linux/fs/userfaultfd.c
<<
>>
Prefs
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
  15#include <linux/list.h>
  16#include <linux/hashtable.h>
  17#include <linux/sched/signal.h>
  18#include <linux/sched/mm.h>
  19#include <linux/mm.h>
  20#include <linux/poll.h>
  21#include <linux/slab.h>
  22#include <linux/seq_file.h>
  23#include <linux/file.h>
  24#include <linux/bug.h>
  25#include <linux/anon_inodes.h>
  26#include <linux/syscalls.h>
  27#include <linux/userfaultfd_k.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ioctl.h>
  30#include <linux/security.h>
  31#include <linux/hugetlb.h>
  32
  33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  34
  35enum userfaultfd_state {
  36        UFFD_STATE_WAIT_API,
  37        UFFD_STATE_RUNNING,
  38};
  39
  40/*
  41 * Start with fault_pending_wqh and fault_wqh so they're more likely
  42 * to be in the same cacheline.
  43 */
  44struct userfaultfd_ctx {
  45        /* waitqueue head for the pending (i.e. not read) userfaults */
  46        wait_queue_head_t fault_pending_wqh;
  47        /* waitqueue head for the userfaults */
  48        wait_queue_head_t fault_wqh;
  49        /* waitqueue head for the pseudo fd to wakeup poll/read */
  50        wait_queue_head_t fd_wqh;
  51        /* waitqueue head for events */
  52        wait_queue_head_t event_wqh;
  53        /* a refile sequence protected by fault_pending_wqh lock */
  54        struct seqcount refile_seq;
  55        /* pseudo fd refcounting */
  56        atomic_t refcount;
  57        /* userfaultfd syscall flags */
  58        unsigned int flags;
  59        /* features requested from the userspace */
  60        unsigned int features;
  61        /* state machine */
  62        enum userfaultfd_state state;
  63        /* released */
  64        bool released;
  65        /* mm with one ore more vmas attached to this userfaultfd_ctx */
  66        struct mm_struct *mm;
  67};
  68
  69struct userfaultfd_fork_ctx {
  70        struct userfaultfd_ctx *orig;
  71        struct userfaultfd_ctx *new;
  72        struct list_head list;
  73};
  74
  75struct userfaultfd_unmap_ctx {
  76        struct userfaultfd_ctx *ctx;
  77        unsigned long start;
  78        unsigned long end;
  79        struct list_head list;
  80};
  81
  82struct userfaultfd_wait_queue {
  83        struct uffd_msg msg;
  84        wait_queue_entry_t wq;
  85        struct userfaultfd_ctx *ctx;
  86        bool waken;
  87};
  88
  89struct userfaultfd_wake_range {
  90        unsigned long start;
  91        unsigned long len;
  92};
  93
  94static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
  95                                     int wake_flags, void *key)
  96{
  97        struct userfaultfd_wake_range *range = key;
  98        int ret;
  99        struct userfaultfd_wait_queue *uwq;
 100        unsigned long start, len;
 101
 102        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 103        ret = 0;
 104        /* len == 0 means wake all */
 105        start = range->start;
 106        len = range->len;
 107        if (len && (start > uwq->msg.arg.pagefault.address ||
 108                    start + len <= uwq->msg.arg.pagefault.address))
 109                goto out;
 110        WRITE_ONCE(uwq->waken, true);
 111        /*
 112         * The Program-Order guarantees provided by the scheduler
 113         * ensure uwq->waken is visible before the task is woken.
 114         */
 115        ret = wake_up_state(wq->private, mode);
 116        if (ret) {
 117                /*
 118                 * Wake only once, autoremove behavior.
 119                 *
 120                 * After the effect of list_del_init is visible to the other
 121                 * CPUs, the waitqueue may disappear from under us, see the
 122                 * !list_empty_careful() in handle_userfault().
 123                 *
 124                 * try_to_wake_up() has an implicit smp_mb(), and the
 125                 * wq->private is read before calling the extern function
 126                 * "wake_up_state" (which in turns calls try_to_wake_up).
 127                 */
 128                list_del_init(&wq->entry);
 129        }
 130out:
 131        return ret;
 132}
 133
 134/**
 135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 136 * context.
 137 * @ctx: [in] Pointer to the userfaultfd context.
 138 */
 139static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 140{
 141        if (!atomic_inc_not_zero(&ctx->refcount))
 142                BUG();
 143}
 144
 145/**
 146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 147 * context.
 148 * @ctx: [in] Pointer to userfaultfd context.
 149 *
 150 * The userfaultfd context reference must have been previously acquired either
 151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 152 */
 153static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 154{
 155        if (atomic_dec_and_test(&ctx->refcount)) {
 156                VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 157                VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 158                VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 159                VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 160                VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 161                VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 162                VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 163                VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 164                mmdrop(ctx->mm);
 165                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 166        }
 167}
 168
 169static inline void msg_init(struct uffd_msg *msg)
 170{
 171        BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 172        /*
 173         * Must use memset to zero out the paddings or kernel data is
 174         * leaked to userland.
 175         */
 176        memset(msg, 0, sizeof(struct uffd_msg));
 177}
 178
 179static inline struct uffd_msg userfault_msg(unsigned long address,
 180                                            unsigned int flags,
 181                                            unsigned long reason,
 182                                            unsigned int features)
 183{
 184        struct uffd_msg msg;
 185        msg_init(&msg);
 186        msg.event = UFFD_EVENT_PAGEFAULT;
 187        msg.arg.pagefault.address = address;
 188        if (flags & FAULT_FLAG_WRITE)
 189                /*
 190                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 191                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 192                 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 193                 * was a read fault, otherwise if set it means it's
 194                 * a write fault.
 195                 */
 196                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 197        if (reason & VM_UFFD_WP)
 198                /*
 199                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 200                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 201                 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 202                 * a missing fault, otherwise if set it means it's a
 203                 * write protect fault.
 204                 */
 205                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 206        if (features & UFFD_FEATURE_THREAD_ID)
 207                msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 208        return msg;
 209}
 210
 211#ifdef CONFIG_HUGETLB_PAGE
 212/*
 213 * Same functionality as userfaultfd_must_wait below with modifications for
 214 * hugepmd ranges.
 215 */
 216static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 217                                         struct vm_area_struct *vma,
 218                                         unsigned long address,
 219                                         unsigned long flags,
 220                                         unsigned long reason)
 221{
 222        struct mm_struct *mm = ctx->mm;
 223        pte_t *pte;
 224        bool ret = true;
 225
 226        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 227
 228        pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
 229        if (!pte)
 230                goto out;
 231
 232        ret = false;
 233
 234        /*
 235         * Lockless access: we're in a wait_event so it's ok if it
 236         * changes under us.
 237         */
 238        if (huge_pte_none(*pte))
 239                ret = true;
 240        if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
 241                ret = true;
 242out:
 243        return ret;
 244}
 245#else
 246static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 247                                         struct vm_area_struct *vma,
 248                                         unsigned long address,
 249                                         unsigned long flags,
 250                                         unsigned long reason)
 251{
 252        return false;   /* should never get here */
 253}
 254#endif /* CONFIG_HUGETLB_PAGE */
 255
 256/*
 257 * Verify the pagetables are still not ok after having reigstered into
 258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 259 * userfault that has already been resolved, if userfaultfd_read and
 260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 261 * threads.
 262 */
 263static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 264                                         unsigned long address,
 265                                         unsigned long flags,
 266                                         unsigned long reason)
 267{
 268        struct mm_struct *mm = ctx->mm;
 269        pgd_t *pgd;
 270        p4d_t *p4d;
 271        pud_t *pud;
 272        pmd_t *pmd, _pmd;
 273        pte_t *pte;
 274        bool ret = true;
 275
 276        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 277
 278        pgd = pgd_offset(mm, address);
 279        if (!pgd_present(*pgd))
 280                goto out;
 281        p4d = p4d_offset(pgd, address);
 282        if (!p4d_present(*p4d))
 283                goto out;
 284        pud = pud_offset(p4d, address);
 285        if (!pud_present(*pud))
 286                goto out;
 287        pmd = pmd_offset(pud, address);
 288        /*
 289         * READ_ONCE must function as a barrier with narrower scope
 290         * and it must be equivalent to:
 291         *      _pmd = *pmd; barrier();
 292         *
 293         * This is to deal with the instability (as in
 294         * pmd_trans_unstable) of the pmd.
 295         */
 296        _pmd = READ_ONCE(*pmd);
 297        if (pmd_none(_pmd))
 298                goto out;
 299
 300        ret = false;
 301        if (!pmd_present(_pmd))
 302                goto out;
 303
 304        if (pmd_trans_huge(_pmd))
 305                goto out;
 306
 307        /*
 308         * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 309         * and use the standard pte_offset_map() instead of parsing _pmd.
 310         */
 311        pte = pte_offset_map(pmd, address);
 312        /*
 313         * Lockless access: we're in a wait_event so it's ok if it
 314         * changes under us.
 315         */
 316        if (pte_none(*pte))
 317                ret = true;
 318        pte_unmap(pte);
 319
 320out:
 321        return ret;
 322}
 323
 324/*
 325 * The locking rules involved in returning VM_FAULT_RETRY depending on
 326 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 327 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 328 * recommendation in __lock_page_or_retry is not an understatement.
 329 *
 330 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 331 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 332 * not set.
 333 *
 334 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 335 * set, VM_FAULT_RETRY can still be returned if and only if there are
 336 * fatal_signal_pending()s, and the mmap_sem must be released before
 337 * returning it.
 338 */
 339int handle_userfault(struct vm_fault *vmf, unsigned long reason)
 340{
 341        struct mm_struct *mm = vmf->vma->vm_mm;
 342        struct userfaultfd_ctx *ctx;
 343        struct userfaultfd_wait_queue uwq;
 344        int ret;
 345        bool must_wait, return_to_userland;
 346        long blocking_state;
 347
 348        ret = VM_FAULT_SIGBUS;
 349
 350        /*
 351         * We don't do userfault handling for the final child pid update.
 352         *
 353         * We also don't do userfault handling during
 354         * coredumping. hugetlbfs has the special
 355         * follow_hugetlb_page() to skip missing pages in the
 356         * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 357         * the no_page_table() helper in follow_page_mask(), but the
 358         * shmem_vm_ops->fault method is invoked even during
 359         * coredumping without mmap_sem and it ends up here.
 360         */
 361        if (current->flags & (PF_EXITING|PF_DUMPCORE))
 362                goto out;
 363
 364        /*
 365         * Coredumping runs without mmap_sem so we can only check that
 366         * the mmap_sem is held, if PF_DUMPCORE was not set.
 367         */
 368        WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
 369
 370        ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 371        if (!ctx)
 372                goto out;
 373
 374        BUG_ON(ctx->mm != mm);
 375
 376        VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 377        VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 378
 379        if (ctx->features & UFFD_FEATURE_SIGBUS)
 380                goto out;
 381
 382        /*
 383         * If it's already released don't get it. This avoids to loop
 384         * in __get_user_pages if userfaultfd_release waits on the
 385         * caller of handle_userfault to release the mmap_sem.
 386         */
 387        if (unlikely(READ_ONCE(ctx->released))) {
 388                /*
 389                 * Don't return VM_FAULT_SIGBUS in this case, so a non
 390                 * cooperative manager can close the uffd after the
 391                 * last UFFDIO_COPY, without risking to trigger an
 392                 * involuntary SIGBUS if the process was starting the
 393                 * userfaultfd while the userfaultfd was still armed
 394                 * (but after the last UFFDIO_COPY). If the uffd
 395                 * wasn't already closed when the userfault reached
 396                 * this point, that would normally be solved by
 397                 * userfaultfd_must_wait returning 'false'.
 398                 *
 399                 * If we were to return VM_FAULT_SIGBUS here, the non
 400                 * cooperative manager would be instead forced to
 401                 * always call UFFDIO_UNREGISTER before it can safely
 402                 * close the uffd.
 403                 */
 404                ret = VM_FAULT_NOPAGE;
 405                goto out;
 406        }
 407
 408        /*
 409         * Check that we can return VM_FAULT_RETRY.
 410         *
 411         * NOTE: it should become possible to return VM_FAULT_RETRY
 412         * even if FAULT_FLAG_TRIED is set without leading to gup()
 413         * -EBUSY failures, if the userfaultfd is to be extended for
 414         * VM_UFFD_WP tracking and we intend to arm the userfault
 415         * without first stopping userland access to the memory. For
 416         * VM_UFFD_MISSING userfaults this is enough for now.
 417         */
 418        if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 419                /*
 420                 * Validate the invariant that nowait must allow retry
 421                 * to be sure not to return SIGBUS erroneously on
 422                 * nowait invocations.
 423                 */
 424                BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 425#ifdef CONFIG_DEBUG_VM
 426                if (printk_ratelimit()) {
 427                        printk(KERN_WARNING
 428                               "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 429                               vmf->flags);
 430                        dump_stack();
 431                }
 432#endif
 433                goto out;
 434        }
 435
 436        /*
 437         * Handle nowait, not much to do other than tell it to retry
 438         * and wait.
 439         */
 440        ret = VM_FAULT_RETRY;
 441        if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 442                goto out;
 443
 444        /* take the reference before dropping the mmap_sem */
 445        userfaultfd_ctx_get(ctx);
 446
 447        init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 448        uwq.wq.private = current;
 449        uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
 450                        ctx->features);
 451        uwq.ctx = ctx;
 452        uwq.waken = false;
 453
 454        return_to_userland =
 455                (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
 456                (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
 457        blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
 458                         TASK_KILLABLE;
 459
 460        spin_lock(&ctx->fault_pending_wqh.lock);
 461        /*
 462         * After the __add_wait_queue the uwq is visible to userland
 463         * through poll/read().
 464         */
 465        __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 466        /*
 467         * The smp_mb() after __set_current_state prevents the reads
 468         * following the spin_unlock to happen before the list_add in
 469         * __add_wait_queue.
 470         */
 471        set_current_state(blocking_state);
 472        spin_unlock(&ctx->fault_pending_wqh.lock);
 473
 474        if (!is_vm_hugetlb_page(vmf->vma))
 475                must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 476                                                  reason);
 477        else
 478                must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
 479                                                       vmf->address,
 480                                                       vmf->flags, reason);
 481        up_read(&mm->mmap_sem);
 482
 483        if (likely(must_wait && !READ_ONCE(ctx->released) &&
 484                   (return_to_userland ? !signal_pending(current) :
 485                    !fatal_signal_pending(current)))) {
 486                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 487                schedule();
 488                ret |= VM_FAULT_MAJOR;
 489
 490                /*
 491                 * False wakeups can orginate even from rwsem before
 492                 * up_read() however userfaults will wait either for a
 493                 * targeted wakeup on the specific uwq waitqueue from
 494                 * wake_userfault() or for signals or for uffd
 495                 * release.
 496                 */
 497                while (!READ_ONCE(uwq.waken)) {
 498                        /*
 499                         * This needs the full smp_store_mb()
 500                         * guarantee as the state write must be
 501                         * visible to other CPUs before reading
 502                         * uwq.waken from other CPUs.
 503                         */
 504                        set_current_state(blocking_state);
 505                        if (READ_ONCE(uwq.waken) ||
 506                            READ_ONCE(ctx->released) ||
 507                            (return_to_userland ? signal_pending(current) :
 508                             fatal_signal_pending(current)))
 509                                break;
 510                        schedule();
 511                }
 512        }
 513
 514        __set_current_state(TASK_RUNNING);
 515
 516        if (return_to_userland) {
 517                if (signal_pending(current) &&
 518                    !fatal_signal_pending(current)) {
 519                        /*
 520                         * If we got a SIGSTOP or SIGCONT and this is
 521                         * a normal userland page fault, just let
 522                         * userland return so the signal will be
 523                         * handled and gdb debugging works.  The page
 524                         * fault code immediately after we return from
 525                         * this function is going to release the
 526                         * mmap_sem and it's not depending on it
 527                         * (unlike gup would if we were not to return
 528                         * VM_FAULT_RETRY).
 529                         *
 530                         * If a fatal signal is pending we still take
 531                         * the streamlined VM_FAULT_RETRY failure path
 532                         * and there's no need to retake the mmap_sem
 533                         * in such case.
 534                         */
 535                        down_read(&mm->mmap_sem);
 536                        ret = VM_FAULT_NOPAGE;
 537                }
 538        }
 539
 540        /*
 541         * Here we race with the list_del; list_add in
 542         * userfaultfd_ctx_read(), however because we don't ever run
 543         * list_del_init() to refile across the two lists, the prev
 544         * and next pointers will never point to self. list_add also
 545         * would never let any of the two pointers to point to
 546         * self. So list_empty_careful won't risk to see both pointers
 547         * pointing to self at any time during the list refile. The
 548         * only case where list_del_init() is called is the full
 549         * removal in the wake function and there we don't re-list_add
 550         * and it's fine not to block on the spinlock. The uwq on this
 551         * kernel stack can be released after the list_del_init.
 552         */
 553        if (!list_empty_careful(&uwq.wq.entry)) {
 554                spin_lock(&ctx->fault_pending_wqh.lock);
 555                /*
 556                 * No need of list_del_init(), the uwq on the stack
 557                 * will be freed shortly anyway.
 558                 */
 559                list_del(&uwq.wq.entry);
 560                spin_unlock(&ctx->fault_pending_wqh.lock);
 561        }
 562
 563        /*
 564         * ctx may go away after this if the userfault pseudo fd is
 565         * already released.
 566         */
 567        userfaultfd_ctx_put(ctx);
 568
 569out:
 570        return ret;
 571}
 572
 573static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 574                                              struct userfaultfd_wait_queue *ewq)
 575{
 576        struct userfaultfd_ctx *release_new_ctx;
 577
 578        if (WARN_ON_ONCE(current->flags & PF_EXITING))
 579                goto out;
 580
 581        ewq->ctx = ctx;
 582        init_waitqueue_entry(&ewq->wq, current);
 583        release_new_ctx = NULL;
 584
 585        spin_lock(&ctx->event_wqh.lock);
 586        /*
 587         * After the __add_wait_queue the uwq is visible to userland
 588         * through poll/read().
 589         */
 590        __add_wait_queue(&ctx->event_wqh, &ewq->wq);
 591        for (;;) {
 592                set_current_state(TASK_KILLABLE);
 593                if (ewq->msg.event == 0)
 594                        break;
 595                if (READ_ONCE(ctx->released) ||
 596                    fatal_signal_pending(current)) {
 597                        /*
 598                         * &ewq->wq may be queued in fork_event, but
 599                         * __remove_wait_queue ignores the head
 600                         * parameter. It would be a problem if it
 601                         * didn't.
 602                         */
 603                        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 604                        if (ewq->msg.event == UFFD_EVENT_FORK) {
 605                                struct userfaultfd_ctx *new;
 606
 607                                new = (struct userfaultfd_ctx *)
 608                                        (unsigned long)
 609                                        ewq->msg.arg.reserved.reserved1;
 610                                release_new_ctx = new;
 611                        }
 612                        break;
 613                }
 614
 615                spin_unlock(&ctx->event_wqh.lock);
 616
 617                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 618                schedule();
 619
 620                spin_lock(&ctx->event_wqh.lock);
 621        }
 622        __set_current_state(TASK_RUNNING);
 623        spin_unlock(&ctx->event_wqh.lock);
 624
 625        if (release_new_ctx) {
 626                struct vm_area_struct *vma;
 627                struct mm_struct *mm = release_new_ctx->mm;
 628
 629                /* the various vma->vm_userfaultfd_ctx still points to it */
 630                down_write(&mm->mmap_sem);
 631                for (vma = mm->mmap; vma; vma = vma->vm_next)
 632                        if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
 633                                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 634                up_write(&mm->mmap_sem);
 635
 636                userfaultfd_ctx_put(release_new_ctx);
 637        }
 638
 639        /*
 640         * ctx may go away after this if the userfault pseudo fd is
 641         * already released.
 642         */
 643out:
 644        userfaultfd_ctx_put(ctx);
 645}
 646
 647static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 648                                       struct userfaultfd_wait_queue *ewq)
 649{
 650        ewq->msg.event = 0;
 651        wake_up_locked(&ctx->event_wqh);
 652        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 653}
 654
 655int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 656{
 657        struct userfaultfd_ctx *ctx = NULL, *octx;
 658        struct userfaultfd_fork_ctx *fctx;
 659
 660        octx = vma->vm_userfaultfd_ctx.ctx;
 661        if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 662                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 663                vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
 664                return 0;
 665        }
 666
 667        list_for_each_entry(fctx, fcs, list)
 668                if (fctx->orig == octx) {
 669                        ctx = fctx->new;
 670                        break;
 671                }
 672
 673        if (!ctx) {
 674                fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 675                if (!fctx)
 676                        return -ENOMEM;
 677
 678                ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 679                if (!ctx) {
 680                        kfree(fctx);
 681                        return -ENOMEM;
 682                }
 683
 684                atomic_set(&ctx->refcount, 1);
 685                ctx->flags = octx->flags;
 686                ctx->state = UFFD_STATE_RUNNING;
 687                ctx->features = octx->features;
 688                ctx->released = false;
 689                ctx->mm = vma->vm_mm;
 690                mmgrab(ctx->mm);
 691
 692                userfaultfd_ctx_get(octx);
 693                fctx->orig = octx;
 694                fctx->new = ctx;
 695                list_add_tail(&fctx->list, fcs);
 696        }
 697
 698        vma->vm_userfaultfd_ctx.ctx = ctx;
 699        return 0;
 700}
 701
 702static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 703{
 704        struct userfaultfd_ctx *ctx = fctx->orig;
 705        struct userfaultfd_wait_queue ewq;
 706
 707        msg_init(&ewq.msg);
 708
 709        ewq.msg.event = UFFD_EVENT_FORK;
 710        ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 711
 712        userfaultfd_event_wait_completion(ctx, &ewq);
 713}
 714
 715void dup_userfaultfd_complete(struct list_head *fcs)
 716{
 717        struct userfaultfd_fork_ctx *fctx, *n;
 718
 719        list_for_each_entry_safe(fctx, n, fcs, list) {
 720                dup_fctx(fctx);
 721                list_del(&fctx->list);
 722                kfree(fctx);
 723        }
 724}
 725
 726void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 727                             struct vm_userfaultfd_ctx *vm_ctx)
 728{
 729        struct userfaultfd_ctx *ctx;
 730
 731        ctx = vma->vm_userfaultfd_ctx.ctx;
 732        if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
 733                vm_ctx->ctx = ctx;
 734                userfaultfd_ctx_get(ctx);
 735        }
 736}
 737
 738void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 739                                 unsigned long from, unsigned long to,
 740                                 unsigned long len)
 741{
 742        struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 743        struct userfaultfd_wait_queue ewq;
 744
 745        if (!ctx)
 746                return;
 747
 748        if (to & ~PAGE_MASK) {
 749                userfaultfd_ctx_put(ctx);
 750                return;
 751        }
 752
 753        msg_init(&ewq.msg);
 754
 755        ewq.msg.event = UFFD_EVENT_REMAP;
 756        ewq.msg.arg.remap.from = from;
 757        ewq.msg.arg.remap.to = to;
 758        ewq.msg.arg.remap.len = len;
 759
 760        userfaultfd_event_wait_completion(ctx, &ewq);
 761}
 762
 763bool userfaultfd_remove(struct vm_area_struct *vma,
 764                        unsigned long start, unsigned long end)
 765{
 766        struct mm_struct *mm = vma->vm_mm;
 767        struct userfaultfd_ctx *ctx;
 768        struct userfaultfd_wait_queue ewq;
 769
 770        ctx = vma->vm_userfaultfd_ctx.ctx;
 771        if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 772                return true;
 773
 774        userfaultfd_ctx_get(ctx);
 775        up_read(&mm->mmap_sem);
 776
 777        msg_init(&ewq.msg);
 778
 779        ewq.msg.event = UFFD_EVENT_REMOVE;
 780        ewq.msg.arg.remove.start = start;
 781        ewq.msg.arg.remove.end = end;
 782
 783        userfaultfd_event_wait_completion(ctx, &ewq);
 784
 785        return false;
 786}
 787
 788static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 789                          unsigned long start, unsigned long end)
 790{
 791        struct userfaultfd_unmap_ctx *unmap_ctx;
 792
 793        list_for_each_entry(unmap_ctx, unmaps, list)
 794                if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 795                    unmap_ctx->end == end)
 796                        return true;
 797
 798        return false;
 799}
 800
 801int userfaultfd_unmap_prep(struct vm_area_struct *vma,
 802                           unsigned long start, unsigned long end,
 803                           struct list_head *unmaps)
 804{
 805        for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
 806                struct userfaultfd_unmap_ctx *unmap_ctx;
 807                struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 808
 809                if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 810                    has_unmap_ctx(ctx, unmaps, start, end))
 811                        continue;
 812
 813                unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 814                if (!unmap_ctx)
 815                        return -ENOMEM;
 816
 817                userfaultfd_ctx_get(ctx);
 818                unmap_ctx->ctx = ctx;
 819                unmap_ctx->start = start;
 820                unmap_ctx->end = end;
 821                list_add_tail(&unmap_ctx->list, unmaps);
 822        }
 823
 824        return 0;
 825}
 826
 827void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 828{
 829        struct userfaultfd_unmap_ctx *ctx, *n;
 830        struct userfaultfd_wait_queue ewq;
 831
 832        list_for_each_entry_safe(ctx, n, uf, list) {
 833                msg_init(&ewq.msg);
 834
 835                ewq.msg.event = UFFD_EVENT_UNMAP;
 836                ewq.msg.arg.remove.start = ctx->start;
 837                ewq.msg.arg.remove.end = ctx->end;
 838
 839                userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 840
 841                list_del(&ctx->list);
 842                kfree(ctx);
 843        }
 844}
 845
 846static int userfaultfd_release(struct inode *inode, struct file *file)
 847{
 848        struct userfaultfd_ctx *ctx = file->private_data;
 849        struct mm_struct *mm = ctx->mm;
 850        struct vm_area_struct *vma, *prev;
 851        /* len == 0 means wake all */
 852        struct userfaultfd_wake_range range = { .len = 0, };
 853        unsigned long new_flags;
 854
 855        WRITE_ONCE(ctx->released, true);
 856
 857        if (!mmget_not_zero(mm))
 858                goto wakeup;
 859
 860        /*
 861         * Flush page faults out of all CPUs. NOTE: all page faults
 862         * must be retried without returning VM_FAULT_SIGBUS if
 863         * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 864         * changes while handle_userfault released the mmap_sem. So
 865         * it's critical that released is set to true (above), before
 866         * taking the mmap_sem for writing.
 867         */
 868        down_write(&mm->mmap_sem);
 869        prev = NULL;
 870        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 871                cond_resched();
 872                BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 873                       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 874                if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 875                        prev = vma;
 876                        continue;
 877                }
 878                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 879                prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 880                                 new_flags, vma->anon_vma,
 881                                 vma->vm_file, vma->vm_pgoff,
 882                                 vma_policy(vma),
 883                                 NULL_VM_UFFD_CTX);
 884                if (prev)
 885                        vma = prev;
 886                else
 887                        prev = vma;
 888                vma->vm_flags = new_flags;
 889                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 890        }
 891        up_write(&mm->mmap_sem);
 892        mmput(mm);
 893wakeup:
 894        /*
 895         * After no new page faults can wait on this fault_*wqh, flush
 896         * the last page faults that may have been already waiting on
 897         * the fault_*wqh.
 898         */
 899        spin_lock(&ctx->fault_pending_wqh.lock);
 900        __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 901        __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 902        spin_unlock(&ctx->fault_pending_wqh.lock);
 903
 904        /* Flush pending events that may still wait on event_wqh */
 905        wake_up_all(&ctx->event_wqh);
 906
 907        wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 908        userfaultfd_ctx_put(ctx);
 909        return 0;
 910}
 911
 912/* fault_pending_wqh.lock must be hold by the caller */
 913static inline struct userfaultfd_wait_queue *find_userfault_in(
 914                wait_queue_head_t *wqh)
 915{
 916        wait_queue_entry_t *wq;
 917        struct userfaultfd_wait_queue *uwq;
 918
 919        VM_BUG_ON(!spin_is_locked(&wqh->lock));
 920
 921        uwq = NULL;
 922        if (!waitqueue_active(wqh))
 923                goto out;
 924        /* walk in reverse to provide FIFO behavior to read userfaults */
 925        wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 926        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 927out:
 928        return uwq;
 929}
 930
 931static inline struct userfaultfd_wait_queue *find_userfault(
 932                struct userfaultfd_ctx *ctx)
 933{
 934        return find_userfault_in(&ctx->fault_pending_wqh);
 935}
 936
 937static inline struct userfaultfd_wait_queue *find_userfault_evt(
 938                struct userfaultfd_ctx *ctx)
 939{
 940        return find_userfault_in(&ctx->event_wqh);
 941}
 942
 943static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 944{
 945        struct userfaultfd_ctx *ctx = file->private_data;
 946        __poll_t ret;
 947
 948        poll_wait(file, &ctx->fd_wqh, wait);
 949
 950        switch (ctx->state) {
 951        case UFFD_STATE_WAIT_API:
 952                return EPOLLERR;
 953        case UFFD_STATE_RUNNING:
 954                /*
 955                 * poll() never guarantees that read won't block.
 956                 * userfaults can be waken before they're read().
 957                 */
 958                if (unlikely(!(file->f_flags & O_NONBLOCK)))
 959                        return EPOLLERR;
 960                /*
 961                 * lockless access to see if there are pending faults
 962                 * __pollwait last action is the add_wait_queue but
 963                 * the spin_unlock would allow the waitqueue_active to
 964                 * pass above the actual list_add inside
 965                 * add_wait_queue critical section. So use a full
 966                 * memory barrier to serialize the list_add write of
 967                 * add_wait_queue() with the waitqueue_active read
 968                 * below.
 969                 */
 970                ret = 0;
 971                smp_mb();
 972                if (waitqueue_active(&ctx->fault_pending_wqh))
 973                        ret = EPOLLIN;
 974                else if (waitqueue_active(&ctx->event_wqh))
 975                        ret = EPOLLIN;
 976
 977                return ret;
 978        default:
 979                WARN_ON_ONCE(1);
 980                return EPOLLERR;
 981        }
 982}
 983
 984static const struct file_operations userfaultfd_fops;
 985
 986static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
 987                                  struct userfaultfd_ctx *new,
 988                                  struct uffd_msg *msg)
 989{
 990        int fd;
 991
 992        fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
 993                              O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
 994        if (fd < 0)
 995                return fd;
 996
 997        msg->arg.reserved.reserved1 = 0;
 998        msg->arg.fork.ufd = fd;
 999        return 0;
1000}
1001
1002static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1003                                    struct uffd_msg *msg)
1004{
1005        ssize_t ret;
1006        DECLARE_WAITQUEUE(wait, current);
1007        struct userfaultfd_wait_queue *uwq;
1008        /*
1009         * Handling fork event requires sleeping operations, so
1010         * we drop the event_wqh lock, then do these ops, then
1011         * lock it back and wake up the waiter. While the lock is
1012         * dropped the ewq may go away so we keep track of it
1013         * carefully.
1014         */
1015        LIST_HEAD(fork_event);
1016        struct userfaultfd_ctx *fork_nctx = NULL;
1017
1018        /* always take the fd_wqh lock before the fault_pending_wqh lock */
1019        spin_lock(&ctx->fd_wqh.lock);
1020        __add_wait_queue(&ctx->fd_wqh, &wait);
1021        for (;;) {
1022                set_current_state(TASK_INTERRUPTIBLE);
1023                spin_lock(&ctx->fault_pending_wqh.lock);
1024                uwq = find_userfault(ctx);
1025                if (uwq) {
1026                        /*
1027                         * Use a seqcount to repeat the lockless check
1028                         * in wake_userfault() to avoid missing
1029                         * wakeups because during the refile both
1030                         * waitqueue could become empty if this is the
1031                         * only userfault.
1032                         */
1033                        write_seqcount_begin(&ctx->refile_seq);
1034
1035                        /*
1036                         * The fault_pending_wqh.lock prevents the uwq
1037                         * to disappear from under us.
1038                         *
1039                         * Refile this userfault from
1040                         * fault_pending_wqh to fault_wqh, it's not
1041                         * pending anymore after we read it.
1042                         *
1043                         * Use list_del() by hand (as
1044                         * userfaultfd_wake_function also uses
1045                         * list_del_init() by hand) to be sure nobody
1046                         * changes __remove_wait_queue() to use
1047                         * list_del_init() in turn breaking the
1048                         * !list_empty_careful() check in
1049                         * handle_userfault(). The uwq->wq.head list
1050                         * must never be empty at any time during the
1051                         * refile, or the waitqueue could disappear
1052                         * from under us. The "wait_queue_head_t"
1053                         * parameter of __remove_wait_queue() is unused
1054                         * anyway.
1055                         */
1056                        list_del(&uwq->wq.entry);
1057                        __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1058
1059                        write_seqcount_end(&ctx->refile_seq);
1060
1061                        /* careful to always initialize msg if ret == 0 */
1062                        *msg = uwq->msg;
1063                        spin_unlock(&ctx->fault_pending_wqh.lock);
1064                        ret = 0;
1065                        break;
1066                }
1067                spin_unlock(&ctx->fault_pending_wqh.lock);
1068
1069                spin_lock(&ctx->event_wqh.lock);
1070                uwq = find_userfault_evt(ctx);
1071                if (uwq) {
1072                        *msg = uwq->msg;
1073
1074                        if (uwq->msg.event == UFFD_EVENT_FORK) {
1075                                fork_nctx = (struct userfaultfd_ctx *)
1076                                        (unsigned long)
1077                                        uwq->msg.arg.reserved.reserved1;
1078                                list_move(&uwq->wq.entry, &fork_event);
1079                                /*
1080                                 * fork_nctx can be freed as soon as
1081                                 * we drop the lock, unless we take a
1082                                 * reference on it.
1083                                 */
1084                                userfaultfd_ctx_get(fork_nctx);
1085                                spin_unlock(&ctx->event_wqh.lock);
1086                                ret = 0;
1087                                break;
1088                        }
1089
1090                        userfaultfd_event_complete(ctx, uwq);
1091                        spin_unlock(&ctx->event_wqh.lock);
1092                        ret = 0;
1093                        break;
1094                }
1095                spin_unlock(&ctx->event_wqh.lock);
1096
1097                if (signal_pending(current)) {
1098                        ret = -ERESTARTSYS;
1099                        break;
1100                }
1101                if (no_wait) {
1102                        ret = -EAGAIN;
1103                        break;
1104                }
1105                spin_unlock(&ctx->fd_wqh.lock);
1106                schedule();
1107                spin_lock(&ctx->fd_wqh.lock);
1108        }
1109        __remove_wait_queue(&ctx->fd_wqh, &wait);
1110        __set_current_state(TASK_RUNNING);
1111        spin_unlock(&ctx->fd_wqh.lock);
1112
1113        if (!ret && msg->event == UFFD_EVENT_FORK) {
1114                ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1115                spin_lock(&ctx->event_wqh.lock);
1116                if (!list_empty(&fork_event)) {
1117                        /*
1118                         * The fork thread didn't abort, so we can
1119                         * drop the temporary refcount.
1120                         */
1121                        userfaultfd_ctx_put(fork_nctx);
1122
1123                        uwq = list_first_entry(&fork_event,
1124                                               typeof(*uwq),
1125                                               wq.entry);
1126                        /*
1127                         * If fork_event list wasn't empty and in turn
1128                         * the event wasn't already released by fork
1129                         * (the event is allocated on fork kernel
1130                         * stack), put the event back to its place in
1131                         * the event_wq. fork_event head will be freed
1132                         * as soon as we return so the event cannot
1133                         * stay queued there no matter the current
1134                         * "ret" value.
1135                         */
1136                        list_del(&uwq->wq.entry);
1137                        __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1138
1139                        /*
1140                         * Leave the event in the waitqueue and report
1141                         * error to userland if we failed to resolve
1142                         * the userfault fork.
1143                         */
1144                        if (likely(!ret))
1145                                userfaultfd_event_complete(ctx, uwq);
1146                } else {
1147                        /*
1148                         * Here the fork thread aborted and the
1149                         * refcount from the fork thread on fork_nctx
1150                         * has already been released. We still hold
1151                         * the reference we took before releasing the
1152                         * lock above. If resolve_userfault_fork
1153                         * failed we've to drop it because the
1154                         * fork_nctx has to be freed in such case. If
1155                         * it succeeded we'll hold it because the new
1156                         * uffd references it.
1157                         */
1158                        if (ret)
1159                                userfaultfd_ctx_put(fork_nctx);
1160                }
1161                spin_unlock(&ctx->event_wqh.lock);
1162        }
1163
1164        return ret;
1165}
1166
1167static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1168                                size_t count, loff_t *ppos)
1169{
1170        struct userfaultfd_ctx *ctx = file->private_data;
1171        ssize_t _ret, ret = 0;
1172        struct uffd_msg msg;
1173        int no_wait = file->f_flags & O_NONBLOCK;
1174
1175        if (ctx->state == UFFD_STATE_WAIT_API)
1176                return -EINVAL;
1177
1178        for (;;) {
1179                if (count < sizeof(msg))
1180                        return ret ? ret : -EINVAL;
1181                _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1182                if (_ret < 0)
1183                        return ret ? ret : _ret;
1184                if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1185                        return ret ? ret : -EFAULT;
1186                ret += sizeof(msg);
1187                buf += sizeof(msg);
1188                count -= sizeof(msg);
1189                /*
1190                 * Allow to read more than one fault at time but only
1191                 * block if waiting for the very first one.
1192                 */
1193                no_wait = O_NONBLOCK;
1194        }
1195}
1196
1197static void __wake_userfault(struct userfaultfd_ctx *ctx,
1198                             struct userfaultfd_wake_range *range)
1199{
1200        spin_lock(&ctx->fault_pending_wqh.lock);
1201        /* wake all in the range and autoremove */
1202        if (waitqueue_active(&ctx->fault_pending_wqh))
1203                __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1204                                     range);
1205        if (waitqueue_active(&ctx->fault_wqh))
1206                __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1207        spin_unlock(&ctx->fault_pending_wqh.lock);
1208}
1209
1210static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1211                                           struct userfaultfd_wake_range *range)
1212{
1213        unsigned seq;
1214        bool need_wakeup;
1215
1216        /*
1217         * To be sure waitqueue_active() is not reordered by the CPU
1218         * before the pagetable update, use an explicit SMP memory
1219         * barrier here. PT lock release or up_read(mmap_sem) still
1220         * have release semantics that can allow the
1221         * waitqueue_active() to be reordered before the pte update.
1222         */
1223        smp_mb();
1224
1225        /*
1226         * Use waitqueue_active because it's very frequent to
1227         * change the address space atomically even if there are no
1228         * userfaults yet. So we take the spinlock only when we're
1229         * sure we've userfaults to wake.
1230         */
1231        do {
1232                seq = read_seqcount_begin(&ctx->refile_seq);
1233                need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1234                        waitqueue_active(&ctx->fault_wqh);
1235                cond_resched();
1236        } while (read_seqcount_retry(&ctx->refile_seq, seq));
1237        if (need_wakeup)
1238                __wake_userfault(ctx, range);
1239}
1240
1241static __always_inline int validate_range(struct mm_struct *mm,
1242                                          __u64 start, __u64 len)
1243{
1244        __u64 task_size = mm->task_size;
1245
1246        if (start & ~PAGE_MASK)
1247                return -EINVAL;
1248        if (len & ~PAGE_MASK)
1249                return -EINVAL;
1250        if (!len)
1251                return -EINVAL;
1252        if (start < mmap_min_addr)
1253                return -EINVAL;
1254        if (start >= task_size)
1255                return -EINVAL;
1256        if (len > task_size - start)
1257                return -EINVAL;
1258        return 0;
1259}
1260
1261static inline bool vma_can_userfault(struct vm_area_struct *vma)
1262{
1263        return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1264                vma_is_shmem(vma);
1265}
1266
1267static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1268                                unsigned long arg)
1269{
1270        struct mm_struct *mm = ctx->mm;
1271        struct vm_area_struct *vma, *prev, *cur;
1272        int ret;
1273        struct uffdio_register uffdio_register;
1274        struct uffdio_register __user *user_uffdio_register;
1275        unsigned long vm_flags, new_flags;
1276        bool found;
1277        bool basic_ioctls;
1278        unsigned long start, end, vma_end;
1279
1280        user_uffdio_register = (struct uffdio_register __user *) arg;
1281
1282        ret = -EFAULT;
1283        if (copy_from_user(&uffdio_register, user_uffdio_register,
1284                           sizeof(uffdio_register)-sizeof(__u64)))
1285                goto out;
1286
1287        ret = -EINVAL;
1288        if (!uffdio_register.mode)
1289                goto out;
1290        if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1291                                     UFFDIO_REGISTER_MODE_WP))
1292                goto out;
1293        vm_flags = 0;
1294        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1295                vm_flags |= VM_UFFD_MISSING;
1296        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1297                vm_flags |= VM_UFFD_WP;
1298                /*
1299                 * FIXME: remove the below error constraint by
1300                 * implementing the wprotect tracking mode.
1301                 */
1302                ret = -EINVAL;
1303                goto out;
1304        }
1305
1306        ret = validate_range(mm, uffdio_register.range.start,
1307                             uffdio_register.range.len);
1308        if (ret)
1309                goto out;
1310
1311        start = uffdio_register.range.start;
1312        end = start + uffdio_register.range.len;
1313
1314        ret = -ENOMEM;
1315        if (!mmget_not_zero(mm))
1316                goto out;
1317
1318        down_write(&mm->mmap_sem);
1319        vma = find_vma_prev(mm, start, &prev);
1320        if (!vma)
1321                goto out_unlock;
1322
1323        /* check that there's at least one vma in the range */
1324        ret = -EINVAL;
1325        if (vma->vm_start >= end)
1326                goto out_unlock;
1327
1328        /*
1329         * If the first vma contains huge pages, make sure start address
1330         * is aligned to huge page size.
1331         */
1332        if (is_vm_hugetlb_page(vma)) {
1333                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1334
1335                if (start & (vma_hpagesize - 1))
1336                        goto out_unlock;
1337        }
1338
1339        /*
1340         * Search for not compatible vmas.
1341         */
1342        found = false;
1343        basic_ioctls = false;
1344        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1345                cond_resched();
1346
1347                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1348                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1349
1350                /* check not compatible vmas */
1351                ret = -EINVAL;
1352                if (!vma_can_userfault(cur))
1353                        goto out_unlock;
1354                /*
1355                 * If this vma contains ending address, and huge pages
1356                 * check alignment.
1357                 */
1358                if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1359                    end > cur->vm_start) {
1360                        unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1361
1362                        ret = -EINVAL;
1363
1364                        if (end & (vma_hpagesize - 1))
1365                                goto out_unlock;
1366                }
1367
1368                /*
1369                 * Check that this vma isn't already owned by a
1370                 * different userfaultfd. We can't allow more than one
1371                 * userfaultfd to own a single vma simultaneously or we
1372                 * wouldn't know which one to deliver the userfaults to.
1373                 */
1374                ret = -EBUSY;
1375                if (cur->vm_userfaultfd_ctx.ctx &&
1376                    cur->vm_userfaultfd_ctx.ctx != ctx)
1377                        goto out_unlock;
1378
1379                /*
1380                 * Note vmas containing huge pages
1381                 */
1382                if (is_vm_hugetlb_page(cur))
1383                        basic_ioctls = true;
1384
1385                found = true;
1386        }
1387        BUG_ON(!found);
1388
1389        if (vma->vm_start < start)
1390                prev = vma;
1391
1392        ret = 0;
1393        do {
1394                cond_resched();
1395
1396                BUG_ON(!vma_can_userfault(vma));
1397                BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1398                       vma->vm_userfaultfd_ctx.ctx != ctx);
1399
1400                /*
1401                 * Nothing to do: this vma is already registered into this
1402                 * userfaultfd and with the right tracking mode too.
1403                 */
1404                if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1405                    (vma->vm_flags & vm_flags) == vm_flags)
1406                        goto skip;
1407
1408                if (vma->vm_start > start)
1409                        start = vma->vm_start;
1410                vma_end = min(end, vma->vm_end);
1411
1412                new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1413                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1414                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1415                                 vma_policy(vma),
1416                                 ((struct vm_userfaultfd_ctx){ ctx }));
1417                if (prev) {
1418                        vma = prev;
1419                        goto next;
1420                }
1421                if (vma->vm_start < start) {
1422                        ret = split_vma(mm, vma, start, 1);
1423                        if (ret)
1424                                break;
1425                }
1426                if (vma->vm_end > end) {
1427                        ret = split_vma(mm, vma, end, 0);
1428                        if (ret)
1429                                break;
1430                }
1431        next:
1432                /*
1433                 * In the vma_merge() successful mprotect-like case 8:
1434                 * the next vma was merged into the current one and
1435                 * the current one has not been updated yet.
1436                 */
1437                vma->vm_flags = new_flags;
1438                vma->vm_userfaultfd_ctx.ctx = ctx;
1439
1440        skip:
1441                prev = vma;
1442                start = vma->vm_end;
1443                vma = vma->vm_next;
1444        } while (vma && vma->vm_start < end);
1445out_unlock:
1446        up_write(&mm->mmap_sem);
1447        mmput(mm);
1448        if (!ret) {
1449                /*
1450                 * Now that we scanned all vmas we can already tell
1451                 * userland which ioctls methods are guaranteed to
1452                 * succeed on this range.
1453                 */
1454                if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1455                             UFFD_API_RANGE_IOCTLS,
1456                             &user_uffdio_register->ioctls))
1457                        ret = -EFAULT;
1458        }
1459out:
1460        return ret;
1461}
1462
1463static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1464                                  unsigned long arg)
1465{
1466        struct mm_struct *mm = ctx->mm;
1467        struct vm_area_struct *vma, *prev, *cur;
1468        int ret;
1469        struct uffdio_range uffdio_unregister;
1470        unsigned long new_flags;
1471        bool found;
1472        unsigned long start, end, vma_end;
1473        const void __user *buf = (void __user *)arg;
1474
1475        ret = -EFAULT;
1476        if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1477                goto out;
1478
1479        ret = validate_range(mm, uffdio_unregister.start,
1480                             uffdio_unregister.len);
1481        if (ret)
1482                goto out;
1483
1484        start = uffdio_unregister.start;
1485        end = start + uffdio_unregister.len;
1486
1487        ret = -ENOMEM;
1488        if (!mmget_not_zero(mm))
1489                goto out;
1490
1491        down_write(&mm->mmap_sem);
1492        vma = find_vma_prev(mm, start, &prev);
1493        if (!vma)
1494                goto out_unlock;
1495
1496        /* check that there's at least one vma in the range */
1497        ret = -EINVAL;
1498        if (vma->vm_start >= end)
1499                goto out_unlock;
1500
1501        /*
1502         * If the first vma contains huge pages, make sure start address
1503         * is aligned to huge page size.
1504         */
1505        if (is_vm_hugetlb_page(vma)) {
1506                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1507
1508                if (start & (vma_hpagesize - 1))
1509                        goto out_unlock;
1510        }
1511
1512        /*
1513         * Search for not compatible vmas.
1514         */
1515        found = false;
1516        ret = -EINVAL;
1517        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1518                cond_resched();
1519
1520                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1521                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1522
1523                /*
1524                 * Check not compatible vmas, not strictly required
1525                 * here as not compatible vmas cannot have an
1526                 * userfaultfd_ctx registered on them, but this
1527                 * provides for more strict behavior to notice
1528                 * unregistration errors.
1529                 */
1530                if (!vma_can_userfault(cur))
1531                        goto out_unlock;
1532
1533                found = true;
1534        }
1535        BUG_ON(!found);
1536
1537        if (vma->vm_start < start)
1538                prev = vma;
1539
1540        ret = 0;
1541        do {
1542                cond_resched();
1543
1544                BUG_ON(!vma_can_userfault(vma));
1545
1546                /*
1547                 * Nothing to do: this vma is already registered into this
1548                 * userfaultfd and with the right tracking mode too.
1549                 */
1550                if (!vma->vm_userfaultfd_ctx.ctx)
1551                        goto skip;
1552
1553                if (vma->vm_start > start)
1554                        start = vma->vm_start;
1555                vma_end = min(end, vma->vm_end);
1556
1557                if (userfaultfd_missing(vma)) {
1558                        /*
1559                         * Wake any concurrent pending userfault while
1560                         * we unregister, so they will not hang
1561                         * permanently and it avoids userland to call
1562                         * UFFDIO_WAKE explicitly.
1563                         */
1564                        struct userfaultfd_wake_range range;
1565                        range.start = start;
1566                        range.len = vma_end - start;
1567                        wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1568                }
1569
1570                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1571                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1572                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1573                                 vma_policy(vma),
1574                                 NULL_VM_UFFD_CTX);
1575                if (prev) {
1576                        vma = prev;
1577                        goto next;
1578                }
1579                if (vma->vm_start < start) {
1580                        ret = split_vma(mm, vma, start, 1);
1581                        if (ret)
1582                                break;
1583                }
1584                if (vma->vm_end > end) {
1585                        ret = split_vma(mm, vma, end, 0);
1586                        if (ret)
1587                                break;
1588                }
1589        next:
1590                /*
1591                 * In the vma_merge() successful mprotect-like case 8:
1592                 * the next vma was merged into the current one and
1593                 * the current one has not been updated yet.
1594                 */
1595                vma->vm_flags = new_flags;
1596                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1597
1598        skip:
1599                prev = vma;
1600                start = vma->vm_end;
1601                vma = vma->vm_next;
1602        } while (vma && vma->vm_start < end);
1603out_unlock:
1604        up_write(&mm->mmap_sem);
1605        mmput(mm);
1606out:
1607        return ret;
1608}
1609
1610/*
1611 * userfaultfd_wake may be used in combination with the
1612 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1613 */
1614static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1615                            unsigned long arg)
1616{
1617        int ret;
1618        struct uffdio_range uffdio_wake;
1619        struct userfaultfd_wake_range range;
1620        const void __user *buf = (void __user *)arg;
1621
1622        ret = -EFAULT;
1623        if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1624                goto out;
1625
1626        ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1627        if (ret)
1628                goto out;
1629
1630        range.start = uffdio_wake.start;
1631        range.len = uffdio_wake.len;
1632
1633        /*
1634         * len == 0 means wake all and we don't want to wake all here,
1635         * so check it again to be sure.
1636         */
1637        VM_BUG_ON(!range.len);
1638
1639        wake_userfault(ctx, &range);
1640        ret = 0;
1641
1642out:
1643        return ret;
1644}
1645
1646static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1647                            unsigned long arg)
1648{
1649        __s64 ret;
1650        struct uffdio_copy uffdio_copy;
1651        struct uffdio_copy __user *user_uffdio_copy;
1652        struct userfaultfd_wake_range range;
1653
1654        user_uffdio_copy = (struct uffdio_copy __user *) arg;
1655
1656        ret = -EFAULT;
1657        if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1658                           /* don't copy "copy" last field */
1659                           sizeof(uffdio_copy)-sizeof(__s64)))
1660                goto out;
1661
1662        ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1663        if (ret)
1664                goto out;
1665        /*
1666         * double check for wraparound just in case. copy_from_user()
1667         * will later check uffdio_copy.src + uffdio_copy.len to fit
1668         * in the userland range.
1669         */
1670        ret = -EINVAL;
1671        if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1672                goto out;
1673        if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1674                goto out;
1675        if (mmget_not_zero(ctx->mm)) {
1676                ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1677                                   uffdio_copy.len);
1678                mmput(ctx->mm);
1679        } else {
1680                return -ESRCH;
1681        }
1682        if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1683                return -EFAULT;
1684        if (ret < 0)
1685                goto out;
1686        BUG_ON(!ret);
1687        /* len == 0 would wake all */
1688        range.len = ret;
1689        if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1690                range.start = uffdio_copy.dst;
1691                wake_userfault(ctx, &range);
1692        }
1693        ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1694out:
1695        return ret;
1696}
1697
1698static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1699                                unsigned long arg)
1700{
1701        __s64 ret;
1702        struct uffdio_zeropage uffdio_zeropage;
1703        struct uffdio_zeropage __user *user_uffdio_zeropage;
1704        struct userfaultfd_wake_range range;
1705
1706        user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1707
1708        ret = -EFAULT;
1709        if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1710                           /* don't copy "zeropage" last field */
1711                           sizeof(uffdio_zeropage)-sizeof(__s64)))
1712                goto out;
1713
1714        ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1715                             uffdio_zeropage.range.len);
1716        if (ret)
1717                goto out;
1718        ret = -EINVAL;
1719        if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1720                goto out;
1721
1722        if (mmget_not_zero(ctx->mm)) {
1723                ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1724                                     uffdio_zeropage.range.len);
1725                mmput(ctx->mm);
1726        } else {
1727                return -ESRCH;
1728        }
1729        if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1730                return -EFAULT;
1731        if (ret < 0)
1732                goto out;
1733        /* len == 0 would wake all */
1734        BUG_ON(!ret);
1735        range.len = ret;
1736        if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1737                range.start = uffdio_zeropage.range.start;
1738                wake_userfault(ctx, &range);
1739        }
1740        ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1741out:
1742        return ret;
1743}
1744
1745static inline unsigned int uffd_ctx_features(__u64 user_features)
1746{
1747        /*
1748         * For the current set of features the bits just coincide
1749         */
1750        return (unsigned int)user_features;
1751}
1752
1753/*
1754 * userland asks for a certain API version and we return which bits
1755 * and ioctl commands are implemented in this kernel for such API
1756 * version or -EINVAL if unknown.
1757 */
1758static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1759                           unsigned long arg)
1760{
1761        struct uffdio_api uffdio_api;
1762        void __user *buf = (void __user *)arg;
1763        int ret;
1764        __u64 features;
1765
1766        ret = -EINVAL;
1767        if (ctx->state != UFFD_STATE_WAIT_API)
1768                goto out;
1769        ret = -EFAULT;
1770        if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1771                goto out;
1772        features = uffdio_api.features;
1773        if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1774                memset(&uffdio_api, 0, sizeof(uffdio_api));
1775                if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1776                        goto out;
1777                ret = -EINVAL;
1778                goto out;
1779        }
1780        /* report all available features and ioctls to userland */
1781        uffdio_api.features = UFFD_API_FEATURES;
1782        uffdio_api.ioctls = UFFD_API_IOCTLS;
1783        ret = -EFAULT;
1784        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1785                goto out;
1786        ctx->state = UFFD_STATE_RUNNING;
1787        /* only enable the requested features for this uffd context */
1788        ctx->features = uffd_ctx_features(features);
1789        ret = 0;
1790out:
1791        return ret;
1792}
1793
1794static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1795                              unsigned long arg)
1796{
1797        int ret = -EINVAL;
1798        struct userfaultfd_ctx *ctx = file->private_data;
1799
1800        if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1801                return -EINVAL;
1802
1803        switch(cmd) {
1804        case UFFDIO_API:
1805                ret = userfaultfd_api(ctx, arg);
1806                break;
1807        case UFFDIO_REGISTER:
1808                ret = userfaultfd_register(ctx, arg);
1809                break;
1810        case UFFDIO_UNREGISTER:
1811                ret = userfaultfd_unregister(ctx, arg);
1812                break;
1813        case UFFDIO_WAKE:
1814                ret = userfaultfd_wake(ctx, arg);
1815                break;
1816        case UFFDIO_COPY:
1817                ret = userfaultfd_copy(ctx, arg);
1818                break;
1819        case UFFDIO_ZEROPAGE:
1820                ret = userfaultfd_zeropage(ctx, arg);
1821                break;
1822        }
1823        return ret;
1824}
1825
1826#ifdef CONFIG_PROC_FS
1827static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1828{
1829        struct userfaultfd_ctx *ctx = f->private_data;
1830        wait_queue_entry_t *wq;
1831        struct userfaultfd_wait_queue *uwq;
1832        unsigned long pending = 0, total = 0;
1833
1834        spin_lock(&ctx->fault_pending_wqh.lock);
1835        list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1836                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1837                pending++;
1838                total++;
1839        }
1840        list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1841                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1842                total++;
1843        }
1844        spin_unlock(&ctx->fault_pending_wqh.lock);
1845
1846        /*
1847         * If more protocols will be added, there will be all shown
1848         * separated by a space. Like this:
1849         *      protocols: aa:... bb:...
1850         */
1851        seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1852                   pending, total, UFFD_API, ctx->features,
1853                   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1854}
1855#endif
1856
1857static const struct file_operations userfaultfd_fops = {
1858#ifdef CONFIG_PROC_FS
1859        .show_fdinfo    = userfaultfd_show_fdinfo,
1860#endif
1861        .release        = userfaultfd_release,
1862        .poll           = userfaultfd_poll,
1863        .read           = userfaultfd_read,
1864        .unlocked_ioctl = userfaultfd_ioctl,
1865        .compat_ioctl   = userfaultfd_ioctl,
1866        .llseek         = noop_llseek,
1867};
1868
1869static void init_once_userfaultfd_ctx(void *mem)
1870{
1871        struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1872
1873        init_waitqueue_head(&ctx->fault_pending_wqh);
1874        init_waitqueue_head(&ctx->fault_wqh);
1875        init_waitqueue_head(&ctx->event_wqh);
1876        init_waitqueue_head(&ctx->fd_wqh);
1877        seqcount_init(&ctx->refile_seq);
1878}
1879
1880SYSCALL_DEFINE1(userfaultfd, int, flags)
1881{
1882        struct userfaultfd_ctx *ctx;
1883        int fd;
1884
1885        BUG_ON(!current->mm);
1886
1887        /* Check the UFFD_* constants for consistency.  */
1888        BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1889        BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1890
1891        if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1892                return -EINVAL;
1893
1894        ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1895        if (!ctx)
1896                return -ENOMEM;
1897
1898        atomic_set(&ctx->refcount, 1);
1899        ctx->flags = flags;
1900        ctx->features = 0;
1901        ctx->state = UFFD_STATE_WAIT_API;
1902        ctx->released = false;
1903        ctx->mm = current->mm;
1904        /* prevent the mm struct to be freed */
1905        mmgrab(ctx->mm);
1906
1907        fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1908                              O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1909        if (fd < 0) {
1910                mmdrop(ctx->mm);
1911                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1912        }
1913        return fd;
1914}
1915
1916static int __init userfaultfd_init(void)
1917{
1918        userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1919                                                sizeof(struct userfaultfd_ctx),
1920                                                0,
1921                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1922                                                init_once_userfaultfd_ctx);
1923        return 0;
1924}
1925__initcall(userfaultfd_init);
1926