linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/resource.h>
  25#include <linux/latencytop.h>
  26#include <linux/sched/prio.h>
  27#include <linux/signal_types.h>
  28#include <linux/mm_types_task.h>
  29#include <linux/task_io_accounting.h>
  30
  31/* task_struct member predeclarations (sorted alphabetically): */
  32struct audit_context;
  33struct backing_dev_info;
  34struct bio_list;
  35struct blk_plug;
  36struct cfs_rq;
  37struct fs_struct;
  38struct futex_pi_state;
  39struct io_context;
  40struct mempolicy;
  41struct nameidata;
  42struct nsproxy;
  43struct perf_event_context;
  44struct pid_namespace;
  45struct pipe_inode_info;
  46struct rcu_node;
  47struct reclaim_state;
  48struct robust_list_head;
  49struct sched_attr;
  50struct sched_param;
  51struct seq_file;
  52struct sighand_struct;
  53struct signal_struct;
  54struct task_delay_info;
  55struct task_group;
  56
  57/*
  58 * Task state bitmask. NOTE! These bits are also
  59 * encoded in fs/proc/array.c: get_task_state().
  60 *
  61 * We have two separate sets of flags: task->state
  62 * is about runnability, while task->exit_state are
  63 * about the task exiting. Confusing, but this way
  64 * modifying one set can't modify the other one by
  65 * mistake.
  66 */
  67
  68/* Used in tsk->state: */
  69#define TASK_RUNNING                    0x0000
  70#define TASK_INTERRUPTIBLE              0x0001
  71#define TASK_UNINTERRUPTIBLE            0x0002
  72#define __TASK_STOPPED                  0x0004
  73#define __TASK_TRACED                   0x0008
  74/* Used in tsk->exit_state: */
  75#define EXIT_DEAD                       0x0010
  76#define EXIT_ZOMBIE                     0x0020
  77#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  78/* Used in tsk->state again: */
  79#define TASK_PARKED                     0x0040
  80#define TASK_DEAD                       0x0080
  81#define TASK_WAKEKILL                   0x0100
  82#define TASK_WAKING                     0x0200
  83#define TASK_NOLOAD                     0x0400
  84#define TASK_NEW                        0x0800
  85#define TASK_STATE_MAX                  0x1000
  86
  87/* Convenience macros for the sake of set_current_state: */
  88#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
  89#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
  90#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
  91
  92#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
  93
  94/* Convenience macros for the sake of wake_up(): */
  95#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
  96
  97/* get_task_state(): */
  98#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
  99                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 100                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 101                                         TASK_PARKED)
 102
 103#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 104
 105#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 106
 107#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 108
 109#define task_contributes_to_load(task)  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 110                                         (task->flags & PF_FROZEN) == 0 && \
 111                                         (task->state & TASK_NOLOAD) == 0)
 112
 113#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 114
 115/*
 116 * Special states are those that do not use the normal wait-loop pattern. See
 117 * the comment with set_special_state().
 118 */
 119#define is_special_task_state(state)                            \
 120        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
 121
 122#define __set_current_state(state_value)                        \
 123        do {                                                    \
 124                WARN_ON_ONCE(is_special_task_state(state_value));\
 125                current->task_state_change = _THIS_IP_;         \
 126                current->state = (state_value);                 \
 127        } while (0)
 128
 129#define set_current_state(state_value)                          \
 130        do {                                                    \
 131                WARN_ON_ONCE(is_special_task_state(state_value));\
 132                current->task_state_change = _THIS_IP_;         \
 133                smp_store_mb(current->state, (state_value));    \
 134        } while (0)
 135
 136#define set_special_state(state_value)                                  \
 137        do {                                                            \
 138                unsigned long flags; /* may shadow */                   \
 139                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 140                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 141                current->task_state_change = _THIS_IP_;                 \
 142                current->state = (state_value);                         \
 143                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 144        } while (0)
 145#else
 146/*
 147 * set_current_state() includes a barrier so that the write of current->state
 148 * is correctly serialised wrt the caller's subsequent test of whether to
 149 * actually sleep:
 150 *
 151 *   for (;;) {
 152 *      set_current_state(TASK_UNINTERRUPTIBLE);
 153 *      if (!need_sleep)
 154 *              break;
 155 *
 156 *      schedule();
 157 *   }
 158 *   __set_current_state(TASK_RUNNING);
 159 *
 160 * If the caller does not need such serialisation (because, for instance, the
 161 * condition test and condition change and wakeup are under the same lock) then
 162 * use __set_current_state().
 163 *
 164 * The above is typically ordered against the wakeup, which does:
 165 *
 166 *   need_sleep = false;
 167 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 168 *
 169 * Where wake_up_state() (and all other wakeup primitives) imply enough
 170 * barriers to order the store of the variable against wakeup.
 171 *
 172 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 173 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 174 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 175 *
 176 * However, with slightly different timing the wakeup TASK_RUNNING store can
 177 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
 178 * a problem either because that will result in one extra go around the loop
 179 * and our @cond test will save the day.
 180 *
 181 * Also see the comments of try_to_wake_up().
 182 */
 183#define __set_current_state(state_value)                                \
 184        current->state = (state_value)
 185
 186#define set_current_state(state_value)                                  \
 187        smp_store_mb(current->state, (state_value))
 188
 189/*
 190 * set_special_state() should be used for those states when the blocking task
 191 * can not use the regular condition based wait-loop. In that case we must
 192 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 193 * will not collide with our state change.
 194 */
 195#define set_special_state(state_value)                                  \
 196        do {                                                            \
 197                unsigned long flags; /* may shadow */                   \
 198                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 199                current->state = (state_value);                         \
 200                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 201        } while (0)
 202
 203#endif
 204
 205/* Task command name length: */
 206#define TASK_COMM_LEN                   16
 207
 208extern void scheduler_tick(void);
 209
 210#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 211
 212extern long schedule_timeout(long timeout);
 213extern long schedule_timeout_interruptible(long timeout);
 214extern long schedule_timeout_killable(long timeout);
 215extern long schedule_timeout_uninterruptible(long timeout);
 216extern long schedule_timeout_idle(long timeout);
 217asmlinkage void schedule(void);
 218extern void schedule_preempt_disabled(void);
 219
 220extern int __must_check io_schedule_prepare(void);
 221extern void io_schedule_finish(int token);
 222extern long io_schedule_timeout(long timeout);
 223extern void io_schedule(void);
 224
 225/**
 226 * struct prev_cputime - snapshot of system and user cputime
 227 * @utime: time spent in user mode
 228 * @stime: time spent in system mode
 229 * @lock: protects the above two fields
 230 *
 231 * Stores previous user/system time values such that we can guarantee
 232 * monotonicity.
 233 */
 234struct prev_cputime {
 235#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 236        u64                             utime;
 237        u64                             stime;
 238        raw_spinlock_t                  lock;
 239#endif
 240};
 241
 242/**
 243 * struct task_cputime - collected CPU time counts
 244 * @utime:              time spent in user mode, in nanoseconds
 245 * @stime:              time spent in kernel mode, in nanoseconds
 246 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 247 *
 248 * This structure groups together three kinds of CPU time that are tracked for
 249 * threads and thread groups.  Most things considering CPU time want to group
 250 * these counts together and treat all three of them in parallel.
 251 */
 252struct task_cputime {
 253        u64                             utime;
 254        u64                             stime;
 255        unsigned long long              sum_exec_runtime;
 256};
 257
 258/* Alternate field names when used on cache expirations: */
 259#define virt_exp                        utime
 260#define prof_exp                        stime
 261#define sched_exp                       sum_exec_runtime
 262
 263enum vtime_state {
 264        /* Task is sleeping or running in a CPU with VTIME inactive: */
 265        VTIME_INACTIVE = 0,
 266        /* Task runs in userspace in a CPU with VTIME active: */
 267        VTIME_USER,
 268        /* Task runs in kernelspace in a CPU with VTIME active: */
 269        VTIME_SYS,
 270};
 271
 272struct vtime {
 273        seqcount_t              seqcount;
 274        unsigned long long      starttime;
 275        enum vtime_state        state;
 276        u64                     utime;
 277        u64                     stime;
 278        u64                     gtime;
 279};
 280
 281struct sched_info {
 282#ifdef CONFIG_SCHED_INFO
 283        /* Cumulative counters: */
 284
 285        /* # of times we have run on this CPU: */
 286        unsigned long                   pcount;
 287
 288        /* Time spent waiting on a runqueue: */
 289        unsigned long long              run_delay;
 290
 291        /* Timestamps: */
 292
 293        /* When did we last run on a CPU? */
 294        unsigned long long              last_arrival;
 295
 296        /* When were we last queued to run? */
 297        unsigned long long              last_queued;
 298
 299#endif /* CONFIG_SCHED_INFO */
 300};
 301
 302/*
 303 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 304 * has a few: load, load_avg, util_avg, freq, and capacity.
 305 *
 306 * We define a basic fixed point arithmetic range, and then formalize
 307 * all these metrics based on that basic range.
 308 */
 309# define SCHED_FIXEDPOINT_SHIFT         10
 310# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 311
 312struct load_weight {
 313        unsigned long                   weight;
 314        u32                             inv_weight;
 315};
 316
 317/**
 318 * struct util_est - Estimation utilization of FAIR tasks
 319 * @enqueued: instantaneous estimated utilization of a task/cpu
 320 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 321 *            utilization of a task
 322 *
 323 * Support data structure to track an Exponential Weighted Moving Average
 324 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 325 * average each time a task completes an activation. Sample's weight is chosen
 326 * so that the EWMA will be relatively insensitive to transient changes to the
 327 * task's workload.
 328 *
 329 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 330 * - task:   the task's util_avg at last task dequeue time
 331 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 332 * Thus, the util_est.enqueued of a task represents the contribution on the
 333 * estimated utilization of the CPU where that task is currently enqueued.
 334 *
 335 * Only for tasks we track a moving average of the past instantaneous
 336 * estimated utilization. This allows to absorb sporadic drops in utilization
 337 * of an otherwise almost periodic task.
 338 */
 339struct util_est {
 340        unsigned int                    enqueued;
 341        unsigned int                    ewma;
 342#define UTIL_EST_WEIGHT_SHIFT           2
 343} __attribute__((__aligned__(sizeof(u64))));
 344
 345/*
 346 * The load_avg/util_avg accumulates an infinite geometric series
 347 * (see __update_load_avg() in kernel/sched/fair.c).
 348 *
 349 * [load_avg definition]
 350 *
 351 *   load_avg = runnable% * scale_load_down(load)
 352 *
 353 * where runnable% is the time ratio that a sched_entity is runnable.
 354 * For cfs_rq, it is the aggregated load_avg of all runnable and
 355 * blocked sched_entities.
 356 *
 357 * load_avg may also take frequency scaling into account:
 358 *
 359 *   load_avg = runnable% * scale_load_down(load) * freq%
 360 *
 361 * where freq% is the CPU frequency normalized to the highest frequency.
 362 *
 363 * [util_avg definition]
 364 *
 365 *   util_avg = running% * SCHED_CAPACITY_SCALE
 366 *
 367 * where running% is the time ratio that a sched_entity is running on
 368 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 369 * and blocked sched_entities.
 370 *
 371 * util_avg may also factor frequency scaling and CPU capacity scaling:
 372 *
 373 *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
 374 *
 375 * where freq% is the same as above, and capacity% is the CPU capacity
 376 * normalized to the greatest capacity (due to uarch differences, etc).
 377 *
 378 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
 379 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
 380 * we therefore scale them to as large a range as necessary. This is for
 381 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
 382 *
 383 * [Overflow issue]
 384 *
 385 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 386 * with the highest load (=88761), always runnable on a single cfs_rq,
 387 * and should not overflow as the number already hits PID_MAX_LIMIT.
 388 *
 389 * For all other cases (including 32-bit kernels), struct load_weight's
 390 * weight will overflow first before we do, because:
 391 *
 392 *    Max(load_avg) <= Max(load.weight)
 393 *
 394 * Then it is the load_weight's responsibility to consider overflow
 395 * issues.
 396 */
 397struct sched_avg {
 398        u64                             last_update_time;
 399        u64                             load_sum;
 400        u64                             runnable_load_sum;
 401        u32                             util_sum;
 402        u32                             period_contrib;
 403        unsigned long                   load_avg;
 404        unsigned long                   runnable_load_avg;
 405        unsigned long                   util_avg;
 406        struct util_est                 util_est;
 407} ____cacheline_aligned;
 408
 409struct sched_statistics {
 410#ifdef CONFIG_SCHEDSTATS
 411        u64                             wait_start;
 412        u64                             wait_max;
 413        u64                             wait_count;
 414        u64                             wait_sum;
 415        u64                             iowait_count;
 416        u64                             iowait_sum;
 417
 418        u64                             sleep_start;
 419        u64                             sleep_max;
 420        s64                             sum_sleep_runtime;
 421
 422        u64                             block_start;
 423        u64                             block_max;
 424        u64                             exec_max;
 425        u64                             slice_max;
 426
 427        u64                             nr_migrations_cold;
 428        u64                             nr_failed_migrations_affine;
 429        u64                             nr_failed_migrations_running;
 430        u64                             nr_failed_migrations_hot;
 431        u64                             nr_forced_migrations;
 432
 433        u64                             nr_wakeups;
 434        u64                             nr_wakeups_sync;
 435        u64                             nr_wakeups_migrate;
 436        u64                             nr_wakeups_local;
 437        u64                             nr_wakeups_remote;
 438        u64                             nr_wakeups_affine;
 439        u64                             nr_wakeups_affine_attempts;
 440        u64                             nr_wakeups_passive;
 441        u64                             nr_wakeups_idle;
 442#endif
 443};
 444
 445struct sched_entity {
 446        /* For load-balancing: */
 447        struct load_weight              load;
 448        unsigned long                   runnable_weight;
 449        struct rb_node                  run_node;
 450        struct list_head                group_node;
 451        unsigned int                    on_rq;
 452
 453        u64                             exec_start;
 454        u64                             sum_exec_runtime;
 455        u64                             vruntime;
 456        u64                             prev_sum_exec_runtime;
 457
 458        u64                             nr_migrations;
 459
 460        struct sched_statistics         statistics;
 461
 462#ifdef CONFIG_FAIR_GROUP_SCHED
 463        int                             depth;
 464        struct sched_entity             *parent;
 465        /* rq on which this entity is (to be) queued: */
 466        struct cfs_rq                   *cfs_rq;
 467        /* rq "owned" by this entity/group: */
 468        struct cfs_rq                   *my_q;
 469#endif
 470
 471#ifdef CONFIG_SMP
 472        /*
 473         * Per entity load average tracking.
 474         *
 475         * Put into separate cache line so it does not
 476         * collide with read-mostly values above.
 477         */
 478        struct sched_avg                avg;
 479#endif
 480};
 481
 482struct sched_rt_entity {
 483        struct list_head                run_list;
 484        unsigned long                   timeout;
 485        unsigned long                   watchdog_stamp;
 486        unsigned int                    time_slice;
 487        unsigned short                  on_rq;
 488        unsigned short                  on_list;
 489
 490        struct sched_rt_entity          *back;
 491#ifdef CONFIG_RT_GROUP_SCHED
 492        struct sched_rt_entity          *parent;
 493        /* rq on which this entity is (to be) queued: */
 494        struct rt_rq                    *rt_rq;
 495        /* rq "owned" by this entity/group: */
 496        struct rt_rq                    *my_q;
 497#endif
 498} __randomize_layout;
 499
 500struct sched_dl_entity {
 501        struct rb_node                  rb_node;
 502
 503        /*
 504         * Original scheduling parameters. Copied here from sched_attr
 505         * during sched_setattr(), they will remain the same until
 506         * the next sched_setattr().
 507         */
 508        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 509        u64                             dl_deadline;    /* Relative deadline of each instance   */
 510        u64                             dl_period;      /* Separation of two instances (period) */
 511        u64                             dl_bw;          /* dl_runtime / dl_period               */
 512        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 513
 514        /*
 515         * Actual scheduling parameters. Initialized with the values above,
 516         * they are continously updated during task execution. Note that
 517         * the remaining runtime could be < 0 in case we are in overrun.
 518         */
 519        s64                             runtime;        /* Remaining runtime for this instance  */
 520        u64                             deadline;       /* Absolute deadline for this instance  */
 521        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 522
 523        /*
 524         * Some bool flags:
 525         *
 526         * @dl_throttled tells if we exhausted the runtime. If so, the
 527         * task has to wait for a replenishment to be performed at the
 528         * next firing of dl_timer.
 529         *
 530         * @dl_boosted tells if we are boosted due to DI. If so we are
 531         * outside bandwidth enforcement mechanism (but only until we
 532         * exit the critical section);
 533         *
 534         * @dl_yielded tells if task gave up the CPU before consuming
 535         * all its available runtime during the last job.
 536         *
 537         * @dl_non_contending tells if the task is inactive while still
 538         * contributing to the active utilization. In other words, it
 539         * indicates if the inactive timer has been armed and its handler
 540         * has not been executed yet. This flag is useful to avoid race
 541         * conditions between the inactive timer handler and the wakeup
 542         * code.
 543         *
 544         * @dl_overrun tells if the task asked to be informed about runtime
 545         * overruns.
 546         */
 547        unsigned int                    dl_throttled      : 1;
 548        unsigned int                    dl_boosted        : 1;
 549        unsigned int                    dl_yielded        : 1;
 550        unsigned int                    dl_non_contending : 1;
 551        unsigned int                    dl_overrun        : 1;
 552
 553        /*
 554         * Bandwidth enforcement timer. Each -deadline task has its
 555         * own bandwidth to be enforced, thus we need one timer per task.
 556         */
 557        struct hrtimer                  dl_timer;
 558
 559        /*
 560         * Inactive timer, responsible for decreasing the active utilization
 561         * at the "0-lag time". When a -deadline task blocks, it contributes
 562         * to GRUB's active utilization until the "0-lag time", hence a
 563         * timer is needed to decrease the active utilization at the correct
 564         * time.
 565         */
 566        struct hrtimer inactive_timer;
 567};
 568
 569union rcu_special {
 570        struct {
 571                u8                      blocked;
 572                u8                      need_qs;
 573                u8                      exp_need_qs;
 574
 575                /* Otherwise the compiler can store garbage here: */
 576                u8                      pad;
 577        } b; /* Bits. */
 578        u32 s; /* Set of bits. */
 579};
 580
 581enum perf_event_task_context {
 582        perf_invalid_context = -1,
 583        perf_hw_context = 0,
 584        perf_sw_context,
 585        perf_nr_task_contexts,
 586};
 587
 588struct wake_q_node {
 589        struct wake_q_node *next;
 590};
 591
 592struct task_struct {
 593#ifdef CONFIG_THREAD_INFO_IN_TASK
 594        /*
 595         * For reasons of header soup (see current_thread_info()), this
 596         * must be the first element of task_struct.
 597         */
 598        struct thread_info              thread_info;
 599#endif
 600        /* -1 unrunnable, 0 runnable, >0 stopped: */
 601        volatile long                   state;
 602
 603        /*
 604         * This begins the randomizable portion of task_struct. Only
 605         * scheduling-critical items should be added above here.
 606         */
 607        randomized_struct_fields_start
 608
 609        void                            *stack;
 610        atomic_t                        usage;
 611        /* Per task flags (PF_*), defined further below: */
 612        unsigned int                    flags;
 613        unsigned int                    ptrace;
 614
 615#ifdef CONFIG_SMP
 616        struct llist_node               wake_entry;
 617        int                             on_cpu;
 618#ifdef CONFIG_THREAD_INFO_IN_TASK
 619        /* Current CPU: */
 620        unsigned int                    cpu;
 621#endif
 622        unsigned int                    wakee_flips;
 623        unsigned long                   wakee_flip_decay_ts;
 624        struct task_struct              *last_wakee;
 625
 626        /*
 627         * recent_used_cpu is initially set as the last CPU used by a task
 628         * that wakes affine another task. Waker/wakee relationships can
 629         * push tasks around a CPU where each wakeup moves to the next one.
 630         * Tracking a recently used CPU allows a quick search for a recently
 631         * used CPU that may be idle.
 632         */
 633        int                             recent_used_cpu;
 634        int                             wake_cpu;
 635#endif
 636        int                             on_rq;
 637
 638        int                             prio;
 639        int                             static_prio;
 640        int                             normal_prio;
 641        unsigned int                    rt_priority;
 642
 643        const struct sched_class        *sched_class;
 644        struct sched_entity             se;
 645        struct sched_rt_entity          rt;
 646#ifdef CONFIG_CGROUP_SCHED
 647        struct task_group               *sched_task_group;
 648#endif
 649        struct sched_dl_entity          dl;
 650
 651#ifdef CONFIG_PREEMPT_NOTIFIERS
 652        /* List of struct preempt_notifier: */
 653        struct hlist_head               preempt_notifiers;
 654#endif
 655
 656#ifdef CONFIG_BLK_DEV_IO_TRACE
 657        unsigned int                    btrace_seq;
 658#endif
 659
 660        unsigned int                    policy;
 661        int                             nr_cpus_allowed;
 662        cpumask_t                       cpus_allowed;
 663
 664#ifdef CONFIG_PREEMPT_RCU
 665        int                             rcu_read_lock_nesting;
 666        union rcu_special               rcu_read_unlock_special;
 667        struct list_head                rcu_node_entry;
 668        struct rcu_node                 *rcu_blocked_node;
 669#endif /* #ifdef CONFIG_PREEMPT_RCU */
 670
 671#ifdef CONFIG_TASKS_RCU
 672        unsigned long                   rcu_tasks_nvcsw;
 673        u8                              rcu_tasks_holdout;
 674        u8                              rcu_tasks_idx;
 675        int                             rcu_tasks_idle_cpu;
 676        struct list_head                rcu_tasks_holdout_list;
 677#endif /* #ifdef CONFIG_TASKS_RCU */
 678
 679        struct sched_info               sched_info;
 680
 681        struct list_head                tasks;
 682#ifdef CONFIG_SMP
 683        struct plist_node               pushable_tasks;
 684        struct rb_node                  pushable_dl_tasks;
 685#endif
 686
 687        struct mm_struct                *mm;
 688        struct mm_struct                *active_mm;
 689
 690        /* Per-thread vma caching: */
 691        struct vmacache                 vmacache;
 692
 693#ifdef SPLIT_RSS_COUNTING
 694        struct task_rss_stat            rss_stat;
 695#endif
 696        int                             exit_state;
 697        int                             exit_code;
 698        int                             exit_signal;
 699        /* The signal sent when the parent dies: */
 700        int                             pdeath_signal;
 701        /* JOBCTL_*, siglock protected: */
 702        unsigned long                   jobctl;
 703
 704        /* Used for emulating ABI behavior of previous Linux versions: */
 705        unsigned int                    personality;
 706
 707        /* Scheduler bits, serialized by scheduler locks: */
 708        unsigned                        sched_reset_on_fork:1;
 709        unsigned                        sched_contributes_to_load:1;
 710        unsigned                        sched_migrated:1;
 711        unsigned                        sched_remote_wakeup:1;
 712        /* Force alignment to the next boundary: */
 713        unsigned                        :0;
 714
 715        /* Unserialized, strictly 'current' */
 716
 717        /* Bit to tell LSMs we're in execve(): */
 718        unsigned                        in_execve:1;
 719        unsigned                        in_iowait:1;
 720#ifndef TIF_RESTORE_SIGMASK
 721        unsigned                        restore_sigmask:1;
 722#endif
 723#ifdef CONFIG_MEMCG
 724        unsigned                        memcg_may_oom:1;
 725#ifndef CONFIG_SLOB
 726        unsigned                        memcg_kmem_skip_account:1;
 727#endif
 728#endif
 729#ifdef CONFIG_COMPAT_BRK
 730        unsigned                        brk_randomized:1;
 731#endif
 732#ifdef CONFIG_CGROUPS
 733        /* disallow userland-initiated cgroup migration */
 734        unsigned                        no_cgroup_migration:1;
 735#endif
 736
 737        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 738
 739        struct restart_block            restart_block;
 740
 741        pid_t                           pid;
 742        pid_t                           tgid;
 743
 744#ifdef CONFIG_CC_STACKPROTECTOR
 745        /* Canary value for the -fstack-protector GCC feature: */
 746        unsigned long                   stack_canary;
 747#endif
 748        /*
 749         * Pointers to the (original) parent process, youngest child, younger sibling,
 750         * older sibling, respectively.  (p->father can be replaced with
 751         * p->real_parent->pid)
 752         */
 753
 754        /* Real parent process: */
 755        struct task_struct __rcu        *real_parent;
 756
 757        /* Recipient of SIGCHLD, wait4() reports: */
 758        struct task_struct __rcu        *parent;
 759
 760        /*
 761         * Children/sibling form the list of natural children:
 762         */
 763        struct list_head                children;
 764        struct list_head                sibling;
 765        struct task_struct              *group_leader;
 766
 767        /*
 768         * 'ptraced' is the list of tasks this task is using ptrace() on.
 769         *
 770         * This includes both natural children and PTRACE_ATTACH targets.
 771         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 772         */
 773        struct list_head                ptraced;
 774        struct list_head                ptrace_entry;
 775
 776        /* PID/PID hash table linkage. */
 777        struct pid_link                 pids[PIDTYPE_MAX];
 778        struct list_head                thread_group;
 779        struct list_head                thread_node;
 780
 781        struct completion               *vfork_done;
 782
 783        /* CLONE_CHILD_SETTID: */
 784        int __user                      *set_child_tid;
 785
 786        /* CLONE_CHILD_CLEARTID: */
 787        int __user                      *clear_child_tid;
 788
 789        u64                             utime;
 790        u64                             stime;
 791#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 792        u64                             utimescaled;
 793        u64                             stimescaled;
 794#endif
 795        u64                             gtime;
 796        struct prev_cputime             prev_cputime;
 797#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 798        struct vtime                    vtime;
 799#endif
 800
 801#ifdef CONFIG_NO_HZ_FULL
 802        atomic_t                        tick_dep_mask;
 803#endif
 804        /* Context switch counts: */
 805        unsigned long                   nvcsw;
 806        unsigned long                   nivcsw;
 807
 808        /* Monotonic time in nsecs: */
 809        u64                             start_time;
 810
 811        /* Boot based time in nsecs: */
 812        u64                             real_start_time;
 813
 814        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 815        unsigned long                   min_flt;
 816        unsigned long                   maj_flt;
 817
 818#ifdef CONFIG_POSIX_TIMERS
 819        struct task_cputime             cputime_expires;
 820        struct list_head                cpu_timers[3];
 821#endif
 822
 823        /* Process credentials: */
 824
 825        /* Tracer's credentials at attach: */
 826        const struct cred __rcu         *ptracer_cred;
 827
 828        /* Objective and real subjective task credentials (COW): */
 829        const struct cred __rcu         *real_cred;
 830
 831        /* Effective (overridable) subjective task credentials (COW): */
 832        const struct cred __rcu         *cred;
 833
 834        /*
 835         * executable name, excluding path.
 836         *
 837         * - normally initialized setup_new_exec()
 838         * - access it with [gs]et_task_comm()
 839         * - lock it with task_lock()
 840         */
 841        char                            comm[TASK_COMM_LEN];
 842
 843        struct nameidata                *nameidata;
 844
 845#ifdef CONFIG_SYSVIPC
 846        struct sysv_sem                 sysvsem;
 847        struct sysv_shm                 sysvshm;
 848#endif
 849#ifdef CONFIG_DETECT_HUNG_TASK
 850        unsigned long                   last_switch_count;
 851#endif
 852        /* Filesystem information: */
 853        struct fs_struct                *fs;
 854
 855        /* Open file information: */
 856        struct files_struct             *files;
 857
 858        /* Namespaces: */
 859        struct nsproxy                  *nsproxy;
 860
 861        /* Signal handlers: */
 862        struct signal_struct            *signal;
 863        struct sighand_struct           *sighand;
 864        sigset_t                        blocked;
 865        sigset_t                        real_blocked;
 866        /* Restored if set_restore_sigmask() was used: */
 867        sigset_t                        saved_sigmask;
 868        struct sigpending               pending;
 869        unsigned long                   sas_ss_sp;
 870        size_t                          sas_ss_size;
 871        unsigned int                    sas_ss_flags;
 872
 873        struct callback_head            *task_works;
 874
 875        struct audit_context            *audit_context;
 876#ifdef CONFIG_AUDITSYSCALL
 877        kuid_t                          loginuid;
 878        unsigned int                    sessionid;
 879#endif
 880        struct seccomp                  seccomp;
 881
 882        /* Thread group tracking: */
 883        u32                             parent_exec_id;
 884        u32                             self_exec_id;
 885
 886        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 887        spinlock_t                      alloc_lock;
 888
 889        /* Protection of the PI data structures: */
 890        raw_spinlock_t                  pi_lock;
 891
 892        struct wake_q_node              wake_q;
 893
 894#ifdef CONFIG_RT_MUTEXES
 895        /* PI waiters blocked on a rt_mutex held by this task: */
 896        struct rb_root_cached           pi_waiters;
 897        /* Updated under owner's pi_lock and rq lock */
 898        struct task_struct              *pi_top_task;
 899        /* Deadlock detection and priority inheritance handling: */
 900        struct rt_mutex_waiter          *pi_blocked_on;
 901#endif
 902
 903#ifdef CONFIG_DEBUG_MUTEXES
 904        /* Mutex deadlock detection: */
 905        struct mutex_waiter             *blocked_on;
 906#endif
 907
 908#ifdef CONFIG_TRACE_IRQFLAGS
 909        unsigned int                    irq_events;
 910        unsigned long                   hardirq_enable_ip;
 911        unsigned long                   hardirq_disable_ip;
 912        unsigned int                    hardirq_enable_event;
 913        unsigned int                    hardirq_disable_event;
 914        int                             hardirqs_enabled;
 915        int                             hardirq_context;
 916        unsigned long                   softirq_disable_ip;
 917        unsigned long                   softirq_enable_ip;
 918        unsigned int                    softirq_disable_event;
 919        unsigned int                    softirq_enable_event;
 920        int                             softirqs_enabled;
 921        int                             softirq_context;
 922#endif
 923
 924#ifdef CONFIG_LOCKDEP
 925# define MAX_LOCK_DEPTH                 48UL
 926        u64                             curr_chain_key;
 927        int                             lockdep_depth;
 928        unsigned int                    lockdep_recursion;
 929        struct held_lock                held_locks[MAX_LOCK_DEPTH];
 930#endif
 931
 932#ifdef CONFIG_UBSAN
 933        unsigned int                    in_ubsan;
 934#endif
 935
 936        /* Journalling filesystem info: */
 937        void                            *journal_info;
 938
 939        /* Stacked block device info: */
 940        struct bio_list                 *bio_list;
 941
 942#ifdef CONFIG_BLOCK
 943        /* Stack plugging: */
 944        struct blk_plug                 *plug;
 945#endif
 946
 947        /* VM state: */
 948        struct reclaim_state            *reclaim_state;
 949
 950        struct backing_dev_info         *backing_dev_info;
 951
 952        struct io_context               *io_context;
 953
 954        /* Ptrace state: */
 955        unsigned long                   ptrace_message;
 956        siginfo_t                       *last_siginfo;
 957
 958        struct task_io_accounting       ioac;
 959#ifdef CONFIG_TASK_XACCT
 960        /* Accumulated RSS usage: */
 961        u64                             acct_rss_mem1;
 962        /* Accumulated virtual memory usage: */
 963        u64                             acct_vm_mem1;
 964        /* stime + utime since last update: */
 965        u64                             acct_timexpd;
 966#endif
 967#ifdef CONFIG_CPUSETS
 968        /* Protected by ->alloc_lock: */
 969        nodemask_t                      mems_allowed;
 970        /* Seqence number to catch updates: */
 971        seqcount_t                      mems_allowed_seq;
 972        int                             cpuset_mem_spread_rotor;
 973        int                             cpuset_slab_spread_rotor;
 974#endif
 975#ifdef CONFIG_CGROUPS
 976        /* Control Group info protected by css_set_lock: */
 977        struct css_set __rcu            *cgroups;
 978        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
 979        struct list_head                cg_list;
 980#endif
 981#ifdef CONFIG_INTEL_RDT
 982        u32                             closid;
 983        u32                             rmid;
 984#endif
 985#ifdef CONFIG_FUTEX
 986        struct robust_list_head __user  *robust_list;
 987#ifdef CONFIG_COMPAT
 988        struct compat_robust_list_head __user *compat_robust_list;
 989#endif
 990        struct list_head                pi_state_list;
 991        struct futex_pi_state           *pi_state_cache;
 992#endif
 993#ifdef CONFIG_PERF_EVENTS
 994        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
 995        struct mutex                    perf_event_mutex;
 996        struct list_head                perf_event_list;
 997#endif
 998#ifdef CONFIG_DEBUG_PREEMPT
 999        unsigned long                   preempt_disable_ip;
1000#endif
1001#ifdef CONFIG_NUMA
1002        /* Protected by alloc_lock: */
1003        struct mempolicy                *mempolicy;
1004        short                           il_prev;
1005        short                           pref_node_fork;
1006#endif
1007#ifdef CONFIG_NUMA_BALANCING
1008        int                             numa_scan_seq;
1009        unsigned int                    numa_scan_period;
1010        unsigned int                    numa_scan_period_max;
1011        int                             numa_preferred_nid;
1012        unsigned long                   numa_migrate_retry;
1013        /* Migration stamp: */
1014        u64                             node_stamp;
1015        u64                             last_task_numa_placement;
1016        u64                             last_sum_exec_runtime;
1017        struct callback_head            numa_work;
1018
1019        struct list_head                numa_entry;
1020        struct numa_group               *numa_group;
1021
1022        /*
1023         * numa_faults is an array split into four regions:
1024         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1025         * in this precise order.
1026         *
1027         * faults_memory: Exponential decaying average of faults on a per-node
1028         * basis. Scheduling placement decisions are made based on these
1029         * counts. The values remain static for the duration of a PTE scan.
1030         * faults_cpu: Track the nodes the process was running on when a NUMA
1031         * hinting fault was incurred.
1032         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1033         * during the current scan window. When the scan completes, the counts
1034         * in faults_memory and faults_cpu decay and these values are copied.
1035         */
1036        unsigned long                   *numa_faults;
1037        unsigned long                   total_numa_faults;
1038
1039        /*
1040         * numa_faults_locality tracks if faults recorded during the last
1041         * scan window were remote/local or failed to migrate. The task scan
1042         * period is adapted based on the locality of the faults with different
1043         * weights depending on whether they were shared or private faults
1044         */
1045        unsigned long                   numa_faults_locality[3];
1046
1047        unsigned long                   numa_pages_migrated;
1048#endif /* CONFIG_NUMA_BALANCING */
1049
1050        struct tlbflush_unmap_batch     tlb_ubc;
1051
1052        struct rcu_head                 rcu;
1053
1054        /* Cache last used pipe for splice(): */
1055        struct pipe_inode_info          *splice_pipe;
1056
1057        struct page_frag                task_frag;
1058
1059#ifdef CONFIG_TASK_DELAY_ACCT
1060        struct task_delay_info          *delays;
1061#endif
1062
1063#ifdef CONFIG_FAULT_INJECTION
1064        int                             make_it_fail;
1065        unsigned int                    fail_nth;
1066#endif
1067        /*
1068         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1069         * balance_dirty_pages() for a dirty throttling pause:
1070         */
1071        int                             nr_dirtied;
1072        int                             nr_dirtied_pause;
1073        /* Start of a write-and-pause period: */
1074        unsigned long                   dirty_paused_when;
1075
1076#ifdef CONFIG_LATENCYTOP
1077        int                             latency_record_count;
1078        struct latency_record           latency_record[LT_SAVECOUNT];
1079#endif
1080        /*
1081         * Time slack values; these are used to round up poll() and
1082         * select() etc timeout values. These are in nanoseconds.
1083         */
1084        u64                             timer_slack_ns;
1085        u64                             default_timer_slack_ns;
1086
1087#ifdef CONFIG_KASAN
1088        unsigned int                    kasan_depth;
1089#endif
1090
1091#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1092        /* Index of current stored address in ret_stack: */
1093        int                             curr_ret_stack;
1094
1095        /* Stack of return addresses for return function tracing: */
1096        struct ftrace_ret_stack         *ret_stack;
1097
1098        /* Timestamp for last schedule: */
1099        unsigned long long              ftrace_timestamp;
1100
1101        /*
1102         * Number of functions that haven't been traced
1103         * because of depth overrun:
1104         */
1105        atomic_t                        trace_overrun;
1106
1107        /* Pause tracing: */
1108        atomic_t                        tracing_graph_pause;
1109#endif
1110
1111#ifdef CONFIG_TRACING
1112        /* State flags for use by tracers: */
1113        unsigned long                   trace;
1114
1115        /* Bitmask and counter of trace recursion: */
1116        unsigned long                   trace_recursion;
1117#endif /* CONFIG_TRACING */
1118
1119#ifdef CONFIG_KCOV
1120        /* Coverage collection mode enabled for this task (0 if disabled): */
1121        enum kcov_mode                  kcov_mode;
1122
1123        /* Size of the kcov_area: */
1124        unsigned int                    kcov_size;
1125
1126        /* Buffer for coverage collection: */
1127        void                            *kcov_area;
1128
1129        /* KCOV descriptor wired with this task or NULL: */
1130        struct kcov                     *kcov;
1131#endif
1132
1133#ifdef CONFIG_MEMCG
1134        struct mem_cgroup               *memcg_in_oom;
1135        gfp_t                           memcg_oom_gfp_mask;
1136        int                             memcg_oom_order;
1137
1138        /* Number of pages to reclaim on returning to userland: */
1139        unsigned int                    memcg_nr_pages_over_high;
1140#endif
1141
1142#ifdef CONFIG_UPROBES
1143        struct uprobe_task              *utask;
1144#endif
1145#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1146        unsigned int                    sequential_io;
1147        unsigned int                    sequential_io_avg;
1148#endif
1149#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1150        unsigned long                   task_state_change;
1151#endif
1152        int                             pagefault_disabled;
1153#ifdef CONFIG_MMU
1154        struct task_struct              *oom_reaper_list;
1155#endif
1156#ifdef CONFIG_VMAP_STACK
1157        struct vm_struct                *stack_vm_area;
1158#endif
1159#ifdef CONFIG_THREAD_INFO_IN_TASK
1160        /* A live task holds one reference: */
1161        atomic_t                        stack_refcount;
1162#endif
1163#ifdef CONFIG_LIVEPATCH
1164        int patch_state;
1165#endif
1166#ifdef CONFIG_SECURITY
1167        /* Used by LSM modules for access restriction: */
1168        void                            *security;
1169#endif
1170
1171        /*
1172         * New fields for task_struct should be added above here, so that
1173         * they are included in the randomized portion of task_struct.
1174         */
1175        randomized_struct_fields_end
1176
1177        /* CPU-specific state of this task: */
1178        struct thread_struct            thread;
1179
1180        /*
1181         * WARNING: on x86, 'thread_struct' contains a variable-sized
1182         * structure.  It *MUST* be at the end of 'task_struct'.
1183         *
1184         * Do not put anything below here!
1185         */
1186};
1187
1188static inline struct pid *task_pid(struct task_struct *task)
1189{
1190        return task->pids[PIDTYPE_PID].pid;
1191}
1192
1193static inline struct pid *task_tgid(struct task_struct *task)
1194{
1195        return task->group_leader->pids[PIDTYPE_PID].pid;
1196}
1197
1198/*
1199 * Without tasklist or RCU lock it is not safe to dereference
1200 * the result of task_pgrp/task_session even if task == current,
1201 * we can race with another thread doing sys_setsid/sys_setpgid.
1202 */
1203static inline struct pid *task_pgrp(struct task_struct *task)
1204{
1205        return task->group_leader->pids[PIDTYPE_PGID].pid;
1206}
1207
1208static inline struct pid *task_session(struct task_struct *task)
1209{
1210        return task->group_leader->pids[PIDTYPE_SID].pid;
1211}
1212
1213/*
1214 * the helpers to get the task's different pids as they are seen
1215 * from various namespaces
1216 *
1217 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1218 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1219 *                     current.
1220 * task_xid_nr_ns()  : id seen from the ns specified;
1221 *
1222 * see also pid_nr() etc in include/linux/pid.h
1223 */
1224pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1225
1226static inline pid_t task_pid_nr(struct task_struct *tsk)
1227{
1228        return tsk->pid;
1229}
1230
1231static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1232{
1233        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1234}
1235
1236static inline pid_t task_pid_vnr(struct task_struct *tsk)
1237{
1238        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1239}
1240
1241
1242static inline pid_t task_tgid_nr(struct task_struct *tsk)
1243{
1244        return tsk->tgid;
1245}
1246
1247/**
1248 * pid_alive - check that a task structure is not stale
1249 * @p: Task structure to be checked.
1250 *
1251 * Test if a process is not yet dead (at most zombie state)
1252 * If pid_alive fails, then pointers within the task structure
1253 * can be stale and must not be dereferenced.
1254 *
1255 * Return: 1 if the process is alive. 0 otherwise.
1256 */
1257static inline int pid_alive(const struct task_struct *p)
1258{
1259        return p->pids[PIDTYPE_PID].pid != NULL;
1260}
1261
1262static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1263{
1264        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1265}
1266
1267static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1268{
1269        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1270}
1271
1272
1273static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1274{
1275        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1276}
1277
1278static inline pid_t task_session_vnr(struct task_struct *tsk)
1279{
1280        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1281}
1282
1283static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1284{
1285        return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1286}
1287
1288static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1289{
1290        return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1291}
1292
1293static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1294{
1295        pid_t pid = 0;
1296
1297        rcu_read_lock();
1298        if (pid_alive(tsk))
1299                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1300        rcu_read_unlock();
1301
1302        return pid;
1303}
1304
1305static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1306{
1307        return task_ppid_nr_ns(tsk, &init_pid_ns);
1308}
1309
1310/* Obsolete, do not use: */
1311static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1312{
1313        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1314}
1315
1316#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1317#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1318
1319static inline unsigned int task_state_index(struct task_struct *tsk)
1320{
1321        unsigned int tsk_state = READ_ONCE(tsk->state);
1322        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1323
1324        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1325
1326        if (tsk_state == TASK_IDLE)
1327                state = TASK_REPORT_IDLE;
1328
1329        return fls(state);
1330}
1331
1332static inline char task_index_to_char(unsigned int state)
1333{
1334        static const char state_char[] = "RSDTtXZPI";
1335
1336        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1337
1338        return state_char[state];
1339}
1340
1341static inline char task_state_to_char(struct task_struct *tsk)
1342{
1343        return task_index_to_char(task_state_index(tsk));
1344}
1345
1346/**
1347 * is_global_init - check if a task structure is init. Since init
1348 * is free to have sub-threads we need to check tgid.
1349 * @tsk: Task structure to be checked.
1350 *
1351 * Check if a task structure is the first user space task the kernel created.
1352 *
1353 * Return: 1 if the task structure is init. 0 otherwise.
1354 */
1355static inline int is_global_init(struct task_struct *tsk)
1356{
1357        return task_tgid_nr(tsk) == 1;
1358}
1359
1360extern struct pid *cad_pid;
1361
1362/*
1363 * Per process flags
1364 */
1365#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1366#define PF_EXITING              0x00000004      /* Getting shut down */
1367#define PF_EXITPIDONE           0x00000008      /* PI exit done on shut down */
1368#define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1369#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1370#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1371#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1372#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1373#define PF_DUMPCORE             0x00000200      /* Dumped core */
1374#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1375#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1376#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1377#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1378#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1379#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1380#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1381#define PF_KSWAPD               0x00020000      /* I am kswapd */
1382#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1383#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1384#define PF_LESS_THROTTLE        0x00100000      /* Throttle me less: I clean memory */
1385#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1386#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1387#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1388#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_allowed */
1389#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1390#define PF_MUTEX_TESTER         0x20000000      /* Thread belongs to the rt mutex tester */
1391#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1392#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1393
1394/*
1395 * Only the _current_ task can read/write to tsk->flags, but other
1396 * tasks can access tsk->flags in readonly mode for example
1397 * with tsk_used_math (like during threaded core dumping).
1398 * There is however an exception to this rule during ptrace
1399 * or during fork: the ptracer task is allowed to write to the
1400 * child->flags of its traced child (same goes for fork, the parent
1401 * can write to the child->flags), because we're guaranteed the
1402 * child is not running and in turn not changing child->flags
1403 * at the same time the parent does it.
1404 */
1405#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1406#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1407#define clear_used_math()                       clear_stopped_child_used_math(current)
1408#define set_used_math()                         set_stopped_child_used_math(current)
1409
1410#define conditional_stopped_child_used_math(condition, child) \
1411        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1412
1413#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1414
1415#define copy_to_stopped_child_used_math(child) \
1416        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1417
1418/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1419#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1420#define used_math()                             tsk_used_math(current)
1421
1422static inline bool is_percpu_thread(void)
1423{
1424#ifdef CONFIG_SMP
1425        return (current->flags & PF_NO_SETAFFINITY) &&
1426                (current->nr_cpus_allowed  == 1);
1427#else
1428        return true;
1429#endif
1430}
1431
1432/* Per-process atomic flags. */
1433#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1434#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1435#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1436#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1437#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1438
1439#define TASK_PFA_TEST(name, func)                                       \
1440        static inline bool task_##func(struct task_struct *p)           \
1441        { return test_bit(PFA_##name, &p->atomic_flags); }
1442
1443#define TASK_PFA_SET(name, func)                                        \
1444        static inline void task_set_##func(struct task_struct *p)       \
1445        { set_bit(PFA_##name, &p->atomic_flags); }
1446
1447#define TASK_PFA_CLEAR(name, func)                                      \
1448        static inline void task_clear_##func(struct task_struct *p)     \
1449        { clear_bit(PFA_##name, &p->atomic_flags); }
1450
1451TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1452TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1453
1454TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1455TASK_PFA_SET(SPREAD_PAGE, spread_page)
1456TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1457
1458TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1459TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1460TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1461
1462TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1463TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1464TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1465
1466TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1467TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1468
1469static inline void
1470current_restore_flags(unsigned long orig_flags, unsigned long flags)
1471{
1472        current->flags &= ~flags;
1473        current->flags |= orig_flags & flags;
1474}
1475
1476extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1477extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1478#ifdef CONFIG_SMP
1479extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1480extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1481#else
1482static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1483{
1484}
1485static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1486{
1487        if (!cpumask_test_cpu(0, new_mask))
1488                return -EINVAL;
1489        return 0;
1490}
1491#endif
1492
1493#ifndef cpu_relax_yield
1494#define cpu_relax_yield() cpu_relax()
1495#endif
1496
1497extern int yield_to(struct task_struct *p, bool preempt);
1498extern void set_user_nice(struct task_struct *p, long nice);
1499extern int task_prio(const struct task_struct *p);
1500
1501/**
1502 * task_nice - return the nice value of a given task.
1503 * @p: the task in question.
1504 *
1505 * Return: The nice value [ -20 ... 0 ... 19 ].
1506 */
1507static inline int task_nice(const struct task_struct *p)
1508{
1509        return PRIO_TO_NICE((p)->static_prio);
1510}
1511
1512extern int can_nice(const struct task_struct *p, const int nice);
1513extern int task_curr(const struct task_struct *p);
1514extern int idle_cpu(int cpu);
1515extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1516extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1517extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1518extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1519extern struct task_struct *idle_task(int cpu);
1520
1521/**
1522 * is_idle_task - is the specified task an idle task?
1523 * @p: the task in question.
1524 *
1525 * Return: 1 if @p is an idle task. 0 otherwise.
1526 */
1527static inline bool is_idle_task(const struct task_struct *p)
1528{
1529        return !!(p->flags & PF_IDLE);
1530}
1531
1532extern struct task_struct *curr_task(int cpu);
1533extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1534
1535void yield(void);
1536
1537union thread_union {
1538#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1539        struct task_struct task;
1540#endif
1541#ifndef CONFIG_THREAD_INFO_IN_TASK
1542        struct thread_info thread_info;
1543#endif
1544        unsigned long stack[THREAD_SIZE/sizeof(long)];
1545};
1546
1547#ifndef CONFIG_THREAD_INFO_IN_TASK
1548extern struct thread_info init_thread_info;
1549#endif
1550
1551extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1552
1553#ifdef CONFIG_THREAD_INFO_IN_TASK
1554static inline struct thread_info *task_thread_info(struct task_struct *task)
1555{
1556        return &task->thread_info;
1557}
1558#elif !defined(__HAVE_THREAD_FUNCTIONS)
1559# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1560#endif
1561
1562/*
1563 * find a task by one of its numerical ids
1564 *
1565 * find_task_by_pid_ns():
1566 *      finds a task by its pid in the specified namespace
1567 * find_task_by_vpid():
1568 *      finds a task by its virtual pid
1569 *
1570 * see also find_vpid() etc in include/linux/pid.h
1571 */
1572
1573extern struct task_struct *find_task_by_vpid(pid_t nr);
1574extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1575
1576/*
1577 * find a task by its virtual pid and get the task struct
1578 */
1579extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1580
1581extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1582extern int wake_up_process(struct task_struct *tsk);
1583extern void wake_up_new_task(struct task_struct *tsk);
1584
1585#ifdef CONFIG_SMP
1586extern void kick_process(struct task_struct *tsk);
1587#else
1588static inline void kick_process(struct task_struct *tsk) { }
1589#endif
1590
1591extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1592
1593static inline void set_task_comm(struct task_struct *tsk, const char *from)
1594{
1595        __set_task_comm(tsk, from, false);
1596}
1597
1598extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1599#define get_task_comm(buf, tsk) ({                      \
1600        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1601        __get_task_comm(buf, sizeof(buf), tsk);         \
1602})
1603
1604#ifdef CONFIG_SMP
1605void scheduler_ipi(void);
1606extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1607#else
1608static inline void scheduler_ipi(void) { }
1609static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1610{
1611        return 1;
1612}
1613#endif
1614
1615/*
1616 * Set thread flags in other task's structures.
1617 * See asm/thread_info.h for TIF_xxxx flags available:
1618 */
1619static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1620{
1621        set_ti_thread_flag(task_thread_info(tsk), flag);
1622}
1623
1624static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1625{
1626        clear_ti_thread_flag(task_thread_info(tsk), flag);
1627}
1628
1629static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1630{
1631        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1632}
1633
1634static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1635{
1636        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1637}
1638
1639static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1640{
1641        return test_ti_thread_flag(task_thread_info(tsk), flag);
1642}
1643
1644static inline void set_tsk_need_resched(struct task_struct *tsk)
1645{
1646        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1647}
1648
1649static inline void clear_tsk_need_resched(struct task_struct *tsk)
1650{
1651        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1652}
1653
1654static inline int test_tsk_need_resched(struct task_struct *tsk)
1655{
1656        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1657}
1658
1659/*
1660 * cond_resched() and cond_resched_lock(): latency reduction via
1661 * explicit rescheduling in places that are safe. The return
1662 * value indicates whether a reschedule was done in fact.
1663 * cond_resched_lock() will drop the spinlock before scheduling,
1664 * cond_resched_softirq() will enable bhs before scheduling.
1665 */
1666#ifndef CONFIG_PREEMPT
1667extern int _cond_resched(void);
1668#else
1669static inline int _cond_resched(void) { return 0; }
1670#endif
1671
1672#define cond_resched() ({                       \
1673        ___might_sleep(__FILE__, __LINE__, 0);  \
1674        _cond_resched();                        \
1675})
1676
1677extern int __cond_resched_lock(spinlock_t *lock);
1678
1679#define cond_resched_lock(lock) ({                              \
1680        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1681        __cond_resched_lock(lock);                              \
1682})
1683
1684extern int __cond_resched_softirq(void);
1685
1686#define cond_resched_softirq() ({                                       \
1687        ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);     \
1688        __cond_resched_softirq();                                       \
1689})
1690
1691static inline void cond_resched_rcu(void)
1692{
1693#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1694        rcu_read_unlock();
1695        cond_resched();
1696        rcu_read_lock();
1697#endif
1698}
1699
1700/*
1701 * Does a critical section need to be broken due to another
1702 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1703 * but a general need for low latency)
1704 */
1705static inline int spin_needbreak(spinlock_t *lock)
1706{
1707#ifdef CONFIG_PREEMPT
1708        return spin_is_contended(lock);
1709#else
1710        return 0;
1711#endif
1712}
1713
1714static __always_inline bool need_resched(void)
1715{
1716        return unlikely(tif_need_resched());
1717}
1718
1719/*
1720 * Wrappers for p->thread_info->cpu access. No-op on UP.
1721 */
1722#ifdef CONFIG_SMP
1723
1724static inline unsigned int task_cpu(const struct task_struct *p)
1725{
1726#ifdef CONFIG_THREAD_INFO_IN_TASK
1727        return p->cpu;
1728#else
1729        return task_thread_info(p)->cpu;
1730#endif
1731}
1732
1733extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1734
1735#else
1736
1737static inline unsigned int task_cpu(const struct task_struct *p)
1738{
1739        return 0;
1740}
1741
1742static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1743{
1744}
1745
1746#endif /* CONFIG_SMP */
1747
1748/*
1749 * In order to reduce various lock holder preemption latencies provide an
1750 * interface to see if a vCPU is currently running or not.
1751 *
1752 * This allows us to terminate optimistic spin loops and block, analogous to
1753 * the native optimistic spin heuristic of testing if the lock owner task is
1754 * running or not.
1755 */
1756#ifndef vcpu_is_preempted
1757# define vcpu_is_preempted(cpu) false
1758#endif
1759
1760extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1761extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1762
1763#ifndef TASK_SIZE_OF
1764#define TASK_SIZE_OF(tsk)       TASK_SIZE
1765#endif
1766
1767#endif
1768