linux/include/rdma/ib_verbs.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51#include <linux/socket.h>
  52#include <linux/irq_poll.h>
  53#include <uapi/linux/if_ether.h>
  54#include <net/ipv6.h>
  55#include <net/ip.h>
  56#include <linux/string.h>
  57#include <linux/slab.h>
  58#include <linux/netdevice.h>
  59
  60#include <linux/if_link.h>
  61#include <linux/atomic.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/uaccess.h>
  64#include <linux/cgroup_rdma.h>
  65#include <uapi/rdma/ib_user_verbs.h>
  66#include <rdma/restrack.h>
  67#include <uapi/rdma/rdma_user_ioctl.h>
  68#include <uapi/rdma/ib_user_ioctl_verbs.h>
  69
  70#define IB_FW_VERSION_NAME_MAX  ETHTOOL_FWVERS_LEN
  71
  72extern struct workqueue_struct *ib_wq;
  73extern struct workqueue_struct *ib_comp_wq;
  74
  75union ib_gid {
  76        u8      raw[16];
  77        struct {
  78                __be64  subnet_prefix;
  79                __be64  interface_id;
  80        } global;
  81};
  82
  83extern union ib_gid zgid;
  84
  85enum ib_gid_type {
  86        /* If link layer is Ethernet, this is RoCE V1 */
  87        IB_GID_TYPE_IB        = 0,
  88        IB_GID_TYPE_ROCE      = 0,
  89        IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
  90        IB_GID_TYPE_SIZE
  91};
  92
  93#define ROCE_V2_UDP_DPORT      4791
  94struct ib_gid_attr {
  95        struct net_device       *ndev;
  96        struct ib_device        *device;
  97        enum ib_gid_type        gid_type;
  98        u16                     index;
  99        u8                      port_num;
 100};
 101
 102enum rdma_node_type {
 103        /* IB values map to NodeInfo:NodeType. */
 104        RDMA_NODE_IB_CA         = 1,
 105        RDMA_NODE_IB_SWITCH,
 106        RDMA_NODE_IB_ROUTER,
 107        RDMA_NODE_RNIC,
 108        RDMA_NODE_USNIC,
 109        RDMA_NODE_USNIC_UDP,
 110};
 111
 112enum {
 113        /* set the local administered indication */
 114        IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
 115};
 116
 117enum rdma_transport_type {
 118        RDMA_TRANSPORT_IB,
 119        RDMA_TRANSPORT_IWARP,
 120        RDMA_TRANSPORT_USNIC,
 121        RDMA_TRANSPORT_USNIC_UDP
 122};
 123
 124enum rdma_protocol_type {
 125        RDMA_PROTOCOL_IB,
 126        RDMA_PROTOCOL_IBOE,
 127        RDMA_PROTOCOL_IWARP,
 128        RDMA_PROTOCOL_USNIC_UDP
 129};
 130
 131__attribute_const__ enum rdma_transport_type
 132rdma_node_get_transport(enum rdma_node_type node_type);
 133
 134enum rdma_network_type {
 135        RDMA_NETWORK_IB,
 136        RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
 137        RDMA_NETWORK_IPV4,
 138        RDMA_NETWORK_IPV6
 139};
 140
 141static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 142{
 143        if (network_type == RDMA_NETWORK_IPV4 ||
 144            network_type == RDMA_NETWORK_IPV6)
 145                return IB_GID_TYPE_ROCE_UDP_ENCAP;
 146
 147        /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
 148        return IB_GID_TYPE_IB;
 149}
 150
 151static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
 152                                                            union ib_gid *gid)
 153{
 154        if (gid_type == IB_GID_TYPE_IB)
 155                return RDMA_NETWORK_IB;
 156
 157        if (ipv6_addr_v4mapped((struct in6_addr *)gid))
 158                return RDMA_NETWORK_IPV4;
 159        else
 160                return RDMA_NETWORK_IPV6;
 161}
 162
 163enum rdma_link_layer {
 164        IB_LINK_LAYER_UNSPECIFIED,
 165        IB_LINK_LAYER_INFINIBAND,
 166        IB_LINK_LAYER_ETHERNET,
 167};
 168
 169enum ib_device_cap_flags {
 170        IB_DEVICE_RESIZE_MAX_WR                 = (1 << 0),
 171        IB_DEVICE_BAD_PKEY_CNTR                 = (1 << 1),
 172        IB_DEVICE_BAD_QKEY_CNTR                 = (1 << 2),
 173        IB_DEVICE_RAW_MULTI                     = (1 << 3),
 174        IB_DEVICE_AUTO_PATH_MIG                 = (1 << 4),
 175        IB_DEVICE_CHANGE_PHY_PORT               = (1 << 5),
 176        IB_DEVICE_UD_AV_PORT_ENFORCE            = (1 << 6),
 177        IB_DEVICE_CURR_QP_STATE_MOD             = (1 << 7),
 178        IB_DEVICE_SHUTDOWN_PORT                 = (1 << 8),
 179        /* Not in use, former INIT_TYPE         = (1 << 9),*/
 180        IB_DEVICE_PORT_ACTIVE_EVENT             = (1 << 10),
 181        IB_DEVICE_SYS_IMAGE_GUID                = (1 << 11),
 182        IB_DEVICE_RC_RNR_NAK_GEN                = (1 << 12),
 183        IB_DEVICE_SRQ_RESIZE                    = (1 << 13),
 184        IB_DEVICE_N_NOTIFY_CQ                   = (1 << 14),
 185
 186        /*
 187         * This device supports a per-device lkey or stag that can be
 188         * used without performing a memory registration for the local
 189         * memory.  Note that ULPs should never check this flag, but
 190         * instead of use the local_dma_lkey flag in the ib_pd structure,
 191         * which will always contain a usable lkey.
 192         */
 193        IB_DEVICE_LOCAL_DMA_LKEY                = (1 << 15),
 194        /* Reserved, old SEND_W_INV             = (1 << 16),*/
 195        IB_DEVICE_MEM_WINDOW                    = (1 << 17),
 196        /*
 197         * Devices should set IB_DEVICE_UD_IP_SUM if they support
 198         * insertion of UDP and TCP checksum on outgoing UD IPoIB
 199         * messages and can verify the validity of checksum for
 200         * incoming messages.  Setting this flag implies that the
 201         * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 202         */
 203        IB_DEVICE_UD_IP_CSUM                    = (1 << 18),
 204        IB_DEVICE_UD_TSO                        = (1 << 19),
 205        IB_DEVICE_XRC                           = (1 << 20),
 206
 207        /*
 208         * This device supports the IB "base memory management extension",
 209         * which includes support for fast registrations (IB_WR_REG_MR,
 210         * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 211         * also be set by any iWarp device which must support FRs to comply
 212         * to the iWarp verbs spec.  iWarp devices also support the
 213         * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 214         * stag.
 215         */
 216        IB_DEVICE_MEM_MGT_EXTENSIONS            = (1 << 21),
 217        IB_DEVICE_BLOCK_MULTICAST_LOOPBACK      = (1 << 22),
 218        IB_DEVICE_MEM_WINDOW_TYPE_2A            = (1 << 23),
 219        IB_DEVICE_MEM_WINDOW_TYPE_2B            = (1 << 24),
 220        IB_DEVICE_RC_IP_CSUM                    = (1 << 25),
 221        /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
 222        IB_DEVICE_RAW_IP_CSUM                   = (1 << 26),
 223        /*
 224         * Devices should set IB_DEVICE_CROSS_CHANNEL if they
 225         * support execution of WQEs that involve synchronization
 226         * of I/O operations with single completion queue managed
 227         * by hardware.
 228         */
 229        IB_DEVICE_CROSS_CHANNEL                 = (1 << 27),
 230        IB_DEVICE_MANAGED_FLOW_STEERING         = (1 << 29),
 231        IB_DEVICE_SIGNATURE_HANDOVER            = (1 << 30),
 232        IB_DEVICE_ON_DEMAND_PAGING              = (1ULL << 31),
 233        IB_DEVICE_SG_GAPS_REG                   = (1ULL << 32),
 234        IB_DEVICE_VIRTUAL_FUNCTION              = (1ULL << 33),
 235        /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
 236        IB_DEVICE_RAW_SCATTER_FCS               = (1ULL << 34),
 237        IB_DEVICE_RDMA_NETDEV_OPA_VNIC          = (1ULL << 35),
 238        /* The device supports padding incoming writes to cacheline. */
 239        IB_DEVICE_PCI_WRITE_END_PADDING         = (1ULL << 36),
 240};
 241
 242enum ib_signature_prot_cap {
 243        IB_PROT_T10DIF_TYPE_1 = 1,
 244        IB_PROT_T10DIF_TYPE_2 = 1 << 1,
 245        IB_PROT_T10DIF_TYPE_3 = 1 << 2,
 246};
 247
 248enum ib_signature_guard_cap {
 249        IB_GUARD_T10DIF_CRC     = 1,
 250        IB_GUARD_T10DIF_CSUM    = 1 << 1,
 251};
 252
 253enum ib_atomic_cap {
 254        IB_ATOMIC_NONE,
 255        IB_ATOMIC_HCA,
 256        IB_ATOMIC_GLOB
 257};
 258
 259enum ib_odp_general_cap_bits {
 260        IB_ODP_SUPPORT          = 1 << 0,
 261        IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
 262};
 263
 264enum ib_odp_transport_cap_bits {
 265        IB_ODP_SUPPORT_SEND     = 1 << 0,
 266        IB_ODP_SUPPORT_RECV     = 1 << 1,
 267        IB_ODP_SUPPORT_WRITE    = 1 << 2,
 268        IB_ODP_SUPPORT_READ     = 1 << 3,
 269        IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
 270};
 271
 272struct ib_odp_caps {
 273        uint64_t general_caps;
 274        struct {
 275                uint32_t  rc_odp_caps;
 276                uint32_t  uc_odp_caps;
 277                uint32_t  ud_odp_caps;
 278        } per_transport_caps;
 279};
 280
 281struct ib_rss_caps {
 282        /* Corresponding bit will be set if qp type from
 283         * 'enum ib_qp_type' is supported, e.g.
 284         * supported_qpts |= 1 << IB_QPT_UD
 285         */
 286        u32 supported_qpts;
 287        u32 max_rwq_indirection_tables;
 288        u32 max_rwq_indirection_table_size;
 289};
 290
 291enum ib_tm_cap_flags {
 292        /*  Support tag matching on RC transport */
 293        IB_TM_CAP_RC                = 1 << 0,
 294};
 295
 296struct ib_tm_caps {
 297        /* Max size of RNDV header */
 298        u32 max_rndv_hdr_size;
 299        /* Max number of entries in tag matching list */
 300        u32 max_num_tags;
 301        /* From enum ib_tm_cap_flags */
 302        u32 flags;
 303        /* Max number of outstanding list operations */
 304        u32 max_ops;
 305        /* Max number of SGE in tag matching entry */
 306        u32 max_sge;
 307};
 308
 309struct ib_cq_init_attr {
 310        unsigned int    cqe;
 311        int             comp_vector;
 312        u32             flags;
 313};
 314
 315enum ib_cq_attr_mask {
 316        IB_CQ_MODERATE = 1 << 0,
 317};
 318
 319struct ib_cq_caps {
 320        u16     max_cq_moderation_count;
 321        u16     max_cq_moderation_period;
 322};
 323
 324struct ib_dm_mr_attr {
 325        u64             length;
 326        u64             offset;
 327        u32             access_flags;
 328};
 329
 330struct ib_dm_alloc_attr {
 331        u64     length;
 332        u32     alignment;
 333        u32     flags;
 334};
 335
 336struct ib_device_attr {
 337        u64                     fw_ver;
 338        __be64                  sys_image_guid;
 339        u64                     max_mr_size;
 340        u64                     page_size_cap;
 341        u32                     vendor_id;
 342        u32                     vendor_part_id;
 343        u32                     hw_ver;
 344        int                     max_qp;
 345        int                     max_qp_wr;
 346        u64                     device_cap_flags;
 347        int                     max_sge;
 348        int                     max_sge_rd;
 349        int                     max_cq;
 350        int                     max_cqe;
 351        int                     max_mr;
 352        int                     max_pd;
 353        int                     max_qp_rd_atom;
 354        int                     max_ee_rd_atom;
 355        int                     max_res_rd_atom;
 356        int                     max_qp_init_rd_atom;
 357        int                     max_ee_init_rd_atom;
 358        enum ib_atomic_cap      atomic_cap;
 359        enum ib_atomic_cap      masked_atomic_cap;
 360        int                     max_ee;
 361        int                     max_rdd;
 362        int                     max_mw;
 363        int                     max_raw_ipv6_qp;
 364        int                     max_raw_ethy_qp;
 365        int                     max_mcast_grp;
 366        int                     max_mcast_qp_attach;
 367        int                     max_total_mcast_qp_attach;
 368        int                     max_ah;
 369        int                     max_fmr;
 370        int                     max_map_per_fmr;
 371        int                     max_srq;
 372        int                     max_srq_wr;
 373        int                     max_srq_sge;
 374        unsigned int            max_fast_reg_page_list_len;
 375        u16                     max_pkeys;
 376        u8                      local_ca_ack_delay;
 377        int                     sig_prot_cap;
 378        int                     sig_guard_cap;
 379        struct ib_odp_caps      odp_caps;
 380        uint64_t                timestamp_mask;
 381        uint64_t                hca_core_clock; /* in KHZ */
 382        struct ib_rss_caps      rss_caps;
 383        u32                     max_wq_type_rq;
 384        u32                     raw_packet_caps; /* Use ib_raw_packet_caps enum */
 385        struct ib_tm_caps       tm_caps;
 386        struct ib_cq_caps       cq_caps;
 387        u64                     max_dm_size;
 388};
 389
 390enum ib_mtu {
 391        IB_MTU_256  = 1,
 392        IB_MTU_512  = 2,
 393        IB_MTU_1024 = 3,
 394        IB_MTU_2048 = 4,
 395        IB_MTU_4096 = 5
 396};
 397
 398static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 399{
 400        switch (mtu) {
 401        case IB_MTU_256:  return  256;
 402        case IB_MTU_512:  return  512;
 403        case IB_MTU_1024: return 1024;
 404        case IB_MTU_2048: return 2048;
 405        case IB_MTU_4096: return 4096;
 406        default:          return -1;
 407        }
 408}
 409
 410static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 411{
 412        if (mtu >= 4096)
 413                return IB_MTU_4096;
 414        else if (mtu >= 2048)
 415                return IB_MTU_2048;
 416        else if (mtu >= 1024)
 417                return IB_MTU_1024;
 418        else if (mtu >= 512)
 419                return IB_MTU_512;
 420        else
 421                return IB_MTU_256;
 422}
 423
 424enum ib_port_state {
 425        IB_PORT_NOP             = 0,
 426        IB_PORT_DOWN            = 1,
 427        IB_PORT_INIT            = 2,
 428        IB_PORT_ARMED           = 3,
 429        IB_PORT_ACTIVE          = 4,
 430        IB_PORT_ACTIVE_DEFER    = 5
 431};
 432
 433enum ib_port_cap_flags {
 434        IB_PORT_SM                              = 1 <<  1,
 435        IB_PORT_NOTICE_SUP                      = 1 <<  2,
 436        IB_PORT_TRAP_SUP                        = 1 <<  3,
 437        IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 438        IB_PORT_AUTO_MIGR_SUP                   = 1 <<  5,
 439        IB_PORT_SL_MAP_SUP                      = 1 <<  6,
 440        IB_PORT_MKEY_NVRAM                      = 1 <<  7,
 441        IB_PORT_PKEY_NVRAM                      = 1 <<  8,
 442        IB_PORT_LED_INFO_SUP                    = 1 <<  9,
 443        IB_PORT_SM_DISABLED                     = 1 << 10,
 444        IB_PORT_SYS_IMAGE_GUID_SUP              = 1 << 11,
 445        IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP       = 1 << 12,
 446        IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
 447        IB_PORT_CM_SUP                          = 1 << 16,
 448        IB_PORT_SNMP_TUNNEL_SUP                 = 1 << 17,
 449        IB_PORT_REINIT_SUP                      = 1 << 18,
 450        IB_PORT_DEVICE_MGMT_SUP                 = 1 << 19,
 451        IB_PORT_VENDOR_CLASS_SUP                = 1 << 20,
 452        IB_PORT_DR_NOTICE_SUP                   = 1 << 21,
 453        IB_PORT_CAP_MASK_NOTICE_SUP             = 1 << 22,
 454        IB_PORT_BOOT_MGMT_SUP                   = 1 << 23,
 455        IB_PORT_LINK_LATENCY_SUP                = 1 << 24,
 456        IB_PORT_CLIENT_REG_SUP                  = 1 << 25,
 457        IB_PORT_IP_BASED_GIDS                   = 1 << 26,
 458};
 459
 460enum ib_port_width {
 461        IB_WIDTH_1X     = 1,
 462        IB_WIDTH_4X     = 2,
 463        IB_WIDTH_8X     = 4,
 464        IB_WIDTH_12X    = 8
 465};
 466
 467static inline int ib_width_enum_to_int(enum ib_port_width width)
 468{
 469        switch (width) {
 470        case IB_WIDTH_1X:  return  1;
 471        case IB_WIDTH_4X:  return  4;
 472        case IB_WIDTH_8X:  return  8;
 473        case IB_WIDTH_12X: return 12;
 474        default:          return -1;
 475        }
 476}
 477
 478enum ib_port_speed {
 479        IB_SPEED_SDR    = 1,
 480        IB_SPEED_DDR    = 2,
 481        IB_SPEED_QDR    = 4,
 482        IB_SPEED_FDR10  = 8,
 483        IB_SPEED_FDR    = 16,
 484        IB_SPEED_EDR    = 32,
 485        IB_SPEED_HDR    = 64
 486};
 487
 488/**
 489 * struct rdma_hw_stats
 490 * @lock - Mutex to protect parallel write access to lifespan and values
 491 *    of counters, which are 64bits and not guaranteeed to be written
 492 *    atomicaly on 32bits systems.
 493 * @timestamp - Used by the core code to track when the last update was
 494 * @lifespan - Used by the core code to determine how old the counters
 495 *   should be before being updated again.  Stored in jiffies, defaults
 496 *   to 10 milliseconds, drivers can override the default be specifying
 497 *   their own value during their allocation routine.
 498 * @name - Array of pointers to static names used for the counters in
 499 *   directory.
 500 * @num_counters - How many hardware counters there are.  If name is
 501 *   shorter than this number, a kernel oops will result.  Driver authors
 502 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 503 *   in their code to prevent this.
 504 * @value - Array of u64 counters that are accessed by the sysfs code and
 505 *   filled in by the drivers get_stats routine
 506 */
 507struct rdma_hw_stats {
 508        struct mutex    lock; /* Protect lifespan and values[] */
 509        unsigned long   timestamp;
 510        unsigned long   lifespan;
 511        const char * const *names;
 512        int             num_counters;
 513        u64             value[];
 514};
 515
 516#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 517/**
 518 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
 519 *   for drivers.
 520 * @names - Array of static const char *
 521 * @num_counters - How many elements in array
 522 * @lifespan - How many milliseconds between updates
 523 */
 524static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 525                const char * const *names, int num_counters,
 526                unsigned long lifespan)
 527{
 528        struct rdma_hw_stats *stats;
 529
 530        stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
 531                        GFP_KERNEL);
 532        if (!stats)
 533                return NULL;
 534        stats->names = names;
 535        stats->num_counters = num_counters;
 536        stats->lifespan = msecs_to_jiffies(lifespan);
 537
 538        return stats;
 539}
 540
 541
 542/* Define bits for the various functionality this port needs to be supported by
 543 * the core.
 544 */
 545/* Management                           0x00000FFF */
 546#define RDMA_CORE_CAP_IB_MAD            0x00000001
 547#define RDMA_CORE_CAP_IB_SMI            0x00000002
 548#define RDMA_CORE_CAP_IB_CM             0x00000004
 549#define RDMA_CORE_CAP_IW_CM             0x00000008
 550#define RDMA_CORE_CAP_IB_SA             0x00000010
 551#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 552
 553/* Address format                       0x000FF000 */
 554#define RDMA_CORE_CAP_AF_IB             0x00001000
 555#define RDMA_CORE_CAP_ETH_AH            0x00002000
 556#define RDMA_CORE_CAP_OPA_AH            0x00004000
 557
 558/* Protocol                             0xFFF00000 */
 559#define RDMA_CORE_CAP_PROT_IB           0x00100000
 560#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 561#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 562#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 563#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
 564#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
 565
 566#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 567                                        | RDMA_CORE_CAP_IB_MAD \
 568                                        | RDMA_CORE_CAP_IB_SMI \
 569                                        | RDMA_CORE_CAP_IB_CM  \
 570                                        | RDMA_CORE_CAP_IB_SA  \
 571                                        | RDMA_CORE_CAP_AF_IB)
 572#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 573                                        | RDMA_CORE_CAP_IB_MAD  \
 574                                        | RDMA_CORE_CAP_IB_CM   \
 575                                        | RDMA_CORE_CAP_AF_IB   \
 576                                        | RDMA_CORE_CAP_ETH_AH)
 577#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
 578                                        (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 579                                        | RDMA_CORE_CAP_IB_MAD  \
 580                                        | RDMA_CORE_CAP_IB_CM   \
 581                                        | RDMA_CORE_CAP_AF_IB   \
 582                                        | RDMA_CORE_CAP_ETH_AH)
 583#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 584                                        | RDMA_CORE_CAP_IW_CM)
 585#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 586                                        | RDMA_CORE_CAP_OPA_MAD)
 587
 588#define RDMA_CORE_PORT_RAW_PACKET       (RDMA_CORE_CAP_PROT_RAW_PACKET)
 589
 590#define RDMA_CORE_PORT_USNIC            (RDMA_CORE_CAP_PROT_USNIC)
 591
 592struct ib_port_attr {
 593        u64                     subnet_prefix;
 594        enum ib_port_state      state;
 595        enum ib_mtu             max_mtu;
 596        enum ib_mtu             active_mtu;
 597        int                     gid_tbl_len;
 598        u32                     port_cap_flags;
 599        u32                     max_msg_sz;
 600        u32                     bad_pkey_cntr;
 601        u32                     qkey_viol_cntr;
 602        u16                     pkey_tbl_len;
 603        u32                     sm_lid;
 604        u32                     lid;
 605        u8                      lmc;
 606        u8                      max_vl_num;
 607        u8                      sm_sl;
 608        u8                      subnet_timeout;
 609        u8                      init_type_reply;
 610        u8                      active_width;
 611        u8                      active_speed;
 612        u8                      phys_state;
 613        bool                    grh_required;
 614};
 615
 616enum ib_device_modify_flags {
 617        IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
 618        IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
 619};
 620
 621#define IB_DEVICE_NODE_DESC_MAX 64
 622
 623struct ib_device_modify {
 624        u64     sys_image_guid;
 625        char    node_desc[IB_DEVICE_NODE_DESC_MAX];
 626};
 627
 628enum ib_port_modify_flags {
 629        IB_PORT_SHUTDOWN                = 1,
 630        IB_PORT_INIT_TYPE               = (1<<2),
 631        IB_PORT_RESET_QKEY_CNTR         = (1<<3),
 632        IB_PORT_OPA_MASK_CHG            = (1<<4)
 633};
 634
 635struct ib_port_modify {
 636        u32     set_port_cap_mask;
 637        u32     clr_port_cap_mask;
 638        u8      init_type;
 639};
 640
 641enum ib_event_type {
 642        IB_EVENT_CQ_ERR,
 643        IB_EVENT_QP_FATAL,
 644        IB_EVENT_QP_REQ_ERR,
 645        IB_EVENT_QP_ACCESS_ERR,
 646        IB_EVENT_COMM_EST,
 647        IB_EVENT_SQ_DRAINED,
 648        IB_EVENT_PATH_MIG,
 649        IB_EVENT_PATH_MIG_ERR,
 650        IB_EVENT_DEVICE_FATAL,
 651        IB_EVENT_PORT_ACTIVE,
 652        IB_EVENT_PORT_ERR,
 653        IB_EVENT_LID_CHANGE,
 654        IB_EVENT_PKEY_CHANGE,
 655        IB_EVENT_SM_CHANGE,
 656        IB_EVENT_SRQ_ERR,
 657        IB_EVENT_SRQ_LIMIT_REACHED,
 658        IB_EVENT_QP_LAST_WQE_REACHED,
 659        IB_EVENT_CLIENT_REREGISTER,
 660        IB_EVENT_GID_CHANGE,
 661        IB_EVENT_WQ_FATAL,
 662};
 663
 664const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 665
 666struct ib_event {
 667        struct ib_device        *device;
 668        union {
 669                struct ib_cq    *cq;
 670                struct ib_qp    *qp;
 671                struct ib_srq   *srq;
 672                struct ib_wq    *wq;
 673                u8              port_num;
 674        } element;
 675        enum ib_event_type      event;
 676};
 677
 678struct ib_event_handler {
 679        struct ib_device *device;
 680        void            (*handler)(struct ib_event_handler *, struct ib_event *);
 681        struct list_head  list;
 682};
 683
 684#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
 685        do {                                                    \
 686                (_ptr)->device  = _device;                      \
 687                (_ptr)->handler = _handler;                     \
 688                INIT_LIST_HEAD(&(_ptr)->list);                  \
 689        } while (0)
 690
 691struct ib_global_route {
 692        union ib_gid    dgid;
 693        u32             flow_label;
 694        u8              sgid_index;
 695        u8              hop_limit;
 696        u8              traffic_class;
 697};
 698
 699struct ib_grh {
 700        __be32          version_tclass_flow;
 701        __be16          paylen;
 702        u8              next_hdr;
 703        u8              hop_limit;
 704        union ib_gid    sgid;
 705        union ib_gid    dgid;
 706};
 707
 708union rdma_network_hdr {
 709        struct ib_grh ibgrh;
 710        struct {
 711                /* The IB spec states that if it's IPv4, the header
 712                 * is located in the last 20 bytes of the header.
 713                 */
 714                u8              reserved[20];
 715                struct iphdr    roce4grh;
 716        };
 717};
 718
 719#define IB_QPN_MASK             0xFFFFFF
 720
 721enum {
 722        IB_MULTICAST_QPN = 0xffffff
 723};
 724
 725#define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
 726#define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
 727
 728enum ib_ah_flags {
 729        IB_AH_GRH       = 1
 730};
 731
 732enum ib_rate {
 733        IB_RATE_PORT_CURRENT = 0,
 734        IB_RATE_2_5_GBPS = 2,
 735        IB_RATE_5_GBPS   = 5,
 736        IB_RATE_10_GBPS  = 3,
 737        IB_RATE_20_GBPS  = 6,
 738        IB_RATE_30_GBPS  = 4,
 739        IB_RATE_40_GBPS  = 7,
 740        IB_RATE_60_GBPS  = 8,
 741        IB_RATE_80_GBPS  = 9,
 742        IB_RATE_120_GBPS = 10,
 743        IB_RATE_14_GBPS  = 11,
 744        IB_RATE_56_GBPS  = 12,
 745        IB_RATE_112_GBPS = 13,
 746        IB_RATE_168_GBPS = 14,
 747        IB_RATE_25_GBPS  = 15,
 748        IB_RATE_100_GBPS = 16,
 749        IB_RATE_200_GBPS = 17,
 750        IB_RATE_300_GBPS = 18
 751};
 752
 753/**
 754 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 755 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 756 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 757 * @rate: rate to convert.
 758 */
 759__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 760
 761/**
 762 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 763 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 764 * @rate: rate to convert.
 765 */
 766__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 767
 768
 769/**
 770 * enum ib_mr_type - memory region type
 771 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 772 *                            normal registration
 773 * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
 774 *                            signature operations (data-integrity
 775 *                            capable regions)
 776 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 777 *                            register any arbitrary sg lists (without
 778 *                            the normal mr constraints - see
 779 *                            ib_map_mr_sg)
 780 */
 781enum ib_mr_type {
 782        IB_MR_TYPE_MEM_REG,
 783        IB_MR_TYPE_SIGNATURE,
 784        IB_MR_TYPE_SG_GAPS,
 785};
 786
 787/**
 788 * Signature types
 789 * IB_SIG_TYPE_NONE: Unprotected.
 790 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
 791 */
 792enum ib_signature_type {
 793        IB_SIG_TYPE_NONE,
 794        IB_SIG_TYPE_T10_DIF,
 795};
 796
 797/**
 798 * Signature T10-DIF block-guard types
 799 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
 800 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
 801 */
 802enum ib_t10_dif_bg_type {
 803        IB_T10DIF_CRC,
 804        IB_T10DIF_CSUM
 805};
 806
 807/**
 808 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
 809 *     domain.
 810 * @bg_type: T10-DIF block guard type (CRC|CSUM)
 811 * @pi_interval: protection information interval.
 812 * @bg: seed of guard computation.
 813 * @app_tag: application tag of guard block
 814 * @ref_tag: initial guard block reference tag.
 815 * @ref_remap: Indicate wethear the reftag increments each block
 816 * @app_escape: Indicate to skip block check if apptag=0xffff
 817 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
 818 * @apptag_check_mask: check bitmask of application tag.
 819 */
 820struct ib_t10_dif_domain {
 821        enum ib_t10_dif_bg_type bg_type;
 822        u16                     pi_interval;
 823        u16                     bg;
 824        u16                     app_tag;
 825        u32                     ref_tag;
 826        bool                    ref_remap;
 827        bool                    app_escape;
 828        bool                    ref_escape;
 829        u16                     apptag_check_mask;
 830};
 831
 832/**
 833 * struct ib_sig_domain - Parameters for signature domain
 834 * @sig_type: specific signauture type
 835 * @sig: union of all signature domain attributes that may
 836 *     be used to set domain layout.
 837 */
 838struct ib_sig_domain {
 839        enum ib_signature_type sig_type;
 840        union {
 841                struct ib_t10_dif_domain dif;
 842        } sig;
 843};
 844
 845/**
 846 * struct ib_sig_attrs - Parameters for signature handover operation
 847 * @check_mask: bitmask for signature byte check (8 bytes)
 848 * @mem: memory domain layout desciptor.
 849 * @wire: wire domain layout desciptor.
 850 */
 851struct ib_sig_attrs {
 852        u8                      check_mask;
 853        struct ib_sig_domain    mem;
 854        struct ib_sig_domain    wire;
 855};
 856
 857enum ib_sig_err_type {
 858        IB_SIG_BAD_GUARD,
 859        IB_SIG_BAD_REFTAG,
 860        IB_SIG_BAD_APPTAG,
 861};
 862
 863/**
 864 * struct ib_sig_err - signature error descriptor
 865 */
 866struct ib_sig_err {
 867        enum ib_sig_err_type    err_type;
 868        u32                     expected;
 869        u32                     actual;
 870        u64                     sig_err_offset;
 871        u32                     key;
 872};
 873
 874enum ib_mr_status_check {
 875        IB_MR_CHECK_SIG_STATUS = 1,
 876};
 877
 878/**
 879 * struct ib_mr_status - Memory region status container
 880 *
 881 * @fail_status: Bitmask of MR checks status. For each
 882 *     failed check a corresponding status bit is set.
 883 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 884 *     failure.
 885 */
 886struct ib_mr_status {
 887        u32                 fail_status;
 888        struct ib_sig_err   sig_err;
 889};
 890
 891/**
 892 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 893 * enum.
 894 * @mult: multiple to convert.
 895 */
 896__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 897
 898enum rdma_ah_attr_type {
 899        RDMA_AH_ATTR_TYPE_UNDEFINED,
 900        RDMA_AH_ATTR_TYPE_IB,
 901        RDMA_AH_ATTR_TYPE_ROCE,
 902        RDMA_AH_ATTR_TYPE_OPA,
 903};
 904
 905struct ib_ah_attr {
 906        u16                     dlid;
 907        u8                      src_path_bits;
 908};
 909
 910struct roce_ah_attr {
 911        u8                      dmac[ETH_ALEN];
 912};
 913
 914struct opa_ah_attr {
 915        u32                     dlid;
 916        u8                      src_path_bits;
 917        bool                    make_grd;
 918};
 919
 920struct rdma_ah_attr {
 921        struct ib_global_route  grh;
 922        u8                      sl;
 923        u8                      static_rate;
 924        u8                      port_num;
 925        u8                      ah_flags;
 926        enum rdma_ah_attr_type type;
 927        union {
 928                struct ib_ah_attr ib;
 929                struct roce_ah_attr roce;
 930                struct opa_ah_attr opa;
 931        };
 932};
 933
 934enum ib_wc_status {
 935        IB_WC_SUCCESS,
 936        IB_WC_LOC_LEN_ERR,
 937        IB_WC_LOC_QP_OP_ERR,
 938        IB_WC_LOC_EEC_OP_ERR,
 939        IB_WC_LOC_PROT_ERR,
 940        IB_WC_WR_FLUSH_ERR,
 941        IB_WC_MW_BIND_ERR,
 942        IB_WC_BAD_RESP_ERR,
 943        IB_WC_LOC_ACCESS_ERR,
 944        IB_WC_REM_INV_REQ_ERR,
 945        IB_WC_REM_ACCESS_ERR,
 946        IB_WC_REM_OP_ERR,
 947        IB_WC_RETRY_EXC_ERR,
 948        IB_WC_RNR_RETRY_EXC_ERR,
 949        IB_WC_LOC_RDD_VIOL_ERR,
 950        IB_WC_REM_INV_RD_REQ_ERR,
 951        IB_WC_REM_ABORT_ERR,
 952        IB_WC_INV_EECN_ERR,
 953        IB_WC_INV_EEC_STATE_ERR,
 954        IB_WC_FATAL_ERR,
 955        IB_WC_RESP_TIMEOUT_ERR,
 956        IB_WC_GENERAL_ERR
 957};
 958
 959const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 960
 961enum ib_wc_opcode {
 962        IB_WC_SEND,
 963        IB_WC_RDMA_WRITE,
 964        IB_WC_RDMA_READ,
 965        IB_WC_COMP_SWAP,
 966        IB_WC_FETCH_ADD,
 967        IB_WC_LSO,
 968        IB_WC_LOCAL_INV,
 969        IB_WC_REG_MR,
 970        IB_WC_MASKED_COMP_SWAP,
 971        IB_WC_MASKED_FETCH_ADD,
 972/*
 973 * Set value of IB_WC_RECV so consumers can test if a completion is a
 974 * receive by testing (opcode & IB_WC_RECV).
 975 */
 976        IB_WC_RECV                      = 1 << 7,
 977        IB_WC_RECV_RDMA_WITH_IMM
 978};
 979
 980enum ib_wc_flags {
 981        IB_WC_GRH               = 1,
 982        IB_WC_WITH_IMM          = (1<<1),
 983        IB_WC_WITH_INVALIDATE   = (1<<2),
 984        IB_WC_IP_CSUM_OK        = (1<<3),
 985        IB_WC_WITH_SMAC         = (1<<4),
 986        IB_WC_WITH_VLAN         = (1<<5),
 987        IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
 988};
 989
 990struct ib_wc {
 991        union {
 992                u64             wr_id;
 993                struct ib_cqe   *wr_cqe;
 994        };
 995        enum ib_wc_status       status;
 996        enum ib_wc_opcode       opcode;
 997        u32                     vendor_err;
 998        u32                     byte_len;
 999        struct ib_qp           *qp;
1000        union {
1001                __be32          imm_data;
1002                u32             invalidate_rkey;
1003        } ex;
1004        u32                     src_qp;
1005        u32                     slid;
1006        int                     wc_flags;
1007        u16                     pkey_index;
1008        u8                      sl;
1009        u8                      dlid_path_bits;
1010        u8                      port_num;       /* valid only for DR SMPs on switches */
1011        u8                      smac[ETH_ALEN];
1012        u16                     vlan_id;
1013        u8                      network_hdr_type;
1014};
1015
1016enum ib_cq_notify_flags {
1017        IB_CQ_SOLICITED                 = 1 << 0,
1018        IB_CQ_NEXT_COMP                 = 1 << 1,
1019        IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1020        IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
1021};
1022
1023enum ib_srq_type {
1024        IB_SRQT_BASIC,
1025        IB_SRQT_XRC,
1026        IB_SRQT_TM,
1027};
1028
1029static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1030{
1031        return srq_type == IB_SRQT_XRC ||
1032               srq_type == IB_SRQT_TM;
1033}
1034
1035enum ib_srq_attr_mask {
1036        IB_SRQ_MAX_WR   = 1 << 0,
1037        IB_SRQ_LIMIT    = 1 << 1,
1038};
1039
1040struct ib_srq_attr {
1041        u32     max_wr;
1042        u32     max_sge;
1043        u32     srq_limit;
1044};
1045
1046struct ib_srq_init_attr {
1047        void                  (*event_handler)(struct ib_event *, void *);
1048        void                   *srq_context;
1049        struct ib_srq_attr      attr;
1050        enum ib_srq_type        srq_type;
1051
1052        struct {
1053                struct ib_cq   *cq;
1054                union {
1055                        struct {
1056                                struct ib_xrcd *xrcd;
1057                        } xrc;
1058
1059                        struct {
1060                                u32             max_num_tags;
1061                        } tag_matching;
1062                };
1063        } ext;
1064};
1065
1066struct ib_qp_cap {
1067        u32     max_send_wr;
1068        u32     max_recv_wr;
1069        u32     max_send_sge;
1070        u32     max_recv_sge;
1071        u32     max_inline_data;
1072
1073        /*
1074         * Maximum number of rdma_rw_ctx structures in flight at a time.
1075         * ib_create_qp() will calculate the right amount of neededed WRs
1076         * and MRs based on this.
1077         */
1078        u32     max_rdma_ctxs;
1079};
1080
1081enum ib_sig_type {
1082        IB_SIGNAL_ALL_WR,
1083        IB_SIGNAL_REQ_WR
1084};
1085
1086enum ib_qp_type {
1087        /*
1088         * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1089         * here (and in that order) since the MAD layer uses them as
1090         * indices into a 2-entry table.
1091         */
1092        IB_QPT_SMI,
1093        IB_QPT_GSI,
1094
1095        IB_QPT_RC,
1096        IB_QPT_UC,
1097        IB_QPT_UD,
1098        IB_QPT_RAW_IPV6,
1099        IB_QPT_RAW_ETHERTYPE,
1100        IB_QPT_RAW_PACKET = 8,
1101        IB_QPT_XRC_INI = 9,
1102        IB_QPT_XRC_TGT,
1103        IB_QPT_MAX,
1104        IB_QPT_DRIVER = 0xFF,
1105        /* Reserve a range for qp types internal to the low level driver.
1106         * These qp types will not be visible at the IB core layer, so the
1107         * IB_QPT_MAX usages should not be affected in the core layer
1108         */
1109        IB_QPT_RESERVED1 = 0x1000,
1110        IB_QPT_RESERVED2,
1111        IB_QPT_RESERVED3,
1112        IB_QPT_RESERVED4,
1113        IB_QPT_RESERVED5,
1114        IB_QPT_RESERVED6,
1115        IB_QPT_RESERVED7,
1116        IB_QPT_RESERVED8,
1117        IB_QPT_RESERVED9,
1118        IB_QPT_RESERVED10,
1119};
1120
1121enum ib_qp_create_flags {
1122        IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
1123        IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   = 1 << 1,
1124        IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1125        IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1126        IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1127        IB_QP_CREATE_NETIF_QP                   = 1 << 5,
1128        IB_QP_CREATE_SIGNATURE_EN               = 1 << 6,
1129        /* FREE                                 = 1 << 7, */
1130        IB_QP_CREATE_SCATTER_FCS                = 1 << 8,
1131        IB_QP_CREATE_CVLAN_STRIPPING            = 1 << 9,
1132        IB_QP_CREATE_SOURCE_QPN                 = 1 << 10,
1133        IB_QP_CREATE_PCI_WRITE_END_PADDING      = 1 << 11,
1134        /* reserve bits 26-31 for low level drivers' internal use */
1135        IB_QP_CREATE_RESERVED_START             = 1 << 26,
1136        IB_QP_CREATE_RESERVED_END               = 1 << 31,
1137};
1138
1139/*
1140 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1141 * callback to destroy the passed in QP.
1142 */
1143
1144struct ib_qp_init_attr {
1145        void                  (*event_handler)(struct ib_event *, void *);
1146        void                   *qp_context;
1147        struct ib_cq           *send_cq;
1148        struct ib_cq           *recv_cq;
1149        struct ib_srq          *srq;
1150        struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1151        struct ib_qp_cap        cap;
1152        enum ib_sig_type        sq_sig_type;
1153        enum ib_qp_type         qp_type;
1154        enum ib_qp_create_flags create_flags;
1155
1156        /*
1157         * Only needed for special QP types, or when using the RW API.
1158         */
1159        u8                      port_num;
1160        struct ib_rwq_ind_table *rwq_ind_tbl;
1161        u32                     source_qpn;
1162};
1163
1164struct ib_qp_open_attr {
1165        void                  (*event_handler)(struct ib_event *, void *);
1166        void                   *qp_context;
1167        u32                     qp_num;
1168        enum ib_qp_type         qp_type;
1169};
1170
1171enum ib_rnr_timeout {
1172        IB_RNR_TIMER_655_36 =  0,
1173        IB_RNR_TIMER_000_01 =  1,
1174        IB_RNR_TIMER_000_02 =  2,
1175        IB_RNR_TIMER_000_03 =  3,
1176        IB_RNR_TIMER_000_04 =  4,
1177        IB_RNR_TIMER_000_06 =  5,
1178        IB_RNR_TIMER_000_08 =  6,
1179        IB_RNR_TIMER_000_12 =  7,
1180        IB_RNR_TIMER_000_16 =  8,
1181        IB_RNR_TIMER_000_24 =  9,
1182        IB_RNR_TIMER_000_32 = 10,
1183        IB_RNR_TIMER_000_48 = 11,
1184        IB_RNR_TIMER_000_64 = 12,
1185        IB_RNR_TIMER_000_96 = 13,
1186        IB_RNR_TIMER_001_28 = 14,
1187        IB_RNR_TIMER_001_92 = 15,
1188        IB_RNR_TIMER_002_56 = 16,
1189        IB_RNR_TIMER_003_84 = 17,
1190        IB_RNR_TIMER_005_12 = 18,
1191        IB_RNR_TIMER_007_68 = 19,
1192        IB_RNR_TIMER_010_24 = 20,
1193        IB_RNR_TIMER_015_36 = 21,
1194        IB_RNR_TIMER_020_48 = 22,
1195        IB_RNR_TIMER_030_72 = 23,
1196        IB_RNR_TIMER_040_96 = 24,
1197        IB_RNR_TIMER_061_44 = 25,
1198        IB_RNR_TIMER_081_92 = 26,
1199        IB_RNR_TIMER_122_88 = 27,
1200        IB_RNR_TIMER_163_84 = 28,
1201        IB_RNR_TIMER_245_76 = 29,
1202        IB_RNR_TIMER_327_68 = 30,
1203        IB_RNR_TIMER_491_52 = 31
1204};
1205
1206enum ib_qp_attr_mask {
1207        IB_QP_STATE                     = 1,
1208        IB_QP_CUR_STATE                 = (1<<1),
1209        IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1210        IB_QP_ACCESS_FLAGS              = (1<<3),
1211        IB_QP_PKEY_INDEX                = (1<<4),
1212        IB_QP_PORT                      = (1<<5),
1213        IB_QP_QKEY                      = (1<<6),
1214        IB_QP_AV                        = (1<<7),
1215        IB_QP_PATH_MTU                  = (1<<8),
1216        IB_QP_TIMEOUT                   = (1<<9),
1217        IB_QP_RETRY_CNT                 = (1<<10),
1218        IB_QP_RNR_RETRY                 = (1<<11),
1219        IB_QP_RQ_PSN                    = (1<<12),
1220        IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1221        IB_QP_ALT_PATH                  = (1<<14),
1222        IB_QP_MIN_RNR_TIMER             = (1<<15),
1223        IB_QP_SQ_PSN                    = (1<<16),
1224        IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1225        IB_QP_PATH_MIG_STATE            = (1<<18),
1226        IB_QP_CAP                       = (1<<19),
1227        IB_QP_DEST_QPN                  = (1<<20),
1228        IB_QP_RESERVED1                 = (1<<21),
1229        IB_QP_RESERVED2                 = (1<<22),
1230        IB_QP_RESERVED3                 = (1<<23),
1231        IB_QP_RESERVED4                 = (1<<24),
1232        IB_QP_RATE_LIMIT                = (1<<25),
1233};
1234
1235enum ib_qp_state {
1236        IB_QPS_RESET,
1237        IB_QPS_INIT,
1238        IB_QPS_RTR,
1239        IB_QPS_RTS,
1240        IB_QPS_SQD,
1241        IB_QPS_SQE,
1242        IB_QPS_ERR
1243};
1244
1245enum ib_mig_state {
1246        IB_MIG_MIGRATED,
1247        IB_MIG_REARM,
1248        IB_MIG_ARMED
1249};
1250
1251enum ib_mw_type {
1252        IB_MW_TYPE_1 = 1,
1253        IB_MW_TYPE_2 = 2
1254};
1255
1256struct ib_qp_attr {
1257        enum ib_qp_state        qp_state;
1258        enum ib_qp_state        cur_qp_state;
1259        enum ib_mtu             path_mtu;
1260        enum ib_mig_state       path_mig_state;
1261        u32                     qkey;
1262        u32                     rq_psn;
1263        u32                     sq_psn;
1264        u32                     dest_qp_num;
1265        int                     qp_access_flags;
1266        struct ib_qp_cap        cap;
1267        struct rdma_ah_attr     ah_attr;
1268        struct rdma_ah_attr     alt_ah_attr;
1269        u16                     pkey_index;
1270        u16                     alt_pkey_index;
1271        u8                      en_sqd_async_notify;
1272        u8                      sq_draining;
1273        u8                      max_rd_atomic;
1274        u8                      max_dest_rd_atomic;
1275        u8                      min_rnr_timer;
1276        u8                      port_num;
1277        u8                      timeout;
1278        u8                      retry_cnt;
1279        u8                      rnr_retry;
1280        u8                      alt_port_num;
1281        u8                      alt_timeout;
1282        u32                     rate_limit;
1283};
1284
1285enum ib_wr_opcode {
1286        IB_WR_RDMA_WRITE,
1287        IB_WR_RDMA_WRITE_WITH_IMM,
1288        IB_WR_SEND,
1289        IB_WR_SEND_WITH_IMM,
1290        IB_WR_RDMA_READ,
1291        IB_WR_ATOMIC_CMP_AND_SWP,
1292        IB_WR_ATOMIC_FETCH_AND_ADD,
1293        IB_WR_LSO,
1294        IB_WR_SEND_WITH_INV,
1295        IB_WR_RDMA_READ_WITH_INV,
1296        IB_WR_LOCAL_INV,
1297        IB_WR_REG_MR,
1298        IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1299        IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1300        IB_WR_REG_SIG_MR,
1301        /* reserve values for low level drivers' internal use.
1302         * These values will not be used at all in the ib core layer.
1303         */
1304        IB_WR_RESERVED1 = 0xf0,
1305        IB_WR_RESERVED2,
1306        IB_WR_RESERVED3,
1307        IB_WR_RESERVED4,
1308        IB_WR_RESERVED5,
1309        IB_WR_RESERVED6,
1310        IB_WR_RESERVED7,
1311        IB_WR_RESERVED8,
1312        IB_WR_RESERVED9,
1313        IB_WR_RESERVED10,
1314};
1315
1316enum ib_send_flags {
1317        IB_SEND_FENCE           = 1,
1318        IB_SEND_SIGNALED        = (1<<1),
1319        IB_SEND_SOLICITED       = (1<<2),
1320        IB_SEND_INLINE          = (1<<3),
1321        IB_SEND_IP_CSUM         = (1<<4),
1322
1323        /* reserve bits 26-31 for low level drivers' internal use */
1324        IB_SEND_RESERVED_START  = (1 << 26),
1325        IB_SEND_RESERVED_END    = (1 << 31),
1326};
1327
1328struct ib_sge {
1329        u64     addr;
1330        u32     length;
1331        u32     lkey;
1332};
1333
1334struct ib_cqe {
1335        void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1336};
1337
1338struct ib_send_wr {
1339        struct ib_send_wr      *next;
1340        union {
1341                u64             wr_id;
1342                struct ib_cqe   *wr_cqe;
1343        };
1344        struct ib_sge          *sg_list;
1345        int                     num_sge;
1346        enum ib_wr_opcode       opcode;
1347        int                     send_flags;
1348        union {
1349                __be32          imm_data;
1350                u32             invalidate_rkey;
1351        } ex;
1352};
1353
1354struct ib_rdma_wr {
1355        struct ib_send_wr       wr;
1356        u64                     remote_addr;
1357        u32                     rkey;
1358};
1359
1360static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1361{
1362        return container_of(wr, struct ib_rdma_wr, wr);
1363}
1364
1365struct ib_atomic_wr {
1366        struct ib_send_wr       wr;
1367        u64                     remote_addr;
1368        u64                     compare_add;
1369        u64                     swap;
1370        u64                     compare_add_mask;
1371        u64                     swap_mask;
1372        u32                     rkey;
1373};
1374
1375static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1376{
1377        return container_of(wr, struct ib_atomic_wr, wr);
1378}
1379
1380struct ib_ud_wr {
1381        struct ib_send_wr       wr;
1382        struct ib_ah            *ah;
1383        void                    *header;
1384        int                     hlen;
1385        int                     mss;
1386        u32                     remote_qpn;
1387        u32                     remote_qkey;
1388        u16                     pkey_index; /* valid for GSI only */
1389        u8                      port_num;   /* valid for DR SMPs on switch only */
1390};
1391
1392static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1393{
1394        return container_of(wr, struct ib_ud_wr, wr);
1395}
1396
1397struct ib_reg_wr {
1398        struct ib_send_wr       wr;
1399        struct ib_mr            *mr;
1400        u32                     key;
1401        int                     access;
1402};
1403
1404static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1405{
1406        return container_of(wr, struct ib_reg_wr, wr);
1407}
1408
1409struct ib_sig_handover_wr {
1410        struct ib_send_wr       wr;
1411        struct ib_sig_attrs    *sig_attrs;
1412        struct ib_mr           *sig_mr;
1413        int                     access_flags;
1414        struct ib_sge          *prot;
1415};
1416
1417static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1418{
1419        return container_of(wr, struct ib_sig_handover_wr, wr);
1420}
1421
1422struct ib_recv_wr {
1423        struct ib_recv_wr      *next;
1424        union {
1425                u64             wr_id;
1426                struct ib_cqe   *wr_cqe;
1427        };
1428        struct ib_sge          *sg_list;
1429        int                     num_sge;
1430};
1431
1432enum ib_access_flags {
1433        IB_ACCESS_LOCAL_WRITE   = 1,
1434        IB_ACCESS_REMOTE_WRITE  = (1<<1),
1435        IB_ACCESS_REMOTE_READ   = (1<<2),
1436        IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1437        IB_ACCESS_MW_BIND       = (1<<4),
1438        IB_ZERO_BASED           = (1<<5),
1439        IB_ACCESS_ON_DEMAND     = (1<<6),
1440        IB_ACCESS_HUGETLB       = (1<<7),
1441};
1442
1443/*
1444 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1445 * are hidden here instead of a uapi header!
1446 */
1447enum ib_mr_rereg_flags {
1448        IB_MR_REREG_TRANS       = 1,
1449        IB_MR_REREG_PD          = (1<<1),
1450        IB_MR_REREG_ACCESS      = (1<<2),
1451        IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1452};
1453
1454struct ib_fmr_attr {
1455        int     max_pages;
1456        int     max_maps;
1457        u8      page_shift;
1458};
1459
1460struct ib_umem;
1461
1462enum rdma_remove_reason {
1463        /* Userspace requested uobject deletion. Call could fail */
1464        RDMA_REMOVE_DESTROY,
1465        /* Context deletion. This call should delete the actual object itself */
1466        RDMA_REMOVE_CLOSE,
1467        /* Driver is being hot-unplugged. This call should delete the actual object itself */
1468        RDMA_REMOVE_DRIVER_REMOVE,
1469        /* Context is being cleaned-up, but commit was just completed */
1470        RDMA_REMOVE_DURING_CLEANUP,
1471};
1472
1473struct ib_rdmacg_object {
1474#ifdef CONFIG_CGROUP_RDMA
1475        struct rdma_cgroup      *cg;            /* owner rdma cgroup */
1476#endif
1477};
1478
1479struct ib_ucontext {
1480        struct ib_device       *device;
1481        struct ib_uverbs_file  *ufile;
1482        int                     closing;
1483
1484        /* locking the uobjects_list */
1485        struct mutex            uobjects_lock;
1486        struct list_head        uobjects;
1487        /* protects cleanup process from other actions */
1488        struct rw_semaphore     cleanup_rwsem;
1489        enum rdma_remove_reason cleanup_reason;
1490
1491        struct pid             *tgid;
1492#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1493        struct rb_root_cached   umem_tree;
1494        /*
1495         * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1496         * mmu notifiers registration.
1497         */
1498        struct rw_semaphore     umem_rwsem;
1499        void (*invalidate_range)(struct ib_umem *umem,
1500                                 unsigned long start, unsigned long end);
1501
1502        struct mmu_notifier     mn;
1503        atomic_t                notifier_count;
1504        /* A list of umems that don't have private mmu notifier counters yet. */
1505        struct list_head        no_private_counters;
1506        int                     odp_mrs_count;
1507#endif
1508
1509        struct ib_rdmacg_object cg_obj;
1510};
1511
1512struct ib_uobject {
1513        u64                     user_handle;    /* handle given to us by userspace */
1514        struct ib_ucontext     *context;        /* associated user context */
1515        void                   *object;         /* containing object */
1516        struct list_head        list;           /* link to context's list */
1517        struct ib_rdmacg_object cg_obj;         /* rdmacg object */
1518        int                     id;             /* index into kernel idr */
1519        struct kref             ref;
1520        atomic_t                usecnt;         /* protects exclusive access */
1521        struct rcu_head         rcu;            /* kfree_rcu() overhead */
1522
1523        const struct uverbs_obj_type *type;
1524};
1525
1526struct ib_uobject_file {
1527        struct ib_uobject       uobj;
1528        /* ufile contains the lock between context release and file close */
1529        struct ib_uverbs_file   *ufile;
1530};
1531
1532struct ib_udata {
1533        const void __user *inbuf;
1534        void __user *outbuf;
1535        size_t       inlen;
1536        size_t       outlen;
1537};
1538
1539struct ib_pd {
1540        u32                     local_dma_lkey;
1541        u32                     flags;
1542        struct ib_device       *device;
1543        struct ib_uobject      *uobject;
1544        atomic_t                usecnt; /* count all resources */
1545
1546        u32                     unsafe_global_rkey;
1547
1548        /*
1549         * Implementation details of the RDMA core, don't use in drivers:
1550         */
1551        struct ib_mr           *__internal_mr;
1552        struct rdma_restrack_entry res;
1553};
1554
1555struct ib_xrcd {
1556        struct ib_device       *device;
1557        atomic_t                usecnt; /* count all exposed resources */
1558        struct inode           *inode;
1559
1560        struct mutex            tgt_qp_mutex;
1561        struct list_head        tgt_qp_list;
1562};
1563
1564struct ib_ah {
1565        struct ib_device        *device;
1566        struct ib_pd            *pd;
1567        struct ib_uobject       *uobject;
1568        enum rdma_ah_attr_type  type;
1569};
1570
1571typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1572
1573enum ib_poll_context {
1574        IB_POLL_DIRECT,         /* caller context, no hw completions */
1575        IB_POLL_SOFTIRQ,        /* poll from softirq context */
1576        IB_POLL_WORKQUEUE,      /* poll from workqueue */
1577};
1578
1579struct ib_cq {
1580        struct ib_device       *device;
1581        struct ib_uobject      *uobject;
1582        ib_comp_handler         comp_handler;
1583        void                  (*event_handler)(struct ib_event *, void *);
1584        void                   *cq_context;
1585        int                     cqe;
1586        atomic_t                usecnt; /* count number of work queues */
1587        enum ib_poll_context    poll_ctx;
1588        struct ib_wc            *wc;
1589        union {
1590                struct irq_poll         iop;
1591                struct work_struct      work;
1592        };
1593        /*
1594         * Implementation details of the RDMA core, don't use in drivers:
1595         */
1596        struct rdma_restrack_entry res;
1597};
1598
1599struct ib_srq {
1600        struct ib_device       *device;
1601        struct ib_pd           *pd;
1602        struct ib_uobject      *uobject;
1603        void                  (*event_handler)(struct ib_event *, void *);
1604        void                   *srq_context;
1605        enum ib_srq_type        srq_type;
1606        atomic_t                usecnt;
1607
1608        struct {
1609                struct ib_cq   *cq;
1610                union {
1611                        struct {
1612                                struct ib_xrcd *xrcd;
1613                                u32             srq_num;
1614                        } xrc;
1615                };
1616        } ext;
1617};
1618
1619enum ib_raw_packet_caps {
1620        /* Strip cvlan from incoming packet and report it in the matching work
1621         * completion is supported.
1622         */
1623        IB_RAW_PACKET_CAP_CVLAN_STRIPPING       = (1 << 0),
1624        /* Scatter FCS field of an incoming packet to host memory is supported.
1625         */
1626        IB_RAW_PACKET_CAP_SCATTER_FCS           = (1 << 1),
1627        /* Checksum offloads are supported (for both send and receive). */
1628        IB_RAW_PACKET_CAP_IP_CSUM               = (1 << 2),
1629        /* When a packet is received for an RQ with no receive WQEs, the
1630         * packet processing is delayed.
1631         */
1632        IB_RAW_PACKET_CAP_DELAY_DROP            = (1 << 3),
1633};
1634
1635enum ib_wq_type {
1636        IB_WQT_RQ
1637};
1638
1639enum ib_wq_state {
1640        IB_WQS_RESET,
1641        IB_WQS_RDY,
1642        IB_WQS_ERR
1643};
1644
1645struct ib_wq {
1646        struct ib_device       *device;
1647        struct ib_uobject      *uobject;
1648        void                *wq_context;
1649        void                (*event_handler)(struct ib_event *, void *);
1650        struct ib_pd           *pd;
1651        struct ib_cq           *cq;
1652        u32             wq_num;
1653        enum ib_wq_state       state;
1654        enum ib_wq_type wq_type;
1655        atomic_t                usecnt;
1656};
1657
1658enum ib_wq_flags {
1659        IB_WQ_FLAGS_CVLAN_STRIPPING     = 1 << 0,
1660        IB_WQ_FLAGS_SCATTER_FCS         = 1 << 1,
1661        IB_WQ_FLAGS_DELAY_DROP          = 1 << 2,
1662        IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1663};
1664
1665struct ib_wq_init_attr {
1666        void                   *wq_context;
1667        enum ib_wq_type wq_type;
1668        u32             max_wr;
1669        u32             max_sge;
1670        struct  ib_cq          *cq;
1671        void                (*event_handler)(struct ib_event *, void *);
1672        u32             create_flags; /* Use enum ib_wq_flags */
1673};
1674
1675enum ib_wq_attr_mask {
1676        IB_WQ_STATE             = 1 << 0,
1677        IB_WQ_CUR_STATE         = 1 << 1,
1678        IB_WQ_FLAGS             = 1 << 2,
1679};
1680
1681struct ib_wq_attr {
1682        enum    ib_wq_state     wq_state;
1683        enum    ib_wq_state     curr_wq_state;
1684        u32                     flags; /* Use enum ib_wq_flags */
1685        u32                     flags_mask; /* Use enum ib_wq_flags */
1686};
1687
1688struct ib_rwq_ind_table {
1689        struct ib_device        *device;
1690        struct ib_uobject      *uobject;
1691        atomic_t                usecnt;
1692        u32             ind_tbl_num;
1693        u32             log_ind_tbl_size;
1694        struct ib_wq    **ind_tbl;
1695};
1696
1697struct ib_rwq_ind_table_init_attr {
1698        u32             log_ind_tbl_size;
1699        /* Each entry is a pointer to Receive Work Queue */
1700        struct ib_wq    **ind_tbl;
1701};
1702
1703enum port_pkey_state {
1704        IB_PORT_PKEY_NOT_VALID = 0,
1705        IB_PORT_PKEY_VALID = 1,
1706        IB_PORT_PKEY_LISTED = 2,
1707};
1708
1709struct ib_qp_security;
1710
1711struct ib_port_pkey {
1712        enum port_pkey_state    state;
1713        u16                     pkey_index;
1714        u8                      port_num;
1715        struct list_head        qp_list;
1716        struct list_head        to_error_list;
1717        struct ib_qp_security  *sec;
1718};
1719
1720struct ib_ports_pkeys {
1721        struct ib_port_pkey     main;
1722        struct ib_port_pkey     alt;
1723};
1724
1725struct ib_qp_security {
1726        struct ib_qp           *qp;
1727        struct ib_device       *dev;
1728        /* Hold this mutex when changing port and pkey settings. */
1729        struct mutex            mutex;
1730        struct ib_ports_pkeys  *ports_pkeys;
1731        /* A list of all open shared QP handles.  Required to enforce security
1732         * properly for all users of a shared QP.
1733         */
1734        struct list_head        shared_qp_list;
1735        void                   *security;
1736        bool                    destroying;
1737        atomic_t                error_list_count;
1738        struct completion       error_complete;
1739        int                     error_comps_pending;
1740};
1741
1742/*
1743 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1744 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1745 */
1746struct ib_qp {
1747        struct ib_device       *device;
1748        struct ib_pd           *pd;
1749        struct ib_cq           *send_cq;
1750        struct ib_cq           *recv_cq;
1751        spinlock_t              mr_lock;
1752        int                     mrs_used;
1753        struct list_head        rdma_mrs;
1754        struct list_head        sig_mrs;
1755        struct ib_srq          *srq;
1756        struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1757        struct list_head        xrcd_list;
1758
1759        /* count times opened, mcast attaches, flow attaches */
1760        atomic_t                usecnt;
1761        struct list_head        open_list;
1762        struct ib_qp           *real_qp;
1763        struct ib_uobject      *uobject;
1764        void                  (*event_handler)(struct ib_event *, void *);
1765        void                   *qp_context;
1766        u32                     qp_num;
1767        u32                     max_write_sge;
1768        u32                     max_read_sge;
1769        enum ib_qp_type         qp_type;
1770        struct ib_rwq_ind_table *rwq_ind_tbl;
1771        struct ib_qp_security  *qp_sec;
1772        u8                      port;
1773
1774        /*
1775         * Implementation details of the RDMA core, don't use in drivers:
1776         */
1777        struct rdma_restrack_entry     res;
1778};
1779
1780struct ib_dm {
1781        struct ib_device  *device;
1782        u32                length;
1783        u32                flags;
1784        struct ib_uobject *uobject;
1785        atomic_t           usecnt;
1786};
1787
1788struct ib_mr {
1789        struct ib_device  *device;
1790        struct ib_pd      *pd;
1791        u32                lkey;
1792        u32                rkey;
1793        u64                iova;
1794        u64                length;
1795        unsigned int       page_size;
1796        bool               need_inval;
1797        union {
1798                struct ib_uobject       *uobject;       /* user */
1799                struct list_head        qp_entry;       /* FR */
1800        };
1801
1802        struct ib_dm      *dm;
1803
1804        /*
1805         * Implementation details of the RDMA core, don't use in drivers:
1806         */
1807        struct rdma_restrack_entry res;
1808};
1809
1810struct ib_mw {
1811        struct ib_device        *device;
1812        struct ib_pd            *pd;
1813        struct ib_uobject       *uobject;
1814        u32                     rkey;
1815        enum ib_mw_type         type;
1816};
1817
1818struct ib_fmr {
1819        struct ib_device        *device;
1820        struct ib_pd            *pd;
1821        struct list_head        list;
1822        u32                     lkey;
1823        u32                     rkey;
1824};
1825
1826/* Supported steering options */
1827enum ib_flow_attr_type {
1828        /* steering according to rule specifications */
1829        IB_FLOW_ATTR_NORMAL             = 0x0,
1830        /* default unicast and multicast rule -
1831         * receive all Eth traffic which isn't steered to any QP
1832         */
1833        IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1834        /* default multicast rule -
1835         * receive all Eth multicast traffic which isn't steered to any QP
1836         */
1837        IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1838        /* sniffer rule - receive all port traffic */
1839        IB_FLOW_ATTR_SNIFFER            = 0x3
1840};
1841
1842/* Supported steering header types */
1843enum ib_flow_spec_type {
1844        /* L2 headers*/
1845        IB_FLOW_SPEC_ETH                = 0x20,
1846        IB_FLOW_SPEC_IB                 = 0x22,
1847        /* L3 header*/
1848        IB_FLOW_SPEC_IPV4               = 0x30,
1849        IB_FLOW_SPEC_IPV6               = 0x31,
1850        IB_FLOW_SPEC_ESP                = 0x34,
1851        /* L4 headers*/
1852        IB_FLOW_SPEC_TCP                = 0x40,
1853        IB_FLOW_SPEC_UDP                = 0x41,
1854        IB_FLOW_SPEC_VXLAN_TUNNEL       = 0x50,
1855        IB_FLOW_SPEC_INNER              = 0x100,
1856        /* Actions */
1857        IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1858        IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1859        IB_FLOW_SPEC_ACTION_HANDLE      = 0x1002,
1860};
1861#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1862#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1863
1864/* Flow steering rule priority is set according to it's domain.
1865 * Lower domain value means higher priority.
1866 */
1867enum ib_flow_domain {
1868        IB_FLOW_DOMAIN_USER,
1869        IB_FLOW_DOMAIN_ETHTOOL,
1870        IB_FLOW_DOMAIN_RFS,
1871        IB_FLOW_DOMAIN_NIC,
1872        IB_FLOW_DOMAIN_NUM /* Must be last */
1873};
1874
1875enum ib_flow_flags {
1876        IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1877        IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1878        IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1879};
1880
1881struct ib_flow_eth_filter {
1882        u8      dst_mac[6];
1883        u8      src_mac[6];
1884        __be16  ether_type;
1885        __be16  vlan_tag;
1886        /* Must be last */
1887        u8      real_sz[0];
1888};
1889
1890struct ib_flow_spec_eth {
1891        u32                       type;
1892        u16                       size;
1893        struct ib_flow_eth_filter val;
1894        struct ib_flow_eth_filter mask;
1895};
1896
1897struct ib_flow_ib_filter {
1898        __be16 dlid;
1899        __u8   sl;
1900        /* Must be last */
1901        u8      real_sz[0];
1902};
1903
1904struct ib_flow_spec_ib {
1905        u32                      type;
1906        u16                      size;
1907        struct ib_flow_ib_filter val;
1908        struct ib_flow_ib_filter mask;
1909};
1910
1911/* IPv4 header flags */
1912enum ib_ipv4_flags {
1913        IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1914        IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1915                                    last have this flag set */
1916};
1917
1918struct ib_flow_ipv4_filter {
1919        __be32  src_ip;
1920        __be32  dst_ip;
1921        u8      proto;
1922        u8      tos;
1923        u8      ttl;
1924        u8      flags;
1925        /* Must be last */
1926        u8      real_sz[0];
1927};
1928
1929struct ib_flow_spec_ipv4 {
1930        u32                        type;
1931        u16                        size;
1932        struct ib_flow_ipv4_filter val;
1933        struct ib_flow_ipv4_filter mask;
1934};
1935
1936struct ib_flow_ipv6_filter {
1937        u8      src_ip[16];
1938        u8      dst_ip[16];
1939        __be32  flow_label;
1940        u8      next_hdr;
1941        u8      traffic_class;
1942        u8      hop_limit;
1943        /* Must be last */
1944        u8      real_sz[0];
1945};
1946
1947struct ib_flow_spec_ipv6 {
1948        u32                        type;
1949        u16                        size;
1950        struct ib_flow_ipv6_filter val;
1951        struct ib_flow_ipv6_filter mask;
1952};
1953
1954struct ib_flow_tcp_udp_filter {
1955        __be16  dst_port;
1956        __be16  src_port;
1957        /* Must be last */
1958        u8      real_sz[0];
1959};
1960
1961struct ib_flow_spec_tcp_udp {
1962        u32                           type;
1963        u16                           size;
1964        struct ib_flow_tcp_udp_filter val;
1965        struct ib_flow_tcp_udp_filter mask;
1966};
1967
1968struct ib_flow_tunnel_filter {
1969        __be32  tunnel_id;
1970        u8      real_sz[0];
1971};
1972
1973/* ib_flow_spec_tunnel describes the Vxlan tunnel
1974 * the tunnel_id from val has the vni value
1975 */
1976struct ib_flow_spec_tunnel {
1977        u32                           type;
1978        u16                           size;
1979        struct ib_flow_tunnel_filter  val;
1980        struct ib_flow_tunnel_filter  mask;
1981};
1982
1983struct ib_flow_esp_filter {
1984        __be32  spi;
1985        __be32  seq;
1986        /* Must be last */
1987        u8      real_sz[0];
1988};
1989
1990struct ib_flow_spec_esp {
1991        u32                           type;
1992        u16                           size;
1993        struct ib_flow_esp_filter     val;
1994        struct ib_flow_esp_filter     mask;
1995};
1996
1997struct ib_flow_spec_action_tag {
1998        enum ib_flow_spec_type        type;
1999        u16                           size;
2000        u32                           tag_id;
2001};
2002
2003struct ib_flow_spec_action_drop {
2004        enum ib_flow_spec_type        type;
2005        u16                           size;
2006};
2007
2008struct ib_flow_spec_action_handle {
2009        enum ib_flow_spec_type        type;
2010        u16                           size;
2011        struct ib_flow_action        *act;
2012};
2013
2014union ib_flow_spec {
2015        struct {
2016                u32                     type;
2017                u16                     size;
2018        };
2019        struct ib_flow_spec_eth         eth;
2020        struct ib_flow_spec_ib          ib;
2021        struct ib_flow_spec_ipv4        ipv4;
2022        struct ib_flow_spec_tcp_udp     tcp_udp;
2023        struct ib_flow_spec_ipv6        ipv6;
2024        struct ib_flow_spec_tunnel      tunnel;
2025        struct ib_flow_spec_esp         esp;
2026        struct ib_flow_spec_action_tag  flow_tag;
2027        struct ib_flow_spec_action_drop drop;
2028        struct ib_flow_spec_action_handle action;
2029};
2030
2031struct ib_flow_attr {
2032        enum ib_flow_attr_type type;
2033        u16          size;
2034        u16          priority;
2035        u32          flags;
2036        u8           num_of_specs;
2037        u8           port;
2038        /* Following are the optional layers according to user request
2039         * struct ib_flow_spec_xxx
2040         * struct ib_flow_spec_yyy
2041         */
2042};
2043
2044struct ib_flow {
2045        struct ib_qp            *qp;
2046        struct ib_uobject       *uobject;
2047};
2048
2049enum ib_flow_action_type {
2050        IB_FLOW_ACTION_UNSPECIFIED,
2051        IB_FLOW_ACTION_ESP = 1,
2052};
2053
2054struct ib_flow_action_attrs_esp_keymats {
2055        enum ib_uverbs_flow_action_esp_keymat                   protocol;
2056        union {
2057                struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2058        } keymat;
2059};
2060
2061struct ib_flow_action_attrs_esp_replays {
2062        enum ib_uverbs_flow_action_esp_replay                   protocol;
2063        union {
2064                struct ib_uverbs_flow_action_esp_replay_bmp     bmp;
2065        } replay;
2066};
2067
2068enum ib_flow_action_attrs_esp_flags {
2069        /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2070         * This is done in order to share the same flags between user-space and
2071         * kernel and spare an unnecessary translation.
2072         */
2073
2074        /* Kernel flags */
2075        IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED  = 1ULL << 32,
2076        IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS  = 1ULL << 33,
2077};
2078
2079struct ib_flow_spec_list {
2080        struct ib_flow_spec_list        *next;
2081        union ib_flow_spec              spec;
2082};
2083
2084struct ib_flow_action_attrs_esp {
2085        struct ib_flow_action_attrs_esp_keymats         *keymat;
2086        struct ib_flow_action_attrs_esp_replays         *replay;
2087        struct ib_flow_spec_list                        *encap;
2088        /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2089         * Value of 0 is a valid value.
2090         */
2091        u32                                             esn;
2092        u32                                             spi;
2093        u32                                             seq;
2094        u32                                             tfc_pad;
2095        /* Use enum ib_flow_action_attrs_esp_flags */
2096        u64                                             flags;
2097        u64                                             hard_limit_pkts;
2098};
2099
2100struct ib_flow_action {
2101        struct ib_device                *device;
2102        struct ib_uobject               *uobject;
2103        enum ib_flow_action_type        type;
2104        atomic_t                        usecnt;
2105};
2106
2107struct ib_mad_hdr;
2108struct ib_grh;
2109
2110enum ib_process_mad_flags {
2111        IB_MAD_IGNORE_MKEY      = 1,
2112        IB_MAD_IGNORE_BKEY      = 2,
2113        IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2114};
2115
2116enum ib_mad_result {
2117        IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2118        IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2119        IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2120        IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2121};
2122
2123struct ib_port_cache {
2124        u64                   subnet_prefix;
2125        struct ib_pkey_cache  *pkey;
2126        struct ib_gid_table   *gid;
2127        u8                     lmc;
2128        enum ib_port_state     port_state;
2129};
2130
2131struct ib_cache {
2132        rwlock_t                lock;
2133        struct ib_event_handler event_handler;
2134        struct ib_port_cache   *ports;
2135};
2136
2137struct iw_cm_verbs;
2138
2139struct ib_port_immutable {
2140        int                           pkey_tbl_len;
2141        int                           gid_tbl_len;
2142        u32                           core_cap_flags;
2143        u32                           max_mad_size;
2144};
2145
2146/* rdma netdev type - specifies protocol type */
2147enum rdma_netdev_t {
2148        RDMA_NETDEV_OPA_VNIC,
2149        RDMA_NETDEV_IPOIB,
2150};
2151
2152/**
2153 * struct rdma_netdev - rdma netdev
2154 * For cases where netstack interfacing is required.
2155 */
2156struct rdma_netdev {
2157        void              *clnt_priv;
2158        struct ib_device  *hca;
2159        u8                 port_num;
2160
2161        /* cleanup function must be specified */
2162        void (*free_rdma_netdev)(struct net_device *netdev);
2163
2164        /* control functions */
2165        void (*set_id)(struct net_device *netdev, int id);
2166        /* send packet */
2167        int (*send)(struct net_device *dev, struct sk_buff *skb,
2168                    struct ib_ah *address, u32 dqpn);
2169        /* multicast */
2170        int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2171                            union ib_gid *gid, u16 mlid,
2172                            int set_qkey, u32 qkey);
2173        int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2174                            union ib_gid *gid, u16 mlid);
2175};
2176
2177struct ib_port_pkey_list {
2178        /* Lock to hold while modifying the list. */
2179        spinlock_t                    list_lock;
2180        struct list_head              pkey_list;
2181};
2182
2183struct uverbs_attr_bundle;
2184
2185struct ib_device {
2186        /* Do not access @dma_device directly from ULP nor from HW drivers. */
2187        struct device                *dma_device;
2188
2189        char                          name[IB_DEVICE_NAME_MAX];
2190
2191        struct list_head              event_handler_list;
2192        spinlock_t                    event_handler_lock;
2193
2194        spinlock_t                    client_data_lock;
2195        struct list_head              core_list;
2196        /* Access to the client_data_list is protected by the client_data_lock
2197         * spinlock and the lists_rwsem read-write semaphore */
2198        struct list_head              client_data_list;
2199
2200        struct ib_cache               cache;
2201        /**
2202         * port_immutable is indexed by port number
2203         */
2204        struct ib_port_immutable     *port_immutable;
2205
2206        int                           num_comp_vectors;
2207
2208        struct ib_port_pkey_list     *port_pkey_list;
2209
2210        struct iw_cm_verbs           *iwcm;
2211
2212        /**
2213         * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2214         *   driver initialized data.  The struct is kfree()'ed by the sysfs
2215         *   core when the device is removed.  A lifespan of -1 in the return
2216         *   struct tells the core to set a default lifespan.
2217         */
2218        struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2219                                                     u8 port_num);
2220        /**
2221         * get_hw_stats - Fill in the counter value(s) in the stats struct.
2222         * @index - The index in the value array we wish to have updated, or
2223         *   num_counters if we want all stats updated
2224         * Return codes -
2225         *   < 0 - Error, no counters updated
2226         *   index - Updated the single counter pointed to by index
2227         *   num_counters - Updated all counters (will reset the timestamp
2228         *     and prevent further calls for lifespan milliseconds)
2229         * Drivers are allowed to update all counters in leiu of just the
2230         *   one given in index at their option
2231         */
2232        int                        (*get_hw_stats)(struct ib_device *device,
2233                                                   struct rdma_hw_stats *stats,
2234                                                   u8 port, int index);
2235        int                        (*query_device)(struct ib_device *device,
2236                                                   struct ib_device_attr *device_attr,
2237                                                   struct ib_udata *udata);
2238        int                        (*query_port)(struct ib_device *device,
2239                                                 u8 port_num,
2240                                                 struct ib_port_attr *port_attr);
2241        enum rdma_link_layer       (*get_link_layer)(struct ib_device *device,
2242                                                     u8 port_num);
2243        /* When calling get_netdev, the HW vendor's driver should return the
2244         * net device of device @device at port @port_num or NULL if such
2245         * a net device doesn't exist. The vendor driver should call dev_hold
2246         * on this net device. The HW vendor's device driver must guarantee
2247         * that this function returns NULL before the net device has finished
2248         * NETDEV_UNREGISTER state.
2249         */
2250        struct net_device         *(*get_netdev)(struct ib_device *device,
2251                                                 u8 port_num);
2252        /* query_gid should be return GID value for @device, when @port_num
2253         * link layer is either IB or iWarp. It is no-op if @port_num port
2254         * is RoCE link layer.
2255         */
2256        int                        (*query_gid)(struct ib_device *device,
2257                                                u8 port_num, int index,
2258                                                union ib_gid *gid);
2259        /* When calling add_gid, the HW vendor's driver should add the gid
2260         * of device of port at gid index available at @attr. Meta-info of
2261         * that gid (for example, the network device related to this gid) is
2262         * available at @attr. @context allows the HW vendor driver to store
2263         * extra information together with a GID entry. The HW vendor driver may
2264         * allocate memory to contain this information and store it in @context
2265         * when a new GID entry is written to. Params are consistent until the
2266         * next call of add_gid or delete_gid. The function should return 0 on
2267         * success or error otherwise. The function could be called
2268         * concurrently for different ports. This function is only called when
2269         * roce_gid_table is used.
2270         */
2271        int                        (*add_gid)(const union ib_gid *gid,
2272                                              const struct ib_gid_attr *attr,
2273                                              void **context);
2274        /* When calling del_gid, the HW vendor's driver should delete the
2275         * gid of device @device at gid index gid_index of port port_num
2276         * available in @attr.
2277         * Upon the deletion of a GID entry, the HW vendor must free any
2278         * allocated memory. The caller will clear @context afterwards.
2279         * This function is only called when roce_gid_table is used.
2280         */
2281        int                        (*del_gid)(const struct ib_gid_attr *attr,
2282                                              void **context);
2283        int                        (*query_pkey)(struct ib_device *device,
2284                                                 u8 port_num, u16 index, u16 *pkey);
2285        int                        (*modify_device)(struct ib_device *device,
2286                                                    int device_modify_mask,
2287                                                    struct ib_device_modify *device_modify);
2288        int                        (*modify_port)(struct ib_device *device,
2289                                                  u8 port_num, int port_modify_mask,
2290                                                  struct ib_port_modify *port_modify);
2291        struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
2292                                                     struct ib_udata *udata);
2293        int                        (*dealloc_ucontext)(struct ib_ucontext *context);
2294        int                        (*mmap)(struct ib_ucontext *context,
2295                                           struct vm_area_struct *vma);
2296        struct ib_pd *             (*alloc_pd)(struct ib_device *device,
2297                                               struct ib_ucontext *context,
2298                                               struct ib_udata *udata);
2299        int                        (*dealloc_pd)(struct ib_pd *pd);
2300        struct ib_ah *             (*create_ah)(struct ib_pd *pd,
2301                                                struct rdma_ah_attr *ah_attr,
2302                                                struct ib_udata *udata);
2303        int                        (*modify_ah)(struct ib_ah *ah,
2304                                                struct rdma_ah_attr *ah_attr);
2305        int                        (*query_ah)(struct ib_ah *ah,
2306                                               struct rdma_ah_attr *ah_attr);
2307        int                        (*destroy_ah)(struct ib_ah *ah);
2308        struct ib_srq *            (*create_srq)(struct ib_pd *pd,
2309                                                 struct ib_srq_init_attr *srq_init_attr,
2310                                                 struct ib_udata *udata);
2311        int                        (*modify_srq)(struct ib_srq *srq,
2312                                                 struct ib_srq_attr *srq_attr,
2313                                                 enum ib_srq_attr_mask srq_attr_mask,
2314                                                 struct ib_udata *udata);
2315        int                        (*query_srq)(struct ib_srq *srq,
2316                                                struct ib_srq_attr *srq_attr);
2317        int                        (*destroy_srq)(struct ib_srq *srq);
2318        int                        (*post_srq_recv)(struct ib_srq *srq,
2319                                                    struct ib_recv_wr *recv_wr,
2320                                                    struct ib_recv_wr **bad_recv_wr);
2321        struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2322                                                struct ib_qp_init_attr *qp_init_attr,
2323                                                struct ib_udata *udata);
2324        int                        (*modify_qp)(struct ib_qp *qp,
2325                                                struct ib_qp_attr *qp_attr,
2326                                                int qp_attr_mask,
2327                                                struct ib_udata *udata);
2328        int                        (*query_qp)(struct ib_qp *qp,
2329                                               struct ib_qp_attr *qp_attr,
2330                                               int qp_attr_mask,
2331                                               struct ib_qp_init_attr *qp_init_attr);
2332        int                        (*destroy_qp)(struct ib_qp *qp);
2333        int                        (*post_send)(struct ib_qp *qp,
2334                                                struct ib_send_wr *send_wr,
2335                                                struct ib_send_wr **bad_send_wr);
2336        int                        (*post_recv)(struct ib_qp *qp,
2337                                                struct ib_recv_wr *recv_wr,
2338                                                struct ib_recv_wr **bad_recv_wr);
2339        struct ib_cq *             (*create_cq)(struct ib_device *device,
2340                                                const struct ib_cq_init_attr *attr,
2341                                                struct ib_ucontext *context,
2342                                                struct ib_udata *udata);
2343        int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2344                                                u16 cq_period);
2345        int                        (*destroy_cq)(struct ib_cq *cq);
2346        int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2347                                                struct ib_udata *udata);
2348        int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2349                                              struct ib_wc *wc);
2350        int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2351        int                        (*req_notify_cq)(struct ib_cq *cq,
2352                                                    enum ib_cq_notify_flags flags);
2353        int                        (*req_ncomp_notif)(struct ib_cq *cq,
2354                                                      int wc_cnt);
2355        struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2356                                                 int mr_access_flags);
2357        struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2358                                                  u64 start, u64 length,
2359                                                  u64 virt_addr,
2360                                                  int mr_access_flags,
2361                                                  struct ib_udata *udata);
2362        int                        (*rereg_user_mr)(struct ib_mr *mr,
2363                                                    int flags,
2364                                                    u64 start, u64 length,
2365                                                    u64 virt_addr,
2366                                                    int mr_access_flags,
2367                                                    struct ib_pd *pd,
2368                                                    struct ib_udata *udata);
2369        int                        (*dereg_mr)(struct ib_mr *mr);
2370        struct ib_mr *             (*alloc_mr)(struct ib_pd *pd,
2371                                               enum ib_mr_type mr_type,
2372                                               u32 max_num_sg);
2373        int                        (*map_mr_sg)(struct ib_mr *mr,
2374                                                struct scatterlist *sg,
2375                                                int sg_nents,
2376                                                unsigned int *sg_offset);
2377        struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2378                                               enum ib_mw_type type,
2379                                               struct ib_udata *udata);
2380        int                        (*dealloc_mw)(struct ib_mw *mw);
2381        struct ib_fmr *            (*alloc_fmr)(struct ib_pd *pd,
2382                                                int mr_access_flags,
2383                                                struct ib_fmr_attr *fmr_attr);
2384        int                        (*map_phys_fmr)(struct ib_fmr *fmr,
2385                                                   u64 *page_list, int list_len,
2386                                                   u64 iova);
2387        int                        (*unmap_fmr)(struct list_head *fmr_list);
2388        int                        (*dealloc_fmr)(struct ib_fmr *fmr);
2389        int                        (*attach_mcast)(struct ib_qp *qp,
2390                                                   union ib_gid *gid,
2391                                                   u16 lid);
2392        int                        (*detach_mcast)(struct ib_qp *qp,
2393                                                   union ib_gid *gid,
2394                                                   u16 lid);
2395        int                        (*process_mad)(struct ib_device *device,
2396                                                  int process_mad_flags,
2397                                                  u8 port_num,
2398                                                  const struct ib_wc *in_wc,
2399                                                  const struct ib_grh *in_grh,
2400                                                  const struct ib_mad_hdr *in_mad,
2401                                                  size_t in_mad_size,
2402                                                  struct ib_mad_hdr *out_mad,
2403                                                  size_t *out_mad_size,
2404                                                  u16 *out_mad_pkey_index);
2405        struct ib_xrcd *           (*alloc_xrcd)(struct ib_device *device,
2406                                                 struct ib_ucontext *ucontext,
2407                                                 struct ib_udata *udata);
2408        int                        (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2409        struct ib_flow *           (*create_flow)(struct ib_qp *qp,
2410                                                  struct ib_flow_attr
2411                                                  *flow_attr,
2412                                                  int domain);
2413        int                        (*destroy_flow)(struct ib_flow *flow_id);
2414        int                        (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2415                                                      struct ib_mr_status *mr_status);
2416        void                       (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2417        void                       (*drain_rq)(struct ib_qp *qp);
2418        void                       (*drain_sq)(struct ib_qp *qp);
2419        int                        (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2420                                                        int state);
2421        int                        (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2422                                                   struct ifla_vf_info *ivf);
2423        int                        (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2424                                                   struct ifla_vf_stats *stats);
2425        int                        (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2426                                                  int type);
2427        struct ib_wq *             (*create_wq)(struct ib_pd *pd,
2428                                                struct ib_wq_init_attr *init_attr,
2429                                                struct ib_udata *udata);
2430        int                        (*destroy_wq)(struct ib_wq *wq);
2431        int                        (*modify_wq)(struct ib_wq *wq,
2432                                                struct ib_wq_attr *attr,
2433                                                u32 wq_attr_mask,
2434                                                struct ib_udata *udata);
2435        struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2436                                                           struct ib_rwq_ind_table_init_attr *init_attr,
2437                                                           struct ib_udata *udata);
2438        int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2439        struct ib_flow_action *    (*create_flow_action_esp)(struct ib_device *device,
2440                                                             const struct ib_flow_action_attrs_esp *attr,
2441                                                             struct uverbs_attr_bundle *attrs);
2442        int                        (*destroy_flow_action)(struct ib_flow_action *action);
2443        int                        (*modify_flow_action_esp)(struct ib_flow_action *action,
2444                                                             const struct ib_flow_action_attrs_esp *attr,
2445                                                             struct uverbs_attr_bundle *attrs);
2446        struct ib_dm *             (*alloc_dm)(struct ib_device *device,
2447                                               struct ib_ucontext *context,
2448                                               struct ib_dm_alloc_attr *attr,
2449                                               struct uverbs_attr_bundle *attrs);
2450        int                        (*dealloc_dm)(struct ib_dm *dm);
2451        struct ib_mr *             (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2452                                                struct ib_dm_mr_attr *attr,
2453                                                struct uverbs_attr_bundle *attrs);
2454        /**
2455         * rdma netdev operation
2456         *
2457         * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2458         * doesn't support the specified rdma netdev type.
2459         */
2460        struct net_device *(*alloc_rdma_netdev)(
2461                                        struct ib_device *device,
2462                                        u8 port_num,
2463                                        enum rdma_netdev_t type,
2464                                        const char *name,
2465                                        unsigned char name_assign_type,
2466                                        void (*setup)(struct net_device *));
2467
2468        struct module               *owner;
2469        struct device                dev;
2470        struct kobject               *ports_parent;
2471        struct list_head             port_list;
2472
2473        enum {
2474                IB_DEV_UNINITIALIZED,
2475                IB_DEV_REGISTERED,
2476                IB_DEV_UNREGISTERED
2477        }                            reg_state;
2478
2479        int                          uverbs_abi_ver;
2480        u64                          uverbs_cmd_mask;
2481        u64                          uverbs_ex_cmd_mask;
2482
2483        char                         node_desc[IB_DEVICE_NODE_DESC_MAX];
2484        __be64                       node_guid;
2485        u32                          local_dma_lkey;
2486        u16                          is_switch:1;
2487        u8                           node_type;
2488        u8                           phys_port_cnt;
2489        struct ib_device_attr        attrs;
2490        struct attribute_group       *hw_stats_ag;
2491        struct rdma_hw_stats         *hw_stats;
2492
2493#ifdef CONFIG_CGROUP_RDMA
2494        struct rdmacg_device         cg_device;
2495#endif
2496
2497        u32                          index;
2498        /*
2499         * Implementation details of the RDMA core, don't use in drivers
2500         */
2501        struct rdma_restrack_root     res;
2502
2503        /**
2504         * The following mandatory functions are used only at device
2505         * registration.  Keep functions such as these at the end of this
2506         * structure to avoid cache line misses when accessing struct ib_device
2507         * in fast paths.
2508         */
2509        int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2510        void (*get_dev_fw_str)(struct ib_device *, char *str);
2511        const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2512                                                     int comp_vector);
2513
2514        struct uverbs_root_spec         *specs_root;
2515        enum rdma_driver_id             driver_id;
2516};
2517
2518struct ib_client {
2519        char  *name;
2520        void (*add)   (struct ib_device *);
2521        void (*remove)(struct ib_device *, void *client_data);
2522
2523        /* Returns the net_dev belonging to this ib_client and matching the
2524         * given parameters.
2525         * @dev:         An RDMA device that the net_dev use for communication.
2526         * @port:        A physical port number on the RDMA device.
2527         * @pkey:        P_Key that the net_dev uses if applicable.
2528         * @gid:         A GID that the net_dev uses to communicate.
2529         * @addr:        An IP address the net_dev is configured with.
2530         * @client_data: The device's client data set by ib_set_client_data().
2531         *
2532         * An ib_client that implements a net_dev on top of RDMA devices
2533         * (such as IP over IB) should implement this callback, allowing the
2534         * rdma_cm module to find the right net_dev for a given request.
2535         *
2536         * The caller is responsible for calling dev_put on the returned
2537         * netdev. */
2538        struct net_device *(*get_net_dev_by_params)(
2539                        struct ib_device *dev,
2540                        u8 port,
2541                        u16 pkey,
2542                        const union ib_gid *gid,
2543                        const struct sockaddr *addr,
2544                        void *client_data);
2545        struct list_head list;
2546};
2547
2548struct ib_device *ib_alloc_device(size_t size);
2549void ib_dealloc_device(struct ib_device *device);
2550
2551void ib_get_device_fw_str(struct ib_device *device, char *str);
2552
2553int ib_register_device(struct ib_device *device,
2554                       int (*port_callback)(struct ib_device *,
2555                                            u8, struct kobject *));
2556void ib_unregister_device(struct ib_device *device);
2557
2558int ib_register_client   (struct ib_client *client);
2559void ib_unregister_client(struct ib_client *client);
2560
2561void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2562void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2563                         void *data);
2564
2565static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2566{
2567        return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2568}
2569
2570static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2571{
2572        return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2573}
2574
2575static inline bool ib_is_buffer_cleared(const void __user *p,
2576                                        size_t len)
2577{
2578        bool ret;
2579        u8 *buf;
2580
2581        if (len > USHRT_MAX)
2582                return false;
2583
2584        buf = memdup_user(p, len);
2585        if (IS_ERR(buf))
2586                return false;
2587
2588        ret = !memchr_inv(buf, 0, len);
2589        kfree(buf);
2590        return ret;
2591}
2592
2593static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2594                                       size_t offset,
2595                                       size_t len)
2596{
2597        return ib_is_buffer_cleared(udata->inbuf + offset, len);
2598}
2599
2600/**
2601 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2602 * contains all required attributes and no attributes not allowed for
2603 * the given QP state transition.
2604 * @cur_state: Current QP state
2605 * @next_state: Next QP state
2606 * @type: QP type
2607 * @mask: Mask of supplied QP attributes
2608 * @ll : link layer of port
2609 *
2610 * This function is a helper function that a low-level driver's
2611 * modify_qp method can use to validate the consumer's input.  It
2612 * checks that cur_state and next_state are valid QP states, that a
2613 * transition from cur_state to next_state is allowed by the IB spec,
2614 * and that the attribute mask supplied is allowed for the transition.
2615 */
2616bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2617                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
2618                        enum rdma_link_layer ll);
2619
2620void ib_register_event_handler(struct ib_event_handler *event_handler);
2621void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2622void ib_dispatch_event(struct ib_event *event);
2623
2624int ib_query_port(struct ib_device *device,
2625                  u8 port_num, struct ib_port_attr *port_attr);
2626
2627enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2628                                               u8 port_num);
2629
2630/**
2631 * rdma_cap_ib_switch - Check if the device is IB switch
2632 * @device: Device to check
2633 *
2634 * Device driver is responsible for setting is_switch bit on
2635 * in ib_device structure at init time.
2636 *
2637 * Return: true if the device is IB switch.
2638 */
2639static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2640{
2641        return device->is_switch;
2642}
2643
2644/**
2645 * rdma_start_port - Return the first valid port number for the device
2646 * specified
2647 *
2648 * @device: Device to be checked
2649 *
2650 * Return start port number
2651 */
2652static inline u8 rdma_start_port(const struct ib_device *device)
2653{
2654        return rdma_cap_ib_switch(device) ? 0 : 1;
2655}
2656
2657/**
2658 * rdma_end_port - Return the last valid port number for the device
2659 * specified
2660 *
2661 * @device: Device to be checked
2662 *
2663 * Return last port number
2664 */
2665static inline u8 rdma_end_port(const struct ib_device *device)
2666{
2667        return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2668}
2669
2670static inline int rdma_is_port_valid(const struct ib_device *device,
2671                                     unsigned int port)
2672{
2673        return (port >= rdma_start_port(device) &&
2674                port <= rdma_end_port(device));
2675}
2676
2677static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2678{
2679        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2680}
2681
2682static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2683{
2684        return device->port_immutable[port_num].core_cap_flags &
2685                (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2686}
2687
2688static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2689{
2690        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2691}
2692
2693static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2694{
2695        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2696}
2697
2698static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2699{
2700        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2701}
2702
2703static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2704{
2705        return rdma_protocol_ib(device, port_num) ||
2706                rdma_protocol_roce(device, port_num);
2707}
2708
2709static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2710{
2711        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2712}
2713
2714static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2715{
2716        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2717}
2718
2719/**
2720 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2721 * Management Datagrams.
2722 * @device: Device to check
2723 * @port_num: Port number to check
2724 *
2725 * Management Datagrams (MAD) are a required part of the InfiniBand
2726 * specification and are supported on all InfiniBand devices.  A slightly
2727 * extended version are also supported on OPA interfaces.
2728 *
2729 * Return: true if the port supports sending/receiving of MAD packets.
2730 */
2731static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2732{
2733        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2734}
2735
2736/**
2737 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2738 * Management Datagrams.
2739 * @device: Device to check
2740 * @port_num: Port number to check
2741 *
2742 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2743 * datagrams with their own versions.  These OPA MADs share many but not all of
2744 * the characteristics of InfiniBand MADs.
2745 *
2746 * OPA MADs differ in the following ways:
2747 *
2748 *    1) MADs are variable size up to 2K
2749 *       IBTA defined MADs remain fixed at 256 bytes
2750 *    2) OPA SMPs must carry valid PKeys
2751 *    3) OPA SMP packets are a different format
2752 *
2753 * Return: true if the port supports OPA MAD packet formats.
2754 */
2755static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2756{
2757        return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2758                == RDMA_CORE_CAP_OPA_MAD;
2759}
2760
2761/**
2762 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2763 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2764 * @device: Device to check
2765 * @port_num: Port number to check
2766 *
2767 * Each InfiniBand node is required to provide a Subnet Management Agent
2768 * that the subnet manager can access.  Prior to the fabric being fully
2769 * configured by the subnet manager, the SMA is accessed via a well known
2770 * interface called the Subnet Management Interface (SMI).  This interface
2771 * uses directed route packets to communicate with the SM to get around the
2772 * chicken and egg problem of the SM needing to know what's on the fabric
2773 * in order to configure the fabric, and needing to configure the fabric in
2774 * order to send packets to the devices on the fabric.  These directed
2775 * route packets do not need the fabric fully configured in order to reach
2776 * their destination.  The SMI is the only method allowed to send
2777 * directed route packets on an InfiniBand fabric.
2778 *
2779 * Return: true if the port provides an SMI.
2780 */
2781static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2782{
2783        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2784}
2785
2786/**
2787 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2788 * Communication Manager.
2789 * @device: Device to check
2790 * @port_num: Port number to check
2791 *
2792 * The InfiniBand Communication Manager is one of many pre-defined General
2793 * Service Agents (GSA) that are accessed via the General Service
2794 * Interface (GSI).  It's role is to facilitate establishment of connections
2795 * between nodes as well as other management related tasks for established
2796 * connections.
2797 *
2798 * Return: true if the port supports an IB CM (this does not guarantee that
2799 * a CM is actually running however).
2800 */
2801static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2802{
2803        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2804}
2805
2806/**
2807 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2808 * Communication Manager.
2809 * @device: Device to check
2810 * @port_num: Port number to check
2811 *
2812 * Similar to above, but specific to iWARP connections which have a different
2813 * managment protocol than InfiniBand.
2814 *
2815 * Return: true if the port supports an iWARP CM (this does not guarantee that
2816 * a CM is actually running however).
2817 */
2818static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2819{
2820        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2821}
2822
2823/**
2824 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2825 * Subnet Administration.
2826 * @device: Device to check
2827 * @port_num: Port number to check
2828 *
2829 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2830 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2831 * fabrics, devices should resolve routes to other hosts by contacting the
2832 * SA to query the proper route.
2833 *
2834 * Return: true if the port should act as a client to the fabric Subnet
2835 * Administration interface.  This does not imply that the SA service is
2836 * running locally.
2837 */
2838static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2839{
2840        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2841}
2842
2843/**
2844 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2845 * Multicast.
2846 * @device: Device to check
2847 * @port_num: Port number to check
2848 *
2849 * InfiniBand multicast registration is more complex than normal IPv4 or
2850 * IPv6 multicast registration.  Each Host Channel Adapter must register
2851 * with the Subnet Manager when it wishes to join a multicast group.  It
2852 * should do so only once regardless of how many queue pairs it subscribes
2853 * to this group.  And it should leave the group only after all queue pairs
2854 * attached to the group have been detached.
2855 *
2856 * Return: true if the port must undertake the additional adminstrative
2857 * overhead of registering/unregistering with the SM and tracking of the
2858 * total number of queue pairs attached to the multicast group.
2859 */
2860static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2861{
2862        return rdma_cap_ib_sa(device, port_num);
2863}
2864
2865/**
2866 * rdma_cap_af_ib - Check if the port of device has the capability
2867 * Native Infiniband Address.
2868 * @device: Device to check
2869 * @port_num: Port number to check
2870 *
2871 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2872 * GID.  RoCE uses a different mechanism, but still generates a GID via
2873 * a prescribed mechanism and port specific data.
2874 *
2875 * Return: true if the port uses a GID address to identify devices on the
2876 * network.
2877 */
2878static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2879{
2880        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2881}
2882
2883/**
2884 * rdma_cap_eth_ah - Check if the port of device has the capability
2885 * Ethernet Address Handle.
2886 * @device: Device to check
2887 * @port_num: Port number to check
2888 *
2889 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2890 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2891 * port.  Normally, packet headers are generated by the sending host
2892 * adapter, but when sending connectionless datagrams, we must manually
2893 * inject the proper headers for the fabric we are communicating over.
2894 *
2895 * Return: true if we are running as a RoCE port and must force the
2896 * addition of a Global Route Header built from our Ethernet Address
2897 * Handle into our header list for connectionless packets.
2898 */
2899static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2900{
2901        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2902}
2903
2904/**
2905 * rdma_cap_opa_ah - Check if the port of device supports
2906 * OPA Address handles
2907 * @device: Device to check
2908 * @port_num: Port number to check
2909 *
2910 * Return: true if we are running on an OPA device which supports
2911 * the extended OPA addressing.
2912 */
2913static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2914{
2915        return (device->port_immutable[port_num].core_cap_flags &
2916                RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2917}
2918
2919/**
2920 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2921 *
2922 * @device: Device
2923 * @port_num: Port number
2924 *
2925 * This MAD size includes the MAD headers and MAD payload.  No other headers
2926 * are included.
2927 *
2928 * Return the max MAD size required by the Port.  Will return 0 if the port
2929 * does not support MADs
2930 */
2931static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2932{
2933        return device->port_immutable[port_num].max_mad_size;
2934}
2935
2936/**
2937 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2938 * @device: Device to check
2939 * @port_num: Port number to check
2940 *
2941 * RoCE GID table mechanism manages the various GIDs for a device.
2942 *
2943 * NOTE: if allocating the port's GID table has failed, this call will still
2944 * return true, but any RoCE GID table API will fail.
2945 *
2946 * Return: true if the port uses RoCE GID table mechanism in order to manage
2947 * its GIDs.
2948 */
2949static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2950                                           u8 port_num)
2951{
2952        return rdma_protocol_roce(device, port_num) &&
2953                device->add_gid && device->del_gid;
2954}
2955
2956/*
2957 * Check if the device supports READ W/ INVALIDATE.
2958 */
2959static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2960{
2961        /*
2962         * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2963         * has support for it yet.
2964         */
2965        return rdma_protocol_iwarp(dev, port_num);
2966}
2967
2968int ib_query_gid(struct ib_device *device,
2969                 u8 port_num, int index, union ib_gid *gid,
2970                 struct ib_gid_attr *attr);
2971
2972int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2973                         int state);
2974int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2975                     struct ifla_vf_info *info);
2976int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2977                    struct ifla_vf_stats *stats);
2978int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2979                   int type);
2980
2981int ib_query_pkey(struct ib_device *device,
2982                  u8 port_num, u16 index, u16 *pkey);
2983
2984int ib_modify_device(struct ib_device *device,
2985                     int device_modify_mask,
2986                     struct ib_device_modify *device_modify);
2987
2988int ib_modify_port(struct ib_device *device,
2989                   u8 port_num, int port_modify_mask,
2990                   struct ib_port_modify *port_modify);
2991
2992int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2993                u8 *port_num, u16 *index);
2994
2995int ib_find_pkey(struct ib_device *device,
2996                 u8 port_num, u16 pkey, u16 *index);
2997
2998enum ib_pd_flags {
2999        /*
3000         * Create a memory registration for all memory in the system and place
3001         * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3002         * ULPs to avoid the overhead of dynamic MRs.
3003         *
3004         * This flag is generally considered unsafe and must only be used in
3005         * extremly trusted environments.  Every use of it will log a warning
3006         * in the kernel log.
3007         */
3008        IB_PD_UNSAFE_GLOBAL_RKEY        = 0x01,
3009};
3010
3011struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3012                const char *caller);
3013#define ib_alloc_pd(device, flags) \
3014        __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3015void ib_dealloc_pd(struct ib_pd *pd);
3016
3017/**
3018 * rdma_create_ah - Creates an address handle for the given address vector.
3019 * @pd: The protection domain associated with the address handle.
3020 * @ah_attr: The attributes of the address vector.
3021 *
3022 * The address handle is used to reference a local or global destination
3023 * in all UD QP post sends.
3024 */
3025struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
3026
3027/**
3028 * rdma_create_user_ah - Creates an address handle for the given address vector.
3029 * It resolves destination mac address for ah attribute of RoCE type.
3030 * @pd: The protection domain associated with the address handle.
3031 * @ah_attr: The attributes of the address vector.
3032 * @udata: pointer to user's input output buffer information need by
3033 *         provider driver.
3034 *
3035 * It returns 0 on success and returns appropriate error code on error.
3036 * The address handle is used to reference a local or global destination
3037 * in all UD QP post sends.
3038 */
3039struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3040                                  struct rdma_ah_attr *ah_attr,
3041                                  struct ib_udata *udata);
3042/**
3043 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3044 *   work completion.
3045 * @hdr: the L3 header to parse
3046 * @net_type: type of header to parse
3047 * @sgid: place to store source gid
3048 * @dgid: place to store destination gid
3049 */
3050int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3051                              enum rdma_network_type net_type,
3052                              union ib_gid *sgid, union ib_gid *dgid);
3053
3054/**
3055 * ib_get_rdma_header_version - Get the header version
3056 * @hdr: the L3 header to parse
3057 */
3058int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3059
3060/**
3061 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3062 *   work completion.
3063 * @device: Device on which the received message arrived.
3064 * @port_num: Port on which the received message arrived.
3065 * @wc: Work completion associated with the received message.
3066 * @grh: References the received global route header.  This parameter is
3067 *   ignored unless the work completion indicates that the GRH is valid.
3068 * @ah_attr: Returned attributes that can be used when creating an address
3069 *   handle for replying to the message.
3070 */
3071int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3072                            const struct ib_wc *wc, const struct ib_grh *grh,
3073                            struct rdma_ah_attr *ah_attr);
3074
3075/**
3076 * ib_create_ah_from_wc - Creates an address handle associated with the
3077 *   sender of the specified work completion.
3078 * @pd: The protection domain associated with the address handle.
3079 * @wc: Work completion information associated with a received message.
3080 * @grh: References the received global route header.  This parameter is
3081 *   ignored unless the work completion indicates that the GRH is valid.
3082 * @port_num: The outbound port number to associate with the address.
3083 *
3084 * The address handle is used to reference a local or global destination
3085 * in all UD QP post sends.
3086 */
3087struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3088                                   const struct ib_grh *grh, u8 port_num);
3089
3090/**
3091 * rdma_modify_ah - Modifies the address vector associated with an address
3092 *   handle.
3093 * @ah: The address handle to modify.
3094 * @ah_attr: The new address vector attributes to associate with the
3095 *   address handle.
3096 */
3097int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3098
3099/**
3100 * rdma_query_ah - Queries the address vector associated with an address
3101 *   handle.
3102 * @ah: The address handle to query.
3103 * @ah_attr: The address vector attributes associated with the address
3104 *   handle.
3105 */
3106int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3107
3108/**
3109 * rdma_destroy_ah - Destroys an address handle.
3110 * @ah: The address handle to destroy.
3111 */
3112int rdma_destroy_ah(struct ib_ah *ah);
3113
3114/**
3115 * ib_create_srq - Creates a SRQ associated with the specified protection
3116 *   domain.
3117 * @pd: The protection domain associated with the SRQ.
3118 * @srq_init_attr: A list of initial attributes required to create the
3119 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3120 *   the actual capabilities of the created SRQ.
3121 *
3122 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3123 * requested size of the SRQ, and set to the actual values allocated
3124 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3125 * will always be at least as large as the requested values.
3126 */
3127struct ib_srq *ib_create_srq(struct ib_pd *pd,
3128                             struct ib_srq_init_attr *srq_init_attr);
3129
3130/**
3131 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3132 * @srq: The SRQ to modify.
3133 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3134 *   the current values of selected SRQ attributes are returned.
3135 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3136 *   are being modified.
3137 *
3138 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3139 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3140 * the number of receives queued drops below the limit.
3141 */
3142int ib_modify_srq(struct ib_srq *srq,
3143                  struct ib_srq_attr *srq_attr,
3144                  enum ib_srq_attr_mask srq_attr_mask);
3145
3146/**
3147 * ib_query_srq - Returns the attribute list and current values for the
3148 *   specified SRQ.
3149 * @srq: The SRQ to query.
3150 * @srq_attr: The attributes of the specified SRQ.
3151 */
3152int ib_query_srq(struct ib_srq *srq,
3153                 struct ib_srq_attr *srq_attr);
3154
3155/**
3156 * ib_destroy_srq - Destroys the specified SRQ.
3157 * @srq: The SRQ to destroy.
3158 */
3159int ib_destroy_srq(struct ib_srq *srq);
3160
3161/**
3162 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3163 * @srq: The SRQ to post the work request on.
3164 * @recv_wr: A list of work requests to post on the receive queue.
3165 * @bad_recv_wr: On an immediate failure, this parameter will reference
3166 *   the work request that failed to be posted on the QP.
3167 */
3168static inline int ib_post_srq_recv(struct ib_srq *srq,
3169                                   struct ib_recv_wr *recv_wr,
3170                                   struct ib_recv_wr **bad_recv_wr)
3171{
3172        return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3173}
3174
3175/**
3176 * ib_create_qp - Creates a QP associated with the specified protection
3177 *   domain.
3178 * @pd: The protection domain associated with the QP.
3179 * @qp_init_attr: A list of initial attributes required to create the
3180 *   QP.  If QP creation succeeds, then the attributes are updated to
3181 *   the actual capabilities of the created QP.
3182 */
3183struct ib_qp *ib_create_qp(struct ib_pd *pd,
3184                           struct ib_qp_init_attr *qp_init_attr);
3185
3186/**
3187 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3188 * @qp: The QP to modify.
3189 * @attr: On input, specifies the QP attributes to modify.  On output,
3190 *   the current values of selected QP attributes are returned.
3191 * @attr_mask: A bit-mask used to specify which attributes of the QP
3192 *   are being modified.
3193 * @udata: pointer to user's input output buffer information
3194 *   are being modified.
3195 * It returns 0 on success and returns appropriate error code on error.
3196 */
3197int ib_modify_qp_with_udata(struct ib_qp *qp,
3198                            struct ib_qp_attr *attr,
3199                            int attr_mask,
3200                            struct ib_udata *udata);
3201
3202/**
3203 * ib_modify_qp - Modifies the attributes for the specified QP and then
3204 *   transitions the QP to the given state.
3205 * @qp: The QP to modify.
3206 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3207 *   the current values of selected QP attributes are returned.
3208 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3209 *   are being modified.
3210 */
3211int ib_modify_qp(struct ib_qp *qp,
3212                 struct ib_qp_attr *qp_attr,
3213                 int qp_attr_mask);
3214
3215/**
3216 * ib_query_qp - Returns the attribute list and current values for the
3217 *   specified QP.
3218 * @qp: The QP to query.
3219 * @qp_attr: The attributes of the specified QP.
3220 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3221 * @qp_init_attr: Additional attributes of the selected QP.
3222 *
3223 * The qp_attr_mask may be used to limit the query to gathering only the
3224 * selected attributes.
3225 */
3226int ib_query_qp(struct ib_qp *qp,
3227                struct ib_qp_attr *qp_attr,
3228                int qp_attr_mask,
3229                struct ib_qp_init_attr *qp_init_attr);
3230
3231/**
3232 * ib_destroy_qp - Destroys the specified QP.
3233 * @qp: The QP to destroy.
3234 */
3235int ib_destroy_qp(struct ib_qp *qp);
3236
3237/**
3238 * ib_open_qp - Obtain a reference to an existing sharable QP.
3239 * @xrcd - XRC domain
3240 * @qp_open_attr: Attributes identifying the QP to open.
3241 *
3242 * Returns a reference to a sharable QP.
3243 */
3244struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3245                         struct ib_qp_open_attr *qp_open_attr);
3246
3247/**
3248 * ib_close_qp - Release an external reference to a QP.
3249 * @qp: The QP handle to release
3250 *
3251 * The opened QP handle is released by the caller.  The underlying
3252 * shared QP is not destroyed until all internal references are released.
3253 */
3254int ib_close_qp(struct ib_qp *qp);
3255
3256/**
3257 * ib_post_send - Posts a list of work requests to the send queue of
3258 *   the specified QP.
3259 * @qp: The QP to post the work request on.
3260 * @send_wr: A list of work requests to post on the send queue.
3261 * @bad_send_wr: On an immediate failure, this parameter will reference
3262 *   the work request that failed to be posted on the QP.
3263 *
3264 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3265 * error is returned, the QP state shall not be affected,
3266 * ib_post_send() will return an immediate error after queueing any
3267 * earlier work requests in the list.
3268 */
3269static inline int ib_post_send(struct ib_qp *qp,
3270                               struct ib_send_wr *send_wr,
3271                               struct ib_send_wr **bad_send_wr)
3272{
3273        return qp->device->post_send(qp, send_wr, bad_send_wr);
3274}
3275
3276/**
3277 * ib_post_recv - Posts a list of work requests to the receive queue of
3278 *   the specified QP.
3279 * @qp: The QP to post the work request on.
3280 * @recv_wr: A list of work requests to post on the receive queue.
3281 * @bad_recv_wr: On an immediate failure, this parameter will reference
3282 *   the work request that failed to be posted on the QP.
3283 */
3284static inline int ib_post_recv(struct ib_qp *qp,
3285                               struct ib_recv_wr *recv_wr,
3286                               struct ib_recv_wr **bad_recv_wr)
3287{
3288        return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3289}
3290
3291struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3292                            int nr_cqe, int comp_vector,
3293                            enum ib_poll_context poll_ctx, const char *caller);
3294#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3295        __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3296
3297void ib_free_cq(struct ib_cq *cq);
3298int ib_process_cq_direct(struct ib_cq *cq, int budget);
3299
3300/**
3301 * ib_create_cq - Creates a CQ on the specified device.
3302 * @device: The device on which to create the CQ.
3303 * @comp_handler: A user-specified callback that is invoked when a
3304 *   completion event occurs on the CQ.
3305 * @event_handler: A user-specified callback that is invoked when an
3306 *   asynchronous event not associated with a completion occurs on the CQ.
3307 * @cq_context: Context associated with the CQ returned to the user via
3308 *   the associated completion and event handlers.
3309 * @cq_attr: The attributes the CQ should be created upon.
3310 *
3311 * Users can examine the cq structure to determine the actual CQ size.
3312 */
3313struct ib_cq *ib_create_cq(struct ib_device *device,
3314                           ib_comp_handler comp_handler,
3315                           void (*event_handler)(struct ib_event *, void *),
3316                           void *cq_context,
3317                           const struct ib_cq_init_attr *cq_attr);
3318
3319/**
3320 * ib_resize_cq - Modifies the capacity of the CQ.
3321 * @cq: The CQ to resize.
3322 * @cqe: The minimum size of the CQ.
3323 *
3324 * Users can examine the cq structure to determine the actual CQ size.
3325 */
3326int ib_resize_cq(struct ib_cq *cq, int cqe);
3327
3328/**
3329 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3330 * @cq: The CQ to modify.
3331 * @cq_count: number of CQEs that will trigger an event
3332 * @cq_period: max period of time in usec before triggering an event
3333 *
3334 */
3335int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3336
3337/**
3338 * ib_destroy_cq - Destroys the specified CQ.
3339 * @cq: The CQ to destroy.
3340 */
3341int ib_destroy_cq(struct ib_cq *cq);
3342
3343/**
3344 * ib_poll_cq - poll a CQ for completion(s)
3345 * @cq:the CQ being polled
3346 * @num_entries:maximum number of completions to return
3347 * @wc:array of at least @num_entries &struct ib_wc where completions
3348 *   will be returned
3349 *
3350 * Poll a CQ for (possibly multiple) completions.  If the return value
3351 * is < 0, an error occurred.  If the return value is >= 0, it is the
3352 * number of completions returned.  If the return value is
3353 * non-negative and < num_entries, then the CQ was emptied.
3354 */
3355static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3356                             struct ib_wc *wc)
3357{
3358        return cq->device->poll_cq(cq, num_entries, wc);
3359}
3360
3361/**
3362 * ib_req_notify_cq - Request completion notification on a CQ.
3363 * @cq: The CQ to generate an event for.
3364 * @flags:
3365 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3366 *   to request an event on the next solicited event or next work
3367 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3368 *   may also be |ed in to request a hint about missed events, as
3369 *   described below.
3370 *
3371 * Return Value:
3372 *    < 0 means an error occurred while requesting notification
3373 *   == 0 means notification was requested successfully, and if
3374 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3375 *        were missed and it is safe to wait for another event.  In
3376 *        this case is it guaranteed that any work completions added
3377 *        to the CQ since the last CQ poll will trigger a completion
3378 *        notification event.
3379 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3380 *        in.  It means that the consumer must poll the CQ again to
3381 *        make sure it is empty to avoid missing an event because of a
3382 *        race between requesting notification and an entry being
3383 *        added to the CQ.  This return value means it is possible
3384 *        (but not guaranteed) that a work completion has been added
3385 *        to the CQ since the last poll without triggering a
3386 *        completion notification event.
3387 */
3388static inline int ib_req_notify_cq(struct ib_cq *cq,
3389                                   enum ib_cq_notify_flags flags)
3390{
3391        return cq->device->req_notify_cq(cq, flags);
3392}
3393
3394/**
3395 * ib_req_ncomp_notif - Request completion notification when there are
3396 *   at least the specified number of unreaped completions on the CQ.
3397 * @cq: The CQ to generate an event for.
3398 * @wc_cnt: The number of unreaped completions that should be on the
3399 *   CQ before an event is generated.
3400 */
3401static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3402{
3403        return cq->device->req_ncomp_notif ?
3404                cq->device->req_ncomp_notif(cq, wc_cnt) :
3405                -ENOSYS;
3406}
3407
3408/**
3409 * ib_dma_mapping_error - check a DMA addr for error
3410 * @dev: The device for which the dma_addr was created
3411 * @dma_addr: The DMA address to check
3412 */
3413static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3414{
3415        return dma_mapping_error(dev->dma_device, dma_addr);
3416}
3417
3418/**
3419 * ib_dma_map_single - Map a kernel virtual address to DMA address
3420 * @dev: The device for which the dma_addr is to be created
3421 * @cpu_addr: The kernel virtual address
3422 * @size: The size of the region in bytes
3423 * @direction: The direction of the DMA
3424 */
3425static inline u64 ib_dma_map_single(struct ib_device *dev,
3426                                    void *cpu_addr, size_t size,
3427                                    enum dma_data_direction direction)
3428{
3429        return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3430}
3431
3432/**
3433 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3434 * @dev: The device for which the DMA address was created
3435 * @addr: The DMA address
3436 * @size: The size of the region in bytes
3437 * @direction: The direction of the DMA
3438 */
3439static inline void ib_dma_unmap_single(struct ib_device *dev,
3440                                       u64 addr, size_t size,
3441                                       enum dma_data_direction direction)
3442{
3443        dma_unmap_single(dev->dma_device, addr, size, direction);
3444}
3445
3446/**
3447 * ib_dma_map_page - Map a physical page to DMA address
3448 * @dev: The device for which the dma_addr is to be created
3449 * @page: The page to be mapped
3450 * @offset: The offset within the page
3451 * @size: The size of the region in bytes
3452 * @direction: The direction of the DMA
3453 */
3454static inline u64 ib_dma_map_page(struct ib_device *dev,
3455                                  struct page *page,
3456                                  unsigned long offset,
3457                                  size_t size,
3458                                         enum dma_data_direction direction)
3459{
3460        return dma_map_page(dev->dma_device, page, offset, size, direction);
3461}
3462
3463/**
3464 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3465 * @dev: The device for which the DMA address was created
3466 * @addr: The DMA address
3467 * @size: The size of the region in bytes
3468 * @direction: The direction of the DMA
3469 */
3470static inline void ib_dma_unmap_page(struct ib_device *dev,
3471                                     u64 addr, size_t size,
3472                                     enum dma_data_direction direction)
3473{
3474        dma_unmap_page(dev->dma_device, addr, size, direction);
3475}
3476
3477/**
3478 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3479 * @dev: The device for which the DMA addresses are to be created
3480 * @sg: The array of scatter/gather entries
3481 * @nents: The number of scatter/gather entries
3482 * @direction: The direction of the DMA
3483 */
3484static inline int ib_dma_map_sg(struct ib_device *dev,
3485                                struct scatterlist *sg, int nents,
3486                                enum dma_data_direction direction)
3487{
3488        return dma_map_sg(dev->dma_device, sg, nents, direction);
3489}
3490
3491/**
3492 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3493 * @dev: The device for which the DMA addresses were created
3494 * @sg: The array of scatter/gather entries
3495 * @nents: The number of scatter/gather entries
3496 * @direction: The direction of the DMA
3497 */
3498static inline void ib_dma_unmap_sg(struct ib_device *dev,
3499                                   struct scatterlist *sg, int nents,
3500                                   enum dma_data_direction direction)
3501{
3502        dma_unmap_sg(dev->dma_device, sg, nents, direction);
3503}
3504
3505static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3506                                      struct scatterlist *sg, int nents,
3507                                      enum dma_data_direction direction,
3508                                      unsigned long dma_attrs)
3509{
3510        return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3511                                dma_attrs);
3512}
3513
3514static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3515                                         struct scatterlist *sg, int nents,
3516                                         enum dma_data_direction direction,
3517                                         unsigned long dma_attrs)
3518{
3519        dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3520}
3521/**
3522 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3523 * @dev: The device for which the DMA addresses were created
3524 * @sg: The scatter/gather entry
3525 *
3526 * Note: this function is obsolete. To do: change all occurrences of
3527 * ib_sg_dma_address() into sg_dma_address().
3528 */
3529static inline u64 ib_sg_dma_address(struct ib_device *dev,
3530                                    struct scatterlist *sg)
3531{
3532        return sg_dma_address(sg);
3533}
3534
3535/**
3536 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3537 * @dev: The device for which the DMA addresses were created
3538 * @sg: The scatter/gather entry
3539 *
3540 * Note: this function is obsolete. To do: change all occurrences of
3541 * ib_sg_dma_len() into sg_dma_len().
3542 */
3543static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3544                                         struct scatterlist *sg)
3545{
3546        return sg_dma_len(sg);
3547}
3548
3549/**
3550 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3551 * @dev: The device for which the DMA address was created
3552 * @addr: The DMA address
3553 * @size: The size of the region in bytes
3554 * @dir: The direction of the DMA
3555 */
3556static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3557                                              u64 addr,
3558                                              size_t size,
3559                                              enum dma_data_direction dir)
3560{
3561        dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3562}
3563
3564/**
3565 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3566 * @dev: The device for which the DMA address was created
3567 * @addr: The DMA address
3568 * @size: The size of the region in bytes
3569 * @dir: The direction of the DMA
3570 */
3571static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3572                                                 u64 addr,
3573                                                 size_t size,
3574                                                 enum dma_data_direction dir)
3575{
3576        dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3577}
3578
3579/**
3580 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3581 * @dev: The device for which the DMA address is requested
3582 * @size: The size of the region to allocate in bytes
3583 * @dma_handle: A pointer for returning the DMA address of the region
3584 * @flag: memory allocator flags
3585 */
3586static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3587                                           size_t size,
3588                                           dma_addr_t *dma_handle,
3589                                           gfp_t flag)
3590{
3591        return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3592}
3593
3594/**
3595 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3596 * @dev: The device for which the DMA addresses were allocated
3597 * @size: The size of the region
3598 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3599 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3600 */
3601static inline void ib_dma_free_coherent(struct ib_device *dev,
3602                                        size_t size, void *cpu_addr,
3603                                        dma_addr_t dma_handle)
3604{
3605        dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3606}
3607
3608/**
3609 * ib_dereg_mr - Deregisters a memory region and removes it from the
3610 *   HCA translation table.
3611 * @mr: The memory region to deregister.
3612 *
3613 * This function can fail, if the memory region has memory windows bound to it.
3614 */
3615int ib_dereg_mr(struct ib_mr *mr);
3616
3617struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3618                          enum ib_mr_type mr_type,
3619                          u32 max_num_sg);
3620
3621/**
3622 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3623 *   R_Key and L_Key.
3624 * @mr - struct ib_mr pointer to be updated.
3625 * @newkey - new key to be used.
3626 */
3627static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3628{
3629        mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3630        mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3631}
3632
3633/**
3634 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3635 * for calculating a new rkey for type 2 memory windows.
3636 * @rkey - the rkey to increment.
3637 */
3638static inline u32 ib_inc_rkey(u32 rkey)
3639{
3640        const u32 mask = 0x000000ff;
3641        return ((rkey + 1) & mask) | (rkey & ~mask);
3642}
3643
3644/**
3645 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3646 * @pd: The protection domain associated with the unmapped region.
3647 * @mr_access_flags: Specifies the memory access rights.
3648 * @fmr_attr: Attributes of the unmapped region.
3649 *
3650 * A fast memory region must be mapped before it can be used as part of
3651 * a work request.
3652 */
3653struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3654                            int mr_access_flags,
3655                            struct ib_fmr_attr *fmr_attr);
3656
3657/**
3658 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3659 * @fmr: The fast memory region to associate with the pages.
3660 * @page_list: An array of physical pages to map to the fast memory region.
3661 * @list_len: The number of pages in page_list.
3662 * @iova: The I/O virtual address to use with the mapped region.
3663 */
3664static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3665                                  u64 *page_list, int list_len,
3666                                  u64 iova)
3667{
3668        return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3669}
3670
3671/**
3672 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3673 * @fmr_list: A linked list of fast memory regions to unmap.
3674 */
3675int ib_unmap_fmr(struct list_head *fmr_list);
3676
3677/**
3678 * ib_dealloc_fmr - Deallocates a fast memory region.
3679 * @fmr: The fast memory region to deallocate.
3680 */
3681int ib_dealloc_fmr(struct ib_fmr *fmr);
3682
3683/**
3684 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3685 * @qp: QP to attach to the multicast group.  The QP must be type
3686 *   IB_QPT_UD.
3687 * @gid: Multicast group GID.
3688 * @lid: Multicast group LID in host byte order.
3689 *
3690 * In order to send and receive multicast packets, subnet
3691 * administration must have created the multicast group and configured
3692 * the fabric appropriately.  The port associated with the specified
3693 * QP must also be a member of the multicast group.
3694 */
3695int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3696
3697/**
3698 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3699 * @qp: QP to detach from the multicast group.
3700 * @gid: Multicast group GID.
3701 * @lid: Multicast group LID in host byte order.
3702 */
3703int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3704
3705/**
3706 * ib_alloc_xrcd - Allocates an XRC domain.
3707 * @device: The device on which to allocate the XRC domain.
3708 * @caller: Module name for kernel consumers
3709 */
3710struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3711#define ib_alloc_xrcd(device) \
3712        __ib_alloc_xrcd((device), KBUILD_MODNAME)
3713
3714/**
3715 * ib_dealloc_xrcd - Deallocates an XRC domain.
3716 * @xrcd: The XRC domain to deallocate.
3717 */
3718int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3719
3720struct ib_flow *ib_create_flow(struct ib_qp *qp,
3721                               struct ib_flow_attr *flow_attr, int domain);
3722int ib_destroy_flow(struct ib_flow *flow_id);
3723
3724static inline int ib_check_mr_access(int flags)
3725{
3726        /*
3727         * Local write permission is required if remote write or
3728         * remote atomic permission is also requested.
3729         */
3730        if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3731            !(flags & IB_ACCESS_LOCAL_WRITE))
3732                return -EINVAL;
3733
3734        return 0;
3735}
3736
3737/**
3738 * ib_check_mr_status: lightweight check of MR status.
3739 *     This routine may provide status checks on a selected
3740 *     ib_mr. first use is for signature status check.
3741 *
3742 * @mr: A memory region.
3743 * @check_mask: Bitmask of which checks to perform from
3744 *     ib_mr_status_check enumeration.
3745 * @mr_status: The container of relevant status checks.
3746 *     failed checks will be indicated in the status bitmask
3747 *     and the relevant info shall be in the error item.
3748 */
3749int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3750                       struct ib_mr_status *mr_status);
3751
3752struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3753                                            u16 pkey, const union ib_gid *gid,
3754                                            const struct sockaddr *addr);
3755struct ib_wq *ib_create_wq(struct ib_pd *pd,
3756                           struct ib_wq_init_attr *init_attr);
3757int ib_destroy_wq(struct ib_wq *wq);
3758int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3759                 u32 wq_attr_mask);
3760struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3761                                                 struct ib_rwq_ind_table_init_attr*
3762                                                 wq_ind_table_init_attr);
3763int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3764
3765int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3766                 unsigned int *sg_offset, unsigned int page_size);
3767
3768static inline int
3769ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3770                  unsigned int *sg_offset, unsigned int page_size)
3771{
3772        int n;
3773
3774        n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3775        mr->iova = 0;
3776
3777        return n;
3778}
3779
3780int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3781                unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3782
3783void ib_drain_rq(struct ib_qp *qp);
3784void ib_drain_sq(struct ib_qp *qp);
3785void ib_drain_qp(struct ib_qp *qp);
3786
3787int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3788
3789static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3790{
3791        if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3792                return attr->roce.dmac;
3793        return NULL;
3794}
3795
3796static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3797{
3798        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3799                attr->ib.dlid = (u16)dlid;
3800        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3801                attr->opa.dlid = dlid;
3802}
3803
3804static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3805{
3806        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3807                return attr->ib.dlid;
3808        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3809                return attr->opa.dlid;
3810        return 0;
3811}
3812
3813static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3814{
3815        attr->sl = sl;
3816}
3817
3818static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3819{
3820        return attr->sl;
3821}
3822
3823static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3824                                         u8 src_path_bits)
3825{
3826        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3827                attr->ib.src_path_bits = src_path_bits;
3828        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3829                attr->opa.src_path_bits = src_path_bits;
3830}
3831
3832static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3833{
3834        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3835                return attr->ib.src_path_bits;
3836        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3837                return attr->opa.src_path_bits;
3838        return 0;
3839}
3840
3841static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3842                                        bool make_grd)
3843{
3844        if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3845                attr->opa.make_grd = make_grd;
3846}
3847
3848static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3849{
3850        if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3851                return attr->opa.make_grd;
3852        return false;
3853}
3854
3855static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3856{
3857        attr->port_num = port_num;
3858}
3859
3860static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3861{
3862        return attr->port_num;
3863}
3864
3865static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3866                                           u8 static_rate)
3867{
3868        attr->static_rate = static_rate;
3869}
3870
3871static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3872{
3873        return attr->static_rate;
3874}
3875
3876static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3877                                        enum ib_ah_flags flag)
3878{
3879        attr->ah_flags = flag;
3880}
3881
3882static inline enum ib_ah_flags
3883                rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3884{
3885        return attr->ah_flags;
3886}
3887
3888static inline const struct ib_global_route
3889                *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3890{
3891        return &attr->grh;
3892}
3893
3894/*To retrieve and modify the grh */
3895static inline struct ib_global_route
3896                *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3897{
3898        return &attr->grh;
3899}
3900
3901static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3902{
3903        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3904
3905        memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3906}
3907
3908static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3909                                             __be64 prefix)
3910{
3911        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3912
3913        grh->dgid.global.subnet_prefix = prefix;
3914}
3915
3916static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3917                                            __be64 if_id)
3918{
3919        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3920
3921        grh->dgid.global.interface_id = if_id;
3922}
3923
3924static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3925                                   union ib_gid *dgid, u32 flow_label,
3926                                   u8 sgid_index, u8 hop_limit,
3927                                   u8 traffic_class)
3928{
3929        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3930
3931        attr->ah_flags = IB_AH_GRH;
3932        if (dgid)
3933                grh->dgid = *dgid;
3934        grh->flow_label = flow_label;
3935        grh->sgid_index = sgid_index;
3936        grh->hop_limit = hop_limit;
3937        grh->traffic_class = traffic_class;
3938}
3939
3940/**
3941 * rdma_ah_find_type - Return address handle type.
3942 *
3943 * @dev: Device to be checked
3944 * @port_num: Port number
3945 */
3946static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3947                                                       u8 port_num)
3948{
3949        if (rdma_protocol_roce(dev, port_num))
3950                return RDMA_AH_ATTR_TYPE_ROCE;
3951        if (rdma_protocol_ib(dev, port_num)) {
3952                if (rdma_cap_opa_ah(dev, port_num))
3953                        return RDMA_AH_ATTR_TYPE_OPA;
3954                return RDMA_AH_ATTR_TYPE_IB;
3955        }
3956
3957        return RDMA_AH_ATTR_TYPE_UNDEFINED;
3958}
3959
3960/**
3961 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3962 *     In the current implementation the only way to get
3963 *     get the 32bit lid is from other sources for OPA.
3964 *     For IB, lids will always be 16bits so cast the
3965 *     value accordingly.
3966 *
3967 * @lid: A 32bit LID
3968 */
3969static inline u16 ib_lid_cpu16(u32 lid)
3970{
3971        WARN_ON_ONCE(lid & 0xFFFF0000);
3972        return (u16)lid;
3973}
3974
3975/**
3976 * ib_lid_be16 - Return lid in 16bit BE encoding.
3977 *
3978 * @lid: A 32bit LID
3979 */
3980static inline __be16 ib_lid_be16(u32 lid)
3981{
3982        WARN_ON_ONCE(lid & 0xFFFF0000);
3983        return cpu_to_be16((u16)lid);
3984}
3985
3986/**
3987 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3988 *   vector
3989 * @device:         the rdma device
3990 * @comp_vector:    index of completion vector
3991 *
3992 * Returns NULL on failure, otherwise a corresponding cpu map of the
3993 * completion vector (returns all-cpus map if the device driver doesn't
3994 * implement get_vector_affinity).
3995 */
3996static inline const struct cpumask *
3997ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3998{
3999        if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4000            !device->get_vector_affinity)
4001                return NULL;
4002
4003        return device->get_vector_affinity(device, comp_vector);
4004
4005}
4006
4007/**
4008 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4009 * and add their gids, as needed, to the relevant RoCE devices.
4010 *
4011 * @device:         the rdma device
4012 */
4013void rdma_roce_rescan_device(struct ib_device *ibdev);
4014
4015#endif /* IB_VERBS_H */
4016