linux/kernel/bpf/lpm_trie.c
<<
>>
Prefs
   1/*
   2 * Longest prefix match list implementation
   3 *
   4 * Copyright (c) 2016,2017 Daniel Mack
   5 * Copyright (c) 2016 David Herrmann
   6 *
   7 * This file is subject to the terms and conditions of version 2 of the GNU
   8 * General Public License.  See the file COPYING in the main directory of the
   9 * Linux distribution for more details.
  10 */
  11
  12#include <linux/bpf.h>
  13#include <linux/err.h>
  14#include <linux/slab.h>
  15#include <linux/spinlock.h>
  16#include <linux/vmalloc.h>
  17#include <net/ipv6.h>
  18
  19/* Intermediate node */
  20#define LPM_TREE_NODE_FLAG_IM BIT(0)
  21
  22struct lpm_trie_node;
  23
  24struct lpm_trie_node {
  25        struct rcu_head rcu;
  26        struct lpm_trie_node __rcu      *child[2];
  27        u32                             prefixlen;
  28        u32                             flags;
  29        u8                              data[0];
  30};
  31
  32struct lpm_trie {
  33        struct bpf_map                  map;
  34        struct lpm_trie_node __rcu      *root;
  35        size_t                          n_entries;
  36        size_t                          max_prefixlen;
  37        size_t                          data_size;
  38        raw_spinlock_t                  lock;
  39};
  40
  41/* This trie implements a longest prefix match algorithm that can be used to
  42 * match IP addresses to a stored set of ranges.
  43 *
  44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
  45 * interpreted as big endian, so data[0] stores the most significant byte.
  46 *
  47 * Match ranges are internally stored in instances of struct lpm_trie_node
  48 * which each contain their prefix length as well as two pointers that may
  49 * lead to more nodes containing more specific matches. Each node also stores
  50 * a value that is defined by and returned to userspace via the update_elem
  51 * and lookup functions.
  52 *
  53 * For instance, let's start with a trie that was created with a prefix length
  54 * of 32, so it can be used for IPv4 addresses, and one single element that
  55 * matches 192.168.0.0/16. The data array would hence contain
  56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
  57 * stick to IP-address notation for readability though.
  58 *
  59 * As the trie is empty initially, the new node (1) will be places as root
  60 * node, denoted as (R) in the example below. As there are no other node, both
  61 * child pointers are %NULL.
  62 *
  63 *              +----------------+
  64 *              |       (1)  (R) |
  65 *              | 192.168.0.0/16 |
  66 *              |    value: 1    |
  67 *              |   [0]    [1]   |
  68 *              +----------------+
  69 *
  70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
  71 * a node with the same data and a smaller prefix (ie, a less specific one),
  72 * node (2) will become a child of (1). In child index depends on the next bit
  73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
  74 * child[0] of (1):
  75 *
  76 *              +----------------+
  77 *              |       (1)  (R) |
  78 *              | 192.168.0.0/16 |
  79 *              |    value: 1    |
  80 *              |   [0]    [1]   |
  81 *              +----------------+
  82 *                   |
  83 *    +----------------+
  84 *    |       (2)      |
  85 *    | 192.168.0.0/24 |
  86 *    |    value: 2    |
  87 *    |   [0]    [1]   |
  88 *    +----------------+
  89 *
  90 * The child[1] slot of (1) could be filled with another node which has bit #17
  91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
  92 * 192.168.128.0/24:
  93 *
  94 *              +----------------+
  95 *              |       (1)  (R) |
  96 *              | 192.168.0.0/16 |
  97 *              |    value: 1    |
  98 *              |   [0]    [1]   |
  99 *              +----------------+
 100 *                   |      |
 101 *    +----------------+  +------------------+
 102 *    |       (2)      |  |        (3)       |
 103 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 104 *    |    value: 2    |  |     value: 3     |
 105 *    |   [0]    [1]   |  |    [0]    [1]    |
 106 *    +----------------+  +------------------+
 107 *
 108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 109 * it, node (1) is looked at first, and because (4) of the semantics laid out
 110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 111 * However, that slot is already allocated, so a new node is needed in between.
 112 * That node does not have a value attached to it and it will never be
 113 * returned to users as result of a lookup. It is only there to differentiate
 114 * the traversal further. It will get a prefix as wide as necessary to
 115 * distinguish its two children:
 116 *
 117 *                      +----------------+
 118 *                      |       (1)  (R) |
 119 *                      | 192.168.0.0/16 |
 120 *                      |    value: 1    |
 121 *                      |   [0]    [1]   |
 122 *                      +----------------+
 123 *                           |      |
 124 *            +----------------+  +------------------+
 125 *            |       (4)  (I) |  |        (3)       |
 126 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 127 *            |    value: ---  |  |     value: 3     |
 128 *            |   [0]    [1]   |  |    [0]    [1]    |
 129 *            +----------------+  +------------------+
 130 *                 |      |
 131 *  +----------------+  +----------------+
 132 *  |       (2)      |  |       (5)      |
 133 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 134 *  |    value: 2    |  |     value: 5   |
 135 *  |   [0]    [1]   |  |   [0]    [1]   |
 136 *  +----------------+  +----------------+
 137 *
 138 * 192.168.1.1/32 would be a child of (5) etc.
 139 *
 140 * An intermediate node will be turned into a 'real' node on demand. In the
 141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 142 *
 143 * A fully populated trie would have a height of 32 nodes, as the trie was
 144 * created with a prefix length of 32.
 145 *
 146 * The lookup starts at the root node. If the current node matches and if there
 147 * is a child that can be used to become more specific, the trie is traversed
 148 * downwards. The last node in the traversal that is a non-intermediate one is
 149 * returned.
 150 */
 151
 152static inline int extract_bit(const u8 *data, size_t index)
 153{
 154        return !!(data[index / 8] & (1 << (7 - (index % 8))));
 155}
 156
 157/**
 158 * longest_prefix_match() - determine the longest prefix
 159 * @trie:       The trie to get internal sizes from
 160 * @node:       The node to operate on
 161 * @key:        The key to compare to @node
 162 *
 163 * Determine the longest prefix of @node that matches the bits in @key.
 164 */
 165static size_t longest_prefix_match(const struct lpm_trie *trie,
 166                                   const struct lpm_trie_node *node,
 167                                   const struct bpf_lpm_trie_key *key)
 168{
 169        size_t prefixlen = 0;
 170        size_t i;
 171
 172        for (i = 0; i < trie->data_size; i++) {
 173                size_t b;
 174
 175                b = 8 - fls(node->data[i] ^ key->data[i]);
 176                prefixlen += b;
 177
 178                if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
 179                        return min(node->prefixlen, key->prefixlen);
 180
 181                if (b < 8)
 182                        break;
 183        }
 184
 185        return prefixlen;
 186}
 187
 188/* Called from syscall or from eBPF program */
 189static void *trie_lookup_elem(struct bpf_map *map, void *_key)
 190{
 191        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 192        struct lpm_trie_node *node, *found = NULL;
 193        struct bpf_lpm_trie_key *key = _key;
 194
 195        /* Start walking the trie from the root node ... */
 196
 197        for (node = rcu_dereference(trie->root); node;) {
 198                unsigned int next_bit;
 199                size_t matchlen;
 200
 201                /* Determine the longest prefix of @node that matches @key.
 202                 * If it's the maximum possible prefix for this trie, we have
 203                 * an exact match and can return it directly.
 204                 */
 205                matchlen = longest_prefix_match(trie, node, key);
 206                if (matchlen == trie->max_prefixlen) {
 207                        found = node;
 208                        break;
 209                }
 210
 211                /* If the number of bits that match is smaller than the prefix
 212                 * length of @node, bail out and return the node we have seen
 213                 * last in the traversal (ie, the parent).
 214                 */
 215                if (matchlen < node->prefixlen)
 216                        break;
 217
 218                /* Consider this node as return candidate unless it is an
 219                 * artificially added intermediate one.
 220                 */
 221                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 222                        found = node;
 223
 224                /* If the node match is fully satisfied, let's see if we can
 225                 * become more specific. Determine the next bit in the key and
 226                 * traverse down.
 227                 */
 228                next_bit = extract_bit(key->data, node->prefixlen);
 229                node = rcu_dereference(node->child[next_bit]);
 230        }
 231
 232        if (!found)
 233                return NULL;
 234
 235        return found->data + trie->data_size;
 236}
 237
 238static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
 239                                                 const void *value)
 240{
 241        struct lpm_trie_node *node;
 242        size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
 243
 244        if (value)
 245                size += trie->map.value_size;
 246
 247        node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
 248                            trie->map.numa_node);
 249        if (!node)
 250                return NULL;
 251
 252        node->flags = 0;
 253
 254        if (value)
 255                memcpy(node->data + trie->data_size, value,
 256                       trie->map.value_size);
 257
 258        return node;
 259}
 260
 261/* Called from syscall or from eBPF program */
 262static int trie_update_elem(struct bpf_map *map,
 263                            void *_key, void *value, u64 flags)
 264{
 265        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 266        struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
 267        struct lpm_trie_node __rcu **slot;
 268        struct bpf_lpm_trie_key *key = _key;
 269        unsigned long irq_flags;
 270        unsigned int next_bit;
 271        size_t matchlen = 0;
 272        int ret = 0;
 273
 274        if (unlikely(flags > BPF_EXIST))
 275                return -EINVAL;
 276
 277        if (key->prefixlen > trie->max_prefixlen)
 278                return -EINVAL;
 279
 280        raw_spin_lock_irqsave(&trie->lock, irq_flags);
 281
 282        /* Allocate and fill a new node */
 283
 284        if (trie->n_entries == trie->map.max_entries) {
 285                ret = -ENOSPC;
 286                goto out;
 287        }
 288
 289        new_node = lpm_trie_node_alloc(trie, value);
 290        if (!new_node) {
 291                ret = -ENOMEM;
 292                goto out;
 293        }
 294
 295        trie->n_entries++;
 296
 297        new_node->prefixlen = key->prefixlen;
 298        RCU_INIT_POINTER(new_node->child[0], NULL);
 299        RCU_INIT_POINTER(new_node->child[1], NULL);
 300        memcpy(new_node->data, key->data, trie->data_size);
 301
 302        /* Now find a slot to attach the new node. To do that, walk the tree
 303         * from the root and match as many bits as possible for each node until
 304         * we either find an empty slot or a slot that needs to be replaced by
 305         * an intermediate node.
 306         */
 307        slot = &trie->root;
 308
 309        while ((node = rcu_dereference_protected(*slot,
 310                                        lockdep_is_held(&trie->lock)))) {
 311                matchlen = longest_prefix_match(trie, node, key);
 312
 313                if (node->prefixlen != matchlen ||
 314                    node->prefixlen == key->prefixlen ||
 315                    node->prefixlen == trie->max_prefixlen)
 316                        break;
 317
 318                next_bit = extract_bit(key->data, node->prefixlen);
 319                slot = &node->child[next_bit];
 320        }
 321
 322        /* If the slot is empty (a free child pointer or an empty root),
 323         * simply assign the @new_node to that slot and be done.
 324         */
 325        if (!node) {
 326                rcu_assign_pointer(*slot, new_node);
 327                goto out;
 328        }
 329
 330        /* If the slot we picked already exists, replace it with @new_node
 331         * which already has the correct data array set.
 332         */
 333        if (node->prefixlen == matchlen) {
 334                new_node->child[0] = node->child[0];
 335                new_node->child[1] = node->child[1];
 336
 337                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 338                        trie->n_entries--;
 339
 340                rcu_assign_pointer(*slot, new_node);
 341                kfree_rcu(node, rcu);
 342
 343                goto out;
 344        }
 345
 346        /* If the new node matches the prefix completely, it must be inserted
 347         * as an ancestor. Simply insert it between @node and *@slot.
 348         */
 349        if (matchlen == key->prefixlen) {
 350                next_bit = extract_bit(node->data, matchlen);
 351                rcu_assign_pointer(new_node->child[next_bit], node);
 352                rcu_assign_pointer(*slot, new_node);
 353                goto out;
 354        }
 355
 356        im_node = lpm_trie_node_alloc(trie, NULL);
 357        if (!im_node) {
 358                ret = -ENOMEM;
 359                goto out;
 360        }
 361
 362        im_node->prefixlen = matchlen;
 363        im_node->flags |= LPM_TREE_NODE_FLAG_IM;
 364        memcpy(im_node->data, node->data, trie->data_size);
 365
 366        /* Now determine which child to install in which slot */
 367        if (extract_bit(key->data, matchlen)) {
 368                rcu_assign_pointer(im_node->child[0], node);
 369                rcu_assign_pointer(im_node->child[1], new_node);
 370        } else {
 371                rcu_assign_pointer(im_node->child[0], new_node);
 372                rcu_assign_pointer(im_node->child[1], node);
 373        }
 374
 375        /* Finally, assign the intermediate node to the determined spot */
 376        rcu_assign_pointer(*slot, im_node);
 377
 378out:
 379        if (ret) {
 380                if (new_node)
 381                        trie->n_entries--;
 382
 383                kfree(new_node);
 384                kfree(im_node);
 385        }
 386
 387        raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 388
 389        return ret;
 390}
 391
 392/* Called from syscall or from eBPF program */
 393static int trie_delete_elem(struct bpf_map *map, void *_key)
 394{
 395        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 396        struct bpf_lpm_trie_key *key = _key;
 397        struct lpm_trie_node __rcu **trim, **trim2;
 398        struct lpm_trie_node *node, *parent;
 399        unsigned long irq_flags;
 400        unsigned int next_bit;
 401        size_t matchlen = 0;
 402        int ret = 0;
 403
 404        if (key->prefixlen > trie->max_prefixlen)
 405                return -EINVAL;
 406
 407        raw_spin_lock_irqsave(&trie->lock, irq_flags);
 408
 409        /* Walk the tree looking for an exact key/length match and keeping
 410         * track of the path we traverse.  We will need to know the node
 411         * we wish to delete, and the slot that points to the node we want
 412         * to delete.  We may also need to know the nodes parent and the
 413         * slot that contains it.
 414         */
 415        trim = &trie->root;
 416        trim2 = trim;
 417        parent = NULL;
 418        while ((node = rcu_dereference_protected(
 419                       *trim, lockdep_is_held(&trie->lock)))) {
 420                matchlen = longest_prefix_match(trie, node, key);
 421
 422                if (node->prefixlen != matchlen ||
 423                    node->prefixlen == key->prefixlen)
 424                        break;
 425
 426                parent = node;
 427                trim2 = trim;
 428                next_bit = extract_bit(key->data, node->prefixlen);
 429                trim = &node->child[next_bit];
 430        }
 431
 432        if (!node || node->prefixlen != key->prefixlen ||
 433            (node->flags & LPM_TREE_NODE_FLAG_IM)) {
 434                ret = -ENOENT;
 435                goto out;
 436        }
 437
 438        trie->n_entries--;
 439
 440        /* If the node we are removing has two children, simply mark it
 441         * as intermediate and we are done.
 442         */
 443        if (rcu_access_pointer(node->child[0]) &&
 444            rcu_access_pointer(node->child[1])) {
 445                node->flags |= LPM_TREE_NODE_FLAG_IM;
 446                goto out;
 447        }
 448
 449        /* If the parent of the node we are about to delete is an intermediate
 450         * node, and the deleted node doesn't have any children, we can delete
 451         * the intermediate parent as well and promote its other child
 452         * up the tree.  Doing this maintains the invariant that all
 453         * intermediate nodes have exactly 2 children and that there are no
 454         * unnecessary intermediate nodes in the tree.
 455         */
 456        if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
 457            !node->child[0] && !node->child[1]) {
 458                if (node == rcu_access_pointer(parent->child[0]))
 459                        rcu_assign_pointer(
 460                                *trim2, rcu_access_pointer(parent->child[1]));
 461                else
 462                        rcu_assign_pointer(
 463                                *trim2, rcu_access_pointer(parent->child[0]));
 464                kfree_rcu(parent, rcu);
 465                kfree_rcu(node, rcu);
 466                goto out;
 467        }
 468
 469        /* The node we are removing has either zero or one child. If there
 470         * is a child, move it into the removed node's slot then delete
 471         * the node.  Otherwise just clear the slot and delete the node.
 472         */
 473        if (node->child[0])
 474                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
 475        else if (node->child[1])
 476                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
 477        else
 478                RCU_INIT_POINTER(*trim, NULL);
 479        kfree_rcu(node, rcu);
 480
 481out:
 482        raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 483
 484        return ret;
 485}
 486
 487#define LPM_DATA_SIZE_MAX       256
 488#define LPM_DATA_SIZE_MIN       1
 489
 490#define LPM_VAL_SIZE_MAX        (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
 491                                 sizeof(struct lpm_trie_node))
 492#define LPM_VAL_SIZE_MIN        1
 493
 494#define LPM_KEY_SIZE(X)         (sizeof(struct bpf_lpm_trie_key) + (X))
 495#define LPM_KEY_SIZE_MAX        LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
 496#define LPM_KEY_SIZE_MIN        LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
 497
 498#define LPM_CREATE_FLAG_MASK    (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |  \
 499                                 BPF_F_RDONLY | BPF_F_WRONLY)
 500
 501static struct bpf_map *trie_alloc(union bpf_attr *attr)
 502{
 503        struct lpm_trie *trie;
 504        u64 cost = sizeof(*trie), cost_per_node;
 505        int ret;
 506
 507        if (!capable(CAP_SYS_ADMIN))
 508                return ERR_PTR(-EPERM);
 509
 510        /* check sanity of attributes */
 511        if (attr->max_entries == 0 ||
 512            !(attr->map_flags & BPF_F_NO_PREALLOC) ||
 513            attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
 514            attr->key_size < LPM_KEY_SIZE_MIN ||
 515            attr->key_size > LPM_KEY_SIZE_MAX ||
 516            attr->value_size < LPM_VAL_SIZE_MIN ||
 517            attr->value_size > LPM_VAL_SIZE_MAX)
 518                return ERR_PTR(-EINVAL);
 519
 520        trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
 521        if (!trie)
 522                return ERR_PTR(-ENOMEM);
 523
 524        /* copy mandatory map attributes */
 525        bpf_map_init_from_attr(&trie->map, attr);
 526        trie->data_size = attr->key_size -
 527                          offsetof(struct bpf_lpm_trie_key, data);
 528        trie->max_prefixlen = trie->data_size * 8;
 529
 530        cost_per_node = sizeof(struct lpm_trie_node) +
 531                        attr->value_size + trie->data_size;
 532        cost += (u64) attr->max_entries * cost_per_node;
 533        if (cost >= U32_MAX - PAGE_SIZE) {
 534                ret = -E2BIG;
 535                goto out_err;
 536        }
 537
 538        trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 539
 540        ret = bpf_map_precharge_memlock(trie->map.pages);
 541        if (ret)
 542                goto out_err;
 543
 544        raw_spin_lock_init(&trie->lock);
 545
 546        return &trie->map;
 547out_err:
 548        kfree(trie);
 549        return ERR_PTR(ret);
 550}
 551
 552static void trie_free(struct bpf_map *map)
 553{
 554        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 555        struct lpm_trie_node __rcu **slot;
 556        struct lpm_trie_node *node;
 557
 558        /* Wait for outstanding programs to complete
 559         * update/lookup/delete/get_next_key and free the trie.
 560         */
 561        synchronize_rcu();
 562
 563        /* Always start at the root and walk down to a node that has no
 564         * children. Then free that node, nullify its reference in the parent
 565         * and start over.
 566         */
 567
 568        for (;;) {
 569                slot = &trie->root;
 570
 571                for (;;) {
 572                        node = rcu_dereference_protected(*slot, 1);
 573                        if (!node)
 574                                goto out;
 575
 576                        if (rcu_access_pointer(node->child[0])) {
 577                                slot = &node->child[0];
 578                                continue;
 579                        }
 580
 581                        if (rcu_access_pointer(node->child[1])) {
 582                                slot = &node->child[1];
 583                                continue;
 584                        }
 585
 586                        kfree(node);
 587                        RCU_INIT_POINTER(*slot, NULL);
 588                        break;
 589                }
 590        }
 591
 592out:
 593        kfree(trie);
 594}
 595
 596static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
 597{
 598        struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
 599        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 600        struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
 601        struct lpm_trie_node **node_stack = NULL;
 602        int err = 0, stack_ptr = -1;
 603        unsigned int next_bit;
 604        size_t matchlen;
 605
 606        /* The get_next_key follows postorder. For the 4 node example in
 607         * the top of this file, the trie_get_next_key() returns the following
 608         * one after another:
 609         *   192.168.0.0/24
 610         *   192.168.1.0/24
 611         *   192.168.128.0/24
 612         *   192.168.0.0/16
 613         *
 614         * The idea is to return more specific keys before less specific ones.
 615         */
 616
 617        /* Empty trie */
 618        search_root = rcu_dereference(trie->root);
 619        if (!search_root)
 620                return -ENOENT;
 621
 622        /* For invalid key, find the leftmost node in the trie */
 623        if (!key || key->prefixlen > trie->max_prefixlen)
 624                goto find_leftmost;
 625
 626        node_stack = kmalloc(trie->max_prefixlen * sizeof(struct lpm_trie_node *),
 627                             GFP_ATOMIC | __GFP_NOWARN);
 628        if (!node_stack)
 629                return -ENOMEM;
 630
 631        /* Try to find the exact node for the given key */
 632        for (node = search_root; node;) {
 633                node_stack[++stack_ptr] = node;
 634                matchlen = longest_prefix_match(trie, node, key);
 635                if (node->prefixlen != matchlen ||
 636                    node->prefixlen == key->prefixlen)
 637                        break;
 638
 639                next_bit = extract_bit(key->data, node->prefixlen);
 640                node = rcu_dereference(node->child[next_bit]);
 641        }
 642        if (!node || node->prefixlen != key->prefixlen ||
 643            (node->flags & LPM_TREE_NODE_FLAG_IM))
 644                goto find_leftmost;
 645
 646        /* The node with the exactly-matching key has been found,
 647         * find the first node in postorder after the matched node.
 648         */
 649        node = node_stack[stack_ptr];
 650        while (stack_ptr > 0) {
 651                parent = node_stack[stack_ptr - 1];
 652                if (rcu_dereference(parent->child[0]) == node) {
 653                        search_root = rcu_dereference(parent->child[1]);
 654                        if (search_root)
 655                                goto find_leftmost;
 656                }
 657                if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
 658                        next_node = parent;
 659                        goto do_copy;
 660                }
 661
 662                node = parent;
 663                stack_ptr--;
 664        }
 665
 666        /* did not find anything */
 667        err = -ENOENT;
 668        goto free_stack;
 669
 670find_leftmost:
 671        /* Find the leftmost non-intermediate node, all intermediate nodes
 672         * have exact two children, so this function will never return NULL.
 673         */
 674        for (node = search_root; node;) {
 675                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 676                        next_node = node;
 677                node = rcu_dereference(node->child[0]);
 678        }
 679do_copy:
 680        next_key->prefixlen = next_node->prefixlen;
 681        memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
 682               next_node->data, trie->data_size);
 683free_stack:
 684        kfree(node_stack);
 685        return err;
 686}
 687
 688const struct bpf_map_ops trie_map_ops = {
 689        .map_alloc = trie_alloc,
 690        .map_free = trie_free,
 691        .map_get_next_key = trie_get_next_key,
 692        .map_lookup_elem = trie_lookup_elem,
 693        .map_update_elem = trie_update_elem,
 694        .map_delete_elem = trie_delete_elem,
 695};
 696