linux/include/linux/memcontrol.h
<<
>>
Prefs
   1/* memcontrol.h - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 */
  19
  20#ifndef _LINUX_MEMCONTROL_H
  21#define _LINUX_MEMCONTROL_H
  22#include <linux/cgroup.h>
  23#include <linux/vm_event_item.h>
  24#include <linux/hardirq.h>
  25#include <linux/jump_label.h>
  26#include <linux/page_counter.h>
  27#include <linux/vmpressure.h>
  28#include <linux/eventfd.h>
  29#include <linux/mm.h>
  30#include <linux/vmstat.h>
  31#include <linux/writeback.h>
  32#include <linux/page-flags.h>
  33
  34struct mem_cgroup;
  35struct page;
  36struct mm_struct;
  37struct kmem_cache;
  38
  39/* Cgroup-specific page state, on top of universal node page state */
  40enum memcg_stat_item {
  41        MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
  42        MEMCG_RSS,
  43        MEMCG_RSS_HUGE,
  44        MEMCG_SWAP,
  45        MEMCG_SOCK,
  46        /* XXX: why are these zone and not node counters? */
  47        MEMCG_KERNEL_STACK_KB,
  48        MEMCG_NR_STAT,
  49};
  50
  51enum memcg_memory_event {
  52        MEMCG_LOW,
  53        MEMCG_HIGH,
  54        MEMCG_MAX,
  55        MEMCG_OOM,
  56        MEMCG_NR_MEMORY_EVENTS,
  57};
  58
  59struct mem_cgroup_reclaim_cookie {
  60        pg_data_t *pgdat;
  61        int priority;
  62        unsigned int generation;
  63};
  64
  65#ifdef CONFIG_MEMCG
  66
  67#define MEM_CGROUP_ID_SHIFT     16
  68#define MEM_CGROUP_ID_MAX       USHRT_MAX
  69
  70struct mem_cgroup_id {
  71        int id;
  72        atomic_t ref;
  73};
  74
  75/*
  76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
  77 * it will be incremated by the number of pages. This counter is used for
  78 * for trigger some periodic events. This is straightforward and better
  79 * than using jiffies etc. to handle periodic memcg event.
  80 */
  81enum mem_cgroup_events_target {
  82        MEM_CGROUP_TARGET_THRESH,
  83        MEM_CGROUP_TARGET_SOFTLIMIT,
  84        MEM_CGROUP_TARGET_NUMAINFO,
  85        MEM_CGROUP_NTARGETS,
  86};
  87
  88struct mem_cgroup_stat_cpu {
  89        long count[MEMCG_NR_STAT];
  90        unsigned long events[NR_VM_EVENT_ITEMS];
  91        unsigned long nr_page_events;
  92        unsigned long targets[MEM_CGROUP_NTARGETS];
  93};
  94
  95struct mem_cgroup_reclaim_iter {
  96        struct mem_cgroup *position;
  97        /* scan generation, increased every round-trip */
  98        unsigned int generation;
  99};
 100
 101struct lruvec_stat {
 102        long count[NR_VM_NODE_STAT_ITEMS];
 103};
 104
 105/*
 106 * per-zone information in memory controller.
 107 */
 108struct mem_cgroup_per_node {
 109        struct lruvec           lruvec;
 110
 111        struct lruvec_stat __percpu *lruvec_stat_cpu;
 112        atomic_long_t           lruvec_stat[NR_VM_NODE_STAT_ITEMS];
 113
 114        unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
 115
 116        struct mem_cgroup_reclaim_iter  iter[DEF_PRIORITY + 1];
 117
 118        struct rb_node          tree_node;      /* RB tree node */
 119        unsigned long           usage_in_excess;/* Set to the value by which */
 120                                                /* the soft limit is exceeded*/
 121        bool                    on_tree;
 122        bool                    congested;      /* memcg has many dirty pages */
 123                                                /* backed by a congested BDI */
 124
 125        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 126                                                /* use container_of        */
 127};
 128
 129struct mem_cgroup_threshold {
 130        struct eventfd_ctx *eventfd;
 131        unsigned long threshold;
 132};
 133
 134/* For threshold */
 135struct mem_cgroup_threshold_ary {
 136        /* An array index points to threshold just below or equal to usage. */
 137        int current_threshold;
 138        /* Size of entries[] */
 139        unsigned int size;
 140        /* Array of thresholds */
 141        struct mem_cgroup_threshold entries[0];
 142};
 143
 144struct mem_cgroup_thresholds {
 145        /* Primary thresholds array */
 146        struct mem_cgroup_threshold_ary *primary;
 147        /*
 148         * Spare threshold array.
 149         * This is needed to make mem_cgroup_unregister_event() "never fail".
 150         * It must be able to store at least primary->size - 1 entries.
 151         */
 152        struct mem_cgroup_threshold_ary *spare;
 153};
 154
 155enum memcg_kmem_state {
 156        KMEM_NONE,
 157        KMEM_ALLOCATED,
 158        KMEM_ONLINE,
 159};
 160
 161/*
 162 * The memory controller data structure. The memory controller controls both
 163 * page cache and RSS per cgroup. We would eventually like to provide
 164 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 165 * to help the administrator determine what knobs to tune.
 166 */
 167struct mem_cgroup {
 168        struct cgroup_subsys_state css;
 169
 170        /* Private memcg ID. Used to ID objects that outlive the cgroup */
 171        struct mem_cgroup_id id;
 172
 173        /* Accounted resources */
 174        struct page_counter memory;
 175        struct page_counter swap;
 176
 177        /* Legacy consumer-oriented counters */
 178        struct page_counter memsw;
 179        struct page_counter kmem;
 180        struct page_counter tcpmem;
 181
 182        /* Normal memory consumption range */
 183        unsigned long low;
 184        unsigned long high;
 185
 186        /* Range enforcement for interrupt charges */
 187        struct work_struct high_work;
 188
 189        unsigned long soft_limit;
 190
 191        /* vmpressure notifications */
 192        struct vmpressure vmpressure;
 193
 194        /*
 195         * Should the accounting and control be hierarchical, per subtree?
 196         */
 197        bool use_hierarchy;
 198
 199        /* protected by memcg_oom_lock */
 200        bool            oom_lock;
 201        int             under_oom;
 202
 203        int     swappiness;
 204        /* OOM-Killer disable */
 205        int             oom_kill_disable;
 206
 207        /* memory.events */
 208        atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
 209        struct cgroup_file events_file;
 210
 211        /* protect arrays of thresholds */
 212        struct mutex thresholds_lock;
 213
 214        /* thresholds for memory usage. RCU-protected */
 215        struct mem_cgroup_thresholds thresholds;
 216
 217        /* thresholds for mem+swap usage. RCU-protected */
 218        struct mem_cgroup_thresholds memsw_thresholds;
 219
 220        /* For oom notifier event fd */
 221        struct list_head oom_notify;
 222
 223        /*
 224         * Should we move charges of a task when a task is moved into this
 225         * mem_cgroup ? And what type of charges should we move ?
 226         */
 227        unsigned long move_charge_at_immigrate;
 228        /*
 229         * set > 0 if pages under this cgroup are moving to other cgroup.
 230         */
 231        atomic_t                moving_account;
 232        /* taken only while moving_account > 0 */
 233        spinlock_t              move_lock;
 234        struct task_struct      *move_lock_task;
 235        unsigned long           move_lock_flags;
 236
 237        /* memory.stat */
 238        struct mem_cgroup_stat_cpu __percpu *stat_cpu;
 239        atomic_long_t           stat[MEMCG_NR_STAT];
 240        atomic_long_t           events[NR_VM_EVENT_ITEMS];
 241
 242        unsigned long           socket_pressure;
 243
 244        /* Legacy tcp memory accounting */
 245        bool                    tcpmem_active;
 246        int                     tcpmem_pressure;
 247
 248#ifndef CONFIG_SLOB
 249        /* Index in the kmem_cache->memcg_params.memcg_caches array */
 250        int kmemcg_id;
 251        enum memcg_kmem_state kmem_state;
 252        struct list_head kmem_caches;
 253#endif
 254
 255        int last_scanned_node;
 256#if MAX_NUMNODES > 1
 257        nodemask_t      scan_nodes;
 258        atomic_t        numainfo_events;
 259        atomic_t        numainfo_updating;
 260#endif
 261
 262#ifdef CONFIG_CGROUP_WRITEBACK
 263        struct list_head cgwb_list;
 264        struct wb_domain cgwb_domain;
 265#endif
 266
 267        /* List of events which userspace want to receive */
 268        struct list_head event_list;
 269        spinlock_t event_list_lock;
 270
 271        struct mem_cgroup_per_node *nodeinfo[0];
 272        /* WARNING: nodeinfo must be the last member here */
 273};
 274
 275/*
 276 * size of first charge trial. "32" comes from vmscan.c's magic value.
 277 * TODO: maybe necessary to use big numbers in big irons.
 278 */
 279#define MEMCG_CHARGE_BATCH 32U
 280
 281extern struct mem_cgroup *root_mem_cgroup;
 282
 283static inline bool mem_cgroup_disabled(void)
 284{
 285        return !cgroup_subsys_enabled(memory_cgrp_subsys);
 286}
 287
 288bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
 289
 290int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
 291                          gfp_t gfp_mask, struct mem_cgroup **memcgp,
 292                          bool compound);
 293void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
 294                              bool lrucare, bool compound);
 295void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
 296                bool compound);
 297void mem_cgroup_uncharge(struct page *page);
 298void mem_cgroup_uncharge_list(struct list_head *page_list);
 299
 300void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
 301
 302static struct mem_cgroup_per_node *
 303mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
 304{
 305        return memcg->nodeinfo[nid];
 306}
 307
 308/**
 309 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
 310 * @node: node of the wanted lruvec
 311 * @memcg: memcg of the wanted lruvec
 312 *
 313 * Returns the lru list vector holding pages for a given @node or a given
 314 * @memcg and @zone. This can be the node lruvec, if the memory controller
 315 * is disabled.
 316 */
 317static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
 318                                struct mem_cgroup *memcg)
 319{
 320        struct mem_cgroup_per_node *mz;
 321        struct lruvec *lruvec;
 322
 323        if (mem_cgroup_disabled()) {
 324                lruvec = node_lruvec(pgdat);
 325                goto out;
 326        }
 327
 328        mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 329        lruvec = &mz->lruvec;
 330out:
 331        /*
 332         * Since a node can be onlined after the mem_cgroup was created,
 333         * we have to be prepared to initialize lruvec->pgdat here;
 334         * and if offlined then reonlined, we need to reinitialize it.
 335         */
 336        if (unlikely(lruvec->pgdat != pgdat))
 337                lruvec->pgdat = pgdat;
 338        return lruvec;
 339}
 340
 341struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
 342
 343bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
 344struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
 345
 346static inline
 347struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
 348        return css ? container_of(css, struct mem_cgroup, css) : NULL;
 349}
 350
 351#define mem_cgroup_from_counter(counter, member)        \
 352        container_of(counter, struct mem_cgroup, member)
 353
 354struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
 355                                   struct mem_cgroup *,
 356                                   struct mem_cgroup_reclaim_cookie *);
 357void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
 358int mem_cgroup_scan_tasks(struct mem_cgroup *,
 359                          int (*)(struct task_struct *, void *), void *);
 360
 361static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 362{
 363        if (mem_cgroup_disabled())
 364                return 0;
 365
 366        return memcg->id.id;
 367}
 368struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
 369
 370static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 371{
 372        struct mem_cgroup_per_node *mz;
 373
 374        if (mem_cgroup_disabled())
 375                return NULL;
 376
 377        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 378        return mz->memcg;
 379}
 380
 381/**
 382 * parent_mem_cgroup - find the accounting parent of a memcg
 383 * @memcg: memcg whose parent to find
 384 *
 385 * Returns the parent memcg, or NULL if this is the root or the memory
 386 * controller is in legacy no-hierarchy mode.
 387 */
 388static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 389{
 390        if (!memcg->memory.parent)
 391                return NULL;
 392        return mem_cgroup_from_counter(memcg->memory.parent, memory);
 393}
 394
 395static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
 396                              struct mem_cgroup *root)
 397{
 398        if (root == memcg)
 399                return true;
 400        if (!root->use_hierarchy)
 401                return false;
 402        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 403}
 404
 405static inline bool mm_match_cgroup(struct mm_struct *mm,
 406                                   struct mem_cgroup *memcg)
 407{
 408        struct mem_cgroup *task_memcg;
 409        bool match = false;
 410
 411        rcu_read_lock();
 412        task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 413        if (task_memcg)
 414                match = mem_cgroup_is_descendant(task_memcg, memcg);
 415        rcu_read_unlock();
 416        return match;
 417}
 418
 419struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
 420ino_t page_cgroup_ino(struct page *page);
 421
 422static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 423{
 424        if (mem_cgroup_disabled())
 425                return true;
 426        return !!(memcg->css.flags & CSS_ONLINE);
 427}
 428
 429/*
 430 * For memory reclaim.
 431 */
 432int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
 433
 434void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 435                int zid, int nr_pages);
 436
 437unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 438                                           int nid, unsigned int lru_mask);
 439
 440static inline
 441unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 442{
 443        struct mem_cgroup_per_node *mz;
 444        unsigned long nr_pages = 0;
 445        int zid;
 446
 447        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 448        for (zid = 0; zid < MAX_NR_ZONES; zid++)
 449                nr_pages += mz->lru_zone_size[zid][lru];
 450        return nr_pages;
 451}
 452
 453static inline
 454unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 455                enum lru_list lru, int zone_idx)
 456{
 457        struct mem_cgroup_per_node *mz;
 458
 459        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 460        return mz->lru_zone_size[zone_idx][lru];
 461}
 462
 463void mem_cgroup_handle_over_high(void);
 464
 465unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg);
 466
 467void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
 468                                struct task_struct *p);
 469
 470static inline void mem_cgroup_oom_enable(void)
 471{
 472        WARN_ON(current->memcg_may_oom);
 473        current->memcg_may_oom = 1;
 474}
 475
 476static inline void mem_cgroup_oom_disable(void)
 477{
 478        WARN_ON(!current->memcg_may_oom);
 479        current->memcg_may_oom = 0;
 480}
 481
 482static inline bool task_in_memcg_oom(struct task_struct *p)
 483{
 484        return p->memcg_in_oom;
 485}
 486
 487bool mem_cgroup_oom_synchronize(bool wait);
 488
 489#ifdef CONFIG_MEMCG_SWAP
 490extern int do_swap_account;
 491#endif
 492
 493struct mem_cgroup *lock_page_memcg(struct page *page);
 494void __unlock_page_memcg(struct mem_cgroup *memcg);
 495void unlock_page_memcg(struct page *page);
 496
 497/* idx can be of type enum memcg_stat_item or node_stat_item */
 498static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
 499                                             int idx)
 500{
 501        long x = atomic_long_read(&memcg->stat[idx]);
 502#ifdef CONFIG_SMP
 503        if (x < 0)
 504                x = 0;
 505#endif
 506        return x;
 507}
 508
 509/* idx can be of type enum memcg_stat_item or node_stat_item */
 510static inline void __mod_memcg_state(struct mem_cgroup *memcg,
 511                                     int idx, int val)
 512{
 513        long x;
 514
 515        if (mem_cgroup_disabled())
 516                return;
 517
 518        x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
 519        if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 520                atomic_long_add(x, &memcg->stat[idx]);
 521                x = 0;
 522        }
 523        __this_cpu_write(memcg->stat_cpu->count[idx], x);
 524}
 525
 526/* idx can be of type enum memcg_stat_item or node_stat_item */
 527static inline void mod_memcg_state(struct mem_cgroup *memcg,
 528                                   int idx, int val)
 529{
 530        unsigned long flags;
 531
 532        local_irq_save(flags);
 533        __mod_memcg_state(memcg, idx, val);
 534        local_irq_restore(flags);
 535}
 536
 537/**
 538 * mod_memcg_page_state - update page state statistics
 539 * @page: the page
 540 * @idx: page state item to account
 541 * @val: number of pages (positive or negative)
 542 *
 543 * The @page must be locked or the caller must use lock_page_memcg()
 544 * to prevent double accounting when the page is concurrently being
 545 * moved to another memcg:
 546 *
 547 *   lock_page(page) or lock_page_memcg(page)
 548 *   if (TestClearPageState(page))
 549 *     mod_memcg_page_state(page, state, -1);
 550 *   unlock_page(page) or unlock_page_memcg(page)
 551 *
 552 * Kernel pages are an exception to this, since they'll never move.
 553 */
 554static inline void __mod_memcg_page_state(struct page *page,
 555                                          int idx, int val)
 556{
 557        if (page->mem_cgroup)
 558                __mod_memcg_state(page->mem_cgroup, idx, val);
 559}
 560
 561static inline void mod_memcg_page_state(struct page *page,
 562                                        int idx, int val)
 563{
 564        if (page->mem_cgroup)
 565                mod_memcg_state(page->mem_cgroup, idx, val);
 566}
 567
 568static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
 569                                              enum node_stat_item idx)
 570{
 571        struct mem_cgroup_per_node *pn;
 572        long x;
 573
 574        if (mem_cgroup_disabled())
 575                return node_page_state(lruvec_pgdat(lruvec), idx);
 576
 577        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 578        x = atomic_long_read(&pn->lruvec_stat[idx]);
 579#ifdef CONFIG_SMP
 580        if (x < 0)
 581                x = 0;
 582#endif
 583        return x;
 584}
 585
 586static inline void __mod_lruvec_state(struct lruvec *lruvec,
 587                                      enum node_stat_item idx, int val)
 588{
 589        struct mem_cgroup_per_node *pn;
 590        long x;
 591
 592        /* Update node */
 593        __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 594
 595        if (mem_cgroup_disabled())
 596                return;
 597
 598        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 599
 600        /* Update memcg */
 601        __mod_memcg_state(pn->memcg, idx, val);
 602
 603        /* Update lruvec */
 604        x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 605        if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 606                atomic_long_add(x, &pn->lruvec_stat[idx]);
 607                x = 0;
 608        }
 609        __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 610}
 611
 612static inline void mod_lruvec_state(struct lruvec *lruvec,
 613                                    enum node_stat_item idx, int val)
 614{
 615        unsigned long flags;
 616
 617        local_irq_save(flags);
 618        __mod_lruvec_state(lruvec, idx, val);
 619        local_irq_restore(flags);
 620}
 621
 622static inline void __mod_lruvec_page_state(struct page *page,
 623                                           enum node_stat_item idx, int val)
 624{
 625        pg_data_t *pgdat = page_pgdat(page);
 626        struct lruvec *lruvec;
 627
 628        /* Untracked pages have no memcg, no lruvec. Update only the node */
 629        if (!page->mem_cgroup) {
 630                __mod_node_page_state(pgdat, idx, val);
 631                return;
 632        }
 633
 634        lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
 635        __mod_lruvec_state(lruvec, idx, val);
 636}
 637
 638static inline void mod_lruvec_page_state(struct page *page,
 639                                         enum node_stat_item idx, int val)
 640{
 641        unsigned long flags;
 642
 643        local_irq_save(flags);
 644        __mod_lruvec_page_state(page, idx, val);
 645        local_irq_restore(flags);
 646}
 647
 648unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
 649                                                gfp_t gfp_mask,
 650                                                unsigned long *total_scanned);
 651
 652static inline void __count_memcg_events(struct mem_cgroup *memcg,
 653                                        enum vm_event_item idx,
 654                                        unsigned long count)
 655{
 656        unsigned long x;
 657
 658        if (mem_cgroup_disabled())
 659                return;
 660
 661        x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
 662        if (unlikely(x > MEMCG_CHARGE_BATCH)) {
 663                atomic_long_add(x, &memcg->events[idx]);
 664                x = 0;
 665        }
 666        __this_cpu_write(memcg->stat_cpu->events[idx], x);
 667}
 668
 669static inline void count_memcg_events(struct mem_cgroup *memcg,
 670                                      enum vm_event_item idx,
 671                                      unsigned long count)
 672{
 673        unsigned long flags;
 674
 675        local_irq_save(flags);
 676        __count_memcg_events(memcg, idx, count);
 677        local_irq_restore(flags);
 678}
 679
 680static inline void count_memcg_page_event(struct page *page,
 681                                          enum vm_event_item idx)
 682{
 683        if (page->mem_cgroup)
 684                count_memcg_events(page->mem_cgroup, idx, 1);
 685}
 686
 687static inline void count_memcg_event_mm(struct mm_struct *mm,
 688                                        enum vm_event_item idx)
 689{
 690        struct mem_cgroup *memcg;
 691
 692        if (mem_cgroup_disabled())
 693                return;
 694
 695        rcu_read_lock();
 696        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 697        if (likely(memcg)) {
 698                count_memcg_events(memcg, idx, 1);
 699                if (idx == OOM_KILL)
 700                        cgroup_file_notify(&memcg->events_file);
 701        }
 702        rcu_read_unlock();
 703}
 704
 705static inline void memcg_memory_event(struct mem_cgroup *memcg,
 706                                      enum memcg_memory_event event)
 707{
 708        atomic_long_inc(&memcg->memory_events[event]);
 709        cgroup_file_notify(&memcg->events_file);
 710}
 711
 712#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 713void mem_cgroup_split_huge_fixup(struct page *head);
 714#endif
 715
 716#else /* CONFIG_MEMCG */
 717
 718#define MEM_CGROUP_ID_SHIFT     0
 719#define MEM_CGROUP_ID_MAX       0
 720
 721struct mem_cgroup;
 722
 723static inline bool mem_cgroup_disabled(void)
 724{
 725        return true;
 726}
 727
 728static inline void memcg_memory_event(struct mem_cgroup *memcg,
 729                                      enum memcg_memory_event event)
 730{
 731}
 732
 733static inline bool mem_cgroup_low(struct mem_cgroup *root,
 734                                  struct mem_cgroup *memcg)
 735{
 736        return false;
 737}
 738
 739static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
 740                                        gfp_t gfp_mask,
 741                                        struct mem_cgroup **memcgp,
 742                                        bool compound)
 743{
 744        *memcgp = NULL;
 745        return 0;
 746}
 747
 748static inline void mem_cgroup_commit_charge(struct page *page,
 749                                            struct mem_cgroup *memcg,
 750                                            bool lrucare, bool compound)
 751{
 752}
 753
 754static inline void mem_cgroup_cancel_charge(struct page *page,
 755                                            struct mem_cgroup *memcg,
 756                                            bool compound)
 757{
 758}
 759
 760static inline void mem_cgroup_uncharge(struct page *page)
 761{
 762}
 763
 764static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
 765{
 766}
 767
 768static inline void mem_cgroup_migrate(struct page *old, struct page *new)
 769{
 770}
 771
 772static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
 773                                struct mem_cgroup *memcg)
 774{
 775        return node_lruvec(pgdat);
 776}
 777
 778static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
 779                                                    struct pglist_data *pgdat)
 780{
 781        return &pgdat->lruvec;
 782}
 783
 784static inline bool mm_match_cgroup(struct mm_struct *mm,
 785                struct mem_cgroup *memcg)
 786{
 787        return true;
 788}
 789
 790static inline bool task_in_mem_cgroup(struct task_struct *task,
 791                                      const struct mem_cgroup *memcg)
 792{
 793        return true;
 794}
 795
 796static inline struct mem_cgroup *
 797mem_cgroup_iter(struct mem_cgroup *root,
 798                struct mem_cgroup *prev,
 799                struct mem_cgroup_reclaim_cookie *reclaim)
 800{
 801        return NULL;
 802}
 803
 804static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
 805                                         struct mem_cgroup *prev)
 806{
 807}
 808
 809static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 810                int (*fn)(struct task_struct *, void *), void *arg)
 811{
 812        return 0;
 813}
 814
 815static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 816{
 817        return 0;
 818}
 819
 820static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 821{
 822        WARN_ON_ONCE(id);
 823        /* XXX: This should always return root_mem_cgroup */
 824        return NULL;
 825}
 826
 827static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 828{
 829        return NULL;
 830}
 831
 832static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 833{
 834        return true;
 835}
 836
 837static inline unsigned long
 838mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 839{
 840        return 0;
 841}
 842static inline
 843unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 844                enum lru_list lru, int zone_idx)
 845{
 846        return 0;
 847}
 848
 849static inline unsigned long
 850mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 851                             int nid, unsigned int lru_mask)
 852{
 853        return 0;
 854}
 855
 856static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
 857{
 858        return 0;
 859}
 860
 861static inline void
 862mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
 863{
 864}
 865
 866static inline struct mem_cgroup *lock_page_memcg(struct page *page)
 867{
 868        return NULL;
 869}
 870
 871static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
 872{
 873}
 874
 875static inline void unlock_page_memcg(struct page *page)
 876{
 877}
 878
 879static inline void mem_cgroup_handle_over_high(void)
 880{
 881}
 882
 883static inline void mem_cgroup_oom_enable(void)
 884{
 885}
 886
 887static inline void mem_cgroup_oom_disable(void)
 888{
 889}
 890
 891static inline bool task_in_memcg_oom(struct task_struct *p)
 892{
 893        return false;
 894}
 895
 896static inline bool mem_cgroup_oom_synchronize(bool wait)
 897{
 898        return false;
 899}
 900
 901static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
 902                                             int idx)
 903{
 904        return 0;
 905}
 906
 907static inline void __mod_memcg_state(struct mem_cgroup *memcg,
 908                                     int idx,
 909                                     int nr)
 910{
 911}
 912
 913static inline void mod_memcg_state(struct mem_cgroup *memcg,
 914                                   int idx,
 915                                   int nr)
 916{
 917}
 918
 919static inline void __mod_memcg_page_state(struct page *page,
 920                                          int idx,
 921                                          int nr)
 922{
 923}
 924
 925static inline void mod_memcg_page_state(struct page *page,
 926                                        int idx,
 927                                        int nr)
 928{
 929}
 930
 931static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
 932                                              enum node_stat_item idx)
 933{
 934        return node_page_state(lruvec_pgdat(lruvec), idx);
 935}
 936
 937static inline void __mod_lruvec_state(struct lruvec *lruvec,
 938                                      enum node_stat_item idx, int val)
 939{
 940        __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 941}
 942
 943static inline void mod_lruvec_state(struct lruvec *lruvec,
 944                                    enum node_stat_item idx, int val)
 945{
 946        mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 947}
 948
 949static inline void __mod_lruvec_page_state(struct page *page,
 950                                           enum node_stat_item idx, int val)
 951{
 952        __mod_node_page_state(page_pgdat(page), idx, val);
 953}
 954
 955static inline void mod_lruvec_page_state(struct page *page,
 956                                         enum node_stat_item idx, int val)
 957{
 958        mod_node_page_state(page_pgdat(page), idx, val);
 959}
 960
 961static inline
 962unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
 963                                            gfp_t gfp_mask,
 964                                            unsigned long *total_scanned)
 965{
 966        return 0;
 967}
 968
 969static inline void mem_cgroup_split_huge_fixup(struct page *head)
 970{
 971}
 972
 973static inline void count_memcg_events(struct mem_cgroup *memcg,
 974                                      enum vm_event_item idx,
 975                                      unsigned long count)
 976{
 977}
 978
 979static inline void count_memcg_page_event(struct page *page,
 980                                          int idx)
 981{
 982}
 983
 984static inline
 985void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
 986{
 987}
 988#endif /* CONFIG_MEMCG */
 989
 990/* idx can be of type enum memcg_stat_item or node_stat_item */
 991static inline void __inc_memcg_state(struct mem_cgroup *memcg,
 992                                     int idx)
 993{
 994        __mod_memcg_state(memcg, idx, 1);
 995}
 996
 997/* idx can be of type enum memcg_stat_item or node_stat_item */
 998static inline void __dec_memcg_state(struct mem_cgroup *memcg,
 999                                     int idx)
1000{
1001        __mod_memcg_state(memcg, idx, -1);
1002}
1003
1004/* idx can be of type enum memcg_stat_item or node_stat_item */
1005static inline void __inc_memcg_page_state(struct page *page,
1006                                          int idx)
1007{
1008        __mod_memcg_page_state(page, idx, 1);
1009}
1010
1011/* idx can be of type enum memcg_stat_item or node_stat_item */
1012static inline void __dec_memcg_page_state(struct page *page,
1013                                          int idx)
1014{
1015        __mod_memcg_page_state(page, idx, -1);
1016}
1017
1018static inline void __inc_lruvec_state(struct lruvec *lruvec,
1019                                      enum node_stat_item idx)
1020{
1021        __mod_lruvec_state(lruvec, idx, 1);
1022}
1023
1024static inline void __dec_lruvec_state(struct lruvec *lruvec,
1025                                      enum node_stat_item idx)
1026{
1027        __mod_lruvec_state(lruvec, idx, -1);
1028}
1029
1030static inline void __inc_lruvec_page_state(struct page *page,
1031                                           enum node_stat_item idx)
1032{
1033        __mod_lruvec_page_state(page, idx, 1);
1034}
1035
1036static inline void __dec_lruvec_page_state(struct page *page,
1037                                           enum node_stat_item idx)
1038{
1039        __mod_lruvec_page_state(page, idx, -1);
1040}
1041
1042/* idx can be of type enum memcg_stat_item or node_stat_item */
1043static inline void inc_memcg_state(struct mem_cgroup *memcg,
1044                                   int idx)
1045{
1046        mod_memcg_state(memcg, idx, 1);
1047}
1048
1049/* idx can be of type enum memcg_stat_item or node_stat_item */
1050static inline void dec_memcg_state(struct mem_cgroup *memcg,
1051                                   int idx)
1052{
1053        mod_memcg_state(memcg, idx, -1);
1054}
1055
1056/* idx can be of type enum memcg_stat_item or node_stat_item */
1057static inline void inc_memcg_page_state(struct page *page,
1058                                        int idx)
1059{
1060        mod_memcg_page_state(page, idx, 1);
1061}
1062
1063/* idx can be of type enum memcg_stat_item or node_stat_item */
1064static inline void dec_memcg_page_state(struct page *page,
1065                                        int idx)
1066{
1067        mod_memcg_page_state(page, idx, -1);
1068}
1069
1070static inline void inc_lruvec_state(struct lruvec *lruvec,
1071                                    enum node_stat_item idx)
1072{
1073        mod_lruvec_state(lruvec, idx, 1);
1074}
1075
1076static inline void dec_lruvec_state(struct lruvec *lruvec,
1077                                    enum node_stat_item idx)
1078{
1079        mod_lruvec_state(lruvec, idx, -1);
1080}
1081
1082static inline void inc_lruvec_page_state(struct page *page,
1083                                         enum node_stat_item idx)
1084{
1085        mod_lruvec_page_state(page, idx, 1);
1086}
1087
1088static inline void dec_lruvec_page_state(struct page *page,
1089                                         enum node_stat_item idx)
1090{
1091        mod_lruvec_page_state(page, idx, -1);
1092}
1093
1094#ifdef CONFIG_CGROUP_WRITEBACK
1095
1096struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
1097struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1098void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1099                         unsigned long *pheadroom, unsigned long *pdirty,
1100                         unsigned long *pwriteback);
1101
1102#else   /* CONFIG_CGROUP_WRITEBACK */
1103
1104static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1105{
1106        return NULL;
1107}
1108
1109static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1110                                       unsigned long *pfilepages,
1111                                       unsigned long *pheadroom,
1112                                       unsigned long *pdirty,
1113                                       unsigned long *pwriteback)
1114{
1115}
1116
1117#endif  /* CONFIG_CGROUP_WRITEBACK */
1118
1119struct sock;
1120bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1121void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1122#ifdef CONFIG_MEMCG
1123extern struct static_key_false memcg_sockets_enabled_key;
1124#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1125void mem_cgroup_sk_alloc(struct sock *sk);
1126void mem_cgroup_sk_free(struct sock *sk);
1127static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1128{
1129        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1130                return true;
1131        do {
1132                if (time_before(jiffies, memcg->socket_pressure))
1133                        return true;
1134        } while ((memcg = parent_mem_cgroup(memcg)));
1135        return false;
1136}
1137#else
1138#define mem_cgroup_sockets_enabled 0
1139static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1140static inline void mem_cgroup_sk_free(struct sock *sk) { };
1141static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1142{
1143        return false;
1144}
1145#endif
1146
1147struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1148void memcg_kmem_put_cache(struct kmem_cache *cachep);
1149int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1150                            struct mem_cgroup *memcg);
1151int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1152void memcg_kmem_uncharge(struct page *page, int order);
1153
1154#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1155extern struct static_key_false memcg_kmem_enabled_key;
1156extern struct workqueue_struct *memcg_kmem_cache_wq;
1157
1158extern int memcg_nr_cache_ids;
1159void memcg_get_cache_ids(void);
1160void memcg_put_cache_ids(void);
1161
1162/*
1163 * Helper macro to loop through all memcg-specific caches. Callers must still
1164 * check if the cache is valid (it is either valid or NULL).
1165 * the slab_mutex must be held when looping through those caches
1166 */
1167#define for_each_memcg_cache_index(_idx)        \
1168        for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1169
1170static inline bool memcg_kmem_enabled(void)
1171{
1172        return static_branch_unlikely(&memcg_kmem_enabled_key);
1173}
1174
1175/*
1176 * helper for accessing a memcg's index. It will be used as an index in the
1177 * child cache array in kmem_cache, and also to derive its name. This function
1178 * will return -1 when this is not a kmem-limited memcg.
1179 */
1180static inline int memcg_cache_id(struct mem_cgroup *memcg)
1181{
1182        return memcg ? memcg->kmemcg_id : -1;
1183}
1184
1185#else
1186#define for_each_memcg_cache_index(_idx)        \
1187        for (; NULL; )
1188
1189static inline bool memcg_kmem_enabled(void)
1190{
1191        return false;
1192}
1193
1194static inline int memcg_cache_id(struct mem_cgroup *memcg)
1195{
1196        return -1;
1197}
1198
1199static inline void memcg_get_cache_ids(void)
1200{
1201}
1202
1203static inline void memcg_put_cache_ids(void)
1204{
1205}
1206
1207#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
1208
1209#endif /* _LINUX_MEMCONTROL_H */
1210