linux/include/linux/ptrace.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PTRACE_H
   3#define _LINUX_PTRACE_H
   4
   5#include <linux/compiler.h>             /* For unlikely.  */
   6#include <linux/sched.h>                /* For struct task_struct.  */
   7#include <linux/sched/signal.h>         /* For send_sig(), same_thread_group(), etc. */
   8#include <linux/err.h>                  /* for IS_ERR_VALUE */
   9#include <linux/bug.h>                  /* For BUG_ON.  */
  10#include <linux/pid_namespace.h>        /* For task_active_pid_ns.  */
  11#include <uapi/linux/ptrace.h>
  12
  13extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
  14                            void *buf, int len, unsigned int gup_flags);
  15
  16/*
  17 * Ptrace flags
  18 *
  19 * The owner ship rules for task->ptrace which holds the ptrace
  20 * flags is simple.  When a task is running it owns it's task->ptrace
  21 * flags.  When the a task is stopped the ptracer owns task->ptrace.
  22 */
  23
  24#define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
  25#define PT_PTRACED      0x00000001
  26#define PT_DTRACE       0x00000002      /* delayed trace (used on m68k, i386) */
  27
  28#define PT_OPT_FLAG_SHIFT       3
  29/* PT_TRACE_* event enable flags */
  30#define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
  31#define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
  32#define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
  33#define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
  34#define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
  35#define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
  36#define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
  37#define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
  38#define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
  39
  40#define PT_EXITKILL             (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
  41#define PT_SUSPEND_SECCOMP      (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
  42
  43/* single stepping state bits (used on ARM and PA-RISC) */
  44#define PT_SINGLESTEP_BIT       31
  45#define PT_SINGLESTEP           (1<<PT_SINGLESTEP_BIT)
  46#define PT_BLOCKSTEP_BIT        30
  47#define PT_BLOCKSTEP            (1<<PT_BLOCKSTEP_BIT)
  48
  49extern long arch_ptrace(struct task_struct *child, long request,
  50                        unsigned long addr, unsigned long data);
  51extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
  52extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
  53extern void ptrace_disable(struct task_struct *);
  54extern int ptrace_request(struct task_struct *child, long request,
  55                          unsigned long addr, unsigned long data);
  56extern void ptrace_notify(int exit_code);
  57extern void __ptrace_link(struct task_struct *child,
  58                          struct task_struct *new_parent,
  59                          const struct cred *ptracer_cred);
  60extern void __ptrace_unlink(struct task_struct *child);
  61extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
  62#define PTRACE_MODE_READ        0x01
  63#define PTRACE_MODE_ATTACH      0x02
  64#define PTRACE_MODE_NOAUDIT     0x04
  65#define PTRACE_MODE_FSCREDS 0x08
  66#define PTRACE_MODE_REALCREDS 0x10
  67
  68/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
  69#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
  70#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
  71#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
  72#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
  73
  74/**
  75 * ptrace_may_access - check whether the caller is permitted to access
  76 * a target task.
  77 * @task: target task
  78 * @mode: selects type of access and caller credentials
  79 *
  80 * Returns true on success, false on denial.
  81 *
  82 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
  83 * be set in @mode to specify whether the access was requested through
  84 * a filesystem syscall (should use effective capabilities and fsuid
  85 * of the caller) or through an explicit syscall such as
  86 * process_vm_writev or ptrace (and should use the real credentials).
  87 */
  88extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
  89
  90static inline int ptrace_reparented(struct task_struct *child)
  91{
  92        return !same_thread_group(child->real_parent, child->parent);
  93}
  94
  95static inline void ptrace_unlink(struct task_struct *child)
  96{
  97        if (unlikely(child->ptrace))
  98                __ptrace_unlink(child);
  99}
 100
 101int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
 102                            unsigned long data);
 103int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
 104                            unsigned long data);
 105
 106/**
 107 * ptrace_parent - return the task that is tracing the given task
 108 * @task: task to consider
 109 *
 110 * Returns %NULL if no one is tracing @task, or the &struct task_struct
 111 * pointer to its tracer.
 112 *
 113 * Must called under rcu_read_lock().  The pointer returned might be kept
 114 * live only by RCU.  During exec, this may be called with task_lock() held
 115 * on @task, still held from when check_unsafe_exec() was called.
 116 */
 117static inline struct task_struct *ptrace_parent(struct task_struct *task)
 118{
 119        if (unlikely(task->ptrace))
 120                return rcu_dereference(task->parent);
 121        return NULL;
 122}
 123
 124/**
 125 * ptrace_event_enabled - test whether a ptrace event is enabled
 126 * @task: ptracee of interest
 127 * @event: %PTRACE_EVENT_* to test
 128 *
 129 * Test whether @event is enabled for ptracee @task.
 130 *
 131 * Returns %true if @event is enabled, %false otherwise.
 132 */
 133static inline bool ptrace_event_enabled(struct task_struct *task, int event)
 134{
 135        return task->ptrace & PT_EVENT_FLAG(event);
 136}
 137
 138/**
 139 * ptrace_event - possibly stop for a ptrace event notification
 140 * @event:      %PTRACE_EVENT_* value to report
 141 * @message:    value for %PTRACE_GETEVENTMSG to return
 142 *
 143 * Check whether @event is enabled and, if so, report @event and @message
 144 * to the ptrace parent.
 145 *
 146 * Called without locks.
 147 */
 148static inline void ptrace_event(int event, unsigned long message)
 149{
 150        if (unlikely(ptrace_event_enabled(current, event))) {
 151                current->ptrace_message = message;
 152                ptrace_notify((event << 8) | SIGTRAP);
 153        } else if (event == PTRACE_EVENT_EXEC) {
 154                /* legacy EXEC report via SIGTRAP */
 155                if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
 156                        send_sig(SIGTRAP, current, 0);
 157        }
 158}
 159
 160/**
 161 * ptrace_event_pid - possibly stop for a ptrace event notification
 162 * @event:      %PTRACE_EVENT_* value to report
 163 * @pid:        process identifier for %PTRACE_GETEVENTMSG to return
 164 *
 165 * Check whether @event is enabled and, if so, report @event and @pid
 166 * to the ptrace parent.  @pid is reported as the pid_t seen from the
 167 * the ptrace parent's pid namespace.
 168 *
 169 * Called without locks.
 170 */
 171static inline void ptrace_event_pid(int event, struct pid *pid)
 172{
 173        /*
 174         * FIXME: There's a potential race if a ptracer in a different pid
 175         * namespace than parent attaches between computing message below and
 176         * when we acquire tasklist_lock in ptrace_stop().  If this happens,
 177         * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
 178         */
 179        unsigned long message = 0;
 180        struct pid_namespace *ns;
 181
 182        rcu_read_lock();
 183        ns = task_active_pid_ns(rcu_dereference(current->parent));
 184        if (ns)
 185                message = pid_nr_ns(pid, ns);
 186        rcu_read_unlock();
 187
 188        ptrace_event(event, message);
 189}
 190
 191/**
 192 * ptrace_init_task - initialize ptrace state for a new child
 193 * @child:              new child task
 194 * @ptrace:             true if child should be ptrace'd by parent's tracer
 195 *
 196 * This is called immediately after adding @child to its parent's children
 197 * list.  @ptrace is false in the normal case, and true to ptrace @child.
 198 *
 199 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
 200 */
 201static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
 202{
 203        INIT_LIST_HEAD(&child->ptrace_entry);
 204        INIT_LIST_HEAD(&child->ptraced);
 205        child->jobctl = 0;
 206        child->ptrace = 0;
 207        child->parent = child->real_parent;
 208
 209        if (unlikely(ptrace) && current->ptrace) {
 210                child->ptrace = current->ptrace;
 211                __ptrace_link(child, current->parent, current->ptracer_cred);
 212
 213                if (child->ptrace & PT_SEIZED)
 214                        task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
 215                else
 216                        sigaddset(&child->pending.signal, SIGSTOP);
 217
 218                set_tsk_thread_flag(child, TIF_SIGPENDING);
 219        }
 220        else
 221                child->ptracer_cred = NULL;
 222}
 223
 224/**
 225 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
 226 * @task:       task in %EXIT_DEAD state
 227 *
 228 * Called with write_lock(&tasklist_lock) held.
 229 */
 230static inline void ptrace_release_task(struct task_struct *task)
 231{
 232        BUG_ON(!list_empty(&task->ptraced));
 233        ptrace_unlink(task);
 234        BUG_ON(!list_empty(&task->ptrace_entry));
 235}
 236
 237#ifndef force_successful_syscall_return
 238/*
 239 * System call handlers that, upon successful completion, need to return a
 240 * negative value should call force_successful_syscall_return() right before
 241 * returning.  On architectures where the syscall convention provides for a
 242 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
 243 * others), this macro can be used to ensure that the error flag will not get
 244 * set.  On architectures which do not support a separate error flag, the macro
 245 * is a no-op and the spurious error condition needs to be filtered out by some
 246 * other means (e.g., in user-level, by passing an extra argument to the
 247 * syscall handler, or something along those lines).
 248 */
 249#define force_successful_syscall_return() do { } while (0)
 250#endif
 251
 252#ifndef is_syscall_success
 253/*
 254 * On most systems we can tell if a syscall is a success based on if the retval
 255 * is an error value.  On some systems like ia64 and powerpc they have different
 256 * indicators of success/failure and must define their own.
 257 */
 258#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
 259#endif
 260
 261/*
 262 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
 263 *
 264 * These do-nothing inlines are used when the arch does not
 265 * implement single-step.  The kerneldoc comments are here
 266 * to document the interface for all arch definitions.
 267 */
 268
 269#ifndef arch_has_single_step
 270/**
 271 * arch_has_single_step - does this CPU support user-mode single-step?
 272 *
 273 * If this is defined, then there must be function declarations or
 274 * inlines for user_enable_single_step() and user_disable_single_step().
 275 * arch_has_single_step() should evaluate to nonzero iff the machine
 276 * supports instruction single-step for user mode.
 277 * It can be a constant or it can test a CPU feature bit.
 278 */
 279#define arch_has_single_step()          (0)
 280
 281/**
 282 * user_enable_single_step - single-step in user-mode task
 283 * @task: either current or a task stopped in %TASK_TRACED
 284 *
 285 * This can only be called when arch_has_single_step() has returned nonzero.
 286 * Set @task so that when it returns to user mode, it will trap after the
 287 * next single instruction executes.  If arch_has_block_step() is defined,
 288 * this must clear the effects of user_enable_block_step() too.
 289 */
 290static inline void user_enable_single_step(struct task_struct *task)
 291{
 292        BUG();                  /* This can never be called.  */
 293}
 294
 295/**
 296 * user_disable_single_step - cancel user-mode single-step
 297 * @task: either current or a task stopped in %TASK_TRACED
 298 *
 299 * Clear @task of the effects of user_enable_single_step() and
 300 * user_enable_block_step().  This can be called whether or not either
 301 * of those was ever called on @task, and even if arch_has_single_step()
 302 * returned zero.
 303 */
 304static inline void user_disable_single_step(struct task_struct *task)
 305{
 306}
 307#else
 308extern void user_enable_single_step(struct task_struct *);
 309extern void user_disable_single_step(struct task_struct *);
 310#endif  /* arch_has_single_step */
 311
 312#ifndef arch_has_block_step
 313/**
 314 * arch_has_block_step - does this CPU support user-mode block-step?
 315 *
 316 * If this is defined, then there must be a function declaration or inline
 317 * for user_enable_block_step(), and arch_has_single_step() must be defined
 318 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
 319 * supports step-until-branch for user mode.  It can be a constant or it
 320 * can test a CPU feature bit.
 321 */
 322#define arch_has_block_step()           (0)
 323
 324/**
 325 * user_enable_block_step - step until branch in user-mode task
 326 * @task: either current or a task stopped in %TASK_TRACED
 327 *
 328 * This can only be called when arch_has_block_step() has returned nonzero,
 329 * and will never be called when single-instruction stepping is being used.
 330 * Set @task so that when it returns to user mode, it will trap after the
 331 * next branch or trap taken.
 332 */
 333static inline void user_enable_block_step(struct task_struct *task)
 334{
 335        BUG();                  /* This can never be called.  */
 336}
 337#else
 338extern void user_enable_block_step(struct task_struct *);
 339#endif  /* arch_has_block_step */
 340
 341#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
 342extern void user_single_step_siginfo(struct task_struct *tsk,
 343                                struct pt_regs *regs, siginfo_t *info);
 344#else
 345static inline void user_single_step_siginfo(struct task_struct *tsk,
 346                                struct pt_regs *regs, siginfo_t *info)
 347{
 348        memset(info, 0, sizeof(*info));
 349        info->si_signo = SIGTRAP;
 350}
 351#endif
 352
 353#ifndef arch_ptrace_stop_needed
 354/**
 355 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
 356 * @code:       current->exit_code value ptrace will stop with
 357 * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
 358 *
 359 * This is called with the siglock held, to decide whether or not it's
 360 * necessary to release the siglock and call arch_ptrace_stop() with the
 361 * same @code and @info arguments.  It can be defined to a constant if
 362 * arch_ptrace_stop() is never required, or always is.  On machines where
 363 * this makes sense, it should be defined to a quick test to optimize out
 364 * calling arch_ptrace_stop() when it would be superfluous.  For example,
 365 * if the thread has not been back to user mode since the last stop, the
 366 * thread state might indicate that nothing needs to be done.
 367 *
 368 * This is guaranteed to be invoked once before a task stops for ptrace and
 369 * may include arch-specific operations necessary prior to a ptrace stop.
 370 */
 371#define arch_ptrace_stop_needed(code, info)     (0)
 372#endif
 373
 374#ifndef arch_ptrace_stop
 375/**
 376 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
 377 * @code:       current->exit_code value ptrace will stop with
 378 * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
 379 *
 380 * This is called with no locks held when arch_ptrace_stop_needed() has
 381 * just returned nonzero.  It is allowed to block, e.g. for user memory
 382 * access.  The arch can have machine-specific work to be done before
 383 * ptrace stops.  On ia64, register backing store gets written back to user
 384 * memory here.  Since this can be costly (requires dropping the siglock),
 385 * we only do it when the arch requires it for this particular stop, as
 386 * indicated by arch_ptrace_stop_needed().
 387 */
 388#define arch_ptrace_stop(code, info)            do { } while (0)
 389#endif
 390
 391#ifndef current_pt_regs
 392#define current_pt_regs() task_pt_regs(current)
 393#endif
 394
 395/*
 396 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
 397 * on *all* architectures; the only reason to have a per-arch definition
 398 * is optimisation.
 399 */
 400#ifndef signal_pt_regs
 401#define signal_pt_regs() task_pt_regs(current)
 402#endif
 403
 404#ifndef current_user_stack_pointer
 405#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
 406#endif
 407
 408extern int task_current_syscall(struct task_struct *target, long *callno,
 409                                unsigned long args[6], unsigned int maxargs,
 410                                unsigned long *sp, unsigned long *pc);
 411
 412#endif
 413