linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
  25#include "xfs_errortag.h"
  26#include "xfs_error.h"
  27#include "xfs_trans.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_log.h"
  30#include "xfs_log_priv.h"
  31#include "xfs_log_recover.h"
  32#include "xfs_inode.h"
  33#include "xfs_trace.h"
  34#include "xfs_fsops.h"
  35#include "xfs_cksum.h"
  36#include "xfs_sysfs.h"
  37#include "xfs_sb.h"
  38
  39kmem_zone_t     *xfs_log_ticket_zone;
  40
  41/* Local miscellaneous function prototypes */
  42STATIC int
  43xlog_commit_record(
  44        struct xlog             *log,
  45        struct xlog_ticket      *ticket,
  46        struct xlog_in_core     **iclog,
  47        xfs_lsn_t               *commitlsnp);
  48
  49STATIC struct xlog *
  50xlog_alloc_log(
  51        struct xfs_mount        *mp,
  52        struct xfs_buftarg      *log_target,
  53        xfs_daddr_t             blk_offset,
  54        int                     num_bblks);
  55STATIC int
  56xlog_space_left(
  57        struct xlog             *log,
  58        atomic64_t              *head);
  59STATIC int
  60xlog_sync(
  61        struct xlog             *log,
  62        struct xlog_in_core     *iclog);
  63STATIC void
  64xlog_dealloc_log(
  65        struct xlog             *log);
  66
  67/* local state machine functions */
  68STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  69STATIC void
  70xlog_state_do_callback(
  71        struct xlog             *log,
  72        int                     aborted,
  73        struct xlog_in_core     *iclog);
  74STATIC int
  75xlog_state_get_iclog_space(
  76        struct xlog             *log,
  77        int                     len,
  78        struct xlog_in_core     **iclog,
  79        struct xlog_ticket      *ticket,
  80        int                     *continued_write,
  81        int                     *logoffsetp);
  82STATIC int
  83xlog_state_release_iclog(
  84        struct xlog             *log,
  85        struct xlog_in_core     *iclog);
  86STATIC void
  87xlog_state_switch_iclogs(
  88        struct xlog             *log,
  89        struct xlog_in_core     *iclog,
  90        int                     eventual_size);
  91STATIC void
  92xlog_state_want_sync(
  93        struct xlog             *log,
  94        struct xlog_in_core     *iclog);
  95
  96STATIC void
  97xlog_grant_push_ail(
  98        struct xlog             *log,
  99        int                     need_bytes);
 100STATIC void
 101xlog_regrant_reserve_log_space(
 102        struct xlog             *log,
 103        struct xlog_ticket      *ticket);
 104STATIC void
 105xlog_ungrant_log_space(
 106        struct xlog             *log,
 107        struct xlog_ticket      *ticket);
 108
 109#if defined(DEBUG)
 110STATIC void
 111xlog_verify_dest_ptr(
 112        struct xlog             *log,
 113        void                    *ptr);
 114STATIC void
 115xlog_verify_grant_tail(
 116        struct xlog *log);
 117STATIC void
 118xlog_verify_iclog(
 119        struct xlog             *log,
 120        struct xlog_in_core     *iclog,
 121        int                     count,
 122        bool                    syncing);
 123STATIC void
 124xlog_verify_tail_lsn(
 125        struct xlog             *log,
 126        struct xlog_in_core     *iclog,
 127        xfs_lsn_t               tail_lsn);
 128#else
 129#define xlog_verify_dest_ptr(a,b)
 130#define xlog_verify_grant_tail(a)
 131#define xlog_verify_iclog(a,b,c,d)
 132#define xlog_verify_tail_lsn(a,b,c)
 133#endif
 134
 135STATIC int
 136xlog_iclogs_empty(
 137        struct xlog             *log);
 138
 139static void
 140xlog_grant_sub_space(
 141        struct xlog             *log,
 142        atomic64_t              *head,
 143        int                     bytes)
 144{
 145        int64_t head_val = atomic64_read(head);
 146        int64_t new, old;
 147
 148        do {
 149                int     cycle, space;
 150
 151                xlog_crack_grant_head_val(head_val, &cycle, &space);
 152
 153                space -= bytes;
 154                if (space < 0) {
 155                        space += log->l_logsize;
 156                        cycle--;
 157                }
 158
 159                old = head_val;
 160                new = xlog_assign_grant_head_val(cycle, space);
 161                head_val = atomic64_cmpxchg(head, old, new);
 162        } while (head_val != old);
 163}
 164
 165static void
 166xlog_grant_add_space(
 167        struct xlog             *log,
 168        atomic64_t              *head,
 169        int                     bytes)
 170{
 171        int64_t head_val = atomic64_read(head);
 172        int64_t new, old;
 173
 174        do {
 175                int             tmp;
 176                int             cycle, space;
 177
 178                xlog_crack_grant_head_val(head_val, &cycle, &space);
 179
 180                tmp = log->l_logsize - space;
 181                if (tmp > bytes)
 182                        space += bytes;
 183                else {
 184                        space = bytes - tmp;
 185                        cycle++;
 186                }
 187
 188                old = head_val;
 189                new = xlog_assign_grant_head_val(cycle, space);
 190                head_val = atomic64_cmpxchg(head, old, new);
 191        } while (head_val != old);
 192}
 193
 194STATIC void
 195xlog_grant_head_init(
 196        struct xlog_grant_head  *head)
 197{
 198        xlog_assign_grant_head(&head->grant, 1, 0);
 199        INIT_LIST_HEAD(&head->waiters);
 200        spin_lock_init(&head->lock);
 201}
 202
 203STATIC void
 204xlog_grant_head_wake_all(
 205        struct xlog_grant_head  *head)
 206{
 207        struct xlog_ticket      *tic;
 208
 209        spin_lock(&head->lock);
 210        list_for_each_entry(tic, &head->waiters, t_queue)
 211                wake_up_process(tic->t_task);
 212        spin_unlock(&head->lock);
 213}
 214
 215static inline int
 216xlog_ticket_reservation(
 217        struct xlog             *log,
 218        struct xlog_grant_head  *head,
 219        struct xlog_ticket      *tic)
 220{
 221        if (head == &log->l_write_head) {
 222                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 223                return tic->t_unit_res;
 224        } else {
 225                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 226                        return tic->t_unit_res * tic->t_cnt;
 227                else
 228                        return tic->t_unit_res;
 229        }
 230}
 231
 232STATIC bool
 233xlog_grant_head_wake(
 234        struct xlog             *log,
 235        struct xlog_grant_head  *head,
 236        int                     *free_bytes)
 237{
 238        struct xlog_ticket      *tic;
 239        int                     need_bytes;
 240
 241        list_for_each_entry(tic, &head->waiters, t_queue) {
 242                need_bytes = xlog_ticket_reservation(log, head, tic);
 243                if (*free_bytes < need_bytes)
 244                        return false;
 245
 246                *free_bytes -= need_bytes;
 247                trace_xfs_log_grant_wake_up(log, tic);
 248                wake_up_process(tic->t_task);
 249        }
 250
 251        return true;
 252}
 253
 254STATIC int
 255xlog_grant_head_wait(
 256        struct xlog             *log,
 257        struct xlog_grant_head  *head,
 258        struct xlog_ticket      *tic,
 259        int                     need_bytes) __releases(&head->lock)
 260                                            __acquires(&head->lock)
 261{
 262        list_add_tail(&tic->t_queue, &head->waiters);
 263
 264        do {
 265                if (XLOG_FORCED_SHUTDOWN(log))
 266                        goto shutdown;
 267                xlog_grant_push_ail(log, need_bytes);
 268
 269                __set_current_state(TASK_UNINTERRUPTIBLE);
 270                spin_unlock(&head->lock);
 271
 272                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 273
 274                trace_xfs_log_grant_sleep(log, tic);
 275                schedule();
 276                trace_xfs_log_grant_wake(log, tic);
 277
 278                spin_lock(&head->lock);
 279                if (XLOG_FORCED_SHUTDOWN(log))
 280                        goto shutdown;
 281        } while (xlog_space_left(log, &head->grant) < need_bytes);
 282
 283        list_del_init(&tic->t_queue);
 284        return 0;
 285shutdown:
 286        list_del_init(&tic->t_queue);
 287        return -EIO;
 288}
 289
 290/*
 291 * Atomically get the log space required for a log ticket.
 292 *
 293 * Once a ticket gets put onto head->waiters, it will only return after the
 294 * needed reservation is satisfied.
 295 *
 296 * This function is structured so that it has a lock free fast path. This is
 297 * necessary because every new transaction reservation will come through this
 298 * path. Hence any lock will be globally hot if we take it unconditionally on
 299 * every pass.
 300 *
 301 * As tickets are only ever moved on and off head->waiters under head->lock, we
 302 * only need to take that lock if we are going to add the ticket to the queue
 303 * and sleep. We can avoid taking the lock if the ticket was never added to
 304 * head->waiters because the t_queue list head will be empty and we hold the
 305 * only reference to it so it can safely be checked unlocked.
 306 */
 307STATIC int
 308xlog_grant_head_check(
 309        struct xlog             *log,
 310        struct xlog_grant_head  *head,
 311        struct xlog_ticket      *tic,
 312        int                     *need_bytes)
 313{
 314        int                     free_bytes;
 315        int                     error = 0;
 316
 317        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 318
 319        /*
 320         * If there are other waiters on the queue then give them a chance at
 321         * logspace before us.  Wake up the first waiters, if we do not wake
 322         * up all the waiters then go to sleep waiting for more free space,
 323         * otherwise try to get some space for this transaction.
 324         */
 325        *need_bytes = xlog_ticket_reservation(log, head, tic);
 326        free_bytes = xlog_space_left(log, &head->grant);
 327        if (!list_empty_careful(&head->waiters)) {
 328                spin_lock(&head->lock);
 329                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 330                    free_bytes < *need_bytes) {
 331                        error = xlog_grant_head_wait(log, head, tic,
 332                                                     *need_bytes);
 333                }
 334                spin_unlock(&head->lock);
 335        } else if (free_bytes < *need_bytes) {
 336                spin_lock(&head->lock);
 337                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 338                spin_unlock(&head->lock);
 339        }
 340
 341        return error;
 342}
 343
 344static void
 345xlog_tic_reset_res(xlog_ticket_t *tic)
 346{
 347        tic->t_res_num = 0;
 348        tic->t_res_arr_sum = 0;
 349        tic->t_res_num_ophdrs = 0;
 350}
 351
 352static void
 353xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 354{
 355        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 356                /* add to overflow and start again */
 357                tic->t_res_o_flow += tic->t_res_arr_sum;
 358                tic->t_res_num = 0;
 359                tic->t_res_arr_sum = 0;
 360        }
 361
 362        tic->t_res_arr[tic->t_res_num].r_len = len;
 363        tic->t_res_arr[tic->t_res_num].r_type = type;
 364        tic->t_res_arr_sum += len;
 365        tic->t_res_num++;
 366}
 367
 368/*
 369 * Replenish the byte reservation required by moving the grant write head.
 370 */
 371int
 372xfs_log_regrant(
 373        struct xfs_mount        *mp,
 374        struct xlog_ticket      *tic)
 375{
 376        struct xlog             *log = mp->m_log;
 377        int                     need_bytes;
 378        int                     error = 0;
 379
 380        if (XLOG_FORCED_SHUTDOWN(log))
 381                return -EIO;
 382
 383        XFS_STATS_INC(mp, xs_try_logspace);
 384
 385        /*
 386         * This is a new transaction on the ticket, so we need to change the
 387         * transaction ID so that the next transaction has a different TID in
 388         * the log. Just add one to the existing tid so that we can see chains
 389         * of rolling transactions in the log easily.
 390         */
 391        tic->t_tid++;
 392
 393        xlog_grant_push_ail(log, tic->t_unit_res);
 394
 395        tic->t_curr_res = tic->t_unit_res;
 396        xlog_tic_reset_res(tic);
 397
 398        if (tic->t_cnt > 0)
 399                return 0;
 400
 401        trace_xfs_log_regrant(log, tic);
 402
 403        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 404                                      &need_bytes);
 405        if (error)
 406                goto out_error;
 407
 408        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 409        trace_xfs_log_regrant_exit(log, tic);
 410        xlog_verify_grant_tail(log);
 411        return 0;
 412
 413out_error:
 414        /*
 415         * If we are failing, make sure the ticket doesn't have any current
 416         * reservations.  We don't want to add this back when the ticket/
 417         * transaction gets cancelled.
 418         */
 419        tic->t_curr_res = 0;
 420        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 421        return error;
 422}
 423
 424/*
 425 * Reserve log space and return a ticket corresponding the reservation.
 426 *
 427 * Each reservation is going to reserve extra space for a log record header.
 428 * When writes happen to the on-disk log, we don't subtract the length of the
 429 * log record header from any reservation.  By wasting space in each
 430 * reservation, we prevent over allocation problems.
 431 */
 432int
 433xfs_log_reserve(
 434        struct xfs_mount        *mp,
 435        int                     unit_bytes,
 436        int                     cnt,
 437        struct xlog_ticket      **ticp,
 438        uint8_t                 client,
 439        bool                    permanent)
 440{
 441        struct xlog             *log = mp->m_log;
 442        struct xlog_ticket      *tic;
 443        int                     need_bytes;
 444        int                     error = 0;
 445
 446        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 447
 448        if (XLOG_FORCED_SHUTDOWN(log))
 449                return -EIO;
 450
 451        XFS_STATS_INC(mp, xs_try_logspace);
 452
 453        ASSERT(*ticp == NULL);
 454        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 455                                KM_SLEEP | KM_MAYFAIL);
 456        if (!tic)
 457                return -ENOMEM;
 458
 459        *ticp = tic;
 460
 461        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 462                                            : tic->t_unit_res);
 463
 464        trace_xfs_log_reserve(log, tic);
 465
 466        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 467                                      &need_bytes);
 468        if (error)
 469                goto out_error;
 470
 471        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 472        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 473        trace_xfs_log_reserve_exit(log, tic);
 474        xlog_verify_grant_tail(log);
 475        return 0;
 476
 477out_error:
 478        /*
 479         * If we are failing, make sure the ticket doesn't have any current
 480         * reservations.  We don't want to add this back when the ticket/
 481         * transaction gets cancelled.
 482         */
 483        tic->t_curr_res = 0;
 484        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 485        return error;
 486}
 487
 488
 489/*
 490 * NOTES:
 491 *
 492 *      1. currblock field gets updated at startup and after in-core logs
 493 *              marked as with WANT_SYNC.
 494 */
 495
 496/*
 497 * This routine is called when a user of a log manager ticket is done with
 498 * the reservation.  If the ticket was ever used, then a commit record for
 499 * the associated transaction is written out as a log operation header with
 500 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 501 * a given ticket.  If the ticket was one with a permanent reservation, then
 502 * a few operations are done differently.  Permanent reservation tickets by
 503 * default don't release the reservation.  They just commit the current
 504 * transaction with the belief that the reservation is still needed.  A flag
 505 * must be passed in before permanent reservations are actually released.
 506 * When these type of tickets are not released, they need to be set into
 507 * the inited state again.  By doing this, a start record will be written
 508 * out when the next write occurs.
 509 */
 510xfs_lsn_t
 511xfs_log_done(
 512        struct xfs_mount        *mp,
 513        struct xlog_ticket      *ticket,
 514        struct xlog_in_core     **iclog,
 515        bool                    regrant)
 516{
 517        struct xlog             *log = mp->m_log;
 518        xfs_lsn_t               lsn = 0;
 519
 520        if (XLOG_FORCED_SHUTDOWN(log) ||
 521            /*
 522             * If nothing was ever written, don't write out commit record.
 523             * If we get an error, just continue and give back the log ticket.
 524             */
 525            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 526             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 527                lsn = (xfs_lsn_t) -1;
 528                regrant = false;
 529        }
 530
 531
 532        if (!regrant) {
 533                trace_xfs_log_done_nonperm(log, ticket);
 534
 535                /*
 536                 * Release ticket if not permanent reservation or a specific
 537                 * request has been made to release a permanent reservation.
 538                 */
 539                xlog_ungrant_log_space(log, ticket);
 540        } else {
 541                trace_xfs_log_done_perm(log, ticket);
 542
 543                xlog_regrant_reserve_log_space(log, ticket);
 544                /* If this ticket was a permanent reservation and we aren't
 545                 * trying to release it, reset the inited flags; so next time
 546                 * we write, a start record will be written out.
 547                 */
 548                ticket->t_flags |= XLOG_TIC_INITED;
 549        }
 550
 551        xfs_log_ticket_put(ticket);
 552        return lsn;
 553}
 554
 555/*
 556 * Attaches a new iclog I/O completion callback routine during
 557 * transaction commit.  If the log is in error state, a non-zero
 558 * return code is handed back and the caller is responsible for
 559 * executing the callback at an appropriate time.
 560 */
 561int
 562xfs_log_notify(
 563        struct xlog_in_core     *iclog,
 564        xfs_log_callback_t      *cb)
 565{
 566        int     abortflg;
 567
 568        spin_lock(&iclog->ic_callback_lock);
 569        abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 570        if (!abortflg) {
 571                ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 572                              (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 573                cb->cb_next = NULL;
 574                *(iclog->ic_callback_tail) = cb;
 575                iclog->ic_callback_tail = &(cb->cb_next);
 576        }
 577        spin_unlock(&iclog->ic_callback_lock);
 578        return abortflg;
 579}
 580
 581int
 582xfs_log_release_iclog(
 583        struct xfs_mount        *mp,
 584        struct xlog_in_core     *iclog)
 585{
 586        if (xlog_state_release_iclog(mp->m_log, iclog)) {
 587                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 588                return -EIO;
 589        }
 590
 591        return 0;
 592}
 593
 594/*
 595 * Mount a log filesystem
 596 *
 597 * mp           - ubiquitous xfs mount point structure
 598 * log_target   - buftarg of on-disk log device
 599 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 600 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 601 *
 602 * Return error or zero.
 603 */
 604int
 605xfs_log_mount(
 606        xfs_mount_t     *mp,
 607        xfs_buftarg_t   *log_target,
 608        xfs_daddr_t     blk_offset,
 609        int             num_bblks)
 610{
 611        bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
 612        int             error = 0;
 613        int             min_logfsbs;
 614
 615        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 616                xfs_notice(mp, "Mounting V%d Filesystem",
 617                           XFS_SB_VERSION_NUM(&mp->m_sb));
 618        } else {
 619                xfs_notice(mp,
 620"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 621                           XFS_SB_VERSION_NUM(&mp->m_sb));
 622                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 623        }
 624
 625        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 626        if (IS_ERR(mp->m_log)) {
 627                error = PTR_ERR(mp->m_log);
 628                goto out;
 629        }
 630
 631        /*
 632         * Validate the given log space and drop a critical message via syslog
 633         * if the log size is too small that would lead to some unexpected
 634         * situations in transaction log space reservation stage.
 635         *
 636         * Note: we can't just reject the mount if the validation fails.  This
 637         * would mean that people would have to downgrade their kernel just to
 638         * remedy the situation as there is no way to grow the log (short of
 639         * black magic surgery with xfs_db).
 640         *
 641         * We can, however, reject mounts for CRC format filesystems, as the
 642         * mkfs binary being used to make the filesystem should never create a
 643         * filesystem with a log that is too small.
 644         */
 645        min_logfsbs = xfs_log_calc_minimum_size(mp);
 646
 647        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 648                xfs_warn(mp,
 649                "Log size %d blocks too small, minimum size is %d blocks",
 650                         mp->m_sb.sb_logblocks, min_logfsbs);
 651                error = -EINVAL;
 652        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 653                xfs_warn(mp,
 654                "Log size %d blocks too large, maximum size is %lld blocks",
 655                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 656                error = -EINVAL;
 657        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 658                xfs_warn(mp,
 659                "log size %lld bytes too large, maximum size is %lld bytes",
 660                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 661                         XFS_MAX_LOG_BYTES);
 662                error = -EINVAL;
 663        } else if (mp->m_sb.sb_logsunit > 1 &&
 664                   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 665                xfs_warn(mp,
 666                "log stripe unit %u bytes must be a multiple of block size",
 667                         mp->m_sb.sb_logsunit);
 668                error = -EINVAL;
 669                fatal = true;
 670        }
 671        if (error) {
 672                /*
 673                 * Log check errors are always fatal on v5; or whenever bad
 674                 * metadata leads to a crash.
 675                 */
 676                if (fatal) {
 677                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 678                        ASSERT(0);
 679                        goto out_free_log;
 680                }
 681                xfs_crit(mp, "Log size out of supported range.");
 682                xfs_crit(mp,
 683"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 684        }
 685
 686        /*
 687         * Initialize the AIL now we have a log.
 688         */
 689        error = xfs_trans_ail_init(mp);
 690        if (error) {
 691                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 692                goto out_free_log;
 693        }
 694        mp->m_log->l_ailp = mp->m_ail;
 695
 696        /*
 697         * skip log recovery on a norecovery mount.  pretend it all
 698         * just worked.
 699         */
 700        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 701                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 702
 703                if (readonly)
 704                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 705
 706                error = xlog_recover(mp->m_log);
 707
 708                if (readonly)
 709                        mp->m_flags |= XFS_MOUNT_RDONLY;
 710                if (error) {
 711                        xfs_warn(mp, "log mount/recovery failed: error %d",
 712                                error);
 713                        xlog_recover_cancel(mp->m_log);
 714                        goto out_destroy_ail;
 715                }
 716        }
 717
 718        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 719                               "log");
 720        if (error)
 721                goto out_destroy_ail;
 722
 723        /* Normal transactions can now occur */
 724        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 725
 726        /*
 727         * Now the log has been fully initialised and we know were our
 728         * space grant counters are, we can initialise the permanent ticket
 729         * needed for delayed logging to work.
 730         */
 731        xlog_cil_init_post_recovery(mp->m_log);
 732
 733        return 0;
 734
 735out_destroy_ail:
 736        xfs_trans_ail_destroy(mp);
 737out_free_log:
 738        xlog_dealloc_log(mp->m_log);
 739out:
 740        return error;
 741}
 742
 743/*
 744 * Finish the recovery of the file system.  This is separate from the
 745 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 746 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 747 * here.
 748 *
 749 * If we finish recovery successfully, start the background log work. If we are
 750 * not doing recovery, then we have a RO filesystem and we don't need to start
 751 * it.
 752 */
 753int
 754xfs_log_mount_finish(
 755        struct xfs_mount        *mp)
 756{
 757        int     error = 0;
 758        bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 759        bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 760
 761        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 762                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 763                return 0;
 764        } else if (readonly) {
 765                /* Allow unlinked processing to proceed */
 766                mp->m_flags &= ~XFS_MOUNT_RDONLY;
 767        }
 768
 769        /*
 770         * During the second phase of log recovery, we need iget and
 771         * iput to behave like they do for an active filesystem.
 772         * xfs_fs_drop_inode needs to be able to prevent the deletion
 773         * of inodes before we're done replaying log items on those
 774         * inodes.  Turn it off immediately after recovery finishes
 775         * so that we don't leak the quota inodes if subsequent mount
 776         * activities fail.
 777         *
 778         * We let all inodes involved in redo item processing end up on
 779         * the LRU instead of being evicted immediately so that if we do
 780         * something to an unlinked inode, the irele won't cause
 781         * premature truncation and freeing of the inode, which results
 782         * in log recovery failure.  We have to evict the unreferenced
 783         * lru inodes after clearing SB_ACTIVE because we don't
 784         * otherwise clean up the lru if there's a subsequent failure in
 785         * xfs_mountfs, which leads to us leaking the inodes if nothing
 786         * else (e.g. quotacheck) references the inodes before the
 787         * mount failure occurs.
 788         */
 789        mp->m_super->s_flags |= SB_ACTIVE;
 790        error = xlog_recover_finish(mp->m_log);
 791        if (!error)
 792                xfs_log_work_queue(mp);
 793        mp->m_super->s_flags &= ~SB_ACTIVE;
 794        evict_inodes(mp->m_super);
 795
 796        /*
 797         * Drain the buffer LRU after log recovery. This is required for v4
 798         * filesystems to avoid leaving around buffers with NULL verifier ops,
 799         * but we do it unconditionally to make sure we're always in a clean
 800         * cache state after mount.
 801         *
 802         * Don't push in the error case because the AIL may have pending intents
 803         * that aren't removed until recovery is cancelled.
 804         */
 805        if (!error && recovered) {
 806                xfs_log_force(mp, XFS_LOG_SYNC);
 807                xfs_ail_push_all_sync(mp->m_ail);
 808        }
 809        xfs_wait_buftarg(mp->m_ddev_targp);
 810
 811        if (readonly)
 812                mp->m_flags |= XFS_MOUNT_RDONLY;
 813
 814        return error;
 815}
 816
 817/*
 818 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 819 * the log.
 820 */
 821int
 822xfs_log_mount_cancel(
 823        struct xfs_mount        *mp)
 824{
 825        int                     error;
 826
 827        error = xlog_recover_cancel(mp->m_log);
 828        xfs_log_unmount(mp);
 829
 830        return error;
 831}
 832
 833/*
 834 * Final log writes as part of unmount.
 835 *
 836 * Mark the filesystem clean as unmount happens.  Note that during relocation
 837 * this routine needs to be executed as part of source-bag while the
 838 * deallocation must not be done until source-end.
 839 */
 840
 841/*
 842 * Unmount record used to have a string "Unmount filesystem--" in the
 843 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 844 * We just write the magic number now since that particular field isn't
 845 * currently architecture converted and "Unmount" is a bit foo.
 846 * As far as I know, there weren't any dependencies on the old behaviour.
 847 */
 848
 849static int
 850xfs_log_unmount_write(xfs_mount_t *mp)
 851{
 852        struct xlog      *log = mp->m_log;
 853        xlog_in_core_t   *iclog;
 854#ifdef DEBUG
 855        xlog_in_core_t   *first_iclog;
 856#endif
 857        xlog_ticket_t   *tic = NULL;
 858        xfs_lsn_t        lsn;
 859        int              error;
 860
 861        /*
 862         * Don't write out unmount record on norecovery mounts or ro devices.
 863         * Or, if we are doing a forced umount (typically because of IO errors).
 864         */
 865        if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 866            xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
 867                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 868                return 0;
 869        }
 870
 871        error = xfs_log_force(mp, XFS_LOG_SYNC);
 872        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 873
 874#ifdef DEBUG
 875        first_iclog = iclog = log->l_iclog;
 876        do {
 877                if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 878                        ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 879                        ASSERT(iclog->ic_offset == 0);
 880                }
 881                iclog = iclog->ic_next;
 882        } while (iclog != first_iclog);
 883#endif
 884        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 885                error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 886                if (!error) {
 887                        /* the data section must be 32 bit size aligned */
 888                        struct {
 889                            uint16_t magic;
 890                            uint16_t pad1;
 891                            uint32_t pad2; /* may as well make it 64 bits */
 892                        } magic = {
 893                                .magic = XLOG_UNMOUNT_TYPE,
 894                        };
 895                        struct xfs_log_iovec reg = {
 896                                .i_addr = &magic,
 897                                .i_len = sizeof(magic),
 898                                .i_type = XLOG_REG_TYPE_UNMOUNT,
 899                        };
 900                        struct xfs_log_vec vec = {
 901                                .lv_niovecs = 1,
 902                                .lv_iovecp = &reg,
 903                        };
 904
 905                        /* remove inited flag, and account for space used */
 906                        tic->t_flags = 0;
 907                        tic->t_curr_res -= sizeof(magic);
 908                        error = xlog_write(log, &vec, tic, &lsn,
 909                                           NULL, XLOG_UNMOUNT_TRANS);
 910                        /*
 911                         * At this point, we're umounting anyway,
 912                         * so there's no point in transitioning log state
 913                         * to IOERROR. Just continue...
 914                         */
 915                }
 916
 917                if (error)
 918                        xfs_alert(mp, "%s: unmount record failed", __func__);
 919
 920
 921                spin_lock(&log->l_icloglock);
 922                iclog = log->l_iclog;
 923                atomic_inc(&iclog->ic_refcnt);
 924                xlog_state_want_sync(log, iclog);
 925                spin_unlock(&log->l_icloglock);
 926                error = xlog_state_release_iclog(log, iclog);
 927
 928                spin_lock(&log->l_icloglock);
 929                if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 930                      iclog->ic_state == XLOG_STATE_DIRTY)) {
 931                        if (!XLOG_FORCED_SHUTDOWN(log)) {
 932                                xlog_wait(&iclog->ic_force_wait,
 933                                                        &log->l_icloglock);
 934                        } else {
 935                                spin_unlock(&log->l_icloglock);
 936                        }
 937                } else {
 938                        spin_unlock(&log->l_icloglock);
 939                }
 940                if (tic) {
 941                        trace_xfs_log_umount_write(log, tic);
 942                        xlog_ungrant_log_space(log, tic);
 943                        xfs_log_ticket_put(tic);
 944                }
 945        } else {
 946                /*
 947                 * We're already in forced_shutdown mode, couldn't
 948                 * even attempt to write out the unmount transaction.
 949                 *
 950                 * Go through the motions of sync'ing and releasing
 951                 * the iclog, even though no I/O will actually happen,
 952                 * we need to wait for other log I/Os that may already
 953                 * be in progress.  Do this as a separate section of
 954                 * code so we'll know if we ever get stuck here that
 955                 * we're in this odd situation of trying to unmount
 956                 * a file system that went into forced_shutdown as
 957                 * the result of an unmount..
 958                 */
 959                spin_lock(&log->l_icloglock);
 960                iclog = log->l_iclog;
 961                atomic_inc(&iclog->ic_refcnt);
 962
 963                xlog_state_want_sync(log, iclog);
 964                spin_unlock(&log->l_icloglock);
 965                error =  xlog_state_release_iclog(log, iclog);
 966
 967                spin_lock(&log->l_icloglock);
 968
 969                if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 970                        || iclog->ic_state == XLOG_STATE_DIRTY
 971                        || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 972
 973                                xlog_wait(&iclog->ic_force_wait,
 974                                                        &log->l_icloglock);
 975                } else {
 976                        spin_unlock(&log->l_icloglock);
 977                }
 978        }
 979
 980        return error;
 981}       /* xfs_log_unmount_write */
 982
 983/*
 984 * Empty the log for unmount/freeze.
 985 *
 986 * To do this, we first need to shut down the background log work so it is not
 987 * trying to cover the log as we clean up. We then need to unpin all objects in
 988 * the log so we can then flush them out. Once they have completed their IO and
 989 * run the callbacks removing themselves from the AIL, we can write the unmount
 990 * record.
 991 */
 992void
 993xfs_log_quiesce(
 994        struct xfs_mount        *mp)
 995{
 996        cancel_delayed_work_sync(&mp->m_log->l_work);
 997        xfs_log_force(mp, XFS_LOG_SYNC);
 998
 999        /*
1000         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1001         * will push it, xfs_wait_buftarg() will not wait for it. Further,
1002         * xfs_buf_iowait() cannot be used because it was pushed with the
1003         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1004         * the IO to complete.
1005         */
1006        xfs_ail_push_all_sync(mp->m_ail);
1007        xfs_wait_buftarg(mp->m_ddev_targp);
1008        xfs_buf_lock(mp->m_sb_bp);
1009        xfs_buf_unlock(mp->m_sb_bp);
1010
1011        xfs_log_unmount_write(mp);
1012}
1013
1014/*
1015 * Shut down and release the AIL and Log.
1016 *
1017 * During unmount, we need to ensure we flush all the dirty metadata objects
1018 * from the AIL so that the log is empty before we write the unmount record to
1019 * the log. Once this is done, we can tear down the AIL and the log.
1020 */
1021void
1022xfs_log_unmount(
1023        struct xfs_mount        *mp)
1024{
1025        xfs_log_quiesce(mp);
1026
1027        xfs_trans_ail_destroy(mp);
1028
1029        xfs_sysfs_del(&mp->m_log->l_kobj);
1030
1031        xlog_dealloc_log(mp->m_log);
1032}
1033
1034void
1035xfs_log_item_init(
1036        struct xfs_mount        *mp,
1037        struct xfs_log_item     *item,
1038        int                     type,
1039        const struct xfs_item_ops *ops)
1040{
1041        item->li_mountp = mp;
1042        item->li_ailp = mp->m_ail;
1043        item->li_type = type;
1044        item->li_ops = ops;
1045        item->li_lv = NULL;
1046
1047        INIT_LIST_HEAD(&item->li_ail);
1048        INIT_LIST_HEAD(&item->li_cil);
1049        INIT_LIST_HEAD(&item->li_bio_list);
1050}
1051
1052/*
1053 * Wake up processes waiting for log space after we have moved the log tail.
1054 */
1055void
1056xfs_log_space_wake(
1057        struct xfs_mount        *mp)
1058{
1059        struct xlog             *log = mp->m_log;
1060        int                     free_bytes;
1061
1062        if (XLOG_FORCED_SHUTDOWN(log))
1063                return;
1064
1065        if (!list_empty_careful(&log->l_write_head.waiters)) {
1066                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1067
1068                spin_lock(&log->l_write_head.lock);
1069                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1070                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1071                spin_unlock(&log->l_write_head.lock);
1072        }
1073
1074        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1075                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1076
1077                spin_lock(&log->l_reserve_head.lock);
1078                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1079                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1080                spin_unlock(&log->l_reserve_head.lock);
1081        }
1082}
1083
1084/*
1085 * Determine if we have a transaction that has gone to disk that needs to be
1086 * covered. To begin the transition to the idle state firstly the log needs to
1087 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088 * we start attempting to cover the log.
1089 *
1090 * Only if we are then in a state where covering is needed, the caller is
1091 * informed that dummy transactions are required to move the log into the idle
1092 * state.
1093 *
1094 * If there are any items in the AIl or CIL, then we do not want to attempt to
1095 * cover the log as we may be in a situation where there isn't log space
1096 * available to run a dummy transaction and this can lead to deadlocks when the
1097 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1098 * there's no point in running a dummy transaction at this point because we
1099 * can't start trying to idle the log until both the CIL and AIL are empty.
1100 */
1101static int
1102xfs_log_need_covered(xfs_mount_t *mp)
1103{
1104        struct xlog     *log = mp->m_log;
1105        int             needed = 0;
1106
1107        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1108                return 0;
1109
1110        if (!xlog_cil_empty(log))
1111                return 0;
1112
1113        spin_lock(&log->l_icloglock);
1114        switch (log->l_covered_state) {
1115        case XLOG_STATE_COVER_DONE:
1116        case XLOG_STATE_COVER_DONE2:
1117        case XLOG_STATE_COVER_IDLE:
1118                break;
1119        case XLOG_STATE_COVER_NEED:
1120        case XLOG_STATE_COVER_NEED2:
1121                if (xfs_ail_min_lsn(log->l_ailp))
1122                        break;
1123                if (!xlog_iclogs_empty(log))
1124                        break;
1125
1126                needed = 1;
1127                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1128                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1129                else
1130                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1131                break;
1132        default:
1133                needed = 1;
1134                break;
1135        }
1136        spin_unlock(&log->l_icloglock);
1137        return needed;
1138}
1139
1140/*
1141 * We may be holding the log iclog lock upon entering this routine.
1142 */
1143xfs_lsn_t
1144xlog_assign_tail_lsn_locked(
1145        struct xfs_mount        *mp)
1146{
1147        struct xlog             *log = mp->m_log;
1148        struct xfs_log_item     *lip;
1149        xfs_lsn_t               tail_lsn;
1150
1151        assert_spin_locked(&mp->m_ail->ail_lock);
1152
1153        /*
1154         * To make sure we always have a valid LSN for the log tail we keep
1155         * track of the last LSN which was committed in log->l_last_sync_lsn,
1156         * and use that when the AIL was empty.
1157         */
1158        lip = xfs_ail_min(mp->m_ail);
1159        if (lip)
1160                tail_lsn = lip->li_lsn;
1161        else
1162                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1163        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1164        atomic64_set(&log->l_tail_lsn, tail_lsn);
1165        return tail_lsn;
1166}
1167
1168xfs_lsn_t
1169xlog_assign_tail_lsn(
1170        struct xfs_mount        *mp)
1171{
1172        xfs_lsn_t               tail_lsn;
1173
1174        spin_lock(&mp->m_ail->ail_lock);
1175        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1176        spin_unlock(&mp->m_ail->ail_lock);
1177
1178        return tail_lsn;
1179}
1180
1181/*
1182 * Return the space in the log between the tail and the head.  The head
1183 * is passed in the cycle/bytes formal parms.  In the special case where
1184 * the reserve head has wrapped passed the tail, this calculation is no
1185 * longer valid.  In this case, just return 0 which means there is no space
1186 * in the log.  This works for all places where this function is called
1187 * with the reserve head.  Of course, if the write head were to ever
1188 * wrap the tail, we should blow up.  Rather than catch this case here,
1189 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1190 *
1191 * This code also handles the case where the reservation head is behind
1192 * the tail.  The details of this case are described below, but the end
1193 * result is that we return the size of the log as the amount of space left.
1194 */
1195STATIC int
1196xlog_space_left(
1197        struct xlog     *log,
1198        atomic64_t      *head)
1199{
1200        int             free_bytes;
1201        int             tail_bytes;
1202        int             tail_cycle;
1203        int             head_cycle;
1204        int             head_bytes;
1205
1206        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1207        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1208        tail_bytes = BBTOB(tail_bytes);
1209        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1210                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1211        else if (tail_cycle + 1 < head_cycle)
1212                return 0;
1213        else if (tail_cycle < head_cycle) {
1214                ASSERT(tail_cycle == (head_cycle - 1));
1215                free_bytes = tail_bytes - head_bytes;
1216        } else {
1217                /*
1218                 * The reservation head is behind the tail.
1219                 * In this case we just want to return the size of the
1220                 * log as the amount of space left.
1221                 */
1222                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1223                xfs_alert(log->l_mp,
1224                          "  tail_cycle = %d, tail_bytes = %d",
1225                          tail_cycle, tail_bytes);
1226                xfs_alert(log->l_mp,
1227                          "  GH   cycle = %d, GH   bytes = %d",
1228                          head_cycle, head_bytes);
1229                ASSERT(0);
1230                free_bytes = log->l_logsize;
1231        }
1232        return free_bytes;
1233}
1234
1235
1236/*
1237 * Log function which is called when an io completes.
1238 *
1239 * The log manager needs its own routine, in order to control what
1240 * happens with the buffer after the write completes.
1241 */
1242static void
1243xlog_iodone(xfs_buf_t *bp)
1244{
1245        struct xlog_in_core     *iclog = bp->b_log_item;
1246        struct xlog             *l = iclog->ic_log;
1247        int                     aborted = 0;
1248
1249        /*
1250         * Race to shutdown the filesystem if we see an error or the iclog is in
1251         * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252         * CRC errors into log recovery.
1253         */
1254        if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1255            iclog->ic_state & XLOG_STATE_IOABORT) {
1256                if (iclog->ic_state & XLOG_STATE_IOABORT)
1257                        iclog->ic_state &= ~XLOG_STATE_IOABORT;
1258
1259                xfs_buf_ioerror_alert(bp, __func__);
1260                xfs_buf_stale(bp);
1261                xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1262                /*
1263                 * This flag will be propagated to the trans-committed
1264                 * callback routines to let them know that the log-commit
1265                 * didn't succeed.
1266                 */
1267                aborted = XFS_LI_ABORTED;
1268        } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1269                aborted = XFS_LI_ABORTED;
1270        }
1271
1272        /* log I/O is always issued ASYNC */
1273        ASSERT(bp->b_flags & XBF_ASYNC);
1274        xlog_state_done_syncing(iclog, aborted);
1275
1276        /*
1277         * drop the buffer lock now that we are done. Nothing references
1278         * the buffer after this, so an unmount waiting on this lock can now
1279         * tear it down safely. As such, it is unsafe to reference the buffer
1280         * (bp) after the unlock as we could race with it being freed.
1281         */
1282        xfs_buf_unlock(bp);
1283}
1284
1285/*
1286 * Return size of each in-core log record buffer.
1287 *
1288 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1289 *
1290 * If the filesystem blocksize is too large, we may need to choose a
1291 * larger size since the directory code currently logs entire blocks.
1292 */
1293
1294STATIC void
1295xlog_get_iclog_buffer_size(
1296        struct xfs_mount        *mp,
1297        struct xlog             *log)
1298{
1299        int size;
1300        int xhdrs;
1301
1302        if (mp->m_logbufs <= 0)
1303                log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1304        else
1305                log->l_iclog_bufs = mp->m_logbufs;
1306
1307        /*
1308         * Buffer size passed in from mount system call.
1309         */
1310        if (mp->m_logbsize > 0) {
1311                size = log->l_iclog_size = mp->m_logbsize;
1312                log->l_iclog_size_log = 0;
1313                while (size != 1) {
1314                        log->l_iclog_size_log++;
1315                        size >>= 1;
1316                }
1317
1318                if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1319                        /* # headers = size / 32k
1320                         * one header holds cycles from 32k of data
1321                         */
1322
1323                        xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1324                        if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1325                                xhdrs++;
1326                        log->l_iclog_hsize = xhdrs << BBSHIFT;
1327                        log->l_iclog_heads = xhdrs;
1328                } else {
1329                        ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1330                        log->l_iclog_hsize = BBSIZE;
1331                        log->l_iclog_heads = 1;
1332                }
1333                goto done;
1334        }
1335
1336        /* All machines use 32kB buffers by default. */
1337        log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1338        log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1339
1340        /* the default log size is 16k or 32k which is one header sector */
1341        log->l_iclog_hsize = BBSIZE;
1342        log->l_iclog_heads = 1;
1343
1344done:
1345        /* are we being asked to make the sizes selected above visible? */
1346        if (mp->m_logbufs == 0)
1347                mp->m_logbufs = log->l_iclog_bufs;
1348        if (mp->m_logbsize == 0)
1349                mp->m_logbsize = log->l_iclog_size;
1350}       /* xlog_get_iclog_buffer_size */
1351
1352
1353void
1354xfs_log_work_queue(
1355        struct xfs_mount        *mp)
1356{
1357        queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1358                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1359}
1360
1361/*
1362 * Every sync period we need to unpin all items in the AIL and push them to
1363 * disk. If there is nothing dirty, then we might need to cover the log to
1364 * indicate that the filesystem is idle.
1365 */
1366static void
1367xfs_log_worker(
1368        struct work_struct      *work)
1369{
1370        struct xlog             *log = container_of(to_delayed_work(work),
1371                                                struct xlog, l_work);
1372        struct xfs_mount        *mp = log->l_mp;
1373
1374        /* dgc: errors ignored - not fatal and nowhere to report them */
1375        if (xfs_log_need_covered(mp)) {
1376                /*
1377                 * Dump a transaction into the log that contains no real change.
1378                 * This is needed to stamp the current tail LSN into the log
1379                 * during the covering operation.
1380                 *
1381                 * We cannot use an inode here for this - that will push dirty
1382                 * state back up into the VFS and then periodic inode flushing
1383                 * will prevent log covering from making progress. Hence we
1384                 * synchronously log the superblock instead to ensure the
1385                 * superblock is immediately unpinned and can be written back.
1386                 */
1387                xfs_sync_sb(mp, true);
1388        } else
1389                xfs_log_force(mp, 0);
1390
1391        /* start pushing all the metadata that is currently dirty */
1392        xfs_ail_push_all(mp->m_ail);
1393
1394        /* queue us up again */
1395        xfs_log_work_queue(mp);
1396}
1397
1398/*
1399 * This routine initializes some of the log structure for a given mount point.
1400 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1401 * some other stuff may be filled in too.
1402 */
1403STATIC struct xlog *
1404xlog_alloc_log(
1405        struct xfs_mount        *mp,
1406        struct xfs_buftarg      *log_target,
1407        xfs_daddr_t             blk_offset,
1408        int                     num_bblks)
1409{
1410        struct xlog             *log;
1411        xlog_rec_header_t       *head;
1412        xlog_in_core_t          **iclogp;
1413        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1414        xfs_buf_t               *bp;
1415        int                     i;
1416        int                     error = -ENOMEM;
1417        uint                    log2_size = 0;
1418
1419        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1420        if (!log) {
1421                xfs_warn(mp, "Log allocation failed: No memory!");
1422                goto out;
1423        }
1424
1425        log->l_mp          = mp;
1426        log->l_targ        = log_target;
1427        log->l_logsize     = BBTOB(num_bblks);
1428        log->l_logBBstart  = blk_offset;
1429        log->l_logBBsize   = num_bblks;
1430        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1431        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1432        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1433
1434        log->l_prev_block  = -1;
1435        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1437        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1438        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1439
1440        xlog_grant_head_init(&log->l_reserve_head);
1441        xlog_grant_head_init(&log->l_write_head);
1442
1443        error = -EFSCORRUPTED;
1444        if (xfs_sb_version_hassector(&mp->m_sb)) {
1445                log2_size = mp->m_sb.sb_logsectlog;
1446                if (log2_size < BBSHIFT) {
1447                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1448                                log2_size, BBSHIFT);
1449                        goto out_free_log;
1450                }
1451
1452                log2_size -= BBSHIFT;
1453                if (log2_size > mp->m_sectbb_log) {
1454                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1455                                log2_size, mp->m_sectbb_log);
1456                        goto out_free_log;
1457                }
1458
1459                /* for larger sector sizes, must have v2 or external log */
1460                if (log2_size && log->l_logBBstart > 0 &&
1461                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1462                        xfs_warn(mp,
1463                "log sector size (0x%x) invalid for configuration.",
1464                                log2_size);
1465                        goto out_free_log;
1466                }
1467        }
1468        log->l_sectBBsize = 1 << log2_size;
1469
1470        xlog_get_iclog_buffer_size(mp, log);
1471
1472        /*
1473         * Use a NULL block for the extra log buffer used during splits so that
1474         * it will trigger errors if we ever try to do IO on it without first
1475         * having set it up properly.
1476         */
1477        error = -ENOMEM;
1478        bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1479                           BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1480        if (!bp)
1481                goto out_free_log;
1482
1483        /*
1484         * The iclogbuf buffer locks are held over IO but we are not going to do
1485         * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1486         * when appropriately.
1487         */
1488        ASSERT(xfs_buf_islocked(bp));
1489        xfs_buf_unlock(bp);
1490
1491        /* use high priority wq for log I/O completion */
1492        bp->b_ioend_wq = mp->m_log_workqueue;
1493        bp->b_iodone = xlog_iodone;
1494        log->l_xbuf = bp;
1495
1496        spin_lock_init(&log->l_icloglock);
1497        init_waitqueue_head(&log->l_flush_wait);
1498
1499        iclogp = &log->l_iclog;
1500        /*
1501         * The amount of memory to allocate for the iclog structure is
1502         * rather funky due to the way the structure is defined.  It is
1503         * done this way so that we can use different sizes for machines
1504         * with different amounts of memory.  See the definition of
1505         * xlog_in_core_t in xfs_log_priv.h for details.
1506         */
1507        ASSERT(log->l_iclog_size >= 4096);
1508        for (i=0; i < log->l_iclog_bufs; i++) {
1509                *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1510                if (!*iclogp)
1511                        goto out_free_iclog;
1512
1513                iclog = *iclogp;
1514                iclog->ic_prev = prev_iclog;
1515                prev_iclog = iclog;
1516
1517                bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1518                                          BTOBB(log->l_iclog_size),
1519                                          XBF_NO_IOACCT);
1520                if (!bp)
1521                        goto out_free_iclog;
1522
1523                ASSERT(xfs_buf_islocked(bp));
1524                xfs_buf_unlock(bp);
1525
1526                /* use high priority wq for log I/O completion */
1527                bp->b_ioend_wq = mp->m_log_workqueue;
1528                bp->b_iodone = xlog_iodone;
1529                iclog->ic_bp = bp;
1530                iclog->ic_data = bp->b_addr;
1531#ifdef DEBUG
1532                log->l_iclog_bak[i] = &iclog->ic_header;
1533#endif
1534                head = &iclog->ic_header;
1535                memset(head, 0, sizeof(xlog_rec_header_t));
1536                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1537                head->h_version = cpu_to_be32(
1538                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1539                head->h_size = cpu_to_be32(log->l_iclog_size);
1540                /* new fields */
1541                head->h_fmt = cpu_to_be32(XLOG_FMT);
1542                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1543
1544                iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1545                iclog->ic_state = XLOG_STATE_ACTIVE;
1546                iclog->ic_log = log;
1547                atomic_set(&iclog->ic_refcnt, 0);
1548                spin_lock_init(&iclog->ic_callback_lock);
1549                iclog->ic_callback_tail = &(iclog->ic_callback);
1550                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1551
1552                init_waitqueue_head(&iclog->ic_force_wait);
1553                init_waitqueue_head(&iclog->ic_write_wait);
1554
1555                iclogp = &iclog->ic_next;
1556        }
1557        *iclogp = log->l_iclog;                 /* complete ring */
1558        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1559
1560        error = xlog_cil_init(log);
1561        if (error)
1562                goto out_free_iclog;
1563        return log;
1564
1565out_free_iclog:
1566        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1567                prev_iclog = iclog->ic_next;
1568                if (iclog->ic_bp)
1569                        xfs_buf_free(iclog->ic_bp);
1570                kmem_free(iclog);
1571        }
1572        spinlock_destroy(&log->l_icloglock);
1573        xfs_buf_free(log->l_xbuf);
1574out_free_log:
1575        kmem_free(log);
1576out:
1577        return ERR_PTR(error);
1578}       /* xlog_alloc_log */
1579
1580
1581/*
1582 * Write out the commit record of a transaction associated with the given
1583 * ticket.  Return the lsn of the commit record.
1584 */
1585STATIC int
1586xlog_commit_record(
1587        struct xlog             *log,
1588        struct xlog_ticket      *ticket,
1589        struct xlog_in_core     **iclog,
1590        xfs_lsn_t               *commitlsnp)
1591{
1592        struct xfs_mount *mp = log->l_mp;
1593        int     error;
1594        struct xfs_log_iovec reg = {
1595                .i_addr = NULL,
1596                .i_len = 0,
1597                .i_type = XLOG_REG_TYPE_COMMIT,
1598        };
1599        struct xfs_log_vec vec = {
1600                .lv_niovecs = 1,
1601                .lv_iovecp = &reg,
1602        };
1603
1604        ASSERT_ALWAYS(iclog);
1605        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1606                                        XLOG_COMMIT_TRANS);
1607        if (error)
1608                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1609        return error;
1610}
1611
1612/*
1613 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614 * log space.  This code pushes on the lsn which would supposedly free up
1615 * the 25% which we want to leave free.  We may need to adopt a policy which
1616 * pushes on an lsn which is further along in the log once we reach the high
1617 * water mark.  In this manner, we would be creating a low water mark.
1618 */
1619STATIC void
1620xlog_grant_push_ail(
1621        struct xlog     *log,
1622        int             need_bytes)
1623{
1624        xfs_lsn_t       threshold_lsn = 0;
1625        xfs_lsn_t       last_sync_lsn;
1626        int             free_blocks;
1627        int             free_bytes;
1628        int             threshold_block;
1629        int             threshold_cycle;
1630        int             free_threshold;
1631
1632        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1633
1634        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1635        free_blocks = BTOBBT(free_bytes);
1636
1637        /*
1638         * Set the threshold for the minimum number of free blocks in the
1639         * log to the maximum of what the caller needs, one quarter of the
1640         * log, and 256 blocks.
1641         */
1642        free_threshold = BTOBB(need_bytes);
1643        free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1644        free_threshold = MAX(free_threshold, 256);
1645        if (free_blocks >= free_threshold)
1646                return;
1647
1648        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1649                                                &threshold_block);
1650        threshold_block += free_threshold;
1651        if (threshold_block >= log->l_logBBsize) {
1652                threshold_block -= log->l_logBBsize;
1653                threshold_cycle += 1;
1654        }
1655        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1656                                        threshold_block);
1657        /*
1658         * Don't pass in an lsn greater than the lsn of the last
1659         * log record known to be on disk. Use a snapshot of the last sync lsn
1660         * so that it doesn't change between the compare and the set.
1661         */
1662        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1663        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1664                threshold_lsn = last_sync_lsn;
1665
1666        /*
1667         * Get the transaction layer to kick the dirty buffers out to
1668         * disk asynchronously. No point in trying to do this if
1669         * the filesystem is shutting down.
1670         */
1671        if (!XLOG_FORCED_SHUTDOWN(log))
1672                xfs_ail_push(log->l_ailp, threshold_lsn);
1673}
1674
1675/*
1676 * Stamp cycle number in every block
1677 */
1678STATIC void
1679xlog_pack_data(
1680        struct xlog             *log,
1681        struct xlog_in_core     *iclog,
1682        int                     roundoff)
1683{
1684        int                     i, j, k;
1685        int                     size = iclog->ic_offset + roundoff;
1686        __be32                  cycle_lsn;
1687        char                    *dp;
1688
1689        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1690
1691        dp = iclog->ic_datap;
1692        for (i = 0; i < BTOBB(size); i++) {
1693                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1694                        break;
1695                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1696                *(__be32 *)dp = cycle_lsn;
1697                dp += BBSIZE;
1698        }
1699
1700        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1701                xlog_in_core_2_t *xhdr = iclog->ic_data;
1702
1703                for ( ; i < BTOBB(size); i++) {
1704                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1705                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1707                        *(__be32 *)dp = cycle_lsn;
1708                        dp += BBSIZE;
1709                }
1710
1711                for (i = 1; i < log->l_iclog_heads; i++)
1712                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1713        }
1714}
1715
1716/*
1717 * Calculate the checksum for a log buffer.
1718 *
1719 * This is a little more complicated than it should be because the various
1720 * headers and the actual data are non-contiguous.
1721 */
1722__le32
1723xlog_cksum(
1724        struct xlog             *log,
1725        struct xlog_rec_header  *rhead,
1726        char                    *dp,
1727        int                     size)
1728{
1729        uint32_t                crc;
1730
1731        /* first generate the crc for the record header ... */
1732        crc = xfs_start_cksum_update((char *)rhead,
1733                              sizeof(struct xlog_rec_header),
1734                              offsetof(struct xlog_rec_header, h_crc));
1735
1736        /* ... then for additional cycle data for v2 logs ... */
1737        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1738                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1739                int             i;
1740                int             xheads;
1741
1742                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1743                if (size % XLOG_HEADER_CYCLE_SIZE)
1744                        xheads++;
1745
1746                for (i = 1; i < xheads; i++) {
1747                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1748                                     sizeof(struct xlog_rec_ext_header));
1749                }
1750        }
1751
1752        /* ... and finally for the payload */
1753        crc = crc32c(crc, dp, size);
1754
1755        return xfs_end_cksum(crc);
1756}
1757
1758/*
1759 * The bdstrat callback function for log bufs. This gives us a central
1760 * place to trap bufs in case we get hit by a log I/O error and need to
1761 * shutdown. Actually, in practice, even when we didn't get a log error,
1762 * we transition the iclogs to IOERROR state *after* flushing all existing
1763 * iclogs to disk. This is because we don't want anymore new transactions to be
1764 * started or completed afterwards.
1765 *
1766 * We lock the iclogbufs here so that we can serialise against IO completion
1767 * during unmount. We might be processing a shutdown triggered during unmount,
1768 * and that can occur asynchronously to the unmount thread, and hence we need to
1769 * ensure that completes before tearing down the iclogbufs. Hence we need to
1770 * hold the buffer lock across the log IO to acheive that.
1771 */
1772STATIC int
1773xlog_bdstrat(
1774        struct xfs_buf          *bp)
1775{
1776        struct xlog_in_core     *iclog = bp->b_log_item;
1777
1778        xfs_buf_lock(bp);
1779        if (iclog->ic_state & XLOG_STATE_IOERROR) {
1780                xfs_buf_ioerror(bp, -EIO);
1781                xfs_buf_stale(bp);
1782                xfs_buf_ioend(bp);
1783                /*
1784                 * It would seem logical to return EIO here, but we rely on
1785                 * the log state machine to propagate I/O errors instead of
1786                 * doing it here. Similarly, IO completion will unlock the
1787                 * buffer, so we don't do it here.
1788                 */
1789                return 0;
1790        }
1791
1792        xfs_buf_submit(bp);
1793        return 0;
1794}
1795
1796/*
1797 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1798 * fashion.  Previously, we should have moved the current iclog
1799 * ptr in the log to point to the next available iclog.  This allows further
1800 * write to continue while this code syncs out an iclog ready to go.
1801 * Before an in-core log can be written out, the data section must be scanned
1802 * to save away the 1st word of each BBSIZE block into the header.  We replace
1803 * it with the current cycle count.  Each BBSIZE block is tagged with the
1804 * cycle count because there in an implicit assumption that drives will
1805 * guarantee that entire 512 byte blocks get written at once.  In other words,
1806 * we can't have part of a 512 byte block written and part not written.  By
1807 * tagging each block, we will know which blocks are valid when recovering
1808 * after an unclean shutdown.
1809 *
1810 * This routine is single threaded on the iclog.  No other thread can be in
1811 * this routine with the same iclog.  Changing contents of iclog can there-
1812 * fore be done without grabbing the state machine lock.  Updating the global
1813 * log will require grabbing the lock though.
1814 *
1815 * The entire log manager uses a logical block numbering scheme.  Only
1816 * log_sync (and then only bwrite()) know about the fact that the log may
1817 * not start with block zero on a given device.  The log block start offset
1818 * is added immediately before calling bwrite().
1819 */
1820
1821STATIC int
1822xlog_sync(
1823        struct xlog             *log,
1824        struct xlog_in_core     *iclog)
1825{
1826        xfs_buf_t       *bp;
1827        int             i;
1828        uint            count;          /* byte count of bwrite */
1829        uint            count_init;     /* initial count before roundup */
1830        int             roundoff;       /* roundoff to BB or stripe */
1831        int             split = 0;      /* split write into two regions */
1832        int             error;
1833        int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1834        int             size;
1835
1836        XFS_STATS_INC(log->l_mp, xs_log_writes);
1837        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1838
1839        /* Add for LR header */
1840        count_init = log->l_iclog_hsize + iclog->ic_offset;
1841
1842        /* Round out the log write size */
1843        if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1844                /* we have a v2 stripe unit to use */
1845                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1846        } else {
1847                count = BBTOB(BTOBB(count_init));
1848        }
1849        roundoff = count - count_init;
1850        ASSERT(roundoff >= 0);
1851        ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1852                roundoff < log->l_mp->m_sb.sb_logsunit)
1853                || 
1854                (log->l_mp->m_sb.sb_logsunit <= 1 && 
1855                 roundoff < BBTOB(1)));
1856
1857        /* move grant heads by roundoff in sync */
1858        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860
1861        /* put cycle number in every block */
1862        xlog_pack_data(log, iclog, roundoff); 
1863
1864        /* real byte length */
1865        size = iclog->ic_offset;
1866        if (v2)
1867                size += roundoff;
1868        iclog->ic_header.h_len = cpu_to_be32(size);
1869
1870        bp = iclog->ic_bp;
1871        XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1872
1873        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1874
1875        /* Do we need to split this write into 2 parts? */
1876        if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1877                char            *dptr;
1878
1879                split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1880                count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1881                iclog->ic_bwritecnt = 2;
1882
1883                /*
1884                 * Bump the cycle numbers at the start of each block in the
1885                 * part of the iclog that ends up in the buffer that gets
1886                 * written to the start of the log.
1887                 *
1888                 * Watch out for the header magic number case, though.
1889                 */
1890                dptr = (char *)&iclog->ic_header + count;
1891                for (i = 0; i < split; i += BBSIZE) {
1892                        uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1893                        if (++cycle == XLOG_HEADER_MAGIC_NUM)
1894                                cycle++;
1895                        *(__be32 *)dptr = cpu_to_be32(cycle);
1896
1897                        dptr += BBSIZE;
1898                }
1899        } else {
1900                iclog->ic_bwritecnt = 1;
1901        }
1902
1903        /* calculcate the checksum */
1904        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1905                                            iclog->ic_datap, size);
1906        /*
1907         * Intentionally corrupt the log record CRC based on the error injection
1908         * frequency, if defined. This facilitates testing log recovery in the
1909         * event of torn writes. Hence, set the IOABORT state to abort the log
1910         * write on I/O completion and shutdown the fs. The subsequent mount
1911         * detects the bad CRC and attempts to recover.
1912         */
1913        if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1914                iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1915                iclog->ic_state |= XLOG_STATE_IOABORT;
1916                xfs_warn(log->l_mp,
1917        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918                         be64_to_cpu(iclog->ic_header.h_lsn));
1919        }
1920
1921        bp->b_io_length = BTOBB(count);
1922        bp->b_log_item = iclog;
1923        bp->b_flags &= ~XBF_FLUSH;
1924        bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1925
1926        /*
1927         * Flush the data device before flushing the log to make sure all meta
1928         * data written back from the AIL actually made it to disk before
1929         * stamping the new log tail LSN into the log buffer.  For an external
1930         * log we need to issue the flush explicitly, and unfortunately
1931         * synchronously here; for an internal log we can simply use the block
1932         * layer state machine for preflushes.
1933         */
1934        if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1935                xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1936        else
1937                bp->b_flags |= XBF_FLUSH;
1938
1939        ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1940        ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1941
1942        xlog_verify_iclog(log, iclog, count, true);
1943
1944        /* account for log which doesn't start at block #0 */
1945        XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1946
1947        /*
1948         * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1949         * is shutting down.
1950         */
1951        error = xlog_bdstrat(bp);
1952        if (error) {
1953                xfs_buf_ioerror_alert(bp, "xlog_sync");
1954                return error;
1955        }
1956        if (split) {
1957                bp = iclog->ic_log->l_xbuf;
1958                XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1959                xfs_buf_associate_memory(bp,
1960                                (char *)&iclog->ic_header + count, split);
1961                bp->b_log_item = iclog;
1962                bp->b_flags &= ~XBF_FLUSH;
1963                bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1964
1965                ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1966                ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1967
1968                /* account for internal log which doesn't start at block #0 */
1969                XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1970                error = xlog_bdstrat(bp);
1971                if (error) {
1972                        xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1973                        return error;
1974                }
1975        }
1976        return 0;
1977}       /* xlog_sync */
1978
1979/*
1980 * Deallocate a log structure
1981 */
1982STATIC void
1983xlog_dealloc_log(
1984        struct xlog     *log)
1985{
1986        xlog_in_core_t  *iclog, *next_iclog;
1987        int             i;
1988
1989        xlog_cil_destroy(log);
1990
1991        /*
1992         * Cycle all the iclogbuf locks to make sure all log IO completion
1993         * is done before we tear down these buffers.
1994         */
1995        iclog = log->l_iclog;
1996        for (i = 0; i < log->l_iclog_bufs; i++) {
1997                xfs_buf_lock(iclog->ic_bp);
1998                xfs_buf_unlock(iclog->ic_bp);
1999                iclog = iclog->ic_next;
2000        }
2001
2002        /*
2003         * Always need to ensure that the extra buffer does not point to memory
2004         * owned by another log buffer before we free it. Also, cycle the lock
2005         * first to ensure we've completed IO on it.
2006         */
2007        xfs_buf_lock(log->l_xbuf);
2008        xfs_buf_unlock(log->l_xbuf);
2009        xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2010        xfs_buf_free(log->l_xbuf);
2011
2012        iclog = log->l_iclog;
2013        for (i = 0; i < log->l_iclog_bufs; i++) {
2014                xfs_buf_free(iclog->ic_bp);
2015                next_iclog = iclog->ic_next;
2016                kmem_free(iclog);
2017                iclog = next_iclog;
2018        }
2019        spinlock_destroy(&log->l_icloglock);
2020
2021        log->l_mp->m_log = NULL;
2022        kmem_free(log);
2023}       /* xlog_dealloc_log */
2024
2025/*
2026 * Update counters atomically now that memcpy is done.
2027 */
2028/* ARGSUSED */
2029static inline void
2030xlog_state_finish_copy(
2031        struct xlog             *log,
2032        struct xlog_in_core     *iclog,
2033        int                     record_cnt,
2034        int                     copy_bytes)
2035{
2036        spin_lock(&log->l_icloglock);
2037
2038        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2039        iclog->ic_offset += copy_bytes;
2040
2041        spin_unlock(&log->l_icloglock);
2042}       /* xlog_state_finish_copy */
2043
2044
2045
2046
2047/*
2048 * print out info relating to regions written which consume
2049 * the reservation
2050 */
2051void
2052xlog_print_tic_res(
2053        struct xfs_mount        *mp,
2054        struct xlog_ticket      *ticket)
2055{
2056        uint i;
2057        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2058
2059        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2060#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2061        static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2062            REG_TYPE_STR(BFORMAT, "bformat"),
2063            REG_TYPE_STR(BCHUNK, "bchunk"),
2064            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2065            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2066            REG_TYPE_STR(IFORMAT, "iformat"),
2067            REG_TYPE_STR(ICORE, "icore"),
2068            REG_TYPE_STR(IEXT, "iext"),
2069            REG_TYPE_STR(IBROOT, "ibroot"),
2070            REG_TYPE_STR(ILOCAL, "ilocal"),
2071            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2072            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2073            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2074            REG_TYPE_STR(QFORMAT, "qformat"),
2075            REG_TYPE_STR(DQUOT, "dquot"),
2076            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2077            REG_TYPE_STR(LRHEADER, "LR header"),
2078            REG_TYPE_STR(UNMOUNT, "unmount"),
2079            REG_TYPE_STR(COMMIT, "commit"),
2080            REG_TYPE_STR(TRANSHDR, "trans header"),
2081            REG_TYPE_STR(ICREATE, "inode create")
2082        };
2083#undef REG_TYPE_STR
2084
2085        xfs_warn(mp, "ticket reservation summary:");
2086        xfs_warn(mp, "  unit res    = %d bytes",
2087                 ticket->t_unit_res);
2088        xfs_warn(mp, "  current res = %d bytes",
2089                 ticket->t_curr_res);
2090        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2091                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2092        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2093                 ticket->t_res_num_ophdrs, ophdr_spc);
2094        xfs_warn(mp, "  ophdr + reg = %u bytes",
2095                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2096        xfs_warn(mp, "  num regions = %u",
2097                 ticket->t_res_num);
2098
2099        for (i = 0; i < ticket->t_res_num; i++) {
2100                uint r_type = ticket->t_res_arr[i].r_type;
2101                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2102                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2103                            "bad-rtype" : res_type_str[r_type]),
2104                            ticket->t_res_arr[i].r_len);
2105        }
2106}
2107
2108/*
2109 * Print a summary of the transaction.
2110 */
2111void
2112xlog_print_trans(
2113        struct xfs_trans                *tp)
2114{
2115        struct xfs_mount                *mp = tp->t_mountp;
2116        struct xfs_log_item_desc        *lidp;
2117
2118        /* dump core transaction and ticket info */
2119        xfs_warn(mp, "transaction summary:");
2120        xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2121        xfs_warn(mp, "  log count = %d", tp->t_log_count);
2122        xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2123
2124        xlog_print_tic_res(mp, tp->t_ticket);
2125
2126        /* dump each log item */
2127        list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2128                struct xfs_log_item     *lip = lidp->lid_item;
2129                struct xfs_log_vec      *lv = lip->li_lv;
2130                struct xfs_log_iovec    *vec;
2131                int                     i;
2132
2133                xfs_warn(mp, "log item: ");
2134                xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2135                xfs_warn(mp, "  flags   = 0x%x", lip->li_flags);
2136                if (!lv)
2137                        continue;
2138                xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2139                xfs_warn(mp, "  size    = %d", lv->lv_size);
2140                xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2141                xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2142
2143                /* dump each iovec for the log item */
2144                vec = lv->lv_iovecp;
2145                for (i = 0; i < lv->lv_niovecs; i++) {
2146                        int dumplen = min(vec->i_len, 32);
2147
2148                        xfs_warn(mp, "  iovec[%d]", i);
2149                        xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2150                        xfs_warn(mp, "    len   = %d", vec->i_len);
2151                        xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2152                        xfs_hex_dump(vec->i_addr, dumplen);
2153
2154                        vec++;
2155                }
2156        }
2157}
2158
2159/*
2160 * Calculate the potential space needed by the log vector.  Each region gets
2161 * its own xlog_op_header_t and may need to be double word aligned.
2162 */
2163static int
2164xlog_write_calc_vec_length(
2165        struct xlog_ticket      *ticket,
2166        struct xfs_log_vec      *log_vector)
2167{
2168        struct xfs_log_vec      *lv;
2169        int                     headers = 0;
2170        int                     len = 0;
2171        int                     i;
2172
2173        /* acct for start rec of xact */
2174        if (ticket->t_flags & XLOG_TIC_INITED)
2175                headers++;
2176
2177        for (lv = log_vector; lv; lv = lv->lv_next) {
2178                /* we don't write ordered log vectors */
2179                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2180                        continue;
2181
2182                headers += lv->lv_niovecs;
2183
2184                for (i = 0; i < lv->lv_niovecs; i++) {
2185                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2186
2187                        len += vecp->i_len;
2188                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2189                }
2190        }
2191
2192        ticket->t_res_num_ophdrs += headers;
2193        len += headers * sizeof(struct xlog_op_header);
2194
2195        return len;
2196}
2197
2198/*
2199 * If first write for transaction, insert start record  We can't be trying to
2200 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2201 */
2202static int
2203xlog_write_start_rec(
2204        struct xlog_op_header   *ophdr,
2205        struct xlog_ticket      *ticket)
2206{
2207        if (!(ticket->t_flags & XLOG_TIC_INITED))
2208                return 0;
2209
2210        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2211        ophdr->oh_clientid = ticket->t_clientid;
2212        ophdr->oh_len = 0;
2213        ophdr->oh_flags = XLOG_START_TRANS;
2214        ophdr->oh_res2 = 0;
2215
2216        ticket->t_flags &= ~XLOG_TIC_INITED;
2217
2218        return sizeof(struct xlog_op_header);
2219}
2220
2221static xlog_op_header_t *
2222xlog_write_setup_ophdr(
2223        struct xlog             *log,
2224        struct xlog_op_header   *ophdr,
2225        struct xlog_ticket      *ticket,
2226        uint                    flags)
2227{
2228        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2229        ophdr->oh_clientid = ticket->t_clientid;
2230        ophdr->oh_res2 = 0;
2231
2232        /* are we copying a commit or unmount record? */
2233        ophdr->oh_flags = flags;
2234
2235        /*
2236         * We've seen logs corrupted with bad transaction client ids.  This
2237         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2238         * and shut down the filesystem.
2239         */
2240        switch (ophdr->oh_clientid)  {
2241        case XFS_TRANSACTION:
2242        case XFS_VOLUME:
2243        case XFS_LOG:
2244                break;
2245        default:
2246                xfs_warn(log->l_mp,
2247                        "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2248                        ophdr->oh_clientid, ticket);
2249                return NULL;
2250        }
2251
2252        return ophdr;
2253}
2254
2255/*
2256 * Set up the parameters of the region copy into the log. This has
2257 * to handle region write split across multiple log buffers - this
2258 * state is kept external to this function so that this code can
2259 * be written in an obvious, self documenting manner.
2260 */
2261static int
2262xlog_write_setup_copy(
2263        struct xlog_ticket      *ticket,
2264        struct xlog_op_header   *ophdr,
2265        int                     space_available,
2266        int                     space_required,
2267        int                     *copy_off,
2268        int                     *copy_len,
2269        int                     *last_was_partial_copy,
2270        int                     *bytes_consumed)
2271{
2272        int                     still_to_copy;
2273
2274        still_to_copy = space_required - *bytes_consumed;
2275        *copy_off = *bytes_consumed;
2276
2277        if (still_to_copy <= space_available) {
2278                /* write of region completes here */
2279                *copy_len = still_to_copy;
2280                ophdr->oh_len = cpu_to_be32(*copy_len);
2281                if (*last_was_partial_copy)
2282                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2283                *last_was_partial_copy = 0;
2284                *bytes_consumed = 0;
2285                return 0;
2286        }
2287
2288        /* partial write of region, needs extra log op header reservation */
2289        *copy_len = space_available;
2290        ophdr->oh_len = cpu_to_be32(*copy_len);
2291        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2292        if (*last_was_partial_copy)
2293                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2294        *bytes_consumed += *copy_len;
2295        (*last_was_partial_copy)++;
2296
2297        /* account for new log op header */
2298        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2299        ticket->t_res_num_ophdrs++;
2300
2301        return sizeof(struct xlog_op_header);
2302}
2303
2304static int
2305xlog_write_copy_finish(
2306        struct xlog             *log,
2307        struct xlog_in_core     *iclog,
2308        uint                    flags,
2309        int                     *record_cnt,
2310        int                     *data_cnt,
2311        int                     *partial_copy,
2312        int                     *partial_copy_len,
2313        int                     log_offset,
2314        struct xlog_in_core     **commit_iclog)
2315{
2316        if (*partial_copy) {
2317                /*
2318                 * This iclog has already been marked WANT_SYNC by
2319                 * xlog_state_get_iclog_space.
2320                 */
2321                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2322                *record_cnt = 0;
2323                *data_cnt = 0;
2324                return xlog_state_release_iclog(log, iclog);
2325        }
2326
2327        *partial_copy = 0;
2328        *partial_copy_len = 0;
2329
2330        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2331                /* no more space in this iclog - push it. */
2332                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2333                *record_cnt = 0;
2334                *data_cnt = 0;
2335
2336                spin_lock(&log->l_icloglock);
2337                xlog_state_want_sync(log, iclog);
2338                spin_unlock(&log->l_icloglock);
2339
2340                if (!commit_iclog)
2341                        return xlog_state_release_iclog(log, iclog);
2342                ASSERT(flags & XLOG_COMMIT_TRANS);
2343                *commit_iclog = iclog;
2344        }
2345
2346        return 0;
2347}
2348
2349/*
2350 * Write some region out to in-core log
2351 *
2352 * This will be called when writing externally provided regions or when
2353 * writing out a commit record for a given transaction.
2354 *
2355 * General algorithm:
2356 *      1. Find total length of this write.  This may include adding to the
2357 *              lengths passed in.
2358 *      2. Check whether we violate the tickets reservation.
2359 *      3. While writing to this iclog
2360 *          A. Reserve as much space in this iclog as can get
2361 *          B. If this is first write, save away start lsn
2362 *          C. While writing this region:
2363 *              1. If first write of transaction, write start record
2364 *              2. Write log operation header (header per region)
2365 *              3. Find out if we can fit entire region into this iclog
2366 *              4. Potentially, verify destination memcpy ptr
2367 *              5. Memcpy (partial) region
2368 *              6. If partial copy, release iclog; otherwise, continue
2369 *                      copying more regions into current iclog
2370 *      4. Mark want sync bit (in simulation mode)
2371 *      5. Release iclog for potential flush to on-disk log.
2372 *
2373 * ERRORS:
2374 * 1.   Panic if reservation is overrun.  This should never happen since
2375 *      reservation amounts are generated internal to the filesystem.
2376 * NOTES:
2377 * 1. Tickets are single threaded data structures.
2378 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2379 *      syncing routine.  When a single log_write region needs to span
2380 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2381 *      on all log operation writes which don't contain the end of the
2382 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2383 *      operation which contains the end of the continued log_write region.
2384 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2385 *      we don't really know exactly how much space will be used.  As a result,
2386 *      we don't update ic_offset until the end when we know exactly how many
2387 *      bytes have been written out.
2388 */
2389int
2390xlog_write(
2391        struct xlog             *log,
2392        struct xfs_log_vec      *log_vector,
2393        struct xlog_ticket      *ticket,
2394        xfs_lsn_t               *start_lsn,
2395        struct xlog_in_core     **commit_iclog,
2396        uint                    flags)
2397{
2398        struct xlog_in_core     *iclog = NULL;
2399        struct xfs_log_iovec    *vecp;
2400        struct xfs_log_vec      *lv;
2401        int                     len;
2402        int                     index;
2403        int                     partial_copy = 0;
2404        int                     partial_copy_len = 0;
2405        int                     contwr = 0;
2406        int                     record_cnt = 0;
2407        int                     data_cnt = 0;
2408        int                     error;
2409
2410        *start_lsn = 0;
2411
2412        len = xlog_write_calc_vec_length(ticket, log_vector);
2413
2414        /*
2415         * Region headers and bytes are already accounted for.
2416         * We only need to take into account start records and
2417         * split regions in this function.
2418         */
2419        if (ticket->t_flags & XLOG_TIC_INITED)
2420                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2421
2422        /*
2423         * Commit record headers need to be accounted for. These
2424         * come in as separate writes so are easy to detect.
2425         */
2426        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2427                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2428
2429        if (ticket->t_curr_res < 0) {
2430                xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2431                     "ctx ticket reservation ran out. Need to up reservation");
2432                xlog_print_tic_res(log->l_mp, ticket);
2433                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2434        }
2435
2436        index = 0;
2437        lv = log_vector;
2438        vecp = lv->lv_iovecp;
2439        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2440                void            *ptr;
2441                int             log_offset;
2442
2443                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2444                                                   &contwr, &log_offset);
2445                if (error)
2446                        return error;
2447
2448                ASSERT(log_offset <= iclog->ic_size - 1);
2449                ptr = iclog->ic_datap + log_offset;
2450
2451                /* start_lsn is the first lsn written to. That's all we need. */
2452                if (!*start_lsn)
2453                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2454
2455                /*
2456                 * This loop writes out as many regions as can fit in the amount
2457                 * of space which was allocated by xlog_state_get_iclog_space().
2458                 */
2459                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2460                        struct xfs_log_iovec    *reg;
2461                        struct xlog_op_header   *ophdr;
2462                        int                     start_rec_copy;
2463                        int                     copy_len;
2464                        int                     copy_off;
2465                        bool                    ordered = false;
2466
2467                        /* ordered log vectors have no regions to write */
2468                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2469                                ASSERT(lv->lv_niovecs == 0);
2470                                ordered = true;
2471                                goto next_lv;
2472                        }
2473
2474                        reg = &vecp[index];
2475                        ASSERT(reg->i_len % sizeof(int32_t) == 0);
2476                        ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2477
2478                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2479                        if (start_rec_copy) {
2480                                record_cnt++;
2481                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2482                                                   start_rec_copy);
2483                        }
2484
2485                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2486                        if (!ophdr)
2487                                return -EIO;
2488
2489                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2490                                           sizeof(struct xlog_op_header));
2491
2492                        len += xlog_write_setup_copy(ticket, ophdr,
2493                                                     iclog->ic_size-log_offset,
2494                                                     reg->i_len,
2495                                                     &copy_off, &copy_len,
2496                                                     &partial_copy,
2497                                                     &partial_copy_len);
2498                        xlog_verify_dest_ptr(log, ptr);
2499
2500                        /*
2501                         * Copy region.
2502                         *
2503                         * Unmount records just log an opheader, so can have
2504                         * empty payloads with no data region to copy. Hence we
2505                         * only copy the payload if the vector says it has data
2506                         * to copy.
2507                         */
2508                        ASSERT(copy_len >= 0);
2509                        if (copy_len > 0) {
2510                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2511                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2512                                                   copy_len);
2513                        }
2514                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2515                        record_cnt++;
2516                        data_cnt += contwr ? copy_len : 0;
2517
2518                        error = xlog_write_copy_finish(log, iclog, flags,
2519                                                       &record_cnt, &data_cnt,
2520                                                       &partial_copy,
2521                                                       &partial_copy_len,
2522                                                       log_offset,
2523                                                       commit_iclog);
2524                        if (error)
2525                                return error;
2526
2527                        /*
2528                         * if we had a partial copy, we need to get more iclog
2529                         * space but we don't want to increment the region
2530                         * index because there is still more is this region to
2531                         * write.
2532                         *
2533                         * If we completed writing this region, and we flushed
2534                         * the iclog (indicated by resetting of the record
2535                         * count), then we also need to get more log space. If
2536                         * this was the last record, though, we are done and
2537                         * can just return.
2538                         */
2539                        if (partial_copy)
2540                                break;
2541
2542                        if (++index == lv->lv_niovecs) {
2543next_lv:
2544                                lv = lv->lv_next;
2545                                index = 0;
2546                                if (lv)
2547                                        vecp = lv->lv_iovecp;
2548                        }
2549                        if (record_cnt == 0 && !ordered) {
2550                                if (!lv)
2551                                        return 0;
2552                                break;
2553                        }
2554                }
2555        }
2556
2557        ASSERT(len == 0);
2558
2559        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2560        if (!commit_iclog)
2561                return xlog_state_release_iclog(log, iclog);
2562
2563        ASSERT(flags & XLOG_COMMIT_TRANS);
2564        *commit_iclog = iclog;
2565        return 0;
2566}
2567
2568
2569/*****************************************************************************
2570 *
2571 *              State Machine functions
2572 *
2573 *****************************************************************************
2574 */
2575
2576/* Clean iclogs starting from the head.  This ordering must be
2577 * maintained, so an iclog doesn't become ACTIVE beyond one that
2578 * is SYNCING.  This is also required to maintain the notion that we use
2579 * a ordered wait queue to hold off would be writers to the log when every
2580 * iclog is trying to sync to disk.
2581 *
2582 * State Change: DIRTY -> ACTIVE
2583 */
2584STATIC void
2585xlog_state_clean_log(
2586        struct xlog *log)
2587{
2588        xlog_in_core_t  *iclog;
2589        int changed = 0;
2590
2591        iclog = log->l_iclog;
2592        do {
2593                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2594                        iclog->ic_state = XLOG_STATE_ACTIVE;
2595                        iclog->ic_offset       = 0;
2596                        ASSERT(iclog->ic_callback == NULL);
2597                        /*
2598                         * If the number of ops in this iclog indicate it just
2599                         * contains the dummy transaction, we can
2600                         * change state into IDLE (the second time around).
2601                         * Otherwise we should change the state into
2602                         * NEED a dummy.
2603                         * We don't need to cover the dummy.
2604                         */
2605                        if (!changed &&
2606                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2607                                        XLOG_COVER_OPS)) {
2608                                changed = 1;
2609                        } else {
2610                                /*
2611                                 * We have two dirty iclogs so start over
2612                                 * This could also be num of ops indicates
2613                                 * this is not the dummy going out.
2614                                 */
2615                                changed = 2;
2616                        }
2617                        iclog->ic_header.h_num_logops = 0;
2618                        memset(iclog->ic_header.h_cycle_data, 0,
2619                              sizeof(iclog->ic_header.h_cycle_data));
2620                        iclog->ic_header.h_lsn = 0;
2621                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2622                        /* do nothing */;
2623                else
2624                        break;  /* stop cleaning */
2625                iclog = iclog->ic_next;
2626        } while (iclog != log->l_iclog);
2627
2628        /* log is locked when we are called */
2629        /*
2630         * Change state for the dummy log recording.
2631         * We usually go to NEED. But we go to NEED2 if the changed indicates
2632         * we are done writing the dummy record.
2633         * If we are done with the second dummy recored (DONE2), then
2634         * we go to IDLE.
2635         */
2636        if (changed) {
2637                switch (log->l_covered_state) {
2638                case XLOG_STATE_COVER_IDLE:
2639                case XLOG_STATE_COVER_NEED:
2640                case XLOG_STATE_COVER_NEED2:
2641                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2642                        break;
2643
2644                case XLOG_STATE_COVER_DONE:
2645                        if (changed == 1)
2646                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2647                        else
2648                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2649                        break;
2650
2651                case XLOG_STATE_COVER_DONE2:
2652                        if (changed == 1)
2653                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2654                        else
2655                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2656                        break;
2657
2658                default:
2659                        ASSERT(0);
2660                }
2661        }
2662}       /* xlog_state_clean_log */
2663
2664STATIC xfs_lsn_t
2665xlog_get_lowest_lsn(
2666        struct xlog     *log)
2667{
2668        xlog_in_core_t  *lsn_log;
2669        xfs_lsn_t       lowest_lsn, lsn;
2670
2671        lsn_log = log->l_iclog;
2672        lowest_lsn = 0;
2673        do {
2674            if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2675                lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2676                if ((lsn && !lowest_lsn) ||
2677                    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2678                        lowest_lsn = lsn;
2679                }
2680            }
2681            lsn_log = lsn_log->ic_next;
2682        } while (lsn_log != log->l_iclog);
2683        return lowest_lsn;
2684}
2685
2686
2687STATIC void
2688xlog_state_do_callback(
2689        struct xlog             *log,
2690        int                     aborted,
2691        struct xlog_in_core     *ciclog)
2692{
2693        xlog_in_core_t     *iclog;
2694        xlog_in_core_t     *first_iclog;        /* used to know when we've
2695                                                 * processed all iclogs once */
2696        xfs_log_callback_t *cb, *cb_next;
2697        int                flushcnt = 0;
2698        xfs_lsn_t          lowest_lsn;
2699        int                ioerrors;    /* counter: iclogs with errors */
2700        int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2701        int                funcdidcallbacks; /* flag: function did callbacks */
2702        int                repeats;     /* for issuing console warnings if
2703                                         * looping too many times */
2704        int                wake = 0;
2705
2706        spin_lock(&log->l_icloglock);
2707        first_iclog = iclog = log->l_iclog;
2708        ioerrors = 0;
2709        funcdidcallbacks = 0;
2710        repeats = 0;
2711
2712        do {
2713                /*
2714                 * Scan all iclogs starting with the one pointed to by the
2715                 * log.  Reset this starting point each time the log is
2716                 * unlocked (during callbacks).
2717                 *
2718                 * Keep looping through iclogs until one full pass is made
2719                 * without running any callbacks.
2720                 */
2721                first_iclog = log->l_iclog;
2722                iclog = log->l_iclog;
2723                loopdidcallbacks = 0;
2724                repeats++;
2725
2726                do {
2727
2728                        /* skip all iclogs in the ACTIVE & DIRTY states */
2729                        if (iclog->ic_state &
2730                            (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2731                                iclog = iclog->ic_next;
2732                                continue;
2733                        }
2734
2735                        /*
2736                         * Between marking a filesystem SHUTDOWN and stopping
2737                         * the log, we do flush all iclogs to disk (if there
2738                         * wasn't a log I/O error). So, we do want things to
2739                         * go smoothly in case of just a SHUTDOWN  w/o a
2740                         * LOG_IO_ERROR.
2741                         */
2742                        if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2743                                /*
2744                                 * Can only perform callbacks in order.  Since
2745                                 * this iclog is not in the DONE_SYNC/
2746                                 * DO_CALLBACK state, we skip the rest and
2747                                 * just try to clean up.  If we set our iclog
2748                                 * to DO_CALLBACK, we will not process it when
2749                                 * we retry since a previous iclog is in the
2750                                 * CALLBACK and the state cannot change since
2751                                 * we are holding the l_icloglock.
2752                                 */
2753                                if (!(iclog->ic_state &
2754                                        (XLOG_STATE_DONE_SYNC |
2755                                                 XLOG_STATE_DO_CALLBACK))) {
2756                                        if (ciclog && (ciclog->ic_state ==
2757                                                        XLOG_STATE_DONE_SYNC)) {
2758                                                ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2759                                        }
2760                                        break;
2761                                }
2762                                /*
2763                                 * We now have an iclog that is in either the
2764                                 * DO_CALLBACK or DONE_SYNC states. The other
2765                                 * states (WANT_SYNC, SYNCING, or CALLBACK were
2766                                 * caught by the above if and are going to
2767                                 * clean (i.e. we aren't doing their callbacks)
2768                                 * see the above if.
2769                                 */
2770
2771                                /*
2772                                 * We will do one more check here to see if we
2773                                 * have chased our tail around.
2774                                 */
2775
2776                                lowest_lsn = xlog_get_lowest_lsn(log);
2777                                if (lowest_lsn &&
2778                                    XFS_LSN_CMP(lowest_lsn,
2779                                                be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2780                                        iclog = iclog->ic_next;
2781                                        continue; /* Leave this iclog for
2782                                                   * another thread */
2783                                }
2784
2785                                iclog->ic_state = XLOG_STATE_CALLBACK;
2786
2787
2788                                /*
2789                                 * Completion of a iclog IO does not imply that
2790                                 * a transaction has completed, as transactions
2791                                 * can be large enough to span many iclogs. We
2792                                 * cannot change the tail of the log half way
2793                                 * through a transaction as this may be the only
2794                                 * transaction in the log and moving th etail to
2795                                 * point to the middle of it will prevent
2796                                 * recovery from finding the start of the
2797                                 * transaction. Hence we should only update the
2798                                 * last_sync_lsn if this iclog contains
2799                                 * transaction completion callbacks on it.
2800                                 *
2801                                 * We have to do this before we drop the
2802                                 * icloglock to ensure we are the only one that
2803                                 * can update it.
2804                                 */
2805                                ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2806                                        be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2807                                if (iclog->ic_callback)
2808                                        atomic64_set(&log->l_last_sync_lsn,
2809                                                be64_to_cpu(iclog->ic_header.h_lsn));
2810
2811                        } else
2812                                ioerrors++;
2813
2814                        spin_unlock(&log->l_icloglock);
2815
2816                        /*
2817                         * Keep processing entries in the callback list until
2818                         * we come around and it is empty.  We need to
2819                         * atomically see that the list is empty and change the
2820                         * state to DIRTY so that we don't miss any more
2821                         * callbacks being added.
2822                         */
2823                        spin_lock(&iclog->ic_callback_lock);
2824                        cb = iclog->ic_callback;
2825                        while (cb) {
2826                                iclog->ic_callback_tail = &(iclog->ic_callback);
2827                                iclog->ic_callback = NULL;
2828                                spin_unlock(&iclog->ic_callback_lock);
2829
2830                                /* perform callbacks in the order given */
2831                                for (; cb; cb = cb_next) {
2832                                        cb_next = cb->cb_next;
2833                                        cb->cb_func(cb->cb_arg, aborted);
2834                                }
2835                                spin_lock(&iclog->ic_callback_lock);
2836                                cb = iclog->ic_callback;
2837                        }
2838
2839                        loopdidcallbacks++;
2840                        funcdidcallbacks++;
2841
2842                        spin_lock(&log->l_icloglock);
2843                        ASSERT(iclog->ic_callback == NULL);
2844                        spin_unlock(&iclog->ic_callback_lock);
2845                        if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2846                                iclog->ic_state = XLOG_STATE_DIRTY;
2847
2848                        /*
2849                         * Transition from DIRTY to ACTIVE if applicable.
2850                         * NOP if STATE_IOERROR.
2851                         */
2852                        xlog_state_clean_log(log);
2853
2854                        /* wake up threads waiting in xfs_log_force() */
2855                        wake_up_all(&iclog->ic_force_wait);
2856
2857                        iclog = iclog->ic_next;
2858                } while (first_iclog != iclog);
2859
2860                if (repeats > 5000) {
2861                        flushcnt += repeats;
2862                        repeats = 0;
2863                        xfs_warn(log->l_mp,
2864                                "%s: possible infinite loop (%d iterations)",
2865                                __func__, flushcnt);
2866                }
2867        } while (!ioerrors && loopdidcallbacks);
2868
2869#ifdef DEBUG
2870        /*
2871         * Make one last gasp attempt to see if iclogs are being left in limbo.
2872         * If the above loop finds an iclog earlier than the current iclog and
2873         * in one of the syncing states, the current iclog is put into
2874         * DO_CALLBACK and the callbacks are deferred to the completion of the
2875         * earlier iclog. Walk the iclogs in order and make sure that no iclog
2876         * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2877         * states.
2878         *
2879         * Note that SYNCING|IOABORT is a valid state so we cannot just check
2880         * for ic_state == SYNCING.
2881         */
2882        if (funcdidcallbacks) {
2883                first_iclog = iclog = log->l_iclog;
2884                do {
2885                        ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2886                        /*
2887                         * Terminate the loop if iclogs are found in states
2888                         * which will cause other threads to clean up iclogs.
2889                         *
2890                         * SYNCING - i/o completion will go through logs
2891                         * DONE_SYNC - interrupt thread should be waiting for
2892                         *              l_icloglock
2893                         * IOERROR - give up hope all ye who enter here
2894                         */
2895                        if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2896                            iclog->ic_state & XLOG_STATE_SYNCING ||
2897                            iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2898                            iclog->ic_state == XLOG_STATE_IOERROR )
2899                                break;
2900                        iclog = iclog->ic_next;
2901                } while (first_iclog != iclog);
2902        }
2903#endif
2904
2905        if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2906                wake = 1;
2907        spin_unlock(&log->l_icloglock);
2908
2909        if (wake)
2910                wake_up_all(&log->l_flush_wait);
2911}
2912
2913
2914/*
2915 * Finish transitioning this iclog to the dirty state.
2916 *
2917 * Make sure that we completely execute this routine only when this is
2918 * the last call to the iclog.  There is a good chance that iclog flushes,
2919 * when we reach the end of the physical log, get turned into 2 separate
2920 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2921 * routine.  By using the reference count bwritecnt, we guarantee that only
2922 * the second completion goes through.
2923 *
2924 * Callbacks could take time, so they are done outside the scope of the
2925 * global state machine log lock.
2926 */
2927STATIC void
2928xlog_state_done_syncing(
2929        xlog_in_core_t  *iclog,
2930        int             aborted)
2931{
2932        struct xlog        *log = iclog->ic_log;
2933
2934        spin_lock(&log->l_icloglock);
2935
2936        ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2937               iclog->ic_state == XLOG_STATE_IOERROR);
2938        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2939        ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2940
2941
2942        /*
2943         * If we got an error, either on the first buffer, or in the case of
2944         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2945         * and none should ever be attempted to be written to disk
2946         * again.
2947         */
2948        if (iclog->ic_state != XLOG_STATE_IOERROR) {
2949                if (--iclog->ic_bwritecnt == 1) {
2950                        spin_unlock(&log->l_icloglock);
2951                        return;
2952                }
2953                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2954        }
2955
2956        /*
2957         * Someone could be sleeping prior to writing out the next
2958         * iclog buffer, we wake them all, one will get to do the
2959         * I/O, the others get to wait for the result.
2960         */
2961        wake_up_all(&iclog->ic_write_wait);
2962        spin_unlock(&log->l_icloglock);
2963        xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2964}       /* xlog_state_done_syncing */
2965
2966
2967/*
2968 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2969 * sleep.  We wait on the flush queue on the head iclog as that should be
2970 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2971 * we will wait here and all new writes will sleep until a sync completes.
2972 *
2973 * The in-core logs are used in a circular fashion. They are not used
2974 * out-of-order even when an iclog past the head is free.
2975 *
2976 * return:
2977 *      * log_offset where xlog_write() can start writing into the in-core
2978 *              log's data space.
2979 *      * in-core log pointer to which xlog_write() should write.
2980 *      * boolean indicating this is a continued write to an in-core log.
2981 *              If this is the last write, then the in-core log's offset field
2982 *              needs to be incremented, depending on the amount of data which
2983 *              is copied.
2984 */
2985STATIC int
2986xlog_state_get_iclog_space(
2987        struct xlog             *log,
2988        int                     len,
2989        struct xlog_in_core     **iclogp,
2990        struct xlog_ticket      *ticket,
2991        int                     *continued_write,
2992        int                     *logoffsetp)
2993{
2994        int               log_offset;
2995        xlog_rec_header_t *head;
2996        xlog_in_core_t    *iclog;
2997        int               error;
2998
2999restart:
3000        spin_lock(&log->l_icloglock);
3001        if (XLOG_FORCED_SHUTDOWN(log)) {
3002                spin_unlock(&log->l_icloglock);
3003                return -EIO;
3004        }
3005
3006        iclog = log->l_iclog;
3007        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3008                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3009
3010                /* Wait for log writes to have flushed */
3011                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3012                goto restart;
3013        }
3014
3015        head = &iclog->ic_header;
3016
3017        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3018        log_offset = iclog->ic_offset;
3019
3020        /* On the 1st write to an iclog, figure out lsn.  This works
3021         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3022         * committing to.  If the offset is set, that's how many blocks
3023         * must be written.
3024         */
3025        if (log_offset == 0) {
3026                ticket->t_curr_res -= log->l_iclog_hsize;
3027                xlog_tic_add_region(ticket,
3028                                    log->l_iclog_hsize,
3029                                    XLOG_REG_TYPE_LRHEADER);
3030                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3031                head->h_lsn = cpu_to_be64(
3032                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3033                ASSERT(log->l_curr_block >= 0);
3034        }
3035
3036        /* If there is enough room to write everything, then do it.  Otherwise,
3037         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3038         * bit is on, so this will get flushed out.  Don't update ic_offset
3039         * until you know exactly how many bytes get copied.  Therefore, wait
3040         * until later to update ic_offset.
3041         *
3042         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3043         * can fit into remaining data section.
3044         */
3045        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3046                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3047
3048                /*
3049                 * If I'm the only one writing to this iclog, sync it to disk.
3050                 * We need to do an atomic compare and decrement here to avoid
3051                 * racing with concurrent atomic_dec_and_lock() calls in
3052                 * xlog_state_release_iclog() when there is more than one
3053                 * reference to the iclog.
3054                 */
3055                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3056                        /* we are the only one */
3057                        spin_unlock(&log->l_icloglock);
3058                        error = xlog_state_release_iclog(log, iclog);
3059                        if (error)
3060                                return error;
3061                } else {
3062                        spin_unlock(&log->l_icloglock);
3063                }
3064                goto restart;
3065        }
3066
3067        /* Do we have enough room to write the full amount in the remainder
3068         * of this iclog?  Or must we continue a write on the next iclog and
3069         * mark this iclog as completely taken?  In the case where we switch
3070         * iclogs (to mark it taken), this particular iclog will release/sync
3071         * to disk in xlog_write().
3072         */
3073        if (len <= iclog->ic_size - iclog->ic_offset) {
3074                *continued_write = 0;
3075                iclog->ic_offset += len;
3076        } else {
3077                *continued_write = 1;
3078                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3079        }
3080        *iclogp = iclog;
3081
3082        ASSERT(iclog->ic_offset <= iclog->ic_size);
3083        spin_unlock(&log->l_icloglock);
3084
3085        *logoffsetp = log_offset;
3086        return 0;
3087}       /* xlog_state_get_iclog_space */
3088
3089/* The first cnt-1 times through here we don't need to
3090 * move the grant write head because the permanent
3091 * reservation has reserved cnt times the unit amount.
3092 * Release part of current permanent unit reservation and
3093 * reset current reservation to be one units worth.  Also
3094 * move grant reservation head forward.
3095 */
3096STATIC void
3097xlog_regrant_reserve_log_space(
3098        struct xlog             *log,
3099        struct xlog_ticket      *ticket)
3100{
3101        trace_xfs_log_regrant_reserve_enter(log, ticket);
3102
3103        if (ticket->t_cnt > 0)
3104                ticket->t_cnt--;
3105
3106        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3107                                        ticket->t_curr_res);
3108        xlog_grant_sub_space(log, &log->l_write_head.grant,
3109                                        ticket->t_curr_res);
3110        ticket->t_curr_res = ticket->t_unit_res;
3111        xlog_tic_reset_res(ticket);
3112
3113        trace_xfs_log_regrant_reserve_sub(log, ticket);
3114
3115        /* just return if we still have some of the pre-reserved space */
3116        if (ticket->t_cnt > 0)
3117                return;
3118
3119        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3120                                        ticket->t_unit_res);
3121
3122        trace_xfs_log_regrant_reserve_exit(log, ticket);
3123
3124        ticket->t_curr_res = ticket->t_unit_res;
3125        xlog_tic_reset_res(ticket);
3126}       /* xlog_regrant_reserve_log_space */
3127
3128
3129/*
3130 * Give back the space left from a reservation.
3131 *
3132 * All the information we need to make a correct determination of space left
3133 * is present.  For non-permanent reservations, things are quite easy.  The
3134 * count should have been decremented to zero.  We only need to deal with the
3135 * space remaining in the current reservation part of the ticket.  If the
3136 * ticket contains a permanent reservation, there may be left over space which
3137 * needs to be released.  A count of N means that N-1 refills of the current
3138 * reservation can be done before we need to ask for more space.  The first
3139 * one goes to fill up the first current reservation.  Once we run out of
3140 * space, the count will stay at zero and the only space remaining will be
3141 * in the current reservation field.
3142 */
3143STATIC void
3144xlog_ungrant_log_space(
3145        struct xlog             *log,
3146        struct xlog_ticket      *ticket)
3147{
3148        int     bytes;
3149
3150        if (ticket->t_cnt > 0)
3151                ticket->t_cnt--;
3152
3153        trace_xfs_log_ungrant_enter(log, ticket);
3154        trace_xfs_log_ungrant_sub(log, ticket);
3155
3156        /*
3157         * If this is a permanent reservation ticket, we may be able to free
3158         * up more space based on the remaining count.
3159         */
3160        bytes = ticket->t_curr_res;
3161        if (ticket->t_cnt > 0) {
3162                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3163                bytes += ticket->t_unit_res*ticket->t_cnt;
3164        }
3165
3166        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3167        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3168
3169        trace_xfs_log_ungrant_exit(log, ticket);
3170
3171        xfs_log_space_wake(log->l_mp);
3172}
3173
3174/*
3175 * Flush iclog to disk if this is the last reference to the given iclog and
3176 * the WANT_SYNC bit is set.
3177 *
3178 * When this function is entered, the iclog is not necessarily in the
3179 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3180 *
3181 *
3182 */
3183STATIC int
3184xlog_state_release_iclog(
3185        struct xlog             *log,
3186        struct xlog_in_core     *iclog)
3187{
3188        int             sync = 0;       /* do we sync? */
3189
3190        if (iclog->ic_state & XLOG_STATE_IOERROR)
3191                return -EIO;
3192
3193        ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3194        if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3195                return 0;
3196
3197        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3198                spin_unlock(&log->l_icloglock);
3199                return -EIO;
3200        }
3201        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3202               iclog->ic_state == XLOG_STATE_WANT_SYNC);
3203
3204        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3205                /* update tail before writing to iclog */
3206                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3207                sync++;
3208                iclog->ic_state = XLOG_STATE_SYNCING;
3209                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3210                xlog_verify_tail_lsn(log, iclog, tail_lsn);
3211                /* cycle incremented when incrementing curr_block */
3212        }
3213        spin_unlock(&log->l_icloglock);
3214
3215        /*
3216         * We let the log lock go, so it's possible that we hit a log I/O
3217         * error or some other SHUTDOWN condition that marks the iclog
3218         * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3219         * this iclog has consistent data, so we ignore IOERROR
3220         * flags after this point.
3221         */
3222        if (sync)
3223                return xlog_sync(log, iclog);
3224        return 0;
3225}       /* xlog_state_release_iclog */
3226
3227
3228/*
3229 * This routine will mark the current iclog in the ring as WANT_SYNC
3230 * and move the current iclog pointer to the next iclog in the ring.
3231 * When this routine is called from xlog_state_get_iclog_space(), the
3232 * exact size of the iclog has not yet been determined.  All we know is
3233 * that every data block.  We have run out of space in this log record.
3234 */
3235STATIC void
3236xlog_state_switch_iclogs(
3237        struct xlog             *log,
3238        struct xlog_in_core     *iclog,
3239        int                     eventual_size)
3240{
3241        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3242        if (!eventual_size)
3243                eventual_size = iclog->ic_offset;
3244        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3245        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3246        log->l_prev_block = log->l_curr_block;
3247        log->l_prev_cycle = log->l_curr_cycle;
3248
3249        /* roll log?: ic_offset changed later */
3250        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3251
3252        /* Round up to next log-sunit */
3253        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3254            log->l_mp->m_sb.sb_logsunit > 1) {
3255                uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3256                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3257        }
3258
3259        if (log->l_curr_block >= log->l_logBBsize) {
3260                /*
3261                 * Rewind the current block before the cycle is bumped to make
3262                 * sure that the combined LSN never transiently moves forward
3263                 * when the log wraps to the next cycle. This is to support the
3264                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3265                 * other cases should acquire l_icloglock.
3266                 */
3267                log->l_curr_block -= log->l_logBBsize;
3268                ASSERT(log->l_curr_block >= 0);
3269                smp_wmb();
3270                log->l_curr_cycle++;
3271                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3272                        log->l_curr_cycle++;
3273        }
3274        ASSERT(iclog == log->l_iclog);
3275        log->l_iclog = iclog->ic_next;
3276}       /* xlog_state_switch_iclogs */
3277
3278/*
3279 * Write out all data in the in-core log as of this exact moment in time.
3280 *
3281 * Data may be written to the in-core log during this call.  However,
3282 * we don't guarantee this data will be written out.  A change from past
3283 * implementation means this routine will *not* write out zero length LRs.
3284 *
3285 * Basically, we try and perform an intelligent scan of the in-core logs.
3286 * If we determine there is no flushable data, we just return.  There is no
3287 * flushable data if:
3288 *
3289 *      1. the current iclog is active and has no data; the previous iclog
3290 *              is in the active or dirty state.
3291 *      2. the current iclog is drity, and the previous iclog is in the
3292 *              active or dirty state.
3293 *
3294 * We may sleep if:
3295 *
3296 *      1. the current iclog is not in the active nor dirty state.
3297 *      2. the current iclog dirty, and the previous iclog is not in the
3298 *              active nor dirty state.
3299 *      3. the current iclog is active, and there is another thread writing
3300 *              to this particular iclog.
3301 *      4. a) the current iclog is active and has no other writers
3302 *         b) when we return from flushing out this iclog, it is still
3303 *              not in the active nor dirty state.
3304 */
3305int
3306xfs_log_force(
3307        struct xfs_mount        *mp,
3308        uint                    flags)
3309{
3310        struct xlog             *log = mp->m_log;
3311        struct xlog_in_core     *iclog;
3312        xfs_lsn_t               lsn;
3313
3314        XFS_STATS_INC(mp, xs_log_force);
3315        trace_xfs_log_force(mp, 0, _RET_IP_);
3316
3317        xlog_cil_force(log);
3318
3319        spin_lock(&log->l_icloglock);
3320        iclog = log->l_iclog;
3321        if (iclog->ic_state & XLOG_STATE_IOERROR)
3322                goto out_error;
3323
3324        if (iclog->ic_state == XLOG_STATE_DIRTY ||
3325            (iclog->ic_state == XLOG_STATE_ACTIVE &&
3326             atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3327                /*
3328                 * If the head is dirty or (active and empty), then we need to
3329                 * look at the previous iclog.
3330                 *
3331                 * If the previous iclog is active or dirty we are done.  There
3332                 * is nothing to sync out. Otherwise, we attach ourselves to the
3333                 * previous iclog and go to sleep.
3334                 */
3335                iclog = iclog->ic_prev;
3336                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3337                    iclog->ic_state == XLOG_STATE_DIRTY)
3338                        goto out_unlock;
3339        } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3340                if (atomic_read(&iclog->ic_refcnt) == 0) {
3341                        /*
3342                         * We are the only one with access to this iclog.
3343                         *
3344                         * Flush it out now.  There should be a roundoff of zero
3345                         * to show that someone has already taken care of the
3346                         * roundoff from the previous sync.
3347                         */
3348                        atomic_inc(&iclog->ic_refcnt);
3349                        lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3350                        xlog_state_switch_iclogs(log, iclog, 0);
3351                        spin_unlock(&log->l_icloglock);
3352
3353                        if (xlog_state_release_iclog(log, iclog))
3354                                return -EIO;
3355
3356                        spin_lock(&log->l_icloglock);
3357                        if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3358                            iclog->ic_state == XLOG_STATE_DIRTY)
3359                                goto out_unlock;
3360                } else {
3361                        /*
3362                         * Someone else is writing to this iclog.
3363                         *
3364                         * Use its call to flush out the data.  However, the
3365                         * other thread may not force out this LR, so we mark
3366                         * it WANT_SYNC.
3367                         */
3368                        xlog_state_switch_iclogs(log, iclog, 0);
3369                }
3370        } else {
3371                /*
3372                 * If the head iclog is not active nor dirty, we just attach
3373                 * ourselves to the head and go to sleep if necessary.
3374                 */
3375                ;
3376        }
3377
3378        if (!(flags & XFS_LOG_SYNC))
3379                goto out_unlock;
3380
3381        if (iclog->ic_state & XLOG_STATE_IOERROR)
3382                goto out_error;
3383        XFS_STATS_INC(mp, xs_log_force_sleep);
3384        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3385        if (iclog->ic_state & XLOG_STATE_IOERROR)
3386                return -EIO;
3387        return 0;
3388
3389out_unlock:
3390        spin_unlock(&log->l_icloglock);
3391        return 0;
3392out_error:
3393        spin_unlock(&log->l_icloglock);
3394        return -EIO;
3395}
3396
3397static int
3398__xfs_log_force_lsn(
3399        struct xfs_mount        *mp,
3400        xfs_lsn_t               lsn,
3401        uint                    flags,
3402        int                     *log_flushed,
3403        bool                    already_slept)
3404{
3405        struct xlog             *log = mp->m_log;
3406        struct xlog_in_core     *iclog;
3407
3408        spin_lock(&log->l_icloglock);
3409        iclog = log->l_iclog;
3410        if (iclog->ic_state & XLOG_STATE_IOERROR)
3411                goto out_error;
3412
3413        while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3414                iclog = iclog->ic_next;
3415                if (iclog == log->l_iclog)
3416                        goto out_unlock;
3417        }
3418
3419        if (iclog->ic_state == XLOG_STATE_DIRTY)
3420                goto out_unlock;
3421
3422        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3423                /*
3424                 * We sleep here if we haven't already slept (e.g. this is the
3425                 * first time we've looked at the correct iclog buf) and the
3426                 * buffer before us is going to be sync'ed.  The reason for this
3427                 * is that if we are doing sync transactions here, by waiting
3428                 * for the previous I/O to complete, we can allow a few more
3429                 * transactions into this iclog before we close it down.
3430                 *
3431                 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3432                 * refcnt so we can release the log (which drops the ref count).
3433                 * The state switch keeps new transaction commits from using
3434                 * this buffer.  When the current commits finish writing into
3435                 * the buffer, the refcount will drop to zero and the buffer
3436                 * will go out then.
3437                 */
3438                if (!already_slept &&
3439                    (iclog->ic_prev->ic_state &
3440                     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3441                        ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3442
3443                        XFS_STATS_INC(mp, xs_log_force_sleep);
3444
3445                        xlog_wait(&iclog->ic_prev->ic_write_wait,
3446                                        &log->l_icloglock);
3447                        return -EAGAIN;
3448                }
3449                atomic_inc(&iclog->ic_refcnt);
3450                xlog_state_switch_iclogs(log, iclog, 0);
3451                spin_unlock(&log->l_icloglock);
3452                if (xlog_state_release_iclog(log, iclog))
3453                        return -EIO;
3454                if (log_flushed)
3455                        *log_flushed = 1;
3456                spin_lock(&log->l_icloglock);
3457        }
3458
3459        if (!(flags & XFS_LOG_SYNC) ||
3460            (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3461                goto out_unlock;
3462
3463        if (iclog->ic_state & XLOG_STATE_IOERROR)
3464                goto out_error;
3465
3466        XFS_STATS_INC(mp, xs_log_force_sleep);
3467        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3468        if (iclog->ic_state & XLOG_STATE_IOERROR)
3469                return -EIO;
3470        return 0;
3471
3472out_unlock:
3473        spin_unlock(&log->l_icloglock);
3474        return 0;
3475out_error:
3476        spin_unlock(&log->l_icloglock);
3477        return -EIO;
3478}
3479
3480/*
3481 * Force the in-core log to disk for a specific LSN.
3482 *
3483 * Find in-core log with lsn.
3484 *      If it is in the DIRTY state, just return.
3485 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3486 *              state and go to sleep or return.
3487 *      If it is in any other state, go to sleep or return.
3488 *
3489 * Synchronous forces are implemented with a wait queue.  All callers trying
3490 * to force a given lsn to disk must wait on the queue attached to the
3491 * specific in-core log.  When given in-core log finally completes its write
3492 * to disk, that thread will wake up all threads waiting on the queue.
3493 */
3494int
3495xfs_log_force_lsn(
3496        struct xfs_mount        *mp,
3497        xfs_lsn_t               lsn,
3498        uint                    flags,
3499        int                     *log_flushed)
3500{
3501        int                     ret;
3502        ASSERT(lsn != 0);
3503
3504        XFS_STATS_INC(mp, xs_log_force);
3505        trace_xfs_log_force(mp, lsn, _RET_IP_);
3506
3507        lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3508        if (lsn == NULLCOMMITLSN)
3509                return 0;
3510
3511        ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3512        if (ret == -EAGAIN)
3513                ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3514        return ret;
3515}
3516
3517/*
3518 * Called when we want to mark the current iclog as being ready to sync to
3519 * disk.
3520 */
3521STATIC void
3522xlog_state_want_sync(
3523        struct xlog             *log,
3524        struct xlog_in_core     *iclog)
3525{
3526        assert_spin_locked(&log->l_icloglock);
3527
3528        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3529                xlog_state_switch_iclogs(log, iclog, 0);
3530        } else {
3531                ASSERT(iclog->ic_state &
3532                        (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3533        }
3534}
3535
3536
3537/*****************************************************************************
3538 *
3539 *              TICKET functions
3540 *
3541 *****************************************************************************
3542 */
3543
3544/*
3545 * Free a used ticket when its refcount falls to zero.
3546 */
3547void
3548xfs_log_ticket_put(
3549        xlog_ticket_t   *ticket)
3550{
3551        ASSERT(atomic_read(&ticket->t_ref) > 0);
3552        if (atomic_dec_and_test(&ticket->t_ref))
3553                kmem_zone_free(xfs_log_ticket_zone, ticket);
3554}
3555
3556xlog_ticket_t *
3557xfs_log_ticket_get(
3558        xlog_ticket_t   *ticket)
3559{
3560        ASSERT(atomic_read(&ticket->t_ref) > 0);
3561        atomic_inc(&ticket->t_ref);
3562        return ticket;
3563}
3564
3565/*
3566 * Figure out the total log space unit (in bytes) that would be
3567 * required for a log ticket.
3568 */
3569int
3570xfs_log_calc_unit_res(
3571        struct xfs_mount        *mp,
3572        int                     unit_bytes)
3573{
3574        struct xlog             *log = mp->m_log;
3575        int                     iclog_space;
3576        uint                    num_headers;
3577
3578        /*
3579         * Permanent reservations have up to 'cnt'-1 active log operations
3580         * in the log.  A unit in this case is the amount of space for one
3581         * of these log operations.  Normal reservations have a cnt of 1
3582         * and their unit amount is the total amount of space required.
3583         *
3584         * The following lines of code account for non-transaction data
3585         * which occupy space in the on-disk log.
3586         *
3587         * Normal form of a transaction is:
3588         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3589         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3590         *
3591         * We need to account for all the leadup data and trailer data
3592         * around the transaction data.
3593         * And then we need to account for the worst case in terms of using
3594         * more space.
3595         * The worst case will happen if:
3596         * - the placement of the transaction happens to be such that the
3597         *   roundoff is at its maximum
3598         * - the transaction data is synced before the commit record is synced
3599         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3600         *   Therefore the commit record is in its own Log Record.
3601         *   This can happen as the commit record is called with its
3602         *   own region to xlog_write().
3603         *   This then means that in the worst case, roundoff can happen for
3604         *   the commit-rec as well.
3605         *   The commit-rec is smaller than padding in this scenario and so it is
3606         *   not added separately.
3607         */
3608
3609        /* for trans header */
3610        unit_bytes += sizeof(xlog_op_header_t);
3611        unit_bytes += sizeof(xfs_trans_header_t);
3612
3613        /* for start-rec */
3614        unit_bytes += sizeof(xlog_op_header_t);
3615
3616        /*
3617         * for LR headers - the space for data in an iclog is the size minus
3618         * the space used for the headers. If we use the iclog size, then we
3619         * undercalculate the number of headers required.
3620         *
3621         * Furthermore - the addition of op headers for split-recs might
3622         * increase the space required enough to require more log and op
3623         * headers, so take that into account too.
3624         *
3625         * IMPORTANT: This reservation makes the assumption that if this
3626         * transaction is the first in an iclog and hence has the LR headers
3627         * accounted to it, then the remaining space in the iclog is
3628         * exclusively for this transaction.  i.e. if the transaction is larger
3629         * than the iclog, it will be the only thing in that iclog.
3630         * Fundamentally, this means we must pass the entire log vector to
3631         * xlog_write to guarantee this.
3632         */
3633        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3634        num_headers = howmany(unit_bytes, iclog_space);
3635
3636        /* for split-recs - ophdrs added when data split over LRs */
3637        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3638
3639        /* add extra header reservations if we overrun */
3640        while (!num_headers ||
3641               howmany(unit_bytes, iclog_space) > num_headers) {
3642                unit_bytes += sizeof(xlog_op_header_t);
3643                num_headers++;
3644        }
3645        unit_bytes += log->l_iclog_hsize * num_headers;
3646
3647        /* for commit-rec LR header - note: padding will subsume the ophdr */
3648        unit_bytes += log->l_iclog_hsize;
3649
3650        /* for roundoff padding for transaction data and one for commit record */
3651        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3652                /* log su roundoff */
3653                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3654        } else {
3655                /* BB roundoff */
3656                unit_bytes += 2 * BBSIZE;
3657        }
3658
3659        return unit_bytes;
3660}
3661
3662/*
3663 * Allocate and initialise a new log ticket.
3664 */
3665struct xlog_ticket *
3666xlog_ticket_alloc(
3667        struct xlog             *log,
3668        int                     unit_bytes,
3669        int                     cnt,
3670        char                    client,
3671        bool                    permanent,
3672        xfs_km_flags_t          alloc_flags)
3673{
3674        struct xlog_ticket      *tic;
3675        int                     unit_res;
3676
3677        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3678        if (!tic)
3679                return NULL;
3680
3681        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3682
3683        atomic_set(&tic->t_ref, 1);
3684        tic->t_task             = current;
3685        INIT_LIST_HEAD(&tic->t_queue);
3686        tic->t_unit_res         = unit_res;
3687        tic->t_curr_res         = unit_res;
3688        tic->t_cnt              = cnt;
3689        tic->t_ocnt             = cnt;
3690        tic->t_tid              = prandom_u32();
3691        tic->t_clientid         = client;
3692        tic->t_flags            = XLOG_TIC_INITED;
3693        if (permanent)
3694                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3695
3696        xlog_tic_reset_res(tic);
3697
3698        return tic;
3699}
3700
3701
3702/******************************************************************************
3703 *
3704 *              Log debug routines
3705 *
3706 ******************************************************************************
3707 */
3708#if defined(DEBUG)
3709/*
3710 * Make sure that the destination ptr is within the valid data region of
3711 * one of the iclogs.  This uses backup pointers stored in a different
3712 * part of the log in case we trash the log structure.
3713 */
3714STATIC void
3715xlog_verify_dest_ptr(
3716        struct xlog     *log,
3717        void            *ptr)
3718{
3719        int i;
3720        int good_ptr = 0;
3721
3722        for (i = 0; i < log->l_iclog_bufs; i++) {
3723                if (ptr >= log->l_iclog_bak[i] &&
3724                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3725                        good_ptr++;
3726        }
3727
3728        if (!good_ptr)
3729                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3730}
3731
3732/*
3733 * Check to make sure the grant write head didn't just over lap the tail.  If
3734 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3735 * the cycles differ by exactly one and check the byte count.
3736 *
3737 * This check is run unlocked, so can give false positives. Rather than assert
3738 * on failures, use a warn-once flag and a panic tag to allow the admin to
3739 * determine if they want to panic the machine when such an error occurs. For
3740 * debug kernels this will have the same effect as using an assert but, unlinke
3741 * an assert, it can be turned off at runtime.
3742 */
3743STATIC void
3744xlog_verify_grant_tail(
3745        struct xlog     *log)
3746{
3747        int             tail_cycle, tail_blocks;
3748        int             cycle, space;
3749
3750        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3751        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3752        if (tail_cycle != cycle) {
3753                if (cycle - 1 != tail_cycle &&
3754                    !(log->l_flags & XLOG_TAIL_WARN)) {
3755                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3756                                "%s: cycle - 1 != tail_cycle", __func__);
3757                        log->l_flags |= XLOG_TAIL_WARN;
3758                }
3759
3760                if (space > BBTOB(tail_blocks) &&
3761                    !(log->l_flags & XLOG_TAIL_WARN)) {
3762                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3763                                "%s: space > BBTOB(tail_blocks)", __func__);
3764                        log->l_flags |= XLOG_TAIL_WARN;
3765                }
3766        }
3767}
3768
3769/* check if it will fit */
3770STATIC void
3771xlog_verify_tail_lsn(
3772        struct xlog             *log,
3773        struct xlog_in_core     *iclog,
3774        xfs_lsn_t               tail_lsn)
3775{
3776    int blocks;
3777
3778    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3779        blocks =
3780            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3781        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3782                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3783    } else {
3784        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3785
3786        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3787                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3788
3789        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3790        if (blocks < BTOBB(iclog->ic_offset) + 1)
3791                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3792    }
3793}       /* xlog_verify_tail_lsn */
3794
3795/*
3796 * Perform a number of checks on the iclog before writing to disk.
3797 *
3798 * 1. Make sure the iclogs are still circular
3799 * 2. Make sure we have a good magic number
3800 * 3. Make sure we don't have magic numbers in the data
3801 * 4. Check fields of each log operation header for:
3802 *      A. Valid client identifier
3803 *      B. tid ptr value falls in valid ptr space (user space code)
3804 *      C. Length in log record header is correct according to the
3805 *              individual operation headers within record.
3806 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3807 *      log, check the preceding blocks of the physical log to make sure all
3808 *      the cycle numbers agree with the current cycle number.
3809 */
3810STATIC void
3811xlog_verify_iclog(
3812        struct xlog             *log,
3813        struct xlog_in_core     *iclog,
3814        int                     count,
3815        bool                    syncing)
3816{
3817        xlog_op_header_t        *ophead;
3818        xlog_in_core_t          *icptr;
3819        xlog_in_core_2_t        *xhdr;
3820        void                    *base_ptr, *ptr, *p;
3821        ptrdiff_t               field_offset;
3822        uint8_t                 clientid;
3823        int                     len, i, j, k, op_len;
3824        int                     idx;
3825
3826        /* check validity of iclog pointers */
3827        spin_lock(&log->l_icloglock);
3828        icptr = log->l_iclog;
3829        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3830                ASSERT(icptr);
3831
3832        if (icptr != log->l_iclog)
3833                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3834        spin_unlock(&log->l_icloglock);
3835
3836        /* check log magic numbers */
3837        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3838                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3839
3840        base_ptr = ptr = &iclog->ic_header;
3841        p = &iclog->ic_header;
3842        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3843                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3844                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3845                                __func__);
3846        }
3847
3848        /* check fields */
3849        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3850        base_ptr = ptr = iclog->ic_datap;
3851        ophead = ptr;
3852        xhdr = iclog->ic_data;
3853        for (i = 0; i < len; i++) {
3854                ophead = ptr;
3855
3856                /* clientid is only 1 byte */
3857                p = &ophead->oh_clientid;
3858                field_offset = p - base_ptr;
3859                if (!syncing || (field_offset & 0x1ff)) {
3860                        clientid = ophead->oh_clientid;
3861                } else {
3862                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3863                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3864                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3865                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3866                                clientid = xlog_get_client_id(
3867                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3868                        } else {
3869                                clientid = xlog_get_client_id(
3870                                        iclog->ic_header.h_cycle_data[idx]);
3871                        }
3872                }
3873                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3874                        xfs_warn(log->l_mp,
3875                                "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3876                                __func__, clientid, ophead,
3877                                (unsigned long)field_offset);
3878
3879                /* check length */
3880                p = &ophead->oh_len;
3881                field_offset = p - base_ptr;
3882                if (!syncing || (field_offset & 0x1ff)) {
3883                        op_len = be32_to_cpu(ophead->oh_len);
3884                } else {
3885                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3886                                    (uintptr_t)iclog->ic_datap);
3887                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3888                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3889                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3890                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3891                        } else {
3892                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3893                        }
3894                }
3895                ptr += sizeof(xlog_op_header_t) + op_len;
3896        }
3897}       /* xlog_verify_iclog */
3898#endif
3899
3900/*
3901 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3902 */
3903STATIC int
3904xlog_state_ioerror(
3905        struct xlog     *log)
3906{
3907        xlog_in_core_t  *iclog, *ic;
3908
3909        iclog = log->l_iclog;
3910        if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3911                /*
3912                 * Mark all the incore logs IOERROR.
3913                 * From now on, no log flushes will result.
3914                 */
3915                ic = iclog;
3916                do {
3917                        ic->ic_state = XLOG_STATE_IOERROR;
3918                        ic = ic->ic_next;
3919                } while (ic != iclog);
3920                return 0;
3921        }
3922        /*
3923         * Return non-zero, if state transition has already happened.
3924         */
3925        return 1;
3926}
3927
3928/*
3929 * This is called from xfs_force_shutdown, when we're forcibly
3930 * shutting down the filesystem, typically because of an IO error.
3931 * Our main objectives here are to make sure that:
3932 *      a. if !logerror, flush the logs to disk. Anything modified
3933 *         after this is ignored.
3934 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3935 *         parties to find out, 'atomically'.
3936 *      c. those who're sleeping on log reservations, pinned objects and
3937 *          other resources get woken up, and be told the bad news.
3938 *      d. nothing new gets queued up after (b) and (c) are done.
3939 *
3940 * Note: for the !logerror case we need to flush the regions held in memory out
3941 * to disk first. This needs to be done before the log is marked as shutdown,
3942 * otherwise the iclog writes will fail.
3943 */
3944int
3945xfs_log_force_umount(
3946        struct xfs_mount        *mp,
3947        int                     logerror)
3948{
3949        struct xlog     *log;
3950        int             retval;
3951
3952        log = mp->m_log;
3953
3954        /*
3955         * If this happens during log recovery, don't worry about
3956         * locking; the log isn't open for business yet.
3957         */
3958        if (!log ||
3959            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3960                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3961                if (mp->m_sb_bp)
3962                        mp->m_sb_bp->b_flags |= XBF_DONE;
3963                return 0;
3964        }
3965
3966        /*
3967         * Somebody could've already done the hard work for us.
3968         * No need to get locks for this.
3969         */
3970        if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3971                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3972                return 1;
3973        }
3974
3975        /*
3976         * Flush all the completed transactions to disk before marking the log
3977         * being shut down. We need to do it in this order to ensure that
3978         * completed operations are safely on disk before we shut down, and that
3979         * we don't have to issue any buffer IO after the shutdown flags are set
3980         * to guarantee this.
3981         */
3982        if (!logerror)
3983                xfs_log_force(mp, XFS_LOG_SYNC);
3984
3985        /*
3986         * mark the filesystem and the as in a shutdown state and wake
3987         * everybody up to tell them the bad news.
3988         */
3989        spin_lock(&log->l_icloglock);
3990        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3991        if (mp->m_sb_bp)
3992                mp->m_sb_bp->b_flags |= XBF_DONE;
3993
3994        /*
3995         * Mark the log and the iclogs with IO error flags to prevent any
3996         * further log IO from being issued or completed.
3997         */
3998        log->l_flags |= XLOG_IO_ERROR;
3999        retval = xlog_state_ioerror(log);
4000        spin_unlock(&log->l_icloglock);
4001
4002        /*
4003         * We don't want anybody waiting for log reservations after this. That
4004         * means we have to wake up everybody queued up on reserveq as well as
4005         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4006         * we don't enqueue anything once the SHUTDOWN flag is set, and this
4007         * action is protected by the grant locks.
4008         */
4009        xlog_grant_head_wake_all(&log->l_reserve_head);
4010        xlog_grant_head_wake_all(&log->l_write_head);
4011
4012        /*
4013         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4014         * as if the log writes were completed. The abort handling in the log
4015         * item committed callback functions will do this again under lock to
4016         * avoid races.
4017         */
4018        wake_up_all(&log->l_cilp->xc_commit_wait);
4019        xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4020
4021#ifdef XFSERRORDEBUG
4022        {
4023                xlog_in_core_t  *iclog;
4024
4025                spin_lock(&log->l_icloglock);
4026                iclog = log->l_iclog;
4027                do {
4028                        ASSERT(iclog->ic_callback == 0);
4029                        iclog = iclog->ic_next;
4030                } while (iclog != log->l_iclog);
4031                spin_unlock(&log->l_icloglock);
4032        }
4033#endif
4034        /* return non-zero if log IOERROR transition had already happened */
4035        return retval;
4036}
4037
4038STATIC int
4039xlog_iclogs_empty(
4040        struct xlog     *log)
4041{
4042        xlog_in_core_t  *iclog;
4043
4044        iclog = log->l_iclog;
4045        do {
4046                /* endianness does not matter here, zero is zero in
4047                 * any language.
4048                 */
4049                if (iclog->ic_header.h_num_logops)
4050                        return 0;
4051                iclog = iclog->ic_next;
4052        } while (iclog != log->l_iclog);
4053        return 1;
4054}
4055
4056/*
4057 * Verify that an LSN stamped into a piece of metadata is valid. This is
4058 * intended for use in read verifiers on v5 superblocks.
4059 */
4060bool
4061xfs_log_check_lsn(
4062        struct xfs_mount        *mp,
4063        xfs_lsn_t               lsn)
4064{
4065        struct xlog             *log = mp->m_log;
4066        bool                    valid;
4067
4068        /*
4069         * norecovery mode skips mount-time log processing and unconditionally
4070         * resets the in-core LSN. We can't validate in this mode, but
4071         * modifications are not allowed anyways so just return true.
4072         */
4073        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4074                return true;
4075
4076        /*
4077         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4078         * handled by recovery and thus safe to ignore here.
4079         */
4080        if (lsn == NULLCOMMITLSN)
4081                return true;
4082
4083        valid = xlog_valid_lsn(mp->m_log, lsn);
4084
4085        /* warn the user about what's gone wrong before verifier failure */
4086        if (!valid) {
4087                spin_lock(&log->l_icloglock);
4088                xfs_warn(mp,
4089"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4090"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4091                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4092                         log->l_curr_cycle, log->l_curr_block);
4093                spin_unlock(&log->l_icloglock);
4094        }
4095
4096        return valid;
4097}
4098