linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19#include <linux/iversion.h>
  20
  21#include "xfs.h"
  22#include "xfs_fs.h"
  23#include "xfs_shared.h"
  24#include "xfs_format.h"
  25#include "xfs_log_format.h"
  26#include "xfs_trans_resv.h"
  27#include "xfs_sb.h"
  28#include "xfs_mount.h"
  29#include "xfs_defer.h"
  30#include "xfs_inode.h"
  31#include "xfs_da_format.h"
  32#include "xfs_da_btree.h"
  33#include "xfs_dir2.h"
  34#include "xfs_attr_sf.h"
  35#include "xfs_attr.h"
  36#include "xfs_trans_space.h"
  37#include "xfs_trans.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_inode_item.h"
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
  42#include "xfs_bmap_util.h"
  43#include "xfs_errortag.h"
  44#include "xfs_error.h"
  45#include "xfs_quota.h"
  46#include "xfs_filestream.h"
  47#include "xfs_cksum.h"
  48#include "xfs_trace.h"
  49#include "xfs_icache.h"
  50#include "xfs_symlink.h"
  51#include "xfs_trans_priv.h"
  52#include "xfs_log.h"
  53#include "xfs_bmap_btree.h"
  54#include "xfs_reflink.h"
  55#include "xfs_dir2_priv.h"
  56
  57kmem_zone_t *xfs_inode_zone;
  58
  59/*
  60 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  61 * freed from a file in a single transaction.
  62 */
  63#define XFS_ITRUNC_MAX_EXTENTS  2
  64
  65STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  66STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  67STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  68
  69/*
  70 * helper function to extract extent size hint from inode
  71 */
  72xfs_extlen_t
  73xfs_get_extsz_hint(
  74        struct xfs_inode        *ip)
  75{
  76        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  77                return ip->i_d.di_extsize;
  78        if (XFS_IS_REALTIME_INODE(ip))
  79                return ip->i_mount->m_sb.sb_rextsize;
  80        return 0;
  81}
  82
  83/*
  84 * Helper function to extract CoW extent size hint from inode.
  85 * Between the extent size hint and the CoW extent size hint, we
  86 * return the greater of the two.  If the value is zero (automatic),
  87 * use the default size.
  88 */
  89xfs_extlen_t
  90xfs_get_cowextsz_hint(
  91        struct xfs_inode        *ip)
  92{
  93        xfs_extlen_t            a, b;
  94
  95        a = 0;
  96        if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  97                a = ip->i_d.di_cowextsize;
  98        b = xfs_get_extsz_hint(ip);
  99
 100        a = max(a, b);
 101        if (a == 0)
 102                return XFS_DEFAULT_COWEXTSZ_HINT;
 103        return a;
 104}
 105
 106/*
 107 * These two are wrapper routines around the xfs_ilock() routine used to
 108 * centralize some grungy code.  They are used in places that wish to lock the
 109 * inode solely for reading the extents.  The reason these places can't just
 110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
 111 * bringing in of the extents from disk for a file in b-tree format.  If the
 112 * inode is in b-tree format, then we need to lock the inode exclusively until
 113 * the extents are read in.  Locking it exclusively all the time would limit
 114 * our parallelism unnecessarily, though.  What we do instead is check to see
 115 * if the extents have been read in yet, and only lock the inode exclusively
 116 * if they have not.
 117 *
 118 * The functions return a value which should be given to the corresponding
 119 * xfs_iunlock() call.
 120 */
 121uint
 122xfs_ilock_data_map_shared(
 123        struct xfs_inode        *ip)
 124{
 125        uint                    lock_mode = XFS_ILOCK_SHARED;
 126
 127        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 128            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 129                lock_mode = XFS_ILOCK_EXCL;
 130        xfs_ilock(ip, lock_mode);
 131        return lock_mode;
 132}
 133
 134uint
 135xfs_ilock_attr_map_shared(
 136        struct xfs_inode        *ip)
 137{
 138        uint                    lock_mode = XFS_ILOCK_SHARED;
 139
 140        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 141            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 142                lock_mode = XFS_ILOCK_EXCL;
 143        xfs_ilock(ip, lock_mode);
 144        return lock_mode;
 145}
 146
 147/*
 148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 149 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 150 * various combinations of the locks to be obtained.
 151 *
 152 * The 3 locks should always be ordered so that the IO lock is obtained first,
 153 * the mmap lock second and the ilock last in order to prevent deadlock.
 154 *
 155 * Basic locking order:
 156 *
 157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 158 *
 159 * mmap_sem locking order:
 160 *
 161 * i_rwsem -> page lock -> mmap_sem
 162 * mmap_sem -> i_mmap_lock -> page_lock
 163 *
 164 * The difference in mmap_sem locking order mean that we cannot hold the
 165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 167 * in get_user_pages() to map the user pages into the kernel address space for
 168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 169 * page faults already hold the mmap_sem.
 170 *
 171 * Hence to serialise fully against both syscall and mmap based IO, we need to
 172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 173 * taken in places where we need to invalidate the page cache in a race
 174 * free manner (e.g. truncate, hole punch and other extent manipulation
 175 * functions).
 176 */
 177void
 178xfs_ilock(
 179        xfs_inode_t             *ip,
 180        uint                    lock_flags)
 181{
 182        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 183
 184        /*
 185         * You can't set both SHARED and EXCL for the same lock,
 186         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 187         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 188         */
 189        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 190               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 191        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 192               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 193        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 194               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 195        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 196
 197        if (lock_flags & XFS_IOLOCK_EXCL) {
 198                down_write_nested(&VFS_I(ip)->i_rwsem,
 199                                  XFS_IOLOCK_DEP(lock_flags));
 200        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 201                down_read_nested(&VFS_I(ip)->i_rwsem,
 202                                 XFS_IOLOCK_DEP(lock_flags));
 203        }
 204
 205        if (lock_flags & XFS_MMAPLOCK_EXCL)
 206                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 207        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 208                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 209
 210        if (lock_flags & XFS_ILOCK_EXCL)
 211                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 212        else if (lock_flags & XFS_ILOCK_SHARED)
 213                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 214}
 215
 216/*
 217 * This is just like xfs_ilock(), except that the caller
 218 * is guaranteed not to sleep.  It returns 1 if it gets
 219 * the requested locks and 0 otherwise.  If the IO lock is
 220 * obtained but the inode lock cannot be, then the IO lock
 221 * is dropped before returning.
 222 *
 223 * ip -- the inode being locked
 224 * lock_flags -- this parameter indicates the inode's locks to be
 225 *       to be locked.  See the comment for xfs_ilock() for a list
 226 *       of valid values.
 227 */
 228int
 229xfs_ilock_nowait(
 230        xfs_inode_t             *ip,
 231        uint                    lock_flags)
 232{
 233        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 234
 235        /*
 236         * You can't set both SHARED and EXCL for the same lock,
 237         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 238         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 239         */
 240        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 241               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 242        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 243               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 244        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 245               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 246        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 247
 248        if (lock_flags & XFS_IOLOCK_EXCL) {
 249                if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 250                        goto out;
 251        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 252                if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 253                        goto out;
 254        }
 255
 256        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 257                if (!mrtryupdate(&ip->i_mmaplock))
 258                        goto out_undo_iolock;
 259        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 260                if (!mrtryaccess(&ip->i_mmaplock))
 261                        goto out_undo_iolock;
 262        }
 263
 264        if (lock_flags & XFS_ILOCK_EXCL) {
 265                if (!mrtryupdate(&ip->i_lock))
 266                        goto out_undo_mmaplock;
 267        } else if (lock_flags & XFS_ILOCK_SHARED) {
 268                if (!mrtryaccess(&ip->i_lock))
 269                        goto out_undo_mmaplock;
 270        }
 271        return 1;
 272
 273out_undo_mmaplock:
 274        if (lock_flags & XFS_MMAPLOCK_EXCL)
 275                mrunlock_excl(&ip->i_mmaplock);
 276        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 277                mrunlock_shared(&ip->i_mmaplock);
 278out_undo_iolock:
 279        if (lock_flags & XFS_IOLOCK_EXCL)
 280                up_write(&VFS_I(ip)->i_rwsem);
 281        else if (lock_flags & XFS_IOLOCK_SHARED)
 282                up_read(&VFS_I(ip)->i_rwsem);
 283out:
 284        return 0;
 285}
 286
 287/*
 288 * xfs_iunlock() is used to drop the inode locks acquired with
 289 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 291 * that we know which locks to drop.
 292 *
 293 * ip -- the inode being unlocked
 294 * lock_flags -- this parameter indicates the inode's locks to be
 295 *       to be unlocked.  See the comment for xfs_ilock() for a list
 296 *       of valid values for this parameter.
 297 *
 298 */
 299void
 300xfs_iunlock(
 301        xfs_inode_t             *ip,
 302        uint                    lock_flags)
 303{
 304        /*
 305         * You can't set both SHARED and EXCL for the same lock,
 306         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 307         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 308         */
 309        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 310               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 311        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 312               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 313        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 314               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 315        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 316        ASSERT(lock_flags != 0);
 317
 318        if (lock_flags & XFS_IOLOCK_EXCL)
 319                up_write(&VFS_I(ip)->i_rwsem);
 320        else if (lock_flags & XFS_IOLOCK_SHARED)
 321                up_read(&VFS_I(ip)->i_rwsem);
 322
 323        if (lock_flags & XFS_MMAPLOCK_EXCL)
 324                mrunlock_excl(&ip->i_mmaplock);
 325        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 326                mrunlock_shared(&ip->i_mmaplock);
 327
 328        if (lock_flags & XFS_ILOCK_EXCL)
 329                mrunlock_excl(&ip->i_lock);
 330        else if (lock_flags & XFS_ILOCK_SHARED)
 331                mrunlock_shared(&ip->i_lock);
 332
 333        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 334}
 335
 336/*
 337 * give up write locks.  the i/o lock cannot be held nested
 338 * if it is being demoted.
 339 */
 340void
 341xfs_ilock_demote(
 342        xfs_inode_t             *ip,
 343        uint                    lock_flags)
 344{
 345        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 346        ASSERT((lock_flags &
 347                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 348
 349        if (lock_flags & XFS_ILOCK_EXCL)
 350                mrdemote(&ip->i_lock);
 351        if (lock_flags & XFS_MMAPLOCK_EXCL)
 352                mrdemote(&ip->i_mmaplock);
 353        if (lock_flags & XFS_IOLOCK_EXCL)
 354                downgrade_write(&VFS_I(ip)->i_rwsem);
 355
 356        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 357}
 358
 359#if defined(DEBUG) || defined(XFS_WARN)
 360int
 361xfs_isilocked(
 362        xfs_inode_t             *ip,
 363        uint                    lock_flags)
 364{
 365        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 366                if (!(lock_flags & XFS_ILOCK_SHARED))
 367                        return !!ip->i_lock.mr_writer;
 368                return rwsem_is_locked(&ip->i_lock.mr_lock);
 369        }
 370
 371        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 372                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 373                        return !!ip->i_mmaplock.mr_writer;
 374                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 375        }
 376
 377        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 378                if (!(lock_flags & XFS_IOLOCK_SHARED))
 379                        return !debug_locks ||
 380                                lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 381                return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 382        }
 383
 384        ASSERT(0);
 385        return 0;
 386}
 387#endif
 388
 389/*
 390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 393 * errors and warnings.
 394 */
 395#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 396static bool
 397xfs_lockdep_subclass_ok(
 398        int subclass)
 399{
 400        return subclass < MAX_LOCKDEP_SUBCLASSES;
 401}
 402#else
 403#define xfs_lockdep_subclass_ok(subclass)       (true)
 404#endif
 405
 406/*
 407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 408 * value. This can be called for any type of inode lock combination, including
 409 * parent locking. Care must be taken to ensure we don't overrun the subclass
 410 * storage fields in the class mask we build.
 411 */
 412static inline int
 413xfs_lock_inumorder(int lock_mode, int subclass)
 414{
 415        int     class = 0;
 416
 417        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 418                              XFS_ILOCK_RTSUM)));
 419        ASSERT(xfs_lockdep_subclass_ok(subclass));
 420
 421        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 422                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 423                class += subclass << XFS_IOLOCK_SHIFT;
 424        }
 425
 426        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 427                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 428                class += subclass << XFS_MMAPLOCK_SHIFT;
 429        }
 430
 431        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 432                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 433                class += subclass << XFS_ILOCK_SHIFT;
 434        }
 435
 436        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 437}
 438
 439/*
 440 * The following routine will lock n inodes in exclusive mode.  We assume the
 441 * caller calls us with the inodes in i_ino order.
 442 *
 443 * We need to detect deadlock where an inode that we lock is in the AIL and we
 444 * start waiting for another inode that is locked by a thread in a long running
 445 * transaction (such as truncate). This can result in deadlock since the long
 446 * running trans might need to wait for the inode we just locked in order to
 447 * push the tail and free space in the log.
 448 *
 449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 451 * lock more than one at a time, lockdep will report false positives saying we
 452 * have violated locking orders.
 453 */
 454static void
 455xfs_lock_inodes(
 456        xfs_inode_t     **ips,
 457        int             inodes,
 458        uint            lock_mode)
 459{
 460        int             attempts = 0, i, j, try_lock;
 461        xfs_log_item_t  *lp;
 462
 463        /*
 464         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 465         * support an arbitrary depth of locking here, but absolute limits on
 466         * inodes depend on the the type of locking and the limits placed by
 467         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 468         * the asserts.
 469         */
 470        ASSERT(ips && inodes >= 2 && inodes <= 5);
 471        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 472                            XFS_ILOCK_EXCL));
 473        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 474                              XFS_ILOCK_SHARED)));
 475        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 476                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 477        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 478                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 479
 480        if (lock_mode & XFS_IOLOCK_EXCL) {
 481                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 482        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 483                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 484
 485        try_lock = 0;
 486        i = 0;
 487again:
 488        for (; i < inodes; i++) {
 489                ASSERT(ips[i]);
 490
 491                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 492                        continue;
 493
 494                /*
 495                 * If try_lock is not set yet, make sure all locked inodes are
 496                 * not in the AIL.  If any are, set try_lock to be used later.
 497                 */
 498                if (!try_lock) {
 499                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 500                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 501                                if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 502                                        try_lock++;
 503                        }
 504                }
 505
 506                /*
 507                 * If any of the previous locks we have locked is in the AIL,
 508                 * we must TRY to get the second and subsequent locks. If
 509                 * we can't get any, we must release all we have
 510                 * and try again.
 511                 */
 512                if (!try_lock) {
 513                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 514                        continue;
 515                }
 516
 517                /* try_lock means we have an inode locked that is in the AIL. */
 518                ASSERT(i != 0);
 519                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 520                        continue;
 521
 522                /*
 523                 * Unlock all previous guys and try again.  xfs_iunlock will try
 524                 * to push the tail if the inode is in the AIL.
 525                 */
 526                attempts++;
 527                for (j = i - 1; j >= 0; j--) {
 528                        /*
 529                         * Check to see if we've already unlocked this one.  Not
 530                         * the first one going back, and the inode ptr is the
 531                         * same.
 532                         */
 533                        if (j != (i - 1) && ips[j] == ips[j + 1])
 534                                continue;
 535
 536                        xfs_iunlock(ips[j], lock_mode);
 537                }
 538
 539                if ((attempts % 5) == 0) {
 540                        delay(1); /* Don't just spin the CPU */
 541                }
 542                i = 0;
 543                try_lock = 0;
 544                goto again;
 545        }
 546}
 547
 548/*
 549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 551 * more than one at a time, lockdep will report false positives saying we have
 552 * violated locking orders.  The iolock must be double-locked separately since
 553 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 554 * SHARED.
 555 */
 556void
 557xfs_lock_two_inodes(
 558        struct xfs_inode        *ip0,
 559        uint                    ip0_mode,
 560        struct xfs_inode        *ip1,
 561        uint                    ip1_mode)
 562{
 563        struct xfs_inode        *temp;
 564        uint                    mode_temp;
 565        int                     attempts = 0;
 566        xfs_log_item_t          *lp;
 567
 568        ASSERT(hweight32(ip0_mode) == 1);
 569        ASSERT(hweight32(ip1_mode) == 1);
 570        ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 571        ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 572        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 573               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 574        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 575               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 576        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 577               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 578        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 579               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 580
 581        ASSERT(ip0->i_ino != ip1->i_ino);
 582
 583        if (ip0->i_ino > ip1->i_ino) {
 584                temp = ip0;
 585                ip0 = ip1;
 586                ip1 = temp;
 587                mode_temp = ip0_mode;
 588                ip0_mode = ip1_mode;
 589                ip1_mode = mode_temp;
 590        }
 591
 592 again:
 593        xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 594
 595        /*
 596         * If the first lock we have locked is in the AIL, we must TRY to get
 597         * the second lock. If we can't get it, we must release the first one
 598         * and try again.
 599         */
 600        lp = (xfs_log_item_t *)ip0->i_itemp;
 601        if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 602                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 603                        xfs_iunlock(ip0, ip0_mode);
 604                        if ((++attempts % 5) == 0)
 605                                delay(1); /* Don't just spin the CPU */
 606                        goto again;
 607                }
 608        } else {
 609                xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 610        }
 611}
 612
 613void
 614__xfs_iflock(
 615        struct xfs_inode        *ip)
 616{
 617        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 618        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 619
 620        do {
 621                prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 622                if (xfs_isiflocked(ip))
 623                        io_schedule();
 624        } while (!xfs_iflock_nowait(ip));
 625
 626        finish_wait(wq, &wait.wq_entry);
 627}
 628
 629STATIC uint
 630_xfs_dic2xflags(
 631        uint16_t                di_flags,
 632        uint64_t                di_flags2,
 633        bool                    has_attr)
 634{
 635        uint                    flags = 0;
 636
 637        if (di_flags & XFS_DIFLAG_ANY) {
 638                if (di_flags & XFS_DIFLAG_REALTIME)
 639                        flags |= FS_XFLAG_REALTIME;
 640                if (di_flags & XFS_DIFLAG_PREALLOC)
 641                        flags |= FS_XFLAG_PREALLOC;
 642                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 643                        flags |= FS_XFLAG_IMMUTABLE;
 644                if (di_flags & XFS_DIFLAG_APPEND)
 645                        flags |= FS_XFLAG_APPEND;
 646                if (di_flags & XFS_DIFLAG_SYNC)
 647                        flags |= FS_XFLAG_SYNC;
 648                if (di_flags & XFS_DIFLAG_NOATIME)
 649                        flags |= FS_XFLAG_NOATIME;
 650                if (di_flags & XFS_DIFLAG_NODUMP)
 651                        flags |= FS_XFLAG_NODUMP;
 652                if (di_flags & XFS_DIFLAG_RTINHERIT)
 653                        flags |= FS_XFLAG_RTINHERIT;
 654                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 655                        flags |= FS_XFLAG_PROJINHERIT;
 656                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 657                        flags |= FS_XFLAG_NOSYMLINKS;
 658                if (di_flags & XFS_DIFLAG_EXTSIZE)
 659                        flags |= FS_XFLAG_EXTSIZE;
 660                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 661                        flags |= FS_XFLAG_EXTSZINHERIT;
 662                if (di_flags & XFS_DIFLAG_NODEFRAG)
 663                        flags |= FS_XFLAG_NODEFRAG;
 664                if (di_flags & XFS_DIFLAG_FILESTREAM)
 665                        flags |= FS_XFLAG_FILESTREAM;
 666        }
 667
 668        if (di_flags2 & XFS_DIFLAG2_ANY) {
 669                if (di_flags2 & XFS_DIFLAG2_DAX)
 670                        flags |= FS_XFLAG_DAX;
 671                if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 672                        flags |= FS_XFLAG_COWEXTSIZE;
 673        }
 674
 675        if (has_attr)
 676                flags |= FS_XFLAG_HASATTR;
 677
 678        return flags;
 679}
 680
 681uint
 682xfs_ip2xflags(
 683        struct xfs_inode        *ip)
 684{
 685        struct xfs_icdinode     *dic = &ip->i_d;
 686
 687        return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 688}
 689
 690/*
 691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 693 * ci_name->name will point to a the actual name (caller must free) or
 694 * will be set to NULL if an exact match is found.
 695 */
 696int
 697xfs_lookup(
 698        xfs_inode_t             *dp,
 699        struct xfs_name         *name,
 700        xfs_inode_t             **ipp,
 701        struct xfs_name         *ci_name)
 702{
 703        xfs_ino_t               inum;
 704        int                     error;
 705
 706        trace_xfs_lookup(dp, name);
 707
 708        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 709                return -EIO;
 710
 711        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 712        if (error)
 713                goto out_unlock;
 714
 715        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 716        if (error)
 717                goto out_free_name;
 718
 719        return 0;
 720
 721out_free_name:
 722        if (ci_name)
 723                kmem_free(ci_name->name);
 724out_unlock:
 725        *ipp = NULL;
 726        return error;
 727}
 728
 729/*
 730 * Allocate an inode on disk and return a copy of its in-core version.
 731 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 732 * appropriately within the inode.  The uid and gid for the inode are
 733 * set according to the contents of the given cred structure.
 734 *
 735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 736 * has a free inode available, call xfs_iget() to obtain the in-core
 737 * version of the allocated inode.  Finally, fill in the inode and
 738 * log its initial contents.  In this case, ialloc_context would be
 739 * set to NULL.
 740 *
 741 * If xfs_dialloc() does not have an available inode, it will replenish
 742 * its supply by doing an allocation. Since we can only do one
 743 * allocation within a transaction without deadlocks, we must commit
 744 * the current transaction before returning the inode itself.
 745 * In this case, therefore, we will set ialloc_context and return.
 746 * The caller should then commit the current transaction, start a new
 747 * transaction, and call xfs_ialloc() again to actually get the inode.
 748 *
 749 * To ensure that some other process does not grab the inode that
 750 * was allocated during the first call to xfs_ialloc(), this routine
 751 * also returns the [locked] bp pointing to the head of the freelist
 752 * as ialloc_context.  The caller should hold this buffer across
 753 * the commit and pass it back into this routine on the second call.
 754 *
 755 * If we are allocating quota inodes, we do not have a parent inode
 756 * to attach to or associate with (i.e. pip == NULL) because they
 757 * are not linked into the directory structure - they are attached
 758 * directly to the superblock - and so have no parent.
 759 */
 760static int
 761xfs_ialloc(
 762        xfs_trans_t     *tp,
 763        xfs_inode_t     *pip,
 764        umode_t         mode,
 765        xfs_nlink_t     nlink,
 766        dev_t           rdev,
 767        prid_t          prid,
 768        xfs_buf_t       **ialloc_context,
 769        xfs_inode_t     **ipp)
 770{
 771        struct xfs_mount *mp = tp->t_mountp;
 772        xfs_ino_t       ino;
 773        xfs_inode_t     *ip;
 774        uint            flags;
 775        int             error;
 776        struct timespec tv;
 777        struct inode    *inode;
 778
 779        /*
 780         * Call the space management code to pick
 781         * the on-disk inode to be allocated.
 782         */
 783        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 784                            ialloc_context, &ino);
 785        if (error)
 786                return error;
 787        if (*ialloc_context || ino == NULLFSINO) {
 788                *ipp = NULL;
 789                return 0;
 790        }
 791        ASSERT(*ialloc_context == NULL);
 792
 793        /*
 794         * Get the in-core inode with the lock held exclusively.
 795         * This is because we're setting fields here we need
 796         * to prevent others from looking at until we're done.
 797         */
 798        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 799                         XFS_ILOCK_EXCL, &ip);
 800        if (error)
 801                return error;
 802        ASSERT(ip != NULL);
 803        inode = VFS_I(ip);
 804
 805        /*
 806         * We always convert v1 inodes to v2 now - we only support filesystems
 807         * with >= v2 inode capability, so there is no reason for ever leaving
 808         * an inode in v1 format.
 809         */
 810        if (ip->i_d.di_version == 1)
 811                ip->i_d.di_version = 2;
 812
 813        inode->i_mode = mode;
 814        set_nlink(inode, nlink);
 815        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 816        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 817        inode->i_rdev = rdev;
 818        xfs_set_projid(ip, prid);
 819
 820        if (pip && XFS_INHERIT_GID(pip)) {
 821                ip->i_d.di_gid = pip->i_d.di_gid;
 822                if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 823                        inode->i_mode |= S_ISGID;
 824        }
 825
 826        /*
 827         * If the group ID of the new file does not match the effective group
 828         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 829         * (and only if the irix_sgid_inherit compatibility variable is set).
 830         */
 831        if ((irix_sgid_inherit) &&
 832            (inode->i_mode & S_ISGID) &&
 833            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 834                inode->i_mode &= ~S_ISGID;
 835
 836        ip->i_d.di_size = 0;
 837        ip->i_d.di_nextents = 0;
 838        ASSERT(ip->i_d.di_nblocks == 0);
 839
 840        tv = current_time(inode);
 841        inode->i_mtime = tv;
 842        inode->i_atime = tv;
 843        inode->i_ctime = tv;
 844
 845        ip->i_d.di_extsize = 0;
 846        ip->i_d.di_dmevmask = 0;
 847        ip->i_d.di_dmstate = 0;
 848        ip->i_d.di_flags = 0;
 849
 850        if (ip->i_d.di_version == 3) {
 851                inode_set_iversion(inode, 1);
 852                ip->i_d.di_flags2 = 0;
 853                ip->i_d.di_cowextsize = 0;
 854                ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 855                ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 856        }
 857
 858
 859        flags = XFS_ILOG_CORE;
 860        switch (mode & S_IFMT) {
 861        case S_IFIFO:
 862        case S_IFCHR:
 863        case S_IFBLK:
 864        case S_IFSOCK:
 865                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 866                ip->i_df.if_flags = 0;
 867                flags |= XFS_ILOG_DEV;
 868                break;
 869        case S_IFREG:
 870        case S_IFDIR:
 871                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 872                        uint            di_flags = 0;
 873
 874                        if (S_ISDIR(mode)) {
 875                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 876                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 877                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 878                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 879                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 880                                }
 881                                if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 882                                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 883                        } else if (S_ISREG(mode)) {
 884                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 885                                        di_flags |= XFS_DIFLAG_REALTIME;
 886                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 887                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 888                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 889                                }
 890                        }
 891                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 892                            xfs_inherit_noatime)
 893                                di_flags |= XFS_DIFLAG_NOATIME;
 894                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 895                            xfs_inherit_nodump)
 896                                di_flags |= XFS_DIFLAG_NODUMP;
 897                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 898                            xfs_inherit_sync)
 899                                di_flags |= XFS_DIFLAG_SYNC;
 900                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 901                            xfs_inherit_nosymlinks)
 902                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 903                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 904                            xfs_inherit_nodefrag)
 905                                di_flags |= XFS_DIFLAG_NODEFRAG;
 906                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 907                                di_flags |= XFS_DIFLAG_FILESTREAM;
 908
 909                        ip->i_d.di_flags |= di_flags;
 910                }
 911                if (pip &&
 912                    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 913                    pip->i_d.di_version == 3 &&
 914                    ip->i_d.di_version == 3) {
 915                        uint64_t        di_flags2 = 0;
 916
 917                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 918                                di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 919                                ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 920                        }
 921                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 922                                di_flags2 |= XFS_DIFLAG2_DAX;
 923
 924                        ip->i_d.di_flags2 |= di_flags2;
 925                }
 926                /* FALLTHROUGH */
 927        case S_IFLNK:
 928                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 929                ip->i_df.if_flags = XFS_IFEXTENTS;
 930                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 931                ip->i_df.if_u1.if_root = NULL;
 932                break;
 933        default:
 934                ASSERT(0);
 935        }
 936        /*
 937         * Attribute fork settings for new inode.
 938         */
 939        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 940        ip->i_d.di_anextents = 0;
 941
 942        /*
 943         * Log the new values stuffed into the inode.
 944         */
 945        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 946        xfs_trans_log_inode(tp, ip, flags);
 947
 948        /* now that we have an i_mode we can setup the inode structure */
 949        xfs_setup_inode(ip);
 950
 951        *ipp = ip;
 952        return 0;
 953}
 954
 955/*
 956 * Allocates a new inode from disk and return a pointer to the
 957 * incore copy. This routine will internally commit the current
 958 * transaction and allocate a new one if the Space Manager needed
 959 * to do an allocation to replenish the inode free-list.
 960 *
 961 * This routine is designed to be called from xfs_create and
 962 * xfs_create_dir.
 963 *
 964 */
 965int
 966xfs_dir_ialloc(
 967        xfs_trans_t     **tpp,          /* input: current transaction;
 968                                           output: may be a new transaction. */
 969        xfs_inode_t     *dp,            /* directory within whose allocate
 970                                           the inode. */
 971        umode_t         mode,
 972        xfs_nlink_t     nlink,
 973        dev_t           rdev,
 974        prid_t          prid,           /* project id */
 975        xfs_inode_t     **ipp)          /* pointer to inode; it will be
 976                                           locked. */
 977{
 978        xfs_trans_t     *tp;
 979        xfs_inode_t     *ip;
 980        xfs_buf_t       *ialloc_context = NULL;
 981        int             code;
 982        void            *dqinfo;
 983        uint            tflags;
 984
 985        tp = *tpp;
 986        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 987
 988        /*
 989         * xfs_ialloc will return a pointer to an incore inode if
 990         * the Space Manager has an available inode on the free
 991         * list. Otherwise, it will do an allocation and replenish
 992         * the freelist.  Since we can only do one allocation per
 993         * transaction without deadlocks, we will need to commit the
 994         * current transaction and start a new one.  We will then
 995         * need to call xfs_ialloc again to get the inode.
 996         *
 997         * If xfs_ialloc did an allocation to replenish the freelist,
 998         * it returns the bp containing the head of the freelist as
 999         * ialloc_context. We will hold a lock on it across the
1000         * transaction commit so that no other process can steal
1001         * the inode(s) that we've just allocated.
1002         */
1003        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004                        &ip);
1005
1006        /*
1007         * Return an error if we were unable to allocate a new inode.
1008         * This should only happen if we run out of space on disk or
1009         * encounter a disk error.
1010         */
1011        if (code) {
1012                *ipp = NULL;
1013                return code;
1014        }
1015        if (!ialloc_context && !ip) {
1016                *ipp = NULL;
1017                return -ENOSPC;
1018        }
1019
1020        /*
1021         * If the AGI buffer is non-NULL, then we were unable to get an
1022         * inode in one operation.  We need to commit the current
1023         * transaction and call xfs_ialloc() again.  It is guaranteed
1024         * to succeed the second time.
1025         */
1026        if (ialloc_context) {
1027                /*
1028                 * Normally, xfs_trans_commit releases all the locks.
1029                 * We call bhold to hang on to the ialloc_context across
1030                 * the commit.  Holding this buffer prevents any other
1031                 * processes from doing any allocations in this
1032                 * allocation group.
1033                 */
1034                xfs_trans_bhold(tp, ialloc_context);
1035
1036                /*
1037                 * We want the quota changes to be associated with the next
1038                 * transaction, NOT this one. So, detach the dqinfo from this
1039                 * and attach it to the next transaction.
1040                 */
1041                dqinfo = NULL;
1042                tflags = 0;
1043                if (tp->t_dqinfo) {
1044                        dqinfo = (void *)tp->t_dqinfo;
1045                        tp->t_dqinfo = NULL;
1046                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048                }
1049
1050                code = xfs_trans_roll(&tp);
1051
1052                /*
1053                 * Re-attach the quota info that we detached from prev trx.
1054                 */
1055                if (dqinfo) {
1056                        tp->t_dqinfo = dqinfo;
1057                        tp->t_flags |= tflags;
1058                }
1059
1060                if (code) {
1061                        xfs_buf_relse(ialloc_context);
1062                        *tpp = tp;
1063                        *ipp = NULL;
1064                        return code;
1065                }
1066                xfs_trans_bjoin(tp, ialloc_context);
1067
1068                /*
1069                 * Call ialloc again. Since we've locked out all
1070                 * other allocations in this allocation group,
1071                 * this call should always succeed.
1072                 */
1073                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074                                  &ialloc_context, &ip);
1075
1076                /*
1077                 * If we get an error at this point, return to the caller
1078                 * so that the current transaction can be aborted.
1079                 */
1080                if (code) {
1081                        *tpp = tp;
1082                        *ipp = NULL;
1083                        return code;
1084                }
1085                ASSERT(!ialloc_context && ip);
1086
1087        }
1088
1089        *ipp = ip;
1090        *tpp = tp;
1091
1092        return 0;
1093}
1094
1095/*
1096 * Decrement the link count on an inode & log the change.  If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1099 */
1100static int                      /* error */
1101xfs_droplink(
1102        xfs_trans_t *tp,
1103        xfs_inode_t *ip)
1104{
1105        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107        drop_nlink(VFS_I(ip));
1108        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
1110        if (VFS_I(ip)->i_nlink)
1111                return 0;
1112
1113        return xfs_iunlink(tp, ip);
1114}
1115
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
1119static int
1120xfs_bumplink(
1121        xfs_trans_t *tp,
1122        xfs_inode_t *ip)
1123{
1124        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126        ASSERT(ip->i_d.di_version > 1);
1127        inc_nlink(VFS_I(ip));
1128        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129        return 0;
1130}
1131
1132int
1133xfs_create(
1134        xfs_inode_t             *dp,
1135        struct xfs_name         *name,
1136        umode_t                 mode,
1137        dev_t                   rdev,
1138        xfs_inode_t             **ipp)
1139{
1140        int                     is_dir = S_ISDIR(mode);
1141        struct xfs_mount        *mp = dp->i_mount;
1142        struct xfs_inode        *ip = NULL;
1143        struct xfs_trans        *tp = NULL;
1144        int                     error;
1145        struct xfs_defer_ops    dfops;
1146        xfs_fsblock_t           first_block;
1147        bool                    unlock_dp_on_error = false;
1148        prid_t                  prid;
1149        struct xfs_dquot        *udqp = NULL;
1150        struct xfs_dquot        *gdqp = NULL;
1151        struct xfs_dquot        *pdqp = NULL;
1152        struct xfs_trans_res    *tres;
1153        uint                    resblks;
1154
1155        trace_xfs_create(dp, name);
1156
1157        if (XFS_FORCED_SHUTDOWN(mp))
1158                return -EIO;
1159
1160        prid = xfs_get_initial_prid(dp);
1161
1162        /*
1163         * Make sure that we have allocated dquot(s) on disk.
1164         */
1165        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166                                        xfs_kgid_to_gid(current_fsgid()), prid,
1167                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168                                        &udqp, &gdqp, &pdqp);
1169        if (error)
1170                return error;
1171
1172        if (is_dir) {
1173                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174                tres = &M_RES(mp)->tr_mkdir;
1175        } else {
1176                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1177                tres = &M_RES(mp)->tr_create;
1178        }
1179
1180        /*
1181         * Initially assume that the file does not exist and
1182         * reserve the resources for that case.  If that is not
1183         * the case we'll drop the one we have and get a more
1184         * appropriate transaction later.
1185         */
1186        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1187        if (error == -ENOSPC) {
1188                /* flush outstanding delalloc blocks and retry */
1189                xfs_flush_inodes(mp);
1190                error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1191        }
1192        if (error)
1193                goto out_release_inode;
1194
1195        xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1196        unlock_dp_on_error = true;
1197
1198        xfs_defer_init(&dfops, &first_block);
1199
1200        /*
1201         * Reserve disk quota and the inode.
1202         */
1203        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1204                                                pdqp, resblks, 1, 0);
1205        if (error)
1206                goto out_trans_cancel;
1207
1208        /*
1209         * A newly created regular or special file just has one directory
1210         * entry pointing to them, but a directory also the "." entry
1211         * pointing to itself.
1212         */
1213        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1214        if (error)
1215                goto out_trans_cancel;
1216
1217        /*
1218         * Now we join the directory inode to the transaction.  We do not do it
1219         * earlier because xfs_dir_ialloc might commit the previous transaction
1220         * (and release all the locks).  An error from here on will result in
1221         * the transaction cancel unlocking dp so don't do it explicitly in the
1222         * error path.
1223         */
1224        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1225        unlock_dp_on_error = false;
1226
1227        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1228                                        &first_block, &dfops, resblks ?
1229                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1230        if (error) {
1231                ASSERT(error != -ENOSPC);
1232                goto out_trans_cancel;
1233        }
1234        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1235        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1236
1237        if (is_dir) {
1238                error = xfs_dir_init(tp, ip, dp);
1239                if (error)
1240                        goto out_bmap_cancel;
1241
1242                error = xfs_bumplink(tp, dp);
1243                if (error)
1244                        goto out_bmap_cancel;
1245        }
1246
1247        /*
1248         * If this is a synchronous mount, make sure that the
1249         * create transaction goes to disk before returning to
1250         * the user.
1251         */
1252        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1253                xfs_trans_set_sync(tp);
1254
1255        /*
1256         * Attach the dquot(s) to the inodes and modify them incore.
1257         * These ids of the inode couldn't have changed since the new
1258         * inode has been locked ever since it was created.
1259         */
1260        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1261
1262        error = xfs_defer_finish(&tp, &dfops);
1263        if (error)
1264                goto out_bmap_cancel;
1265
1266        error = xfs_trans_commit(tp);
1267        if (error)
1268                goto out_release_inode;
1269
1270        xfs_qm_dqrele(udqp);
1271        xfs_qm_dqrele(gdqp);
1272        xfs_qm_dqrele(pdqp);
1273
1274        *ipp = ip;
1275        return 0;
1276
1277 out_bmap_cancel:
1278        xfs_defer_cancel(&dfops);
1279 out_trans_cancel:
1280        xfs_trans_cancel(tp);
1281 out_release_inode:
1282        /*
1283         * Wait until after the current transaction is aborted to finish the
1284         * setup of the inode and release the inode.  This prevents recursive
1285         * transactions and deadlocks from xfs_inactive.
1286         */
1287        if (ip) {
1288                xfs_finish_inode_setup(ip);
1289                IRELE(ip);
1290        }
1291
1292        xfs_qm_dqrele(udqp);
1293        xfs_qm_dqrele(gdqp);
1294        xfs_qm_dqrele(pdqp);
1295
1296        if (unlock_dp_on_error)
1297                xfs_iunlock(dp, XFS_ILOCK_EXCL);
1298        return error;
1299}
1300
1301int
1302xfs_create_tmpfile(
1303        struct xfs_inode        *dp,
1304        umode_t                 mode,
1305        struct xfs_inode        **ipp)
1306{
1307        struct xfs_mount        *mp = dp->i_mount;
1308        struct xfs_inode        *ip = NULL;
1309        struct xfs_trans        *tp = NULL;
1310        int                     error;
1311        prid_t                  prid;
1312        struct xfs_dquot        *udqp = NULL;
1313        struct xfs_dquot        *gdqp = NULL;
1314        struct xfs_dquot        *pdqp = NULL;
1315        struct xfs_trans_res    *tres;
1316        uint                    resblks;
1317
1318        if (XFS_FORCED_SHUTDOWN(mp))
1319                return -EIO;
1320
1321        prid = xfs_get_initial_prid(dp);
1322
1323        /*
1324         * Make sure that we have allocated dquot(s) on disk.
1325         */
1326        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1327                                xfs_kgid_to_gid(current_fsgid()), prid,
1328                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1329                                &udqp, &gdqp, &pdqp);
1330        if (error)
1331                return error;
1332
1333        resblks = XFS_IALLOC_SPACE_RES(mp);
1334        tres = &M_RES(mp)->tr_create_tmpfile;
1335
1336        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1337        if (error)
1338                goto out_release_inode;
1339
1340        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1341                                                pdqp, resblks, 1, 0);
1342        if (error)
1343                goto out_trans_cancel;
1344
1345        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1346        if (error)
1347                goto out_trans_cancel;
1348
1349        if (mp->m_flags & XFS_MOUNT_WSYNC)
1350                xfs_trans_set_sync(tp);
1351
1352        /*
1353         * Attach the dquot(s) to the inodes and modify them incore.
1354         * These ids of the inode couldn't have changed since the new
1355         * inode has been locked ever since it was created.
1356         */
1357        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1358
1359        error = xfs_iunlink(tp, ip);
1360        if (error)
1361                goto out_trans_cancel;
1362
1363        error = xfs_trans_commit(tp);
1364        if (error)
1365                goto out_release_inode;
1366
1367        xfs_qm_dqrele(udqp);
1368        xfs_qm_dqrele(gdqp);
1369        xfs_qm_dqrele(pdqp);
1370
1371        *ipp = ip;
1372        return 0;
1373
1374 out_trans_cancel:
1375        xfs_trans_cancel(tp);
1376 out_release_inode:
1377        /*
1378         * Wait until after the current transaction is aborted to finish the
1379         * setup of the inode and release the inode.  This prevents recursive
1380         * transactions and deadlocks from xfs_inactive.
1381         */
1382        if (ip) {
1383                xfs_finish_inode_setup(ip);
1384                IRELE(ip);
1385        }
1386
1387        xfs_qm_dqrele(udqp);
1388        xfs_qm_dqrele(gdqp);
1389        xfs_qm_dqrele(pdqp);
1390
1391        return error;
1392}
1393
1394int
1395xfs_link(
1396        xfs_inode_t             *tdp,
1397        xfs_inode_t             *sip,
1398        struct xfs_name         *target_name)
1399{
1400        xfs_mount_t             *mp = tdp->i_mount;
1401        xfs_trans_t             *tp;
1402        int                     error;
1403        struct xfs_defer_ops    dfops;
1404        xfs_fsblock_t           first_block;
1405        int                     resblks;
1406
1407        trace_xfs_link(tdp, target_name);
1408
1409        ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1410
1411        if (XFS_FORCED_SHUTDOWN(mp))
1412                return -EIO;
1413
1414        error = xfs_qm_dqattach(sip, 0);
1415        if (error)
1416                goto std_return;
1417
1418        error = xfs_qm_dqattach(tdp, 0);
1419        if (error)
1420                goto std_return;
1421
1422        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1423        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1424        if (error == -ENOSPC) {
1425                resblks = 0;
1426                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1427        }
1428        if (error)
1429                goto std_return;
1430
1431        xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1432
1433        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1434        xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1435
1436        /*
1437         * If we are using project inheritance, we only allow hard link
1438         * creation in our tree when the project IDs are the same; else
1439         * the tree quota mechanism could be circumvented.
1440         */
1441        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1442                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1443                error = -EXDEV;
1444                goto error_return;
1445        }
1446
1447        if (!resblks) {
1448                error = xfs_dir_canenter(tp, tdp, target_name);
1449                if (error)
1450                        goto error_return;
1451        }
1452
1453        xfs_defer_init(&dfops, &first_block);
1454
1455        /*
1456         * Handle initial link state of O_TMPFILE inode
1457         */
1458        if (VFS_I(sip)->i_nlink == 0) {
1459                error = xfs_iunlink_remove(tp, sip);
1460                if (error)
1461                        goto error_return;
1462        }
1463
1464        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1465                                        &first_block, &dfops, resblks);
1466        if (error)
1467                goto error_return;
1468        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1469        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1470
1471        error = xfs_bumplink(tp, sip);
1472        if (error)
1473                goto error_return;
1474
1475        /*
1476         * If this is a synchronous mount, make sure that the
1477         * link transaction goes to disk before returning to
1478         * the user.
1479         */
1480        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1481                xfs_trans_set_sync(tp);
1482
1483        error = xfs_defer_finish(&tp, &dfops);
1484        if (error) {
1485                xfs_defer_cancel(&dfops);
1486                goto error_return;
1487        }
1488
1489        return xfs_trans_commit(tp);
1490
1491 error_return:
1492        xfs_trans_cancel(tp);
1493 std_return:
1494        return error;
1495}
1496
1497/* Clear the reflink flag and the cowblocks tag if possible. */
1498static void
1499xfs_itruncate_clear_reflink_flags(
1500        struct xfs_inode        *ip)
1501{
1502        struct xfs_ifork        *dfork;
1503        struct xfs_ifork        *cfork;
1504
1505        if (!xfs_is_reflink_inode(ip))
1506                return;
1507        dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1508        cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1509        if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1510                ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1511        if (cfork->if_bytes == 0)
1512                xfs_inode_clear_cowblocks_tag(ip);
1513}
1514
1515/*
1516 * Free up the underlying blocks past new_size.  The new size must be smaller
1517 * than the current size.  This routine can be used both for the attribute and
1518 * data fork, and does not modify the inode size, which is left to the caller.
1519 *
1520 * The transaction passed to this routine must have made a permanent log
1521 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1522 * given transaction and start new ones, so make sure everything involved in
1523 * the transaction is tidy before calling here.  Some transaction will be
1524 * returned to the caller to be committed.  The incoming transaction must
1525 * already include the inode, and both inode locks must be held exclusively.
1526 * The inode must also be "held" within the transaction.  On return the inode
1527 * will be "held" within the returned transaction.  This routine does NOT
1528 * require any disk space to be reserved for it within the transaction.
1529 *
1530 * If we get an error, we must return with the inode locked and linked into the
1531 * current transaction. This keeps things simple for the higher level code,
1532 * because it always knows that the inode is locked and held in the transaction
1533 * that returns to it whether errors occur or not.  We don't mark the inode
1534 * dirty on error so that transactions can be easily aborted if possible.
1535 */
1536int
1537xfs_itruncate_extents(
1538        struct xfs_trans        **tpp,
1539        struct xfs_inode        *ip,
1540        int                     whichfork,
1541        xfs_fsize_t             new_size)
1542{
1543        struct xfs_mount        *mp = ip->i_mount;
1544        struct xfs_trans        *tp = *tpp;
1545        struct xfs_defer_ops    dfops;
1546        xfs_fsblock_t           first_block;
1547        xfs_fileoff_t           first_unmap_block;
1548        xfs_fileoff_t           last_block;
1549        xfs_filblks_t           unmap_len;
1550        int                     error = 0;
1551        int                     done = 0;
1552
1553        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1554        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1555               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1556        ASSERT(new_size <= XFS_ISIZE(ip));
1557        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1558        ASSERT(ip->i_itemp != NULL);
1559        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1560        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1561
1562        trace_xfs_itruncate_extents_start(ip, new_size);
1563
1564        /*
1565         * Since it is possible for space to become allocated beyond
1566         * the end of the file (in a crash where the space is allocated
1567         * but the inode size is not yet updated), simply remove any
1568         * blocks which show up between the new EOF and the maximum
1569         * possible file size.  If the first block to be removed is
1570         * beyond the maximum file size (ie it is the same as last_block),
1571         * then there is nothing to do.
1572         */
1573        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1574        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1575        if (first_unmap_block == last_block)
1576                return 0;
1577
1578        ASSERT(first_unmap_block < last_block);
1579        unmap_len = last_block - first_unmap_block + 1;
1580        while (!done) {
1581                xfs_defer_init(&dfops, &first_block);
1582                error = xfs_bunmapi(tp, ip,
1583                                    first_unmap_block, unmap_len,
1584                                    xfs_bmapi_aflag(whichfork),
1585                                    XFS_ITRUNC_MAX_EXTENTS,
1586                                    &first_block, &dfops,
1587                                    &done);
1588                if (error)
1589                        goto out_bmap_cancel;
1590
1591                /*
1592                 * Duplicate the transaction that has the permanent
1593                 * reservation and commit the old transaction.
1594                 */
1595                xfs_defer_ijoin(&dfops, ip);
1596                error = xfs_defer_finish(&tp, &dfops);
1597                if (error)
1598                        goto out_bmap_cancel;
1599
1600                error = xfs_trans_roll_inode(&tp, ip);
1601                if (error)
1602                        goto out;
1603        }
1604
1605        if (whichfork == XFS_DATA_FORK) {
1606                /* Remove all pending CoW reservations. */
1607                error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1608                                first_unmap_block, last_block, true);
1609                if (error)
1610                        goto out;
1611
1612                xfs_itruncate_clear_reflink_flags(ip);
1613        }
1614
1615        /*
1616         * Always re-log the inode so that our permanent transaction can keep
1617         * on rolling it forward in the log.
1618         */
1619        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621        trace_xfs_itruncate_extents_end(ip, new_size);
1622
1623out:
1624        *tpp = tp;
1625        return error;
1626out_bmap_cancel:
1627        /*
1628         * If the bunmapi call encounters an error, return to the caller where
1629         * the transaction can be properly aborted.  We just need to make sure
1630         * we're not holding any resources that we were not when we came in.
1631         */
1632        xfs_defer_cancel(&dfops);
1633        goto out;
1634}
1635
1636int
1637xfs_release(
1638        xfs_inode_t     *ip)
1639{
1640        xfs_mount_t     *mp = ip->i_mount;
1641        int             error;
1642
1643        if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1644                return 0;
1645
1646        /* If this is a read-only mount, don't do this (would generate I/O) */
1647        if (mp->m_flags & XFS_MOUNT_RDONLY)
1648                return 0;
1649
1650        if (!XFS_FORCED_SHUTDOWN(mp)) {
1651                int truncated;
1652
1653                /*
1654                 * If we previously truncated this file and removed old data
1655                 * in the process, we want to initiate "early" writeout on
1656                 * the last close.  This is an attempt to combat the notorious
1657                 * NULL files problem which is particularly noticeable from a
1658                 * truncate down, buffered (re-)write (delalloc), followed by
1659                 * a crash.  What we are effectively doing here is
1660                 * significantly reducing the time window where we'd otherwise
1661                 * be exposed to that problem.
1662                 */
1663                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664                if (truncated) {
1665                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1666                        if (ip->i_delayed_blks > 0) {
1667                                error = filemap_flush(VFS_I(ip)->i_mapping);
1668                                if (error)
1669                                        return error;
1670                        }
1671                }
1672        }
1673
1674        if (VFS_I(ip)->i_nlink == 0)
1675                return 0;
1676
1677        if (xfs_can_free_eofblocks(ip, false)) {
1678
1679                /*
1680                 * Check if the inode is being opened, written and closed
1681                 * frequently and we have delayed allocation blocks outstanding
1682                 * (e.g. streaming writes from the NFS server), truncating the
1683                 * blocks past EOF will cause fragmentation to occur.
1684                 *
1685                 * In this case don't do the truncation, but we have to be
1686                 * careful how we detect this case. Blocks beyond EOF show up as
1687                 * i_delayed_blks even when the inode is clean, so we need to
1688                 * truncate them away first before checking for a dirty release.
1689                 * Hence on the first dirty close we will still remove the
1690                 * speculative allocation, but after that we will leave it in
1691                 * place.
1692                 */
1693                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1694                        return 0;
1695                /*
1696                 * If we can't get the iolock just skip truncating the blocks
1697                 * past EOF because we could deadlock with the mmap_sem
1698                 * otherwise. We'll get another chance to drop them once the
1699                 * last reference to the inode is dropped, so we'll never leak
1700                 * blocks permanently.
1701                 */
1702                if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1703                        error = xfs_free_eofblocks(ip);
1704                        xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705                        if (error)
1706                                return error;
1707                }
1708
1709                /* delalloc blocks after truncation means it really is dirty */
1710                if (ip->i_delayed_blks)
1711                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1712        }
1713        return 0;
1714}
1715
1716/*
1717 * xfs_inactive_truncate
1718 *
1719 * Called to perform a truncate when an inode becomes unlinked.
1720 */
1721STATIC int
1722xfs_inactive_truncate(
1723        struct xfs_inode *ip)
1724{
1725        struct xfs_mount        *mp = ip->i_mount;
1726        struct xfs_trans        *tp;
1727        int                     error;
1728
1729        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1730        if (error) {
1731                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1732                return error;
1733        }
1734
1735        xfs_ilock(ip, XFS_ILOCK_EXCL);
1736        xfs_trans_ijoin(tp, ip, 0);
1737
1738        /*
1739         * Log the inode size first to prevent stale data exposure in the event
1740         * of a system crash before the truncate completes. See the related
1741         * comment in xfs_vn_setattr_size() for details.
1742         */
1743        ip->i_d.di_size = 0;
1744        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747        if (error)
1748                goto error_trans_cancel;
1749
1750        ASSERT(ip->i_d.di_nextents == 0);
1751
1752        error = xfs_trans_commit(tp);
1753        if (error)
1754                goto error_unlock;
1755
1756        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757        return 0;
1758
1759error_trans_cancel:
1760        xfs_trans_cancel(tp);
1761error_unlock:
1762        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763        return error;
1764}
1765
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773        struct xfs_inode *ip)
1774{
1775        struct xfs_defer_ops    dfops;
1776        xfs_fsblock_t           first_block;
1777        struct xfs_mount        *mp = ip->i_mount;
1778        struct xfs_trans        *tp;
1779        int                     error;
1780
1781        /*
1782         * We try to use a per-AG reservation for any block needed by the finobt
1783         * tree, but as the finobt feature predates the per-AG reservation
1784         * support a degraded file system might not have enough space for the
1785         * reservation at mount time.  In that case try to dip into the reserved
1786         * pool and pray.
1787         *
1788         * Send a warning if the reservation does happen to fail, as the inode
1789         * now remains allocated and sits on the unlinked list until the fs is
1790         * repaired.
1791         */
1792        if (unlikely(mp->m_inotbt_nores)) {
1793                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1794                                XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1795                                &tp);
1796        } else {
1797                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1798        }
1799        if (error) {
1800                if (error == -ENOSPC) {
1801                        xfs_warn_ratelimited(mp,
1802                        "Failed to remove inode(s) from unlinked list. "
1803                        "Please free space, unmount and run xfs_repair.");
1804                } else {
1805                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1806                }
1807                return error;
1808        }
1809
1810        xfs_ilock(ip, XFS_ILOCK_EXCL);
1811        xfs_trans_ijoin(tp, ip, 0);
1812
1813        xfs_defer_init(&dfops, &first_block);
1814        error = xfs_ifree(tp, ip, &dfops);
1815        if (error) {
1816                /*
1817                 * If we fail to free the inode, shut down.  The cancel
1818                 * might do that, we need to make sure.  Otherwise the
1819                 * inode might be lost for a long time or forever.
1820                 */
1821                if (!XFS_FORCED_SHUTDOWN(mp)) {
1822                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1823                                __func__, error);
1824                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1825                }
1826                xfs_trans_cancel(tp);
1827                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828                return error;
1829        }
1830
1831        /*
1832         * Credit the quota account(s). The inode is gone.
1833         */
1834        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1835
1836        /*
1837         * Just ignore errors at this point.  There is nothing we can do except
1838         * to try to keep going. Make sure it's not a silent error.
1839         */
1840        error = xfs_defer_finish(&tp, &dfops);
1841        if (error) {
1842                xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1843                        __func__, error);
1844                xfs_defer_cancel(&dfops);
1845        }
1846        error = xfs_trans_commit(tp);
1847        if (error)
1848                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1849                        __func__, error);
1850
1851        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1852        return 0;
1853}
1854
1855/*
1856 * xfs_inactive
1857 *
1858 * This is called when the vnode reference count for the vnode
1859 * goes to zero.  If the file has been unlinked, then it must
1860 * now be truncated.  Also, we clear all of the read-ahead state
1861 * kept for the inode here since the file is now closed.
1862 */
1863void
1864xfs_inactive(
1865        xfs_inode_t     *ip)
1866{
1867        struct xfs_mount        *mp;
1868        struct xfs_ifork        *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1869        int                     error;
1870        int                     truncate = 0;
1871
1872        /*
1873         * If the inode is already free, then there can be nothing
1874         * to clean up here.
1875         */
1876        if (VFS_I(ip)->i_mode == 0) {
1877                ASSERT(ip->i_df.if_real_bytes == 0);
1878                ASSERT(ip->i_df.if_broot_bytes == 0);
1879                return;
1880        }
1881
1882        mp = ip->i_mount;
1883        ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1884
1885        /* If this is a read-only mount, don't do this (would generate I/O) */
1886        if (mp->m_flags & XFS_MOUNT_RDONLY)
1887                return;
1888
1889        /* Try to clean out the cow blocks if there are any. */
1890        if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1891                xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1892
1893        if (VFS_I(ip)->i_nlink != 0) {
1894                /*
1895                 * force is true because we are evicting an inode from the
1896                 * cache. Post-eof blocks must be freed, lest we end up with
1897                 * broken free space accounting.
1898                 *
1899                 * Note: don't bother with iolock here since lockdep complains
1900                 * about acquiring it in reclaim context. We have the only
1901                 * reference to the inode at this point anyways.
1902                 */
1903                if (xfs_can_free_eofblocks(ip, true))
1904                        xfs_free_eofblocks(ip);
1905
1906                return;
1907        }
1908
1909        if (S_ISREG(VFS_I(ip)->i_mode) &&
1910            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1911             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1912                truncate = 1;
1913
1914        error = xfs_qm_dqattach(ip, 0);
1915        if (error)
1916                return;
1917
1918        if (S_ISLNK(VFS_I(ip)->i_mode))
1919                error = xfs_inactive_symlink(ip);
1920        else if (truncate)
1921                error = xfs_inactive_truncate(ip);
1922        if (error)
1923                return;
1924
1925        /*
1926         * If there are attributes associated with the file then blow them away
1927         * now.  The code calls a routine that recursively deconstructs the
1928         * attribute fork. If also blows away the in-core attribute fork.
1929         */
1930        if (XFS_IFORK_Q(ip)) {
1931                error = xfs_attr_inactive(ip);
1932                if (error)
1933                        return;
1934        }
1935
1936        ASSERT(!ip->i_afp);
1937        ASSERT(ip->i_d.di_anextents == 0);
1938        ASSERT(ip->i_d.di_forkoff == 0);
1939
1940        /*
1941         * Free the inode.
1942         */
1943        error = xfs_inactive_ifree(ip);
1944        if (error)
1945                return;
1946
1947        /*
1948         * Release the dquots held by inode, if any.
1949         */
1950        xfs_qm_dqdetach(ip);
1951}
1952
1953/*
1954 * This is called when the inode's link count goes to 0 or we are creating a
1955 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1956 * set to true as the link count is dropped to zero by the VFS after we've
1957 * created the file successfully, so we have to add it to the unlinked list
1958 * while the link count is non-zero.
1959 *
1960 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1961 * list when the inode is freed.
1962 */
1963STATIC int
1964xfs_iunlink(
1965        struct xfs_trans *tp,
1966        struct xfs_inode *ip)
1967{
1968        xfs_mount_t     *mp = tp->t_mountp;
1969        xfs_agi_t       *agi;
1970        xfs_dinode_t    *dip;
1971        xfs_buf_t       *agibp;
1972        xfs_buf_t       *ibp;
1973        xfs_agino_t     agino;
1974        short           bucket_index;
1975        int             offset;
1976        int             error;
1977
1978        ASSERT(VFS_I(ip)->i_mode != 0);
1979
1980        /*
1981         * Get the agi buffer first.  It ensures lock ordering
1982         * on the list.
1983         */
1984        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1985        if (error)
1986                return error;
1987        agi = XFS_BUF_TO_AGI(agibp);
1988
1989        /*
1990         * Get the index into the agi hash table for the
1991         * list this inode will go on.
1992         */
1993        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1994        ASSERT(agino != 0);
1995        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1996        ASSERT(agi->agi_unlinked[bucket_index]);
1997        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1998
1999        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2000                /*
2001                 * There is already another inode in the bucket we need
2002                 * to add ourselves to.  Add us at the front of the list.
2003                 * Here we put the head pointer into our next pointer,
2004                 * and then we fall through to point the head at us.
2005                 */
2006                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2007                                       0, 0);
2008                if (error)
2009                        return error;
2010
2011                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2012                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2013                offset = ip->i_imap.im_boffset +
2014                        offsetof(xfs_dinode_t, di_next_unlinked);
2015
2016                /* need to recalc the inode CRC if appropriate */
2017                xfs_dinode_calc_crc(mp, dip);
2018
2019                xfs_trans_inode_buf(tp, ibp);
2020                xfs_trans_log_buf(tp, ibp, offset,
2021                                  (offset + sizeof(xfs_agino_t) - 1));
2022                xfs_inobp_check(mp, ibp);
2023        }
2024
2025        /*
2026         * Point the bucket head pointer at the inode being inserted.
2027         */
2028        ASSERT(agino != 0);
2029        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2030        offset = offsetof(xfs_agi_t, agi_unlinked) +
2031                (sizeof(xfs_agino_t) * bucket_index);
2032        xfs_trans_log_buf(tp, agibp, offset,
2033                          (offset + sizeof(xfs_agino_t) - 1));
2034        return 0;
2035}
2036
2037/*
2038 * Pull the on-disk inode from the AGI unlinked list.
2039 */
2040STATIC int
2041xfs_iunlink_remove(
2042        xfs_trans_t     *tp,
2043        xfs_inode_t     *ip)
2044{
2045        xfs_ino_t       next_ino;
2046        xfs_mount_t     *mp;
2047        xfs_agi_t       *agi;
2048        xfs_dinode_t    *dip;
2049        xfs_buf_t       *agibp;
2050        xfs_buf_t       *ibp;
2051        xfs_agnumber_t  agno;
2052        xfs_agino_t     agino;
2053        xfs_agino_t     next_agino;
2054        xfs_buf_t       *last_ibp;
2055        xfs_dinode_t    *last_dip = NULL;
2056        short           bucket_index;
2057        int             offset, last_offset = 0;
2058        int             error;
2059
2060        mp = tp->t_mountp;
2061        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2062
2063        /*
2064         * Get the agi buffer first.  It ensures lock ordering
2065         * on the list.
2066         */
2067        error = xfs_read_agi(mp, tp, agno, &agibp);
2068        if (error)
2069                return error;
2070
2071        agi = XFS_BUF_TO_AGI(agibp);
2072
2073        /*
2074         * Get the index into the agi hash table for the
2075         * list this inode will go on.
2076         */
2077        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2078        ASSERT(agino != 0);
2079        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2080        ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2081        ASSERT(agi->agi_unlinked[bucket_index]);
2082
2083        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2084                /*
2085                 * We're at the head of the list.  Get the inode's on-disk
2086                 * buffer to see if there is anyone after us on the list.
2087                 * Only modify our next pointer if it is not already NULLAGINO.
2088                 * This saves us the overhead of dealing with the buffer when
2089                 * there is no need to change it.
2090                 */
2091                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2092                                       0, 0);
2093                if (error) {
2094                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2095                                __func__, error);
2096                        return error;
2097                }
2098                next_agino = be32_to_cpu(dip->di_next_unlinked);
2099                ASSERT(next_agino != 0);
2100                if (next_agino != NULLAGINO) {
2101                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2102                        offset = ip->i_imap.im_boffset +
2103                                offsetof(xfs_dinode_t, di_next_unlinked);
2104
2105                        /* need to recalc the inode CRC if appropriate */
2106                        xfs_dinode_calc_crc(mp, dip);
2107
2108                        xfs_trans_inode_buf(tp, ibp);
2109                        xfs_trans_log_buf(tp, ibp, offset,
2110                                          (offset + sizeof(xfs_agino_t) - 1));
2111                        xfs_inobp_check(mp, ibp);
2112                } else {
2113                        xfs_trans_brelse(tp, ibp);
2114                }
2115                /*
2116                 * Point the bucket head pointer at the next inode.
2117                 */
2118                ASSERT(next_agino != 0);
2119                ASSERT(next_agino != agino);
2120                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2121                offset = offsetof(xfs_agi_t, agi_unlinked) +
2122                        (sizeof(xfs_agino_t) * bucket_index);
2123                xfs_trans_log_buf(tp, agibp, offset,
2124                                  (offset + sizeof(xfs_agino_t) - 1));
2125        } else {
2126                /*
2127                 * We need to search the list for the inode being freed.
2128                 */
2129                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2130                last_ibp = NULL;
2131                while (next_agino != agino) {
2132                        struct xfs_imap imap;
2133
2134                        if (last_ibp)
2135                                xfs_trans_brelse(tp, last_ibp);
2136
2137                        imap.im_blkno = 0;
2138                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2139
2140                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2141                        if (error) {
2142                                xfs_warn(mp,
2143        "%s: xfs_imap returned error %d.",
2144                                         __func__, error);
2145                                return error;
2146                        }
2147
2148                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2149                                               &last_ibp, 0, 0);
2150                        if (error) {
2151                                xfs_warn(mp,
2152        "%s: xfs_imap_to_bp returned error %d.",
2153                                        __func__, error);
2154                                return error;
2155                        }
2156
2157                        last_offset = imap.im_boffset;
2158                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2159                        ASSERT(next_agino != NULLAGINO);
2160                        ASSERT(next_agino != 0);
2161                }
2162
2163                /*
2164                 * Now last_ibp points to the buffer previous to us on the
2165                 * unlinked list.  Pull us from the list.
2166                 */
2167                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2168                                       0, 0);
2169                if (error) {
2170                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2171                                __func__, error);
2172                        return error;
2173                }
2174                next_agino = be32_to_cpu(dip->di_next_unlinked);
2175                ASSERT(next_agino != 0);
2176                ASSERT(next_agino != agino);
2177                if (next_agino != NULLAGINO) {
2178                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2179                        offset = ip->i_imap.im_boffset +
2180                                offsetof(xfs_dinode_t, di_next_unlinked);
2181
2182                        /* need to recalc the inode CRC if appropriate */
2183                        xfs_dinode_calc_crc(mp, dip);
2184
2185                        xfs_trans_inode_buf(tp, ibp);
2186                        xfs_trans_log_buf(tp, ibp, offset,
2187                                          (offset + sizeof(xfs_agino_t) - 1));
2188                        xfs_inobp_check(mp, ibp);
2189                } else {
2190                        xfs_trans_brelse(tp, ibp);
2191                }
2192                /*
2193                 * Point the previous inode on the list to the next inode.
2194                 */
2195                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2196                ASSERT(next_agino != 0);
2197                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2198
2199                /* need to recalc the inode CRC if appropriate */
2200                xfs_dinode_calc_crc(mp, last_dip);
2201
2202                xfs_trans_inode_buf(tp, last_ibp);
2203                xfs_trans_log_buf(tp, last_ibp, offset,
2204                                  (offset + sizeof(xfs_agino_t) - 1));
2205                xfs_inobp_check(mp, last_ibp);
2206        }
2207        return 0;
2208}
2209
2210/*
2211 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2212 * inodes that are in memory - they all must be marked stale and attached to
2213 * the cluster buffer.
2214 */
2215STATIC int
2216xfs_ifree_cluster(
2217        xfs_inode_t             *free_ip,
2218        xfs_trans_t             *tp,
2219        struct xfs_icluster     *xic)
2220{
2221        xfs_mount_t             *mp = free_ip->i_mount;
2222        int                     blks_per_cluster;
2223        int                     inodes_per_cluster;
2224        int                     nbufs;
2225        int                     i, j;
2226        int                     ioffset;
2227        xfs_daddr_t             blkno;
2228        xfs_buf_t               *bp;
2229        xfs_inode_t             *ip;
2230        xfs_inode_log_item_t    *iip;
2231        struct xfs_log_item     *lip;
2232        struct xfs_perag        *pag;
2233        xfs_ino_t               inum;
2234
2235        inum = xic->first_ino;
2236        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2237        blks_per_cluster = xfs_icluster_size_fsb(mp);
2238        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2239        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2240
2241        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2242                /*
2243                 * The allocation bitmap tells us which inodes of the chunk were
2244                 * physically allocated. Skip the cluster if an inode falls into
2245                 * a sparse region.
2246                 */
2247                ioffset = inum - xic->first_ino;
2248                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2249                        ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2250                        continue;
2251                }
2252
2253                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2254                                         XFS_INO_TO_AGBNO(mp, inum));
2255
2256                /*
2257                 * We obtain and lock the backing buffer first in the process
2258                 * here, as we have to ensure that any dirty inode that we
2259                 * can't get the flush lock on is attached to the buffer.
2260                 * If we scan the in-memory inodes first, then buffer IO can
2261                 * complete before we get a lock on it, and hence we may fail
2262                 * to mark all the active inodes on the buffer stale.
2263                 */
2264                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2265                                        mp->m_bsize * blks_per_cluster,
2266                                        XBF_UNMAPPED);
2267
2268                if (!bp)
2269                        return -ENOMEM;
2270
2271                /*
2272                 * This buffer may not have been correctly initialised as we
2273                 * didn't read it from disk. That's not important because we are
2274                 * only using to mark the buffer as stale in the log, and to
2275                 * attach stale cached inodes on it. That means it will never be
2276                 * dispatched for IO. If it is, we want to know about it, and we
2277                 * want it to fail. We can acheive this by adding a write
2278                 * verifier to the buffer.
2279                 */
2280                 bp->b_ops = &xfs_inode_buf_ops;
2281
2282                /*
2283                 * Walk the inodes already attached to the buffer and mark them
2284                 * stale. These will all have the flush locks held, so an
2285                 * in-memory inode walk can't lock them. By marking them all
2286                 * stale first, we will not attempt to lock them in the loop
2287                 * below as the XFS_ISTALE flag will be set.
2288                 */
2289                list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2290                        if (lip->li_type == XFS_LI_INODE) {
2291                                iip = (xfs_inode_log_item_t *)lip;
2292                                ASSERT(iip->ili_logged == 1);
2293                                lip->li_cb = xfs_istale_done;
2294                                xfs_trans_ail_copy_lsn(mp->m_ail,
2295                                                        &iip->ili_flush_lsn,
2296                                                        &iip->ili_item.li_lsn);
2297                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2298                        }
2299                }
2300
2301
2302                /*
2303                 * For each inode in memory attempt to add it to the inode
2304                 * buffer and set it up for being staled on buffer IO
2305                 * completion.  This is safe as we've locked out tail pushing
2306                 * and flushing by locking the buffer.
2307                 *
2308                 * We have already marked every inode that was part of a
2309                 * transaction stale above, which means there is no point in
2310                 * even trying to lock them.
2311                 */
2312                for (i = 0; i < inodes_per_cluster; i++) {
2313retry:
2314                        rcu_read_lock();
2315                        ip = radix_tree_lookup(&pag->pag_ici_root,
2316                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2317
2318                        /* Inode not in memory, nothing to do */
2319                        if (!ip) {
2320                                rcu_read_unlock();
2321                                continue;
2322                        }
2323
2324                        /*
2325                         * because this is an RCU protected lookup, we could
2326                         * find a recently freed or even reallocated inode
2327                         * during the lookup. We need to check under the
2328                         * i_flags_lock for a valid inode here. Skip it if it
2329                         * is not valid, the wrong inode or stale.
2330                         */
2331                        spin_lock(&ip->i_flags_lock);
2332                        if (ip->i_ino != inum + i ||
2333                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2334                                spin_unlock(&ip->i_flags_lock);
2335                                rcu_read_unlock();
2336                                continue;
2337                        }
2338                        spin_unlock(&ip->i_flags_lock);
2339
2340                        /*
2341                         * Don't try to lock/unlock the current inode, but we
2342                         * _cannot_ skip the other inodes that we did not find
2343                         * in the list attached to the buffer and are not
2344                         * already marked stale. If we can't lock it, back off
2345                         * and retry.
2346                         */
2347                        if (ip != free_ip) {
2348                                if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2349                                        rcu_read_unlock();
2350                                        delay(1);
2351                                        goto retry;
2352                                }
2353
2354                                /*
2355                                 * Check the inode number again in case we're
2356                                 * racing with freeing in xfs_reclaim_inode().
2357                                 * See the comments in that function for more
2358                                 * information as to why the initial check is
2359                                 * not sufficient.
2360                                 */
2361                                if (ip->i_ino != inum + i) {
2362                                        xfs_iunlock(ip, XFS_ILOCK_EXCL);
2363                                        rcu_read_unlock();
2364                                        continue;
2365                                }
2366                        }
2367                        rcu_read_unlock();
2368
2369                        xfs_iflock(ip);
2370                        xfs_iflags_set(ip, XFS_ISTALE);
2371
2372                        /*
2373                         * we don't need to attach clean inodes or those only
2374                         * with unlogged changes (which we throw away, anyway).
2375                         */
2376                        iip = ip->i_itemp;
2377                        if (!iip || xfs_inode_clean(ip)) {
2378                                ASSERT(ip != free_ip);
2379                                xfs_ifunlock(ip);
2380                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2381                                continue;
2382                        }
2383
2384                        iip->ili_last_fields = iip->ili_fields;
2385                        iip->ili_fields = 0;
2386                        iip->ili_fsync_fields = 0;
2387                        iip->ili_logged = 1;
2388                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2389                                                &iip->ili_item.li_lsn);
2390
2391                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2392                                                  &iip->ili_item);
2393
2394                        if (ip != free_ip)
2395                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2396                }
2397
2398                xfs_trans_stale_inode_buf(tp, bp);
2399                xfs_trans_binval(tp, bp);
2400        }
2401
2402        xfs_perag_put(pag);
2403        return 0;
2404}
2405
2406/*
2407 * Free any local-format buffers sitting around before we reset to
2408 * extents format.
2409 */
2410static inline void
2411xfs_ifree_local_data(
2412        struct xfs_inode        *ip,
2413        int                     whichfork)
2414{
2415        struct xfs_ifork        *ifp;
2416
2417        if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2418                return;
2419
2420        ifp = XFS_IFORK_PTR(ip, whichfork);
2421        xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2422}
2423
2424/*
2425 * This is called to return an inode to the inode free list.
2426 * The inode should already be truncated to 0 length and have
2427 * no pages associated with it.  This routine also assumes that
2428 * the inode is already a part of the transaction.
2429 *
2430 * The on-disk copy of the inode will have been added to the list
2431 * of unlinked inodes in the AGI. We need to remove the inode from
2432 * that list atomically with respect to freeing it here.
2433 */
2434int
2435xfs_ifree(
2436        xfs_trans_t     *tp,
2437        xfs_inode_t     *ip,
2438        struct xfs_defer_ops    *dfops)
2439{
2440        int                     error;
2441        struct xfs_icluster     xic = { 0 };
2442
2443        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2444        ASSERT(VFS_I(ip)->i_nlink == 0);
2445        ASSERT(ip->i_d.di_nextents == 0);
2446        ASSERT(ip->i_d.di_anextents == 0);
2447        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2448        ASSERT(ip->i_d.di_nblocks == 0);
2449
2450        /*
2451         * Pull the on-disk inode from the AGI unlinked list.
2452         */
2453        error = xfs_iunlink_remove(tp, ip);
2454        if (error)
2455                return error;
2456
2457        error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2458        if (error)
2459                return error;
2460
2461        xfs_ifree_local_data(ip, XFS_DATA_FORK);
2462        xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2463
2464        VFS_I(ip)->i_mode = 0;          /* mark incore inode as free */
2465        ip->i_d.di_flags = 0;
2466        ip->i_d.di_flags2 = 0;
2467        ip->i_d.di_dmevmask = 0;
2468        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2469        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2470        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2471
2472        /* Don't attempt to replay owner changes for a deleted inode */
2473        ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2474
2475        /*
2476         * Bump the generation count so no one will be confused
2477         * by reincarnations of this inode.
2478         */
2479        VFS_I(ip)->i_generation++;
2480        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2481
2482        if (xic.deleted)
2483                error = xfs_ifree_cluster(ip, tp, &xic);
2484
2485        return error;
2486}
2487
2488/*
2489 * This is called to unpin an inode.  The caller must have the inode locked
2490 * in at least shared mode so that the buffer cannot be subsequently pinned
2491 * once someone is waiting for it to be unpinned.
2492 */
2493static void
2494xfs_iunpin(
2495        struct xfs_inode        *ip)
2496{
2497        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2498
2499        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2500
2501        /* Give the log a push to start the unpinning I/O */
2502        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2503
2504}
2505
2506static void
2507__xfs_iunpin_wait(
2508        struct xfs_inode        *ip)
2509{
2510        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2511        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2512
2513        xfs_iunpin(ip);
2514
2515        do {
2516                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2517                if (xfs_ipincount(ip))
2518                        io_schedule();
2519        } while (xfs_ipincount(ip));
2520        finish_wait(wq, &wait.wq_entry);
2521}
2522
2523void
2524xfs_iunpin_wait(
2525        struct xfs_inode        *ip)
2526{
2527        if (xfs_ipincount(ip))
2528                __xfs_iunpin_wait(ip);
2529}
2530
2531/*
2532 * Removing an inode from the namespace involves removing the directory entry
2533 * and dropping the link count on the inode. Removing the directory entry can
2534 * result in locking an AGF (directory blocks were freed) and removing a link
2535 * count can result in placing the inode on an unlinked list which results in
2536 * locking an AGI.
2537 *
2538 * The big problem here is that we have an ordering constraint on AGF and AGI
2539 * locking - inode allocation locks the AGI, then can allocate a new extent for
2540 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2541 * removes the inode from the unlinked list, requiring that we lock the AGI
2542 * first, and then freeing the inode can result in an inode chunk being freed
2543 * and hence freeing disk space requiring that we lock an AGF.
2544 *
2545 * Hence the ordering that is imposed by other parts of the code is AGI before
2546 * AGF. This means we cannot remove the directory entry before we drop the inode
2547 * reference count and put it on the unlinked list as this results in a lock
2548 * order of AGF then AGI, and this can deadlock against inode allocation and
2549 * freeing. Therefore we must drop the link counts before we remove the
2550 * directory entry.
2551 *
2552 * This is still safe from a transactional point of view - it is not until we
2553 * get to xfs_defer_finish() that we have the possibility of multiple
2554 * transactions in this operation. Hence as long as we remove the directory
2555 * entry and drop the link count in the first transaction of the remove
2556 * operation, there are no transactional constraints on the ordering here.
2557 */
2558int
2559xfs_remove(
2560        xfs_inode_t             *dp,
2561        struct xfs_name         *name,
2562        xfs_inode_t             *ip)
2563{
2564        xfs_mount_t             *mp = dp->i_mount;
2565        xfs_trans_t             *tp = NULL;
2566        int                     is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2567        int                     error = 0;
2568        struct xfs_defer_ops    dfops;
2569        xfs_fsblock_t           first_block;
2570        uint                    resblks;
2571
2572        trace_xfs_remove(dp, name);
2573
2574        if (XFS_FORCED_SHUTDOWN(mp))
2575                return -EIO;
2576
2577        error = xfs_qm_dqattach(dp, 0);
2578        if (error)
2579                goto std_return;
2580
2581        error = xfs_qm_dqattach(ip, 0);
2582        if (error)
2583                goto std_return;
2584
2585        /*
2586         * We try to get the real space reservation first,
2587         * allowing for directory btree deletion(s) implying
2588         * possible bmap insert(s).  If we can't get the space
2589         * reservation then we use 0 instead, and avoid the bmap
2590         * btree insert(s) in the directory code by, if the bmap
2591         * insert tries to happen, instead trimming the LAST
2592         * block from the directory.
2593         */
2594        resblks = XFS_REMOVE_SPACE_RES(mp);
2595        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2596        if (error == -ENOSPC) {
2597                resblks = 0;
2598                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2599                                &tp);
2600        }
2601        if (error) {
2602                ASSERT(error != -ENOSPC);
2603                goto std_return;
2604        }
2605
2606        xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2607
2608        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2609        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2610
2611        /*
2612         * If we're removing a directory perform some additional validation.
2613         */
2614        if (is_dir) {
2615                ASSERT(VFS_I(ip)->i_nlink >= 2);
2616                if (VFS_I(ip)->i_nlink != 2) {
2617                        error = -ENOTEMPTY;
2618                        goto out_trans_cancel;
2619                }
2620                if (!xfs_dir_isempty(ip)) {
2621                        error = -ENOTEMPTY;
2622                        goto out_trans_cancel;
2623                }
2624
2625                /* Drop the link from ip's "..".  */
2626                error = xfs_droplink(tp, dp);
2627                if (error)
2628                        goto out_trans_cancel;
2629
2630                /* Drop the "." link from ip to self.  */
2631                error = xfs_droplink(tp, ip);
2632                if (error)
2633                        goto out_trans_cancel;
2634        } else {
2635                /*
2636                 * When removing a non-directory we need to log the parent
2637                 * inode here.  For a directory this is done implicitly
2638                 * by the xfs_droplink call for the ".." entry.
2639                 */
2640                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2641        }
2642        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2643
2644        /* Drop the link from dp to ip. */
2645        error = xfs_droplink(tp, ip);
2646        if (error)
2647                goto out_trans_cancel;
2648
2649        xfs_defer_init(&dfops, &first_block);
2650        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2651                                        &first_block, &dfops, resblks);
2652        if (error) {
2653                ASSERT(error != -ENOENT);
2654                goto out_bmap_cancel;
2655        }
2656
2657        /*
2658         * If this is a synchronous mount, make sure that the
2659         * remove transaction goes to disk before returning to
2660         * the user.
2661         */
2662        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2663                xfs_trans_set_sync(tp);
2664
2665        error = xfs_defer_finish(&tp, &dfops);
2666        if (error)
2667                goto out_bmap_cancel;
2668
2669        error = xfs_trans_commit(tp);
2670        if (error)
2671                goto std_return;
2672
2673        if (is_dir && xfs_inode_is_filestream(ip))
2674                xfs_filestream_deassociate(ip);
2675
2676        return 0;
2677
2678 out_bmap_cancel:
2679        xfs_defer_cancel(&dfops);
2680 out_trans_cancel:
2681        xfs_trans_cancel(tp);
2682 std_return:
2683        return error;
2684}
2685
2686/*
2687 * Enter all inodes for a rename transaction into a sorted array.
2688 */
2689#define __XFS_SORT_INODES       5
2690STATIC void
2691xfs_sort_for_rename(
2692        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2693        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2694        struct xfs_inode        *ip1,   /* in: inode of old entry */
2695        struct xfs_inode        *ip2,   /* in: inode of new entry */
2696        struct xfs_inode        *wip,   /* in: whiteout inode */
2697        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2698        int                     *num_inodes)  /* in/out: inodes in array */
2699{
2700        int                     i, j;
2701
2702        ASSERT(*num_inodes == __XFS_SORT_INODES);
2703        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2704
2705        /*
2706         * i_tab contains a list of pointers to inodes.  We initialize
2707         * the table here & we'll sort it.  We will then use it to
2708         * order the acquisition of the inode locks.
2709         *
2710         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2711         */
2712        i = 0;
2713        i_tab[i++] = dp1;
2714        i_tab[i++] = dp2;
2715        i_tab[i++] = ip1;
2716        if (ip2)
2717                i_tab[i++] = ip2;
2718        if (wip)
2719                i_tab[i++] = wip;
2720        *num_inodes = i;
2721
2722        /*
2723         * Sort the elements via bubble sort.  (Remember, there are at
2724         * most 5 elements to sort, so this is adequate.)
2725         */
2726        for (i = 0; i < *num_inodes; i++) {
2727                for (j = 1; j < *num_inodes; j++) {
2728                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2729                                struct xfs_inode *temp = i_tab[j];
2730                                i_tab[j] = i_tab[j-1];
2731                                i_tab[j-1] = temp;
2732                        }
2733                }
2734        }
2735}
2736
2737static int
2738xfs_finish_rename(
2739        struct xfs_trans        *tp,
2740        struct xfs_defer_ops    *dfops)
2741{
2742        int                     error;
2743
2744        /*
2745         * If this is a synchronous mount, make sure that the rename transaction
2746         * goes to disk before returning to the user.
2747         */
2748        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2749                xfs_trans_set_sync(tp);
2750
2751        error = xfs_defer_finish(&tp, dfops);
2752        if (error) {
2753                xfs_defer_cancel(dfops);
2754                xfs_trans_cancel(tp);
2755                return error;
2756        }
2757
2758        return xfs_trans_commit(tp);
2759}
2760
2761/*
2762 * xfs_cross_rename()
2763 *
2764 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2765 */
2766STATIC int
2767xfs_cross_rename(
2768        struct xfs_trans        *tp,
2769        struct xfs_inode        *dp1,
2770        struct xfs_name         *name1,
2771        struct xfs_inode        *ip1,
2772        struct xfs_inode        *dp2,
2773        struct xfs_name         *name2,
2774        struct xfs_inode        *ip2,
2775        struct xfs_defer_ops    *dfops,
2776        xfs_fsblock_t           *first_block,
2777        int                     spaceres)
2778{
2779        int             error = 0;
2780        int             ip1_flags = 0;
2781        int             ip2_flags = 0;
2782        int             dp2_flags = 0;
2783
2784        /* Swap inode number for dirent in first parent */
2785        error = xfs_dir_replace(tp, dp1, name1,
2786                                ip2->i_ino,
2787                                first_block, dfops, spaceres);
2788        if (error)
2789                goto out_trans_abort;
2790
2791        /* Swap inode number for dirent in second parent */
2792        error = xfs_dir_replace(tp, dp2, name2,
2793                                ip1->i_ino,
2794                                first_block, dfops, spaceres);
2795        if (error)
2796                goto out_trans_abort;
2797
2798        /*
2799         * If we're renaming one or more directories across different parents,
2800         * update the respective ".." entries (and link counts) to match the new
2801         * parents.
2802         */
2803        if (dp1 != dp2) {
2804                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805
2806                if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2807                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2808                                                dp1->i_ino, first_block,
2809                                                dfops, spaceres);
2810                        if (error)
2811                                goto out_trans_abort;
2812
2813                        /* transfer ip2 ".." reference to dp1 */
2814                        if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2815                                error = xfs_droplink(tp, dp2);
2816                                if (error)
2817                                        goto out_trans_abort;
2818                                error = xfs_bumplink(tp, dp1);
2819                                if (error)
2820                                        goto out_trans_abort;
2821                        }
2822
2823                        /*
2824                         * Although ip1 isn't changed here, userspace needs
2825                         * to be warned about the change, so that applications
2826                         * relying on it (like backup ones), will properly
2827                         * notify the change
2828                         */
2829                        ip1_flags |= XFS_ICHGTIME_CHG;
2830                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2831                }
2832
2833                if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2834                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2835                                                dp2->i_ino, first_block,
2836                                                dfops, spaceres);
2837                        if (error)
2838                                goto out_trans_abort;
2839
2840                        /* transfer ip1 ".." reference to dp2 */
2841                        if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2842                                error = xfs_droplink(tp, dp1);
2843                                if (error)
2844                                        goto out_trans_abort;
2845                                error = xfs_bumplink(tp, dp2);
2846                                if (error)
2847                                        goto out_trans_abort;
2848                        }
2849
2850                        /*
2851                         * Although ip2 isn't changed here, userspace needs
2852                         * to be warned about the change, so that applications
2853                         * relying on it (like backup ones), will properly
2854                         * notify the change
2855                         */
2856                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2857                        ip2_flags |= XFS_ICHGTIME_CHG;
2858                }
2859        }
2860
2861        if (ip1_flags) {
2862                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2863                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2864        }
2865        if (ip2_flags) {
2866                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2867                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2868        }
2869        if (dp2_flags) {
2870                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2871                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2872        }
2873        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2874        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2875        return xfs_finish_rename(tp, dfops);
2876
2877out_trans_abort:
2878        xfs_defer_cancel(dfops);
2879        xfs_trans_cancel(tp);
2880        return error;
2881}
2882
2883/*
2884 * xfs_rename_alloc_whiteout()
2885 *
2886 * Return a referenced, unlinked, unlocked inode that that can be used as a
2887 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2888 * crash between allocating the inode and linking it into the rename transaction
2889 * recovery will free the inode and we won't leak it.
2890 */
2891static int
2892xfs_rename_alloc_whiteout(
2893        struct xfs_inode        *dp,
2894        struct xfs_inode        **wip)
2895{
2896        struct xfs_inode        *tmpfile;
2897        int                     error;
2898
2899        error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2900        if (error)
2901                return error;
2902
2903        /*
2904         * Prepare the tmpfile inode as if it were created through the VFS.
2905         * Otherwise, the link increment paths will complain about nlink 0->1.
2906         * Drop the link count as done by d_tmpfile(), complete the inode setup
2907         * and flag it as linkable.
2908         */
2909        drop_nlink(VFS_I(tmpfile));
2910        xfs_setup_iops(tmpfile);
2911        xfs_finish_inode_setup(tmpfile);
2912        VFS_I(tmpfile)->i_state |= I_LINKABLE;
2913
2914        *wip = tmpfile;
2915        return 0;
2916}
2917
2918/*
2919 * xfs_rename
2920 */
2921int
2922xfs_rename(
2923        struct xfs_inode        *src_dp,
2924        struct xfs_name         *src_name,
2925        struct xfs_inode        *src_ip,
2926        struct xfs_inode        *target_dp,
2927        struct xfs_name         *target_name,
2928        struct xfs_inode        *target_ip,
2929        unsigned int            flags)
2930{
2931        struct xfs_mount        *mp = src_dp->i_mount;
2932        struct xfs_trans        *tp;
2933        struct xfs_defer_ops    dfops;
2934        xfs_fsblock_t           first_block;
2935        struct xfs_inode        *wip = NULL;            /* whiteout inode */
2936        struct xfs_inode        *inodes[__XFS_SORT_INODES];
2937        int                     num_inodes = __XFS_SORT_INODES;
2938        bool                    new_parent = (src_dp != target_dp);
2939        bool                    src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2940        int                     spaceres;
2941        int                     error;
2942
2943        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2944
2945        if ((flags & RENAME_EXCHANGE) && !target_ip)
2946                return -EINVAL;
2947
2948        /*
2949         * If we are doing a whiteout operation, allocate the whiteout inode
2950         * we will be placing at the target and ensure the type is set
2951         * appropriately.
2952         */
2953        if (flags & RENAME_WHITEOUT) {
2954                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2955                error = xfs_rename_alloc_whiteout(target_dp, &wip);
2956                if (error)
2957                        return error;
2958
2959                /* setup target dirent info as whiteout */
2960                src_name->type = XFS_DIR3_FT_CHRDEV;
2961        }
2962
2963        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2964                                inodes, &num_inodes);
2965
2966        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2967        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2968        if (error == -ENOSPC) {
2969                spaceres = 0;
2970                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2971                                &tp);
2972        }
2973        if (error)
2974                goto out_release_wip;
2975
2976        /*
2977         * Attach the dquots to the inodes
2978         */
2979        error = xfs_qm_vop_rename_dqattach(inodes);
2980        if (error)
2981                goto out_trans_cancel;
2982
2983        /*
2984         * Lock all the participating inodes. Depending upon whether
2985         * the target_name exists in the target directory, and
2986         * whether the target directory is the same as the source
2987         * directory, we can lock from 2 to 4 inodes.
2988         */
2989        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2990
2991        /*
2992         * Join all the inodes to the transaction. From this point on,
2993         * we can rely on either trans_commit or trans_cancel to unlock
2994         * them.
2995         */
2996        xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2997        if (new_parent)
2998                xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2999        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3000        if (target_ip)
3001                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3002        if (wip)
3003                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3004
3005        /*
3006         * If we are using project inheritance, we only allow renames
3007         * into our tree when the project IDs are the same; else the
3008         * tree quota mechanism would be circumvented.
3009         */
3010        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3011                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3012                error = -EXDEV;
3013                goto out_trans_cancel;
3014        }
3015
3016        xfs_defer_init(&dfops, &first_block);
3017
3018        /* RENAME_EXCHANGE is unique from here on. */
3019        if (flags & RENAME_EXCHANGE)
3020                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3021                                        target_dp, target_name, target_ip,
3022                                        &dfops, &first_block, spaceres);
3023
3024        /*
3025         * Set up the target.
3026         */
3027        if (target_ip == NULL) {
3028                /*
3029                 * If there's no space reservation, check the entry will
3030                 * fit before actually inserting it.
3031                 */
3032                if (!spaceres) {
3033                        error = xfs_dir_canenter(tp, target_dp, target_name);
3034                        if (error)
3035                                goto out_trans_cancel;
3036                }
3037                /*
3038                 * If target does not exist and the rename crosses
3039                 * directories, adjust the target directory link count
3040                 * to account for the ".." reference from the new entry.
3041                 */
3042                error = xfs_dir_createname(tp, target_dp, target_name,
3043                                                src_ip->i_ino, &first_block,
3044                                                &dfops, spaceres);
3045                if (error)
3046                        goto out_bmap_cancel;
3047
3048                xfs_trans_ichgtime(tp, target_dp,
3049                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3050
3051                if (new_parent && src_is_directory) {
3052                        error = xfs_bumplink(tp, target_dp);
3053                        if (error)
3054                                goto out_bmap_cancel;
3055                }
3056        } else { /* target_ip != NULL */
3057                /*
3058                 * If target exists and it's a directory, check that both
3059                 * target and source are directories and that target can be
3060                 * destroyed, or that neither is a directory.
3061                 */
3062                if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3063                        /*
3064                         * Make sure target dir is empty.
3065                         */
3066                        if (!(xfs_dir_isempty(target_ip)) ||
3067                            (VFS_I(target_ip)->i_nlink > 2)) {
3068                                error = -EEXIST;
3069                                goto out_trans_cancel;
3070                        }
3071                }
3072
3073                /*
3074                 * Link the source inode under the target name.
3075                 * If the source inode is a directory and we are moving
3076                 * it across directories, its ".." entry will be
3077                 * inconsistent until we replace that down below.
3078                 *
3079                 * In case there is already an entry with the same
3080                 * name at the destination directory, remove it first.
3081                 */
3082                error = xfs_dir_replace(tp, target_dp, target_name,
3083                                        src_ip->i_ino,
3084                                        &first_block, &dfops, spaceres);
3085                if (error)
3086                        goto out_bmap_cancel;
3087
3088                xfs_trans_ichgtime(tp, target_dp,
3089                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3090
3091                /*
3092                 * Decrement the link count on the target since the target
3093                 * dir no longer points to it.
3094                 */
3095                error = xfs_droplink(tp, target_ip);
3096                if (error)
3097                        goto out_bmap_cancel;
3098
3099                if (src_is_directory) {
3100                        /*
3101                         * Drop the link from the old "." entry.
3102                         */
3103                        error = xfs_droplink(tp, target_ip);
3104                        if (error)
3105                                goto out_bmap_cancel;
3106                }
3107        } /* target_ip != NULL */
3108
3109        /*
3110         * Remove the source.
3111         */
3112        if (new_parent && src_is_directory) {
3113                /*
3114                 * Rewrite the ".." entry to point to the new
3115                 * directory.
3116                 */
3117                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3118                                        target_dp->i_ino,
3119                                        &first_block, &dfops, spaceres);
3120                ASSERT(error != -EEXIST);
3121                if (error)
3122                        goto out_bmap_cancel;
3123        }
3124
3125        /*
3126         * We always want to hit the ctime on the source inode.
3127         *
3128         * This isn't strictly required by the standards since the source
3129         * inode isn't really being changed, but old unix file systems did
3130         * it and some incremental backup programs won't work without it.
3131         */
3132        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3133        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3134
3135        /*
3136         * Adjust the link count on src_dp.  This is necessary when
3137         * renaming a directory, either within one parent when
3138         * the target existed, or across two parent directories.
3139         */
3140        if (src_is_directory && (new_parent || target_ip != NULL)) {
3141
3142                /*
3143                 * Decrement link count on src_directory since the
3144                 * entry that's moved no longer points to it.
3145                 */
3146                error = xfs_droplink(tp, src_dp);
3147                if (error)
3148                        goto out_bmap_cancel;
3149        }
3150
3151        /*
3152         * For whiteouts, we only need to update the source dirent with the
3153         * inode number of the whiteout inode rather than removing it
3154         * altogether.
3155         */
3156        if (wip) {
3157                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3158                                        &first_block, &dfops, spaceres);
3159        } else
3160                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3161                                           &first_block, &dfops, spaceres);
3162        if (error)
3163                goto out_bmap_cancel;
3164
3165        /*
3166         * For whiteouts, we need to bump the link count on the whiteout inode.
3167         * This means that failures all the way up to this point leave the inode
3168         * on the unlinked list and so cleanup is a simple matter of dropping
3169         * the remaining reference to it. If we fail here after bumping the link
3170         * count, we're shutting down the filesystem so we'll never see the
3171         * intermediate state on disk.
3172         */
3173        if (wip) {
3174                ASSERT(VFS_I(wip)->i_nlink == 0);
3175                error = xfs_bumplink(tp, wip);
3176                if (error)
3177                        goto out_bmap_cancel;
3178                error = xfs_iunlink_remove(tp, wip);
3179                if (error)
3180                        goto out_bmap_cancel;
3181                xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3182
3183                /*
3184                 * Now we have a real link, clear the "I'm a tmpfile" state
3185                 * flag from the inode so it doesn't accidentally get misused in
3186                 * future.
3187                 */
3188                VFS_I(wip)->i_state &= ~I_LINKABLE;
3189        }
3190
3191        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3192        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3193        if (new_parent)
3194                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3195
3196        error = xfs_finish_rename(tp, &dfops);
3197        if (wip)
3198                IRELE(wip);
3199        return error;
3200
3201out_bmap_cancel:
3202        xfs_defer_cancel(&dfops);
3203out_trans_cancel:
3204        xfs_trans_cancel(tp);
3205out_release_wip:
3206        if (wip)
3207                IRELE(wip);
3208        return error;
3209}
3210
3211STATIC int
3212xfs_iflush_cluster(
3213        struct xfs_inode        *ip,
3214        struct xfs_buf          *bp)
3215{
3216        struct xfs_mount        *mp = ip->i_mount;
3217        struct xfs_perag        *pag;
3218        unsigned long           first_index, mask;
3219        unsigned long           inodes_per_cluster;
3220        int                     cilist_size;
3221        struct xfs_inode        **cilist;
3222        struct xfs_inode        *cip;
3223        int                     nr_found;
3224        int                     clcount = 0;
3225        int                     bufwasdelwri;
3226        int                     i;
3227
3228        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3229
3230        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3231        cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3232        cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3233        if (!cilist)
3234                goto out_put;
3235
3236        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3237        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3238        rcu_read_lock();
3239        /* really need a gang lookup range call here */
3240        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3241                                        first_index, inodes_per_cluster);
3242        if (nr_found == 0)
3243                goto out_free;
3244
3245        for (i = 0; i < nr_found; i++) {
3246                cip = cilist[i];
3247                if (cip == ip)
3248                        continue;
3249
3250                /*
3251                 * because this is an RCU protected lookup, we could find a
3252                 * recently freed or even reallocated inode during the lookup.
3253                 * We need to check under the i_flags_lock for a valid inode
3254                 * here. Skip it if it is not valid or the wrong inode.
3255                 */
3256                spin_lock(&cip->i_flags_lock);
3257                if (!cip->i_ino ||
3258                    __xfs_iflags_test(cip, XFS_ISTALE)) {
3259                        spin_unlock(&cip->i_flags_lock);
3260                        continue;
3261                }
3262
3263                /*
3264                 * Once we fall off the end of the cluster, no point checking
3265                 * any more inodes in the list because they will also all be
3266                 * outside the cluster.
3267                 */
3268                if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3269                        spin_unlock(&cip->i_flags_lock);
3270                        break;
3271                }
3272                spin_unlock(&cip->i_flags_lock);
3273
3274                /*
3275                 * Do an un-protected check to see if the inode is dirty and
3276                 * is a candidate for flushing.  These checks will be repeated
3277                 * later after the appropriate locks are acquired.
3278                 */
3279                if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3280                        continue;
3281
3282                /*
3283                 * Try to get locks.  If any are unavailable or it is pinned,
3284                 * then this inode cannot be flushed and is skipped.
3285                 */
3286
3287                if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3288                        continue;
3289                if (!xfs_iflock_nowait(cip)) {
3290                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3291                        continue;
3292                }
3293                if (xfs_ipincount(cip)) {
3294                        xfs_ifunlock(cip);
3295                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3296                        continue;
3297                }
3298
3299
3300                /*
3301                 * Check the inode number again, just to be certain we are not
3302                 * racing with freeing in xfs_reclaim_inode(). See the comments
3303                 * in that function for more information as to why the initial
3304                 * check is not sufficient.
3305                 */
3306                if (!cip->i_ino) {
3307                        xfs_ifunlock(cip);
3308                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3309                        continue;
3310                }
3311
3312                /*
3313                 * arriving here means that this inode can be flushed.  First
3314                 * re-check that it's dirty before flushing.
3315                 */
3316                if (!xfs_inode_clean(cip)) {
3317                        int     error;
3318                        error = xfs_iflush_int(cip, bp);
3319                        if (error) {
3320                                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3321                                goto cluster_corrupt_out;
3322                        }
3323                        clcount++;
3324                } else {
3325                        xfs_ifunlock(cip);
3326                }
3327                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3328        }
3329
3330        if (clcount) {
3331                XFS_STATS_INC(mp, xs_icluster_flushcnt);
3332                XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3333        }
3334
3335out_free:
3336        rcu_read_unlock();
3337        kmem_free(cilist);
3338out_put:
3339        xfs_perag_put(pag);
3340        return 0;
3341
3342
3343cluster_corrupt_out:
3344        /*
3345         * Corruption detected in the clustering loop.  Invalidate the
3346         * inode buffer and shut down the filesystem.
3347         */
3348        rcu_read_unlock();
3349        /*
3350         * Clean up the buffer.  If it was delwri, just release it --
3351         * brelse can handle it with no problems.  If not, shut down the
3352         * filesystem before releasing the buffer.
3353         */
3354        bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3355        if (bufwasdelwri)
3356                xfs_buf_relse(bp);
3357
3358        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3359
3360        if (!bufwasdelwri) {
3361                /*
3362                 * Just like incore_relse: if we have b_iodone functions,
3363                 * mark the buffer as an error and call them.  Otherwise
3364                 * mark it as stale and brelse.
3365                 */
3366                if (bp->b_iodone) {
3367                        bp->b_flags &= ~XBF_DONE;
3368                        xfs_buf_stale(bp);
3369                        xfs_buf_ioerror(bp, -EIO);
3370                        xfs_buf_ioend(bp);
3371                } else {
3372                        xfs_buf_stale(bp);
3373                        xfs_buf_relse(bp);
3374                }
3375        }
3376
3377        /*
3378         * Unlocks the flush lock
3379         */
3380        xfs_iflush_abort(cip, false);
3381        kmem_free(cilist);
3382        xfs_perag_put(pag);
3383        return -EFSCORRUPTED;
3384}
3385
3386/*
3387 * Flush dirty inode metadata into the backing buffer.
3388 *
3389 * The caller must have the inode lock and the inode flush lock held.  The
3390 * inode lock will still be held upon return to the caller, and the inode
3391 * flush lock will be released after the inode has reached the disk.
3392 *
3393 * The caller must write out the buffer returned in *bpp and release it.
3394 */
3395int
3396xfs_iflush(
3397        struct xfs_inode        *ip,
3398        struct xfs_buf          **bpp)
3399{
3400        struct xfs_mount        *mp = ip->i_mount;
3401        struct xfs_buf          *bp = NULL;
3402        struct xfs_dinode       *dip;
3403        int                     error;
3404
3405        XFS_STATS_INC(mp, xs_iflush_count);
3406
3407        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3408        ASSERT(xfs_isiflocked(ip));
3409        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3410               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3411
3412        *bpp = NULL;
3413
3414        xfs_iunpin_wait(ip);
3415
3416        /*
3417         * For stale inodes we cannot rely on the backing buffer remaining
3418         * stale in cache for the remaining life of the stale inode and so
3419         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3420         * inodes below. We have to check this after ensuring the inode is
3421         * unpinned so that it is safe to reclaim the stale inode after the
3422         * flush call.
3423         */
3424        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3425                xfs_ifunlock(ip);
3426                return 0;
3427        }
3428
3429        /*
3430         * This may have been unpinned because the filesystem is shutting
3431         * down forcibly. If that's the case we must not write this inode
3432         * to disk, because the log record didn't make it to disk.
3433         *
3434         * We also have to remove the log item from the AIL in this case,
3435         * as we wait for an empty AIL as part of the unmount process.
3436         */
3437        if (XFS_FORCED_SHUTDOWN(mp)) {
3438                error = -EIO;
3439                goto abort_out;
3440        }
3441
3442        /*
3443         * Get the buffer containing the on-disk inode. We are doing a try-lock
3444         * operation here, so we may get  an EAGAIN error. In that case, we
3445         * simply want to return with the inode still dirty.
3446         *
3447         * If we get any other error, we effectively have a corruption situation
3448         * and we cannot flush the inode, so we treat it the same as failing
3449         * xfs_iflush_int().
3450         */
3451        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3452                               0);
3453        if (error == -EAGAIN) {
3454                xfs_ifunlock(ip);
3455                return error;
3456        }
3457        if (error)
3458                goto corrupt_out;
3459
3460        /*
3461         * First flush out the inode that xfs_iflush was called with.
3462         */
3463        error = xfs_iflush_int(ip, bp);
3464        if (error)
3465                goto corrupt_out;
3466
3467        /*
3468         * If the buffer is pinned then push on the log now so we won't
3469         * get stuck waiting in the write for too long.
3470         */
3471        if (xfs_buf_ispinned(bp))
3472                xfs_log_force(mp, 0);
3473
3474        /*
3475         * inode clustering:
3476         * see if other inodes can be gathered into this write
3477         */
3478        error = xfs_iflush_cluster(ip, bp);
3479        if (error)
3480                goto cluster_corrupt_out;
3481
3482        *bpp = bp;
3483        return 0;
3484
3485corrupt_out:
3486        if (bp)
3487                xfs_buf_relse(bp);
3488        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3489cluster_corrupt_out:
3490        error = -EFSCORRUPTED;
3491abort_out:
3492        /*
3493         * Unlocks the flush lock
3494         */
3495        xfs_iflush_abort(ip, false);
3496        return error;
3497}
3498
3499/*
3500 * If there are inline format data / attr forks attached to this inode,
3501 * make sure they're not corrupt.
3502 */
3503bool
3504xfs_inode_verify_forks(
3505        struct xfs_inode        *ip)
3506{
3507        struct xfs_ifork        *ifp;
3508        xfs_failaddr_t          fa;
3509
3510        fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3511        if (fa) {
3512                ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3513                xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3514                                ifp->if_u1.if_data, ifp->if_bytes, fa);
3515                return false;
3516        }
3517
3518        fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3519        if (fa) {
3520                ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3521                xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3522                                ifp ? ifp->if_u1.if_data : NULL,
3523                                ifp ? ifp->if_bytes : 0, fa);
3524                return false;
3525        }
3526        return true;
3527}
3528
3529STATIC int
3530xfs_iflush_int(
3531        struct xfs_inode        *ip,
3532        struct xfs_buf          *bp)
3533{
3534        struct xfs_inode_log_item *iip = ip->i_itemp;
3535        struct xfs_dinode       *dip;
3536        struct xfs_mount        *mp = ip->i_mount;
3537
3538        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3539        ASSERT(xfs_isiflocked(ip));
3540        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3541               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3542        ASSERT(iip != NULL && iip->ili_fields != 0);
3543        ASSERT(ip->i_d.di_version > 1);
3544
3545        /* set *dip = inode's place in the buffer */
3546        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3547
3548        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3549                               mp, XFS_ERRTAG_IFLUSH_1)) {
3550                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3551                        "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3552                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3553                goto corrupt_out;
3554        }
3555        if (S_ISREG(VFS_I(ip)->i_mode)) {
3556                if (XFS_TEST_ERROR(
3557                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3558                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3559                    mp, XFS_ERRTAG_IFLUSH_3)) {
3560                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3561                                "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3562                                __func__, ip->i_ino, ip);
3563                        goto corrupt_out;
3564                }
3565        } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3566                if (XFS_TEST_ERROR(
3567                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3568                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3569                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3570                    mp, XFS_ERRTAG_IFLUSH_4)) {
3571                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3572                                "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3573                                __func__, ip->i_ino, ip);
3574                        goto corrupt_out;
3575                }
3576        }
3577        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3578                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3579                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3580                        "%s: detected corrupt incore inode %Lu, "
3581                        "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3582                        __func__, ip->i_ino,
3583                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3584                        ip->i_d.di_nblocks, ip);
3585                goto corrupt_out;
3586        }
3587        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3588                                mp, XFS_ERRTAG_IFLUSH_6)) {
3589                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3590                        "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3591                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3592                goto corrupt_out;
3593        }
3594
3595        /*
3596         * Inode item log recovery for v2 inodes are dependent on the
3597         * di_flushiter count for correct sequencing. We bump the flush
3598         * iteration count so we can detect flushes which postdate a log record
3599         * during recovery. This is redundant as we now log every change and
3600         * hence this can't happen but we need to still do it to ensure
3601         * backwards compatibility with old kernels that predate logging all
3602         * inode changes.
3603         */
3604        if (ip->i_d.di_version < 3)
3605                ip->i_d.di_flushiter++;
3606
3607        /* Check the inline fork data before we write out. */
3608        if (!xfs_inode_verify_forks(ip))
3609                goto corrupt_out;
3610
3611        /*
3612         * Copy the dirty parts of the inode into the on-disk inode.  We always
3613         * copy out the core of the inode, because if the inode is dirty at all
3614         * the core must be.
3615         */
3616        xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3617
3618        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3619        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3620                ip->i_d.di_flushiter = 0;
3621
3622        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3623        if (XFS_IFORK_Q(ip))
3624                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3625        xfs_inobp_check(mp, bp);
3626
3627        /*
3628         * We've recorded everything logged in the inode, so we'd like to clear
3629         * the ili_fields bits so we don't log and flush things unnecessarily.
3630         * However, we can't stop logging all this information until the data
3631         * we've copied into the disk buffer is written to disk.  If we did we
3632         * might overwrite the copy of the inode in the log with all the data
3633         * after re-logging only part of it, and in the face of a crash we
3634         * wouldn't have all the data we need to recover.
3635         *
3636         * What we do is move the bits to the ili_last_fields field.  When
3637         * logging the inode, these bits are moved back to the ili_fields field.
3638         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3639         * know that the information those bits represent is permanently on
3640         * disk.  As long as the flush completes before the inode is logged
3641         * again, then both ili_fields and ili_last_fields will be cleared.
3642         *
3643         * We can play with the ili_fields bits here, because the inode lock
3644         * must be held exclusively in order to set bits there and the flush
3645         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3646         * done routine can tell whether or not to look in the AIL.  Also, store
3647         * the current LSN of the inode so that we can tell whether the item has
3648         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3649         * need the AIL lock, because it is a 64 bit value that cannot be read
3650         * atomically.
3651         */
3652        iip->ili_last_fields = iip->ili_fields;
3653        iip->ili_fields = 0;
3654        iip->ili_fsync_fields = 0;
3655        iip->ili_logged = 1;
3656
3657        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3658                                &iip->ili_item.li_lsn);
3659
3660        /*
3661         * Attach the function xfs_iflush_done to the inode's
3662         * buffer.  This will remove the inode from the AIL
3663         * and unlock the inode's flush lock when the inode is
3664         * completely written to disk.
3665         */
3666        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3667
3668        /* generate the checksum. */
3669        xfs_dinode_calc_crc(mp, dip);
3670
3671        ASSERT(!list_empty(&bp->b_li_list));
3672        ASSERT(bp->b_iodone != NULL);
3673        return 0;
3674
3675corrupt_out:
3676        return -EFSCORRUPTED;
3677}
3678