linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
  78
  79#include "audit.h"
  80
  81/* flags stating the success for a syscall */
  82#define AUDITSC_INVALID 0
  83#define AUDITSC_SUCCESS 1
  84#define AUDITSC_FAILURE 2
  85
  86/* no execve audit message should be longer than this (userspace limits),
  87 * see the note near the top of audit_log_execve_info() about this value */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* max length to print of cmdline/proctitle value during audit */
  91#define MAX_PROCTITLE_AUDIT_LEN 128
  92
  93/* number of audit rules */
  94int audit_n_rules;
  95
  96/* determines whether we collect data for signals sent */
  97int audit_signals;
  98
  99struct audit_aux_data {
 100        struct audit_aux_data   *next;
 101        int                     type;
 102};
 103
 104#define AUDIT_AUX_IPCPERM       0
 105
 106/* Number of target pids per aux struct. */
 107#define AUDIT_AUX_PIDS  16
 108
 109struct audit_aux_data_pids {
 110        struct audit_aux_data   d;
 111        pid_t                   target_pid[AUDIT_AUX_PIDS];
 112        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 113        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 114        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 115        u32                     target_sid[AUDIT_AUX_PIDS];
 116        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 117        int                     pid_count;
 118};
 119
 120struct audit_aux_data_bprm_fcaps {
 121        struct audit_aux_data   d;
 122        struct audit_cap_data   fcap;
 123        unsigned int            fcap_ver;
 124        struct audit_cap_data   old_pcap;
 125        struct audit_cap_data   new_pcap;
 126};
 127
 128struct audit_tree_refs {
 129        struct audit_tree_refs *next;
 130        struct audit_chunk *c[31];
 131};
 132
 133static int audit_match_perm(struct audit_context *ctx, int mask)
 134{
 135        unsigned n;
 136        if (unlikely(!ctx))
 137                return 0;
 138        n = ctx->major;
 139
 140        switch (audit_classify_syscall(ctx->arch, n)) {
 141        case 0: /* native */
 142                if ((mask & AUDIT_PERM_WRITE) &&
 143                     audit_match_class(AUDIT_CLASS_WRITE, n))
 144                        return 1;
 145                if ((mask & AUDIT_PERM_READ) &&
 146                     audit_match_class(AUDIT_CLASS_READ, n))
 147                        return 1;
 148                if ((mask & AUDIT_PERM_ATTR) &&
 149                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 150                        return 1;
 151                return 0;
 152        case 1: /* 32bit on biarch */
 153                if ((mask & AUDIT_PERM_WRITE) &&
 154                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 155                        return 1;
 156                if ((mask & AUDIT_PERM_READ) &&
 157                     audit_match_class(AUDIT_CLASS_READ_32, n))
 158                        return 1;
 159                if ((mask & AUDIT_PERM_ATTR) &&
 160                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 161                        return 1;
 162                return 0;
 163        case 2: /* open */
 164                return mask & ACC_MODE(ctx->argv[1]);
 165        case 3: /* openat */
 166                return mask & ACC_MODE(ctx->argv[2]);
 167        case 4: /* socketcall */
 168                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 169        case 5: /* execve */
 170                return mask & AUDIT_PERM_EXEC;
 171        default:
 172                return 0;
 173        }
 174}
 175
 176static int audit_match_filetype(struct audit_context *ctx, int val)
 177{
 178        struct audit_names *n;
 179        umode_t mode = (umode_t)val;
 180
 181        if (unlikely(!ctx))
 182                return 0;
 183
 184        list_for_each_entry(n, &ctx->names_list, list) {
 185                if ((n->ino != AUDIT_INO_UNSET) &&
 186                    ((n->mode & S_IFMT) == mode))
 187                        return 1;
 188        }
 189
 190        return 0;
 191}
 192
 193/*
 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 195 * ->first_trees points to its beginning, ->trees - to the current end of data.
 196 * ->tree_count is the number of free entries in array pointed to by ->trees.
 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 198 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 199 * it's going to remain 1-element for almost any setup) until we free context itself.
 200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 201 */
 202
 203#ifdef CONFIG_AUDIT_TREE
 204static void audit_set_auditable(struct audit_context *ctx)
 205{
 206        if (!ctx->prio) {
 207                ctx->prio = 1;
 208                ctx->current_state = AUDIT_RECORD_CONTEXT;
 209        }
 210}
 211
 212static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 213{
 214        struct audit_tree_refs *p = ctx->trees;
 215        int left = ctx->tree_count;
 216        if (likely(left)) {
 217                p->c[--left] = chunk;
 218                ctx->tree_count = left;
 219                return 1;
 220        }
 221        if (!p)
 222                return 0;
 223        p = p->next;
 224        if (p) {
 225                p->c[30] = chunk;
 226                ctx->trees = p;
 227                ctx->tree_count = 30;
 228                return 1;
 229        }
 230        return 0;
 231}
 232
 233static int grow_tree_refs(struct audit_context *ctx)
 234{
 235        struct audit_tree_refs *p = ctx->trees;
 236        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 237        if (!ctx->trees) {
 238                ctx->trees = p;
 239                return 0;
 240        }
 241        if (p)
 242                p->next = ctx->trees;
 243        else
 244                ctx->first_trees = ctx->trees;
 245        ctx->tree_count = 31;
 246        return 1;
 247}
 248#endif
 249
 250static void unroll_tree_refs(struct audit_context *ctx,
 251                      struct audit_tree_refs *p, int count)
 252{
 253#ifdef CONFIG_AUDIT_TREE
 254        struct audit_tree_refs *q;
 255        int n;
 256        if (!p) {
 257                /* we started with empty chain */
 258                p = ctx->first_trees;
 259                count = 31;
 260                /* if the very first allocation has failed, nothing to do */
 261                if (!p)
 262                        return;
 263        }
 264        n = count;
 265        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 266                while (n--) {
 267                        audit_put_chunk(q->c[n]);
 268                        q->c[n] = NULL;
 269                }
 270        }
 271        while (n-- > ctx->tree_count) {
 272                audit_put_chunk(q->c[n]);
 273                q->c[n] = NULL;
 274        }
 275        ctx->trees = p;
 276        ctx->tree_count = count;
 277#endif
 278}
 279
 280static void free_tree_refs(struct audit_context *ctx)
 281{
 282        struct audit_tree_refs *p, *q;
 283        for (p = ctx->first_trees; p; p = q) {
 284                q = p->next;
 285                kfree(p);
 286        }
 287}
 288
 289static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 290{
 291#ifdef CONFIG_AUDIT_TREE
 292        struct audit_tree_refs *p;
 293        int n;
 294        if (!tree)
 295                return 0;
 296        /* full ones */
 297        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 298                for (n = 0; n < 31; n++)
 299                        if (audit_tree_match(p->c[n], tree))
 300                                return 1;
 301        }
 302        /* partial */
 303        if (p) {
 304                for (n = ctx->tree_count; n < 31; n++)
 305                        if (audit_tree_match(p->c[n], tree))
 306                                return 1;
 307        }
 308#endif
 309        return 0;
 310}
 311
 312static int audit_compare_uid(kuid_t uid,
 313                             struct audit_names *name,
 314                             struct audit_field *f,
 315                             struct audit_context *ctx)
 316{
 317        struct audit_names *n;
 318        int rc;
 319 
 320        if (name) {
 321                rc = audit_uid_comparator(uid, f->op, name->uid);
 322                if (rc)
 323                        return rc;
 324        }
 325 
 326        if (ctx) {
 327                list_for_each_entry(n, &ctx->names_list, list) {
 328                        rc = audit_uid_comparator(uid, f->op, n->uid);
 329                        if (rc)
 330                                return rc;
 331                }
 332        }
 333        return 0;
 334}
 335
 336static int audit_compare_gid(kgid_t gid,
 337                             struct audit_names *name,
 338                             struct audit_field *f,
 339                             struct audit_context *ctx)
 340{
 341        struct audit_names *n;
 342        int rc;
 343 
 344        if (name) {
 345                rc = audit_gid_comparator(gid, f->op, name->gid);
 346                if (rc)
 347                        return rc;
 348        }
 349 
 350        if (ctx) {
 351                list_for_each_entry(n, &ctx->names_list, list) {
 352                        rc = audit_gid_comparator(gid, f->op, n->gid);
 353                        if (rc)
 354                                return rc;
 355                }
 356        }
 357        return 0;
 358}
 359
 360static int audit_field_compare(struct task_struct *tsk,
 361                               const struct cred *cred,
 362                               struct audit_field *f,
 363                               struct audit_context *ctx,
 364                               struct audit_names *name)
 365{
 366        switch (f->val) {
 367        /* process to file object comparisons */
 368        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 369                return audit_compare_uid(cred->uid, name, f, ctx);
 370        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 371                return audit_compare_gid(cred->gid, name, f, ctx);
 372        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 373                return audit_compare_uid(cred->euid, name, f, ctx);
 374        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 375                return audit_compare_gid(cred->egid, name, f, ctx);
 376        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 377                return audit_compare_uid(tsk->loginuid, name, f, ctx);
 378        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 379                return audit_compare_uid(cred->suid, name, f, ctx);
 380        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 381                return audit_compare_gid(cred->sgid, name, f, ctx);
 382        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 383                return audit_compare_uid(cred->fsuid, name, f, ctx);
 384        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 385                return audit_compare_gid(cred->fsgid, name, f, ctx);
 386        /* uid comparisons */
 387        case AUDIT_COMPARE_UID_TO_AUID:
 388                return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 389        case AUDIT_COMPARE_UID_TO_EUID:
 390                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 391        case AUDIT_COMPARE_UID_TO_SUID:
 392                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 393        case AUDIT_COMPARE_UID_TO_FSUID:
 394                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 395        /* auid comparisons */
 396        case AUDIT_COMPARE_AUID_TO_EUID:
 397                return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 398        case AUDIT_COMPARE_AUID_TO_SUID:
 399                return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 400        case AUDIT_COMPARE_AUID_TO_FSUID:
 401                return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 402        /* euid comparisons */
 403        case AUDIT_COMPARE_EUID_TO_SUID:
 404                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 405        case AUDIT_COMPARE_EUID_TO_FSUID:
 406                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 407        /* suid comparisons */
 408        case AUDIT_COMPARE_SUID_TO_FSUID:
 409                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 410        /* gid comparisons */
 411        case AUDIT_COMPARE_GID_TO_EGID:
 412                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 413        case AUDIT_COMPARE_GID_TO_SGID:
 414                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 415        case AUDIT_COMPARE_GID_TO_FSGID:
 416                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 417        /* egid comparisons */
 418        case AUDIT_COMPARE_EGID_TO_SGID:
 419                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 420        case AUDIT_COMPARE_EGID_TO_FSGID:
 421                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 422        /* sgid comparison */
 423        case AUDIT_COMPARE_SGID_TO_FSGID:
 424                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 425        default:
 426                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 427                return 0;
 428        }
 429        return 0;
 430}
 431
 432/* Determine if any context name data matches a rule's watch data */
 433/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 434 * otherwise.
 435 *
 436 * If task_creation is true, this is an explicit indication that we are
 437 * filtering a task rule at task creation time.  This and tsk == current are
 438 * the only situations where tsk->cred may be accessed without an rcu read lock.
 439 */
 440static int audit_filter_rules(struct task_struct *tsk,
 441                              struct audit_krule *rule,
 442                              struct audit_context *ctx,
 443                              struct audit_names *name,
 444                              enum audit_state *state,
 445                              bool task_creation)
 446{
 447        const struct cred *cred;
 448        int i, need_sid = 1;
 449        u32 sid;
 450        unsigned int sessionid;
 451
 452        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 453
 454        for (i = 0; i < rule->field_count; i++) {
 455                struct audit_field *f = &rule->fields[i];
 456                struct audit_names *n;
 457                int result = 0;
 458                pid_t pid;
 459
 460                switch (f->type) {
 461                case AUDIT_PID:
 462                        pid = task_tgid_nr(tsk);
 463                        result = audit_comparator(pid, f->op, f->val);
 464                        break;
 465                case AUDIT_PPID:
 466                        if (ctx) {
 467                                if (!ctx->ppid)
 468                                        ctx->ppid = task_ppid_nr(tsk);
 469                                result = audit_comparator(ctx->ppid, f->op, f->val);
 470                        }
 471                        break;
 472                case AUDIT_EXE:
 473                        result = audit_exe_compare(tsk, rule->exe);
 474                        break;
 475                case AUDIT_UID:
 476                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 477                        break;
 478                case AUDIT_EUID:
 479                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 480                        break;
 481                case AUDIT_SUID:
 482                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 483                        break;
 484                case AUDIT_FSUID:
 485                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 486                        break;
 487                case AUDIT_GID:
 488                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 489                        if (f->op == Audit_equal) {
 490                                if (!result)
 491                                        result = in_group_p(f->gid);
 492                        } else if (f->op == Audit_not_equal) {
 493                                if (result)
 494                                        result = !in_group_p(f->gid);
 495                        }
 496                        break;
 497                case AUDIT_EGID:
 498                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 499                        if (f->op == Audit_equal) {
 500                                if (!result)
 501                                        result = in_egroup_p(f->gid);
 502                        } else if (f->op == Audit_not_equal) {
 503                                if (result)
 504                                        result = !in_egroup_p(f->gid);
 505                        }
 506                        break;
 507                case AUDIT_SGID:
 508                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 509                        break;
 510                case AUDIT_FSGID:
 511                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 512                        break;
 513                case AUDIT_SESSIONID:
 514                        sessionid = audit_get_sessionid(current);
 515                        result = audit_comparator(sessionid, f->op, f->val);
 516                        break;
 517                case AUDIT_PERS:
 518                        result = audit_comparator(tsk->personality, f->op, f->val);
 519                        break;
 520                case AUDIT_ARCH:
 521                        if (ctx)
 522                                result = audit_comparator(ctx->arch, f->op, f->val);
 523                        break;
 524
 525                case AUDIT_EXIT:
 526                        if (ctx && ctx->return_valid)
 527                                result = audit_comparator(ctx->return_code, f->op, f->val);
 528                        break;
 529                case AUDIT_SUCCESS:
 530                        if (ctx && ctx->return_valid) {
 531                                if (f->val)
 532                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 533                                else
 534                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 535                        }
 536                        break;
 537                case AUDIT_DEVMAJOR:
 538                        if (name) {
 539                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 540                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 541                                        ++result;
 542                        } else if (ctx) {
 543                                list_for_each_entry(n, &ctx->names_list, list) {
 544                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 545                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 546                                                ++result;
 547                                                break;
 548                                        }
 549                                }
 550                        }
 551                        break;
 552                case AUDIT_DEVMINOR:
 553                        if (name) {
 554                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 555                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 556                                        ++result;
 557                        } else if (ctx) {
 558                                list_for_each_entry(n, &ctx->names_list, list) {
 559                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 560                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 561                                                ++result;
 562                                                break;
 563                                        }
 564                                }
 565                        }
 566                        break;
 567                case AUDIT_INODE:
 568                        if (name)
 569                                result = audit_comparator(name->ino, f->op, f->val);
 570                        else if (ctx) {
 571                                list_for_each_entry(n, &ctx->names_list, list) {
 572                                        if (audit_comparator(n->ino, f->op, f->val)) {
 573                                                ++result;
 574                                                break;
 575                                        }
 576                                }
 577                        }
 578                        break;
 579                case AUDIT_OBJ_UID:
 580                        if (name) {
 581                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 582                        } else if (ctx) {
 583                                list_for_each_entry(n, &ctx->names_list, list) {
 584                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 585                                                ++result;
 586                                                break;
 587                                        }
 588                                }
 589                        }
 590                        break;
 591                case AUDIT_OBJ_GID:
 592                        if (name) {
 593                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 594                        } else if (ctx) {
 595                                list_for_each_entry(n, &ctx->names_list, list) {
 596                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 597                                                ++result;
 598                                                break;
 599                                        }
 600                                }
 601                        }
 602                        break;
 603                case AUDIT_WATCH:
 604                        if (name)
 605                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 606                        break;
 607                case AUDIT_DIR:
 608                        if (ctx)
 609                                result = match_tree_refs(ctx, rule->tree);
 610                        break;
 611                case AUDIT_LOGINUID:
 612                        result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 613                        break;
 614                case AUDIT_LOGINUID_SET:
 615                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 616                        break;
 617                case AUDIT_SUBJ_USER:
 618                case AUDIT_SUBJ_ROLE:
 619                case AUDIT_SUBJ_TYPE:
 620                case AUDIT_SUBJ_SEN:
 621                case AUDIT_SUBJ_CLR:
 622                        /* NOTE: this may return negative values indicating
 623                           a temporary error.  We simply treat this as a
 624                           match for now to avoid losing information that
 625                           may be wanted.   An error message will also be
 626                           logged upon error */
 627                        if (f->lsm_rule) {
 628                                if (need_sid) {
 629                                        security_task_getsecid(tsk, &sid);
 630                                        need_sid = 0;
 631                                }
 632                                result = security_audit_rule_match(sid, f->type,
 633                                                                  f->op,
 634                                                                  f->lsm_rule,
 635                                                                  ctx);
 636                        }
 637                        break;
 638                case AUDIT_OBJ_USER:
 639                case AUDIT_OBJ_ROLE:
 640                case AUDIT_OBJ_TYPE:
 641                case AUDIT_OBJ_LEV_LOW:
 642                case AUDIT_OBJ_LEV_HIGH:
 643                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 644                           also applies here */
 645                        if (f->lsm_rule) {
 646                                /* Find files that match */
 647                                if (name) {
 648                                        result = security_audit_rule_match(
 649                                                   name->osid, f->type, f->op,
 650                                                   f->lsm_rule, ctx);
 651                                } else if (ctx) {
 652                                        list_for_each_entry(n, &ctx->names_list, list) {
 653                                                if (security_audit_rule_match(n->osid, f->type,
 654                                                                              f->op, f->lsm_rule,
 655                                                                              ctx)) {
 656                                                        ++result;
 657                                                        break;
 658                                                }
 659                                        }
 660                                }
 661                                /* Find ipc objects that match */
 662                                if (!ctx || ctx->type != AUDIT_IPC)
 663                                        break;
 664                                if (security_audit_rule_match(ctx->ipc.osid,
 665                                                              f->type, f->op,
 666                                                              f->lsm_rule, ctx))
 667                                        ++result;
 668                        }
 669                        break;
 670                case AUDIT_ARG0:
 671                case AUDIT_ARG1:
 672                case AUDIT_ARG2:
 673                case AUDIT_ARG3:
 674                        if (ctx)
 675                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 676                        break;
 677                case AUDIT_FILTERKEY:
 678                        /* ignore this field for filtering */
 679                        result = 1;
 680                        break;
 681                case AUDIT_PERM:
 682                        result = audit_match_perm(ctx, f->val);
 683                        break;
 684                case AUDIT_FILETYPE:
 685                        result = audit_match_filetype(ctx, f->val);
 686                        break;
 687                case AUDIT_FIELD_COMPARE:
 688                        result = audit_field_compare(tsk, cred, f, ctx, name);
 689                        break;
 690                }
 691                if (!result)
 692                        return 0;
 693        }
 694
 695        if (ctx) {
 696                if (rule->prio <= ctx->prio)
 697                        return 0;
 698                if (rule->filterkey) {
 699                        kfree(ctx->filterkey);
 700                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 701                }
 702                ctx->prio = rule->prio;
 703        }
 704        switch (rule->action) {
 705        case AUDIT_NEVER:
 706                *state = AUDIT_DISABLED;
 707                break;
 708        case AUDIT_ALWAYS:
 709                *state = AUDIT_RECORD_CONTEXT;
 710                break;
 711        }
 712        return 1;
 713}
 714
 715/* At process creation time, we can determine if system-call auditing is
 716 * completely disabled for this task.  Since we only have the task
 717 * structure at this point, we can only check uid and gid.
 718 */
 719static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 720{
 721        struct audit_entry *e;
 722        enum audit_state   state;
 723
 724        rcu_read_lock();
 725        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 726                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 727                                       &state, true)) {
 728                        if (state == AUDIT_RECORD_CONTEXT)
 729                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 730                        rcu_read_unlock();
 731                        return state;
 732                }
 733        }
 734        rcu_read_unlock();
 735        return AUDIT_BUILD_CONTEXT;
 736}
 737
 738static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 739{
 740        int word, bit;
 741
 742        if (val > 0xffffffff)
 743                return false;
 744
 745        word = AUDIT_WORD(val);
 746        if (word >= AUDIT_BITMASK_SIZE)
 747                return false;
 748
 749        bit = AUDIT_BIT(val);
 750
 751        return rule->mask[word] & bit;
 752}
 753
 754/* At syscall entry and exit time, this filter is called if the
 755 * audit_state is not low enough that auditing cannot take place, but is
 756 * also not high enough that we already know we have to write an audit
 757 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 758 */
 759static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 760                                             struct audit_context *ctx,
 761                                             struct list_head *list)
 762{
 763        struct audit_entry *e;
 764        enum audit_state state;
 765
 766        if (auditd_test_task(tsk))
 767                return AUDIT_DISABLED;
 768
 769        rcu_read_lock();
 770        if (!list_empty(list)) {
 771                list_for_each_entry_rcu(e, list, list) {
 772                        if (audit_in_mask(&e->rule, ctx->major) &&
 773                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 774                                               &state, false)) {
 775                                rcu_read_unlock();
 776                                ctx->current_state = state;
 777                                return state;
 778                        }
 779                }
 780        }
 781        rcu_read_unlock();
 782        return AUDIT_BUILD_CONTEXT;
 783}
 784
 785/*
 786 * Given an audit_name check the inode hash table to see if they match.
 787 * Called holding the rcu read lock to protect the use of audit_inode_hash
 788 */
 789static int audit_filter_inode_name(struct task_struct *tsk,
 790                                   struct audit_names *n,
 791                                   struct audit_context *ctx) {
 792        int h = audit_hash_ino((u32)n->ino);
 793        struct list_head *list = &audit_inode_hash[h];
 794        struct audit_entry *e;
 795        enum audit_state state;
 796
 797        if (list_empty(list))
 798                return 0;
 799
 800        list_for_each_entry_rcu(e, list, list) {
 801                if (audit_in_mask(&e->rule, ctx->major) &&
 802                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 803                        ctx->current_state = state;
 804                        return 1;
 805                }
 806        }
 807
 808        return 0;
 809}
 810
 811/* At syscall exit time, this filter is called if any audit_names have been
 812 * collected during syscall processing.  We only check rules in sublists at hash
 813 * buckets applicable to the inode numbers in audit_names.
 814 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 815 */
 816void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 817{
 818        struct audit_names *n;
 819
 820        if (auditd_test_task(tsk))
 821                return;
 822
 823        rcu_read_lock();
 824
 825        list_for_each_entry(n, &ctx->names_list, list) {
 826                if (audit_filter_inode_name(tsk, n, ctx))
 827                        break;
 828        }
 829        rcu_read_unlock();
 830}
 831
 832/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 833static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 834                                                      int return_valid,
 835                                                      long return_code)
 836{
 837        struct audit_context *context = tsk->audit_context;
 838
 839        if (!context)
 840                return NULL;
 841        context->return_valid = return_valid;
 842
 843        /*
 844         * we need to fix up the return code in the audit logs if the actual
 845         * return codes are later going to be fixed up by the arch specific
 846         * signal handlers
 847         *
 848         * This is actually a test for:
 849         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 850         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 851         *
 852         * but is faster than a bunch of ||
 853         */
 854        if (unlikely(return_code <= -ERESTARTSYS) &&
 855            (return_code >= -ERESTART_RESTARTBLOCK) &&
 856            (return_code != -ENOIOCTLCMD))
 857                context->return_code = -EINTR;
 858        else
 859                context->return_code  = return_code;
 860
 861        if (context->in_syscall && !context->dummy) {
 862                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 863                audit_filter_inodes(tsk, context);
 864        }
 865
 866        tsk->audit_context = NULL;
 867        return context;
 868}
 869
 870static inline void audit_proctitle_free(struct audit_context *context)
 871{
 872        kfree(context->proctitle.value);
 873        context->proctitle.value = NULL;
 874        context->proctitle.len = 0;
 875}
 876
 877static inline void audit_free_names(struct audit_context *context)
 878{
 879        struct audit_names *n, *next;
 880
 881        list_for_each_entry_safe(n, next, &context->names_list, list) {
 882                list_del(&n->list);
 883                if (n->name)
 884                        putname(n->name);
 885                if (n->should_free)
 886                        kfree(n);
 887        }
 888        context->name_count = 0;
 889        path_put(&context->pwd);
 890        context->pwd.dentry = NULL;
 891        context->pwd.mnt = NULL;
 892}
 893
 894static inline void audit_free_aux(struct audit_context *context)
 895{
 896        struct audit_aux_data *aux;
 897
 898        while ((aux = context->aux)) {
 899                context->aux = aux->next;
 900                kfree(aux);
 901        }
 902        while ((aux = context->aux_pids)) {
 903                context->aux_pids = aux->next;
 904                kfree(aux);
 905        }
 906}
 907
 908static inline struct audit_context *audit_alloc_context(enum audit_state state)
 909{
 910        struct audit_context *context;
 911
 912        context = kzalloc(sizeof(*context), GFP_KERNEL);
 913        if (!context)
 914                return NULL;
 915        context->state = state;
 916        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 917        INIT_LIST_HEAD(&context->killed_trees);
 918        INIT_LIST_HEAD(&context->names_list);
 919        return context;
 920}
 921
 922/**
 923 * audit_alloc - allocate an audit context block for a task
 924 * @tsk: task
 925 *
 926 * Filter on the task information and allocate a per-task audit context
 927 * if necessary.  Doing so turns on system call auditing for the
 928 * specified task.  This is called from copy_process, so no lock is
 929 * needed.
 930 */
 931int audit_alloc(struct task_struct *tsk)
 932{
 933        struct audit_context *context;
 934        enum audit_state     state;
 935        char *key = NULL;
 936
 937        if (likely(!audit_ever_enabled))
 938                return 0; /* Return if not auditing. */
 939
 940        state = audit_filter_task(tsk, &key);
 941        if (state == AUDIT_DISABLED) {
 942                clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 943                return 0;
 944        }
 945
 946        if (!(context = audit_alloc_context(state))) {
 947                kfree(key);
 948                audit_log_lost("out of memory in audit_alloc");
 949                return -ENOMEM;
 950        }
 951        context->filterkey = key;
 952
 953        tsk->audit_context  = context;
 954        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 955        return 0;
 956}
 957
 958static inline void audit_free_context(struct audit_context *context)
 959{
 960        audit_free_names(context);
 961        unroll_tree_refs(context, NULL, 0);
 962        free_tree_refs(context);
 963        audit_free_aux(context);
 964        kfree(context->filterkey);
 965        kfree(context->sockaddr);
 966        audit_proctitle_free(context);
 967        kfree(context);
 968}
 969
 970static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 971                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
 972                                 u32 sid, char *comm)
 973{
 974        struct audit_buffer *ab;
 975        char *ctx = NULL;
 976        u32 len;
 977        int rc = 0;
 978
 979        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 980        if (!ab)
 981                return rc;
 982
 983        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 984                         from_kuid(&init_user_ns, auid),
 985                         from_kuid(&init_user_ns, uid), sessionid);
 986        if (sid) {
 987                if (security_secid_to_secctx(sid, &ctx, &len)) {
 988                        audit_log_format(ab, " obj=(none)");
 989                        rc = 1;
 990                } else {
 991                        audit_log_format(ab, " obj=%s", ctx);
 992                        security_release_secctx(ctx, len);
 993                }
 994        }
 995        audit_log_format(ab, " ocomm=");
 996        audit_log_untrustedstring(ab, comm);
 997        audit_log_end(ab);
 998
 999        return rc;
1000}
1001
1002static void audit_log_execve_info(struct audit_context *context,
1003                                  struct audit_buffer **ab)
1004{
1005        long len_max;
1006        long len_rem;
1007        long len_full;
1008        long len_buf;
1009        long len_abuf = 0;
1010        long len_tmp;
1011        bool require_data;
1012        bool encode;
1013        unsigned int iter;
1014        unsigned int arg;
1015        char *buf_head;
1016        char *buf;
1017        const char __user *p = (const char __user *)current->mm->arg_start;
1018
1019        /* NOTE: this buffer needs to be large enough to hold all the non-arg
1020         *       data we put in the audit record for this argument (see the
1021         *       code below) ... at this point in time 96 is plenty */
1022        char abuf[96];
1023
1024        /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1025         *       current value of 7500 is not as important as the fact that it
1026         *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1027         *       room if we go over a little bit in the logging below */
1028        WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1029        len_max = MAX_EXECVE_AUDIT_LEN;
1030
1031        /* scratch buffer to hold the userspace args */
1032        buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1033        if (!buf_head) {
1034                audit_panic("out of memory for argv string");
1035                return;
1036        }
1037        buf = buf_head;
1038
1039        audit_log_format(*ab, "argc=%d", context->execve.argc);
1040
1041        len_rem = len_max;
1042        len_buf = 0;
1043        len_full = 0;
1044        require_data = true;
1045        encode = false;
1046        iter = 0;
1047        arg = 0;
1048        do {
1049                /* NOTE: we don't ever want to trust this value for anything
1050                 *       serious, but the audit record format insists we
1051                 *       provide an argument length for really long arguments,
1052                 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1053                 *       to use strncpy_from_user() to obtain this value for
1054                 *       recording in the log, although we don't use it
1055                 *       anywhere here to avoid a double-fetch problem */
1056                if (len_full == 0)
1057                        len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1058
1059                /* read more data from userspace */
1060                if (require_data) {
1061                        /* can we make more room in the buffer? */
1062                        if (buf != buf_head) {
1063                                memmove(buf_head, buf, len_buf);
1064                                buf = buf_head;
1065                        }
1066
1067                        /* fetch as much as we can of the argument */
1068                        len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1069                                                    len_max - len_buf);
1070                        if (len_tmp == -EFAULT) {
1071                                /* unable to copy from userspace */
1072                                send_sig(SIGKILL, current, 0);
1073                                goto out;
1074                        } else if (len_tmp == (len_max - len_buf)) {
1075                                /* buffer is not large enough */
1076                                require_data = true;
1077                                /* NOTE: if we are going to span multiple
1078                                 *       buffers force the encoding so we stand
1079                                 *       a chance at a sane len_full value and
1080                                 *       consistent record encoding */
1081                                encode = true;
1082                                len_full = len_full * 2;
1083                                p += len_tmp;
1084                        } else {
1085                                require_data = false;
1086                                if (!encode)
1087                                        encode = audit_string_contains_control(
1088                                                                buf, len_tmp);
1089                                /* try to use a trusted value for len_full */
1090                                if (len_full < len_max)
1091                                        len_full = (encode ?
1092                                                    len_tmp * 2 : len_tmp);
1093                                p += len_tmp + 1;
1094                        }
1095                        len_buf += len_tmp;
1096                        buf_head[len_buf] = '\0';
1097
1098                        /* length of the buffer in the audit record? */
1099                        len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1100                }
1101
1102                /* write as much as we can to the audit log */
1103                if (len_buf > 0) {
1104                        /* NOTE: some magic numbers here - basically if we
1105                         *       can't fit a reasonable amount of data into the
1106                         *       existing audit buffer, flush it and start with
1107                         *       a new buffer */
1108                        if ((sizeof(abuf) + 8) > len_rem) {
1109                                len_rem = len_max;
1110                                audit_log_end(*ab);
1111                                *ab = audit_log_start(context,
1112                                                      GFP_KERNEL, AUDIT_EXECVE);
1113                                if (!*ab)
1114                                        goto out;
1115                        }
1116
1117                        /* create the non-arg portion of the arg record */
1118                        len_tmp = 0;
1119                        if (require_data || (iter > 0) ||
1120                            ((len_abuf + sizeof(abuf)) > len_rem)) {
1121                                if (iter == 0) {
1122                                        len_tmp += snprintf(&abuf[len_tmp],
1123                                                        sizeof(abuf) - len_tmp,
1124                                                        " a%d_len=%lu",
1125                                                        arg, len_full);
1126                                }
1127                                len_tmp += snprintf(&abuf[len_tmp],
1128                                                    sizeof(abuf) - len_tmp,
1129                                                    " a%d[%d]=", arg, iter++);
1130                        } else
1131                                len_tmp += snprintf(&abuf[len_tmp],
1132                                                    sizeof(abuf) - len_tmp,
1133                                                    " a%d=", arg);
1134                        WARN_ON(len_tmp >= sizeof(abuf));
1135                        abuf[sizeof(abuf) - 1] = '\0';
1136
1137                        /* log the arg in the audit record */
1138                        audit_log_format(*ab, "%s", abuf);
1139                        len_rem -= len_tmp;
1140                        len_tmp = len_buf;
1141                        if (encode) {
1142                                if (len_abuf > len_rem)
1143                                        len_tmp = len_rem / 2; /* encoding */
1144                                audit_log_n_hex(*ab, buf, len_tmp);
1145                                len_rem -= len_tmp * 2;
1146                                len_abuf -= len_tmp * 2;
1147                        } else {
1148                                if (len_abuf > len_rem)
1149                                        len_tmp = len_rem - 2; /* quotes */
1150                                audit_log_n_string(*ab, buf, len_tmp);
1151                                len_rem -= len_tmp + 2;
1152                                /* don't subtract the "2" because we still need
1153                                 * to add quotes to the remaining string */
1154                                len_abuf -= len_tmp;
1155                        }
1156                        len_buf -= len_tmp;
1157                        buf += len_tmp;
1158                }
1159
1160                /* ready to move to the next argument? */
1161                if ((len_buf == 0) && !require_data) {
1162                        arg++;
1163                        iter = 0;
1164                        len_full = 0;
1165                        require_data = true;
1166                        encode = false;
1167                }
1168        } while (arg < context->execve.argc);
1169
1170        /* NOTE: the caller handles the final audit_log_end() call */
1171
1172out:
1173        kfree(buf_head);
1174}
1175
1176static void show_special(struct audit_context *context, int *call_panic)
1177{
1178        struct audit_buffer *ab;
1179        int i;
1180
1181        ab = audit_log_start(context, GFP_KERNEL, context->type);
1182        if (!ab)
1183                return;
1184
1185        switch (context->type) {
1186        case AUDIT_SOCKETCALL: {
1187                int nargs = context->socketcall.nargs;
1188                audit_log_format(ab, "nargs=%d", nargs);
1189                for (i = 0; i < nargs; i++)
1190                        audit_log_format(ab, " a%d=%lx", i,
1191                                context->socketcall.args[i]);
1192                break; }
1193        case AUDIT_IPC: {
1194                u32 osid = context->ipc.osid;
1195
1196                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197                                 from_kuid(&init_user_ns, context->ipc.uid),
1198                                 from_kgid(&init_user_ns, context->ipc.gid),
1199                                 context->ipc.mode);
1200                if (osid) {
1201                        char *ctx = NULL;
1202                        u32 len;
1203                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1204                                audit_log_format(ab, " osid=%u", osid);
1205                                *call_panic = 1;
1206                        } else {
1207                                audit_log_format(ab, " obj=%s", ctx);
1208                                security_release_secctx(ctx, len);
1209                        }
1210                }
1211                if (context->ipc.has_perm) {
1212                        audit_log_end(ab);
1213                        ab = audit_log_start(context, GFP_KERNEL,
1214                                             AUDIT_IPC_SET_PERM);
1215                        if (unlikely(!ab))
1216                                return;
1217                        audit_log_format(ab,
1218                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219                                context->ipc.qbytes,
1220                                context->ipc.perm_uid,
1221                                context->ipc.perm_gid,
1222                                context->ipc.perm_mode);
1223                }
1224                break; }
1225        case AUDIT_MQ_OPEN:
1226                audit_log_format(ab,
1227                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228                        "mq_msgsize=%ld mq_curmsgs=%ld",
1229                        context->mq_open.oflag, context->mq_open.mode,
1230                        context->mq_open.attr.mq_flags,
1231                        context->mq_open.attr.mq_maxmsg,
1232                        context->mq_open.attr.mq_msgsize,
1233                        context->mq_open.attr.mq_curmsgs);
1234                break;
1235        case AUDIT_MQ_SENDRECV:
1236                audit_log_format(ab,
1237                        "mqdes=%d msg_len=%zd msg_prio=%u "
1238                        "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1239                        context->mq_sendrecv.mqdes,
1240                        context->mq_sendrecv.msg_len,
1241                        context->mq_sendrecv.msg_prio,
1242                        (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1243                        context->mq_sendrecv.abs_timeout.tv_nsec);
1244                break;
1245        case AUDIT_MQ_NOTIFY:
1246                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247                                context->mq_notify.mqdes,
1248                                context->mq_notify.sigev_signo);
1249                break;
1250        case AUDIT_MQ_GETSETATTR: {
1251                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1252                audit_log_format(ab,
1253                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254                        "mq_curmsgs=%ld ",
1255                        context->mq_getsetattr.mqdes,
1256                        attr->mq_flags, attr->mq_maxmsg,
1257                        attr->mq_msgsize, attr->mq_curmsgs);
1258                break; }
1259        case AUDIT_CAPSET:
1260                audit_log_format(ab, "pid=%d", context->capset.pid);
1261                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264                audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1265                break;
1266        case AUDIT_MMAP:
1267                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1268                                 context->mmap.flags);
1269                break;
1270        case AUDIT_EXECVE:
1271                audit_log_execve_info(context, &ab);
1272                break;
1273        case AUDIT_KERN_MODULE:
1274                audit_log_format(ab, "name=");
1275                audit_log_untrustedstring(ab, context->module.name);
1276                kfree(context->module.name);
1277                break;
1278        }
1279        audit_log_end(ab);
1280}
1281
1282static inline int audit_proctitle_rtrim(char *proctitle, int len)
1283{
1284        char *end = proctitle + len - 1;
1285        while (end > proctitle && !isprint(*end))
1286                end--;
1287
1288        /* catch the case where proctitle is only 1 non-print character */
1289        len = end - proctitle + 1;
1290        len -= isprint(proctitle[len-1]) == 0;
1291        return len;
1292}
1293
1294static void audit_log_proctitle(struct task_struct *tsk,
1295                         struct audit_context *context)
1296{
1297        int res;
1298        char *buf;
1299        char *msg = "(null)";
1300        int len = strlen(msg);
1301        struct audit_buffer *ab;
1302
1303        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1304        if (!ab)
1305                return; /* audit_panic or being filtered */
1306
1307        audit_log_format(ab, "proctitle=");
1308
1309        /* Not  cached */
1310        if (!context->proctitle.value) {
1311                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1312                if (!buf)
1313                        goto out;
1314                /* Historically called this from procfs naming */
1315                res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1316                if (res == 0) {
1317                        kfree(buf);
1318                        goto out;
1319                }
1320                res = audit_proctitle_rtrim(buf, res);
1321                if (res == 0) {
1322                        kfree(buf);
1323                        goto out;
1324                }
1325                context->proctitle.value = buf;
1326                context->proctitle.len = res;
1327        }
1328        msg = context->proctitle.value;
1329        len = context->proctitle.len;
1330out:
1331        audit_log_n_untrustedstring(ab, msg, len);
1332        audit_log_end(ab);
1333}
1334
1335static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1336{
1337        int i, call_panic = 0;
1338        struct audit_buffer *ab;
1339        struct audit_aux_data *aux;
1340        struct audit_names *n;
1341
1342        /* tsk == current */
1343        context->personality = tsk->personality;
1344
1345        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1346        if (!ab)
1347                return;         /* audit_panic has been called */
1348        audit_log_format(ab, "arch=%x syscall=%d",
1349                         context->arch, context->major);
1350        if (context->personality != PER_LINUX)
1351                audit_log_format(ab, " per=%lx", context->personality);
1352        if (context->return_valid)
1353                audit_log_format(ab, " success=%s exit=%ld",
1354                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1355                                 context->return_code);
1356
1357        audit_log_format(ab,
1358                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1359                         context->argv[0],
1360                         context->argv[1],
1361                         context->argv[2],
1362                         context->argv[3],
1363                         context->name_count);
1364
1365        audit_log_task_info(ab, tsk);
1366        audit_log_key(ab, context->filterkey);
1367        audit_log_end(ab);
1368
1369        for (aux = context->aux; aux; aux = aux->next) {
1370
1371                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1372                if (!ab)
1373                        continue; /* audit_panic has been called */
1374
1375                switch (aux->type) {
1376
1377                case AUDIT_BPRM_FCAPS: {
1378                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1379                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1380                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1381                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1382                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1383                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1384                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1385                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1386                        audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1387                        audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1388                        audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1389                        audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1390                        audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1391                        break; }
1392
1393                }
1394                audit_log_end(ab);
1395        }
1396
1397        if (context->type)
1398                show_special(context, &call_panic);
1399
1400        if (context->fds[0] >= 0) {
1401                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1402                if (ab) {
1403                        audit_log_format(ab, "fd0=%d fd1=%d",
1404                                        context->fds[0], context->fds[1]);
1405                        audit_log_end(ab);
1406                }
1407        }
1408
1409        if (context->sockaddr_len) {
1410                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1411                if (ab) {
1412                        audit_log_format(ab, "saddr=");
1413                        audit_log_n_hex(ab, (void *)context->sockaddr,
1414                                        context->sockaddr_len);
1415                        audit_log_end(ab);
1416                }
1417        }
1418
1419        for (aux = context->aux_pids; aux; aux = aux->next) {
1420                struct audit_aux_data_pids *axs = (void *)aux;
1421
1422                for (i = 0; i < axs->pid_count; i++)
1423                        if (audit_log_pid_context(context, axs->target_pid[i],
1424                                                  axs->target_auid[i],
1425                                                  axs->target_uid[i],
1426                                                  axs->target_sessionid[i],
1427                                                  axs->target_sid[i],
1428                                                  axs->target_comm[i]))
1429                                call_panic = 1;
1430        }
1431
1432        if (context->target_pid &&
1433            audit_log_pid_context(context, context->target_pid,
1434                                  context->target_auid, context->target_uid,
1435                                  context->target_sessionid,
1436                                  context->target_sid, context->target_comm))
1437                        call_panic = 1;
1438
1439        if (context->pwd.dentry && context->pwd.mnt) {
1440                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1441                if (ab) {
1442                        audit_log_d_path(ab, "cwd=", &context->pwd);
1443                        audit_log_end(ab);
1444                }
1445        }
1446
1447        i = 0;
1448        list_for_each_entry(n, &context->names_list, list) {
1449                if (n->hidden)
1450                        continue;
1451                audit_log_name(context, n, NULL, i++, &call_panic);
1452        }
1453
1454        audit_log_proctitle(tsk, context);
1455
1456        /* Send end of event record to help user space know we are finished */
1457        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1458        if (ab)
1459                audit_log_end(ab);
1460        if (call_panic)
1461                audit_panic("error converting sid to string");
1462}
1463
1464/**
1465 * __audit_free - free a per-task audit context
1466 * @tsk: task whose audit context block to free
1467 *
1468 * Called from copy_process and do_exit
1469 */
1470void __audit_free(struct task_struct *tsk)
1471{
1472        struct audit_context *context;
1473
1474        context = audit_take_context(tsk, 0, 0);
1475        if (!context)
1476                return;
1477
1478        /* Check for system calls that do not go through the exit
1479         * function (e.g., exit_group), then free context block.
1480         * We use GFP_ATOMIC here because we might be doing this
1481         * in the context of the idle thread */
1482        /* that can happen only if we are called from do_exit() */
1483        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1484                audit_log_exit(context, tsk);
1485        if (!list_empty(&context->killed_trees))
1486                audit_kill_trees(&context->killed_trees);
1487
1488        audit_free_context(context);
1489}
1490
1491/**
1492 * __audit_syscall_entry - fill in an audit record at syscall entry
1493 * @major: major syscall type (function)
1494 * @a1: additional syscall register 1
1495 * @a2: additional syscall register 2
1496 * @a3: additional syscall register 3
1497 * @a4: additional syscall register 4
1498 *
1499 * Fill in audit context at syscall entry.  This only happens if the
1500 * audit context was created when the task was created and the state or
1501 * filters demand the audit context be built.  If the state from the
1502 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1503 * then the record will be written at syscall exit time (otherwise, it
1504 * will only be written if another part of the kernel requests that it
1505 * be written).
1506 */
1507void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1508                           unsigned long a3, unsigned long a4)
1509{
1510        struct task_struct *tsk = current;
1511        struct audit_context *context = tsk->audit_context;
1512        enum audit_state     state;
1513
1514        if (!audit_enabled || !context)
1515                return;
1516
1517        BUG_ON(context->in_syscall || context->name_count);
1518
1519        state = context->state;
1520        if (state == AUDIT_DISABLED)
1521                return;
1522
1523        context->dummy = !audit_n_rules;
1524        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1525                context->prio = 0;
1526                if (auditd_test_task(tsk))
1527                        return;
1528        }
1529
1530        context->arch       = syscall_get_arch();
1531        context->major      = major;
1532        context->argv[0]    = a1;
1533        context->argv[1]    = a2;
1534        context->argv[2]    = a3;
1535        context->argv[3]    = a4;
1536        context->serial     = 0;
1537        context->ctime = current_kernel_time64();
1538        context->in_syscall = 1;
1539        context->current_state  = state;
1540        context->ppid       = 0;
1541}
1542
1543/**
1544 * __audit_syscall_exit - deallocate audit context after a system call
1545 * @success: success value of the syscall
1546 * @return_code: return value of the syscall
1547 *
1548 * Tear down after system call.  If the audit context has been marked as
1549 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1550 * filtering, or because some other part of the kernel wrote an audit
1551 * message), then write out the syscall information.  In call cases,
1552 * free the names stored from getname().
1553 */
1554void __audit_syscall_exit(int success, long return_code)
1555{
1556        struct task_struct *tsk = current;
1557        struct audit_context *context;
1558
1559        if (success)
1560                success = AUDITSC_SUCCESS;
1561        else
1562                success = AUDITSC_FAILURE;
1563
1564        context = audit_take_context(tsk, success, return_code);
1565        if (!context)
1566                return;
1567
1568        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1569                audit_log_exit(context, tsk);
1570
1571        context->in_syscall = 0;
1572        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1573
1574        if (!list_empty(&context->killed_trees))
1575                audit_kill_trees(&context->killed_trees);
1576
1577        audit_free_names(context);
1578        unroll_tree_refs(context, NULL, 0);
1579        audit_free_aux(context);
1580        context->aux = NULL;
1581        context->aux_pids = NULL;
1582        context->target_pid = 0;
1583        context->target_sid = 0;
1584        context->sockaddr_len = 0;
1585        context->type = 0;
1586        context->fds[0] = -1;
1587        if (context->state != AUDIT_RECORD_CONTEXT) {
1588                kfree(context->filterkey);
1589                context->filterkey = NULL;
1590        }
1591        tsk->audit_context = context;
1592}
1593
1594static inline void handle_one(const struct inode *inode)
1595{
1596#ifdef CONFIG_AUDIT_TREE
1597        struct audit_context *context;
1598        struct audit_tree_refs *p;
1599        struct audit_chunk *chunk;
1600        int count;
1601        if (likely(!inode->i_fsnotify_marks))
1602                return;
1603        context = current->audit_context;
1604        p = context->trees;
1605        count = context->tree_count;
1606        rcu_read_lock();
1607        chunk = audit_tree_lookup(inode);
1608        rcu_read_unlock();
1609        if (!chunk)
1610                return;
1611        if (likely(put_tree_ref(context, chunk)))
1612                return;
1613        if (unlikely(!grow_tree_refs(context))) {
1614                pr_warn("out of memory, audit has lost a tree reference\n");
1615                audit_set_auditable(context);
1616                audit_put_chunk(chunk);
1617                unroll_tree_refs(context, p, count);
1618                return;
1619        }
1620        put_tree_ref(context, chunk);
1621#endif
1622}
1623
1624static void handle_path(const struct dentry *dentry)
1625{
1626#ifdef CONFIG_AUDIT_TREE
1627        struct audit_context *context;
1628        struct audit_tree_refs *p;
1629        const struct dentry *d, *parent;
1630        struct audit_chunk *drop;
1631        unsigned long seq;
1632        int count;
1633
1634        context = current->audit_context;
1635        p = context->trees;
1636        count = context->tree_count;
1637retry:
1638        drop = NULL;
1639        d = dentry;
1640        rcu_read_lock();
1641        seq = read_seqbegin(&rename_lock);
1642        for(;;) {
1643                struct inode *inode = d_backing_inode(d);
1644                if (inode && unlikely(inode->i_fsnotify_marks)) {
1645                        struct audit_chunk *chunk;
1646                        chunk = audit_tree_lookup(inode);
1647                        if (chunk) {
1648                                if (unlikely(!put_tree_ref(context, chunk))) {
1649                                        drop = chunk;
1650                                        break;
1651                                }
1652                        }
1653                }
1654                parent = d->d_parent;
1655                if (parent == d)
1656                        break;
1657                d = parent;
1658        }
1659        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1660                rcu_read_unlock();
1661                if (!drop) {
1662                        /* just a race with rename */
1663                        unroll_tree_refs(context, p, count);
1664                        goto retry;
1665                }
1666                audit_put_chunk(drop);
1667                if (grow_tree_refs(context)) {
1668                        /* OK, got more space */
1669                        unroll_tree_refs(context, p, count);
1670                        goto retry;
1671                }
1672                /* too bad */
1673                pr_warn("out of memory, audit has lost a tree reference\n");
1674                unroll_tree_refs(context, p, count);
1675                audit_set_auditable(context);
1676                return;
1677        }
1678        rcu_read_unlock();
1679#endif
1680}
1681
1682static struct audit_names *audit_alloc_name(struct audit_context *context,
1683                                                unsigned char type)
1684{
1685        struct audit_names *aname;
1686
1687        if (context->name_count < AUDIT_NAMES) {
1688                aname = &context->preallocated_names[context->name_count];
1689                memset(aname, 0, sizeof(*aname));
1690        } else {
1691                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1692                if (!aname)
1693                        return NULL;
1694                aname->should_free = true;
1695        }
1696
1697        aname->ino = AUDIT_INO_UNSET;
1698        aname->type = type;
1699        list_add_tail(&aname->list, &context->names_list);
1700
1701        context->name_count++;
1702        return aname;
1703}
1704
1705/**
1706 * __audit_reusename - fill out filename with info from existing entry
1707 * @uptr: userland ptr to pathname
1708 *
1709 * Search the audit_names list for the current audit context. If there is an
1710 * existing entry with a matching "uptr" then return the filename
1711 * associated with that audit_name. If not, return NULL.
1712 */
1713struct filename *
1714__audit_reusename(const __user char *uptr)
1715{
1716        struct audit_context *context = current->audit_context;
1717        struct audit_names *n;
1718
1719        list_for_each_entry(n, &context->names_list, list) {
1720                if (!n->name)
1721                        continue;
1722                if (n->name->uptr == uptr) {
1723                        n->name->refcnt++;
1724                        return n->name;
1725                }
1726        }
1727        return NULL;
1728}
1729
1730/**
1731 * __audit_getname - add a name to the list
1732 * @name: name to add
1733 *
1734 * Add a name to the list of audit names for this context.
1735 * Called from fs/namei.c:getname().
1736 */
1737void __audit_getname(struct filename *name)
1738{
1739        struct audit_context *context = current->audit_context;
1740        struct audit_names *n;
1741
1742        if (!context->in_syscall)
1743                return;
1744
1745        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1746        if (!n)
1747                return;
1748
1749        n->name = name;
1750        n->name_len = AUDIT_NAME_FULL;
1751        name->aname = n;
1752        name->refcnt++;
1753
1754        if (!context->pwd.dentry)
1755                get_fs_pwd(current->fs, &context->pwd);
1756}
1757
1758/**
1759 * __audit_inode - store the inode and device from a lookup
1760 * @name: name being audited
1761 * @dentry: dentry being audited
1762 * @flags: attributes for this particular entry
1763 */
1764void __audit_inode(struct filename *name, const struct dentry *dentry,
1765                   unsigned int flags)
1766{
1767        struct audit_context *context = current->audit_context;
1768        struct inode *inode = d_backing_inode(dentry);
1769        struct audit_names *n;
1770        bool parent = flags & AUDIT_INODE_PARENT;
1771
1772        if (!context->in_syscall)
1773                return;
1774
1775        if (!name)
1776                goto out_alloc;
1777
1778        /*
1779         * If we have a pointer to an audit_names entry already, then we can
1780         * just use it directly if the type is correct.
1781         */
1782        n = name->aname;
1783        if (n) {
1784                if (parent) {
1785                        if (n->type == AUDIT_TYPE_PARENT ||
1786                            n->type == AUDIT_TYPE_UNKNOWN)
1787                                goto out;
1788                } else {
1789                        if (n->type != AUDIT_TYPE_PARENT)
1790                                goto out;
1791                }
1792        }
1793
1794        list_for_each_entry_reverse(n, &context->names_list, list) {
1795                if (n->ino) {
1796                        /* valid inode number, use that for the comparison */
1797                        if (n->ino != inode->i_ino ||
1798                            n->dev != inode->i_sb->s_dev)
1799                                continue;
1800                } else if (n->name) {
1801                        /* inode number has not been set, check the name */
1802                        if (strcmp(n->name->name, name->name))
1803                                continue;
1804                } else
1805                        /* no inode and no name (?!) ... this is odd ... */
1806                        continue;
1807
1808                /* match the correct record type */
1809                if (parent) {
1810                        if (n->type == AUDIT_TYPE_PARENT ||
1811                            n->type == AUDIT_TYPE_UNKNOWN)
1812                                goto out;
1813                } else {
1814                        if (n->type != AUDIT_TYPE_PARENT)
1815                                goto out;
1816                }
1817        }
1818
1819out_alloc:
1820        /* unable to find an entry with both a matching name and type */
1821        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1822        if (!n)
1823                return;
1824        if (name) {
1825                n->name = name;
1826                name->refcnt++;
1827        }
1828
1829out:
1830        if (parent) {
1831                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1832                n->type = AUDIT_TYPE_PARENT;
1833                if (flags & AUDIT_INODE_HIDDEN)
1834                        n->hidden = true;
1835        } else {
1836                n->name_len = AUDIT_NAME_FULL;
1837                n->type = AUDIT_TYPE_NORMAL;
1838        }
1839        handle_path(dentry);
1840        audit_copy_inode(n, dentry, inode);
1841}
1842
1843void __audit_file(const struct file *file)
1844{
1845        __audit_inode(NULL, file->f_path.dentry, 0);
1846}
1847
1848/**
1849 * __audit_inode_child - collect inode info for created/removed objects
1850 * @parent: inode of dentry parent
1851 * @dentry: dentry being audited
1852 * @type:   AUDIT_TYPE_* value that we're looking for
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created.  Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
1862void __audit_inode_child(struct inode *parent,
1863                         const struct dentry *dentry,
1864                         const unsigned char type)
1865{
1866        struct audit_context *context = current->audit_context;
1867        struct inode *inode = d_backing_inode(dentry);
1868        const char *dname = dentry->d_name.name;
1869        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1870        struct audit_entry *e;
1871        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1872        int i;
1873
1874        if (!context->in_syscall)
1875                return;
1876
1877        rcu_read_lock();
1878        if (!list_empty(list)) {
1879                list_for_each_entry_rcu(e, list, list) {
1880                        for (i = 0; i < e->rule.field_count; i++) {
1881                                struct audit_field *f = &e->rule.fields[i];
1882
1883                                if (f->type == AUDIT_FSTYPE) {
1884                                        if (audit_comparator(parent->i_sb->s_magic,
1885                                            f->op, f->val)) {
1886                                                if (e->rule.action == AUDIT_NEVER) {
1887                                                        rcu_read_unlock();
1888                                                        return;
1889                                                }
1890                                        }
1891                                }
1892                        }
1893                }
1894        }
1895        rcu_read_unlock();
1896
1897        if (inode)
1898                handle_one(inode);
1899
1900        /* look for a parent entry first */
1901        list_for_each_entry(n, &context->names_list, list) {
1902                if (!n->name ||
1903                    (n->type != AUDIT_TYPE_PARENT &&
1904                     n->type != AUDIT_TYPE_UNKNOWN))
1905                        continue;
1906
1907                if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1908                    !audit_compare_dname_path(dname,
1909                                              n->name->name, n->name_len)) {
1910                        if (n->type == AUDIT_TYPE_UNKNOWN)
1911                                n->type = AUDIT_TYPE_PARENT;
1912                        found_parent = n;
1913                        break;
1914                }
1915        }
1916
1917        /* is there a matching child entry? */
1918        list_for_each_entry(n, &context->names_list, list) {
1919                /* can only match entries that have a name */
1920                if (!n->name ||
1921                    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1922                        continue;
1923
1924                if (!strcmp(dname, n->name->name) ||
1925                    !audit_compare_dname_path(dname, n->name->name,
1926                                                found_parent ?
1927                                                found_parent->name_len :
1928                                                AUDIT_NAME_FULL)) {
1929                        if (n->type == AUDIT_TYPE_UNKNOWN)
1930                                n->type = type;
1931                        found_child = n;
1932                        break;
1933                }
1934        }
1935
1936        if (!found_parent) {
1937                /* create a new, "anonymous" parent record */
1938                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1939                if (!n)
1940                        return;
1941                audit_copy_inode(n, NULL, parent);
1942        }
1943
1944        if (!found_child) {
1945                found_child = audit_alloc_name(context, type);
1946                if (!found_child)
1947                        return;
1948
1949                /* Re-use the name belonging to the slot for a matching parent
1950                 * directory. All names for this context are relinquished in
1951                 * audit_free_names() */
1952                if (found_parent) {
1953                        found_child->name = found_parent->name;
1954                        found_child->name_len = AUDIT_NAME_FULL;
1955                        found_child->name->refcnt++;
1956                }
1957        }
1958
1959        if (inode)
1960                audit_copy_inode(found_child, dentry, inode);
1961        else
1962                found_child->ino = AUDIT_INO_UNSET;
1963}
1964EXPORT_SYMBOL_GPL(__audit_inode_child);
1965
1966/**
1967 * auditsc_get_stamp - get local copies of audit_context values
1968 * @ctx: audit_context for the task
1969 * @t: timespec64 to store time recorded in the audit_context
1970 * @serial: serial value that is recorded in the audit_context
1971 *
1972 * Also sets the context as auditable.
1973 */
1974int auditsc_get_stamp(struct audit_context *ctx,
1975                       struct timespec64 *t, unsigned int *serial)
1976{
1977        if (!ctx->in_syscall)
1978                return 0;
1979        if (!ctx->serial)
1980                ctx->serial = audit_serial();
1981        t->tv_sec  = ctx->ctime.tv_sec;
1982        t->tv_nsec = ctx->ctime.tv_nsec;
1983        *serial    = ctx->serial;
1984        if (!ctx->prio) {
1985                ctx->prio = 1;
1986                ctx->current_state = AUDIT_RECORD_CONTEXT;
1987        }
1988        return 1;
1989}
1990
1991/* global counter which is incremented every time something logs in */
1992static atomic_t session_id = ATOMIC_INIT(0);
1993
1994static int audit_set_loginuid_perm(kuid_t loginuid)
1995{
1996        /* if we are unset, we don't need privs */
1997        if (!audit_loginuid_set(current))
1998                return 0;
1999        /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2000        if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2001                return -EPERM;
2002        /* it is set, you need permission */
2003        if (!capable(CAP_AUDIT_CONTROL))
2004                return -EPERM;
2005        /* reject if this is not an unset and we don't allow that */
2006        if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2007                return -EPERM;
2008        return 0;
2009}
2010
2011static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2012                                   unsigned int oldsessionid, unsigned int sessionid,
2013                                   int rc)
2014{
2015        struct audit_buffer *ab;
2016        uid_t uid, oldloginuid, loginuid;
2017        struct tty_struct *tty;
2018
2019        if (!audit_enabled)
2020                return;
2021
2022        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2023        if (!ab)
2024                return;
2025
2026        uid = from_kuid(&init_user_ns, task_uid(current));
2027        oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2028        loginuid = from_kuid(&init_user_ns, kloginuid),
2029        tty = audit_get_tty(current);
2030
2031        audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2032        audit_log_task_context(ab);
2033        audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2034                         oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2035                         oldsessionid, sessionid, !rc);
2036        audit_put_tty(tty);
2037        audit_log_end(ab);
2038}
2039
2040/**
2041 * audit_set_loginuid - set current task's audit_context loginuid
2042 * @loginuid: loginuid value
2043 *
2044 * Returns 0.
2045 *
2046 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2047 */
2048int audit_set_loginuid(kuid_t loginuid)
2049{
2050        struct task_struct *task = current;
2051        unsigned int oldsessionid, sessionid = (unsigned int)-1;
2052        kuid_t oldloginuid;
2053        int rc;
2054
2055        oldloginuid = audit_get_loginuid(current);
2056        oldsessionid = audit_get_sessionid(current);
2057
2058        rc = audit_set_loginuid_perm(loginuid);
2059        if (rc)
2060                goto out;
2061
2062        /* are we setting or clearing? */
2063        if (uid_valid(loginuid)) {
2064                sessionid = (unsigned int)atomic_inc_return(&session_id);
2065                if (unlikely(sessionid == (unsigned int)-1))
2066                        sessionid = (unsigned int)atomic_inc_return(&session_id);
2067        }
2068
2069        task->sessionid = sessionid;
2070        task->loginuid = loginuid;
2071out:
2072        audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2073        return rc;
2074}
2075
2076/**
2077 * __audit_mq_open - record audit data for a POSIX MQ open
2078 * @oflag: open flag
2079 * @mode: mode bits
2080 * @attr: queue attributes
2081 *
2082 */
2083void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2084{
2085        struct audit_context *context = current->audit_context;
2086
2087        if (attr)
2088                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2089        else
2090                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2091
2092        context->mq_open.oflag = oflag;
2093        context->mq_open.mode = mode;
2094
2095        context->type = AUDIT_MQ_OPEN;
2096}
2097
2098/**
2099 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2100 * @mqdes: MQ descriptor
2101 * @msg_len: Message length
2102 * @msg_prio: Message priority
2103 * @abs_timeout: Message timeout in absolute time
2104 *
2105 */
2106void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2107                        const struct timespec64 *abs_timeout)
2108{
2109        struct audit_context *context = current->audit_context;
2110        struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2111
2112        if (abs_timeout)
2113                memcpy(p, abs_timeout, sizeof(*p));
2114        else
2115                memset(p, 0, sizeof(*p));
2116
2117        context->mq_sendrecv.mqdes = mqdes;
2118        context->mq_sendrecv.msg_len = msg_len;
2119        context->mq_sendrecv.msg_prio = msg_prio;
2120
2121        context->type = AUDIT_MQ_SENDRECV;
2122}
2123
2124/**
2125 * __audit_mq_notify - record audit data for a POSIX MQ notify
2126 * @mqdes: MQ descriptor
2127 * @notification: Notification event
2128 *
2129 */
2130
2131void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2132{
2133        struct audit_context *context = current->audit_context;
2134
2135        if (notification)
2136                context->mq_notify.sigev_signo = notification->sigev_signo;
2137        else
2138                context->mq_notify.sigev_signo = 0;
2139
2140        context->mq_notify.mqdes = mqdes;
2141        context->type = AUDIT_MQ_NOTIFY;
2142}
2143
2144/**
2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146 * @mqdes: MQ descriptor
2147 * @mqstat: MQ flags
2148 *
2149 */
2150void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2151{
2152        struct audit_context *context = current->audit_context;
2153        context->mq_getsetattr.mqdes = mqdes;
2154        context->mq_getsetattr.mqstat = *mqstat;
2155        context->type = AUDIT_MQ_GETSETATTR;
2156}
2157
2158/**
2159 * __audit_ipc_obj - record audit data for ipc object
2160 * @ipcp: ipc permissions
2161 *
2162 */
2163void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2164{
2165        struct audit_context *context = current->audit_context;
2166        context->ipc.uid = ipcp->uid;
2167        context->ipc.gid = ipcp->gid;
2168        context->ipc.mode = ipcp->mode;
2169        context->ipc.has_perm = 0;
2170        security_ipc_getsecid(ipcp, &context->ipc.osid);
2171        context->type = AUDIT_IPC;
2172}
2173
2174/**
2175 * __audit_ipc_set_perm - record audit data for new ipc permissions
2176 * @qbytes: msgq bytes
2177 * @uid: msgq user id
2178 * @gid: msgq group id
2179 * @mode: msgq mode (permissions)
2180 *
2181 * Called only after audit_ipc_obj().
2182 */
2183void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2184{
2185        struct audit_context *context = current->audit_context;
2186
2187        context->ipc.qbytes = qbytes;
2188        context->ipc.perm_uid = uid;
2189        context->ipc.perm_gid = gid;
2190        context->ipc.perm_mode = mode;
2191        context->ipc.has_perm = 1;
2192}
2193
2194void __audit_bprm(struct linux_binprm *bprm)
2195{
2196        struct audit_context *context = current->audit_context;
2197
2198        context->type = AUDIT_EXECVE;
2199        context->execve.argc = bprm->argc;
2200}
2201
2202
2203/**
2204 * __audit_socketcall - record audit data for sys_socketcall
2205 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2206 * @args: args array
2207 *
2208 */
2209int __audit_socketcall(int nargs, unsigned long *args)
2210{
2211        struct audit_context *context = current->audit_context;
2212
2213        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2214                return -EINVAL;
2215        context->type = AUDIT_SOCKETCALL;
2216        context->socketcall.nargs = nargs;
2217        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2218        return 0;
2219}
2220
2221/**
2222 * __audit_fd_pair - record audit data for pipe and socketpair
2223 * @fd1: the first file descriptor
2224 * @fd2: the second file descriptor
2225 *
2226 */
2227void __audit_fd_pair(int fd1, int fd2)
2228{
2229        struct audit_context *context = current->audit_context;
2230        context->fds[0] = fd1;
2231        context->fds[1] = fd2;
2232}
2233
2234/**
2235 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2236 * @len: data length in user space
2237 * @a: data address in kernel space
2238 *
2239 * Returns 0 for success or NULL context or < 0 on error.
2240 */
2241int __audit_sockaddr(int len, void *a)
2242{
2243        struct audit_context *context = current->audit_context;
2244
2245        if (!context->sockaddr) {
2246                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2247                if (!p)
2248                        return -ENOMEM;
2249                context->sockaddr = p;
2250        }
2251
2252        context->sockaddr_len = len;
2253        memcpy(context->sockaddr, a, len);
2254        return 0;
2255}
2256
2257void __audit_ptrace(struct task_struct *t)
2258{
2259        struct audit_context *context = current->audit_context;
2260
2261        context->target_pid = task_tgid_nr(t);
2262        context->target_auid = audit_get_loginuid(t);
2263        context->target_uid = task_uid(t);
2264        context->target_sessionid = audit_get_sessionid(t);
2265        security_task_getsecid(t, &context->target_sid);
2266        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2267}
2268
2269/**
2270 * audit_signal_info - record signal info for shutting down audit subsystem
2271 * @sig: signal value
2272 * @t: task being signaled
2273 *
2274 * If the audit subsystem is being terminated, record the task (pid)
2275 * and uid that is doing that.
2276 */
2277int audit_signal_info(int sig, struct task_struct *t)
2278{
2279        struct audit_aux_data_pids *axp;
2280        struct task_struct *tsk = current;
2281        struct audit_context *ctx = tsk->audit_context;
2282        kuid_t uid = current_uid(), t_uid = task_uid(t);
2283
2284        if (auditd_test_task(t) &&
2285            (sig == SIGTERM || sig == SIGHUP ||
2286             sig == SIGUSR1 || sig == SIGUSR2)) {
2287                audit_sig_pid = task_tgid_nr(tsk);
2288                if (uid_valid(tsk->loginuid))
2289                        audit_sig_uid = tsk->loginuid;
2290                else
2291                        audit_sig_uid = uid;
2292                security_task_getsecid(tsk, &audit_sig_sid);
2293        }
2294
2295        if (!audit_signals || audit_dummy_context())
2296                return 0;
2297
2298        /* optimize the common case by putting first signal recipient directly
2299         * in audit_context */
2300        if (!ctx->target_pid) {
2301                ctx->target_pid = task_tgid_nr(t);
2302                ctx->target_auid = audit_get_loginuid(t);
2303                ctx->target_uid = t_uid;
2304                ctx->target_sessionid = audit_get_sessionid(t);
2305                security_task_getsecid(t, &ctx->target_sid);
2306                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2307                return 0;
2308        }
2309
2310        axp = (void *)ctx->aux_pids;
2311        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2312                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2313                if (!axp)
2314                        return -ENOMEM;
2315
2316                axp->d.type = AUDIT_OBJ_PID;
2317                axp->d.next = ctx->aux_pids;
2318                ctx->aux_pids = (void *)axp;
2319        }
2320        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2321
2322        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2323        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2324        axp->target_uid[axp->pid_count] = t_uid;
2325        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2326        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2327        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2328        axp->pid_count++;
2329
2330        return 0;
2331}
2332
2333/**
2334 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2335 * @bprm: pointer to the bprm being processed
2336 * @new: the proposed new credentials
2337 * @old: the old credentials
2338 *
2339 * Simply check if the proc already has the caps given by the file and if not
2340 * store the priv escalation info for later auditing at the end of the syscall
2341 *
2342 * -Eric
2343 */
2344int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2345                           const struct cred *new, const struct cred *old)
2346{
2347        struct audit_aux_data_bprm_fcaps *ax;
2348        struct audit_context *context = current->audit_context;
2349        struct cpu_vfs_cap_data vcaps;
2350
2351        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2352        if (!ax)
2353                return -ENOMEM;
2354
2355        ax->d.type = AUDIT_BPRM_FCAPS;
2356        ax->d.next = context->aux;
2357        context->aux = (void *)ax;
2358
2359        get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2360
2361        ax->fcap.permitted = vcaps.permitted;
2362        ax->fcap.inheritable = vcaps.inheritable;
2363        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2364        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2365
2366        ax->old_pcap.permitted   = old->cap_permitted;
2367        ax->old_pcap.inheritable = old->cap_inheritable;
2368        ax->old_pcap.effective   = old->cap_effective;
2369        ax->old_pcap.ambient     = old->cap_ambient;
2370
2371        ax->new_pcap.permitted   = new->cap_permitted;
2372        ax->new_pcap.inheritable = new->cap_inheritable;
2373        ax->new_pcap.effective   = new->cap_effective;
2374        ax->new_pcap.ambient     = new->cap_ambient;
2375        return 0;
2376}
2377
2378/**
2379 * __audit_log_capset - store information about the arguments to the capset syscall
2380 * @new: the new credentials
2381 * @old: the old (current) credentials
2382 *
2383 * Record the arguments userspace sent to sys_capset for later printing by the
2384 * audit system if applicable
2385 */
2386void __audit_log_capset(const struct cred *new, const struct cred *old)
2387{
2388        struct audit_context *context = current->audit_context;
2389        context->capset.pid = task_tgid_nr(current);
2390        context->capset.cap.effective   = new->cap_effective;
2391        context->capset.cap.inheritable = new->cap_effective;
2392        context->capset.cap.permitted   = new->cap_permitted;
2393        context->capset.cap.ambient     = new->cap_ambient;
2394        context->type = AUDIT_CAPSET;
2395}
2396
2397void __audit_mmap_fd(int fd, int flags)
2398{
2399        struct audit_context *context = current->audit_context;
2400        context->mmap.fd = fd;
2401        context->mmap.flags = flags;
2402        context->type = AUDIT_MMAP;
2403}
2404
2405void __audit_log_kern_module(char *name)
2406{
2407        struct audit_context *context = current->audit_context;
2408
2409        context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2410        strcpy(context->module.name, name);
2411        context->type = AUDIT_KERN_MODULE;
2412}
2413
2414void __audit_fanotify(unsigned int response)
2415{
2416        audit_log(current->audit_context, GFP_KERNEL,
2417                AUDIT_FANOTIFY, "resp=%u", response);
2418}
2419
2420static void audit_log_task(struct audit_buffer *ab)
2421{
2422        kuid_t auid, uid;
2423        kgid_t gid;
2424        unsigned int sessionid;
2425        char comm[sizeof(current->comm)];
2426
2427        auid = audit_get_loginuid(current);
2428        sessionid = audit_get_sessionid(current);
2429        current_uid_gid(&uid, &gid);
2430
2431        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2432                         from_kuid(&init_user_ns, auid),
2433                         from_kuid(&init_user_ns, uid),
2434                         from_kgid(&init_user_ns, gid),
2435                         sessionid);
2436        audit_log_task_context(ab);
2437        audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2438        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2439        audit_log_d_path_exe(ab, current->mm);
2440}
2441
2442/**
2443 * audit_core_dumps - record information about processes that end abnormally
2444 * @signr: signal value
2445 *
2446 * If a process ends with a core dump, something fishy is going on and we
2447 * should record the event for investigation.
2448 */
2449void audit_core_dumps(long signr)
2450{
2451        struct audit_buffer *ab;
2452
2453        if (!audit_enabled)
2454                return;
2455
2456        if (signr == SIGQUIT)   /* don't care for those */
2457                return;
2458
2459        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2460        if (unlikely(!ab))
2461                return;
2462        audit_log_task(ab);
2463        audit_log_format(ab, " sig=%ld res=1", signr);
2464        audit_log_end(ab);
2465}
2466
2467void __audit_seccomp(unsigned long syscall, long signr, int code)
2468{
2469        struct audit_buffer *ab;
2470
2471        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2472        if (unlikely(!ab))
2473                return;
2474        audit_log_task(ab);
2475        audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2476                         signr, syscall_get_arch(), syscall,
2477                         in_compat_syscall(), KSTK_EIP(current), code);
2478        audit_log_end(ab);
2479}
2480
2481struct list_head *audit_killed_trees(void)
2482{
2483        struct audit_context *ctx = current->audit_context;
2484        if (likely(!ctx || !ctx->in_syscall))
2485                return NULL;
2486        return &ctx->killed_trees;
2487}
2488