                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3276
3277        if (!mount_hashtable || !mountpoint_hashtable)
3278                panic("Failed to allocate mount hash table\n");
3279
3280        kernfs_init();
3281
3282        err = sysfs_init();
3283        if (err)
3284                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3285                        __func__, err);
3286        fs_kobj = kobject_create_and_add("fs", NULL);
3287        if (!fs_kobj)
3288                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3289        init_rootfs();
3290        init_mount_tree();
3291}
3292
3293void put_mnt_ns(struct mnt_namespace *ns)
3294{
3295        if (!atomic_dec_and_test(&ns->count))
3296                return;
3297        drop_collected_mounts(&ns->root->mnt);
3298        free_mnt_ns(ns);
3299}
3300
3301struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3302{
3303        struct vfsmount *mnt;
3304        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3305        if (!IS_ERR(mnt)) {
3306                /*
3307                 * it is a longterm mount, don't release mnt until
3308                 * we unmount before file sys is unregistered
3309                */
3310                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3311        }
3312        return mnt;
3313}
3314EXPORT_SYMBOL_GPL(kern_mount_data);
3315
3316void kern_unmount(struct vfsmount *mnt)
3317{
3318        /* release long term mount so mount point can be released */
3319        if (!IS_ERR_OR_NULL(mnt)) {
3320                real_mount(mnt)->mnt_ns = NULL;
3321                synchronize_rcu();      /* yecchhh... */
3322                mntput(mnt);
3323        }
3324}
3325EXPORT_SYMBOL(kern_unmount);
3326
3327bool our_mnt(struct vfsmount *mnt)
3328{
3329        return check_mnt(real_mount(mnt));
3330}
3331
3332bool current_chrooted(void)
3333{
3334        /* Does the current process have a non-standard root */
3335        struct path ns_root;
3336        struct path fs_root;
3337        bool chrooted;
3338
3339        /* Find the namespace root */
3340        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3341        ns_root.dentry = ns_root.mnt->mnt_root;
3342        path_get(&ns_root);
3343        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3344                ;
3345
3346        get_fs_root(current->fs, &fs_root);
3347
3348        chrooted = !path_equal(&fs_root, &ns_root);
3349
3350        path_put(&fs_root);
3351        path_put(&ns_root);
3352
3353        return chrooted;
3354}
3355
3356static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3357                                int *new_mnt_flags)
3358{
3359        int new_flags = *new_mnt_flags;
3360        struct mount *mnt;
3361        bool visible = false;
3362
3363        down_read(&namespace_sem);
3364        list_for_each_entry(mnt, &ns->list, mnt_list) {
3365                struct mount *child;
3366                int mnt_flags;
3367
3368                if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3369                        continue;
3370
3371                /* This mount is not fully visible if it's root directory
3372                 * is not the root directory of the filesystem.
3373                 */
3374                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3375                        continue;
3376
3377                /* A local view of the mount flags */
3378                mnt_flags = mnt->mnt.mnt_flags;
3379
3380                /* Don't miss readonly hidden in the superblock flags */
3381                if (sb_rdonly(mnt->mnt.mnt_sb))
3382                        mnt_flags |= MNT_LOCK_READONLY;
3383
3384                /* Verify the mount flags are equal to or more permissive
3385                 * than the proposed new mount.
3386                 */
3387                if ((mnt_flags & MNT_LOCK_READONLY) &&
3388                    !(new_flags & MNT_READONLY))
3389                        continue;
3390                if ((mnt_flags & MNT_LOCK_ATIME) &&
3391                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3392                        continue;
3393
3394                /* This mount is not fully visible if there are any
3395                 * locked child mounts that cover anything except for
3396                 * empty directories.
3397                 */
3398                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3399                        struct inode *inode = child->mnt_mountpoint->d_inode;
3400                        /* Only worry about locked mounts */
3401                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
3402                                continue;
3403                        /* Is the directory permanetly empty? */
3404                        if (!is_empty_dir_inode(inode))
3405                                goto next;
3406                }
3407                /* Preserve the locked attributes */
3408                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3409                                               MNT_LOCK_ATIME);
3410                visible = true;
3411                goto found;
3412        next:   ;
3413        }
3414found:
3415        up_read(&namespace_sem);
3416        return visible;
3417}
3418
3419static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3420{
3421        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3422        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3423        unsigned long s_iflags;
3424
3425        if (ns->user_ns == &init_user_ns)
3426                return false;
3427
3428        /* Can this filesystem be too revealing? */
3429        s_iflags = mnt->mnt_sb->s_iflags;
3430        if (!(s_iflags & SB_I_USERNS_VISIBLE))
3431                return false;
3432
3433        if ((s_iflags & required_iflags) != required_iflags) {
3434                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3435                          required_iflags);
3436                return true;
3437        }
3438
3439        return !mnt_already_visible(ns, mnt, new_mnt_flags);
3440}
3441
3442bool mnt_may_suid(struct vfsmount *mnt)
3443{
3444        /*
3445         * Foreign mounts (accessed via fchdir or through /proc
3446         * symlinks) are always treated as if they are nosuid.  This
3447         * prevents namespaces from trusting potentially unsafe
3448         * suid/sgid bits, file caps, or security labels that originate
3449         * in other namespaces.
3450         */
3451        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3452               current_in_userns(mnt->mnt_sb->s_user_ns);
3453}
3454
3455static struct ns_common *mntns_get(struct task_struct *task)
3456{
3457        struct ns_common *ns = NULL;
3458        struct nsproxy *nsproxy;
3459
3460        task_lock(task);
3461        nsproxy = task->nsproxy;
3462        if (nsproxy) {
3463                ns = &nsproxy->mnt_ns->ns;
3464                get_mnt_ns(to_mnt_ns(ns));
3465        }
3466        task_unlock(task);
3467
3468        return ns;
3469}
3470
3471static void mntns_put(struct ns_common *ns)
3472{
3473        put_mnt_ns(to_mnt_ns(ns));
3474}
3475
3476static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3477{
3478        struct fs_struct *fs = current->fs;
3479        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3480        struct path root;
3481        int err;
3482
3483        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3484            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3485            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3486                return -EPERM;
3487
3488        if (fs->users != 1)
3489                return -EINVAL;
3490
3491        get_mnt_ns(mnt_ns);
3492        old_mnt_ns = nsproxy->mnt_ns;
3493        nsproxy->mnt_ns = mnt_ns;
3494
3495        /* Find the root */
3496        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3497                                "/", LOOKUP_DOWN, &root);
3498        if (err) {
3499                /* revert to old namespace */
3500                nsproxy->mnt_ns = old_mnt_ns;
3501                put_mnt_ns(mnt_ns);
3502                return err;
3503        }
3504
3505        put_mnt_ns(old_mnt_ns);
3506
3507        /* Update the pwd and root */
3508        set_fs_pwd(fs, &root);
3509        set_fs_root(fs, &root);
3510
3511        path_put(&root);
3512        return 0;
3513}
3514
3515static struct user_namespace *mntns_owner(struct ns_common *ns)
3516{
3517        return to_mnt_ns(ns)->user_ns;
3518}
3519
3520const struct proc_ns_operations mntns_operations = {
3521        .name           = "mnt",
3522        .type           = CLONE_NEWNS,
3523        .get            = mntns_get,
3524        .put            = mntns_put,
3525        .install        = mntns_install,
3526        .owner          = mntns_owner,
3527};
3528