linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_da_format.h"
  29#include "xfs_da_btree.h"
  30#include "xfs_inode.h"
  31#include "xfs_dir2.h"
  32#include "xfs_ialloc.h"
  33#include "xfs_alloc.h"
  34#include "xfs_rtalloc.h"
  35#include "xfs_bmap.h"
  36#include "xfs_trans.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_log.h"
  39#include "xfs_error.h"
  40#include "xfs_quota.h"
  41#include "xfs_fsops.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_sysfs.h"
  45#include "xfs_rmap_btree.h"
  46#include "xfs_refcount_btree.h"
  47#include "xfs_reflink.h"
  48#include "xfs_extent_busy.h"
  49
  50
  51static DEFINE_MUTEX(xfs_uuid_table_mutex);
  52static int xfs_uuid_table_size;
  53static uuid_t *xfs_uuid_table;
  54
  55void
  56xfs_uuid_table_free(void)
  57{
  58        if (xfs_uuid_table_size == 0)
  59                return;
  60        kmem_free(xfs_uuid_table);
  61        xfs_uuid_table = NULL;
  62        xfs_uuid_table_size = 0;
  63}
  64
  65/*
  66 * See if the UUID is unique among mounted XFS filesystems.
  67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  68 */
  69STATIC int
  70xfs_uuid_mount(
  71        struct xfs_mount        *mp)
  72{
  73        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  74        int                     hole, i;
  75
  76        /* Publish UUID in struct super_block */
  77        uuid_copy(&mp->m_super->s_uuid, uuid);
  78
  79        if (mp->m_flags & XFS_MOUNT_NOUUID)
  80                return 0;
  81
  82        if (uuid_is_null(uuid)) {
  83                xfs_warn(mp, "Filesystem has null UUID - can't mount");
  84                return -EINVAL;
  85        }
  86
  87        mutex_lock(&xfs_uuid_table_mutex);
  88        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  89                if (uuid_is_null(&xfs_uuid_table[i])) {
  90                        hole = i;
  91                        continue;
  92                }
  93                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  94                        goto out_duplicate;
  95        }
  96
  97        if (hole < 0) {
  98                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  99                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 100                        KM_SLEEP);
 101                hole = xfs_uuid_table_size++;
 102        }
 103        xfs_uuid_table[hole] = *uuid;
 104        mutex_unlock(&xfs_uuid_table_mutex);
 105
 106        return 0;
 107
 108 out_duplicate:
 109        mutex_unlock(&xfs_uuid_table_mutex);
 110        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 111        return -EINVAL;
 112}
 113
 114STATIC void
 115xfs_uuid_unmount(
 116        struct xfs_mount        *mp)
 117{
 118        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 119        int                     i;
 120
 121        if (mp->m_flags & XFS_MOUNT_NOUUID)
 122                return;
 123
 124        mutex_lock(&xfs_uuid_table_mutex);
 125        for (i = 0; i < xfs_uuid_table_size; i++) {
 126                if (uuid_is_null(&xfs_uuid_table[i]))
 127                        continue;
 128                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 129                        continue;
 130                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 131                break;
 132        }
 133        ASSERT(i < xfs_uuid_table_size);
 134        mutex_unlock(&xfs_uuid_table_mutex);
 135}
 136
 137
 138STATIC void
 139__xfs_free_perag(
 140        struct rcu_head *head)
 141{
 142        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 143
 144        ASSERT(atomic_read(&pag->pag_ref) == 0);
 145        kmem_free(pag);
 146}
 147
 148/*
 149 * Free up the per-ag resources associated with the mount structure.
 150 */
 151STATIC void
 152xfs_free_perag(
 153        xfs_mount_t     *mp)
 154{
 155        xfs_agnumber_t  agno;
 156        struct xfs_perag *pag;
 157
 158        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 159                spin_lock(&mp->m_perag_lock);
 160                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 161                spin_unlock(&mp->m_perag_lock);
 162                ASSERT(pag);
 163                ASSERT(atomic_read(&pag->pag_ref) == 0);
 164                xfs_buf_hash_destroy(pag);
 165                mutex_destroy(&pag->pag_ici_reclaim_lock);
 166                call_rcu(&pag->rcu_head, __xfs_free_perag);
 167        }
 168}
 169
 170/*
 171 * Check size of device based on the (data/realtime) block count.
 172 * Note: this check is used by the growfs code as well as mount.
 173 */
 174int
 175xfs_sb_validate_fsb_count(
 176        xfs_sb_t        *sbp,
 177        uint64_t        nblocks)
 178{
 179        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 180        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 181
 182        /* Limited by ULONG_MAX of page cache index */
 183        if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 184                return -EFBIG;
 185        return 0;
 186}
 187
 188int
 189xfs_initialize_perag(
 190        xfs_mount_t     *mp,
 191        xfs_agnumber_t  agcount,
 192        xfs_agnumber_t  *maxagi)
 193{
 194        xfs_agnumber_t  index;
 195        xfs_agnumber_t  first_initialised = NULLAGNUMBER;
 196        xfs_perag_t     *pag;
 197        int             error = -ENOMEM;
 198
 199        /*
 200         * Walk the current per-ag tree so we don't try to initialise AGs
 201         * that already exist (growfs case). Allocate and insert all the
 202         * AGs we don't find ready for initialisation.
 203         */
 204        for (index = 0; index < agcount; index++) {
 205                pag = xfs_perag_get(mp, index);
 206                if (pag) {
 207                        xfs_perag_put(pag);
 208                        continue;
 209                }
 210
 211                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 212                if (!pag)
 213                        goto out_unwind_new_pags;
 214                pag->pag_agno = index;
 215                pag->pag_mount = mp;
 216                spin_lock_init(&pag->pag_ici_lock);
 217                mutex_init(&pag->pag_ici_reclaim_lock);
 218                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 219                if (xfs_buf_hash_init(pag))
 220                        goto out_free_pag;
 221                init_waitqueue_head(&pag->pagb_wait);
 222
 223                if (radix_tree_preload(GFP_NOFS))
 224                        goto out_hash_destroy;
 225
 226                spin_lock(&mp->m_perag_lock);
 227                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 228                        BUG();
 229                        spin_unlock(&mp->m_perag_lock);
 230                        radix_tree_preload_end();
 231                        error = -EEXIST;
 232                        goto out_hash_destroy;
 233                }
 234                spin_unlock(&mp->m_perag_lock);
 235                radix_tree_preload_end();
 236                /* first new pag is fully initialized */
 237                if (first_initialised == NULLAGNUMBER)
 238                        first_initialised = index;
 239        }
 240
 241        index = xfs_set_inode_alloc(mp, agcount);
 242
 243        if (maxagi)
 244                *maxagi = index;
 245
 246        mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 247        return 0;
 248
 249out_hash_destroy:
 250        xfs_buf_hash_destroy(pag);
 251out_free_pag:
 252        mutex_destroy(&pag->pag_ici_reclaim_lock);
 253        kmem_free(pag);
 254out_unwind_new_pags:
 255        /* unwind any prior newly initialized pags */
 256        for (index = first_initialised; index < agcount; index++) {
 257                pag = radix_tree_delete(&mp->m_perag_tree, index);
 258                if (!pag)
 259                        break;
 260                xfs_buf_hash_destroy(pag);
 261                mutex_destroy(&pag->pag_ici_reclaim_lock);
 262                kmem_free(pag);
 263        }
 264        return error;
 265}
 266
 267/*
 268 * xfs_readsb
 269 *
 270 * Does the initial read of the superblock.
 271 */
 272int
 273xfs_readsb(
 274        struct xfs_mount *mp,
 275        int             flags)
 276{
 277        unsigned int    sector_size;
 278        struct xfs_buf  *bp;
 279        struct xfs_sb   *sbp = &mp->m_sb;
 280        int             error;
 281        int             loud = !(flags & XFS_MFSI_QUIET);
 282        const struct xfs_buf_ops *buf_ops;
 283
 284        ASSERT(mp->m_sb_bp == NULL);
 285        ASSERT(mp->m_ddev_targp != NULL);
 286
 287        /*
 288         * For the initial read, we must guess at the sector
 289         * size based on the block device.  It's enough to
 290         * get the sb_sectsize out of the superblock and
 291         * then reread with the proper length.
 292         * We don't verify it yet, because it may not be complete.
 293         */
 294        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 295        buf_ops = NULL;
 296
 297        /*
 298         * Allocate a (locked) buffer to hold the superblock. This will be kept
 299         * around at all times to optimize access to the superblock. Therefore,
 300         * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 301         * elevated.
 302         */
 303reread:
 304        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 305                                      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 306                                      buf_ops);
 307        if (error) {
 308                if (loud)
 309                        xfs_warn(mp, "SB validate failed with error %d.", error);
 310                /* bad CRC means corrupted metadata */
 311                if (error == -EFSBADCRC)
 312                        error = -EFSCORRUPTED;
 313                return error;
 314        }
 315
 316        /*
 317         * Initialize the mount structure from the superblock.
 318         */
 319        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 320
 321        /*
 322         * If we haven't validated the superblock, do so now before we try
 323         * to check the sector size and reread the superblock appropriately.
 324         */
 325        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 326                if (loud)
 327                        xfs_warn(mp, "Invalid superblock magic number");
 328                error = -EINVAL;
 329                goto release_buf;
 330        }
 331
 332        /*
 333         * We must be able to do sector-sized and sector-aligned IO.
 334         */
 335        if (sector_size > sbp->sb_sectsize) {
 336                if (loud)
 337                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 338                                sector_size, sbp->sb_sectsize);
 339                error = -ENOSYS;
 340                goto release_buf;
 341        }
 342
 343        if (buf_ops == NULL) {
 344                /*
 345                 * Re-read the superblock so the buffer is correctly sized,
 346                 * and properly verified.
 347                 */
 348                xfs_buf_relse(bp);
 349                sector_size = sbp->sb_sectsize;
 350                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 351                goto reread;
 352        }
 353
 354        xfs_reinit_percpu_counters(mp);
 355
 356        /* no need to be quiet anymore, so reset the buf ops */
 357        bp->b_ops = &xfs_sb_buf_ops;
 358
 359        mp->m_sb_bp = bp;
 360        xfs_buf_unlock(bp);
 361        return 0;
 362
 363release_buf:
 364        xfs_buf_relse(bp);
 365        return error;
 366}
 367
 368/*
 369 * Update alignment values based on mount options and sb values
 370 */
 371STATIC int
 372xfs_update_alignment(xfs_mount_t *mp)
 373{
 374        xfs_sb_t        *sbp = &(mp->m_sb);
 375
 376        if (mp->m_dalign) {
 377                /*
 378                 * If stripe unit and stripe width are not multiples
 379                 * of the fs blocksize turn off alignment.
 380                 */
 381                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 382                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 383                        xfs_warn(mp,
 384                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 385                                sbp->sb_blocksize);
 386                        return -EINVAL;
 387                } else {
 388                        /*
 389                         * Convert the stripe unit and width to FSBs.
 390                         */
 391                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 392                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 393                                xfs_warn(mp,
 394                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 395                                         sbp->sb_agblocks);
 396                                return -EINVAL;
 397                        } else if (mp->m_dalign) {
 398                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 399                        } else {
 400                                xfs_warn(mp,
 401                        "alignment check failed: sunit(%d) less than bsize(%d)",
 402                                         mp->m_dalign, sbp->sb_blocksize);
 403                                return -EINVAL;
 404                        }
 405                }
 406
 407                /*
 408                 * Update superblock with new values
 409                 * and log changes
 410                 */
 411                if (xfs_sb_version_hasdalign(sbp)) {
 412                        if (sbp->sb_unit != mp->m_dalign) {
 413                                sbp->sb_unit = mp->m_dalign;
 414                                mp->m_update_sb = true;
 415                        }
 416                        if (sbp->sb_width != mp->m_swidth) {
 417                                sbp->sb_width = mp->m_swidth;
 418                                mp->m_update_sb = true;
 419                        }
 420                } else {
 421                        xfs_warn(mp,
 422        "cannot change alignment: superblock does not support data alignment");
 423                        return -EINVAL;
 424                }
 425        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 426                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 427                        mp->m_dalign = sbp->sb_unit;
 428                        mp->m_swidth = sbp->sb_width;
 429        }
 430
 431        return 0;
 432}
 433
 434/*
 435 * Set the maximum inode count for this filesystem
 436 */
 437STATIC void
 438xfs_set_maxicount(xfs_mount_t *mp)
 439{
 440        xfs_sb_t        *sbp = &(mp->m_sb);
 441        uint64_t        icount;
 442
 443        if (sbp->sb_imax_pct) {
 444                /*
 445                 * Make sure the maximum inode count is a multiple
 446                 * of the units we allocate inodes in.
 447                 */
 448                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 449                do_div(icount, 100);
 450                do_div(icount, mp->m_ialloc_blks);
 451                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 452                                   sbp->sb_inopblog;
 453        } else {
 454                mp->m_maxicount = 0;
 455        }
 456}
 457
 458/*
 459 * Set the default minimum read and write sizes unless
 460 * already specified in a mount option.
 461 * We use smaller I/O sizes when the file system
 462 * is being used for NFS service (wsync mount option).
 463 */
 464STATIC void
 465xfs_set_rw_sizes(xfs_mount_t *mp)
 466{
 467        xfs_sb_t        *sbp = &(mp->m_sb);
 468        int             readio_log, writeio_log;
 469
 470        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 471                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 472                        readio_log = XFS_WSYNC_READIO_LOG;
 473                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 474                } else {
 475                        readio_log = XFS_READIO_LOG_LARGE;
 476                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 477                }
 478        } else {
 479                readio_log = mp->m_readio_log;
 480                writeio_log = mp->m_writeio_log;
 481        }
 482
 483        if (sbp->sb_blocklog > readio_log) {
 484                mp->m_readio_log = sbp->sb_blocklog;
 485        } else {
 486                mp->m_readio_log = readio_log;
 487        }
 488        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 489        if (sbp->sb_blocklog > writeio_log) {
 490                mp->m_writeio_log = sbp->sb_blocklog;
 491        } else {
 492                mp->m_writeio_log = writeio_log;
 493        }
 494        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 495}
 496
 497/*
 498 * precalculate the low space thresholds for dynamic speculative preallocation.
 499 */
 500void
 501xfs_set_low_space_thresholds(
 502        struct xfs_mount        *mp)
 503{
 504        int i;
 505
 506        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 507                uint64_t space = mp->m_sb.sb_dblocks;
 508
 509                do_div(space, 100);
 510                mp->m_low_space[i] = space * (i + 1);
 511        }
 512}
 513
 514
 515/*
 516 * Set whether we're using inode alignment.
 517 */
 518STATIC void
 519xfs_set_inoalignment(xfs_mount_t *mp)
 520{
 521        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 522                mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
 523                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 524        else
 525                mp->m_inoalign_mask = 0;
 526        /*
 527         * If we are using stripe alignment, check whether
 528         * the stripe unit is a multiple of the inode alignment
 529         */
 530        if (mp->m_dalign && mp->m_inoalign_mask &&
 531            !(mp->m_dalign & mp->m_inoalign_mask))
 532                mp->m_sinoalign = mp->m_dalign;
 533        else
 534                mp->m_sinoalign = 0;
 535}
 536
 537/*
 538 * Check that the data (and log if separate) is an ok size.
 539 */
 540STATIC int
 541xfs_check_sizes(
 542        struct xfs_mount *mp)
 543{
 544        struct xfs_buf  *bp;
 545        xfs_daddr_t     d;
 546        int             error;
 547
 548        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 549        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 550                xfs_warn(mp, "filesystem size mismatch detected");
 551                return -EFBIG;
 552        }
 553        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 554                                        d - XFS_FSS_TO_BB(mp, 1),
 555                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 556        if (error) {
 557                xfs_warn(mp, "last sector read failed");
 558                return error;
 559        }
 560        xfs_buf_relse(bp);
 561
 562        if (mp->m_logdev_targp == mp->m_ddev_targp)
 563                return 0;
 564
 565        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 566        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 567                xfs_warn(mp, "log size mismatch detected");
 568                return -EFBIG;
 569        }
 570        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 571                                        d - XFS_FSB_TO_BB(mp, 1),
 572                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 573        if (error) {
 574                xfs_warn(mp, "log device read failed");
 575                return error;
 576        }
 577        xfs_buf_relse(bp);
 578        return 0;
 579}
 580
 581/*
 582 * Clear the quotaflags in memory and in the superblock.
 583 */
 584int
 585xfs_mount_reset_sbqflags(
 586        struct xfs_mount        *mp)
 587{
 588        mp->m_qflags = 0;
 589
 590        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 591        if (mp->m_sb.sb_qflags == 0)
 592                return 0;
 593        spin_lock(&mp->m_sb_lock);
 594        mp->m_sb.sb_qflags = 0;
 595        spin_unlock(&mp->m_sb_lock);
 596
 597        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 598                return 0;
 599
 600        return xfs_sync_sb(mp, false);
 601}
 602
 603uint64_t
 604xfs_default_resblks(xfs_mount_t *mp)
 605{
 606        uint64_t resblks;
 607
 608        /*
 609         * We default to 5% or 8192 fsbs of space reserved, whichever is
 610         * smaller.  This is intended to cover concurrent allocation
 611         * transactions when we initially hit enospc. These each require a 4
 612         * block reservation. Hence by default we cover roughly 2000 concurrent
 613         * allocation reservations.
 614         */
 615        resblks = mp->m_sb.sb_dblocks;
 616        do_div(resblks, 20);
 617        resblks = min_t(uint64_t, resblks, 8192);
 618        return resblks;
 619}
 620
 621/*
 622 * This function does the following on an initial mount of a file system:
 623 *      - reads the superblock from disk and init the mount struct
 624 *      - if we're a 32-bit kernel, do a size check on the superblock
 625 *              so we don't mount terabyte filesystems
 626 *      - init mount struct realtime fields
 627 *      - allocate inode hash table for fs
 628 *      - init directory manager
 629 *      - perform recovery and init the log manager
 630 */
 631int
 632xfs_mountfs(
 633        struct xfs_mount        *mp)
 634{
 635        struct xfs_sb           *sbp = &(mp->m_sb);
 636        struct xfs_inode        *rip;
 637        uint64_t                resblks;
 638        uint                    quotamount = 0;
 639        uint                    quotaflags = 0;
 640        int                     error = 0;
 641
 642        xfs_sb_mount_common(mp, sbp);
 643
 644        /*
 645         * Check for a mismatched features2 values.  Older kernels read & wrote
 646         * into the wrong sb offset for sb_features2 on some platforms due to
 647         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 648         * which made older superblock reading/writing routines swap it as a
 649         * 64-bit value.
 650         *
 651         * For backwards compatibility, we make both slots equal.
 652         *
 653         * If we detect a mismatched field, we OR the set bits into the existing
 654         * features2 field in case it has already been modified; we don't want
 655         * to lose any features.  We then update the bad location with the ORed
 656         * value so that older kernels will see any features2 flags. The
 657         * superblock writeback code ensures the new sb_features2 is copied to
 658         * sb_bad_features2 before it is logged or written to disk.
 659         */
 660        if (xfs_sb_has_mismatched_features2(sbp)) {
 661                xfs_warn(mp, "correcting sb_features alignment problem");
 662                sbp->sb_features2 |= sbp->sb_bad_features2;
 663                mp->m_update_sb = true;
 664
 665                /*
 666                 * Re-check for ATTR2 in case it was found in bad_features2
 667                 * slot.
 668                 */
 669                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 670                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 671                        mp->m_flags |= XFS_MOUNT_ATTR2;
 672        }
 673
 674        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 675           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 676                xfs_sb_version_removeattr2(&mp->m_sb);
 677                mp->m_update_sb = true;
 678
 679                /* update sb_versionnum for the clearing of the morebits */
 680                if (!sbp->sb_features2)
 681                        mp->m_update_sb = true;
 682        }
 683
 684        /* always use v2 inodes by default now */
 685        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 686                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 687                mp->m_update_sb = true;
 688        }
 689
 690        /*
 691         * Check if sb_agblocks is aligned at stripe boundary
 692         * If sb_agblocks is NOT aligned turn off m_dalign since
 693         * allocator alignment is within an ag, therefore ag has
 694         * to be aligned at stripe boundary.
 695         */
 696        error = xfs_update_alignment(mp);
 697        if (error)
 698                goto out;
 699
 700        xfs_alloc_compute_maxlevels(mp);
 701        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 702        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 703        xfs_ialloc_compute_maxlevels(mp);
 704        xfs_rmapbt_compute_maxlevels(mp);
 705        xfs_refcountbt_compute_maxlevels(mp);
 706
 707        xfs_set_maxicount(mp);
 708
 709        /* enable fail_at_unmount as default */
 710        mp->m_fail_unmount = true;
 711
 712        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 713        if (error)
 714                goto out;
 715
 716        error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 717                               &mp->m_kobj, "stats");
 718        if (error)
 719                goto out_remove_sysfs;
 720
 721        error = xfs_error_sysfs_init(mp);
 722        if (error)
 723                goto out_del_stats;
 724
 725        error = xfs_errortag_init(mp);
 726        if (error)
 727                goto out_remove_error_sysfs;
 728
 729        error = xfs_uuid_mount(mp);
 730        if (error)
 731                goto out_remove_errortag;
 732
 733        /*
 734         * Set the minimum read and write sizes
 735         */
 736        xfs_set_rw_sizes(mp);
 737
 738        /* set the low space thresholds for dynamic preallocation */
 739        xfs_set_low_space_thresholds(mp);
 740
 741        /*
 742         * Set the inode cluster size.
 743         * This may still be overridden by the file system
 744         * block size if it is larger than the chosen cluster size.
 745         *
 746         * For v5 filesystems, scale the cluster size with the inode size to
 747         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 748         * has set the inode alignment value appropriately for larger cluster
 749         * sizes.
 750         */
 751        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 752        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 753                int     new_size = mp->m_inode_cluster_size;
 754
 755                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 756                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 757                        mp->m_inode_cluster_size = new_size;
 758        }
 759
 760        /*
 761         * If enabled, sparse inode chunk alignment is expected to match the
 762         * cluster size. Full inode chunk alignment must match the chunk size,
 763         * but that is checked on sb read verification...
 764         */
 765        if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 766            mp->m_sb.sb_spino_align !=
 767                        XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
 768                xfs_warn(mp,
 769        "Sparse inode block alignment (%u) must match cluster size (%llu).",
 770                         mp->m_sb.sb_spino_align,
 771                         XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
 772                error = -EINVAL;
 773                goto out_remove_uuid;
 774        }
 775
 776        /*
 777         * Set inode alignment fields
 778         */
 779        xfs_set_inoalignment(mp);
 780
 781        /*
 782         * Check that the data (and log if separate) is an ok size.
 783         */
 784        error = xfs_check_sizes(mp);
 785        if (error)
 786                goto out_remove_uuid;
 787
 788        /*
 789         * Initialize realtime fields in the mount structure
 790         */
 791        error = xfs_rtmount_init(mp);
 792        if (error) {
 793                xfs_warn(mp, "RT mount failed");
 794                goto out_remove_uuid;
 795        }
 796
 797        /*
 798         *  Copies the low order bits of the timestamp and the randomly
 799         *  set "sequence" number out of a UUID.
 800         */
 801        mp->m_fixedfsid[0] =
 802                (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 803                 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 804        mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 805
 806        error = xfs_da_mount(mp);
 807        if (error) {
 808                xfs_warn(mp, "Failed dir/attr init: %d", error);
 809                goto out_remove_uuid;
 810        }
 811
 812        /*
 813         * Initialize the precomputed transaction reservations values.
 814         */
 815        xfs_trans_init(mp);
 816
 817        /*
 818         * Allocate and initialize the per-ag data.
 819         */
 820        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 821        if (error) {
 822                xfs_warn(mp, "Failed per-ag init: %d", error);
 823                goto out_free_dir;
 824        }
 825
 826        if (!sbp->sb_logblocks) {
 827                xfs_warn(mp, "no log defined");
 828                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 829                error = -EFSCORRUPTED;
 830                goto out_free_perag;
 831        }
 832
 833        /*
 834         * Log's mount-time initialization. The first part of recovery can place
 835         * some items on the AIL, to be handled when recovery is finished or
 836         * cancelled.
 837         */
 838        error = xfs_log_mount(mp, mp->m_logdev_targp,
 839                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 840                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 841        if (error) {
 842                xfs_warn(mp, "log mount failed");
 843                goto out_fail_wait;
 844        }
 845
 846        /*
 847         * Now the log is mounted, we know if it was an unclean shutdown or
 848         * not. If it was, with the first phase of recovery has completed, we
 849         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 850         * but they are recovered transactionally in the second recovery phase
 851         * later.
 852         *
 853         * Hence we can safely re-initialise incore superblock counters from
 854         * the per-ag data. These may not be correct if the filesystem was not
 855         * cleanly unmounted, so we need to wait for recovery to finish before
 856         * doing this.
 857         *
 858         * If the filesystem was cleanly unmounted, then we can trust the
 859         * values in the superblock to be correct and we don't need to do
 860         * anything here.
 861         *
 862         * If we are currently making the filesystem, the initialisation will
 863         * fail as the perag data is in an undefined state.
 864         */
 865        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 866            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 867             !mp->m_sb.sb_inprogress) {
 868                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 869                if (error)
 870                        goto out_log_dealloc;
 871        }
 872
 873        /*
 874         * Get and sanity-check the root inode.
 875         * Save the pointer to it in the mount structure.
 876         */
 877        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 878        if (error) {
 879                xfs_warn(mp, "failed to read root inode");
 880                goto out_log_dealloc;
 881        }
 882
 883        ASSERT(rip != NULL);
 884
 885        if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
 886                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 887                        (unsigned long long)rip->i_ino);
 888                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 889                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 890                                 mp);
 891                error = -EFSCORRUPTED;
 892                goto out_rele_rip;
 893        }
 894        mp->m_rootip = rip;     /* save it */
 895
 896        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 897
 898        /*
 899         * Initialize realtime inode pointers in the mount structure
 900         */
 901        error = xfs_rtmount_inodes(mp);
 902        if (error) {
 903                /*
 904                 * Free up the root inode.
 905                 */
 906                xfs_warn(mp, "failed to read RT inodes");
 907                goto out_rele_rip;
 908        }
 909
 910        /*
 911         * If this is a read-only mount defer the superblock updates until
 912         * the next remount into writeable mode.  Otherwise we would never
 913         * perform the update e.g. for the root filesystem.
 914         */
 915        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 916                error = xfs_sync_sb(mp, false);
 917                if (error) {
 918                        xfs_warn(mp, "failed to write sb changes");
 919                        goto out_rtunmount;
 920                }
 921        }
 922
 923        /*
 924         * Initialise the XFS quota management subsystem for this mount
 925         */
 926        if (XFS_IS_QUOTA_RUNNING(mp)) {
 927                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 928                if (error)
 929                        goto out_rtunmount;
 930        } else {
 931                ASSERT(!XFS_IS_QUOTA_ON(mp));
 932
 933                /*
 934                 * If a file system had quotas running earlier, but decided to
 935                 * mount without -o uquota/pquota/gquota options, revoke the
 936                 * quotachecked license.
 937                 */
 938                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 939                        xfs_notice(mp, "resetting quota flags");
 940                        error = xfs_mount_reset_sbqflags(mp);
 941                        if (error)
 942                                goto out_rtunmount;
 943                }
 944        }
 945
 946        /*
 947         * Finish recovering the file system.  This part needed to be delayed
 948         * until after the root and real-time bitmap inodes were consistently
 949         * read in.
 950         */
 951        error = xfs_log_mount_finish(mp);
 952        if (error) {
 953                xfs_warn(mp, "log mount finish failed");
 954                goto out_rtunmount;
 955        }
 956
 957        /*
 958         * Now the log is fully replayed, we can transition to full read-only
 959         * mode for read-only mounts. This will sync all the metadata and clean
 960         * the log so that the recovery we just performed does not have to be
 961         * replayed again on the next mount.
 962         *
 963         * We use the same quiesce mechanism as the rw->ro remount, as they are
 964         * semantically identical operations.
 965         */
 966        if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 967                                                        XFS_MOUNT_RDONLY) {
 968                xfs_quiesce_attr(mp);
 969        }
 970
 971        /*
 972         * Complete the quota initialisation, post-log-replay component.
 973         */
 974        if (quotamount) {
 975                ASSERT(mp->m_qflags == 0);
 976                mp->m_qflags = quotaflags;
 977
 978                xfs_qm_mount_quotas(mp);
 979        }
 980
 981        /*
 982         * Now we are mounted, reserve a small amount of unused space for
 983         * privileged transactions. This is needed so that transaction
 984         * space required for critical operations can dip into this pool
 985         * when at ENOSPC. This is needed for operations like create with
 986         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 987         * are not allowed to use this reserved space.
 988         *
 989         * This may drive us straight to ENOSPC on mount, but that implies
 990         * we were already there on the last unmount. Warn if this occurs.
 991         */
 992        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 993                resblks = xfs_default_resblks(mp);
 994                error = xfs_reserve_blocks(mp, &resblks, NULL);
 995                if (error)
 996                        xfs_warn(mp,
 997        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 998
 999                /* Recover any CoW blocks that never got remapped. */
1000                error = xfs_reflink_recover_cow(mp);
1001                if (error) {
1002                        xfs_err(mp,
1003        "Error %d recovering leftover CoW allocations.", error);
1004                        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1005                        goto out_quota;
1006                }
1007
1008                /* Reserve AG blocks for future btree expansion. */
1009                error = xfs_fs_reserve_ag_blocks(mp);
1010                if (error && error != -ENOSPC)
1011                        goto out_agresv;
1012        }
1013
1014        return 0;
1015
1016 out_agresv:
1017        xfs_fs_unreserve_ag_blocks(mp);
1018 out_quota:
1019        xfs_qm_unmount_quotas(mp);
1020 out_rtunmount:
1021        xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023        IRELE(rip);
1024        /* Clean out dquots that might be in memory after quotacheck. */
1025        xfs_qm_unmount(mp);
1026        /*
1027         * Cancel all delayed reclaim work and reclaim the inodes directly.
1028         * We have to do this /after/ rtunmount and qm_unmount because those
1029         * two will have scheduled delayed reclaim for the rt/quota inodes.
1030         *
1031         * This is slightly different from the unmountfs call sequence
1032         * because we could be tearing down a partially set up mount.  In
1033         * particular, if log_mount_finish fails we bail out without calling
1034         * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035         * quota inodes.
1036         */
1037        cancel_delayed_work_sync(&mp->m_reclaim_work);
1038        xfs_reclaim_inodes(mp, SYNC_WAIT);
1039 out_log_dealloc:
1040        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1041        xfs_log_mount_cancel(mp);
1042 out_fail_wait:
1043        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044                xfs_wait_buftarg(mp->m_logdev_targp);
1045        xfs_wait_buftarg(mp->m_ddev_targp);
1046 out_free_perag:
1047        xfs_free_perag(mp);
1048 out_free_dir:
1049        xfs_da_unmount(mp);
1050 out_remove_uuid:
1051        xfs_uuid_unmount(mp);
1052 out_remove_errortag:
1053        xfs_errortag_del(mp);
1054 out_remove_error_sysfs:
1055        xfs_error_sysfs_del(mp);
1056 out_del_stats:
1057        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1058 out_remove_sysfs:
1059        xfs_sysfs_del(&mp->m_kobj);
1060 out:
1061        return error;
1062}
1063
1064/*
1065 * This flushes out the inodes,dquots and the superblock, unmounts the
1066 * log and makes sure that incore structures are freed.
1067 */
1068void
1069xfs_unmountfs(
1070        struct xfs_mount        *mp)
1071{
1072        uint64_t                resblks;
1073        int                     error;
1074
1075        cancel_delayed_work_sync(&mp->m_eofblocks_work);
1076        cancel_delayed_work_sync(&mp->m_cowblocks_work);
1077
1078        xfs_fs_unreserve_ag_blocks(mp);
1079        xfs_qm_unmount_quotas(mp);
1080        xfs_rtunmount_inodes(mp);
1081        IRELE(mp->m_rootip);
1082
1083        /*
1084         * We can potentially deadlock here if we have an inode cluster
1085         * that has been freed has its buffer still pinned in memory because
1086         * the transaction is still sitting in a iclog. The stale inodes
1087         * on that buffer will have their flush locks held until the
1088         * transaction hits the disk and the callbacks run. the inode
1089         * flush takes the flush lock unconditionally and with nothing to
1090         * push out the iclog we will never get that unlocked. hence we
1091         * need to force the log first.
1092         */
1093        xfs_log_force(mp, XFS_LOG_SYNC);
1094
1095        /*
1096         * Wait for all busy extents to be freed, including completion of
1097         * any discard operation.
1098         */
1099        xfs_extent_busy_wait_all(mp);
1100        flush_workqueue(xfs_discard_wq);
1101
1102        /*
1103         * We now need to tell the world we are unmounting. This will allow
1104         * us to detect that the filesystem is going away and we should error
1105         * out anything that we have been retrying in the background. This will
1106         * prevent neverending retries in AIL pushing from hanging the unmount.
1107         */
1108        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1109
1110        /*
1111         * Flush all pending changes from the AIL.
1112         */
1113        xfs_ail_push_all_sync(mp->m_ail);
1114
1115        /*
1116         * And reclaim all inodes.  At this point there should be no dirty
1117         * inodes and none should be pinned or locked, but use synchronous
1118         * reclaim just to be sure. We can stop background inode reclaim
1119         * here as well if it is still running.
1120         */
1121        cancel_delayed_work_sync(&mp->m_reclaim_work);
1122        xfs_reclaim_inodes(mp, SYNC_WAIT);
1123
1124        xfs_qm_unmount(mp);
1125
1126        /*
1127         * Unreserve any blocks we have so that when we unmount we don't account
1128         * the reserved free space as used. This is really only necessary for
1129         * lazy superblock counting because it trusts the incore superblock
1130         * counters to be absolutely correct on clean unmount.
1131         *
1132         * We don't bother correcting this elsewhere for lazy superblock
1133         * counting because on mount of an unclean filesystem we reconstruct the
1134         * correct counter value and this is irrelevant.
1135         *
1136         * For non-lazy counter filesystems, this doesn't matter at all because
1137         * we only every apply deltas to the superblock and hence the incore
1138         * value does not matter....
1139         */
1140        resblks = 0;
1141        error = xfs_reserve_blocks(mp, &resblks, NULL);
1142        if (error)
1143                xfs_warn(mp, "Unable to free reserved block pool. "
1144                                "Freespace may not be correct on next mount.");
1145
1146        error = xfs_log_sbcount(mp);
1147        if (error)
1148                xfs_warn(mp, "Unable to update superblock counters. "
1149                                "Freespace may not be correct on next mount.");
1150
1151
1152        xfs_log_unmount(mp);
1153        xfs_da_unmount(mp);
1154        xfs_uuid_unmount(mp);
1155
1156#if defined(DEBUG)
1157        xfs_errortag_clearall(mp);
1158#endif
1159        xfs_free_perag(mp);
1160
1161        xfs_errortag_del(mp);
1162        xfs_error_sysfs_del(mp);
1163        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1164        xfs_sysfs_del(&mp->m_kobj);
1165}
1166
1167/*
1168 * Determine whether modifications can proceed. The caller specifies the minimum
1169 * freeze level for which modifications should not be allowed. This allows
1170 * certain operations to proceed while the freeze sequence is in progress, if
1171 * necessary.
1172 */
1173bool
1174xfs_fs_writable(
1175        struct xfs_mount        *mp,
1176        int                     level)
1177{
1178        ASSERT(level > SB_UNFROZEN);
1179        if ((mp->m_super->s_writers.frozen >= level) ||
1180            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1181                return false;
1182
1183        return true;
1184}
1185
1186/*
1187 * xfs_log_sbcount
1188 *
1189 * Sync the superblock counters to disk.
1190 *
1191 * Note this code can be called during the process of freezing, so we use the
1192 * transaction allocator that does not block when the transaction subsystem is
1193 * in its frozen state.
1194 */
1195int
1196xfs_log_sbcount(xfs_mount_t *mp)
1197{
1198        /* allow this to proceed during the freeze sequence... */
1199        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1200                return 0;
1201
1202        /*
1203         * we don't need to do this if we are updating the superblock
1204         * counters on every modification.
1205         */
1206        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1207                return 0;
1208
1209        return xfs_sync_sb(mp, true);
1210}
1211
1212/*
1213 * Deltas for the inode count are +/-64, hence we use a large batch size
1214 * of 128 so we don't need to take the counter lock on every update.
1215 */
1216#define XFS_ICOUNT_BATCH        128
1217int
1218xfs_mod_icount(
1219        struct xfs_mount        *mp,
1220        int64_t                 delta)
1221{
1222        percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1223        if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1224                ASSERT(0);
1225                percpu_counter_add(&mp->m_icount, -delta);
1226                return -EINVAL;
1227        }
1228        return 0;
1229}
1230
1231int
1232xfs_mod_ifree(
1233        struct xfs_mount        *mp,
1234        int64_t                 delta)
1235{
1236        percpu_counter_add(&mp->m_ifree, delta);
1237        if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1238                ASSERT(0);
1239                percpu_counter_add(&mp->m_ifree, -delta);
1240                return -EINVAL;
1241        }
1242        return 0;
1243}
1244
1245/*
1246 * Deltas for the block count can vary from 1 to very large, but lock contention
1247 * only occurs on frequent small block count updates such as in the delayed
1248 * allocation path for buffered writes (page a time updates). Hence we set
1249 * a large batch count (1024) to minimise global counter updates except when
1250 * we get near to ENOSPC and we have to be very accurate with our updates.
1251 */
1252#define XFS_FDBLOCKS_BATCH      1024
1253int
1254xfs_mod_fdblocks(
1255        struct xfs_mount        *mp,
1256        int64_t                 delta,
1257        bool                    rsvd)
1258{
1259        int64_t                 lcounter;
1260        long long               res_used;
1261        s32                     batch;
1262
1263        if (delta > 0) {
1264                /*
1265                 * If the reserve pool is depleted, put blocks back into it
1266                 * first. Most of the time the pool is full.
1267                 */
1268                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1269                        percpu_counter_add(&mp->m_fdblocks, delta);
1270                        return 0;
1271                }
1272
1273                spin_lock(&mp->m_sb_lock);
1274                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1275
1276                if (res_used > delta) {
1277                        mp->m_resblks_avail += delta;
1278                } else {
1279                        delta -= res_used;
1280                        mp->m_resblks_avail = mp->m_resblks;
1281                        percpu_counter_add(&mp->m_fdblocks, delta);
1282                }
1283                spin_unlock(&mp->m_sb_lock);
1284                return 0;
1285        }
1286
1287        /*
1288         * Taking blocks away, need to be more accurate the closer we
1289         * are to zero.
1290         *
1291         * If the counter has a value of less than 2 * max batch size,
1292         * then make everything serialise as we are real close to
1293         * ENOSPC.
1294         */
1295        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1296                                     XFS_FDBLOCKS_BATCH) < 0)
1297                batch = 1;
1298        else
1299                batch = XFS_FDBLOCKS_BATCH;
1300
1301        percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1302        if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1303                                     XFS_FDBLOCKS_BATCH) >= 0) {
1304                /* we had space! */
1305                return 0;
1306        }
1307
1308        /*
1309         * lock up the sb for dipping into reserves before releasing the space
1310         * that took us to ENOSPC.
1311         */
1312        spin_lock(&mp->m_sb_lock);
1313        percpu_counter_add(&mp->m_fdblocks, -delta);
1314        if (!rsvd)
1315                goto fdblocks_enospc;
1316
1317        lcounter = (long long)mp->m_resblks_avail + delta;
1318        if (lcounter >= 0) {
1319                mp->m_resblks_avail = lcounter;
1320                spin_unlock(&mp->m_sb_lock);
1321                return 0;
1322        }
1323        printk_once(KERN_WARNING
1324                "Filesystem \"%s\": reserve blocks depleted! "
1325                "Consider increasing reserve pool size.",
1326                mp->m_fsname);
1327fdblocks_enospc:
1328        spin_unlock(&mp->m_sb_lock);
1329        return -ENOSPC;
1330}
1331
1332int
1333xfs_mod_frextents(
1334        struct xfs_mount        *mp,
1335        int64_t                 delta)
1336{
1337        int64_t                 lcounter;
1338        int                     ret = 0;
1339
1340        spin_lock(&mp->m_sb_lock);
1341        lcounter = mp->m_sb.sb_frextents + delta;
1342        if (lcounter < 0)
1343                ret = -ENOSPC;
1344        else
1345                mp->m_sb.sb_frextents = lcounter;
1346        spin_unlock(&mp->m_sb_lock);
1347        return ret;
1348}
1349
1350/*
1351 * xfs_getsb() is called to obtain the buffer for the superblock.
1352 * The buffer is returned locked and read in from disk.
1353 * The buffer should be released with a call to xfs_brelse().
1354 *
1355 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1356 * the superblock buffer if it can be locked without sleeping.
1357 * If it can't then we'll return NULL.
1358 */
1359struct xfs_buf *
1360xfs_getsb(
1361        struct xfs_mount        *mp,
1362        int                     flags)
1363{
1364        struct xfs_buf          *bp = mp->m_sb_bp;
1365
1366        if (!xfs_buf_trylock(bp)) {
1367                if (flags & XBF_TRYLOCK)
1368                        return NULL;
1369                xfs_buf_lock(bp);
1370        }
1371
1372        xfs_buf_hold(bp);
1373        ASSERT(bp->b_flags & XBF_DONE);
1374        return bp;
1375}
1376
1377/*
1378 * Used to free the superblock along various error paths.
1379 */
1380void
1381xfs_freesb(
1382        struct xfs_mount        *mp)
1383{
1384        struct xfs_buf          *bp = mp->m_sb_bp;
1385
1386        xfs_buf_lock(bp);
1387        mp->m_sb_bp = NULL;
1388        xfs_buf_relse(bp);
1389}
1390
1391/*
1392 * If the underlying (data/log/rt) device is readonly, there are some
1393 * operations that cannot proceed.
1394 */
1395int
1396xfs_dev_is_read_only(
1397        struct xfs_mount        *mp,
1398        char                    *message)
1399{
1400        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1401            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1402            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1403                xfs_notice(mp, "%s required on read-only device.", message);
1404                xfs_notice(mp, "write access unavailable, cannot proceed.");
1405                return -EROFS;
1406        }
1407        return 0;
1408}
1409