linux/kernel/bpf/core.c
<<
>>
Prefs
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *      Jay Schulist <jschlst@samba.org>
  12 *      Alexei Starovoitov <ast@plumgrid.com>
  13 *      Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <linux/bpf.h>
  30#include <linux/frame.h>
  31#include <linux/rbtree_latch.h>
  32#include <linux/kallsyms.h>
  33#include <linux/rcupdate.h>
  34
  35#include <asm/unaligned.h>
  36
  37/* Registers */
  38#define BPF_R0  regs[BPF_REG_0]
  39#define BPF_R1  regs[BPF_REG_1]
  40#define BPF_R2  regs[BPF_REG_2]
  41#define BPF_R3  regs[BPF_REG_3]
  42#define BPF_R4  regs[BPF_REG_4]
  43#define BPF_R5  regs[BPF_REG_5]
  44#define BPF_R6  regs[BPF_REG_6]
  45#define BPF_R7  regs[BPF_REG_7]
  46#define BPF_R8  regs[BPF_REG_8]
  47#define BPF_R9  regs[BPF_REG_9]
  48#define BPF_R10 regs[BPF_REG_10]
  49
  50/* Named registers */
  51#define DST     regs[insn->dst_reg]
  52#define SRC     regs[insn->src_reg]
  53#define FP      regs[BPF_REG_FP]
  54#define ARG1    regs[BPF_REG_ARG1]
  55#define CTX     regs[BPF_REG_CTX]
  56#define IMM     insn->imm
  57
  58/* No hurry in this branch
  59 *
  60 * Exported for the bpf jit load helper.
  61 */
  62void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  63{
  64        u8 *ptr = NULL;
  65
  66        if (k >= SKF_NET_OFF)
  67                ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  68        else if (k >= SKF_LL_OFF)
  69                ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  70
  71        if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  72                return ptr;
  73
  74        return NULL;
  75}
  76
  77struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  78{
  79        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  80        struct bpf_prog_aux *aux;
  81        struct bpf_prog *fp;
  82
  83        size = round_up(size, PAGE_SIZE);
  84        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  85        if (fp == NULL)
  86                return NULL;
  87
  88        aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89        if (aux == NULL) {
  90                vfree(fp);
  91                return NULL;
  92        }
  93
  94        fp->pages = size / PAGE_SIZE;
  95        fp->aux = aux;
  96        fp->aux->prog = fp;
  97        fp->jit_requested = ebpf_jit_enabled();
  98
  99        INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
 100
 101        return fp;
 102}
 103EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 104
 105struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 106                                  gfp_t gfp_extra_flags)
 107{
 108        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 109        struct bpf_prog *fp;
 110        u32 pages, delta;
 111        int ret;
 112
 113        BUG_ON(fp_old == NULL);
 114
 115        size = round_up(size, PAGE_SIZE);
 116        pages = size / PAGE_SIZE;
 117        if (pages <= fp_old->pages)
 118                return fp_old;
 119
 120        delta = pages - fp_old->pages;
 121        ret = __bpf_prog_charge(fp_old->aux->user, delta);
 122        if (ret)
 123                return NULL;
 124
 125        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 126        if (fp == NULL) {
 127                __bpf_prog_uncharge(fp_old->aux->user, delta);
 128        } else {
 129                memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 130                fp->pages = pages;
 131                fp->aux->prog = fp;
 132
 133                /* We keep fp->aux from fp_old around in the new
 134                 * reallocated structure.
 135                 */
 136                fp_old->aux = NULL;
 137                __bpf_prog_free(fp_old);
 138        }
 139
 140        return fp;
 141}
 142
 143void __bpf_prog_free(struct bpf_prog *fp)
 144{
 145        kfree(fp->aux);
 146        vfree(fp);
 147}
 148
 149int bpf_prog_calc_tag(struct bpf_prog *fp)
 150{
 151        const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 152        u32 raw_size = bpf_prog_tag_scratch_size(fp);
 153        u32 digest[SHA_DIGEST_WORDS];
 154        u32 ws[SHA_WORKSPACE_WORDS];
 155        u32 i, bsize, psize, blocks;
 156        struct bpf_insn *dst;
 157        bool was_ld_map;
 158        u8 *raw, *todo;
 159        __be32 *result;
 160        __be64 *bits;
 161
 162        raw = vmalloc(raw_size);
 163        if (!raw)
 164                return -ENOMEM;
 165
 166        sha_init(digest);
 167        memset(ws, 0, sizeof(ws));
 168
 169        /* We need to take out the map fd for the digest calculation
 170         * since they are unstable from user space side.
 171         */
 172        dst = (void *)raw;
 173        for (i = 0, was_ld_map = false; i < fp->len; i++) {
 174                dst[i] = fp->insnsi[i];
 175                if (!was_ld_map &&
 176                    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 177                    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
 178                        was_ld_map = true;
 179                        dst[i].imm = 0;
 180                } else if (was_ld_map &&
 181                           dst[i].code == 0 &&
 182                           dst[i].dst_reg == 0 &&
 183                           dst[i].src_reg == 0 &&
 184                           dst[i].off == 0) {
 185                        was_ld_map = false;
 186                        dst[i].imm = 0;
 187                } else {
 188                        was_ld_map = false;
 189                }
 190        }
 191
 192        psize = bpf_prog_insn_size(fp);
 193        memset(&raw[psize], 0, raw_size - psize);
 194        raw[psize++] = 0x80;
 195
 196        bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 197        blocks = bsize / SHA_MESSAGE_BYTES;
 198        todo   = raw;
 199        if (bsize - psize >= sizeof(__be64)) {
 200                bits = (__be64 *)(todo + bsize - sizeof(__be64));
 201        } else {
 202                bits = (__be64 *)(todo + bsize + bits_offset);
 203                blocks++;
 204        }
 205        *bits = cpu_to_be64((psize - 1) << 3);
 206
 207        while (blocks--) {
 208                sha_transform(digest, todo, ws);
 209                todo += SHA_MESSAGE_BYTES;
 210        }
 211
 212        result = (__force __be32 *)digest;
 213        for (i = 0; i < SHA_DIGEST_WORDS; i++)
 214                result[i] = cpu_to_be32(digest[i]);
 215        memcpy(fp->tag, result, sizeof(fp->tag));
 216
 217        vfree(raw);
 218        return 0;
 219}
 220
 221static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
 222                                u32 curr, const bool probe_pass)
 223{
 224        const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 225        s64 imm = insn->imm;
 226
 227        if (curr < pos && curr + imm + 1 > pos)
 228                imm += delta;
 229        else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
 230                imm -= delta;
 231        if (imm < imm_min || imm > imm_max)
 232                return -ERANGE;
 233        if (!probe_pass)
 234                insn->imm = imm;
 235        return 0;
 236}
 237
 238static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
 239                                u32 curr, const bool probe_pass)
 240{
 241        const s32 off_min = S16_MIN, off_max = S16_MAX;
 242        s32 off = insn->off;
 243
 244        if (curr < pos && curr + off + 1 > pos)
 245                off += delta;
 246        else if (curr > pos + delta && curr + off + 1 <= pos + delta)
 247                off -= delta;
 248        if (off < off_min || off > off_max)
 249                return -ERANGE;
 250        if (!probe_pass)
 251                insn->off = off;
 252        return 0;
 253}
 254
 255static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
 256                            const bool probe_pass)
 257{
 258        u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
 259        struct bpf_insn *insn = prog->insnsi;
 260        int ret = 0;
 261
 262        for (i = 0; i < insn_cnt; i++, insn++) {
 263                u8 code;
 264
 265                /* In the probing pass we still operate on the original,
 266                 * unpatched image in order to check overflows before we
 267                 * do any other adjustments. Therefore skip the patchlet.
 268                 */
 269                if (probe_pass && i == pos) {
 270                        i += delta + 1;
 271                        insn++;
 272                }
 273                code = insn->code;
 274                if (BPF_CLASS(code) != BPF_JMP ||
 275                    BPF_OP(code) == BPF_EXIT)
 276                        continue;
 277                /* Adjust offset of jmps if we cross patch boundaries. */
 278                if (BPF_OP(code) == BPF_CALL) {
 279                        if (insn->src_reg != BPF_PSEUDO_CALL)
 280                                continue;
 281                        ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
 282                                                   probe_pass);
 283                } else {
 284                        ret = bpf_adj_delta_to_off(insn, pos, delta, i,
 285                                                   probe_pass);
 286                }
 287                if (ret)
 288                        break;
 289        }
 290
 291        return ret;
 292}
 293
 294struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 295                                       const struct bpf_insn *patch, u32 len)
 296{
 297        u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 298        const u32 cnt_max = S16_MAX;
 299        struct bpf_prog *prog_adj;
 300
 301        /* Since our patchlet doesn't expand the image, we're done. */
 302        if (insn_delta == 0) {
 303                memcpy(prog->insnsi + off, patch, sizeof(*patch));
 304                return prog;
 305        }
 306
 307        insn_adj_cnt = prog->len + insn_delta;
 308
 309        /* Reject anything that would potentially let the insn->off
 310         * target overflow when we have excessive program expansions.
 311         * We need to probe here before we do any reallocation where
 312         * we afterwards may not fail anymore.
 313         */
 314        if (insn_adj_cnt > cnt_max &&
 315            bpf_adj_branches(prog, off, insn_delta, true))
 316                return NULL;
 317
 318        /* Several new instructions need to be inserted. Make room
 319         * for them. Likely, there's no need for a new allocation as
 320         * last page could have large enough tailroom.
 321         */
 322        prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 323                                    GFP_USER);
 324        if (!prog_adj)
 325                return NULL;
 326
 327        prog_adj->len = insn_adj_cnt;
 328
 329        /* Patching happens in 3 steps:
 330         *
 331         * 1) Move over tail of insnsi from next instruction onwards,
 332         *    so we can patch the single target insn with one or more
 333         *    new ones (patching is always from 1 to n insns, n > 0).
 334         * 2) Inject new instructions at the target location.
 335         * 3) Adjust branch offsets if necessary.
 336         */
 337        insn_rest = insn_adj_cnt - off - len;
 338
 339        memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 340                sizeof(*patch) * insn_rest);
 341        memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 342
 343        /* We are guaranteed to not fail at this point, otherwise
 344         * the ship has sailed to reverse to the original state. An
 345         * overflow cannot happen at this point.
 346         */
 347        BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
 348
 349        return prog_adj;
 350}
 351
 352#ifdef CONFIG_BPF_JIT
 353/* All BPF JIT sysctl knobs here. */
 354int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
 355int bpf_jit_harden   __read_mostly;
 356int bpf_jit_kallsyms __read_mostly;
 357
 358static __always_inline void
 359bpf_get_prog_addr_region(const struct bpf_prog *prog,
 360                         unsigned long *symbol_start,
 361                         unsigned long *symbol_end)
 362{
 363        const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 364        unsigned long addr = (unsigned long)hdr;
 365
 366        WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 367
 368        *symbol_start = addr;
 369        *symbol_end   = addr + hdr->pages * PAGE_SIZE;
 370}
 371
 372static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
 373{
 374        const char *end = sym + KSYM_NAME_LEN;
 375
 376        BUILD_BUG_ON(sizeof("bpf_prog_") +
 377                     sizeof(prog->tag) * 2 +
 378                     /* name has been null terminated.
 379                      * We should need +1 for the '_' preceding
 380                      * the name.  However, the null character
 381                      * is double counted between the name and the
 382                      * sizeof("bpf_prog_") above, so we omit
 383                      * the +1 here.
 384                      */
 385                     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 386
 387        sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 388        sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 389        if (prog->aux->name[0])
 390                snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 391        else
 392                *sym = 0;
 393}
 394
 395static __always_inline unsigned long
 396bpf_get_prog_addr_start(struct latch_tree_node *n)
 397{
 398        unsigned long symbol_start, symbol_end;
 399        const struct bpf_prog_aux *aux;
 400
 401        aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 402        bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 403
 404        return symbol_start;
 405}
 406
 407static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 408                                          struct latch_tree_node *b)
 409{
 410        return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
 411}
 412
 413static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 414{
 415        unsigned long val = (unsigned long)key;
 416        unsigned long symbol_start, symbol_end;
 417        const struct bpf_prog_aux *aux;
 418
 419        aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 420        bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 421
 422        if (val < symbol_start)
 423                return -1;
 424        if (val >= symbol_end)
 425                return  1;
 426
 427        return 0;
 428}
 429
 430static const struct latch_tree_ops bpf_tree_ops = {
 431        .less   = bpf_tree_less,
 432        .comp   = bpf_tree_comp,
 433};
 434
 435static DEFINE_SPINLOCK(bpf_lock);
 436static LIST_HEAD(bpf_kallsyms);
 437static struct latch_tree_root bpf_tree __cacheline_aligned;
 438
 439static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
 440{
 441        WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
 442        list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
 443        latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 444}
 445
 446static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
 447{
 448        if (list_empty(&aux->ksym_lnode))
 449                return;
 450
 451        latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 452        list_del_rcu(&aux->ksym_lnode);
 453}
 454
 455static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 456{
 457        return fp->jited && !bpf_prog_was_classic(fp);
 458}
 459
 460static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 461{
 462        return list_empty(&fp->aux->ksym_lnode) ||
 463               fp->aux->ksym_lnode.prev == LIST_POISON2;
 464}
 465
 466void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 467{
 468        if (!bpf_prog_kallsyms_candidate(fp) ||
 469            !capable(CAP_SYS_ADMIN))
 470                return;
 471
 472        spin_lock_bh(&bpf_lock);
 473        bpf_prog_ksym_node_add(fp->aux);
 474        spin_unlock_bh(&bpf_lock);
 475}
 476
 477void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 478{
 479        if (!bpf_prog_kallsyms_candidate(fp))
 480                return;
 481
 482        spin_lock_bh(&bpf_lock);
 483        bpf_prog_ksym_node_del(fp->aux);
 484        spin_unlock_bh(&bpf_lock);
 485}
 486
 487static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
 488{
 489        struct latch_tree_node *n;
 490
 491        if (!bpf_jit_kallsyms_enabled())
 492                return NULL;
 493
 494        n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 495        return n ?
 496               container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
 497               NULL;
 498}
 499
 500const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 501                                 unsigned long *off, char *sym)
 502{
 503        unsigned long symbol_start, symbol_end;
 504        struct bpf_prog *prog;
 505        char *ret = NULL;
 506
 507        rcu_read_lock();
 508        prog = bpf_prog_kallsyms_find(addr);
 509        if (prog) {
 510                bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
 511                bpf_get_prog_name(prog, sym);
 512
 513                ret = sym;
 514                if (size)
 515                        *size = symbol_end - symbol_start;
 516                if (off)
 517                        *off  = addr - symbol_start;
 518        }
 519        rcu_read_unlock();
 520
 521        return ret;
 522}
 523
 524bool is_bpf_text_address(unsigned long addr)
 525{
 526        bool ret;
 527
 528        rcu_read_lock();
 529        ret = bpf_prog_kallsyms_find(addr) != NULL;
 530        rcu_read_unlock();
 531
 532        return ret;
 533}
 534
 535int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 536                    char *sym)
 537{
 538        unsigned long symbol_start, symbol_end;
 539        struct bpf_prog_aux *aux;
 540        unsigned int it = 0;
 541        int ret = -ERANGE;
 542
 543        if (!bpf_jit_kallsyms_enabled())
 544                return ret;
 545
 546        rcu_read_lock();
 547        list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
 548                if (it++ != symnum)
 549                        continue;
 550
 551                bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 552                bpf_get_prog_name(aux->prog, sym);
 553
 554                *value = symbol_start;
 555                *type  = BPF_SYM_ELF_TYPE;
 556
 557                ret = 0;
 558                break;
 559        }
 560        rcu_read_unlock();
 561
 562        return ret;
 563}
 564
 565struct bpf_binary_header *
 566bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 567                     unsigned int alignment,
 568                     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 569{
 570        struct bpf_binary_header *hdr;
 571        unsigned int size, hole, start;
 572
 573        /* Most of BPF filters are really small, but if some of them
 574         * fill a page, allow at least 128 extra bytes to insert a
 575         * random section of illegal instructions.
 576         */
 577        size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 578        hdr = module_alloc(size);
 579        if (hdr == NULL)
 580                return NULL;
 581
 582        /* Fill space with illegal/arch-dep instructions. */
 583        bpf_fill_ill_insns(hdr, size);
 584
 585        hdr->pages = size / PAGE_SIZE;
 586        hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 587                     PAGE_SIZE - sizeof(*hdr));
 588        start = (get_random_int() % hole) & ~(alignment - 1);
 589
 590        /* Leave a random number of instructions before BPF code. */
 591        *image_ptr = &hdr->image[start];
 592
 593        return hdr;
 594}
 595
 596void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 597{
 598        module_memfree(hdr);
 599}
 600
 601/* This symbol is only overridden by archs that have different
 602 * requirements than the usual eBPF JITs, f.e. when they only
 603 * implement cBPF JIT, do not set images read-only, etc.
 604 */
 605void __weak bpf_jit_free(struct bpf_prog *fp)
 606{
 607        if (fp->jited) {
 608                struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 609
 610                bpf_jit_binary_unlock_ro(hdr);
 611                bpf_jit_binary_free(hdr);
 612
 613                WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 614        }
 615
 616        bpf_prog_unlock_free(fp);
 617}
 618
 619static int bpf_jit_blind_insn(const struct bpf_insn *from,
 620                              const struct bpf_insn *aux,
 621                              struct bpf_insn *to_buff)
 622{
 623        struct bpf_insn *to = to_buff;
 624        u32 imm_rnd = get_random_int();
 625        s16 off;
 626
 627        BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 628        BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 629
 630        if (from->imm == 0 &&
 631            (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 632             from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 633                *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 634                goto out;
 635        }
 636
 637        switch (from->code) {
 638        case BPF_ALU | BPF_ADD | BPF_K:
 639        case BPF_ALU | BPF_SUB | BPF_K:
 640        case BPF_ALU | BPF_AND | BPF_K:
 641        case BPF_ALU | BPF_OR  | BPF_K:
 642        case BPF_ALU | BPF_XOR | BPF_K:
 643        case BPF_ALU | BPF_MUL | BPF_K:
 644        case BPF_ALU | BPF_MOV | BPF_K:
 645        case BPF_ALU | BPF_DIV | BPF_K:
 646        case BPF_ALU | BPF_MOD | BPF_K:
 647                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 648                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 649                *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 650                break;
 651
 652        case BPF_ALU64 | BPF_ADD | BPF_K:
 653        case BPF_ALU64 | BPF_SUB | BPF_K:
 654        case BPF_ALU64 | BPF_AND | BPF_K:
 655        case BPF_ALU64 | BPF_OR  | BPF_K:
 656        case BPF_ALU64 | BPF_XOR | BPF_K:
 657        case BPF_ALU64 | BPF_MUL | BPF_K:
 658        case BPF_ALU64 | BPF_MOV | BPF_K:
 659        case BPF_ALU64 | BPF_DIV | BPF_K:
 660        case BPF_ALU64 | BPF_MOD | BPF_K:
 661                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 662                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 663                *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 664                break;
 665
 666        case BPF_JMP | BPF_JEQ  | BPF_K:
 667        case BPF_JMP | BPF_JNE  | BPF_K:
 668        case BPF_JMP | BPF_JGT  | BPF_K:
 669        case BPF_JMP | BPF_JLT  | BPF_K:
 670        case BPF_JMP | BPF_JGE  | BPF_K:
 671        case BPF_JMP | BPF_JLE  | BPF_K:
 672        case BPF_JMP | BPF_JSGT | BPF_K:
 673        case BPF_JMP | BPF_JSLT | BPF_K:
 674        case BPF_JMP | BPF_JSGE | BPF_K:
 675        case BPF_JMP | BPF_JSLE | BPF_K:
 676        case BPF_JMP | BPF_JSET | BPF_K:
 677                /* Accommodate for extra offset in case of a backjump. */
 678                off = from->off;
 679                if (off < 0)
 680                        off -= 2;
 681                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 682                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 683                *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 684                break;
 685
 686        case BPF_LD | BPF_ABS | BPF_W:
 687        case BPF_LD | BPF_ABS | BPF_H:
 688        case BPF_LD | BPF_ABS | BPF_B:
 689                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 690                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 691                *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 692                break;
 693
 694        case BPF_LD | BPF_IND | BPF_W:
 695        case BPF_LD | BPF_IND | BPF_H:
 696        case BPF_LD | BPF_IND | BPF_B:
 697                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 698                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 699                *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
 700                *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 701                break;
 702
 703        case BPF_LD | BPF_IMM | BPF_DW:
 704                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 705                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 706                *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 707                *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
 708                break;
 709        case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
 710                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
 711                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 712                *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
 713                break;
 714
 715        case BPF_ST | BPF_MEM | BPF_DW:
 716        case BPF_ST | BPF_MEM | BPF_W:
 717        case BPF_ST | BPF_MEM | BPF_H:
 718        case BPF_ST | BPF_MEM | BPF_B:
 719                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 720                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 721                *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
 722                break;
 723        }
 724out:
 725        return to - to_buff;
 726}
 727
 728static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
 729                                              gfp_t gfp_extra_flags)
 730{
 731        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 732        struct bpf_prog *fp;
 733
 734        fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
 735        if (fp != NULL) {
 736                /* aux->prog still points to the fp_other one, so
 737                 * when promoting the clone to the real program,
 738                 * this still needs to be adapted.
 739                 */
 740                memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
 741        }
 742
 743        return fp;
 744}
 745
 746static void bpf_prog_clone_free(struct bpf_prog *fp)
 747{
 748        /* aux was stolen by the other clone, so we cannot free
 749         * it from this path! It will be freed eventually by the
 750         * other program on release.
 751         *
 752         * At this point, we don't need a deferred release since
 753         * clone is guaranteed to not be locked.
 754         */
 755        fp->aux = NULL;
 756        __bpf_prog_free(fp);
 757}
 758
 759void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
 760{
 761        /* We have to repoint aux->prog to self, as we don't
 762         * know whether fp here is the clone or the original.
 763         */
 764        fp->aux->prog = fp;
 765        bpf_prog_clone_free(fp_other);
 766}
 767
 768struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
 769{
 770        struct bpf_insn insn_buff[16], aux[2];
 771        struct bpf_prog *clone, *tmp;
 772        int insn_delta, insn_cnt;
 773        struct bpf_insn *insn;
 774        int i, rewritten;
 775
 776        if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
 777                return prog;
 778
 779        clone = bpf_prog_clone_create(prog, GFP_USER);
 780        if (!clone)
 781                return ERR_PTR(-ENOMEM);
 782
 783        insn_cnt = clone->len;
 784        insn = clone->insnsi;
 785
 786        for (i = 0; i < insn_cnt; i++, insn++) {
 787                /* We temporarily need to hold the original ld64 insn
 788                 * so that we can still access the first part in the
 789                 * second blinding run.
 790                 */
 791                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 792                    insn[1].code == 0)
 793                        memcpy(aux, insn, sizeof(aux));
 794
 795                rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
 796                if (!rewritten)
 797                        continue;
 798
 799                tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
 800                if (!tmp) {
 801                        /* Patching may have repointed aux->prog during
 802                         * realloc from the original one, so we need to
 803                         * fix it up here on error.
 804                         */
 805                        bpf_jit_prog_release_other(prog, clone);
 806                        return ERR_PTR(-ENOMEM);
 807                }
 808
 809                clone = tmp;
 810                insn_delta = rewritten - 1;
 811
 812                /* Walk new program and skip insns we just inserted. */
 813                insn = clone->insnsi + i + insn_delta;
 814                insn_cnt += insn_delta;
 815                i        += insn_delta;
 816        }
 817
 818        clone->blinded = 1;
 819        return clone;
 820}
 821#endif /* CONFIG_BPF_JIT */
 822
 823/* Base function for offset calculation. Needs to go into .text section,
 824 * therefore keeping it non-static as well; will also be used by JITs
 825 * anyway later on, so do not let the compiler omit it. This also needs
 826 * to go into kallsyms for correlation from e.g. bpftool, so naming
 827 * must not change.
 828 */
 829noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 830{
 831        return 0;
 832}
 833EXPORT_SYMBOL_GPL(__bpf_call_base);
 834
 835/* All UAPI available opcodes. */
 836#define BPF_INSN_MAP(INSN_2, INSN_3)            \
 837        /* 32 bit ALU operations. */            \
 838        /*   Register based. */                 \
 839        INSN_3(ALU, ADD, X),                    \
 840        INSN_3(ALU, SUB, X),                    \
 841        INSN_3(ALU, AND, X),                    \
 842        INSN_3(ALU, OR,  X),                    \
 843        INSN_3(ALU, LSH, X),                    \
 844        INSN_3(ALU, RSH, X),                    \
 845        INSN_3(ALU, XOR, X),                    \
 846        INSN_3(ALU, MUL, X),                    \
 847        INSN_3(ALU, MOV, X),                    \
 848        INSN_3(ALU, DIV, X),                    \
 849        INSN_3(ALU, MOD, X),                    \
 850        INSN_2(ALU, NEG),                       \
 851        INSN_3(ALU, END, TO_BE),                \
 852        INSN_3(ALU, END, TO_LE),                \
 853        /*   Immediate based. */                \
 854        INSN_3(ALU, ADD, K),                    \
 855        INSN_3(ALU, SUB, K),                    \
 856        INSN_3(ALU, AND, K),                    \
 857        INSN_3(ALU, OR,  K),                    \
 858        INSN_3(ALU, LSH, K),                    \
 859        INSN_3(ALU, RSH, K),                    \
 860        INSN_3(ALU, XOR, K),                    \
 861        INSN_3(ALU, MUL, K),                    \
 862        INSN_3(ALU, MOV, K),                    \
 863        INSN_3(ALU, DIV, K),                    \
 864        INSN_3(ALU, MOD, K),                    \
 865        /* 64 bit ALU operations. */            \
 866        /*   Register based. */                 \
 867        INSN_3(ALU64, ADD,  X),                 \
 868        INSN_3(ALU64, SUB,  X),                 \
 869        INSN_3(ALU64, AND,  X),                 \
 870        INSN_3(ALU64, OR,   X),                 \
 871        INSN_3(ALU64, LSH,  X),                 \
 872        INSN_3(ALU64, RSH,  X),                 \
 873        INSN_3(ALU64, XOR,  X),                 \
 874        INSN_3(ALU64, MUL,  X),                 \
 875        INSN_3(ALU64, MOV,  X),                 \
 876        INSN_3(ALU64, ARSH, X),                 \
 877        INSN_3(ALU64, DIV,  X),                 \
 878        INSN_3(ALU64, MOD,  X),                 \
 879        INSN_2(ALU64, NEG),                     \
 880        /*   Immediate based. */                \
 881        INSN_3(ALU64, ADD,  K),                 \
 882        INSN_3(ALU64, SUB,  K),                 \
 883        INSN_3(ALU64, AND,  K),                 \
 884        INSN_3(ALU64, OR,   K),                 \
 885        INSN_3(ALU64, LSH,  K),                 \
 886        INSN_3(ALU64, RSH,  K),                 \
 887        INSN_3(ALU64, XOR,  K),                 \
 888        INSN_3(ALU64, MUL,  K),                 \
 889        INSN_3(ALU64, MOV,  K),                 \
 890        INSN_3(ALU64, ARSH, K),                 \
 891        INSN_3(ALU64, DIV,  K),                 \
 892        INSN_3(ALU64, MOD,  K),                 \
 893        /* Call instruction. */                 \
 894        INSN_2(JMP, CALL),                      \
 895        /* Exit instruction. */                 \
 896        INSN_2(JMP, EXIT),                      \
 897        /* Jump instructions. */                \
 898        /*   Register based. */                 \
 899        INSN_3(JMP, JEQ,  X),                   \
 900        INSN_3(JMP, JNE,  X),                   \
 901        INSN_3(JMP, JGT,  X),                   \
 902        INSN_3(JMP, JLT,  X),                   \
 903        INSN_3(JMP, JGE,  X),                   \
 904        INSN_3(JMP, JLE,  X),                   \
 905        INSN_3(JMP, JSGT, X),                   \
 906        INSN_3(JMP, JSLT, X),                   \
 907        INSN_3(JMP, JSGE, X),                   \
 908        INSN_3(JMP, JSLE, X),                   \
 909        INSN_3(JMP, JSET, X),                   \
 910        /*   Immediate based. */                \
 911        INSN_3(JMP, JEQ,  K),                   \
 912        INSN_3(JMP, JNE,  K),                   \
 913        INSN_3(JMP, JGT,  K),                   \
 914        INSN_3(JMP, JLT,  K),                   \
 915        INSN_3(JMP, JGE,  K),                   \
 916        INSN_3(JMP, JLE,  K),                   \
 917        INSN_3(JMP, JSGT, K),                   \
 918        INSN_3(JMP, JSLT, K),                   \
 919        INSN_3(JMP, JSGE, K),                   \
 920        INSN_3(JMP, JSLE, K),                   \
 921        INSN_3(JMP, JSET, K),                   \
 922        INSN_2(JMP, JA),                        \
 923        /* Store instructions. */               \
 924        /*   Register based. */                 \
 925        INSN_3(STX, MEM,  B),                   \
 926        INSN_3(STX, MEM,  H),                   \
 927        INSN_3(STX, MEM,  W),                   \
 928        INSN_3(STX, MEM,  DW),                  \
 929        INSN_3(STX, XADD, W),                   \
 930        INSN_3(STX, XADD, DW),                  \
 931        /*   Immediate based. */                \
 932        INSN_3(ST, MEM, B),                     \
 933        INSN_3(ST, MEM, H),                     \
 934        INSN_3(ST, MEM, W),                     \
 935        INSN_3(ST, MEM, DW),                    \
 936        /* Load instructions. */                \
 937        /*   Register based. */                 \
 938        INSN_3(LDX, MEM, B),                    \
 939        INSN_3(LDX, MEM, H),                    \
 940        INSN_3(LDX, MEM, W),                    \
 941        INSN_3(LDX, MEM, DW),                   \
 942        /*   Immediate based. */                \
 943        INSN_3(LD, IMM, DW),                    \
 944        /*   Misc (old cBPF carry-over). */     \
 945        INSN_3(LD, ABS, B),                     \
 946        INSN_3(LD, ABS, H),                     \
 947        INSN_3(LD, ABS, W),                     \
 948        INSN_3(LD, IND, B),                     \
 949        INSN_3(LD, IND, H),                     \
 950        INSN_3(LD, IND, W)
 951
 952bool bpf_opcode_in_insntable(u8 code)
 953{
 954#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
 955#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
 956        static const bool public_insntable[256] = {
 957                [0 ... 255] = false,
 958                /* Now overwrite non-defaults ... */
 959                BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
 960        };
 961#undef BPF_INSN_3_TBL
 962#undef BPF_INSN_2_TBL
 963        return public_insntable[code];
 964}
 965
 966#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 967/**
 968 *      __bpf_prog_run - run eBPF program on a given context
 969 *      @ctx: is the data we are operating on
 970 *      @insn: is the array of eBPF instructions
 971 *
 972 * Decode and execute eBPF instructions.
 973 */
 974static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
 975{
 976        u64 tmp;
 977#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
 978#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
 979        static const void *jumptable[256] = {
 980                [0 ... 255] = &&default_label,
 981                /* Now overwrite non-defaults ... */
 982                BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
 983                /* Non-UAPI available opcodes. */
 984                [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
 985                [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
 986        };
 987#undef BPF_INSN_3_LBL
 988#undef BPF_INSN_2_LBL
 989        u32 tail_call_cnt = 0;
 990        void *ptr;
 991        int off;
 992
 993#define CONT     ({ insn++; goto select_insn; })
 994#define CONT_JMP ({ insn++; goto select_insn; })
 995
 996select_insn:
 997        goto *jumptable[insn->code];
 998
 999        /* ALU */
1000#define ALU(OPCODE, OP)                 \
1001        ALU64_##OPCODE##_X:             \
1002                DST = DST OP SRC;       \
1003                CONT;                   \
1004        ALU_##OPCODE##_X:               \
1005                DST = (u32) DST OP (u32) SRC;   \
1006                CONT;                   \
1007        ALU64_##OPCODE##_K:             \
1008                DST = DST OP IMM;               \
1009                CONT;                   \
1010        ALU_##OPCODE##_K:               \
1011                DST = (u32) DST OP (u32) IMM;   \
1012                CONT;
1013
1014        ALU(ADD,  +)
1015        ALU(SUB,  -)
1016        ALU(AND,  &)
1017        ALU(OR,   |)
1018        ALU(LSH, <<)
1019        ALU(RSH, >>)
1020        ALU(XOR,  ^)
1021        ALU(MUL,  *)
1022#undef ALU
1023        ALU_NEG:
1024                DST = (u32) -DST;
1025                CONT;
1026        ALU64_NEG:
1027                DST = -DST;
1028                CONT;
1029        ALU_MOV_X:
1030                DST = (u32) SRC;
1031                CONT;
1032        ALU_MOV_K:
1033                DST = (u32) IMM;
1034                CONT;
1035        ALU64_MOV_X:
1036                DST = SRC;
1037                CONT;
1038        ALU64_MOV_K:
1039                DST = IMM;
1040                CONT;
1041        LD_IMM_DW:
1042                DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1043                insn++;
1044                CONT;
1045        ALU64_ARSH_X:
1046                (*(s64 *) &DST) >>= SRC;
1047                CONT;
1048        ALU64_ARSH_K:
1049                (*(s64 *) &DST) >>= IMM;
1050                CONT;
1051        ALU64_MOD_X:
1052                div64_u64_rem(DST, SRC, &tmp);
1053                DST = tmp;
1054                CONT;
1055        ALU_MOD_X:
1056                tmp = (u32) DST;
1057                DST = do_div(tmp, (u32) SRC);
1058                CONT;
1059        ALU64_MOD_K:
1060                div64_u64_rem(DST, IMM, &tmp);
1061                DST = tmp;
1062                CONT;
1063        ALU_MOD_K:
1064                tmp = (u32) DST;
1065                DST = do_div(tmp, (u32) IMM);
1066                CONT;
1067        ALU64_DIV_X:
1068                DST = div64_u64(DST, SRC);
1069                CONT;
1070        ALU_DIV_X:
1071                tmp = (u32) DST;
1072                do_div(tmp, (u32) SRC);
1073                DST = (u32) tmp;
1074                CONT;
1075        ALU64_DIV_K:
1076                DST = div64_u64(DST, IMM);
1077                CONT;
1078        ALU_DIV_K:
1079                tmp = (u32) DST;
1080                do_div(tmp, (u32) IMM);
1081                DST = (u32) tmp;
1082                CONT;
1083        ALU_END_TO_BE:
1084                switch (IMM) {
1085                case 16:
1086                        DST = (__force u16) cpu_to_be16(DST);
1087                        break;
1088                case 32:
1089                        DST = (__force u32) cpu_to_be32(DST);
1090                        break;
1091                case 64:
1092                        DST = (__force u64) cpu_to_be64(DST);
1093                        break;
1094                }
1095                CONT;
1096        ALU_END_TO_LE:
1097                switch (IMM) {
1098                case 16:
1099                        DST = (__force u16) cpu_to_le16(DST);
1100                        break;
1101                case 32:
1102                        DST = (__force u32) cpu_to_le32(DST);
1103                        break;
1104                case 64:
1105                        DST = (__force u64) cpu_to_le64(DST);
1106                        break;
1107                }
1108                CONT;
1109
1110        /* CALL */
1111        JMP_CALL:
1112                /* Function call scratches BPF_R1-BPF_R5 registers,
1113                 * preserves BPF_R6-BPF_R9, and stores return value
1114                 * into BPF_R0.
1115                 */
1116                BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1117                                                       BPF_R4, BPF_R5);
1118                CONT;
1119
1120        JMP_CALL_ARGS:
1121                BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1122                                                            BPF_R3, BPF_R4,
1123                                                            BPF_R5,
1124                                                            insn + insn->off + 1);
1125                CONT;
1126
1127        JMP_TAIL_CALL: {
1128                struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1129                struct bpf_array *array = container_of(map, struct bpf_array, map);
1130                struct bpf_prog *prog;
1131                u32 index = BPF_R3;
1132
1133                if (unlikely(index >= array->map.max_entries))
1134                        goto out;
1135                if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1136                        goto out;
1137
1138                tail_call_cnt++;
1139
1140                prog = READ_ONCE(array->ptrs[index]);
1141                if (!prog)
1142                        goto out;
1143
1144                /* ARG1 at this point is guaranteed to point to CTX from
1145                 * the verifier side due to the fact that the tail call is
1146                 * handeled like a helper, that is, bpf_tail_call_proto,
1147                 * where arg1_type is ARG_PTR_TO_CTX.
1148                 */
1149                insn = prog->insnsi;
1150                goto select_insn;
1151out:
1152                CONT;
1153        }
1154        /* JMP */
1155        JMP_JA:
1156                insn += insn->off;
1157                CONT;
1158        JMP_JEQ_X:
1159                if (DST == SRC) {
1160                        insn += insn->off;
1161                        CONT_JMP;
1162                }
1163                CONT;
1164        JMP_JEQ_K:
1165                if (DST == IMM) {
1166                        insn += insn->off;
1167                        CONT_JMP;
1168                }
1169                CONT;
1170        JMP_JNE_X:
1171                if (DST != SRC) {
1172                        insn += insn->off;
1173                        CONT_JMP;
1174                }
1175                CONT;
1176        JMP_JNE_K:
1177                if (DST != IMM) {
1178                        insn += insn->off;
1179                        CONT_JMP;
1180                }
1181                CONT;
1182        JMP_JGT_X:
1183                if (DST > SRC) {
1184                        insn += insn->off;
1185                        CONT_JMP;
1186                }
1187                CONT;
1188        JMP_JGT_K:
1189                if (DST > IMM) {
1190                        insn += insn->off;
1191                        CONT_JMP;
1192                }
1193                CONT;
1194        JMP_JLT_X:
1195                if (DST < SRC) {
1196                        insn += insn->off;
1197                        CONT_JMP;
1198                }
1199                CONT;
1200        JMP_JLT_K:
1201                if (DST < IMM) {
1202                        insn += insn->off;
1203                        CONT_JMP;
1204                }
1205                CONT;
1206        JMP_JGE_X:
1207                if (DST >= SRC) {
1208                        insn += insn->off;
1209                        CONT_JMP;
1210                }
1211                CONT;
1212        JMP_JGE_K:
1213                if (DST >= IMM) {
1214                        insn += insn->off;
1215                        CONT_JMP;
1216                }
1217                CONT;
1218        JMP_JLE_X:
1219                if (DST <= SRC) {
1220                        insn += insn->off;
1221                        CONT_JMP;
1222                }
1223                CONT;
1224        JMP_JLE_K:
1225                if (DST <= IMM) {
1226                        insn += insn->off;
1227                        CONT_JMP;
1228                }
1229                CONT;
1230        JMP_JSGT_X:
1231                if (((s64) DST) > ((s64) SRC)) {
1232                        insn += insn->off;
1233                        CONT_JMP;
1234                }
1235                CONT;
1236        JMP_JSGT_K:
1237                if (((s64) DST) > ((s64) IMM)) {
1238                        insn += insn->off;
1239                        CONT_JMP;
1240                }
1241                CONT;
1242        JMP_JSLT_X:
1243                if (((s64) DST) < ((s64) SRC)) {
1244                        insn += insn->off;
1245                        CONT_JMP;
1246                }
1247                CONT;
1248        JMP_JSLT_K:
1249                if (((s64) DST) < ((s64) IMM)) {
1250                        insn += insn->off;
1251                        CONT_JMP;
1252                }
1253                CONT;
1254        JMP_JSGE_X:
1255                if (((s64) DST) >= ((s64) SRC)) {
1256                        insn += insn->off;
1257                        CONT_JMP;
1258                }
1259                CONT;
1260        JMP_JSGE_K:
1261                if (((s64) DST) >= ((s64) IMM)) {
1262                        insn += insn->off;
1263                        CONT_JMP;
1264                }
1265                CONT;
1266        JMP_JSLE_X:
1267                if (((s64) DST) <= ((s64) SRC)) {
1268                        insn += insn->off;
1269                        CONT_JMP;
1270                }
1271                CONT;
1272        JMP_JSLE_K:
1273                if (((s64) DST) <= ((s64) IMM)) {
1274                        insn += insn->off;
1275                        CONT_JMP;
1276                }
1277                CONT;
1278        JMP_JSET_X:
1279                if (DST & SRC) {
1280                        insn += insn->off;
1281                        CONT_JMP;
1282                }
1283                CONT;
1284        JMP_JSET_K:
1285                if (DST & IMM) {
1286                        insn += insn->off;
1287                        CONT_JMP;
1288                }
1289                CONT;
1290        JMP_EXIT:
1291                return BPF_R0;
1292
1293        /* STX and ST and LDX*/
1294#define LDST(SIZEOP, SIZE)                                              \
1295        STX_MEM_##SIZEOP:                                               \
1296                *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1297                CONT;                                                   \
1298        ST_MEM_##SIZEOP:                                                \
1299                *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1300                CONT;                                                   \
1301        LDX_MEM_##SIZEOP:                                               \
1302                DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1303                CONT;
1304
1305        LDST(B,   u8)
1306        LDST(H,  u16)
1307        LDST(W,  u32)
1308        LDST(DW, u64)
1309#undef LDST
1310        STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1311                atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1312                           (DST + insn->off));
1313                CONT;
1314        STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1315                atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1316                             (DST + insn->off));
1317                CONT;
1318        LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1319                off = IMM;
1320load_word:
1321                /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1322                 * appearing in the programs where ctx == skb
1323                 * (see may_access_skb() in the verifier). All programs
1324                 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1325                 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1326                 * verifier will check that BPF_R6 == ctx.
1327                 *
1328                 * BPF_ABS and BPF_IND are wrappers of function calls,
1329                 * so they scratch BPF_R1-BPF_R5 registers, preserve
1330                 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1331                 *
1332                 * Implicit input:
1333                 *   ctx == skb == BPF_R6 == CTX
1334                 *
1335                 * Explicit input:
1336                 *   SRC == any register
1337                 *   IMM == 32-bit immediate
1338                 *
1339                 * Output:
1340                 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1341                 */
1342
1343                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1344                if (likely(ptr != NULL)) {
1345                        BPF_R0 = get_unaligned_be32(ptr);
1346                        CONT;
1347                }
1348
1349                return 0;
1350        LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1351                off = IMM;
1352load_half:
1353                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1354                if (likely(ptr != NULL)) {
1355                        BPF_R0 = get_unaligned_be16(ptr);
1356                        CONT;
1357                }
1358
1359                return 0;
1360        LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1361                off = IMM;
1362load_byte:
1363                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1364                if (likely(ptr != NULL)) {
1365                        BPF_R0 = *(u8 *)ptr;
1366                        CONT;
1367                }
1368
1369                return 0;
1370        LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1371                off = IMM + SRC;
1372                goto load_word;
1373        LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1374                off = IMM + SRC;
1375                goto load_half;
1376        LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1377                off = IMM + SRC;
1378                goto load_byte;
1379
1380        default_label:
1381                /* If we ever reach this, we have a bug somewhere. Die hard here
1382                 * instead of just returning 0; we could be somewhere in a subprog,
1383                 * so execution could continue otherwise which we do /not/ want.
1384                 *
1385                 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1386                 */
1387                pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1388                BUG_ON(1);
1389                return 0;
1390}
1391STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1392
1393#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1394#define DEFINE_BPF_PROG_RUN(stack_size) \
1395static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1396{ \
1397        u64 stack[stack_size / sizeof(u64)]; \
1398        u64 regs[MAX_BPF_REG]; \
1399\
1400        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1401        ARG1 = (u64) (unsigned long) ctx; \
1402        return ___bpf_prog_run(regs, insn, stack); \
1403}
1404
1405#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1406#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1407static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1408                                      const struct bpf_insn *insn) \
1409{ \
1410        u64 stack[stack_size / sizeof(u64)]; \
1411        u64 regs[MAX_BPF_REG]; \
1412\
1413        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1414        BPF_R1 = r1; \
1415        BPF_R2 = r2; \
1416        BPF_R3 = r3; \
1417        BPF_R4 = r4; \
1418        BPF_R5 = r5; \
1419        return ___bpf_prog_run(regs, insn, stack); \
1420}
1421
1422#define EVAL1(FN, X) FN(X)
1423#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1424#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1425#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1426#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1427#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1428
1429EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1430EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1431EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1432
1433EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1434EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1435EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1436
1437#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1438
1439static unsigned int (*interpreters[])(const void *ctx,
1440                                      const struct bpf_insn *insn) = {
1441EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1442EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1443EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1444};
1445#undef PROG_NAME_LIST
1446#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1447static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1448                                  const struct bpf_insn *insn) = {
1449EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1450EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1451EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1452};
1453#undef PROG_NAME_LIST
1454
1455void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1456{
1457        stack_depth = max_t(u32, stack_depth, 1);
1458        insn->off = (s16) insn->imm;
1459        insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1460                __bpf_call_base_args;
1461        insn->code = BPF_JMP | BPF_CALL_ARGS;
1462}
1463
1464#else
1465static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1466                                         const struct bpf_insn *insn)
1467{
1468        /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1469         * is not working properly, so warn about it!
1470         */
1471        WARN_ON_ONCE(1);
1472        return 0;
1473}
1474#endif
1475
1476bool bpf_prog_array_compatible(struct bpf_array *array,
1477                               const struct bpf_prog *fp)
1478{
1479        if (fp->kprobe_override)
1480                return false;
1481
1482        if (!array->owner_prog_type) {
1483                /* There's no owner yet where we could check for
1484                 * compatibility.
1485                 */
1486                array->owner_prog_type = fp->type;
1487                array->owner_jited = fp->jited;
1488
1489                return true;
1490        }
1491
1492        return array->owner_prog_type == fp->type &&
1493               array->owner_jited == fp->jited;
1494}
1495
1496static int bpf_check_tail_call(const struct bpf_prog *fp)
1497{
1498        struct bpf_prog_aux *aux = fp->aux;
1499        int i;
1500
1501        for (i = 0; i < aux->used_map_cnt; i++) {
1502                struct bpf_map *map = aux->used_maps[i];
1503                struct bpf_array *array;
1504
1505                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1506                        continue;
1507
1508                array = container_of(map, struct bpf_array, map);
1509                if (!bpf_prog_array_compatible(array, fp))
1510                        return -EINVAL;
1511        }
1512
1513        return 0;
1514}
1515
1516/**
1517 *      bpf_prog_select_runtime - select exec runtime for BPF program
1518 *      @fp: bpf_prog populated with internal BPF program
1519 *      @err: pointer to error variable
1520 *
1521 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1522 * The BPF program will be executed via BPF_PROG_RUN() macro.
1523 */
1524struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1525{
1526#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1527        u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1528
1529        fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1530#else
1531        fp->bpf_func = __bpf_prog_ret0_warn;
1532#endif
1533
1534        /* eBPF JITs can rewrite the program in case constant
1535         * blinding is active. However, in case of error during
1536         * blinding, bpf_int_jit_compile() must always return a
1537         * valid program, which in this case would simply not
1538         * be JITed, but falls back to the interpreter.
1539         */
1540        if (!bpf_prog_is_dev_bound(fp->aux)) {
1541                fp = bpf_int_jit_compile(fp);
1542#ifdef CONFIG_BPF_JIT_ALWAYS_ON
1543                if (!fp->jited) {
1544                        *err = -ENOTSUPP;
1545                        return fp;
1546                }
1547#endif
1548        } else {
1549                *err = bpf_prog_offload_compile(fp);
1550                if (*err)
1551                        return fp;
1552        }
1553        bpf_prog_lock_ro(fp);
1554
1555        /* The tail call compatibility check can only be done at
1556         * this late stage as we need to determine, if we deal
1557         * with JITed or non JITed program concatenations and not
1558         * all eBPF JITs might immediately support all features.
1559         */
1560        *err = bpf_check_tail_call(fp);
1561
1562        return fp;
1563}
1564EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1565
1566static unsigned int __bpf_prog_ret1(const void *ctx,
1567                                    const struct bpf_insn *insn)
1568{
1569        return 1;
1570}
1571
1572static struct bpf_prog_dummy {
1573        struct bpf_prog prog;
1574} dummy_bpf_prog = {
1575        .prog = {
1576                .bpf_func = __bpf_prog_ret1,
1577        },
1578};
1579
1580/* to avoid allocating empty bpf_prog_array for cgroups that
1581 * don't have bpf program attached use one global 'empty_prog_array'
1582 * It will not be modified the caller of bpf_prog_array_alloc()
1583 * (since caller requested prog_cnt == 0)
1584 * that pointer should be 'freed' by bpf_prog_array_free()
1585 */
1586static struct {
1587        struct bpf_prog_array hdr;
1588        struct bpf_prog *null_prog;
1589} empty_prog_array = {
1590        .null_prog = NULL,
1591};
1592
1593struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1594{
1595        if (prog_cnt)
1596                return kzalloc(sizeof(struct bpf_prog_array) +
1597                               sizeof(struct bpf_prog *) * (prog_cnt + 1),
1598                               flags);
1599
1600        return &empty_prog_array.hdr;
1601}
1602
1603void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1604{
1605        if (!progs ||
1606            progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1607                return;
1608        kfree_rcu(progs, rcu);
1609}
1610
1611int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1612{
1613        struct bpf_prog **prog;
1614        u32 cnt = 0;
1615
1616        rcu_read_lock();
1617        prog = rcu_dereference(progs)->progs;
1618        for (; *prog; prog++)
1619                if (*prog != &dummy_bpf_prog.prog)
1620                        cnt++;
1621        rcu_read_unlock();
1622        return cnt;
1623}
1624
1625static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
1626                                     u32 *prog_ids,
1627                                     u32 request_cnt)
1628{
1629        int i = 0;
1630
1631        for (; *prog; prog++) {
1632                if (*prog == &dummy_bpf_prog.prog)
1633                        continue;
1634                prog_ids[i] = (*prog)->aux->id;
1635                if (++i == request_cnt) {
1636                        prog++;
1637                        break;
1638                }
1639        }
1640
1641        return !!(*prog);
1642}
1643
1644int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1645                                __u32 __user *prog_ids, u32 cnt)
1646{
1647        struct bpf_prog **prog;
1648        unsigned long err = 0;
1649        bool nospc;
1650        u32 *ids;
1651
1652        /* users of this function are doing:
1653         * cnt = bpf_prog_array_length();
1654         * if (cnt > 0)
1655         *     bpf_prog_array_copy_to_user(..., cnt);
1656         * so below kcalloc doesn't need extra cnt > 0 check, but
1657         * bpf_prog_array_length() releases rcu lock and
1658         * prog array could have been swapped with empty or larger array,
1659         * so always copy 'cnt' prog_ids to the user.
1660         * In a rare race the user will see zero prog_ids
1661         */
1662        ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1663        if (!ids)
1664                return -ENOMEM;
1665        rcu_read_lock();
1666        prog = rcu_dereference(progs)->progs;
1667        nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1668        rcu_read_unlock();
1669        err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1670        kfree(ids);
1671        if (err)
1672                return -EFAULT;
1673        if (nospc)
1674                return -ENOSPC;
1675        return 0;
1676}
1677
1678void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1679                                struct bpf_prog *old_prog)
1680{
1681        struct bpf_prog **prog = progs->progs;
1682
1683        for (; *prog; prog++)
1684                if (*prog == old_prog) {
1685                        WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1686                        break;
1687                }
1688}
1689
1690int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1691                        struct bpf_prog *exclude_prog,
1692                        struct bpf_prog *include_prog,
1693                        struct bpf_prog_array **new_array)
1694{
1695        int new_prog_cnt, carry_prog_cnt = 0;
1696        struct bpf_prog **existing_prog;
1697        struct bpf_prog_array *array;
1698        int new_prog_idx = 0;
1699
1700        /* Figure out how many existing progs we need to carry over to
1701         * the new array.
1702         */
1703        if (old_array) {
1704                existing_prog = old_array->progs;
1705                for (; *existing_prog; existing_prog++) {
1706                        if (*existing_prog != exclude_prog &&
1707                            *existing_prog != &dummy_bpf_prog.prog)
1708                                carry_prog_cnt++;
1709                        if (*existing_prog == include_prog)
1710                                return -EEXIST;
1711                }
1712        }
1713
1714        /* How many progs (not NULL) will be in the new array? */
1715        new_prog_cnt = carry_prog_cnt;
1716        if (include_prog)
1717                new_prog_cnt += 1;
1718
1719        /* Do we have any prog (not NULL) in the new array? */
1720        if (!new_prog_cnt) {
1721                *new_array = NULL;
1722                return 0;
1723        }
1724
1725        /* +1 as the end of prog_array is marked with NULL */
1726        array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1727        if (!array)
1728                return -ENOMEM;
1729
1730        /* Fill in the new prog array */
1731        if (carry_prog_cnt) {
1732                existing_prog = old_array->progs;
1733                for (; *existing_prog; existing_prog++)
1734                        if (*existing_prog != exclude_prog &&
1735                            *existing_prog != &dummy_bpf_prog.prog)
1736                                array->progs[new_prog_idx++] = *existing_prog;
1737        }
1738        if (include_prog)
1739                array->progs[new_prog_idx++] = include_prog;
1740        array->progs[new_prog_idx] = NULL;
1741        *new_array = array;
1742        return 0;
1743}
1744
1745int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1746                             u32 *prog_ids, u32 request_cnt,
1747                             u32 *prog_cnt)
1748{
1749        struct bpf_prog **prog;
1750        u32 cnt = 0;
1751
1752        if (array)
1753                cnt = bpf_prog_array_length(array);
1754
1755        *prog_cnt = cnt;
1756
1757        /* return early if user requested only program count or nothing to copy */
1758        if (!request_cnt || !cnt)
1759                return 0;
1760
1761        /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1762        prog = rcu_dereference_check(array, 1)->progs;
1763        return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1764                                                                     : 0;
1765}
1766
1767static void bpf_prog_free_deferred(struct work_struct *work)
1768{
1769        struct bpf_prog_aux *aux;
1770        int i;
1771
1772        aux = container_of(work, struct bpf_prog_aux, work);
1773        if (bpf_prog_is_dev_bound(aux))
1774                bpf_prog_offload_destroy(aux->prog);
1775        for (i = 0; i < aux->func_cnt; i++)
1776                bpf_jit_free(aux->func[i]);
1777        if (aux->func_cnt) {
1778                kfree(aux->func);
1779                bpf_prog_unlock_free(aux->prog);
1780        } else {
1781                bpf_jit_free(aux->prog);
1782        }
1783}
1784
1785/* Free internal BPF program */
1786void bpf_prog_free(struct bpf_prog *fp)
1787{
1788        struct bpf_prog_aux *aux = fp->aux;
1789
1790        INIT_WORK(&aux->work, bpf_prog_free_deferred);
1791        schedule_work(&aux->work);
1792}
1793EXPORT_SYMBOL_GPL(bpf_prog_free);
1794
1795/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1796static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1797
1798void bpf_user_rnd_init_once(void)
1799{
1800        prandom_init_once(&bpf_user_rnd_state);
1801}
1802
1803BPF_CALL_0(bpf_user_rnd_u32)
1804{
1805        /* Should someone ever have the rather unwise idea to use some
1806         * of the registers passed into this function, then note that
1807         * this function is called from native eBPF and classic-to-eBPF
1808         * transformations. Register assignments from both sides are
1809         * different, f.e. classic always sets fn(ctx, A, X) here.
1810         */
1811        struct rnd_state *state;
1812        u32 res;
1813
1814        state = &get_cpu_var(bpf_user_rnd_state);
1815        res = prandom_u32_state(state);
1816        put_cpu_var(bpf_user_rnd_state);
1817
1818        return res;
1819}
1820
1821/* Weak definitions of helper functions in case we don't have bpf syscall. */
1822const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1823const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1824const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1825
1826const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1827const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1828const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1829const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1830
1831const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1832const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1833const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1834const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1835
1836const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1837{
1838        return NULL;
1839}
1840
1841u64 __weak
1842bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1843                 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1844{
1845        return -ENOTSUPP;
1846}
1847
1848/* Always built-in helper functions. */
1849const struct bpf_func_proto bpf_tail_call_proto = {
1850        .func           = NULL,
1851        .gpl_only       = false,
1852        .ret_type       = RET_VOID,
1853        .arg1_type      = ARG_PTR_TO_CTX,
1854        .arg2_type      = ARG_CONST_MAP_PTR,
1855        .arg3_type      = ARG_ANYTHING,
1856};
1857
1858/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1859 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1860 * eBPF and implicitly also cBPF can get JITed!
1861 */
1862struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1863{
1864        return prog;
1865}
1866
1867/* Stub for JITs that support eBPF. All cBPF code gets transformed into
1868 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1869 */
1870void __weak bpf_jit_compile(struct bpf_prog *prog)
1871{
1872}
1873
1874bool __weak bpf_helper_changes_pkt_data(void *func)
1875{
1876        return false;
1877}
1878
1879/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1880 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1881 */
1882int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1883                         int len)
1884{
1885        return -EFAULT;
1886}
1887
1888/* All definitions of tracepoints related to BPF. */
1889#define CREATE_TRACE_POINTS
1890#include <linux/bpf_trace.h>
1891
1892EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1893
1894/* These are only used within the BPF_SYSCALL code */
1895#ifdef CONFIG_BPF_SYSCALL
1896EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1897EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1898#endif
1899