linux/fs/ubifs/file.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements VFS file and inode operations for regular files, device
  25 * nodes and symlinks as well as address space operations.
  26 *
  27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  28 * the page is dirty and is used for optimization purposes - dirty pages are
  29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  30 * the budget for this page. The @PG_checked flag is set if full budgeting is
  31 * required for the page e.g., when it corresponds to a file hole or it is
  32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  33 * it is OK to fail in this function, and the budget is released in
  34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  35 * information about how the page was budgeted, to make it possible to release
  36 * the budget properly.
  37 *
  38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  39 * implement. However, this is not true for 'ubifs_writepage()', which may be
  40 * called with @i_mutex unlocked. For example, when flusher thread is doing
  41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  45 *
  46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
  49 * set as well. However, UBIFS disables readahead.
  50 */
  51
  52#include "ubifs.h"
  53#include <linux/mount.h>
  54#include <linux/slab.h>
  55#include <linux/migrate.h>
  56
  57static int read_block(struct inode *inode, void *addr, unsigned int block,
  58                      struct ubifs_data_node *dn)
  59{
  60        struct ubifs_info *c = inode->i_sb->s_fs_info;
  61        int err, len, out_len;
  62        union ubifs_key key;
  63        unsigned int dlen;
  64
  65        data_key_init(c, &key, inode->i_ino, block);
  66        err = ubifs_tnc_lookup(c, &key, dn);
  67        if (err) {
  68                if (err == -ENOENT)
  69                        /* Not found, so it must be a hole */
  70                        memset(addr, 0, UBIFS_BLOCK_SIZE);
  71                return err;
  72        }
  73
  74        ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
  75                     ubifs_inode(inode)->creat_sqnum);
  76        len = le32_to_cpu(dn->size);
  77        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  78                goto dump;
  79
  80        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  81
  82        if (ubifs_crypt_is_encrypted(inode)) {
  83                err = ubifs_decrypt(inode, dn, &dlen, block);
  84                if (err)
  85                        goto dump;
  86        }
  87
  88        out_len = UBIFS_BLOCK_SIZE;
  89        err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
  90                               le16_to_cpu(dn->compr_type));
  91        if (err || len != out_len)
  92                goto dump;
  93
  94        /*
  95         * Data length can be less than a full block, even for blocks that are
  96         * not the last in the file (e.g., as a result of making a hole and
  97         * appending data). Ensure that the remainder is zeroed out.
  98         */
  99        if (len < UBIFS_BLOCK_SIZE)
 100                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 101
 102        return 0;
 103
 104dump:
 105        ubifs_err(c, "bad data node (block %u, inode %lu)",
 106                  block, inode->i_ino);
 107        ubifs_dump_node(c, dn);
 108        return -EINVAL;
 109}
 110
 111static int do_readpage(struct page *page)
 112{
 113        void *addr;
 114        int err = 0, i;
 115        unsigned int block, beyond;
 116        struct ubifs_data_node *dn;
 117        struct inode *inode = page->mapping->host;
 118        loff_t i_size = i_size_read(inode);
 119
 120        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 121                inode->i_ino, page->index, i_size, page->flags);
 122        ubifs_assert(!PageChecked(page));
 123        ubifs_assert(!PagePrivate(page));
 124
 125        addr = kmap(page);
 126
 127        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 128        beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 129        if (block >= beyond) {
 130                /* Reading beyond inode */
 131                SetPageChecked(page);
 132                memset(addr, 0, PAGE_SIZE);
 133                goto out;
 134        }
 135
 136        dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 137        if (!dn) {
 138                err = -ENOMEM;
 139                goto error;
 140        }
 141
 142        i = 0;
 143        while (1) {
 144                int ret;
 145
 146                if (block >= beyond) {
 147                        /* Reading beyond inode */
 148                        err = -ENOENT;
 149                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 150                } else {
 151                        ret = read_block(inode, addr, block, dn);
 152                        if (ret) {
 153                                err = ret;
 154                                if (err != -ENOENT)
 155                                        break;
 156                        } else if (block + 1 == beyond) {
 157                                int dlen = le32_to_cpu(dn->size);
 158                                int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 159
 160                                if (ilen && ilen < dlen)
 161                                        memset(addr + ilen, 0, dlen - ilen);
 162                        }
 163                }
 164                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 165                        break;
 166                block += 1;
 167                addr += UBIFS_BLOCK_SIZE;
 168        }
 169        if (err) {
 170                struct ubifs_info *c = inode->i_sb->s_fs_info;
 171                if (err == -ENOENT) {
 172                        /* Not found, so it must be a hole */
 173                        SetPageChecked(page);
 174                        dbg_gen("hole");
 175                        goto out_free;
 176                }
 177                ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
 178                          page->index, inode->i_ino, err);
 179                goto error;
 180        }
 181
 182out_free:
 183        kfree(dn);
 184out:
 185        SetPageUptodate(page);
 186        ClearPageError(page);
 187        flush_dcache_page(page);
 188        kunmap(page);
 189        return 0;
 190
 191error:
 192        kfree(dn);
 193        ClearPageUptodate(page);
 194        SetPageError(page);
 195        flush_dcache_page(page);
 196        kunmap(page);
 197        return err;
 198}
 199
 200/**
 201 * release_new_page_budget - release budget of a new page.
 202 * @c: UBIFS file-system description object
 203 *
 204 * This is a helper function which releases budget corresponding to the budget
 205 * of one new page of data.
 206 */
 207static void release_new_page_budget(struct ubifs_info *c)
 208{
 209        struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 210
 211        ubifs_release_budget(c, &req);
 212}
 213
 214/**
 215 * release_existing_page_budget - release budget of an existing page.
 216 * @c: UBIFS file-system description object
 217 *
 218 * This is a helper function which releases budget corresponding to the budget
 219 * of changing one one page of data which already exists on the flash media.
 220 */
 221static void release_existing_page_budget(struct ubifs_info *c)
 222{
 223        struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 224
 225        ubifs_release_budget(c, &req);
 226}
 227
 228static int write_begin_slow(struct address_space *mapping,
 229                            loff_t pos, unsigned len, struct page **pagep,
 230                            unsigned flags)
 231{
 232        struct inode *inode = mapping->host;
 233        struct ubifs_info *c = inode->i_sb->s_fs_info;
 234        pgoff_t index = pos >> PAGE_SHIFT;
 235        struct ubifs_budget_req req = { .new_page = 1 };
 236        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 237        struct page *page;
 238
 239        dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 240                inode->i_ino, pos, len, inode->i_size);
 241
 242        /*
 243         * At the slow path we have to budget before locking the page, because
 244         * budgeting may force write-back, which would wait on locked pages and
 245         * deadlock if we had the page locked. At this point we do not know
 246         * anything about the page, so assume that this is a new page which is
 247         * written to a hole. This corresponds to largest budget. Later the
 248         * budget will be amended if this is not true.
 249         */
 250        if (appending)
 251                /* We are appending data, budget for inode change */
 252                req.dirtied_ino = 1;
 253
 254        err = ubifs_budget_space(c, &req);
 255        if (unlikely(err))
 256                return err;
 257
 258        page = grab_cache_page_write_begin(mapping, index, flags);
 259        if (unlikely(!page)) {
 260                ubifs_release_budget(c, &req);
 261                return -ENOMEM;
 262        }
 263
 264        if (!PageUptodate(page)) {
 265                if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
 266                        SetPageChecked(page);
 267                else {
 268                        err = do_readpage(page);
 269                        if (err) {
 270                                unlock_page(page);
 271                                put_page(page);
 272                                ubifs_release_budget(c, &req);
 273                                return err;
 274                        }
 275                }
 276
 277                SetPageUptodate(page);
 278                ClearPageError(page);
 279        }
 280
 281        if (PagePrivate(page))
 282                /*
 283                 * The page is dirty, which means it was budgeted twice:
 284                 *   o first time the budget was allocated by the task which
 285                 *     made the page dirty and set the PG_private flag;
 286                 *   o and then we budgeted for it for the second time at the
 287                 *     very beginning of this function.
 288                 *
 289                 * So what we have to do is to release the page budget we
 290                 * allocated.
 291                 */
 292                release_new_page_budget(c);
 293        else if (!PageChecked(page))
 294                /*
 295                 * We are changing a page which already exists on the media.
 296                 * This means that changing the page does not make the amount
 297                 * of indexing information larger, and this part of the budget
 298                 * which we have already acquired may be released.
 299                 */
 300                ubifs_convert_page_budget(c);
 301
 302        if (appending) {
 303                struct ubifs_inode *ui = ubifs_inode(inode);
 304
 305                /*
 306                 * 'ubifs_write_end()' is optimized from the fast-path part of
 307                 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 308                 * if data is appended.
 309                 */
 310                mutex_lock(&ui->ui_mutex);
 311                if (ui->dirty)
 312                        /*
 313                         * The inode is dirty already, so we may free the
 314                         * budget we allocated.
 315                         */
 316                        ubifs_release_dirty_inode_budget(c, ui);
 317        }
 318
 319        *pagep = page;
 320        return 0;
 321}
 322
 323/**
 324 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 325 * @c: UBIFS file-system description object
 326 * @page: page to allocate budget for
 327 * @ui: UBIFS inode object the page belongs to
 328 * @appending: non-zero if the page is appended
 329 *
 330 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 331 * for the operation. The budget is allocated differently depending on whether
 332 * this is appending, whether the page is dirty or not, and so on. This
 333 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 334 * in case of success and %-ENOSPC in case of failure.
 335 */
 336static int allocate_budget(struct ubifs_info *c, struct page *page,
 337                           struct ubifs_inode *ui, int appending)
 338{
 339        struct ubifs_budget_req req = { .fast = 1 };
 340
 341        if (PagePrivate(page)) {
 342                if (!appending)
 343                        /*
 344                         * The page is dirty and we are not appending, which
 345                         * means no budget is needed at all.
 346                         */
 347                        return 0;
 348
 349                mutex_lock(&ui->ui_mutex);
 350                if (ui->dirty)
 351                        /*
 352                         * The page is dirty and we are appending, so the inode
 353                         * has to be marked as dirty. However, it is already
 354                         * dirty, so we do not need any budget. We may return,
 355                         * but @ui->ui_mutex hast to be left locked because we
 356                         * should prevent write-back from flushing the inode
 357                         * and freeing the budget. The lock will be released in
 358                         * 'ubifs_write_end()'.
 359                         */
 360                        return 0;
 361
 362                /*
 363                 * The page is dirty, we are appending, the inode is clean, so
 364                 * we need to budget the inode change.
 365                 */
 366                req.dirtied_ino = 1;
 367        } else {
 368                if (PageChecked(page))
 369                        /*
 370                         * The page corresponds to a hole and does not
 371                         * exist on the media. So changing it makes
 372                         * make the amount of indexing information
 373                         * larger, and we have to budget for a new
 374                         * page.
 375                         */
 376                        req.new_page = 1;
 377                else
 378                        /*
 379                         * Not a hole, the change will not add any new
 380                         * indexing information, budget for page
 381                         * change.
 382                         */
 383                        req.dirtied_page = 1;
 384
 385                if (appending) {
 386                        mutex_lock(&ui->ui_mutex);
 387                        if (!ui->dirty)
 388                                /*
 389                                 * The inode is clean but we will have to mark
 390                                 * it as dirty because we are appending. This
 391                                 * needs a budget.
 392                                 */
 393                                req.dirtied_ino = 1;
 394                }
 395        }
 396
 397        return ubifs_budget_space(c, &req);
 398}
 399
 400/*
 401 * This function is called when a page of data is going to be written. Since
 402 * the page of data will not necessarily go to the flash straight away, UBIFS
 403 * has to reserve space on the media for it, which is done by means of
 404 * budgeting.
 405 *
 406 * This is the hot-path of the file-system and we are trying to optimize it as
 407 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 408 *
 409 * There many budgeting cases:
 410 *     o a new page is appended - we have to budget for a new page and for
 411 *       changing the inode; however, if the inode is already dirty, there is
 412 *       no need to budget for it;
 413 *     o an existing clean page is changed - we have budget for it; if the page
 414 *       does not exist on the media (a hole), we have to budget for a new
 415 *       page; otherwise, we may budget for changing an existing page; the
 416 *       difference between these cases is that changing an existing page does
 417 *       not introduce anything new to the FS indexing information, so it does
 418 *       not grow, and smaller budget is acquired in this case;
 419 *     o an existing dirty page is changed - no need to budget at all, because
 420 *       the page budget has been acquired by earlier, when the page has been
 421 *       marked dirty.
 422 *
 423 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 424 * space to reserve. This imposes some locking restrictions and makes it
 425 * impossible to take into account the above cases, and makes it impossible to
 426 * optimize budgeting.
 427 *
 428 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 429 * there is a plenty of flash space and the budget will be acquired quickly,
 430 * without forcing write-back. The slow path does not make this assumption.
 431 */
 432static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 433                             loff_t pos, unsigned len, unsigned flags,
 434                             struct page **pagep, void **fsdata)
 435{
 436        struct inode *inode = mapping->host;
 437        struct ubifs_info *c = inode->i_sb->s_fs_info;
 438        struct ubifs_inode *ui = ubifs_inode(inode);
 439        pgoff_t index = pos >> PAGE_SHIFT;
 440        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 441        int skipped_read = 0;
 442        struct page *page;
 443
 444        ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
 445        ubifs_assert(!c->ro_media && !c->ro_mount);
 446
 447        if (unlikely(c->ro_error))
 448                return -EROFS;
 449
 450        /* Try out the fast-path part first */
 451        page = grab_cache_page_write_begin(mapping, index, flags);
 452        if (unlikely(!page))
 453                return -ENOMEM;
 454
 455        if (!PageUptodate(page)) {
 456                /* The page is not loaded from the flash */
 457                if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
 458                        /*
 459                         * We change whole page so no need to load it. But we
 460                         * do not know whether this page exists on the media or
 461                         * not, so we assume the latter because it requires
 462                         * larger budget. The assumption is that it is better
 463                         * to budget a bit more than to read the page from the
 464                         * media. Thus, we are setting the @PG_checked flag
 465                         * here.
 466                         */
 467                        SetPageChecked(page);
 468                        skipped_read = 1;
 469                } else {
 470                        err = do_readpage(page);
 471                        if (err) {
 472                                unlock_page(page);
 473                                put_page(page);
 474                                return err;
 475                        }
 476                }
 477
 478                SetPageUptodate(page);
 479                ClearPageError(page);
 480        }
 481
 482        err = allocate_budget(c, page, ui, appending);
 483        if (unlikely(err)) {
 484                ubifs_assert(err == -ENOSPC);
 485                /*
 486                 * If we skipped reading the page because we were going to
 487                 * write all of it, then it is not up to date.
 488                 */
 489                if (skipped_read) {
 490                        ClearPageChecked(page);
 491                        ClearPageUptodate(page);
 492                }
 493                /*
 494                 * Budgeting failed which means it would have to force
 495                 * write-back but didn't, because we set the @fast flag in the
 496                 * request. Write-back cannot be done now, while we have the
 497                 * page locked, because it would deadlock. Unlock and free
 498                 * everything and fall-back to slow-path.
 499                 */
 500                if (appending) {
 501                        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 502                        mutex_unlock(&ui->ui_mutex);
 503                }
 504                unlock_page(page);
 505                put_page(page);
 506
 507                return write_begin_slow(mapping, pos, len, pagep, flags);
 508        }
 509
 510        /*
 511         * Whee, we acquired budgeting quickly - without involving
 512         * garbage-collection, committing or forcing write-back. We return
 513         * with @ui->ui_mutex locked if we are appending pages, and unlocked
 514         * otherwise. This is an optimization (slightly hacky though).
 515         */
 516        *pagep = page;
 517        return 0;
 518
 519}
 520
 521/**
 522 * cancel_budget - cancel budget.
 523 * @c: UBIFS file-system description object
 524 * @page: page to cancel budget for
 525 * @ui: UBIFS inode object the page belongs to
 526 * @appending: non-zero if the page is appended
 527 *
 528 * This is a helper function for a page write operation. It unlocks the
 529 * @ui->ui_mutex in case of appending.
 530 */
 531static void cancel_budget(struct ubifs_info *c, struct page *page,
 532                          struct ubifs_inode *ui, int appending)
 533{
 534        if (appending) {
 535                if (!ui->dirty)
 536                        ubifs_release_dirty_inode_budget(c, ui);
 537                mutex_unlock(&ui->ui_mutex);
 538        }
 539        if (!PagePrivate(page)) {
 540                if (PageChecked(page))
 541                        release_new_page_budget(c);
 542                else
 543                        release_existing_page_budget(c);
 544        }
 545}
 546
 547static int ubifs_write_end(struct file *file, struct address_space *mapping,
 548                           loff_t pos, unsigned len, unsigned copied,
 549                           struct page *page, void *fsdata)
 550{
 551        struct inode *inode = mapping->host;
 552        struct ubifs_inode *ui = ubifs_inode(inode);
 553        struct ubifs_info *c = inode->i_sb->s_fs_info;
 554        loff_t end_pos = pos + len;
 555        int appending = !!(end_pos > inode->i_size);
 556
 557        dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 558                inode->i_ino, pos, page->index, len, copied, inode->i_size);
 559
 560        if (unlikely(copied < len && len == PAGE_SIZE)) {
 561                /*
 562                 * VFS copied less data to the page that it intended and
 563                 * declared in its '->write_begin()' call via the @len
 564                 * argument. If the page was not up-to-date, and @len was
 565                 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
 566                 * not load it from the media (for optimization reasons). This
 567                 * means that part of the page contains garbage. So read the
 568                 * page now.
 569                 */
 570                dbg_gen("copied %d instead of %d, read page and repeat",
 571                        copied, len);
 572                cancel_budget(c, page, ui, appending);
 573                ClearPageChecked(page);
 574
 575                /*
 576                 * Return 0 to force VFS to repeat the whole operation, or the
 577                 * error code if 'do_readpage()' fails.
 578                 */
 579                copied = do_readpage(page);
 580                goto out;
 581        }
 582
 583        if (!PagePrivate(page)) {
 584                SetPagePrivate(page);
 585                atomic_long_inc(&c->dirty_pg_cnt);
 586                __set_page_dirty_nobuffers(page);
 587        }
 588
 589        if (appending) {
 590                i_size_write(inode, end_pos);
 591                ui->ui_size = end_pos;
 592                /*
 593                 * Note, we do not set @I_DIRTY_PAGES (which means that the
 594                 * inode has dirty pages), this has been done in
 595                 * '__set_page_dirty_nobuffers()'.
 596                 */
 597                __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 598                ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 599                mutex_unlock(&ui->ui_mutex);
 600        }
 601
 602out:
 603        unlock_page(page);
 604        put_page(page);
 605        return copied;
 606}
 607
 608/**
 609 * populate_page - copy data nodes into a page for bulk-read.
 610 * @c: UBIFS file-system description object
 611 * @page: page
 612 * @bu: bulk-read information
 613 * @n: next zbranch slot
 614 *
 615 * This function returns %0 on success and a negative error code on failure.
 616 */
 617static int populate_page(struct ubifs_info *c, struct page *page,
 618                         struct bu_info *bu, int *n)
 619{
 620        int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 621        struct inode *inode = page->mapping->host;
 622        loff_t i_size = i_size_read(inode);
 623        unsigned int page_block;
 624        void *addr, *zaddr;
 625        pgoff_t end_index;
 626
 627        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 628                inode->i_ino, page->index, i_size, page->flags);
 629
 630        addr = zaddr = kmap(page);
 631
 632        end_index = (i_size - 1) >> PAGE_SHIFT;
 633        if (!i_size || page->index > end_index) {
 634                hole = 1;
 635                memset(addr, 0, PAGE_SIZE);
 636                goto out_hole;
 637        }
 638
 639        page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 640        while (1) {
 641                int err, len, out_len, dlen;
 642
 643                if (nn >= bu->cnt) {
 644                        hole = 1;
 645                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 646                } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 647                        struct ubifs_data_node *dn;
 648
 649                        dn = bu->buf + (bu->zbranch[nn].offs - offs);
 650
 651                        ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
 652                                     ubifs_inode(inode)->creat_sqnum);
 653
 654                        len = le32_to_cpu(dn->size);
 655                        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 656                                goto out_err;
 657
 658                        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 659                        out_len = UBIFS_BLOCK_SIZE;
 660
 661                        if (ubifs_crypt_is_encrypted(inode)) {
 662                                err = ubifs_decrypt(inode, dn, &dlen, page_block);
 663                                if (err)
 664                                        goto out_err;
 665                        }
 666
 667                        err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
 668                                               le16_to_cpu(dn->compr_type));
 669                        if (err || len != out_len)
 670                                goto out_err;
 671
 672                        if (len < UBIFS_BLOCK_SIZE)
 673                                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 674
 675                        nn += 1;
 676                        read = (i << UBIFS_BLOCK_SHIFT) + len;
 677                } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 678                        nn += 1;
 679                        continue;
 680                } else {
 681                        hole = 1;
 682                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 683                }
 684                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 685                        break;
 686                addr += UBIFS_BLOCK_SIZE;
 687                page_block += 1;
 688        }
 689
 690        if (end_index == page->index) {
 691                int len = i_size & (PAGE_SIZE - 1);
 692
 693                if (len && len < read)
 694                        memset(zaddr + len, 0, read - len);
 695        }
 696
 697out_hole:
 698        if (hole) {
 699                SetPageChecked(page);
 700                dbg_gen("hole");
 701        }
 702
 703        SetPageUptodate(page);
 704        ClearPageError(page);
 705        flush_dcache_page(page);
 706        kunmap(page);
 707        *n = nn;
 708        return 0;
 709
 710out_err:
 711        ClearPageUptodate(page);
 712        SetPageError(page);
 713        flush_dcache_page(page);
 714        kunmap(page);
 715        ubifs_err(c, "bad data node (block %u, inode %lu)",
 716                  page_block, inode->i_ino);
 717        return -EINVAL;
 718}
 719
 720/**
 721 * ubifs_do_bulk_read - do bulk-read.
 722 * @c: UBIFS file-system description object
 723 * @bu: bulk-read information
 724 * @page1: first page to read
 725 *
 726 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 727 */
 728static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 729                              struct page *page1)
 730{
 731        pgoff_t offset = page1->index, end_index;
 732        struct address_space *mapping = page1->mapping;
 733        struct inode *inode = mapping->host;
 734        struct ubifs_inode *ui = ubifs_inode(inode);
 735        int err, page_idx, page_cnt, ret = 0, n = 0;
 736        int allocate = bu->buf ? 0 : 1;
 737        loff_t isize;
 738        gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
 739
 740        err = ubifs_tnc_get_bu_keys(c, bu);
 741        if (err)
 742                goto out_warn;
 743
 744        if (bu->eof) {
 745                /* Turn off bulk-read at the end of the file */
 746                ui->read_in_a_row = 1;
 747                ui->bulk_read = 0;
 748        }
 749
 750        page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 751        if (!page_cnt) {
 752                /*
 753                 * This happens when there are multiple blocks per page and the
 754                 * blocks for the first page we are looking for, are not
 755                 * together. If all the pages were like this, bulk-read would
 756                 * reduce performance, so we turn it off for a while.
 757                 */
 758                goto out_bu_off;
 759        }
 760
 761        if (bu->cnt) {
 762                if (allocate) {
 763                        /*
 764                         * Allocate bulk-read buffer depending on how many data
 765                         * nodes we are going to read.
 766                         */
 767                        bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 768                                      bu->zbranch[bu->cnt - 1].len -
 769                                      bu->zbranch[0].offs;
 770                        ubifs_assert(bu->buf_len > 0);
 771                        ubifs_assert(bu->buf_len <= c->leb_size);
 772                        bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 773                        if (!bu->buf)
 774                                goto out_bu_off;
 775                }
 776
 777                err = ubifs_tnc_bulk_read(c, bu);
 778                if (err)
 779                        goto out_warn;
 780        }
 781
 782        err = populate_page(c, page1, bu, &n);
 783        if (err)
 784                goto out_warn;
 785
 786        unlock_page(page1);
 787        ret = 1;
 788
 789        isize = i_size_read(inode);
 790        if (isize == 0)
 791                goto out_free;
 792        end_index = ((isize - 1) >> PAGE_SHIFT);
 793
 794        for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 795                pgoff_t page_offset = offset + page_idx;
 796                struct page *page;
 797
 798                if (page_offset > end_index)
 799                        break;
 800                page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
 801                if (!page)
 802                        break;
 803                if (!PageUptodate(page))
 804                        err = populate_page(c, page, bu, &n);
 805                unlock_page(page);
 806                put_page(page);
 807                if (err)
 808                        break;
 809        }
 810
 811        ui->last_page_read = offset + page_idx - 1;
 812
 813out_free:
 814        if (allocate)
 815                kfree(bu->buf);
 816        return ret;
 817
 818out_warn:
 819        ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
 820        goto out_free;
 821
 822out_bu_off:
 823        ui->read_in_a_row = ui->bulk_read = 0;
 824        goto out_free;
 825}
 826
 827/**
 828 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 829 * @page: page from which to start bulk-read.
 830 *
 831 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 832 * bulk-read facility is designed to take advantage of that, by reading in one
 833 * go consecutive data nodes that are also located consecutively in the same
 834 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 835 */
 836static int ubifs_bulk_read(struct page *page)
 837{
 838        struct inode *inode = page->mapping->host;
 839        struct ubifs_info *c = inode->i_sb->s_fs_info;
 840        struct ubifs_inode *ui = ubifs_inode(inode);
 841        pgoff_t index = page->index, last_page_read = ui->last_page_read;
 842        struct bu_info *bu;
 843        int err = 0, allocated = 0;
 844
 845        ui->last_page_read = index;
 846        if (!c->bulk_read)
 847                return 0;
 848
 849        /*
 850         * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 851         * so don't bother if we cannot lock the mutex.
 852         */
 853        if (!mutex_trylock(&ui->ui_mutex))
 854                return 0;
 855
 856        if (index != last_page_read + 1) {
 857                /* Turn off bulk-read if we stop reading sequentially */
 858                ui->read_in_a_row = 1;
 859                if (ui->bulk_read)
 860                        ui->bulk_read = 0;
 861                goto out_unlock;
 862        }
 863
 864        if (!ui->bulk_read) {
 865                ui->read_in_a_row += 1;
 866                if (ui->read_in_a_row < 3)
 867                        goto out_unlock;
 868                /* Three reads in a row, so switch on bulk-read */
 869                ui->bulk_read = 1;
 870        }
 871
 872        /*
 873         * If possible, try to use pre-allocated bulk-read information, which
 874         * is protected by @c->bu_mutex.
 875         */
 876        if (mutex_trylock(&c->bu_mutex))
 877                bu = &c->bu;
 878        else {
 879                bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 880                if (!bu)
 881                        goto out_unlock;
 882
 883                bu->buf = NULL;
 884                allocated = 1;
 885        }
 886
 887        bu->buf_len = c->max_bu_buf_len;
 888        data_key_init(c, &bu->key, inode->i_ino,
 889                      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 890        err = ubifs_do_bulk_read(c, bu, page);
 891
 892        if (!allocated)
 893                mutex_unlock(&c->bu_mutex);
 894        else
 895                kfree(bu);
 896
 897out_unlock:
 898        mutex_unlock(&ui->ui_mutex);
 899        return err;
 900}
 901
 902static int ubifs_readpage(struct file *file, struct page *page)
 903{
 904        if (ubifs_bulk_read(page))
 905                return 0;
 906        do_readpage(page);
 907        unlock_page(page);
 908        return 0;
 909}
 910
 911static int do_writepage(struct page *page, int len)
 912{
 913        int err = 0, i, blen;
 914        unsigned int block;
 915        void *addr;
 916        union ubifs_key key;
 917        struct inode *inode = page->mapping->host;
 918        struct ubifs_info *c = inode->i_sb->s_fs_info;
 919
 920#ifdef UBIFS_DEBUG
 921        struct ubifs_inode *ui = ubifs_inode(inode);
 922        spin_lock(&ui->ui_lock);
 923        ubifs_assert(page->index <= ui->synced_i_size >> PAGE_SHIFT);
 924        spin_unlock(&ui->ui_lock);
 925#endif
 926
 927        /* Update radix tree tags */
 928        set_page_writeback(page);
 929
 930        addr = kmap(page);
 931        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 932        i = 0;
 933        while (len) {
 934                blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 935                data_key_init(c, &key, inode->i_ino, block);
 936                err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 937                if (err)
 938                        break;
 939                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 940                        break;
 941                block += 1;
 942                addr += blen;
 943                len -= blen;
 944        }
 945        if (err) {
 946                SetPageError(page);
 947                ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
 948                          page->index, inode->i_ino, err);
 949                ubifs_ro_mode(c, err);
 950        }
 951
 952        ubifs_assert(PagePrivate(page));
 953        if (PageChecked(page))
 954                release_new_page_budget(c);
 955        else
 956                release_existing_page_budget(c);
 957
 958        atomic_long_dec(&c->dirty_pg_cnt);
 959        ClearPagePrivate(page);
 960        ClearPageChecked(page);
 961
 962        kunmap(page);
 963        unlock_page(page);
 964        end_page_writeback(page);
 965        return err;
 966}
 967
 968/*
 969 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 970 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 971 * situation when a we have an inode with size 0, then a megabyte of data is
 972 * appended to the inode, then write-back starts and flushes some amount of the
 973 * dirty pages, the journal becomes full, commit happens and finishes, and then
 974 * an unclean reboot happens. When the file system is mounted next time, the
 975 * inode size would still be 0, but there would be many pages which are beyond
 976 * the inode size, they would be indexed and consume flash space. Because the
 977 * journal has been committed, the replay would not be able to detect this
 978 * situation and correct the inode size. This means UBIFS would have to scan
 979 * whole index and correct all inode sizes, which is long an unacceptable.
 980 *
 981 * To prevent situations like this, UBIFS writes pages back only if they are
 982 * within the last synchronized inode size, i.e. the size which has been
 983 * written to the flash media last time. Otherwise, UBIFS forces inode
 984 * write-back, thus making sure the on-flash inode contains current inode size,
 985 * and then keeps writing pages back.
 986 *
 987 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 988 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 989 * @i_mutex, which means other VFS operations may be run on this inode at the
 990 * same time. And the problematic one is truncation to smaller size, from where
 991 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 992 * then drops the truncated pages. And while dropping the pages, it takes the
 993 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 994 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 995 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 996 *
 997 * XXX(truncate): with the new truncate sequence this is not true anymore,
 998 * and the calls to truncate_setsize can be move around freely.  They should
 999 * be moved to the very end of the truncate sequence.
1000 *
1001 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1002 * inode size. How do we do this if @inode->i_size may became smaller while we
1003 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1004 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1005 * internally and updates it under @ui_mutex.
1006 *
1007 * Q: why we do not worry that if we race with truncation, we may end up with a
1008 * situation when the inode is truncated while we are in the middle of
1009 * 'do_writepage()', so we do write beyond inode size?
1010 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1011 * on the page lock and it would not write the truncated inode node to the
1012 * journal before we have finished.
1013 */
1014static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1015{
1016        struct inode *inode = page->mapping->host;
1017        struct ubifs_inode *ui = ubifs_inode(inode);
1018        loff_t i_size =  i_size_read(inode), synced_i_size;
1019        pgoff_t end_index = i_size >> PAGE_SHIFT;
1020        int err, len = i_size & (PAGE_SIZE - 1);
1021        void *kaddr;
1022
1023        dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1024                inode->i_ino, page->index, page->flags);
1025        ubifs_assert(PagePrivate(page));
1026
1027        /* Is the page fully outside @i_size? (truncate in progress) */
1028        if (page->index > end_index || (page->index == end_index && !len)) {
1029                err = 0;
1030                goto out_unlock;
1031        }
1032
1033        spin_lock(&ui->ui_lock);
1034        synced_i_size = ui->synced_i_size;
1035        spin_unlock(&ui->ui_lock);
1036
1037        /* Is the page fully inside @i_size? */
1038        if (page->index < end_index) {
1039                if (page->index >= synced_i_size >> PAGE_SHIFT) {
1040                        err = inode->i_sb->s_op->write_inode(inode, NULL);
1041                        if (err)
1042                                goto out_unlock;
1043                        /*
1044                         * The inode has been written, but the write-buffer has
1045                         * not been synchronized, so in case of an unclean
1046                         * reboot we may end up with some pages beyond inode
1047                         * size, but they would be in the journal (because
1048                         * commit flushes write buffers) and recovery would deal
1049                         * with this.
1050                         */
1051                }
1052                return do_writepage(page, PAGE_SIZE);
1053        }
1054
1055        /*
1056         * The page straddles @i_size. It must be zeroed out on each and every
1057         * writepage invocation because it may be mmapped. "A file is mapped
1058         * in multiples of the page size. For a file that is not a multiple of
1059         * the page size, the remaining memory is zeroed when mapped, and
1060         * writes to that region are not written out to the file."
1061         */
1062        kaddr = kmap_atomic(page);
1063        memset(kaddr + len, 0, PAGE_SIZE - len);
1064        flush_dcache_page(page);
1065        kunmap_atomic(kaddr);
1066
1067        if (i_size > synced_i_size) {
1068                err = inode->i_sb->s_op->write_inode(inode, NULL);
1069                if (err)
1070                        goto out_unlock;
1071        }
1072
1073        return do_writepage(page, len);
1074
1075out_unlock:
1076        unlock_page(page);
1077        return err;
1078}
1079
1080/**
1081 * do_attr_changes - change inode attributes.
1082 * @inode: inode to change attributes for
1083 * @attr: describes attributes to change
1084 */
1085static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1086{
1087        if (attr->ia_valid & ATTR_UID)
1088                inode->i_uid = attr->ia_uid;
1089        if (attr->ia_valid & ATTR_GID)
1090                inode->i_gid = attr->ia_gid;
1091        if (attr->ia_valid & ATTR_ATIME)
1092                inode->i_atime = timespec_trunc(attr->ia_atime,
1093                                                inode->i_sb->s_time_gran);
1094        if (attr->ia_valid & ATTR_MTIME)
1095                inode->i_mtime = timespec_trunc(attr->ia_mtime,
1096                                                inode->i_sb->s_time_gran);
1097        if (attr->ia_valid & ATTR_CTIME)
1098                inode->i_ctime = timespec_trunc(attr->ia_ctime,
1099                                                inode->i_sb->s_time_gran);
1100        if (attr->ia_valid & ATTR_MODE) {
1101                umode_t mode = attr->ia_mode;
1102
1103                if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1104                        mode &= ~S_ISGID;
1105                inode->i_mode = mode;
1106        }
1107}
1108
1109/**
1110 * do_truncation - truncate an inode.
1111 * @c: UBIFS file-system description object
1112 * @inode: inode to truncate
1113 * @attr: inode attribute changes description
1114 *
1115 * This function implements VFS '->setattr()' call when the inode is truncated
1116 * to a smaller size. Returns zero in case of success and a negative error code
1117 * in case of failure.
1118 */
1119static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120                         const struct iattr *attr)
1121{
1122        int err;
1123        struct ubifs_budget_req req;
1124        loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125        int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126        struct ubifs_inode *ui = ubifs_inode(inode);
1127
1128        dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129        memset(&req, 0, sizeof(struct ubifs_budget_req));
1130
1131        /*
1132         * If this is truncation to a smaller size, and we do not truncate on a
1133         * block boundary, budget for changing one data block, because the last
1134         * block will be re-written.
1135         */
1136        if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137                req.dirtied_page = 1;
1138
1139        req.dirtied_ino = 1;
1140        /* A funny way to budget for truncation node */
1141        req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142        err = ubifs_budget_space(c, &req);
1143        if (err) {
1144                /*
1145                 * Treat truncations to zero as deletion and always allow them,
1146                 * just like we do for '->unlink()'.
1147                 */
1148                if (new_size || err != -ENOSPC)
1149                        return err;
1150                budgeted = 0;
1151        }
1152
1153        truncate_setsize(inode, new_size);
1154
1155        if (offset) {
1156                pgoff_t index = new_size >> PAGE_SHIFT;
1157                struct page *page;
1158
1159                page = find_lock_page(inode->i_mapping, index);
1160                if (page) {
1161                        if (PageDirty(page)) {
1162                                /*
1163                                 * 'ubifs_jnl_truncate()' will try to truncate
1164                                 * the last data node, but it contains
1165                                 * out-of-date data because the page is dirty.
1166                                 * Write the page now, so that
1167                                 * 'ubifs_jnl_truncate()' will see an already
1168                                 * truncated (and up to date) data node.
1169                                 */
1170                                ubifs_assert(PagePrivate(page));
1171
1172                                clear_page_dirty_for_io(page);
1173                                if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174                                        offset = new_size &
1175                                                 (PAGE_SIZE - 1);
1176                                err = do_writepage(page, offset);
1177                                put_page(page);
1178                                if (err)
1179                                        goto out_budg;
1180                                /*
1181                                 * We could now tell 'ubifs_jnl_truncate()' not
1182                                 * to read the last block.
1183                                 */
1184                        } else {
1185                                /*
1186                                 * We could 'kmap()' the page and pass the data
1187                                 * to 'ubifs_jnl_truncate()' to save it from
1188                                 * having to read it.
1189                                 */
1190                                unlock_page(page);
1191                                put_page(page);
1192                        }
1193                }
1194        }
1195
1196        mutex_lock(&ui->ui_mutex);
1197        ui->ui_size = inode->i_size;
1198        /* Truncation changes inode [mc]time */
1199        inode->i_mtime = inode->i_ctime = current_time(inode);
1200        /* Other attributes may be changed at the same time as well */
1201        do_attr_changes(inode, attr);
1202        err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203        mutex_unlock(&ui->ui_mutex);
1204
1205out_budg:
1206        if (budgeted)
1207                ubifs_release_budget(c, &req);
1208        else {
1209                c->bi.nospace = c->bi.nospace_rp = 0;
1210                smp_wmb();
1211        }
1212        return err;
1213}
1214
1215/**
1216 * do_setattr - change inode attributes.
1217 * @c: UBIFS file-system description object
1218 * @inode: inode to change attributes for
1219 * @attr: inode attribute changes description
1220 *
1221 * This function implements VFS '->setattr()' call for all cases except
1222 * truncations to smaller size. Returns zero in case of success and a negative
1223 * error code in case of failure.
1224 */
1225static int do_setattr(struct ubifs_info *c, struct inode *inode,
1226                      const struct iattr *attr)
1227{
1228        int err, release;
1229        loff_t new_size = attr->ia_size;
1230        struct ubifs_inode *ui = ubifs_inode(inode);
1231        struct ubifs_budget_req req = { .dirtied_ino = 1,
1232                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1233
1234        err = ubifs_budget_space(c, &req);
1235        if (err)
1236                return err;
1237
1238        if (attr->ia_valid & ATTR_SIZE) {
1239                dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1240                truncate_setsize(inode, new_size);
1241        }
1242
1243        mutex_lock(&ui->ui_mutex);
1244        if (attr->ia_valid & ATTR_SIZE) {
1245                /* Truncation changes inode [mc]time */
1246                inode->i_mtime = inode->i_ctime = current_time(inode);
1247                /* 'truncate_setsize()' changed @i_size, update @ui_size */
1248                ui->ui_size = inode->i_size;
1249        }
1250
1251        do_attr_changes(inode, attr);
1252
1253        release = ui->dirty;
1254        if (attr->ia_valid & ATTR_SIZE)
1255                /*
1256                 * Inode length changed, so we have to make sure
1257                 * @I_DIRTY_DATASYNC is set.
1258                 */
1259                 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1260        else
1261                mark_inode_dirty_sync(inode);
1262        mutex_unlock(&ui->ui_mutex);
1263
1264        if (release)
1265                ubifs_release_budget(c, &req);
1266        if (IS_SYNC(inode))
1267                err = inode->i_sb->s_op->write_inode(inode, NULL);
1268        return err;
1269}
1270
1271int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1272{
1273        int err;
1274        struct inode *inode = d_inode(dentry);
1275        struct ubifs_info *c = inode->i_sb->s_fs_info;
1276
1277        dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1278                inode->i_ino, inode->i_mode, attr->ia_valid);
1279        err = setattr_prepare(dentry, attr);
1280        if (err)
1281                return err;
1282
1283        err = dbg_check_synced_i_size(c, inode);
1284        if (err)
1285                return err;
1286
1287        err = fscrypt_prepare_setattr(dentry, attr);
1288        if (err)
1289                return err;
1290
1291        if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1292                /* Truncation to a smaller size */
1293                err = do_truncation(c, inode, attr);
1294        else
1295                err = do_setattr(c, inode, attr);
1296
1297        return err;
1298}
1299
1300static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1301                                 unsigned int length)
1302{
1303        struct inode *inode = page->mapping->host;
1304        struct ubifs_info *c = inode->i_sb->s_fs_info;
1305
1306        ubifs_assert(PagePrivate(page));
1307        if (offset || length < PAGE_SIZE)
1308                /* Partial page remains dirty */
1309                return;
1310
1311        if (PageChecked(page))
1312                release_new_page_budget(c);
1313        else
1314                release_existing_page_budget(c);
1315
1316        atomic_long_dec(&c->dirty_pg_cnt);
1317        ClearPagePrivate(page);
1318        ClearPageChecked(page);
1319}
1320
1321int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1322{
1323        struct inode *inode = file->f_mapping->host;
1324        struct ubifs_info *c = inode->i_sb->s_fs_info;
1325        int err;
1326
1327        dbg_gen("syncing inode %lu", inode->i_ino);
1328
1329        if (c->ro_mount)
1330                /*
1331                 * For some really strange reasons VFS does not filter out
1332                 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1333                 */
1334                return 0;
1335
1336        err = file_write_and_wait_range(file, start, end);
1337        if (err)
1338                return err;
1339        inode_lock(inode);
1340
1341        /* Synchronize the inode unless this is a 'datasync()' call. */
1342        if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1343                err = inode->i_sb->s_op->write_inode(inode, NULL);
1344                if (err)
1345                        goto out;
1346        }
1347
1348        /*
1349         * Nodes related to this inode may still sit in a write-buffer. Flush
1350         * them.
1351         */
1352        err = ubifs_sync_wbufs_by_inode(c, inode);
1353out:
1354        inode_unlock(inode);
1355        return err;
1356}
1357
1358/**
1359 * mctime_update_needed - check if mtime or ctime update is needed.
1360 * @inode: the inode to do the check for
1361 * @now: current time
1362 *
1363 * This helper function checks if the inode mtime/ctime should be updated or
1364 * not. If current values of the time-stamps are within the UBIFS inode time
1365 * granularity, they are not updated. This is an optimization.
1366 */
1367static inline int mctime_update_needed(const struct inode *inode,
1368                                       const struct timespec *now)
1369{
1370        if (!timespec_equal(&inode->i_mtime, now) ||
1371            !timespec_equal(&inode->i_ctime, now))
1372                return 1;
1373        return 0;
1374}
1375
1376#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1377/**
1378 * ubifs_update_time - update time of inode.
1379 * @inode: inode to update
1380 *
1381 * This function updates time of the inode.
1382 */
1383int ubifs_update_time(struct inode *inode, struct timespec *time,
1384                             int flags)
1385{
1386        struct ubifs_inode *ui = ubifs_inode(inode);
1387        struct ubifs_info *c = inode->i_sb->s_fs_info;
1388        struct ubifs_budget_req req = { .dirtied_ino = 1,
1389                        .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1390        int iflags = I_DIRTY_TIME;
1391        int err, release;
1392
1393        err = ubifs_budget_space(c, &req);
1394        if (err)
1395                return err;
1396
1397        mutex_lock(&ui->ui_mutex);
1398        if (flags & S_ATIME)
1399                inode->i_atime = *time;
1400        if (flags & S_CTIME)
1401                inode->i_ctime = *time;
1402        if (flags & S_MTIME)
1403                inode->i_mtime = *time;
1404
1405        if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1406                iflags |= I_DIRTY_SYNC;
1407
1408        release = ui->dirty;
1409        __mark_inode_dirty(inode, iflags);
1410        mutex_unlock(&ui->ui_mutex);
1411        if (release)
1412                ubifs_release_budget(c, &req);
1413        return 0;
1414}
1415#endif
1416
1417/**
1418 * update_mctime - update mtime and ctime of an inode.
1419 * @inode: inode to update
1420 *
1421 * This function updates mtime and ctime of the inode if it is not equivalent to
1422 * current time. Returns zero in case of success and a negative error code in
1423 * case of failure.
1424 */
1425static int update_mctime(struct inode *inode)
1426{
1427        struct timespec now = current_time(inode);
1428        struct ubifs_inode *ui = ubifs_inode(inode);
1429        struct ubifs_info *c = inode->i_sb->s_fs_info;
1430
1431        if (mctime_update_needed(inode, &now)) {
1432                int err, release;
1433                struct ubifs_budget_req req = { .dirtied_ino = 1,
1434                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1435
1436                err = ubifs_budget_space(c, &req);
1437                if (err)
1438                        return err;
1439
1440                mutex_lock(&ui->ui_mutex);
1441                inode->i_mtime = inode->i_ctime = current_time(inode);
1442                release = ui->dirty;
1443                mark_inode_dirty_sync(inode);
1444                mutex_unlock(&ui->ui_mutex);
1445                if (release)
1446                        ubifs_release_budget(c, &req);
1447        }
1448
1449        return 0;
1450}
1451
1452static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1453{
1454        int err = update_mctime(file_inode(iocb->ki_filp));
1455        if (err)
1456                return err;
1457
1458        return generic_file_write_iter(iocb, from);
1459}
1460
1461static int ubifs_set_page_dirty(struct page *page)
1462{
1463        int ret;
1464
1465        ret = __set_page_dirty_nobuffers(page);
1466        /*
1467         * An attempt to dirty a page without budgeting for it - should not
1468         * happen.
1469         */
1470        ubifs_assert(ret == 0);
1471        return ret;
1472}
1473
1474#ifdef CONFIG_MIGRATION
1475static int ubifs_migrate_page(struct address_space *mapping,
1476                struct page *newpage, struct page *page, enum migrate_mode mode)
1477{
1478        int rc;
1479
1480        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1481        if (rc != MIGRATEPAGE_SUCCESS)
1482                return rc;
1483
1484        if (PagePrivate(page)) {
1485                ClearPagePrivate(page);
1486                SetPagePrivate(newpage);
1487        }
1488
1489        if (mode != MIGRATE_SYNC_NO_COPY)
1490                migrate_page_copy(newpage, page);
1491        else
1492                migrate_page_states(newpage, page);
1493        return MIGRATEPAGE_SUCCESS;
1494}
1495#endif
1496
1497static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1498{
1499        /*
1500         * An attempt to release a dirty page without budgeting for it - should
1501         * not happen.
1502         */
1503        if (PageWriteback(page))
1504                return 0;
1505        ubifs_assert(PagePrivate(page));
1506        ubifs_assert(0);
1507        ClearPagePrivate(page);
1508        ClearPageChecked(page);
1509        return 1;
1510}
1511
1512/*
1513 * mmap()d file has taken write protection fault and is being made writable.
1514 * UBIFS must ensure page is budgeted for.
1515 */
1516static int ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1517{
1518        struct page *page = vmf->page;
1519        struct inode *inode = file_inode(vmf->vma->vm_file);
1520        struct ubifs_info *c = inode->i_sb->s_fs_info;
1521        struct timespec now = current_time(inode);
1522        struct ubifs_budget_req req = { .new_page = 1 };
1523        int err, update_time;
1524
1525        dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1526                i_size_read(inode));
1527        ubifs_assert(!c->ro_media && !c->ro_mount);
1528
1529        if (unlikely(c->ro_error))
1530                return VM_FAULT_SIGBUS; /* -EROFS */
1531
1532        /*
1533         * We have not locked @page so far so we may budget for changing the
1534         * page. Note, we cannot do this after we locked the page, because
1535         * budgeting may cause write-back which would cause deadlock.
1536         *
1537         * At the moment we do not know whether the page is dirty or not, so we
1538         * assume that it is not and budget for a new page. We could look at
1539         * the @PG_private flag and figure this out, but we may race with write
1540         * back and the page state may change by the time we lock it, so this
1541         * would need additional care. We do not bother with this at the
1542         * moment, although it might be good idea to do. Instead, we allocate
1543         * budget for a new page and amend it later on if the page was in fact
1544         * dirty.
1545         *
1546         * The budgeting-related logic of this function is similar to what we
1547         * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1548         * for more comments.
1549         */
1550        update_time = mctime_update_needed(inode, &now);
1551        if (update_time)
1552                /*
1553                 * We have to change inode time stamp which requires extra
1554                 * budgeting.
1555                 */
1556                req.dirtied_ino = 1;
1557
1558        err = ubifs_budget_space(c, &req);
1559        if (unlikely(err)) {
1560                if (err == -ENOSPC)
1561                        ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1562                                   inode->i_ino);
1563                return VM_FAULT_SIGBUS;
1564        }
1565
1566        lock_page(page);
1567        if (unlikely(page->mapping != inode->i_mapping ||
1568                     page_offset(page) > i_size_read(inode))) {
1569                /* Page got truncated out from underneath us */
1570                err = -EINVAL;
1571                goto out_unlock;
1572        }
1573
1574        if (PagePrivate(page))
1575                release_new_page_budget(c);
1576        else {
1577                if (!PageChecked(page))
1578                        ubifs_convert_page_budget(c);
1579                SetPagePrivate(page);
1580                atomic_long_inc(&c->dirty_pg_cnt);
1581                __set_page_dirty_nobuffers(page);
1582        }
1583
1584        if (update_time) {
1585                int release;
1586                struct ubifs_inode *ui = ubifs_inode(inode);
1587
1588                mutex_lock(&ui->ui_mutex);
1589                inode->i_mtime = inode->i_ctime = current_time(inode);
1590                release = ui->dirty;
1591                mark_inode_dirty_sync(inode);
1592                mutex_unlock(&ui->ui_mutex);
1593                if (release)
1594                        ubifs_release_dirty_inode_budget(c, ui);
1595        }
1596
1597        wait_for_stable_page(page);
1598        return VM_FAULT_LOCKED;
1599
1600out_unlock:
1601        unlock_page(page);
1602        ubifs_release_budget(c, &req);
1603        if (err)
1604                err = VM_FAULT_SIGBUS;
1605        return err;
1606}
1607
1608static const struct vm_operations_struct ubifs_file_vm_ops = {
1609        .fault        = filemap_fault,
1610        .map_pages = filemap_map_pages,
1611        .page_mkwrite = ubifs_vm_page_mkwrite,
1612};
1613
1614static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1615{
1616        int err;
1617
1618        err = generic_file_mmap(file, vma);
1619        if (err)
1620                return err;
1621        vma->vm_ops = &ubifs_file_vm_ops;
1622#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1623        file_accessed(file);
1624#endif
1625        return 0;
1626}
1627
1628static const char *ubifs_get_link(struct dentry *dentry,
1629                                            struct inode *inode,
1630                                            struct delayed_call *done)
1631{
1632        struct ubifs_inode *ui = ubifs_inode(inode);
1633
1634        if (!IS_ENCRYPTED(inode))
1635                return ui->data;
1636
1637        if (!dentry)
1638                return ERR_PTR(-ECHILD);
1639
1640        return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1641}
1642
1643const struct address_space_operations ubifs_file_address_operations = {
1644        .readpage       = ubifs_readpage,
1645        .writepage      = ubifs_writepage,
1646        .write_begin    = ubifs_write_begin,
1647        .write_end      = ubifs_write_end,
1648        .invalidatepage = ubifs_invalidatepage,
1649        .set_page_dirty = ubifs_set_page_dirty,
1650#ifdef CONFIG_MIGRATION
1651        .migratepage    = ubifs_migrate_page,
1652#endif
1653        .releasepage    = ubifs_releasepage,
1654};
1655
1656const struct inode_operations ubifs_file_inode_operations = {
1657        .setattr     = ubifs_setattr,
1658        .getattr     = ubifs_getattr,
1659        .listxattr   = ubifs_listxattr,
1660#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1661        .update_time = ubifs_update_time,
1662#endif
1663};
1664
1665const struct inode_operations ubifs_symlink_inode_operations = {
1666        .get_link    = ubifs_get_link,
1667        .setattr     = ubifs_setattr,
1668        .getattr     = ubifs_getattr,
1669        .listxattr   = ubifs_listxattr,
1670#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1671        .update_time = ubifs_update_time,
1672#endif
1673};
1674
1675const struct file_operations ubifs_file_operations = {
1676        .llseek         = generic_file_llseek,
1677        .read_iter      = generic_file_read_iter,
1678        .write_iter     = ubifs_write_iter,
1679        .mmap           = ubifs_file_mmap,
1680        .fsync          = ubifs_fsync,
1681        .unlocked_ioctl = ubifs_ioctl,
1682        .splice_read    = generic_file_splice_read,
1683        .splice_write   = iter_file_splice_write,
1684        .open           = fscrypt_file_open,
1685#ifdef CONFIG_COMPAT
1686        .compat_ioctl   = ubifs_compat_ioctl,
1687#endif
1688};
1689