linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <net/sock.h>
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/cgroup.h>
  61
  62#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  63                                         MAX_CFTYPE_NAME + 2)
  64
  65/*
  66 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  67 * hierarchy must be performed while holding it.
  68 *
  69 * css_set_lock protects task->cgroups pointer, the list of css_set
  70 * objects, and the chain of tasks off each css_set.
  71 *
  72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  73 * cgroup.h can use them for lockdep annotations.
  74 */
  75DEFINE_MUTEX(cgroup_mutex);
  76DEFINE_SPINLOCK(css_set_lock);
  77
  78#ifdef CONFIG_PROVE_RCU
  79EXPORT_SYMBOL_GPL(cgroup_mutex);
  80EXPORT_SYMBOL_GPL(css_set_lock);
  81#endif
  82
  83/*
  84 * Protects cgroup_idr and css_idr so that IDs can be released without
  85 * grabbing cgroup_mutex.
  86 */
  87static DEFINE_SPINLOCK(cgroup_idr_lock);
  88
  89/*
  90 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
  91 * against file removal/re-creation across css hiding.
  92 */
  93static DEFINE_SPINLOCK(cgroup_file_kn_lock);
  94
  95struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
  96
  97#define cgroup_assert_mutex_or_rcu_locked()                             \
  98        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
  99                           !lockdep_is_held(&cgroup_mutex),             \
 100                           "cgroup_mutex or RCU read lock required");
 101
 102/*
 103 * cgroup destruction makes heavy use of work items and there can be a lot
 104 * of concurrent destructions.  Use a separate workqueue so that cgroup
 105 * destruction work items don't end up filling up max_active of system_wq
 106 * which may lead to deadlock.
 107 */
 108static struct workqueue_struct *cgroup_destroy_wq;
 109
 110/* generate an array of cgroup subsystem pointers */
 111#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 112struct cgroup_subsys *cgroup_subsys[] = {
 113#include <linux/cgroup_subsys.h>
 114};
 115#undef SUBSYS
 116
 117/* array of cgroup subsystem names */
 118#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 119static const char *cgroup_subsys_name[] = {
 120#include <linux/cgroup_subsys.h>
 121};
 122#undef SUBSYS
 123
 124/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 125#define SUBSYS(_x)                                                              \
 126        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 127        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 128        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 129        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 130#include <linux/cgroup_subsys.h>
 131#undef SUBSYS
 132
 133#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 134static struct static_key_true *cgroup_subsys_enabled_key[] = {
 135#include <linux/cgroup_subsys.h>
 136};
 137#undef SUBSYS
 138
 139#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 140static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 141#include <linux/cgroup_subsys.h>
 142};
 143#undef SUBSYS
 144
 145static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
 146
 147/*
 148 * The default hierarchy, reserved for the subsystems that are otherwise
 149 * unattached - it never has more than a single cgroup, and all tasks are
 150 * part of that cgroup.
 151 */
 152struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
 153EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 154
 155/*
 156 * The default hierarchy always exists but is hidden until mounted for the
 157 * first time.  This is for backward compatibility.
 158 */
 159static bool cgrp_dfl_visible;
 160
 161/* some controllers are not supported in the default hierarchy */
 162static u16 cgrp_dfl_inhibit_ss_mask;
 163
 164/* some controllers are implicitly enabled on the default hierarchy */
 165static u16 cgrp_dfl_implicit_ss_mask;
 166
 167/* some controllers can be threaded on the default hierarchy */
 168static u16 cgrp_dfl_threaded_ss_mask;
 169
 170/* The list of hierarchy roots */
 171LIST_HEAD(cgroup_roots);
 172static int cgroup_root_count;
 173
 174/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 175static DEFINE_IDR(cgroup_hierarchy_idr);
 176
 177/*
 178 * Assign a monotonically increasing serial number to csses.  It guarantees
 179 * cgroups with bigger numbers are newer than those with smaller numbers.
 180 * Also, as csses are always appended to the parent's ->children list, it
 181 * guarantees that sibling csses are always sorted in the ascending serial
 182 * number order on the list.  Protected by cgroup_mutex.
 183 */
 184static u64 css_serial_nr_next = 1;
 185
 186/*
 187 * These bitmasks identify subsystems with specific features to avoid
 188 * having to do iterative checks repeatedly.
 189 */
 190static u16 have_fork_callback __read_mostly;
 191static u16 have_exit_callback __read_mostly;
 192static u16 have_free_callback __read_mostly;
 193static u16 have_canfork_callback __read_mostly;
 194
 195/* cgroup namespace for init task */
 196struct cgroup_namespace init_cgroup_ns = {
 197        .count          = REFCOUNT_INIT(2),
 198        .user_ns        = &init_user_ns,
 199        .ns.ops         = &cgroupns_operations,
 200        .ns.inum        = PROC_CGROUP_INIT_INO,
 201        .root_cset      = &init_css_set,
 202};
 203
 204static struct file_system_type cgroup2_fs_type;
 205static struct cftype cgroup_base_files[];
 206
 207static int cgroup_apply_control(struct cgroup *cgrp);
 208static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 209static void css_task_iter_advance(struct css_task_iter *it);
 210static int cgroup_destroy_locked(struct cgroup *cgrp);
 211static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 212                                              struct cgroup_subsys *ss);
 213static void css_release(struct percpu_ref *ref);
 214static void kill_css(struct cgroup_subsys_state *css);
 215static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 216                              struct cgroup *cgrp, struct cftype cfts[],
 217                              bool is_add);
 218
 219/**
 220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 221 * @ssid: subsys ID of interest
 222 *
 223 * cgroup_subsys_enabled() can only be used with literal subsys names which
 224 * is fine for individual subsystems but unsuitable for cgroup core.  This
 225 * is slower static_key_enabled() based test indexed by @ssid.
 226 */
 227bool cgroup_ssid_enabled(int ssid)
 228{
 229        if (CGROUP_SUBSYS_COUNT == 0)
 230                return false;
 231
 232        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 233}
 234
 235/**
 236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 237 * @cgrp: the cgroup of interest
 238 *
 239 * The default hierarchy is the v2 interface of cgroup and this function
 240 * can be used to test whether a cgroup is on the default hierarchy for
 241 * cases where a subsystem should behave differnetly depending on the
 242 * interface version.
 243 *
 244 * The set of behaviors which change on the default hierarchy are still
 245 * being determined and the mount option is prefixed with __DEVEL__.
 246 *
 247 * List of changed behaviors:
 248 *
 249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 250 *   and "name" are disallowed.
 251 *
 252 * - When mounting an existing superblock, mount options should match.
 253 *
 254 * - Remount is disallowed.
 255 *
 256 * - rename(2) is disallowed.
 257 *
 258 * - "tasks" is removed.  Everything should be at process granularity.  Use
 259 *   "cgroup.procs" instead.
 260 *
 261 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 262 *   recycled inbetween reads.
 263 *
 264 * - "release_agent" and "notify_on_release" are removed.  Replacement
 265 *   notification mechanism will be implemented.
 266 *
 267 * - "cgroup.clone_children" is removed.
 268 *
 269 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 270 *   and its descendants contain no task; otherwise, 1.  The file also
 271 *   generates kernfs notification which can be monitored through poll and
 272 *   [di]notify when the value of the file changes.
 273 *
 274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 275 *   take masks of ancestors with non-empty cpus/mems, instead of being
 276 *   moved to an ancestor.
 277 *
 278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 279 *   masks of ancestors.
 280 *
 281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 282 *   is not created.
 283 *
 284 * - blkcg: blk-throttle becomes properly hierarchical.
 285 *
 286 * - debug: disallowed on the default hierarchy.
 287 */
 288bool cgroup_on_dfl(const struct cgroup *cgrp)
 289{
 290        return cgrp->root == &cgrp_dfl_root;
 291}
 292
 293/* IDR wrappers which synchronize using cgroup_idr_lock */
 294static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 295                            gfp_t gfp_mask)
 296{
 297        int ret;
 298
 299        idr_preload(gfp_mask);
 300        spin_lock_bh(&cgroup_idr_lock);
 301        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 302        spin_unlock_bh(&cgroup_idr_lock);
 303        idr_preload_end();
 304        return ret;
 305}
 306
 307static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 308{
 309        void *ret;
 310
 311        spin_lock_bh(&cgroup_idr_lock);
 312        ret = idr_replace(idr, ptr, id);
 313        spin_unlock_bh(&cgroup_idr_lock);
 314        return ret;
 315}
 316
 317static void cgroup_idr_remove(struct idr *idr, int id)
 318{
 319        spin_lock_bh(&cgroup_idr_lock);
 320        idr_remove(idr, id);
 321        spin_unlock_bh(&cgroup_idr_lock);
 322}
 323
 324static bool cgroup_has_tasks(struct cgroup *cgrp)
 325{
 326        return cgrp->nr_populated_csets;
 327}
 328
 329bool cgroup_is_threaded(struct cgroup *cgrp)
 330{
 331        return cgrp->dom_cgrp != cgrp;
 332}
 333
 334/* can @cgrp host both domain and threaded children? */
 335static bool cgroup_is_mixable(struct cgroup *cgrp)
 336{
 337        /*
 338         * Root isn't under domain level resource control exempting it from
 339         * the no-internal-process constraint, so it can serve as a thread
 340         * root and a parent of resource domains at the same time.
 341         */
 342        return !cgroup_parent(cgrp);
 343}
 344
 345/* can @cgrp become a thread root? should always be true for a thread root */
 346static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 347{
 348        /* mixables don't care */
 349        if (cgroup_is_mixable(cgrp))
 350                return true;
 351
 352        /* domain roots can't be nested under threaded */
 353        if (cgroup_is_threaded(cgrp))
 354                return false;
 355
 356        /* can only have either domain or threaded children */
 357        if (cgrp->nr_populated_domain_children)
 358                return false;
 359
 360        /* and no domain controllers can be enabled */
 361        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 362                return false;
 363
 364        return true;
 365}
 366
 367/* is @cgrp root of a threaded subtree? */
 368bool cgroup_is_thread_root(struct cgroup *cgrp)
 369{
 370        /* thread root should be a domain */
 371        if (cgroup_is_threaded(cgrp))
 372                return false;
 373
 374        /* a domain w/ threaded children is a thread root */
 375        if (cgrp->nr_threaded_children)
 376                return true;
 377
 378        /*
 379         * A domain which has tasks and explicit threaded controllers
 380         * enabled is a thread root.
 381         */
 382        if (cgroup_has_tasks(cgrp) &&
 383            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 384                return true;
 385
 386        return false;
 387}
 388
 389/* a domain which isn't connected to the root w/o brekage can't be used */
 390static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 391{
 392        /* the cgroup itself can be a thread root */
 393        if (cgroup_is_threaded(cgrp))
 394                return false;
 395
 396        /* but the ancestors can't be unless mixable */
 397        while ((cgrp = cgroup_parent(cgrp))) {
 398                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 399                        return false;
 400                if (cgroup_is_threaded(cgrp))
 401                        return false;
 402        }
 403
 404        return true;
 405}
 406
 407/* subsystems visibly enabled on a cgroup */
 408static u16 cgroup_control(struct cgroup *cgrp)
 409{
 410        struct cgroup *parent = cgroup_parent(cgrp);
 411        u16 root_ss_mask = cgrp->root->subsys_mask;
 412
 413        if (parent) {
 414                u16 ss_mask = parent->subtree_control;
 415
 416                /* threaded cgroups can only have threaded controllers */
 417                if (cgroup_is_threaded(cgrp))
 418                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 419                return ss_mask;
 420        }
 421
 422        if (cgroup_on_dfl(cgrp))
 423                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 424                                  cgrp_dfl_implicit_ss_mask);
 425        return root_ss_mask;
 426}
 427
 428/* subsystems enabled on a cgroup */
 429static u16 cgroup_ss_mask(struct cgroup *cgrp)
 430{
 431        struct cgroup *parent = cgroup_parent(cgrp);
 432
 433        if (parent) {
 434                u16 ss_mask = parent->subtree_ss_mask;
 435
 436                /* threaded cgroups can only have threaded controllers */
 437                if (cgroup_is_threaded(cgrp))
 438                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 439                return ss_mask;
 440        }
 441
 442        return cgrp->root->subsys_mask;
 443}
 444
 445/**
 446 * cgroup_css - obtain a cgroup's css for the specified subsystem
 447 * @cgrp: the cgroup of interest
 448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 449 *
 450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 451 * function must be called either under cgroup_mutex or rcu_read_lock() and
 452 * the caller is responsible for pinning the returned css if it wants to
 453 * keep accessing it outside the said locks.  This function may return
 454 * %NULL if @cgrp doesn't have @subsys_id enabled.
 455 */
 456static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 457                                              struct cgroup_subsys *ss)
 458{
 459        if (ss)
 460                return rcu_dereference_check(cgrp->subsys[ss->id],
 461                                        lockdep_is_held(&cgroup_mutex));
 462        else
 463                return &cgrp->self;
 464}
 465
 466/**
 467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 468 * @cgrp: the cgroup of interest
 469 * @ss: the subsystem of interest
 470 *
 471 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 472 * or is offline, %NULL is returned.
 473 */
 474static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 475                                                     struct cgroup_subsys *ss)
 476{
 477        struct cgroup_subsys_state *css;
 478
 479        rcu_read_lock();
 480        css = cgroup_css(cgrp, ss);
 481        if (!css || !css_tryget_online(css))
 482                css = NULL;
 483        rcu_read_unlock();
 484
 485        return css;
 486}
 487
 488/**
 489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 490 * @cgrp: the cgroup of interest
 491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 492 *
 493 * Similar to cgroup_css() but returns the effective css, which is defined
 494 * as the matching css of the nearest ancestor including self which has @ss
 495 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 496 * function is guaranteed to return non-NULL css.
 497 */
 498static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 499                                                struct cgroup_subsys *ss)
 500{
 501        lockdep_assert_held(&cgroup_mutex);
 502
 503        if (!ss)
 504                return &cgrp->self;
 505
 506        /*
 507         * This function is used while updating css associations and thus
 508         * can't test the csses directly.  Test ss_mask.
 509         */
 510        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 511                cgrp = cgroup_parent(cgrp);
 512                if (!cgrp)
 513                        return NULL;
 514        }
 515
 516        return cgroup_css(cgrp, ss);
 517}
 518
 519/**
 520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 521 * @cgrp: the cgroup of interest
 522 * @ss: the subsystem of interest
 523 *
 524 * Find and get the effective css of @cgrp for @ss.  The effective css is
 525 * defined as the matching css of the nearest ancestor including self which
 526 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 527 * the root css is returned, so this function always returns a valid css.
 528 * The returned css must be put using css_put().
 529 */
 530struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 531                                             struct cgroup_subsys *ss)
 532{
 533        struct cgroup_subsys_state *css;
 534
 535        rcu_read_lock();
 536
 537        do {
 538                css = cgroup_css(cgrp, ss);
 539
 540                if (css && css_tryget_online(css))
 541                        goto out_unlock;
 542                cgrp = cgroup_parent(cgrp);
 543        } while (cgrp);
 544
 545        css = init_css_set.subsys[ss->id];
 546        css_get(css);
 547out_unlock:
 548        rcu_read_unlock();
 549        return css;
 550}
 551
 552static void cgroup_get_live(struct cgroup *cgrp)
 553{
 554        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 555        css_get(&cgrp->self);
 556}
 557
 558struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 559{
 560        struct cgroup *cgrp = of->kn->parent->priv;
 561        struct cftype *cft = of_cft(of);
 562
 563        /*
 564         * This is open and unprotected implementation of cgroup_css().
 565         * seq_css() is only called from a kernfs file operation which has
 566         * an active reference on the file.  Because all the subsystem
 567         * files are drained before a css is disassociated with a cgroup,
 568         * the matching css from the cgroup's subsys table is guaranteed to
 569         * be and stay valid until the enclosing operation is complete.
 570         */
 571        if (cft->ss)
 572                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 573        else
 574                return &cgrp->self;
 575}
 576EXPORT_SYMBOL_GPL(of_css);
 577
 578/**
 579 * for_each_css - iterate all css's of a cgroup
 580 * @css: the iteration cursor
 581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 582 * @cgrp: the target cgroup to iterate css's of
 583 *
 584 * Should be called under cgroup_[tree_]mutex.
 585 */
 586#define for_each_css(css, ssid, cgrp)                                   \
 587        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 588                if (!((css) = rcu_dereference_check(                    \
 589                                (cgrp)->subsys[(ssid)],                 \
 590                                lockdep_is_held(&cgroup_mutex)))) { }   \
 591                else
 592
 593/**
 594 * for_each_e_css - iterate all effective css's of a cgroup
 595 * @css: the iteration cursor
 596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 597 * @cgrp: the target cgroup to iterate css's of
 598 *
 599 * Should be called under cgroup_[tree_]mutex.
 600 */
 601#define for_each_e_css(css, ssid, cgrp)                                 \
 602        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 603                if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
 604                        ;                                               \
 605                else
 606
 607/**
 608 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 609 * @ss: the iteration cursor
 610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 611 * @ss_mask: the bitmask
 612 *
 613 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 614 * @ss_mask is set.
 615 */
 616#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 617        unsigned long __ss_mask = (ss_mask);                            \
 618        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 619                (ssid) = 0;                                             \
 620                break;                                                  \
 621        }                                                               \
 622        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 623                (ss) = cgroup_subsys[ssid];                             \
 624                {
 625
 626#define while_each_subsys_mask()                                        \
 627                }                                                       \
 628        }                                                               \
 629} while (false)
 630
 631/* iterate over child cgrps, lock should be held throughout iteration */
 632#define cgroup_for_each_live_child(child, cgrp)                         \
 633        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 634                if (({ lockdep_assert_held(&cgroup_mutex);              \
 635                       cgroup_is_dead(child); }))                       \
 636                        ;                                               \
 637                else
 638
 639/* walk live descendants in preorder */
 640#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 641        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 642                if (({ lockdep_assert_held(&cgroup_mutex);              \
 643                       (dsct) = (d_css)->cgroup;                        \
 644                       cgroup_is_dead(dsct); }))                        \
 645                        ;                                               \
 646                else
 647
 648/* walk live descendants in postorder */
 649#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 650        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 651                if (({ lockdep_assert_held(&cgroup_mutex);              \
 652                       (dsct) = (d_css)->cgroup;                        \
 653                       cgroup_is_dead(dsct); }))                        \
 654                        ;                                               \
 655                else
 656
 657/*
 658 * The default css_set - used by init and its children prior to any
 659 * hierarchies being mounted. It contains a pointer to the root state
 660 * for each subsystem. Also used to anchor the list of css_sets. Not
 661 * reference-counted, to improve performance when child cgroups
 662 * haven't been created.
 663 */
 664struct css_set init_css_set = {
 665        .refcount               = REFCOUNT_INIT(1),
 666        .dom_cset               = &init_css_set,
 667        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 668        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 669        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 670        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 671        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 672        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 673        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 674
 675        /*
 676         * The following field is re-initialized when this cset gets linked
 677         * in cgroup_init().  However, let's initialize the field
 678         * statically too so that the default cgroup can be accessed safely
 679         * early during boot.
 680         */
 681        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 682};
 683
 684static int css_set_count        = 1;    /* 1 for init_css_set */
 685
 686static bool css_set_threaded(struct css_set *cset)
 687{
 688        return cset->dom_cset != cset;
 689}
 690
 691/**
 692 * css_set_populated - does a css_set contain any tasks?
 693 * @cset: target css_set
 694 *
 695 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 696 * state. However, css_set_populated() can be called while a task is being
 697 * added to or removed from the linked list before the nr_tasks is
 698 * properly updated. Hence, we can't just look at ->nr_tasks here.
 699 */
 700static bool css_set_populated(struct css_set *cset)
 701{
 702        lockdep_assert_held(&css_set_lock);
 703
 704        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 705}
 706
 707/**
 708 * cgroup_update_populated - update the populated count of a cgroup
 709 * @cgrp: the target cgroup
 710 * @populated: inc or dec populated count
 711 *
 712 * One of the css_sets associated with @cgrp is either getting its first
 713 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 714 * count is propagated towards root so that a given cgroup's
 715 * nr_populated_children is zero iff none of its descendants contain any
 716 * tasks.
 717 *
 718 * @cgrp's interface file "cgroup.populated" is zero if both
 719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 720 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 721 * that the content of the interface file has changed.  This can be used to
 722 * detect when @cgrp and its descendants become populated or empty.
 723 */
 724static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 725{
 726        struct cgroup *child = NULL;
 727        int adj = populated ? 1 : -1;
 728
 729        lockdep_assert_held(&css_set_lock);
 730
 731        do {
 732                bool was_populated = cgroup_is_populated(cgrp);
 733
 734                if (!child) {
 735                        cgrp->nr_populated_csets += adj;
 736                } else {
 737                        if (cgroup_is_threaded(child))
 738                                cgrp->nr_populated_threaded_children += adj;
 739                        else
 740                                cgrp->nr_populated_domain_children += adj;
 741                }
 742
 743                if (was_populated == cgroup_is_populated(cgrp))
 744                        break;
 745
 746                cgroup1_check_for_release(cgrp);
 747                cgroup_file_notify(&cgrp->events_file);
 748
 749                child = cgrp;
 750                cgrp = cgroup_parent(cgrp);
 751        } while (cgrp);
 752}
 753
 754/**
 755 * css_set_update_populated - update populated state of a css_set
 756 * @cset: target css_set
 757 * @populated: whether @cset is populated or depopulated
 758 *
 759 * @cset is either getting the first task or losing the last.  Update the
 760 * populated counters of all associated cgroups accordingly.
 761 */
 762static void css_set_update_populated(struct css_set *cset, bool populated)
 763{
 764        struct cgrp_cset_link *link;
 765
 766        lockdep_assert_held(&css_set_lock);
 767
 768        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 769                cgroup_update_populated(link->cgrp, populated);
 770}
 771
 772/**
 773 * css_set_move_task - move a task from one css_set to another
 774 * @task: task being moved
 775 * @from_cset: css_set @task currently belongs to (may be NULL)
 776 * @to_cset: new css_set @task is being moved to (may be NULL)
 777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 778 *
 779 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 780 * css_set, @from_cset can be NULL.  If @task is being disassociated
 781 * instead of moved, @to_cset can be NULL.
 782 *
 783 * This function automatically handles populated counter updates and
 784 * css_task_iter adjustments but the caller is responsible for managing
 785 * @from_cset and @to_cset's reference counts.
 786 */
 787static void css_set_move_task(struct task_struct *task,
 788                              struct css_set *from_cset, struct css_set *to_cset,
 789                              bool use_mg_tasks)
 790{
 791        lockdep_assert_held(&css_set_lock);
 792
 793        if (to_cset && !css_set_populated(to_cset))
 794                css_set_update_populated(to_cset, true);
 795
 796        if (from_cset) {
 797                struct css_task_iter *it, *pos;
 798
 799                WARN_ON_ONCE(list_empty(&task->cg_list));
 800
 801                /*
 802                 * @task is leaving, advance task iterators which are
 803                 * pointing to it so that they can resume at the next
 804                 * position.  Advancing an iterator might remove it from
 805                 * the list, use safe walk.  See css_task_iter_advance*()
 806                 * for details.
 807                 */
 808                list_for_each_entry_safe(it, pos, &from_cset->task_iters,
 809                                         iters_node)
 810                        if (it->task_pos == &task->cg_list)
 811                                css_task_iter_advance(it);
 812
 813                list_del_init(&task->cg_list);
 814                if (!css_set_populated(from_cset))
 815                        css_set_update_populated(from_cset, false);
 816        } else {
 817                WARN_ON_ONCE(!list_empty(&task->cg_list));
 818        }
 819
 820        if (to_cset) {
 821                /*
 822                 * We are synchronized through cgroup_threadgroup_rwsem
 823                 * against PF_EXITING setting such that we can't race
 824                 * against cgroup_exit() changing the css_set to
 825                 * init_css_set and dropping the old one.
 826                 */
 827                WARN_ON_ONCE(task->flags & PF_EXITING);
 828
 829                rcu_assign_pointer(task->cgroups, to_cset);
 830                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 831                                                             &to_cset->tasks);
 832        }
 833}
 834
 835/*
 836 * hash table for cgroup groups. This improves the performance to find
 837 * an existing css_set. This hash doesn't (currently) take into
 838 * account cgroups in empty hierarchies.
 839 */
 840#define CSS_SET_HASH_BITS       7
 841static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 842
 843static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 844{
 845        unsigned long key = 0UL;
 846        struct cgroup_subsys *ss;
 847        int i;
 848
 849        for_each_subsys(ss, i)
 850                key += (unsigned long)css[i];
 851        key = (key >> 16) ^ key;
 852
 853        return key;
 854}
 855
 856void put_css_set_locked(struct css_set *cset)
 857{
 858        struct cgrp_cset_link *link, *tmp_link;
 859        struct cgroup_subsys *ss;
 860        int ssid;
 861
 862        lockdep_assert_held(&css_set_lock);
 863
 864        if (!refcount_dec_and_test(&cset->refcount))
 865                return;
 866
 867        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 868
 869        /* This css_set is dead. unlink it and release cgroup and css refs */
 870        for_each_subsys(ss, ssid) {
 871                list_del(&cset->e_cset_node[ssid]);
 872                css_put(cset->subsys[ssid]);
 873        }
 874        hash_del(&cset->hlist);
 875        css_set_count--;
 876
 877        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 878                list_del(&link->cset_link);
 879                list_del(&link->cgrp_link);
 880                if (cgroup_parent(link->cgrp))
 881                        cgroup_put(link->cgrp);
 882                kfree(link);
 883        }
 884
 885        if (css_set_threaded(cset)) {
 886                list_del(&cset->threaded_csets_node);
 887                put_css_set_locked(cset->dom_cset);
 888        }
 889
 890        kfree_rcu(cset, rcu_head);
 891}
 892
 893/**
 894 * compare_css_sets - helper function for find_existing_css_set().
 895 * @cset: candidate css_set being tested
 896 * @old_cset: existing css_set for a task
 897 * @new_cgrp: cgroup that's being entered by the task
 898 * @template: desired set of css pointers in css_set (pre-calculated)
 899 *
 900 * Returns true if "cset" matches "old_cset" except for the hierarchy
 901 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 902 */
 903static bool compare_css_sets(struct css_set *cset,
 904                             struct css_set *old_cset,
 905                             struct cgroup *new_cgrp,
 906                             struct cgroup_subsys_state *template[])
 907{
 908        struct cgroup *new_dfl_cgrp;
 909        struct list_head *l1, *l2;
 910
 911        /*
 912         * On the default hierarchy, there can be csets which are
 913         * associated with the same set of cgroups but different csses.
 914         * Let's first ensure that csses match.
 915         */
 916        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 917                return false;
 918
 919
 920        /* @cset's domain should match the default cgroup's */
 921        if (cgroup_on_dfl(new_cgrp))
 922                new_dfl_cgrp = new_cgrp;
 923        else
 924                new_dfl_cgrp = old_cset->dfl_cgrp;
 925
 926        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 927                return false;
 928
 929        /*
 930         * Compare cgroup pointers in order to distinguish between
 931         * different cgroups in hierarchies.  As different cgroups may
 932         * share the same effective css, this comparison is always
 933         * necessary.
 934         */
 935        l1 = &cset->cgrp_links;
 936        l2 = &old_cset->cgrp_links;
 937        while (1) {
 938                struct cgrp_cset_link *link1, *link2;
 939                struct cgroup *cgrp1, *cgrp2;
 940
 941                l1 = l1->next;
 942                l2 = l2->next;
 943                /* See if we reached the end - both lists are equal length. */
 944                if (l1 == &cset->cgrp_links) {
 945                        BUG_ON(l2 != &old_cset->cgrp_links);
 946                        break;
 947                } else {
 948                        BUG_ON(l2 == &old_cset->cgrp_links);
 949                }
 950                /* Locate the cgroups associated with these links. */
 951                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
 952                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
 953                cgrp1 = link1->cgrp;
 954                cgrp2 = link2->cgrp;
 955                /* Hierarchies should be linked in the same order. */
 956                BUG_ON(cgrp1->root != cgrp2->root);
 957
 958                /*
 959                 * If this hierarchy is the hierarchy of the cgroup
 960                 * that's changing, then we need to check that this
 961                 * css_set points to the new cgroup; if it's any other
 962                 * hierarchy, then this css_set should point to the
 963                 * same cgroup as the old css_set.
 964                 */
 965                if (cgrp1->root == new_cgrp->root) {
 966                        if (cgrp1 != new_cgrp)
 967                                return false;
 968                } else {
 969                        if (cgrp1 != cgrp2)
 970                                return false;
 971                }
 972        }
 973        return true;
 974}
 975
 976/**
 977 * find_existing_css_set - init css array and find the matching css_set
 978 * @old_cset: the css_set that we're using before the cgroup transition
 979 * @cgrp: the cgroup that we're moving into
 980 * @template: out param for the new set of csses, should be clear on entry
 981 */
 982static struct css_set *find_existing_css_set(struct css_set *old_cset,
 983                                        struct cgroup *cgrp,
 984                                        struct cgroup_subsys_state *template[])
 985{
 986        struct cgroup_root *root = cgrp->root;
 987        struct cgroup_subsys *ss;
 988        struct css_set *cset;
 989        unsigned long key;
 990        int i;
 991
 992        /*
 993         * Build the set of subsystem state objects that we want to see in the
 994         * new css_set. while subsystems can change globally, the entries here
 995         * won't change, so no need for locking.
 996         */
 997        for_each_subsys(ss, i) {
 998                if (root->subsys_mask & (1UL << i)) {
 999                        /*
1000                         * @ss is in this hierarchy, so we want the
1001                         * effective css from @cgrp.
1002                         */
1003                        template[i] = cgroup_e_css(cgrp, ss);
1004                } else {
1005                        /*
1006                         * @ss is not in this hierarchy, so we don't want
1007                         * to change the css.
1008                         */
1009                        template[i] = old_cset->subsys[i];
1010                }
1011        }
1012
1013        key = css_set_hash(template);
1014        hash_for_each_possible(css_set_table, cset, hlist, key) {
1015                if (!compare_css_sets(cset, old_cset, cgrp, template))
1016                        continue;
1017
1018                /* This css_set matches what we need */
1019                return cset;
1020        }
1021
1022        /* No existing cgroup group matched */
1023        return NULL;
1024}
1025
1026static void free_cgrp_cset_links(struct list_head *links_to_free)
1027{
1028        struct cgrp_cset_link *link, *tmp_link;
1029
1030        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1031                list_del(&link->cset_link);
1032                kfree(link);
1033        }
1034}
1035
1036/**
1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038 * @count: the number of links to allocate
1039 * @tmp_links: list_head the allocated links are put on
1040 *
1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042 * through ->cset_link.  Returns 0 on success or -errno.
1043 */
1044static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1045{
1046        struct cgrp_cset_link *link;
1047        int i;
1048
1049        INIT_LIST_HEAD(tmp_links);
1050
1051        for (i = 0; i < count; i++) {
1052                link = kzalloc(sizeof(*link), GFP_KERNEL);
1053                if (!link) {
1054                        free_cgrp_cset_links(tmp_links);
1055                        return -ENOMEM;
1056                }
1057                list_add(&link->cset_link, tmp_links);
1058        }
1059        return 0;
1060}
1061
1062/**
1063 * link_css_set - a helper function to link a css_set to a cgroup
1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065 * @cset: the css_set to be linked
1066 * @cgrp: the destination cgroup
1067 */
1068static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1069                         struct cgroup *cgrp)
1070{
1071        struct cgrp_cset_link *link;
1072
1073        BUG_ON(list_empty(tmp_links));
1074
1075        if (cgroup_on_dfl(cgrp))
1076                cset->dfl_cgrp = cgrp;
1077
1078        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1079        link->cset = cset;
1080        link->cgrp = cgrp;
1081
1082        /*
1083         * Always add links to the tail of the lists so that the lists are
1084         * in choronological order.
1085         */
1086        list_move_tail(&link->cset_link, &cgrp->cset_links);
1087        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1088
1089        if (cgroup_parent(cgrp))
1090                cgroup_get_live(cgrp);
1091}
1092
1093/**
1094 * find_css_set - return a new css_set with one cgroup updated
1095 * @old_cset: the baseline css_set
1096 * @cgrp: the cgroup to be updated
1097 *
1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099 * substituted into the appropriate hierarchy.
1100 */
1101static struct css_set *find_css_set(struct css_set *old_cset,
1102                                    struct cgroup *cgrp)
1103{
1104        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1105        struct css_set *cset;
1106        struct list_head tmp_links;
1107        struct cgrp_cset_link *link;
1108        struct cgroup_subsys *ss;
1109        unsigned long key;
1110        int ssid;
1111
1112        lockdep_assert_held(&cgroup_mutex);
1113
1114        /* First see if we already have a cgroup group that matches
1115         * the desired set */
1116        spin_lock_irq(&css_set_lock);
1117        cset = find_existing_css_set(old_cset, cgrp, template);
1118        if (cset)
1119                get_css_set(cset);
1120        spin_unlock_irq(&css_set_lock);
1121
1122        if (cset)
1123                return cset;
1124
1125        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1126        if (!cset)
1127                return NULL;
1128
1129        /* Allocate all the cgrp_cset_link objects that we'll need */
1130        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1131                kfree(cset);
1132                return NULL;
1133        }
1134
1135        refcount_set(&cset->refcount, 1);
1136        cset->dom_cset = cset;
1137        INIT_LIST_HEAD(&cset->tasks);
1138        INIT_LIST_HEAD(&cset->mg_tasks);
1139        INIT_LIST_HEAD(&cset->task_iters);
1140        INIT_LIST_HEAD(&cset->threaded_csets);
1141        INIT_HLIST_NODE(&cset->hlist);
1142        INIT_LIST_HEAD(&cset->cgrp_links);
1143        INIT_LIST_HEAD(&cset->mg_preload_node);
1144        INIT_LIST_HEAD(&cset->mg_node);
1145
1146        /* Copy the set of subsystem state objects generated in
1147         * find_existing_css_set() */
1148        memcpy(cset->subsys, template, sizeof(cset->subsys));
1149
1150        spin_lock_irq(&css_set_lock);
1151        /* Add reference counts and links from the new css_set. */
1152        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1153                struct cgroup *c = link->cgrp;
1154
1155                if (c->root == cgrp->root)
1156                        c = cgrp;
1157                link_css_set(&tmp_links, cset, c);
1158        }
1159
1160        BUG_ON(!list_empty(&tmp_links));
1161
1162        css_set_count++;
1163
1164        /* Add @cset to the hash table */
1165        key = css_set_hash(cset->subsys);
1166        hash_add(css_set_table, &cset->hlist, key);
1167
1168        for_each_subsys(ss, ssid) {
1169                struct cgroup_subsys_state *css = cset->subsys[ssid];
1170
1171                list_add_tail(&cset->e_cset_node[ssid],
1172                              &css->cgroup->e_csets[ssid]);
1173                css_get(css);
1174        }
1175
1176        spin_unlock_irq(&css_set_lock);
1177
1178        /*
1179         * If @cset should be threaded, look up the matching dom_cset and
1180         * link them up.  We first fully initialize @cset then look for the
1181         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1182         * to stay empty until we return.
1183         */
1184        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1185                struct css_set *dcset;
1186
1187                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1188                if (!dcset) {
1189                        put_css_set(cset);
1190                        return NULL;
1191                }
1192
1193                spin_lock_irq(&css_set_lock);
1194                cset->dom_cset = dcset;
1195                list_add_tail(&cset->threaded_csets_node,
1196                              &dcset->threaded_csets);
1197                spin_unlock_irq(&css_set_lock);
1198        }
1199
1200        return cset;
1201}
1202
1203struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1204{
1205        struct cgroup *root_cgrp = kf_root->kn->priv;
1206
1207        return root_cgrp->root;
1208}
1209
1210static int cgroup_init_root_id(struct cgroup_root *root)
1211{
1212        int id;
1213
1214        lockdep_assert_held(&cgroup_mutex);
1215
1216        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1217        if (id < 0)
1218                return id;
1219
1220        root->hierarchy_id = id;
1221        return 0;
1222}
1223
1224static void cgroup_exit_root_id(struct cgroup_root *root)
1225{
1226        lockdep_assert_held(&cgroup_mutex);
1227
1228        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1229}
1230
1231void cgroup_free_root(struct cgroup_root *root)
1232{
1233        if (root) {
1234                idr_destroy(&root->cgroup_idr);
1235                kfree(root);
1236        }
1237}
1238
1239static void cgroup_destroy_root(struct cgroup_root *root)
1240{
1241        struct cgroup *cgrp = &root->cgrp;
1242        struct cgrp_cset_link *link, *tmp_link;
1243
1244        trace_cgroup_destroy_root(root);
1245
1246        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1247
1248        BUG_ON(atomic_read(&root->nr_cgrps));
1249        BUG_ON(!list_empty(&cgrp->self.children));
1250
1251        /* Rebind all subsystems back to the default hierarchy */
1252        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1253
1254        /*
1255         * Release all the links from cset_links to this hierarchy's
1256         * root cgroup
1257         */
1258        spin_lock_irq(&css_set_lock);
1259
1260        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1261                list_del(&link->cset_link);
1262                list_del(&link->cgrp_link);
1263                kfree(link);
1264        }
1265
1266        spin_unlock_irq(&css_set_lock);
1267
1268        if (!list_empty(&root->root_list)) {
1269                list_del(&root->root_list);
1270                cgroup_root_count--;
1271        }
1272
1273        cgroup_exit_root_id(root);
1274
1275        mutex_unlock(&cgroup_mutex);
1276
1277        kernfs_destroy_root(root->kf_root);
1278        cgroup_free_root(root);
1279}
1280
1281/*
1282 * look up cgroup associated with current task's cgroup namespace on the
1283 * specified hierarchy
1284 */
1285static struct cgroup *
1286current_cgns_cgroup_from_root(struct cgroup_root *root)
1287{
1288        struct cgroup *res = NULL;
1289        struct css_set *cset;
1290
1291        lockdep_assert_held(&css_set_lock);
1292
1293        rcu_read_lock();
1294
1295        cset = current->nsproxy->cgroup_ns->root_cset;
1296        if (cset == &init_css_set) {
1297                res = &root->cgrp;
1298        } else {
1299                struct cgrp_cset_link *link;
1300
1301                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1302                        struct cgroup *c = link->cgrp;
1303
1304                        if (c->root == root) {
1305                                res = c;
1306                                break;
1307                        }
1308                }
1309        }
1310        rcu_read_unlock();
1311
1312        BUG_ON(!res);
1313        return res;
1314}
1315
1316/* look up cgroup associated with given css_set on the specified hierarchy */
1317static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1318                                            struct cgroup_root *root)
1319{
1320        struct cgroup *res = NULL;
1321
1322        lockdep_assert_held(&cgroup_mutex);
1323        lockdep_assert_held(&css_set_lock);
1324
1325        if (cset == &init_css_set) {
1326                res = &root->cgrp;
1327        } else if (root == &cgrp_dfl_root) {
1328                res = cset->dfl_cgrp;
1329        } else {
1330                struct cgrp_cset_link *link;
1331
1332                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1333                        struct cgroup *c = link->cgrp;
1334
1335                        if (c->root == root) {
1336                                res = c;
1337                                break;
1338                        }
1339                }
1340        }
1341
1342        BUG_ON(!res);
1343        return res;
1344}
1345
1346/*
1347 * Return the cgroup for "task" from the given hierarchy. Must be
1348 * called with cgroup_mutex and css_set_lock held.
1349 */
1350struct cgroup *task_cgroup_from_root(struct task_struct *task,
1351                                     struct cgroup_root *root)
1352{
1353        /*
1354         * No need to lock the task - since we hold cgroup_mutex the
1355         * task can't change groups, so the only thing that can happen
1356         * is that it exits and its css is set back to init_css_set.
1357         */
1358        return cset_cgroup_from_root(task_css_set(task), root);
1359}
1360
1361/*
1362 * A task must hold cgroup_mutex to modify cgroups.
1363 *
1364 * Any task can increment and decrement the count field without lock.
1365 * So in general, code holding cgroup_mutex can't rely on the count
1366 * field not changing.  However, if the count goes to zero, then only
1367 * cgroup_attach_task() can increment it again.  Because a count of zero
1368 * means that no tasks are currently attached, therefore there is no
1369 * way a task attached to that cgroup can fork (the other way to
1370 * increment the count).  So code holding cgroup_mutex can safely
1371 * assume that if the count is zero, it will stay zero. Similarly, if
1372 * a task holds cgroup_mutex on a cgroup with zero count, it
1373 * knows that the cgroup won't be removed, as cgroup_rmdir()
1374 * needs that mutex.
1375 *
1376 * A cgroup can only be deleted if both its 'count' of using tasks
1377 * is zero, and its list of 'children' cgroups is empty.  Since all
1378 * tasks in the system use _some_ cgroup, and since there is always at
1379 * least one task in the system (init, pid == 1), therefore, root cgroup
1380 * always has either children cgroups and/or using tasks.  So we don't
1381 * need a special hack to ensure that root cgroup cannot be deleted.
1382 *
1383 * P.S.  One more locking exception.  RCU is used to guard the
1384 * update of a tasks cgroup pointer by cgroup_attach_task()
1385 */
1386
1387static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1388
1389static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1390                              char *buf)
1391{
1392        struct cgroup_subsys *ss = cft->ss;
1393
1394        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1395            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1396                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1397                         cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1398                         cft->name);
1399        else
1400                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1401        return buf;
1402}
1403
1404/**
1405 * cgroup_file_mode - deduce file mode of a control file
1406 * @cft: the control file in question
1407 *
1408 * S_IRUGO for read, S_IWUSR for write.
1409 */
1410static umode_t cgroup_file_mode(const struct cftype *cft)
1411{
1412        umode_t mode = 0;
1413
1414        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1415                mode |= S_IRUGO;
1416
1417        if (cft->write_u64 || cft->write_s64 || cft->write) {
1418                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1419                        mode |= S_IWUGO;
1420                else
1421                        mode |= S_IWUSR;
1422        }
1423
1424        return mode;
1425}
1426
1427/**
1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429 * @subtree_control: the new subtree_control mask to consider
1430 * @this_ss_mask: available subsystems
1431 *
1432 * On the default hierarchy, a subsystem may request other subsystems to be
1433 * enabled together through its ->depends_on mask.  In such cases, more
1434 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1435 *
1436 * This function calculates which subsystems need to be enabled if
1437 * @subtree_control is to be applied while restricted to @this_ss_mask.
1438 */
1439static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1440{
1441        u16 cur_ss_mask = subtree_control;
1442        struct cgroup_subsys *ss;
1443        int ssid;
1444
1445        lockdep_assert_held(&cgroup_mutex);
1446
1447        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1448
1449        while (true) {
1450                u16 new_ss_mask = cur_ss_mask;
1451
1452                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1453                        new_ss_mask |= ss->depends_on;
1454                } while_each_subsys_mask();
1455
1456                /*
1457                 * Mask out subsystems which aren't available.  This can
1458                 * happen only if some depended-upon subsystems were bound
1459                 * to non-default hierarchies.
1460                 */
1461                new_ss_mask &= this_ss_mask;
1462
1463                if (new_ss_mask == cur_ss_mask)
1464                        break;
1465                cur_ss_mask = new_ss_mask;
1466        }
1467
1468        return cur_ss_mask;
1469}
1470
1471/**
1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473 * @kn: the kernfs_node being serviced
1474 *
1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476 * the method finishes if locking succeeded.  Note that once this function
1477 * returns the cgroup returned by cgroup_kn_lock_live() may become
1478 * inaccessible any time.  If the caller intends to continue to access the
1479 * cgroup, it should pin it before invoking this function.
1480 */
1481void cgroup_kn_unlock(struct kernfs_node *kn)
1482{
1483        struct cgroup *cgrp;
1484
1485        if (kernfs_type(kn) == KERNFS_DIR)
1486                cgrp = kn->priv;
1487        else
1488                cgrp = kn->parent->priv;
1489
1490        mutex_unlock(&cgroup_mutex);
1491
1492        kernfs_unbreak_active_protection(kn);
1493        cgroup_put(cgrp);
1494}
1495
1496/**
1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498 * @kn: the kernfs_node being serviced
1499 * @drain_offline: perform offline draining on the cgroup
1500 *
1501 * This helper is to be used by a cgroup kernfs method currently servicing
1502 * @kn.  It breaks the active protection, performs cgroup locking and
1503 * verifies that the associated cgroup is alive.  Returns the cgroup if
1504 * alive; otherwise, %NULL.  A successful return should be undone by a
1505 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1506 * cgroup is drained of offlining csses before return.
1507 *
1508 * Any cgroup kernfs method implementation which requires locking the
1509 * associated cgroup should use this helper.  It avoids nesting cgroup
1510 * locking under kernfs active protection and allows all kernfs operations
1511 * including self-removal.
1512 */
1513struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1514{
1515        struct cgroup *cgrp;
1516
1517        if (kernfs_type(kn) == KERNFS_DIR)
1518                cgrp = kn->priv;
1519        else
1520                cgrp = kn->parent->priv;
1521
1522        /*
1523         * We're gonna grab cgroup_mutex which nests outside kernfs
1524         * active_ref.  cgroup liveliness check alone provides enough
1525         * protection against removal.  Ensure @cgrp stays accessible and
1526         * break the active_ref protection.
1527         */
1528        if (!cgroup_tryget(cgrp))
1529                return NULL;
1530        kernfs_break_active_protection(kn);
1531
1532        if (drain_offline)
1533                cgroup_lock_and_drain_offline(cgrp);
1534        else
1535                mutex_lock(&cgroup_mutex);
1536
1537        if (!cgroup_is_dead(cgrp))
1538                return cgrp;
1539
1540        cgroup_kn_unlock(kn);
1541        return NULL;
1542}
1543
1544static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1545{
1546        char name[CGROUP_FILE_NAME_MAX];
1547
1548        lockdep_assert_held(&cgroup_mutex);
1549
1550        if (cft->file_offset) {
1551                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1552                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1553
1554                spin_lock_irq(&cgroup_file_kn_lock);
1555                cfile->kn = NULL;
1556                spin_unlock_irq(&cgroup_file_kn_lock);
1557        }
1558
1559        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1560}
1561
1562/**
1563 * css_clear_dir - remove subsys files in a cgroup directory
1564 * @css: taget css
1565 */
1566static void css_clear_dir(struct cgroup_subsys_state *css)
1567{
1568        struct cgroup *cgrp = css->cgroup;
1569        struct cftype *cfts;
1570
1571        if (!(css->flags & CSS_VISIBLE))
1572                return;
1573
1574        css->flags &= ~CSS_VISIBLE;
1575
1576        list_for_each_entry(cfts, &css->ss->cfts, node)
1577                cgroup_addrm_files(css, cgrp, cfts, false);
1578}
1579
1580/**
1581 * css_populate_dir - create subsys files in a cgroup directory
1582 * @css: target css
1583 *
1584 * On failure, no file is added.
1585 */
1586static int css_populate_dir(struct cgroup_subsys_state *css)
1587{
1588        struct cgroup *cgrp = css->cgroup;
1589        struct cftype *cfts, *failed_cfts;
1590        int ret;
1591
1592        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1593                return 0;
1594
1595        if (!css->ss) {
1596                if (cgroup_on_dfl(cgrp))
1597                        cfts = cgroup_base_files;
1598                else
1599                        cfts = cgroup1_base_files;
1600
1601                return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1602        }
1603
1604        list_for_each_entry(cfts, &css->ss->cfts, node) {
1605                ret = cgroup_addrm_files(css, cgrp, cfts, true);
1606                if (ret < 0) {
1607                        failed_cfts = cfts;
1608                        goto err;
1609                }
1610        }
1611
1612        css->flags |= CSS_VISIBLE;
1613
1614        return 0;
1615err:
1616        list_for_each_entry(cfts, &css->ss->cfts, node) {
1617                if (cfts == failed_cfts)
1618                        break;
1619                cgroup_addrm_files(css, cgrp, cfts, false);
1620        }
1621        return ret;
1622}
1623
1624int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1625{
1626        struct cgroup *dcgrp = &dst_root->cgrp;
1627        struct cgroup_subsys *ss;
1628        int ssid, i, ret;
1629
1630        lockdep_assert_held(&cgroup_mutex);
1631
1632        do_each_subsys_mask(ss, ssid, ss_mask) {
1633                /*
1634                 * If @ss has non-root csses attached to it, can't move.
1635                 * If @ss is an implicit controller, it is exempt from this
1636                 * rule and can be stolen.
1637                 */
1638                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1639                    !ss->implicit_on_dfl)
1640                        return -EBUSY;
1641
1642                /* can't move between two non-dummy roots either */
1643                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1644                        return -EBUSY;
1645        } while_each_subsys_mask();
1646
1647        do_each_subsys_mask(ss, ssid, ss_mask) {
1648                struct cgroup_root *src_root = ss->root;
1649                struct cgroup *scgrp = &src_root->cgrp;
1650                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1651                struct css_set *cset;
1652
1653                WARN_ON(!css || cgroup_css(dcgrp, ss));
1654
1655                /* disable from the source */
1656                src_root->subsys_mask &= ~(1 << ssid);
1657                WARN_ON(cgroup_apply_control(scgrp));
1658                cgroup_finalize_control(scgrp, 0);
1659
1660                /* rebind */
1661                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1662                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1663                ss->root = dst_root;
1664                css->cgroup = dcgrp;
1665
1666                spin_lock_irq(&css_set_lock);
1667                hash_for_each(css_set_table, i, cset, hlist)
1668                        list_move_tail(&cset->e_cset_node[ss->id],
1669                                       &dcgrp->e_csets[ss->id]);
1670                spin_unlock_irq(&css_set_lock);
1671
1672                /* default hierarchy doesn't enable controllers by default */
1673                dst_root->subsys_mask |= 1 << ssid;
1674                if (dst_root == &cgrp_dfl_root) {
1675                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1676                } else {
1677                        dcgrp->subtree_control |= 1 << ssid;
1678                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1679                }
1680
1681                ret = cgroup_apply_control(dcgrp);
1682                if (ret)
1683                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1684                                ss->name, ret);
1685
1686                if (ss->bind)
1687                        ss->bind(css);
1688        } while_each_subsys_mask();
1689
1690        kernfs_activate(dcgrp->kn);
1691        return 0;
1692}
1693
1694int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1695                     struct kernfs_root *kf_root)
1696{
1697        int len = 0;
1698        char *buf = NULL;
1699        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1700        struct cgroup *ns_cgroup;
1701
1702        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1703        if (!buf)
1704                return -ENOMEM;
1705
1706        spin_lock_irq(&css_set_lock);
1707        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1708        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1709        spin_unlock_irq(&css_set_lock);
1710
1711        if (len >= PATH_MAX)
1712                len = -ERANGE;
1713        else if (len > 0) {
1714                seq_escape(sf, buf, " \t\n\\");
1715                len = 0;
1716        }
1717        kfree(buf);
1718        return len;
1719}
1720
1721static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1722{
1723        char *token;
1724
1725        *root_flags = 0;
1726
1727        if (!data)
1728                return 0;
1729
1730        while ((token = strsep(&data, ",")) != NULL) {
1731                if (!strcmp(token, "nsdelegate")) {
1732                        *root_flags |= CGRP_ROOT_NS_DELEGATE;
1733                        continue;
1734                }
1735
1736                pr_err("cgroup2: unknown option \"%s\"\n", token);
1737                return -EINVAL;
1738        }
1739
1740        return 0;
1741}
1742
1743static void apply_cgroup_root_flags(unsigned int root_flags)
1744{
1745        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1746                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1747                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1748                else
1749                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1750        }
1751}
1752
1753static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1754{
1755        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1756                seq_puts(seq, ",nsdelegate");
1757        return 0;
1758}
1759
1760static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1761{
1762        unsigned int root_flags;
1763        int ret;
1764
1765        ret = parse_cgroup_root_flags(data, &root_flags);
1766        if (ret)
1767                return ret;
1768
1769        apply_cgroup_root_flags(root_flags);
1770        return 0;
1771}
1772
1773/*
1774 * To reduce the fork() overhead for systems that are not actually using
1775 * their cgroups capability, we don't maintain the lists running through
1776 * each css_set to its tasks until we see the list actually used - in other
1777 * words after the first mount.
1778 */
1779static bool use_task_css_set_links __read_mostly;
1780
1781static void cgroup_enable_task_cg_lists(void)
1782{
1783        struct task_struct *p, *g;
1784
1785        spin_lock_irq(&css_set_lock);
1786
1787        if (use_task_css_set_links)
1788                goto out_unlock;
1789
1790        use_task_css_set_links = true;
1791
1792        /*
1793         * We need tasklist_lock because RCU is not safe against
1794         * while_each_thread(). Besides, a forking task that has passed
1795         * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796         * is not guaranteed to have its child immediately visible in the
1797         * tasklist if we walk through it with RCU.
1798         */
1799        read_lock(&tasklist_lock);
1800        do_each_thread(g, p) {
1801                WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1802                             task_css_set(p) != &init_css_set);
1803
1804                /*
1805                 * We should check if the process is exiting, otherwise
1806                 * it will race with cgroup_exit() in that the list
1807                 * entry won't be deleted though the process has exited.
1808                 * Do it while holding siglock so that we don't end up
1809                 * racing against cgroup_exit().
1810                 *
1811                 * Interrupts were already disabled while acquiring
1812                 * the css_set_lock, so we do not need to disable it
1813                 * again when acquiring the sighand->siglock here.
1814                 */
1815                spin_lock(&p->sighand->siglock);
1816                if (!(p->flags & PF_EXITING)) {
1817                        struct css_set *cset = task_css_set(p);
1818
1819                        if (!css_set_populated(cset))
1820                                css_set_update_populated(cset, true);
1821                        list_add_tail(&p->cg_list, &cset->tasks);
1822                        get_css_set(cset);
1823                        cset->nr_tasks++;
1824                }
1825                spin_unlock(&p->sighand->siglock);
1826        } while_each_thread(g, p);
1827        read_unlock(&tasklist_lock);
1828out_unlock:
1829        spin_unlock_irq(&css_set_lock);
1830}
1831
1832static void init_cgroup_housekeeping(struct cgroup *cgrp)
1833{
1834        struct cgroup_subsys *ss;
1835        int ssid;
1836
1837        INIT_LIST_HEAD(&cgrp->self.sibling);
1838        INIT_LIST_HEAD(&cgrp->self.children);
1839        INIT_LIST_HEAD(&cgrp->cset_links);
1840        INIT_LIST_HEAD(&cgrp->pidlists);
1841        mutex_init(&cgrp->pidlist_mutex);
1842        cgrp->self.cgroup = cgrp;
1843        cgrp->self.flags |= CSS_ONLINE;
1844        cgrp->dom_cgrp = cgrp;
1845        cgrp->max_descendants = INT_MAX;
1846        cgrp->max_depth = INT_MAX;
1847
1848        for_each_subsys(ss, ssid)
1849                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1850
1851        init_waitqueue_head(&cgrp->offline_waitq);
1852        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1853}
1854
1855void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1856{
1857        struct cgroup *cgrp = &root->cgrp;
1858
1859        INIT_LIST_HEAD(&root->root_list);
1860        atomic_set(&root->nr_cgrps, 1);
1861        cgrp->root = root;
1862        init_cgroup_housekeeping(cgrp);
1863        idr_init(&root->cgroup_idr);
1864
1865        root->flags = opts->flags;
1866        if (opts->release_agent)
1867                strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1868        if (opts->name)
1869                strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1870        if (opts->cpuset_clone_children)
1871                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1872}
1873
1874int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1875{
1876        LIST_HEAD(tmp_links);
1877        struct cgroup *root_cgrp = &root->cgrp;
1878        struct kernfs_syscall_ops *kf_sops;
1879        struct css_set *cset;
1880        int i, ret;
1881
1882        lockdep_assert_held(&cgroup_mutex);
1883
1884        ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1885        if (ret < 0)
1886                goto out;
1887        root_cgrp->id = ret;
1888        root_cgrp->ancestor_ids[0] = ret;
1889
1890        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1891                              ref_flags, GFP_KERNEL);
1892        if (ret)
1893                goto out;
1894
1895        /*
1896         * We're accessing css_set_count without locking css_set_lock here,
1897         * but that's OK - it can only be increased by someone holding
1898         * cgroup_lock, and that's us.  Later rebinding may disable
1899         * controllers on the default hierarchy and thus create new csets,
1900         * which can't be more than the existing ones.  Allocate 2x.
1901         */
1902        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1903        if (ret)
1904                goto cancel_ref;
1905
1906        ret = cgroup_init_root_id(root);
1907        if (ret)
1908                goto cancel_ref;
1909
1910        kf_sops = root == &cgrp_dfl_root ?
1911                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1912
1913        root->kf_root = kernfs_create_root(kf_sops,
1914                                           KERNFS_ROOT_CREATE_DEACTIVATED |
1915                                           KERNFS_ROOT_SUPPORT_EXPORTOP,
1916                                           root_cgrp);
1917        if (IS_ERR(root->kf_root)) {
1918                ret = PTR_ERR(root->kf_root);
1919                goto exit_root_id;
1920        }
1921        root_cgrp->kn = root->kf_root->kn;
1922
1923        ret = css_populate_dir(&root_cgrp->self);
1924        if (ret)
1925                goto destroy_root;
1926
1927        ret = rebind_subsystems(root, ss_mask);
1928        if (ret)
1929                goto destroy_root;
1930
1931        ret = cgroup_bpf_inherit(root_cgrp);
1932        WARN_ON_ONCE(ret);
1933
1934        trace_cgroup_setup_root(root);
1935
1936        /*
1937         * There must be no failure case after here, since rebinding takes
1938         * care of subsystems' refcounts, which are explicitly dropped in
1939         * the failure exit path.
1940         */
1941        list_add(&root->root_list, &cgroup_roots);
1942        cgroup_root_count++;
1943
1944        /*
1945         * Link the root cgroup in this hierarchy into all the css_set
1946         * objects.
1947         */
1948        spin_lock_irq(&css_set_lock);
1949        hash_for_each(css_set_table, i, cset, hlist) {
1950                link_css_set(&tmp_links, cset, root_cgrp);
1951                if (css_set_populated(cset))
1952                        cgroup_update_populated(root_cgrp, true);
1953        }
1954        spin_unlock_irq(&css_set_lock);
1955
1956        BUG_ON(!list_empty(&root_cgrp->self.children));
1957        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1958
1959        kernfs_activate(root_cgrp->kn);
1960        ret = 0;
1961        goto out;
1962
1963destroy_root:
1964        kernfs_destroy_root(root->kf_root);
1965        root->kf_root = NULL;
1966exit_root_id:
1967        cgroup_exit_root_id(root);
1968cancel_ref:
1969        percpu_ref_exit(&root_cgrp->self.refcnt);
1970out:
1971        free_cgrp_cset_links(&tmp_links);
1972        return ret;
1973}
1974
1975struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1976                               struct cgroup_root *root, unsigned long magic,
1977                               struct cgroup_namespace *ns)
1978{
1979        struct dentry *dentry;
1980        bool new_sb;
1981
1982        dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1983
1984        /*
1985         * In non-init cgroup namespace, instead of root cgroup's dentry,
1986         * we return the dentry corresponding to the cgroupns->root_cgrp.
1987         */
1988        if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1989                struct dentry *nsdentry;
1990                struct cgroup *cgrp;
1991
1992                mutex_lock(&cgroup_mutex);
1993                spin_lock_irq(&css_set_lock);
1994
1995                cgrp = cset_cgroup_from_root(ns->root_cset, root);
1996
1997                spin_unlock_irq(&css_set_lock);
1998                mutex_unlock(&cgroup_mutex);
1999
2000                nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2001                dput(dentry);
2002                dentry = nsdentry;
2003        }
2004
2005        if (IS_ERR(dentry) || !new_sb)
2006                cgroup_put(&root->cgrp);
2007
2008        return dentry;
2009}
2010
2011static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2012                         int flags, const char *unused_dev_name,
2013                         void *data)
2014{
2015        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2016        struct dentry *dentry;
2017        int ret;
2018
2019        get_cgroup_ns(ns);
2020
2021        /* Check if the caller has permission to mount. */
2022        if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2023                put_cgroup_ns(ns);
2024                return ERR_PTR(-EPERM);
2025        }
2026
2027        /*
2028         * The first time anyone tries to mount a cgroup, enable the list
2029         * linking each css_set to its tasks and fix up all existing tasks.
2030         */
2031        if (!use_task_css_set_links)
2032                cgroup_enable_task_cg_lists();
2033
2034        if (fs_type == &cgroup2_fs_type) {
2035                unsigned int root_flags;
2036
2037                ret = parse_cgroup_root_flags(data, &root_flags);
2038                if (ret) {
2039                        put_cgroup_ns(ns);
2040                        return ERR_PTR(ret);
2041                }
2042
2043                cgrp_dfl_visible = true;
2044                cgroup_get_live(&cgrp_dfl_root.cgrp);
2045
2046                dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2047                                         CGROUP2_SUPER_MAGIC, ns);
2048                if (!IS_ERR(dentry))
2049                        apply_cgroup_root_flags(root_flags);
2050        } else {
2051                dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2052                                       CGROUP_SUPER_MAGIC, ns);
2053        }
2054
2055        put_cgroup_ns(ns);
2056        return dentry;
2057}
2058
2059static void cgroup_kill_sb(struct super_block *sb)
2060{
2061        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2062        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2063
2064        /*
2065         * If @root doesn't have any mounts or children, start killing it.
2066         * This prevents new mounts by disabling percpu_ref_tryget_live().
2067         * cgroup_mount() may wait for @root's release.
2068         *
2069         * And don't kill the default root.
2070         */
2071        if (!list_empty(&root->cgrp.self.children) ||
2072            root == &cgrp_dfl_root)
2073                cgroup_put(&root->cgrp);
2074        else
2075                percpu_ref_kill(&root->cgrp.self.refcnt);
2076
2077        kernfs_kill_sb(sb);
2078}
2079
2080struct file_system_type cgroup_fs_type = {
2081        .name = "cgroup",
2082        .mount = cgroup_mount,
2083        .kill_sb = cgroup_kill_sb,
2084        .fs_flags = FS_USERNS_MOUNT,
2085};
2086
2087static struct file_system_type cgroup2_fs_type = {
2088        .name = "cgroup2",
2089        .mount = cgroup_mount,
2090        .kill_sb = cgroup_kill_sb,
2091        .fs_flags = FS_USERNS_MOUNT,
2092};
2093
2094int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2095                          struct cgroup_namespace *ns)
2096{
2097        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2098
2099        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2100}
2101
2102int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2103                   struct cgroup_namespace *ns)
2104{
2105        int ret;
2106
2107        mutex_lock(&cgroup_mutex);
2108        spin_lock_irq(&css_set_lock);
2109
2110        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2111
2112        spin_unlock_irq(&css_set_lock);
2113        mutex_unlock(&cgroup_mutex);
2114
2115        return ret;
2116}
2117EXPORT_SYMBOL_GPL(cgroup_path_ns);
2118
2119/**
2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121 * @task: target task
2122 * @buf: the buffer to write the path into
2123 * @buflen: the length of the buffer
2124 *
2125 * Determine @task's cgroup on the first (the one with the lowest non-zero
2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128 * cgroup controller callbacks.
2129 *
2130 * Return value is the same as kernfs_path().
2131 */
2132int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2133{
2134        struct cgroup_root *root;
2135        struct cgroup *cgrp;
2136        int hierarchy_id = 1;
2137        int ret;
2138
2139        mutex_lock(&cgroup_mutex);
2140        spin_lock_irq(&css_set_lock);
2141
2142        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2143
2144        if (root) {
2145                cgrp = task_cgroup_from_root(task, root);
2146                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2147        } else {
2148                /* if no hierarchy exists, everyone is in "/" */
2149                ret = strlcpy(buf, "/", buflen);
2150        }
2151
2152        spin_unlock_irq(&css_set_lock);
2153        mutex_unlock(&cgroup_mutex);
2154        return ret;
2155}
2156EXPORT_SYMBOL_GPL(task_cgroup_path);
2157
2158/**
2159 * cgroup_migrate_add_task - add a migration target task to a migration context
2160 * @task: target task
2161 * @mgctx: target migration context
2162 *
2163 * Add @task, which is a migration target, to @mgctx->tset.  This function
2164 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2165 * should have been added as a migration source and @task->cg_list will be
2166 * moved from the css_set's tasks list to mg_tasks one.
2167 */
2168static void cgroup_migrate_add_task(struct task_struct *task,
2169                                    struct cgroup_mgctx *mgctx)
2170{
2171        struct css_set *cset;
2172
2173        lockdep_assert_held(&css_set_lock);
2174
2175        /* @task either already exited or can't exit until the end */
2176        if (task->flags & PF_EXITING)
2177                return;
2178
2179        /* leave @task alone if post_fork() hasn't linked it yet */
2180        if (list_empty(&task->cg_list))
2181                return;
2182
2183        cset = task_css_set(task);
2184        if (!cset->mg_src_cgrp)
2185                return;
2186
2187        mgctx->tset.nr_tasks++;
2188
2189        list_move_tail(&task->cg_list, &cset->mg_tasks);
2190        if (list_empty(&cset->mg_node))
2191                list_add_tail(&cset->mg_node,
2192                              &mgctx->tset.src_csets);
2193        if (list_empty(&cset->mg_dst_cset->mg_node))
2194                list_add_tail(&cset->mg_dst_cset->mg_node,
2195                              &mgctx->tset.dst_csets);
2196}
2197
2198/**
2199 * cgroup_taskset_first - reset taskset and return the first task
2200 * @tset: taskset of interest
2201 * @dst_cssp: output variable for the destination css
2202 *
2203 * @tset iteration is initialized and the first task is returned.
2204 */
2205struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2206                                         struct cgroup_subsys_state **dst_cssp)
2207{
2208        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2209        tset->cur_task = NULL;
2210
2211        return cgroup_taskset_next(tset, dst_cssp);
2212}
2213
2214/**
2215 * cgroup_taskset_next - iterate to the next task in taskset
2216 * @tset: taskset of interest
2217 * @dst_cssp: output variable for the destination css
2218 *
2219 * Return the next task in @tset.  Iteration must have been initialized
2220 * with cgroup_taskset_first().
2221 */
2222struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2223                                        struct cgroup_subsys_state **dst_cssp)
2224{
2225        struct css_set *cset = tset->cur_cset;
2226        struct task_struct *task = tset->cur_task;
2227
2228        while (&cset->mg_node != tset->csets) {
2229                if (!task)
2230                        task = list_first_entry(&cset->mg_tasks,
2231                                                struct task_struct, cg_list);
2232                else
2233                        task = list_next_entry(task, cg_list);
2234
2235                if (&task->cg_list != &cset->mg_tasks) {
2236                        tset->cur_cset = cset;
2237                        tset->cur_task = task;
2238
2239                        /*
2240                         * This function may be called both before and
2241                         * after cgroup_taskset_migrate().  The two cases
2242                         * can be distinguished by looking at whether @cset
2243                         * has its ->mg_dst_cset set.
2244                         */
2245                        if (cset->mg_dst_cset)
2246                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2247                        else
2248                                *dst_cssp = cset->subsys[tset->ssid];
2249
2250                        return task;
2251                }
2252
2253                cset = list_next_entry(cset, mg_node);
2254                task = NULL;
2255        }
2256
2257        return NULL;
2258}
2259
2260/**
2261 * cgroup_taskset_migrate - migrate a taskset
2262 * @mgctx: migration context
2263 *
2264 * Migrate tasks in @mgctx as setup by migration preparation functions.
2265 * This function fails iff one of the ->can_attach callbacks fails and
2266 * guarantees that either all or none of the tasks in @mgctx are migrated.
2267 * @mgctx is consumed regardless of success.
2268 */
2269static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2270{
2271        struct cgroup_taskset *tset = &mgctx->tset;
2272        struct cgroup_subsys *ss;
2273        struct task_struct *task, *tmp_task;
2274        struct css_set *cset, *tmp_cset;
2275        int ssid, failed_ssid, ret;
2276
2277        /* check that we can legitimately attach to the cgroup */
2278        if (tset->nr_tasks) {
2279                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2280                        if (ss->can_attach) {
2281                                tset->ssid = ssid;
2282                                ret = ss->can_attach(tset);
2283                                if (ret) {
2284                                        failed_ssid = ssid;
2285                                        goto out_cancel_attach;
2286                                }
2287                        }
2288                } while_each_subsys_mask();
2289        }
2290
2291        /*
2292         * Now that we're guaranteed success, proceed to move all tasks to
2293         * the new cgroup.  There are no failure cases after here, so this
2294         * is the commit point.
2295         */
2296        spin_lock_irq(&css_set_lock);
2297        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2298                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2299                        struct css_set *from_cset = task_css_set(task);
2300                        struct css_set *to_cset = cset->mg_dst_cset;
2301
2302                        get_css_set(to_cset);
2303                        to_cset->nr_tasks++;
2304                        css_set_move_task(task, from_cset, to_cset, true);
2305                        put_css_set_locked(from_cset);
2306                        from_cset->nr_tasks--;
2307                }
2308        }
2309        spin_unlock_irq(&css_set_lock);
2310
2311        /*
2312         * Migration is committed, all target tasks are now on dst_csets.
2313         * Nothing is sensitive to fork() after this point.  Notify
2314         * controllers that migration is complete.
2315         */
2316        tset->csets = &tset->dst_csets;
2317
2318        if (tset->nr_tasks) {
2319                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2320                        if (ss->attach) {
2321                                tset->ssid = ssid;
2322                                ss->attach(tset);
2323                        }
2324                } while_each_subsys_mask();
2325        }
2326
2327        ret = 0;
2328        goto out_release_tset;
2329
2330out_cancel_attach:
2331        if (tset->nr_tasks) {
2332                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2333                        if (ssid == failed_ssid)
2334                                break;
2335                        if (ss->cancel_attach) {
2336                                tset->ssid = ssid;
2337                                ss->cancel_attach(tset);
2338                        }
2339                } while_each_subsys_mask();
2340        }
2341out_release_tset:
2342        spin_lock_irq(&css_set_lock);
2343        list_splice_init(&tset->dst_csets, &tset->src_csets);
2344        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2345                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2346                list_del_init(&cset->mg_node);
2347        }
2348        spin_unlock_irq(&css_set_lock);
2349
2350        /*
2351         * Re-initialize the cgroup_taskset structure in case it is reused
2352         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2353         * iteration.
2354         */
2355        tset->nr_tasks = 0;
2356        tset->csets    = &tset->src_csets;
2357        return ret;
2358}
2359
2360/**
2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362 * @dst_cgrp: destination cgroup to test
2363 *
2364 * On the default hierarchy, except for the mixable, (possible) thread root
2365 * and threaded cgroups, subtree_control must be zero for migration
2366 * destination cgroups with tasks so that child cgroups don't compete
2367 * against tasks.
2368 */
2369int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2370{
2371        /* v1 doesn't have any restriction */
2372        if (!cgroup_on_dfl(dst_cgrp))
2373                return 0;
2374
2375        /* verify @dst_cgrp can host resources */
2376        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2377                return -EOPNOTSUPP;
2378
2379        /* mixables don't care */
2380        if (cgroup_is_mixable(dst_cgrp))
2381                return 0;
2382
2383        /*
2384         * If @dst_cgrp is already or can become a thread root or is
2385         * threaded, it doesn't matter.
2386         */
2387        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2388                return 0;
2389
2390        /* apply no-internal-process constraint */
2391        if (dst_cgrp->subtree_control)
2392                return -EBUSY;
2393
2394        return 0;
2395}
2396
2397/**
2398 * cgroup_migrate_finish - cleanup after attach
2399 * @mgctx: migration context
2400 *
2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2402 * those functions for details.
2403 */
2404void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2405{
2406        LIST_HEAD(preloaded);
2407        struct css_set *cset, *tmp_cset;
2408
2409        lockdep_assert_held(&cgroup_mutex);
2410
2411        spin_lock_irq(&css_set_lock);
2412
2413        list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2414        list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2415
2416        list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2417                cset->mg_src_cgrp = NULL;
2418                cset->mg_dst_cgrp = NULL;
2419                cset->mg_dst_cset = NULL;
2420                list_del_init(&cset->mg_preload_node);
2421                put_css_set_locked(cset);
2422        }
2423
2424        spin_unlock_irq(&css_set_lock);
2425}
2426
2427/**
2428 * cgroup_migrate_add_src - add a migration source css_set
2429 * @src_cset: the source css_set to add
2430 * @dst_cgrp: the destination cgroup
2431 * @mgctx: migration context
2432 *
2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435 * up by cgroup_migrate_finish().
2436 *
2437 * This function may be called without holding cgroup_threadgroup_rwsem
2438 * even if the target is a process.  Threads may be created and destroyed
2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440 * into play and the preloaded css_sets are guaranteed to cover all
2441 * migrations.
2442 */
2443void cgroup_migrate_add_src(struct css_set *src_cset,
2444                            struct cgroup *dst_cgrp,
2445                            struct cgroup_mgctx *mgctx)
2446{
2447        struct cgroup *src_cgrp;
2448
2449        lockdep_assert_held(&cgroup_mutex);
2450        lockdep_assert_held(&css_set_lock);
2451
2452        /*
2453         * If ->dead, @src_set is associated with one or more dead cgroups
2454         * and doesn't contain any migratable tasks.  Ignore it early so
2455         * that the rest of migration path doesn't get confused by it.
2456         */
2457        if (src_cset->dead)
2458                return;
2459
2460        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461
2462        if (!list_empty(&src_cset->mg_preload_node))
2463                return;
2464
2465        WARN_ON(src_cset->mg_src_cgrp);
2466        WARN_ON(src_cset->mg_dst_cgrp);
2467        WARN_ON(!list_empty(&src_cset->mg_tasks));
2468        WARN_ON(!list_empty(&src_cset->mg_node));
2469
2470        src_cset->mg_src_cgrp = src_cgrp;
2471        src_cset->mg_dst_cgrp = dst_cgrp;
2472        get_css_set(src_cset);
2473        list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2474}
2475
2476/**
2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478 * @mgctx: migration context
2479 *
2480 * Tasks are about to be moved and all the source css_sets have been
2481 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @mgctx->preloaded_dst_csets.
2484 *
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set.  After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488 * @mgctx.
2489 */
2490int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2491{
2492        struct css_set *src_cset, *tmp_cset;
2493
2494        lockdep_assert_held(&cgroup_mutex);
2495
2496        /* look up the dst cset for each src cset and link it to src */
2497        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2498                                 mg_preload_node) {
2499                struct css_set *dst_cset;
2500                struct cgroup_subsys *ss;
2501                int ssid;
2502
2503                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2504                if (!dst_cset)
2505                        goto err;
2506
2507                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2508
2509                /*
2510                 * If src cset equals dst, it's noop.  Drop the src.
2511                 * cgroup_migrate() will skip the cset too.  Note that we
2512                 * can't handle src == dst as some nodes are used by both.
2513                 */
2514                if (src_cset == dst_cset) {
2515                        src_cset->mg_src_cgrp = NULL;
2516                        src_cset->mg_dst_cgrp = NULL;
2517                        list_del_init(&src_cset->mg_preload_node);
2518                        put_css_set(src_cset);
2519                        put_css_set(dst_cset);
2520                        continue;
2521                }
2522
2523                src_cset->mg_dst_cset = dst_cset;
2524
2525                if (list_empty(&dst_cset->mg_preload_node))
2526                        list_add_tail(&dst_cset->mg_preload_node,
2527                                      &mgctx->preloaded_dst_csets);
2528                else
2529                        put_css_set(dst_cset);
2530
2531                for_each_subsys(ss, ssid)
2532                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2533                                mgctx->ss_mask |= 1 << ssid;
2534        }
2535
2536        return 0;
2537err:
2538        cgroup_migrate_finish(mgctx);
2539        return -ENOMEM;
2540}
2541
2542/**
2543 * cgroup_migrate - migrate a process or task to a cgroup
2544 * @leader: the leader of the process or the task to migrate
2545 * @threadgroup: whether @leader points to the whole process or a single task
2546 * @mgctx: migration context
2547 *
2548 * Migrate a process or task denoted by @leader.  If migrating a process,
2549 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2550 * responsible for invoking cgroup_migrate_add_src() and
2551 * cgroup_migrate_prepare_dst() on the targets before invoking this
2552 * function and following up with cgroup_migrate_finish().
2553 *
2554 * As long as a controller's ->can_attach() doesn't fail, this function is
2555 * guaranteed to succeed.  This means that, excluding ->can_attach()
2556 * failure, when migrating multiple targets, the success or failure can be
2557 * decided for all targets by invoking group_migrate_prepare_dst() before
2558 * actually starting migrating.
2559 */
2560int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2561                   struct cgroup_mgctx *mgctx)
2562{
2563        struct task_struct *task;
2564
2565        /*
2566         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567         * already PF_EXITING could be freed from underneath us unless we
2568         * take an rcu_read_lock.
2569         */
2570        spin_lock_irq(&css_set_lock);
2571        rcu_read_lock();
2572        task = leader;
2573        do {
2574                cgroup_migrate_add_task(task, mgctx);
2575                if (!threadgroup)
2576                        break;
2577        } while_each_thread(leader, task);
2578        rcu_read_unlock();
2579        spin_unlock_irq(&css_set_lock);
2580
2581        return cgroup_migrate_execute(mgctx);
2582}
2583
2584/**
2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586 * @dst_cgrp: the cgroup to attach to
2587 * @leader: the task or the leader of the threadgroup to be attached
2588 * @threadgroup: attach the whole threadgroup?
2589 *
2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2591 */
2592int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2593                       bool threadgroup)
2594{
2595        DEFINE_CGROUP_MGCTX(mgctx);
2596        struct task_struct *task;
2597        int ret;
2598
2599        ret = cgroup_migrate_vet_dst(dst_cgrp);
2600        if (ret)
2601                return ret;
2602
2603        /* look up all src csets */
2604        spin_lock_irq(&css_set_lock);
2605        rcu_read_lock();
2606        task = leader;
2607        do {
2608                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2609                if (!threadgroup)
2610                        break;
2611        } while_each_thread(leader, task);
2612        rcu_read_unlock();
2613        spin_unlock_irq(&css_set_lock);
2614
2615        /* prepare dst csets and commit */
2616        ret = cgroup_migrate_prepare_dst(&mgctx);
2617        if (!ret)
2618                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2619
2620        cgroup_migrate_finish(&mgctx);
2621
2622        if (!ret)
2623                trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2624
2625        return ret;
2626}
2627
2628struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2629        __acquires(&cgroup_threadgroup_rwsem)
2630{
2631        struct task_struct *tsk;
2632        pid_t pid;
2633
2634        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2635                return ERR_PTR(-EINVAL);
2636
2637        percpu_down_write(&cgroup_threadgroup_rwsem);
2638
2639        rcu_read_lock();
2640        if (pid) {
2641                tsk = find_task_by_vpid(pid);
2642                if (!tsk) {
2643                        tsk = ERR_PTR(-ESRCH);
2644                        goto out_unlock_threadgroup;
2645                }
2646        } else {
2647                tsk = current;
2648        }
2649
2650        if (threadgroup)
2651                tsk = tsk->group_leader;
2652
2653        /*
2654         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655         * If userland migrates such a kthread to a non-root cgroup, it can
2656         * become trapped in a cpuset, or RT kthread may be born in a
2657         * cgroup with no rt_runtime allocated.  Just say no.
2658         */
2659        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2660                tsk = ERR_PTR(-EINVAL);
2661                goto out_unlock_threadgroup;
2662        }
2663
2664        get_task_struct(tsk);
2665        goto out_unlock_rcu;
2666
2667out_unlock_threadgroup:
2668        percpu_up_write(&cgroup_threadgroup_rwsem);
2669out_unlock_rcu:
2670        rcu_read_unlock();
2671        return tsk;
2672}
2673
2674void cgroup_procs_write_finish(struct task_struct *task)
2675        __releases(&cgroup_threadgroup_rwsem)
2676{
2677        struct cgroup_subsys *ss;
2678        int ssid;
2679
2680        /* release reference from cgroup_procs_write_start() */
2681        put_task_struct(task);
2682
2683        percpu_up_write(&cgroup_threadgroup_rwsem);
2684        for_each_subsys(ss, ssid)
2685                if (ss->post_attach)
2686                        ss->post_attach();
2687}
2688
2689static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2690{
2691        struct cgroup_subsys *ss;
2692        bool printed = false;
2693        int ssid;
2694
2695        do_each_subsys_mask(ss, ssid, ss_mask) {
2696                if (printed)
2697                        seq_putc(seq, ' ');
2698                seq_printf(seq, "%s", ss->name);
2699                printed = true;
2700        } while_each_subsys_mask();
2701        if (printed)
2702                seq_putc(seq, '\n');
2703}
2704
2705/* show controllers which are enabled from the parent */
2706static int cgroup_controllers_show(struct seq_file *seq, void *v)
2707{
2708        struct cgroup *cgrp = seq_css(seq)->cgroup;
2709
2710        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2711        return 0;
2712}
2713
2714/* show controllers which are enabled for a given cgroup's children */
2715static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2716{
2717        struct cgroup *cgrp = seq_css(seq)->cgroup;
2718
2719        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2720        return 0;
2721}
2722
2723/**
2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725 * @cgrp: root of the subtree to update csses for
2726 *
2727 * @cgrp's control masks have changed and its subtree's css associations
2728 * need to be updated accordingly.  This function looks up all css_sets
2729 * which are attached to the subtree, creates the matching updated css_sets
2730 * and migrates the tasks to the new ones.
2731 */
2732static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2733{
2734        DEFINE_CGROUP_MGCTX(mgctx);
2735        struct cgroup_subsys_state *d_css;
2736        struct cgroup *dsct;
2737        struct css_set *src_cset;
2738        int ret;
2739
2740        lockdep_assert_held(&cgroup_mutex);
2741
2742        percpu_down_write(&cgroup_threadgroup_rwsem);
2743
2744        /* look up all csses currently attached to @cgrp's subtree */
2745        spin_lock_irq(&css_set_lock);
2746        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2747                struct cgrp_cset_link *link;
2748
2749                list_for_each_entry(link, &dsct->cset_links, cset_link)
2750                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2751        }
2752        spin_unlock_irq(&css_set_lock);
2753
2754        /* NULL dst indicates self on default hierarchy */
2755        ret = cgroup_migrate_prepare_dst(&mgctx);
2756        if (ret)
2757                goto out_finish;
2758
2759        spin_lock_irq(&css_set_lock);
2760        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2761                struct task_struct *task, *ntask;
2762
2763                /* all tasks in src_csets need to be migrated */
2764                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2765                        cgroup_migrate_add_task(task, &mgctx);
2766        }
2767        spin_unlock_irq(&css_set_lock);
2768
2769        ret = cgroup_migrate_execute(&mgctx);
2770out_finish:
2771        cgroup_migrate_finish(&mgctx);
2772        percpu_up_write(&cgroup_threadgroup_rwsem);
2773        return ret;
2774}
2775
2776/**
2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778 * @cgrp: root of the target subtree
2779 *
2780 * Because css offlining is asynchronous, userland may try to re-enable a
2781 * controller while the previous css is still around.  This function grabs
2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2783 */
2784void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2785        __acquires(&cgroup_mutex)
2786{
2787        struct cgroup *dsct;
2788        struct cgroup_subsys_state *d_css;
2789        struct cgroup_subsys *ss;
2790        int ssid;
2791
2792restart:
2793        mutex_lock(&cgroup_mutex);
2794
2795        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2796                for_each_subsys(ss, ssid) {
2797                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2798                        DEFINE_WAIT(wait);
2799
2800                        if (!css || !percpu_ref_is_dying(&css->refcnt))
2801                                continue;
2802
2803                        cgroup_get_live(dsct);
2804                        prepare_to_wait(&dsct->offline_waitq, &wait,
2805                                        TASK_UNINTERRUPTIBLE);
2806
2807                        mutex_unlock(&cgroup_mutex);
2808                        schedule();
2809                        finish_wait(&dsct->offline_waitq, &wait);
2810
2811                        cgroup_put(dsct);
2812                        goto restart;
2813                }
2814        }
2815}
2816
2817/**
2818 * cgroup_save_control - save control masks of a subtree
2819 * @cgrp: root of the target subtree
2820 *
2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822 * prefixed fields for @cgrp's subtree including @cgrp itself.
2823 */
2824static void cgroup_save_control(struct cgroup *cgrp)
2825{
2826        struct cgroup *dsct;
2827        struct cgroup_subsys_state *d_css;
2828
2829        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2830                dsct->old_subtree_control = dsct->subtree_control;
2831                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2832        }
2833}
2834
2835/**
2836 * cgroup_propagate_control - refresh control masks of a subtree
2837 * @cgrp: root of the target subtree
2838 *
2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840 * ->subtree_control and propagate controller availability through the
2841 * subtree so that descendants don't have unavailable controllers enabled.
2842 */
2843static void cgroup_propagate_control(struct cgroup *cgrp)
2844{
2845        struct cgroup *dsct;
2846        struct cgroup_subsys_state *d_css;
2847
2848        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2849                dsct->subtree_control &= cgroup_control(dsct);
2850                dsct->subtree_ss_mask =
2851                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2852                                                    cgroup_ss_mask(dsct));
2853        }
2854}
2855
2856/**
2857 * cgroup_restore_control - restore control masks of a subtree
2858 * @cgrp: root of the target subtree
2859 *
2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861 * prefixed fields for @cgrp's subtree including @cgrp itself.
2862 */
2863static void cgroup_restore_control(struct cgroup *cgrp)
2864{
2865        struct cgroup *dsct;
2866        struct cgroup_subsys_state *d_css;
2867
2868        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2869                dsct->subtree_control = dsct->old_subtree_control;
2870                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2871        }
2872}
2873
2874static bool css_visible(struct cgroup_subsys_state *css)
2875{
2876        struct cgroup_subsys *ss = css->ss;
2877        struct cgroup *cgrp = css->cgroup;
2878
2879        if (cgroup_control(cgrp) & (1 << ss->id))
2880                return true;
2881        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2882                return false;
2883        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2884}
2885
2886/**
2887 * cgroup_apply_control_enable - enable or show csses according to control
2888 * @cgrp: root of the target subtree
2889 *
2890 * Walk @cgrp's subtree and create new csses or make the existing ones
2891 * visible.  A css is created invisible if it's being implicitly enabled
2892 * through dependency.  An invisible css is made visible when the userland
2893 * explicitly enables it.
2894 *
2895 * Returns 0 on success, -errno on failure.  On failure, csses which have
2896 * been processed already aren't cleaned up.  The caller is responsible for
2897 * cleaning up with cgroup_apply_control_disable().
2898 */
2899static int cgroup_apply_control_enable(struct cgroup *cgrp)
2900{
2901        struct cgroup *dsct;
2902        struct cgroup_subsys_state *d_css;
2903        struct cgroup_subsys *ss;
2904        int ssid, ret;
2905
2906        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907                for_each_subsys(ss, ssid) {
2908                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2909
2910                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2911
2912                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2913                                continue;
2914
2915                        if (!css) {
2916                                css = css_create(dsct, ss);
2917                                if (IS_ERR(css))
2918                                        return PTR_ERR(css);
2919                        }
2920
2921                        if (css_visible(css)) {
2922                                ret = css_populate_dir(css);
2923                                if (ret)
2924                                        return ret;
2925                        }
2926                }
2927        }
2928
2929        return 0;
2930}
2931
2932/**
2933 * cgroup_apply_control_disable - kill or hide csses according to control
2934 * @cgrp: root of the target subtree
2935 *
2936 * Walk @cgrp's subtree and kill and hide csses so that they match
2937 * cgroup_ss_mask() and cgroup_visible_mask().
2938 *
2939 * A css is hidden when the userland requests it to be disabled while other
2940 * subsystems are still depending on it.  The css must not actively control
2941 * resources and be in the vanilla state if it's made visible again later.
2942 * Controllers which may be depended upon should provide ->css_reset() for
2943 * this purpose.
2944 */
2945static void cgroup_apply_control_disable(struct cgroup *cgrp)
2946{
2947        struct cgroup *dsct;
2948        struct cgroup_subsys_state *d_css;
2949        struct cgroup_subsys *ss;
2950        int ssid;
2951
2952        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2953                for_each_subsys(ss, ssid) {
2954                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2955
2956                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2957
2958                        if (!css)
2959                                continue;
2960
2961                        if (css->parent &&
2962                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2963                                kill_css(css);
2964                        } else if (!css_visible(css)) {
2965                                css_clear_dir(css);
2966                                if (ss->css_reset)
2967                                        ss->css_reset(css);
2968                        }
2969                }
2970        }
2971}
2972
2973/**
2974 * cgroup_apply_control - apply control mask updates to the subtree
2975 * @cgrp: root of the target subtree
2976 *
2977 * subsystems can be enabled and disabled in a subtree using the following
2978 * steps.
2979 *
2980 * 1. Call cgroup_save_control() to stash the current state.
2981 * 2. Update ->subtree_control masks in the subtree as desired.
2982 * 3. Call cgroup_apply_control() to apply the changes.
2983 * 4. Optionally perform other related operations.
2984 * 5. Call cgroup_finalize_control() to finish up.
2985 *
2986 * This function implements step 3 and propagates the mask changes
2987 * throughout @cgrp's subtree, updates csses accordingly and perform
2988 * process migrations.
2989 */
2990static int cgroup_apply_control(struct cgroup *cgrp)
2991{
2992        int ret;
2993
2994        cgroup_propagate_control(cgrp);
2995
2996        ret = cgroup_apply_control_enable(cgrp);
2997        if (ret)
2998                return ret;
2999
3000        /*
3001         * At this point, cgroup_e_css() results reflect the new csses
3002         * making the following cgroup_update_dfl_csses() properly update
3003         * css associations of all tasks in the subtree.
3004         */
3005        ret = cgroup_update_dfl_csses(cgrp);
3006        if (ret)
3007                return ret;
3008
3009        return 0;
3010}
3011
3012/**
3013 * cgroup_finalize_control - finalize control mask update
3014 * @cgrp: root of the target subtree
3015 * @ret: the result of the update
3016 *
3017 * Finalize control mask update.  See cgroup_apply_control() for more info.
3018 */
3019static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3020{
3021        if (ret) {
3022                cgroup_restore_control(cgrp);
3023                cgroup_propagate_control(cgrp);
3024        }
3025
3026        cgroup_apply_control_disable(cgrp);
3027}
3028
3029static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3030{
3031        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3032
3033        /* if nothing is getting enabled, nothing to worry about */
3034        if (!enable)
3035                return 0;
3036
3037        /* can @cgrp host any resources? */
3038        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3039                return -EOPNOTSUPP;
3040
3041        /* mixables don't care */
3042        if (cgroup_is_mixable(cgrp))
3043                return 0;
3044
3045        if (domain_enable) {
3046                /* can't enable domain controllers inside a thread subtree */
3047                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3048                        return -EOPNOTSUPP;
3049        } else {
3050                /*
3051                 * Threaded controllers can handle internal competitions
3052                 * and are always allowed inside a (prospective) thread
3053                 * subtree.
3054                 */
3055                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3056                        return 0;
3057        }
3058
3059        /*
3060         * Controllers can't be enabled for a cgroup with tasks to avoid
3061         * child cgroups competing against tasks.
3062         */
3063        if (cgroup_has_tasks(cgrp))
3064                return -EBUSY;
3065
3066        return 0;
3067}
3068
3069/* change the enabled child controllers for a cgroup in the default hierarchy */
3070static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3071                                            char *buf, size_t nbytes,
3072                                            loff_t off)
3073{
3074        u16 enable = 0, disable = 0;
3075        struct cgroup *cgrp, *child;
3076        struct cgroup_subsys *ss;
3077        char *tok;
3078        int ssid, ret;
3079
3080        /*
3081         * Parse input - space separated list of subsystem names prefixed
3082         * with either + or -.
3083         */
3084        buf = strstrip(buf);
3085        while ((tok = strsep(&buf, " "))) {
3086                if (tok[0] == '\0')
3087                        continue;
3088                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3089                        if (!cgroup_ssid_enabled(ssid) ||
3090                            strcmp(tok + 1, ss->name))
3091                                continue;
3092
3093                        if (*tok == '+') {
3094                                enable |= 1 << ssid;
3095                                disable &= ~(1 << ssid);
3096                        } else if (*tok == '-') {
3097                                disable |= 1 << ssid;
3098                                enable &= ~(1 << ssid);
3099                        } else {
3100                                return -EINVAL;
3101                        }
3102                        break;
3103                } while_each_subsys_mask();
3104                if (ssid == CGROUP_SUBSYS_COUNT)
3105                        return -EINVAL;
3106        }
3107
3108        cgrp = cgroup_kn_lock_live(of->kn, true);
3109        if (!cgrp)
3110                return -ENODEV;
3111
3112        for_each_subsys(ss, ssid) {
3113                if (enable & (1 << ssid)) {
3114                        if (cgrp->subtree_control & (1 << ssid)) {
3115                                enable &= ~(1 << ssid);
3116                                continue;
3117                        }
3118
3119                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3120                                ret = -ENOENT;
3121                                goto out_unlock;
3122                        }
3123                } else if (disable & (1 << ssid)) {
3124                        if (!(cgrp->subtree_control & (1 << ssid))) {
3125                                disable &= ~(1 << ssid);
3126                                continue;
3127                        }
3128
3129                        /* a child has it enabled? */
3130                        cgroup_for_each_live_child(child, cgrp) {
3131                                if (child->subtree_control & (1 << ssid)) {
3132                                        ret = -EBUSY;
3133                                        goto out_unlock;
3134                                }
3135                        }
3136                }
3137        }
3138
3139        if (!enable && !disable) {
3140                ret = 0;
3141                goto out_unlock;
3142        }
3143
3144        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3145        if (ret)
3146                goto out_unlock;
3147
3148        /* save and update control masks and prepare csses */
3149        cgroup_save_control(cgrp);
3150
3151        cgrp->subtree_control |= enable;
3152        cgrp->subtree_control &= ~disable;
3153
3154        ret = cgroup_apply_control(cgrp);
3155        cgroup_finalize_control(cgrp, ret);
3156        if (ret)
3157                goto out_unlock;
3158
3159        kernfs_activate(cgrp->kn);
3160out_unlock:
3161        cgroup_kn_unlock(of->kn);
3162        return ret ?: nbytes;
3163}
3164
3165/**
3166 * cgroup_enable_threaded - make @cgrp threaded
3167 * @cgrp: the target cgroup
3168 *
3169 * Called when "threaded" is written to the cgroup.type interface file and
3170 * tries to make @cgrp threaded and join the parent's resource domain.
3171 * This function is never called on the root cgroup as cgroup.type doesn't
3172 * exist on it.
3173 */
3174static int cgroup_enable_threaded(struct cgroup *cgrp)
3175{
3176        struct cgroup *parent = cgroup_parent(cgrp);
3177        struct cgroup *dom_cgrp = parent->dom_cgrp;
3178        int ret;
3179
3180        lockdep_assert_held(&cgroup_mutex);
3181
3182        /* noop if already threaded */
3183        if (cgroup_is_threaded(cgrp))
3184                return 0;
3185
3186        /*
3187         * If @cgroup is populated or has domain controllers enabled, it
3188         * can't be switched.  While the below cgroup_can_be_thread_root()
3189         * test can catch the same conditions, that's only when @parent is
3190         * not mixable, so let's check it explicitly.
3191         */
3192        if (cgroup_is_populated(cgrp) ||
3193            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3194                return -EOPNOTSUPP;
3195
3196        /* we're joining the parent's domain, ensure its validity */
3197        if (!cgroup_is_valid_domain(dom_cgrp) ||
3198            !cgroup_can_be_thread_root(dom_cgrp))
3199                return -EOPNOTSUPP;
3200
3201        /*
3202         * The following shouldn't cause actual migrations and should
3203         * always succeed.
3204         */
3205        cgroup_save_control(cgrp);
3206
3207        cgrp->dom_cgrp = dom_cgrp;
3208        ret = cgroup_apply_control(cgrp);
3209        if (!ret)
3210                parent->nr_threaded_children++;
3211        else
3212                cgrp->dom_cgrp = cgrp;
3213
3214        cgroup_finalize_control(cgrp, ret);
3215        return ret;
3216}
3217
3218static int cgroup_type_show(struct seq_file *seq, void *v)
3219{
3220        struct cgroup *cgrp = seq_css(seq)->cgroup;
3221
3222        if (cgroup_is_threaded(cgrp))
3223                seq_puts(seq, "threaded\n");
3224        else if (!cgroup_is_valid_domain(cgrp))
3225                seq_puts(seq, "domain invalid\n");
3226        else if (cgroup_is_thread_root(cgrp))
3227                seq_puts(seq, "domain threaded\n");
3228        else
3229                seq_puts(seq, "domain\n");
3230
3231        return 0;
3232}
3233
3234static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3235                                 size_t nbytes, loff_t off)
3236{
3237        struct cgroup *cgrp;
3238        int ret;
3239
3240        /* only switching to threaded mode is supported */
3241        if (strcmp(strstrip(buf), "threaded"))
3242                return -EINVAL;
3243
3244        cgrp = cgroup_kn_lock_live(of->kn, false);
3245        if (!cgrp)
3246                return -ENOENT;
3247
3248        /* threaded can only be enabled */
3249        ret = cgroup_enable_threaded(cgrp);
3250
3251        cgroup_kn_unlock(of->kn);
3252        return ret ?: nbytes;
3253}
3254
3255static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3256{
3257        struct cgroup *cgrp = seq_css(seq)->cgroup;
3258        int descendants = READ_ONCE(cgrp->max_descendants);
3259
3260        if (descendants == INT_MAX)
3261                seq_puts(seq, "max\n");
3262        else
3263                seq_printf(seq, "%d\n", descendants);
3264
3265        return 0;
3266}
3267
3268static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3269                                           char *buf, size_t nbytes, loff_t off)
3270{
3271        struct cgroup *cgrp;
3272        int descendants;
3273        ssize_t ret;
3274
3275        buf = strstrip(buf);
3276        if (!strcmp(buf, "max")) {
3277                descendants = INT_MAX;
3278        } else {
3279                ret = kstrtoint(buf, 0, &descendants);
3280                if (ret)
3281                        return ret;
3282        }
3283
3284        if (descendants < 0)
3285                return -ERANGE;
3286
3287        cgrp = cgroup_kn_lock_live(of->kn, false);
3288        if (!cgrp)
3289                return -ENOENT;
3290
3291        cgrp->max_descendants = descendants;
3292
3293        cgroup_kn_unlock(of->kn);
3294
3295        return nbytes;
3296}
3297
3298static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3299{
3300        struct cgroup *cgrp = seq_css(seq)->cgroup;
3301        int depth = READ_ONCE(cgrp->max_depth);
3302
3303        if (depth == INT_MAX)
3304                seq_puts(seq, "max\n");
3305        else
3306                seq_printf(seq, "%d\n", depth);
3307
3308        return 0;
3309}
3310
3311static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3312                                      char *buf, size_t nbytes, loff_t off)
3313{
3314        struct cgroup *cgrp;
3315        ssize_t ret;
3316        int depth;
3317
3318        buf = strstrip(buf);
3319        if (!strcmp(buf, "max")) {
3320                depth = INT_MAX;
3321        } else {
3322                ret = kstrtoint(buf, 0, &depth);
3323                if (ret)
3324                        return ret;
3325        }
3326
3327        if (depth < 0)
3328                return -ERANGE;
3329
3330        cgrp = cgroup_kn_lock_live(of->kn, false);
3331        if (!cgrp)
3332                return -ENOENT;
3333
3334        cgrp->max_depth = depth;
3335
3336        cgroup_kn_unlock(of->kn);
3337
3338        return nbytes;
3339}
3340
3341static int cgroup_events_show(struct seq_file *seq, void *v)
3342{
3343        seq_printf(seq, "populated %d\n",
3344                   cgroup_is_populated(seq_css(seq)->cgroup));
3345        return 0;
3346}
3347
3348static int cgroup_stat_show(struct seq_file *seq, void *v)
3349{
3350        struct cgroup *cgroup = seq_css(seq)->cgroup;
3351
3352        seq_printf(seq, "nr_descendants %d\n",
3353                   cgroup->nr_descendants);
3354        seq_printf(seq, "nr_dying_descendants %d\n",
3355                   cgroup->nr_dying_descendants);
3356
3357        return 0;
3358}
3359
3360static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3361                                                 struct cgroup *cgrp, int ssid)
3362{
3363        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3364        struct cgroup_subsys_state *css;
3365        int ret;
3366
3367        if (!ss->css_extra_stat_show)
3368                return 0;
3369
3370        css = cgroup_tryget_css(cgrp, ss);
3371        if (!css)
3372                return 0;
3373
3374        ret = ss->css_extra_stat_show(seq, css);
3375        css_put(css);
3376        return ret;
3377}
3378
3379static int cpu_stat_show(struct seq_file *seq, void *v)
3380{
3381        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3382        int ret = 0;
3383
3384        cgroup_stat_show_cputime(seq);
3385#ifdef CONFIG_CGROUP_SCHED
3386        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3387#endif
3388        return ret;
3389}
3390
3391static int cgroup_file_open(struct kernfs_open_file *of)
3392{
3393        struct cftype *cft = of->kn->priv;
3394
3395        if (cft->open)
3396                return cft->open(of);
3397        return 0;
3398}
3399
3400static void cgroup_file_release(struct kernfs_open_file *of)
3401{
3402        struct cftype *cft = of->kn->priv;
3403
3404        if (cft->release)
3405                cft->release(of);
3406}
3407
3408static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3409                                 size_t nbytes, loff_t off)
3410{
3411        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3412        struct cgroup *cgrp = of->kn->parent->priv;
3413        struct cftype *cft = of->kn->priv;
3414        struct cgroup_subsys_state *css;
3415        int ret;
3416
3417        /*
3418         * If namespaces are delegation boundaries, disallow writes to
3419         * files in an non-init namespace root from inside the namespace
3420         * except for the files explicitly marked delegatable -
3421         * cgroup.procs and cgroup.subtree_control.
3422         */
3423        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3424            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3425            ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3426                return -EPERM;
3427
3428        if (cft->write)
3429                return cft->write(of, buf, nbytes, off);
3430
3431        /*
3432         * kernfs guarantees that a file isn't deleted with operations in
3433         * flight, which means that the matching css is and stays alive and
3434         * doesn't need to be pinned.  The RCU locking is not necessary
3435         * either.  It's just for the convenience of using cgroup_css().
3436         */
3437        rcu_read_lock();
3438        css = cgroup_css(cgrp, cft->ss);
3439        rcu_read_unlock();
3440
3441        if (cft->write_u64) {
3442                unsigned long long v;
3443                ret = kstrtoull(buf, 0, &v);
3444                if (!ret)
3445                        ret = cft->write_u64(css, cft, v);
3446        } else if (cft->write_s64) {
3447                long long v;
3448                ret = kstrtoll(buf, 0, &v);
3449                if (!ret)
3450                        ret = cft->write_s64(css, cft, v);
3451        } else {
3452                ret = -EINVAL;
3453        }
3454
3455        return ret ?: nbytes;
3456}
3457
3458static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3459{
3460        return seq_cft(seq)->seq_start(seq, ppos);
3461}
3462
3463static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3464{
3465        return seq_cft(seq)->seq_next(seq, v, ppos);
3466}
3467
3468static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3469{
3470        if (seq_cft(seq)->seq_stop)
3471                seq_cft(seq)->seq_stop(seq, v);
3472}
3473
3474static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3475{
3476        struct cftype *cft = seq_cft(m);
3477        struct cgroup_subsys_state *css = seq_css(m);
3478
3479        if (cft->seq_show)
3480                return cft->seq_show(m, arg);
3481
3482        if (cft->read_u64)
3483                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3484        else if (cft->read_s64)
3485                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3486        else
3487                return -EINVAL;
3488        return 0;
3489}
3490
3491static struct kernfs_ops cgroup_kf_single_ops = {
3492        .atomic_write_len       = PAGE_SIZE,
3493        .open                   = cgroup_file_open,
3494        .release                = cgroup_file_release,
3495        .write                  = cgroup_file_write,
3496        .seq_show               = cgroup_seqfile_show,
3497};
3498
3499static struct kernfs_ops cgroup_kf_ops = {
3500        .atomic_write_len       = PAGE_SIZE,
3501        .open                   = cgroup_file_open,
3502        .release                = cgroup_file_release,
3503        .write                  = cgroup_file_write,
3504        .seq_start              = cgroup_seqfile_start,
3505        .seq_next               = cgroup_seqfile_next,
3506        .seq_stop               = cgroup_seqfile_stop,
3507        .seq_show               = cgroup_seqfile_show,
3508};
3509
3510/* set uid and gid of cgroup dirs and files to that of the creator */
3511static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3512{
3513        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3514                               .ia_uid = current_fsuid(),
3515                               .ia_gid = current_fsgid(), };
3516
3517        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3518            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3519                return 0;
3520
3521        return kernfs_setattr(kn, &iattr);
3522}
3523
3524static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3525                           struct cftype *cft)
3526{
3527        char name[CGROUP_FILE_NAME_MAX];
3528        struct kernfs_node *kn;
3529        struct lock_class_key *key = NULL;
3530        int ret;
3531
3532#ifdef CONFIG_DEBUG_LOCK_ALLOC
3533        key = &cft->lockdep_key;
3534#endif
3535        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3536                                  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3537                                  NULL, key);
3538        if (IS_ERR(kn))
3539                return PTR_ERR(kn);
3540
3541        ret = cgroup_kn_set_ugid(kn);
3542        if (ret) {
3543                kernfs_remove(kn);
3544                return ret;
3545        }
3546
3547        if (cft->file_offset) {
3548                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3549
3550                spin_lock_irq(&cgroup_file_kn_lock);
3551                cfile->kn = kn;
3552                spin_unlock_irq(&cgroup_file_kn_lock);
3553        }
3554
3555        return 0;
3556}
3557
3558/**
3559 * cgroup_addrm_files - add or remove files to a cgroup directory
3560 * @css: the target css
3561 * @cgrp: the target cgroup (usually css->cgroup)
3562 * @cfts: array of cftypes to be added
3563 * @is_add: whether to add or remove
3564 *
3565 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3566 * For removals, this function never fails.
3567 */
3568static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3569                              struct cgroup *cgrp, struct cftype cfts[],
3570                              bool is_add)
3571{
3572        struct cftype *cft, *cft_end = NULL;
3573        int ret = 0;
3574
3575        lockdep_assert_held(&cgroup_mutex);
3576
3577restart:
3578        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3579                /* does cft->flags tell us to skip this file on @cgrp? */
3580                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3581                        continue;
3582                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3583                        continue;
3584                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3585                        continue;
3586                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3587                        continue;
3588
3589                if (is_add) {
3590                        ret = cgroup_add_file(css, cgrp, cft);
3591                        if (ret) {
3592                                pr_warn("%s: failed to add %s, err=%d\n",
3593                                        __func__, cft->name, ret);
3594                                cft_end = cft;
3595                                is_add = false;
3596                                goto restart;
3597                        }
3598                } else {
3599                        cgroup_rm_file(cgrp, cft);
3600                }
3601        }
3602        return ret;
3603}
3604
3605static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3606{
3607        struct cgroup_subsys *ss = cfts[0].ss;
3608        struct cgroup *root = &ss->root->cgrp;
3609        struct cgroup_subsys_state *css;
3610        int ret = 0;
3611
3612        lockdep_assert_held(&cgroup_mutex);
3613
3614        /* add/rm files for all cgroups created before */
3615        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3616                struct cgroup *cgrp = css->cgroup;
3617
3618                if (!(css->flags & CSS_VISIBLE))
3619                        continue;
3620
3621                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3622                if (ret)
3623                        break;
3624        }
3625
3626        if (is_add && !ret)
3627                kernfs_activate(root->kn);
3628        return ret;
3629}
3630
3631static void cgroup_exit_cftypes(struct cftype *cfts)
3632{
3633        struct cftype *cft;
3634
3635        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3636                /* free copy for custom atomic_write_len, see init_cftypes() */
3637                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3638                        kfree(cft->kf_ops);
3639                cft->kf_ops = NULL;
3640                cft->ss = NULL;
3641
3642                /* revert flags set by cgroup core while adding @cfts */
3643                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3644        }
3645}
3646
3647static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3648{
3649        struct cftype *cft;
3650
3651        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3652                struct kernfs_ops *kf_ops;
3653
3654                WARN_ON(cft->ss || cft->kf_ops);
3655
3656                if (cft->seq_start)
3657                        kf_ops = &cgroup_kf_ops;
3658                else
3659                        kf_ops = &cgroup_kf_single_ops;
3660
3661                /*
3662                 * Ugh... if @cft wants a custom max_write_len, we need to
3663                 * make a copy of kf_ops to set its atomic_write_len.
3664                 */
3665                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3666                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3667                        if (!kf_ops) {
3668                                cgroup_exit_cftypes(cfts);
3669                                return -ENOMEM;
3670                        }
3671                        kf_ops->atomic_write_len = cft->max_write_len;
3672                }
3673
3674                cft->kf_ops = kf_ops;
3675                cft->ss = ss;
3676        }
3677
3678        return 0;
3679}
3680
3681static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3682{
3683        lockdep_assert_held(&cgroup_mutex);
3684
3685        if (!cfts || !cfts[0].ss)
3686                return -ENOENT;
3687
3688        list_del(&cfts->node);
3689        cgroup_apply_cftypes(cfts, false);
3690        cgroup_exit_cftypes(cfts);
3691        return 0;
3692}
3693
3694/**
3695 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3696 * @cfts: zero-length name terminated array of cftypes
3697 *
3698 * Unregister @cfts.  Files described by @cfts are removed from all
3699 * existing cgroups and all future cgroups won't have them either.  This
3700 * function can be called anytime whether @cfts' subsys is attached or not.
3701 *
3702 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3703 * registered.
3704 */
3705int cgroup_rm_cftypes(struct cftype *cfts)
3706{
3707        int ret;
3708
3709        mutex_lock(&cgroup_mutex);
3710        ret = cgroup_rm_cftypes_locked(cfts);
3711        mutex_unlock(&cgroup_mutex);
3712        return ret;
3713}
3714
3715/**
3716 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3717 * @ss: target cgroup subsystem
3718 * @cfts: zero-length name terminated array of cftypes
3719 *
3720 * Register @cfts to @ss.  Files described by @cfts are created for all
3721 * existing cgroups to which @ss is attached and all future cgroups will
3722 * have them too.  This function can be called anytime whether @ss is
3723 * attached or not.
3724 *
3725 * Returns 0 on successful registration, -errno on failure.  Note that this
3726 * function currently returns 0 as long as @cfts registration is successful
3727 * even if some file creation attempts on existing cgroups fail.
3728 */
3729static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3730{
3731        int ret;
3732
3733        if (!cgroup_ssid_enabled(ss->id))
3734                return 0;
3735
3736        if (!cfts || cfts[0].name[0] == '\0')
3737                return 0;
3738
3739        ret = cgroup_init_cftypes(ss, cfts);
3740        if (ret)
3741                return ret;
3742
3743        mutex_lock(&cgroup_mutex);
3744
3745        list_add_tail(&cfts->node, &ss->cfts);
3746        ret = cgroup_apply_cftypes(cfts, true);
3747        if (ret)
3748                cgroup_rm_cftypes_locked(cfts);
3749
3750        mutex_unlock(&cgroup_mutex);
3751        return ret;
3752}
3753
3754/**
3755 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3756 * @ss: target cgroup subsystem
3757 * @cfts: zero-length name terminated array of cftypes
3758 *
3759 * Similar to cgroup_add_cftypes() but the added files are only used for
3760 * the default hierarchy.
3761 */
3762int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3763{
3764        struct cftype *cft;
3765
3766        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3767                cft->flags |= __CFTYPE_ONLY_ON_DFL;
3768        return cgroup_add_cftypes(ss, cfts);
3769}
3770
3771/**
3772 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3773 * @ss: target cgroup subsystem
3774 * @cfts: zero-length name terminated array of cftypes
3775 *
3776 * Similar to cgroup_add_cftypes() but the added files are only used for
3777 * the legacy hierarchies.
3778 */
3779int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3780{
3781        struct cftype *cft;
3782
3783        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3784                cft->flags |= __CFTYPE_NOT_ON_DFL;
3785        return cgroup_add_cftypes(ss, cfts);
3786}
3787
3788/**
3789 * cgroup_file_notify - generate a file modified event for a cgroup_file
3790 * @cfile: target cgroup_file
3791 *
3792 * @cfile must have been obtained by setting cftype->file_offset.
3793 */
3794void cgroup_file_notify(struct cgroup_file *cfile)
3795{
3796        unsigned long flags;
3797
3798        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3799        if (cfile->kn)
3800                kernfs_notify(cfile->kn);
3801        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3802}
3803
3804/**
3805 * css_next_child - find the next child of a given css
3806 * @pos: the current position (%NULL to initiate traversal)
3807 * @parent: css whose children to walk
3808 *
3809 * This function returns the next child of @parent and should be called
3810 * under either cgroup_mutex or RCU read lock.  The only requirement is
3811 * that @parent and @pos are accessible.  The next sibling is guaranteed to
3812 * be returned regardless of their states.
3813 *
3814 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3815 * css which finished ->css_online() is guaranteed to be visible in the
3816 * future iterations and will stay visible until the last reference is put.
3817 * A css which hasn't finished ->css_online() or already finished
3818 * ->css_offline() may show up during traversal.  It's each subsystem's
3819 * responsibility to synchronize against on/offlining.
3820 */
3821struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3822                                           struct cgroup_subsys_state *parent)
3823{
3824        struct cgroup_subsys_state *next;
3825
3826        cgroup_assert_mutex_or_rcu_locked();
3827
3828        /*
3829         * @pos could already have been unlinked from the sibling list.
3830         * Once a cgroup is removed, its ->sibling.next is no longer
3831         * updated when its next sibling changes.  CSS_RELEASED is set when
3832         * @pos is taken off list, at which time its next pointer is valid,
3833         * and, as releases are serialized, the one pointed to by the next
3834         * pointer is guaranteed to not have started release yet.  This
3835         * implies that if we observe !CSS_RELEASED on @pos in this RCU
3836         * critical section, the one pointed to by its next pointer is
3837         * guaranteed to not have finished its RCU grace period even if we
3838         * have dropped rcu_read_lock() inbetween iterations.
3839         *
3840         * If @pos has CSS_RELEASED set, its next pointer can't be
3841         * dereferenced; however, as each css is given a monotonically
3842         * increasing unique serial number and always appended to the
3843         * sibling list, the next one can be found by walking the parent's
3844         * children until the first css with higher serial number than
3845         * @pos's.  While this path can be slower, it happens iff iteration
3846         * races against release and the race window is very small.
3847         */
3848        if (!pos) {
3849                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3850        } else if (likely(!(pos->flags & CSS_RELEASED))) {
3851                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3852        } else {
3853                list_for_each_entry_rcu(next, &parent->children, sibling)
3854                        if (next->serial_nr > pos->serial_nr)
3855                                break;
3856        }
3857
3858        /*
3859         * @next, if not pointing to the head, can be dereferenced and is
3860         * the next sibling.
3861         */
3862        if (&next->sibling != &parent->children)
3863                return next;
3864        return NULL;
3865}
3866
3867/**
3868 * css_next_descendant_pre - find the next descendant for pre-order walk
3869 * @pos: the current position (%NULL to initiate traversal)
3870 * @root: css whose descendants to walk
3871 *
3872 * To be used by css_for_each_descendant_pre().  Find the next descendant
3873 * to visit for pre-order traversal of @root's descendants.  @root is
3874 * included in the iteration and the first node to be visited.
3875 *
3876 * While this function requires cgroup_mutex or RCU read locking, it
3877 * doesn't require the whole traversal to be contained in a single critical
3878 * section.  This function will return the correct next descendant as long
3879 * as both @pos and @root are accessible and @pos is a descendant of @root.
3880 *
3881 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3882 * css which finished ->css_online() is guaranteed to be visible in the
3883 * future iterations and will stay visible until the last reference is put.
3884 * A css which hasn't finished ->css_online() or already finished
3885 * ->css_offline() may show up during traversal.  It's each subsystem's
3886 * responsibility to synchronize against on/offlining.
3887 */
3888struct cgroup_subsys_state *
3889css_next_descendant_pre(struct cgroup_subsys_state *pos,
3890                        struct cgroup_subsys_state *root)
3891{
3892        struct cgroup_subsys_state *next;
3893
3894        cgroup_assert_mutex_or_rcu_locked();
3895
3896        /* if first iteration, visit @root */
3897        if (!pos)
3898                return root;
3899
3900        /* visit the first child if exists */
3901        next = css_next_child(NULL, pos);
3902        if (next)
3903                return next;
3904
3905        /* no child, visit my or the closest ancestor's next sibling */
3906        while (pos != root) {
3907                next = css_next_child(pos, pos->parent);
3908                if (next)
3909                        return next;
3910                pos = pos->parent;
3911        }
3912
3913        return NULL;
3914}
3915
3916/**
3917 * css_rightmost_descendant - return the rightmost descendant of a css
3918 * @pos: css of interest
3919 *
3920 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3921 * is returned.  This can be used during pre-order traversal to skip
3922 * subtree of @pos.
3923 *
3924 * While this function requires cgroup_mutex or RCU read locking, it
3925 * doesn't require the whole traversal to be contained in a single critical
3926 * section.  This function will return the correct rightmost descendant as
3927 * long as @pos is accessible.
3928 */
3929struct cgroup_subsys_state *
3930css_rightmost_descendant(struct cgroup_subsys_state *pos)
3931{
3932        struct cgroup_subsys_state *last, *tmp;
3933
3934        cgroup_assert_mutex_or_rcu_locked();
3935
3936        do {
3937                last = pos;
3938                /* ->prev isn't RCU safe, walk ->next till the end */
3939                pos = NULL;
3940                css_for_each_child(tmp, last)
3941                        pos = tmp;
3942        } while (pos);
3943
3944        return last;
3945}
3946
3947static struct cgroup_subsys_state *
3948css_leftmost_descendant(struct cgroup_subsys_state *pos)
3949{
3950        struct cgroup_subsys_state *last;
3951
3952        do {
3953                last = pos;
3954                pos = css_next_child(NULL, pos);
3955        } while (pos);
3956
3957        return last;
3958}
3959
3960/**
3961 * css_next_descendant_post - find the next descendant for post-order walk
3962 * @pos: the current position (%NULL to initiate traversal)
3963 * @root: css whose descendants to walk
3964 *
3965 * To be used by css_for_each_descendant_post().  Find the next descendant
3966 * to visit for post-order traversal of @root's descendants.  @root is
3967 * included in the iteration and the last node to be visited.
3968 *
3969 * While this function requires cgroup_mutex or RCU read locking, it
3970 * doesn't require the whole traversal to be contained in a single critical
3971 * section.  This function will return the correct next descendant as long
3972 * as both @pos and @cgroup are accessible and @pos is a descendant of
3973 * @cgroup.
3974 *
3975 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3976 * css which finished ->css_online() is guaranteed to be visible in the
3977 * future iterations and will stay visible until the last reference is put.
3978 * A css which hasn't finished ->css_online() or already finished
3979 * ->css_offline() may show up during traversal.  It's each subsystem's
3980 * responsibility to synchronize against on/offlining.
3981 */
3982struct cgroup_subsys_state *
3983css_next_descendant_post(struct cgroup_subsys_state *pos,
3984                         struct cgroup_subsys_state *root)
3985{
3986        struct cgroup_subsys_state *next;
3987
3988        cgroup_assert_mutex_or_rcu_locked();
3989
3990        /* if first iteration, visit leftmost descendant which may be @root */
3991        if (!pos)
3992                return css_leftmost_descendant(root);
3993
3994        /* if we visited @root, we're done */
3995        if (pos == root)
3996                return NULL;
3997
3998        /* if there's an unvisited sibling, visit its leftmost descendant */
3999        next = css_next_child(pos, pos->parent);
4000        if (next)
4001                return css_leftmost_descendant(next);
4002
4003        /* no sibling left, visit parent */
4004        return pos->parent;
4005}
4006
4007/**
4008 * css_has_online_children - does a css have online children
4009 * @css: the target css
4010 *
4011 * Returns %true if @css has any online children; otherwise, %false.  This
4012 * function can be called from any context but the caller is responsible
4013 * for synchronizing against on/offlining as necessary.
4014 */
4015bool css_has_online_children(struct cgroup_subsys_state *css)
4016{
4017        struct cgroup_subsys_state *child;
4018        bool ret = false;
4019
4020        rcu_read_lock();
4021        css_for_each_child(child, css) {
4022                if (child->flags & CSS_ONLINE) {
4023                        ret = true;
4024                        break;
4025                }
4026        }
4027        rcu_read_unlock();
4028        return ret;
4029}
4030
4031static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4032{
4033        struct list_head *l;
4034        struct cgrp_cset_link *link;
4035        struct css_set *cset;
4036
4037        lockdep_assert_held(&css_set_lock);
4038
4039        /* find the next threaded cset */
4040        if (it->tcset_pos) {
4041                l = it->tcset_pos->next;
4042
4043                if (l != it->tcset_head) {
4044                        it->tcset_pos = l;
4045                        return container_of(l, struct css_set,
4046                                            threaded_csets_node);
4047                }
4048
4049                it->tcset_pos = NULL;
4050        }
4051
4052        /* find the next cset */
4053        l = it->cset_pos;
4054        l = l->next;
4055        if (l == it->cset_head) {
4056                it->cset_pos = NULL;
4057                return NULL;
4058        }
4059
4060        if (it->ss) {
4061                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4062        } else {
4063                link = list_entry(l, struct cgrp_cset_link, cset_link);
4064                cset = link->cset;
4065        }
4066
4067        it->cset_pos = l;
4068
4069        /* initialize threaded css_set walking */
4070        if (it->flags & CSS_TASK_ITER_THREADED) {
4071                if (it->cur_dcset)
4072                        put_css_set_locked(it->cur_dcset);
4073                it->cur_dcset = cset;
4074                get_css_set(cset);
4075
4076                it->tcset_head = &cset->threaded_csets;
4077                it->tcset_pos = &cset->threaded_csets;
4078        }
4079
4080        return cset;
4081}
4082
4083/**
4084 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4085 * @it: the iterator to advance
4086 *
4087 * Advance @it to the next css_set to walk.
4088 */
4089static void css_task_iter_advance_css_set(struct css_task_iter *it)
4090{
4091        struct css_set *cset;
4092
4093        lockdep_assert_held(&css_set_lock);
4094
4095        /* Advance to the next non-empty css_set */
4096        do {
4097                cset = css_task_iter_next_css_set(it);
4098                if (!cset) {
4099                        it->task_pos = NULL;
4100                        return;
4101                }
4102        } while (!css_set_populated(cset));
4103
4104        if (!list_empty(&cset->tasks))
4105                it->task_pos = cset->tasks.next;
4106        else
4107                it->task_pos = cset->mg_tasks.next;
4108
4109        it->tasks_head = &cset->tasks;
4110        it->mg_tasks_head = &cset->mg_tasks;
4111
4112        /*
4113         * We don't keep css_sets locked across iteration steps and thus
4114         * need to take steps to ensure that iteration can be resumed after
4115         * the lock is re-acquired.  Iteration is performed at two levels -
4116         * css_sets and tasks in them.
4117         *
4118         * Once created, a css_set never leaves its cgroup lists, so a
4119         * pinned css_set is guaranteed to stay put and we can resume
4120         * iteration afterwards.
4121         *
4122         * Tasks may leave @cset across iteration steps.  This is resolved
4123         * by registering each iterator with the css_set currently being
4124         * walked and making css_set_move_task() advance iterators whose
4125         * next task is leaving.
4126         */
4127        if (it->cur_cset) {
4128                list_del(&it->iters_node);
4129                put_css_set_locked(it->cur_cset);
4130        }
4131        get_css_set(cset);
4132        it->cur_cset = cset;
4133        list_add(&it->iters_node, &cset->task_iters);
4134}
4135
4136static void css_task_iter_advance(struct css_task_iter *it)
4137{
4138        struct list_head *next;
4139
4140        lockdep_assert_held(&css_set_lock);
4141repeat:
4142        /*
4143         * Advance iterator to find next entry.  cset->tasks is consumed
4144         * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4145         * next cset.
4146         */
4147        next = it->task_pos->next;
4148
4149        if (next == it->tasks_head)
4150                next = it->mg_tasks_head->next;
4151
4152        if (next == it->mg_tasks_head)
4153                css_task_iter_advance_css_set(it);
4154        else
4155                it->task_pos = next;
4156
4157        /* if PROCS, skip over tasks which aren't group leaders */
4158        if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4159            !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4160                                            cg_list)))
4161                goto repeat;
4162}
4163
4164/**
4165 * css_task_iter_start - initiate task iteration
4166 * @css: the css to walk tasks of
4167 * @flags: CSS_TASK_ITER_* flags
4168 * @it: the task iterator to use
4169 *
4170 * Initiate iteration through the tasks of @css.  The caller can call
4171 * css_task_iter_next() to walk through the tasks until the function
4172 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4173 * called.
4174 */
4175void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4176                         struct css_task_iter *it)
4177{
4178        /* no one should try to iterate before mounting cgroups */
4179        WARN_ON_ONCE(!use_task_css_set_links);
4180
4181        memset(it, 0, sizeof(*it));
4182
4183        spin_lock_irq(&css_set_lock);
4184
4185        it->ss = css->ss;
4186        it->flags = flags;
4187
4188        if (it->ss)
4189                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4190        else
4191                it->cset_pos = &css->cgroup->cset_links;
4192
4193        it->cset_head = it->cset_pos;
4194
4195        css_task_iter_advance_css_set(it);
4196
4197        spin_unlock_irq(&css_set_lock);
4198}
4199
4200/**
4201 * css_task_iter_next - return the next task for the iterator
4202 * @it: the task iterator being iterated
4203 *
4204 * The "next" function for task iteration.  @it should have been
4205 * initialized via css_task_iter_start().  Returns NULL when the iteration
4206 * reaches the end.
4207 */
4208struct task_struct *css_task_iter_next(struct css_task_iter *it)
4209{
4210        if (it->cur_task) {
4211                put_task_struct(it->cur_task);
4212                it->cur_task = NULL;
4213        }
4214
4215        spin_lock_irq(&css_set_lock);
4216
4217        if (it->task_pos) {
4218                it->cur_task = list_entry(it->task_pos, struct task_struct,
4219                                          cg_list);
4220                get_task_struct(it->cur_task);
4221                css_task_iter_advance(it);
4222        }
4223
4224        spin_unlock_irq(&css_set_lock);
4225
4226        return it->cur_task;
4227}
4228
4229/**
4230 * css_task_iter_end - finish task iteration
4231 * @it: the task iterator to finish
4232 *
4233 * Finish task iteration started by css_task_iter_start().
4234 */
4235void css_task_iter_end(struct css_task_iter *it)
4236{
4237        if (it->cur_cset) {
4238                spin_lock_irq(&css_set_lock);
4239                list_del(&it->iters_node);
4240                put_css_set_locked(it->cur_cset);
4241                spin_unlock_irq(&css_set_lock);
4242        }
4243
4244        if (it->cur_dcset)
4245                put_css_set(it->cur_dcset);
4246
4247        if (it->cur_task)
4248                put_task_struct(it->cur_task);
4249}
4250
4251static void cgroup_procs_release(struct kernfs_open_file *of)
4252{
4253        if (of->priv) {
4254                css_task_iter_end(of->priv);
4255                kfree(of->priv);
4256        }
4257}
4258
4259static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4260{
4261        struct kernfs_open_file *of = s->private;
4262        struct css_task_iter *it = of->priv;
4263
4264        return css_task_iter_next(it);
4265}
4266
4267static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4268                                  unsigned int iter_flags)
4269{
4270        struct kernfs_open_file *of = s->private;
4271        struct cgroup *cgrp = seq_css(s)->cgroup;
4272        struct css_task_iter *it = of->priv;
4273
4274        /*
4275         * When a seq_file is seeked, it's always traversed sequentially
4276         * from position 0, so we can simply keep iterating on !0 *pos.
4277         */
4278        if (!it) {
4279                if (WARN_ON_ONCE((*pos)++))
4280                        return ERR_PTR(-EINVAL);
4281
4282                it = kzalloc(sizeof(*it), GFP_KERNEL);
4283                if (!it)
4284                        return ERR_PTR(-ENOMEM);
4285                of->priv = it;
4286                css_task_iter_start(&cgrp->self, iter_flags, it);
4287        } else if (!(*pos)++) {
4288                css_task_iter_end(it);
4289                css_task_iter_start(&cgrp->self, iter_flags, it);
4290        }
4291
4292        return cgroup_procs_next(s, NULL, NULL);
4293}
4294
4295static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4296{
4297        struct cgroup *cgrp = seq_css(s)->cgroup;
4298
4299        /*
4300         * All processes of a threaded subtree belong to the domain cgroup
4301         * of the subtree.  Only threads can be distributed across the
4302         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4303         * They're always empty anyway.
4304         */
4305        if (cgroup_is_threaded(cgrp))
4306                return ERR_PTR(-EOPNOTSUPP);
4307
4308        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4309                                            CSS_TASK_ITER_THREADED);
4310}
4311
4312static int cgroup_procs_show(struct seq_file *s, void *v)
4313{
4314        seq_printf(s, "%d\n", task_pid_vnr(v));
4315        return 0;
4316}
4317
4318static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4319                                         struct cgroup *dst_cgrp,
4320                                         struct super_block *sb)
4321{
4322        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4323        struct cgroup *com_cgrp = src_cgrp;
4324        struct inode *inode;
4325        int ret;
4326
4327        lockdep_assert_held(&cgroup_mutex);
4328
4329        /* find the common ancestor */
4330        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4331                com_cgrp = cgroup_parent(com_cgrp);
4332
4333        /* %current should be authorized to migrate to the common ancestor */
4334        inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4335        if (!inode)
4336                return -ENOMEM;
4337
4338        ret = inode_permission(inode, MAY_WRITE);
4339        iput(inode);
4340        if (ret)
4341                return ret;
4342
4343        /*
4344         * If namespaces are delegation boundaries, %current must be able
4345         * to see both source and destination cgroups from its namespace.
4346         */
4347        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4348            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4349             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4350                return -ENOENT;
4351
4352        return 0;
4353}
4354
4355static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4356                                  char *buf, size_t nbytes, loff_t off)
4357{
4358        struct cgroup *src_cgrp, *dst_cgrp;
4359        struct task_struct *task;
4360        ssize_t ret;
4361
4362        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4363        if (!dst_cgrp)
4364                return -ENODEV;
4365
4366        task = cgroup_procs_write_start(buf, true);
4367        ret = PTR_ERR_OR_ZERO(task);
4368        if (ret)
4369                goto out_unlock;
4370
4371        /* find the source cgroup */
4372        spin_lock_irq(&css_set_lock);
4373        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4374        spin_unlock_irq(&css_set_lock);
4375
4376        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4377                                            of->file->f_path.dentry->d_sb);
4378        if (ret)
4379                goto out_finish;
4380
4381        ret = cgroup_attach_task(dst_cgrp, task, true);
4382
4383out_finish:
4384        cgroup_procs_write_finish(task);
4385out_unlock:
4386        cgroup_kn_unlock(of->kn);
4387
4388        return ret ?: nbytes;
4389}
4390
4391static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4392{
4393        return __cgroup_procs_start(s, pos, 0);
4394}
4395
4396static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4397                                    char *buf, size_t nbytes, loff_t off)
4398{
4399        struct cgroup *src_cgrp, *dst_cgrp;
4400        struct task_struct *task;
4401        ssize_t ret;
4402
4403        buf = strstrip(buf);
4404
4405        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4406        if (!dst_cgrp)
4407                return -ENODEV;
4408
4409        task = cgroup_procs_write_start(buf, false);
4410        ret = PTR_ERR_OR_ZERO(task);
4411        if (ret)
4412                goto out_unlock;
4413
4414        /* find the source cgroup */
4415        spin_lock_irq(&css_set_lock);
4416        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4417        spin_unlock_irq(&css_set_lock);
4418
4419        /* thread migrations follow the cgroup.procs delegation rule */
4420        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4421                                            of->file->f_path.dentry->d_sb);
4422        if (ret)
4423                goto out_finish;
4424
4425        /* and must be contained in the same domain */
4426        ret = -EOPNOTSUPP;
4427        if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4428                goto out_finish;
4429
4430        ret = cgroup_attach_task(dst_cgrp, task, false);
4431
4432out_finish:
4433        cgroup_procs_write_finish(task);
4434out_unlock:
4435        cgroup_kn_unlock(of->kn);
4436
4437        return ret ?: nbytes;
4438}
4439
4440/* cgroup core interface files for the default hierarchy */
4441static struct cftype cgroup_base_files[] = {
4442        {
4443                .name = "cgroup.type",
4444                .flags = CFTYPE_NOT_ON_ROOT,
4445                .seq_show = cgroup_type_show,
4446                .write = cgroup_type_write,
4447        },
4448        {
4449                .name = "cgroup.procs",
4450                .flags = CFTYPE_NS_DELEGATABLE,
4451                .file_offset = offsetof(struct cgroup, procs_file),
4452                .release = cgroup_procs_release,
4453                .seq_start = cgroup_procs_start,
4454                .seq_next = cgroup_procs_next,
4455                .seq_show = cgroup_procs_show,
4456                .write = cgroup_procs_write,
4457        },
4458        {
4459                .name = "cgroup.threads",
4460                .flags = CFTYPE_NS_DELEGATABLE,
4461                .release = cgroup_procs_release,
4462                .seq_start = cgroup_threads_start,
4463                .seq_next = cgroup_procs_next,
4464                .seq_show = cgroup_procs_show,
4465                .write = cgroup_threads_write,
4466        },
4467        {
4468                .name = "cgroup.controllers",
4469                .seq_show = cgroup_controllers_show,
4470        },
4471        {
4472                .name = "cgroup.subtree_control",
4473                .flags = CFTYPE_NS_DELEGATABLE,
4474                .seq_show = cgroup_subtree_control_show,
4475                .write = cgroup_subtree_control_write,
4476        },
4477        {
4478                .name = "cgroup.events",
4479                .flags = CFTYPE_NOT_ON_ROOT,
4480                .file_offset = offsetof(struct cgroup, events_file),
4481                .seq_show = cgroup_events_show,
4482        },
4483        {
4484                .name = "cgroup.max.descendants",
4485                .seq_show = cgroup_max_descendants_show,
4486                .write = cgroup_max_descendants_write,
4487        },
4488        {
4489                .name = "cgroup.max.depth",
4490                .seq_show = cgroup_max_depth_show,
4491                .write = cgroup_max_depth_write,
4492        },
4493        {
4494                .name = "cgroup.stat",
4495                .seq_show = cgroup_stat_show,
4496        },
4497        {
4498                .name = "cpu.stat",
4499                .flags = CFTYPE_NOT_ON_ROOT,
4500                .seq_show = cpu_stat_show,
4501        },
4502        { }     /* terminate */
4503};
4504
4505/*
4506 * css destruction is four-stage process.
4507 *
4508 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4509 *    Implemented in kill_css().
4510 *
4511 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4512 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4513 *    offlined by invoking offline_css().  After offlining, the base ref is
4514 *    put.  Implemented in css_killed_work_fn().
4515 *
4516 * 3. When the percpu_ref reaches zero, the only possible remaining
4517 *    accessors are inside RCU read sections.  css_release() schedules the
4518 *    RCU callback.
4519 *
4520 * 4. After the grace period, the css can be freed.  Implemented in
4521 *    css_free_work_fn().
4522 *
4523 * It is actually hairier because both step 2 and 4 require process context
4524 * and thus involve punting to css->destroy_work adding two additional
4525 * steps to the already complex sequence.
4526 */
4527static void css_free_rwork_fn(struct work_struct *work)
4528{
4529        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4530                                struct cgroup_subsys_state, destroy_rwork);
4531        struct cgroup_subsys *ss = css->ss;
4532        struct cgroup *cgrp = css->cgroup;
4533
4534        percpu_ref_exit(&css->refcnt);
4535
4536        if (ss) {
4537                /* css free path */
4538                struct cgroup_subsys_state *parent = css->parent;
4539                int id = css->id;
4540
4541                ss->css_free(css);
4542                cgroup_idr_remove(&ss->css_idr, id);
4543                cgroup_put(cgrp);
4544
4545                if (parent)
4546                        css_put(parent);
4547        } else {
4548                /* cgroup free path */
4549                atomic_dec(&cgrp->root->nr_cgrps);
4550                cgroup1_pidlist_destroy_all(cgrp);
4551                cancel_work_sync(&cgrp->release_agent_work);
4552
4553                if (cgroup_parent(cgrp)) {
4554                        /*
4555                         * We get a ref to the parent, and put the ref when
4556                         * this cgroup is being freed, so it's guaranteed
4557                         * that the parent won't be destroyed before its
4558                         * children.
4559                         */
4560                        cgroup_put(cgroup_parent(cgrp));
4561                        kernfs_put(cgrp->kn);
4562                        if (cgroup_on_dfl(cgrp))
4563                                cgroup_stat_exit(cgrp);
4564                        kfree(cgrp);
4565                } else {
4566                        /*
4567                         * This is root cgroup's refcnt reaching zero,
4568                         * which indicates that the root should be
4569                         * released.
4570                         */
4571                        cgroup_destroy_root(cgrp->root);
4572                }
4573        }
4574}
4575
4576static void css_release_work_fn(struct work_struct *work)
4577{
4578        struct cgroup_subsys_state *css =
4579                container_of(work, struct cgroup_subsys_state, destroy_work);
4580        struct cgroup_subsys *ss = css->ss;
4581        struct cgroup *cgrp = css->cgroup;
4582
4583        mutex_lock(&cgroup_mutex);
4584
4585        css->flags |= CSS_RELEASED;
4586        list_del_rcu(&css->sibling);
4587
4588        if (ss) {
4589                /* css release path */
4590                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4591                if (ss->css_released)
4592                        ss->css_released(css);
4593        } else {
4594                struct cgroup *tcgrp;
4595
4596                /* cgroup release path */
4597                trace_cgroup_release(cgrp);
4598
4599                if (cgroup_on_dfl(cgrp))
4600                        cgroup_stat_flush(cgrp);
4601
4602                for (tcgrp = cgroup_parent(cgrp); tcgrp;
4603                     tcgrp = cgroup_parent(tcgrp))
4604                        tcgrp->nr_dying_descendants--;
4605
4606                cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4607                cgrp->id = -1;
4608
4609                /*
4610                 * There are two control paths which try to determine
4611                 * cgroup from dentry without going through kernfs -
4612                 * cgroupstats_build() and css_tryget_online_from_dir().
4613                 * Those are supported by RCU protecting clearing of
4614                 * cgrp->kn->priv backpointer.
4615                 */
4616                if (cgrp->kn)
4617                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4618                                         NULL);
4619
4620                cgroup_bpf_put(cgrp);
4621        }
4622
4623        mutex_unlock(&cgroup_mutex);
4624
4625        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4626        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4627}
4628
4629static void css_release(struct percpu_ref *ref)
4630{
4631        struct cgroup_subsys_state *css =
4632                container_of(ref, struct cgroup_subsys_state, refcnt);
4633
4634        INIT_WORK(&css->destroy_work, css_release_work_fn);
4635        queue_work(cgroup_destroy_wq, &css->destroy_work);
4636}
4637
4638static void init_and_link_css(struct cgroup_subsys_state *css,
4639                              struct cgroup_subsys *ss, struct cgroup *cgrp)
4640{
4641        lockdep_assert_held(&cgroup_mutex);
4642
4643        cgroup_get_live(cgrp);
4644
4645        memset(css, 0, sizeof(*css));
4646        css->cgroup = cgrp;
4647        css->ss = ss;
4648        css->id = -1;
4649        INIT_LIST_HEAD(&css->sibling);
4650        INIT_LIST_HEAD(&css->children);
4651        css->serial_nr = css_serial_nr_next++;
4652        atomic_set(&css->online_cnt, 0);
4653
4654        if (cgroup_parent(cgrp)) {
4655                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4656                css_get(css->parent);
4657        }
4658
4659        BUG_ON(cgroup_css(cgrp, ss));
4660}
4661
4662/* invoke ->css_online() on a new CSS and mark it online if successful */
4663static int online_css(struct cgroup_subsys_state *css)
4664{
4665        struct cgroup_subsys *ss = css->ss;
4666        int ret = 0;
4667
4668        lockdep_assert_held(&cgroup_mutex);
4669
4670        if (ss->css_online)
4671                ret = ss->css_online(css);
4672        if (!ret) {
4673                css->flags |= CSS_ONLINE;
4674                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4675
4676                atomic_inc(&css->online_cnt);
4677                if (css->parent)
4678                        atomic_inc(&css->parent->online_cnt);
4679        }
4680        return ret;
4681}
4682
4683/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4684static void offline_css(struct cgroup_subsys_state *css)
4685{
4686        struct cgroup_subsys *ss = css->ss;
4687
4688        lockdep_assert_held(&cgroup_mutex);
4689
4690        if (!(css->flags & CSS_ONLINE))
4691                return;
4692
4693        if (ss->css_offline)
4694                ss->css_offline(css);
4695
4696        css->flags &= ~CSS_ONLINE;
4697        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4698
4699        wake_up_all(&css->cgroup->offline_waitq);
4700}
4701
4702/**
4703 * css_create - create a cgroup_subsys_state
4704 * @cgrp: the cgroup new css will be associated with
4705 * @ss: the subsys of new css
4706 *
4707 * Create a new css associated with @cgrp - @ss pair.  On success, the new
4708 * css is online and installed in @cgrp.  This function doesn't create the
4709 * interface files.  Returns 0 on success, -errno on failure.
4710 */
4711static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4712                                              struct cgroup_subsys *ss)
4713{
4714        struct cgroup *parent = cgroup_parent(cgrp);
4715        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4716        struct cgroup_subsys_state *css;
4717        int err;
4718
4719        lockdep_assert_held(&cgroup_mutex);
4720
4721        css = ss->css_alloc(parent_css);
4722        if (!css)
4723                css = ERR_PTR(-ENOMEM);
4724        if (IS_ERR(css))
4725                return css;
4726
4727        init_and_link_css(css, ss, cgrp);
4728
4729        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4730        if (err)
4731                goto err_free_css;
4732
4733        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4734        if (err < 0)
4735                goto err_free_css;
4736        css->id = err;
4737
4738        /* @css is ready to be brought online now, make it visible */
4739        list_add_tail_rcu(&css->sibling, &parent_css->children);
4740        cgroup_idr_replace(&ss->css_idr, css, css->id);
4741
4742        err = online_css(css);
4743        if (err)
4744                goto err_list_del;
4745
4746        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4747            cgroup_parent(parent)) {
4748                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4749                        current->comm, current->pid, ss->name);
4750                if (!strcmp(ss->name, "memory"))
4751                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4752                ss->warned_broken_hierarchy = true;
4753        }
4754
4755        return css;
4756
4757err_list_del:
4758        list_del_rcu(&css->sibling);
4759err_free_css:
4760        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4761        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4762        return ERR_PTR(err);
4763}
4764
4765/*
4766 * The returned cgroup is fully initialized including its control mask, but
4767 * it isn't associated with its kernfs_node and doesn't have the control
4768 * mask applied.
4769 */
4770static struct cgroup *cgroup_create(struct cgroup *parent)
4771{
4772        struct cgroup_root *root = parent->root;
4773        struct cgroup *cgrp, *tcgrp;
4774        int level = parent->level + 1;
4775        int ret;
4776
4777        /* allocate the cgroup and its ID, 0 is reserved for the root */
4778        cgrp = kzalloc(sizeof(*cgrp) +
4779                       sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4780        if (!cgrp)
4781                return ERR_PTR(-ENOMEM);
4782
4783        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4784        if (ret)
4785                goto out_free_cgrp;
4786
4787        if (cgroup_on_dfl(parent)) {
4788                ret = cgroup_stat_init(cgrp);
4789                if (ret)
4790                        goto out_cancel_ref;
4791        }
4792
4793        /*
4794         * Temporarily set the pointer to NULL, so idr_find() won't return
4795         * a half-baked cgroup.
4796         */
4797        cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4798        if (cgrp->id < 0) {
4799                ret = -ENOMEM;
4800                goto out_stat_exit;
4801        }
4802
4803        init_cgroup_housekeeping(cgrp);
4804
4805        cgrp->self.parent = &parent->self;
4806        cgrp->root = root;
4807        cgrp->level = level;
4808        ret = cgroup_bpf_inherit(cgrp);
4809        if (ret)
4810                goto out_idr_free;
4811
4812        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4813                cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4814
4815                if (tcgrp != cgrp)
4816                        tcgrp->nr_descendants++;
4817        }
4818
4819        if (notify_on_release(parent))
4820                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4821
4822        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4823                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4824
4825        cgrp->self.serial_nr = css_serial_nr_next++;
4826
4827        /* allocation complete, commit to creation */
4828        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4829        atomic_inc(&root->nr_cgrps);
4830        cgroup_get_live(parent);
4831
4832        /*
4833         * @cgrp is now fully operational.  If something fails after this
4834         * point, it'll be released via the normal destruction path.
4835         */
4836        cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4837
4838        /*
4839         * On the default hierarchy, a child doesn't automatically inherit
4840         * subtree_control from the parent.  Each is configured manually.
4841         */
4842        if (!cgroup_on_dfl(cgrp))
4843                cgrp->subtree_control = cgroup_control(cgrp);
4844
4845        cgroup_propagate_control(cgrp);
4846
4847        return cgrp;
4848
4849out_idr_free:
4850        cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4851out_stat_exit:
4852        if (cgroup_on_dfl(parent))
4853                cgroup_stat_exit(cgrp);
4854out_cancel_ref:
4855        percpu_ref_exit(&cgrp->self.refcnt);
4856out_free_cgrp:
4857        kfree(cgrp);
4858        return ERR_PTR(ret);
4859}
4860
4861static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4862{
4863        struct cgroup *cgroup;
4864        int ret = false;
4865        int level = 1;
4866
4867        lockdep_assert_held(&cgroup_mutex);
4868
4869        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4870                if (cgroup->nr_descendants >= cgroup->max_descendants)
4871                        goto fail;
4872
4873                if (level > cgroup->max_depth)
4874                        goto fail;
4875
4876                level++;
4877        }
4878
4879        ret = true;
4880fail:
4881        return ret;
4882}
4883
4884int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4885{
4886        struct cgroup *parent, *cgrp;
4887        struct kernfs_node *kn;
4888        int ret;
4889
4890        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4891        if (strchr(name, '\n'))
4892                return -EINVAL;
4893
4894        parent = cgroup_kn_lock_live(parent_kn, false);
4895        if (!parent)
4896                return -ENODEV;
4897
4898        if (!cgroup_check_hierarchy_limits(parent)) {
4899                ret = -EAGAIN;
4900                goto out_unlock;
4901        }
4902
4903        cgrp = cgroup_create(parent);
4904        if (IS_ERR(cgrp)) {
4905                ret = PTR_ERR(cgrp);
4906                goto out_unlock;
4907        }
4908
4909        /* create the directory */
4910        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4911        if (IS_ERR(kn)) {
4912                ret = PTR_ERR(kn);
4913                goto out_destroy;
4914        }
4915        cgrp->kn = kn;
4916
4917        /*
4918         * This extra ref will be put in cgroup_free_fn() and guarantees
4919         * that @cgrp->kn is always accessible.
4920         */
4921        kernfs_get(kn);
4922
4923        ret = cgroup_kn_set_ugid(kn);
4924        if (ret)
4925                goto out_destroy;
4926
4927        ret = css_populate_dir(&cgrp->self);
4928        if (ret)
4929                goto out_destroy;
4930
4931        ret = cgroup_apply_control_enable(cgrp);
4932        if (ret)
4933                goto out_destroy;
4934
4935        trace_cgroup_mkdir(cgrp);
4936
4937        /* let's create and online css's */
4938        kernfs_activate(kn);
4939
4940        ret = 0;
4941        goto out_unlock;
4942
4943out_destroy:
4944        cgroup_destroy_locked(cgrp);
4945out_unlock:
4946        cgroup_kn_unlock(parent_kn);
4947        return ret;
4948}
4949
4950/*
4951 * This is called when the refcnt of a css is confirmed to be killed.
4952 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
4953 * initate destruction and put the css ref from kill_css().
4954 */
4955static void css_killed_work_fn(struct work_struct *work)
4956{
4957        struct cgroup_subsys_state *css =
4958                container_of(work, struct cgroup_subsys_state, destroy_work);
4959
4960        mutex_lock(&cgroup_mutex);
4961
4962        do {
4963                offline_css(css);
4964                css_put(css);
4965                /* @css can't go away while we're holding cgroup_mutex */
4966                css = css->parent;
4967        } while (css && atomic_dec_and_test(&css->online_cnt));
4968
4969        mutex_unlock(&cgroup_mutex);
4970}
4971
4972/* css kill confirmation processing requires process context, bounce */
4973static void css_killed_ref_fn(struct percpu_ref *ref)
4974{
4975        struct cgroup_subsys_state *css =
4976                container_of(ref, struct cgroup_subsys_state, refcnt);
4977
4978        if (atomic_dec_and_test(&css->online_cnt)) {
4979                INIT_WORK(&css->destroy_work, css_killed_work_fn);
4980                queue_work(cgroup_destroy_wq, &css->destroy_work);
4981        }
4982}
4983
4984/**
4985 * kill_css - destroy a css
4986 * @css: css to destroy
4987 *
4988 * This function initiates destruction of @css by removing cgroup interface
4989 * files and putting its base reference.  ->css_offline() will be invoked
4990 * asynchronously once css_tryget_online() is guaranteed to fail and when
4991 * the reference count reaches zero, @css will be released.
4992 */
4993static void kill_css(struct cgroup_subsys_state *css)
4994{
4995        lockdep_assert_held(&cgroup_mutex);
4996
4997        if (css->flags & CSS_DYING)
4998                return;
4999
5000        css->flags |= CSS_DYING;
5001
5002        /*
5003         * This must happen before css is disassociated with its cgroup.
5004         * See seq_css() for details.
5005         */
5006        css_clear_dir(css);
5007
5008        /*
5009         * Killing would put the base ref, but we need to keep it alive
5010         * until after ->css_offline().
5011         */
5012        css_get(css);
5013
5014        /*
5015         * cgroup core guarantees that, by the time ->css_offline() is
5016         * invoked, no new css reference will be given out via
5017         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5018         * proceed to offlining css's because percpu_ref_kill() doesn't
5019         * guarantee that the ref is seen as killed on all CPUs on return.
5020         *
5021         * Use percpu_ref_kill_and_confirm() to get notifications as each
5022         * css is confirmed to be seen as killed on all CPUs.
5023         */
5024        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5025}
5026
5027/**
5028 * cgroup_destroy_locked - the first stage of cgroup destruction
5029 * @cgrp: cgroup to be destroyed
5030 *
5031 * css's make use of percpu refcnts whose killing latency shouldn't be
5032 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5033 * guarantee that css_tryget_online() won't succeed by the time
5034 * ->css_offline() is invoked.  To satisfy all the requirements,
5035 * destruction is implemented in the following two steps.
5036 *
5037 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5038 *     userland visible parts and start killing the percpu refcnts of
5039 *     css's.  Set up so that the next stage will be kicked off once all
5040 *     the percpu refcnts are confirmed to be killed.
5041 *
5042 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5043 *     rest of destruction.  Once all cgroup references are gone, the
5044 *     cgroup is RCU-freed.
5045 *
5046 * This function implements s1.  After this step, @cgrp is gone as far as
5047 * the userland is concerned and a new cgroup with the same name may be
5048 * created.  As cgroup doesn't care about the names internally, this
5049 * doesn't cause any problem.
5050 */
5051static int cgroup_destroy_locked(struct cgroup *cgrp)
5052        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5053{
5054        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5055        struct cgroup_subsys_state *css;
5056        struct cgrp_cset_link *link;
5057        int ssid;
5058
5059        lockdep_assert_held(&cgroup_mutex);
5060
5061        /*
5062         * Only migration can raise populated from zero and we're already
5063         * holding cgroup_mutex.
5064         */
5065        if (cgroup_is_populated(cgrp))
5066                return -EBUSY;
5067
5068        /*
5069         * Make sure there's no live children.  We can't test emptiness of
5070         * ->self.children as dead children linger on it while being
5071         * drained; otherwise, "rmdir parent/child parent" may fail.
5072         */
5073        if (css_has_online_children(&cgrp->self))
5074                return -EBUSY;
5075
5076        /*
5077         * Mark @cgrp and the associated csets dead.  The former prevents
5078         * further task migration and child creation by disabling
5079         * cgroup_lock_live_group().  The latter makes the csets ignored by
5080         * the migration path.
5081         */
5082        cgrp->self.flags &= ~CSS_ONLINE;
5083
5084        spin_lock_irq(&css_set_lock);
5085        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5086                link->cset->dead = true;
5087        spin_unlock_irq(&css_set_lock);
5088
5089        /* initiate massacre of all css's */
5090        for_each_css(css, ssid, cgrp)
5091                kill_css(css);
5092
5093        /*
5094         * Remove @cgrp directory along with the base files.  @cgrp has an
5095         * extra ref on its kn.
5096         */
5097        kernfs_remove(cgrp->kn);
5098
5099        if (parent && cgroup_is_threaded(cgrp))
5100                parent->nr_threaded_children--;
5101
5102        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5103                tcgrp->nr_descendants--;
5104                tcgrp->nr_dying_descendants++;
5105        }
5106
5107        cgroup1_check_for_release(parent);
5108
5109        /* put the base reference */
5110        percpu_ref_kill(&cgrp->self.refcnt);
5111
5112        return 0;
5113};
5114
5115int cgroup_rmdir(struct kernfs_node *kn)
5116{
5117        struct cgroup *cgrp;
5118        int ret = 0;
5119
5120        cgrp = cgroup_kn_lock_live(kn, false);
5121        if (!cgrp)
5122                return 0;
5123
5124        ret = cgroup_destroy_locked(cgrp);
5125
5126        if (!ret)
5127                trace_cgroup_rmdir(cgrp);
5128
5129        cgroup_kn_unlock(kn);
5130        return ret;
5131}
5132
5133static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5134        .show_options           = cgroup_show_options,
5135        .remount_fs             = cgroup_remount,
5136        .mkdir                  = cgroup_mkdir,
5137        .rmdir                  = cgroup_rmdir,
5138        .show_path              = cgroup_show_path,
5139};
5140
5141static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5142{
5143        struct cgroup_subsys_state *css;
5144
5145        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5146
5147        mutex_lock(&cgroup_mutex);
5148
5149        idr_init(&ss->css_idr);
5150        INIT_LIST_HEAD(&ss->cfts);
5151
5152        /* Create the root cgroup state for this subsystem */
5153        ss->root = &cgrp_dfl_root;
5154        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5155        /* We don't handle early failures gracefully */
5156        BUG_ON(IS_ERR(css));
5157        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5158
5159        /*
5160         * Root csses are never destroyed and we can't initialize
5161         * percpu_ref during early init.  Disable refcnting.
5162         */
5163        css->flags |= CSS_NO_REF;
5164
5165        if (early) {
5166                /* allocation can't be done safely during early init */
5167                css->id = 1;
5168        } else {
5169                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5170                BUG_ON(css->id < 0);
5171        }
5172
5173        /* Update the init_css_set to contain a subsys
5174         * pointer to this state - since the subsystem is
5175         * newly registered, all tasks and hence the
5176         * init_css_set is in the subsystem's root cgroup. */
5177        init_css_set.subsys[ss->id] = css;
5178
5179        have_fork_callback |= (bool)ss->fork << ss->id;
5180        have_exit_callback |= (bool)ss->exit << ss->id;
5181        have_free_callback |= (bool)ss->free << ss->id;
5182        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5183
5184        /* At system boot, before all subsystems have been
5185         * registered, no tasks have been forked, so we don't
5186         * need to invoke fork callbacks here. */
5187        BUG_ON(!list_empty(&init_task.tasks));
5188
5189        BUG_ON(online_css(css));
5190
5191        mutex_unlock(&cgroup_mutex);
5192}
5193
5194/**
5195 * cgroup_init_early - cgroup initialization at system boot
5196 *
5197 * Initialize cgroups at system boot, and initialize any
5198 * subsystems that request early init.
5199 */
5200int __init cgroup_init_early(void)
5201{
5202        static struct cgroup_sb_opts __initdata opts;
5203        struct cgroup_subsys *ss;
5204        int i;
5205
5206        init_cgroup_root(&cgrp_dfl_root, &opts);
5207        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5208
5209        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5210
5211        for_each_subsys(ss, i) {
5212                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5213                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5214                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5215                     ss->id, ss->name);
5216                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5217                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5218
5219                ss->id = i;
5220                ss->name = cgroup_subsys_name[i];
5221                if (!ss->legacy_name)
5222                        ss->legacy_name = cgroup_subsys_name[i];
5223
5224                if (ss->early_init)
5225                        cgroup_init_subsys(ss, true);
5226        }
5227        return 0;
5228}
5229
5230static u16 cgroup_disable_mask __initdata;
5231
5232/**
5233 * cgroup_init - cgroup initialization
5234 *
5235 * Register cgroup filesystem and /proc file, and initialize
5236 * any subsystems that didn't request early init.
5237 */
5238int __init cgroup_init(void)
5239{
5240        struct cgroup_subsys *ss;
5241        int ssid;
5242
5243        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5244        BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5245        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5246        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5247
5248        cgroup_stat_boot();
5249
5250        /*
5251         * The latency of the synchronize_sched() is too high for cgroups,
5252         * avoid it at the cost of forcing all readers into the slow path.
5253         */
5254        rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5255
5256        get_user_ns(init_cgroup_ns.user_ns);
5257
5258        mutex_lock(&cgroup_mutex);
5259
5260        /*
5261         * Add init_css_set to the hash table so that dfl_root can link to
5262         * it during init.
5263         */
5264        hash_add(css_set_table, &init_css_set.hlist,
5265                 css_set_hash(init_css_set.subsys));
5266
5267        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5268
5269        mutex_unlock(&cgroup_mutex);
5270
5271        for_each_subsys(ss, ssid) {
5272                if (ss->early_init) {
5273                        struct cgroup_subsys_state *css =
5274                                init_css_set.subsys[ss->id];
5275
5276                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5277                                                   GFP_KERNEL);
5278                        BUG_ON(css->id < 0);
5279                } else {
5280                        cgroup_init_subsys(ss, false);
5281                }
5282
5283                list_add_tail(&init_css_set.e_cset_node[ssid],
5284                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5285
5286                /*
5287                 * Setting dfl_root subsys_mask needs to consider the
5288                 * disabled flag and cftype registration needs kmalloc,
5289                 * both of which aren't available during early_init.
5290                 */
5291                if (cgroup_disable_mask & (1 << ssid)) {
5292                        static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5293                        printk(KERN_INFO "Disabling %s control group subsystem\n",
5294                               ss->name);
5295                        continue;
5296                }
5297
5298                if (cgroup1_ssid_disabled(ssid))
5299                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5300                               ss->name);
5301
5302                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5303
5304                /* implicit controllers must be threaded too */
5305                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5306
5307                if (ss->implicit_on_dfl)
5308                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5309                else if (!ss->dfl_cftypes)
5310                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5311
5312                if (ss->threaded)
5313                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5314
5315                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5316                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5317                } else {
5318                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5319                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5320                }
5321
5322                if (ss->bind)
5323                        ss->bind(init_css_set.subsys[ssid]);
5324
5325                mutex_lock(&cgroup_mutex);
5326                css_populate_dir(init_css_set.subsys[ssid]);
5327                mutex_unlock(&cgroup_mutex);
5328        }
5329
5330        /* init_css_set.subsys[] has been updated, re-hash */
5331        hash_del(&init_css_set.hlist);
5332        hash_add(css_set_table, &init_css_set.hlist,
5333                 css_set_hash(init_css_set.subsys));
5334
5335        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5336        WARN_ON(register_filesystem(&cgroup_fs_type));
5337        WARN_ON(register_filesystem(&cgroup2_fs_type));
5338        WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5339
5340        return 0;
5341}
5342
5343static int __init cgroup_wq_init(void)
5344{
5345        /*
5346         * There isn't much point in executing destruction path in
5347         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5348         * Use 1 for @max_active.
5349         *
5350         * We would prefer to do this in cgroup_init() above, but that
5351         * is called before init_workqueues(): so leave this until after.
5352         */
5353        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5354        BUG_ON(!cgroup_destroy_wq);
5355        return 0;
5356}
5357core_initcall(cgroup_wq_init);
5358
5359void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5360                                        char *buf, size_t buflen)
5361{
5362        struct kernfs_node *kn;
5363
5364        kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5365        if (!kn)
5366                return;
5367        kernfs_path(kn, buf, buflen);
5368        kernfs_put(kn);
5369}
5370
5371/*
5372 * proc_cgroup_show()
5373 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5374 *  - Used for /proc/<pid>/cgroup.
5375 */
5376int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5377                     struct pid *pid, struct task_struct *tsk)
5378{
5379        char *buf;
5380        int retval;
5381        struct cgroup_root *root;
5382
5383        retval = -ENOMEM;
5384        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5385        if (!buf)
5386                goto out;
5387
5388        mutex_lock(&cgroup_mutex);
5389        spin_lock_irq(&css_set_lock);
5390
5391        for_each_root(root) {
5392                struct cgroup_subsys *ss;
5393                struct cgroup *cgrp;
5394                int ssid, count = 0;
5395
5396                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5397                        continue;
5398
5399                seq_printf(m, "%d:", root->hierarchy_id);
5400                if (root != &cgrp_dfl_root)
5401                        for_each_subsys(ss, ssid)
5402                                if (root->subsys_mask & (1 << ssid))
5403                                        seq_printf(m, "%s%s", count++ ? "," : "",
5404                                                   ss->legacy_name);
5405                if (strlen(root->name))
5406                        seq_printf(m, "%sname=%s", count ? "," : "",
5407                                   root->name);
5408                seq_putc(m, ':');
5409
5410                cgrp = task_cgroup_from_root(tsk, root);
5411
5412                /*
5413                 * On traditional hierarchies, all zombie tasks show up as
5414                 * belonging to the root cgroup.  On the default hierarchy,
5415                 * while a zombie doesn't show up in "cgroup.procs" and
5416                 * thus can't be migrated, its /proc/PID/cgroup keeps
5417                 * reporting the cgroup it belonged to before exiting.  If
5418                 * the cgroup is removed before the zombie is reaped,
5419                 * " (deleted)" is appended to the cgroup path.
5420                 */
5421                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5422                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5423                                                current->nsproxy->cgroup_ns);
5424                        if (retval >= PATH_MAX)
5425                                retval = -ENAMETOOLONG;
5426                        if (retval < 0)
5427                                goto out_unlock;
5428
5429                        seq_puts(m, buf);
5430                } else {
5431                        seq_puts(m, "/");
5432                }
5433
5434                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5435                        seq_puts(m, " (deleted)\n");
5436                else
5437                        seq_putc(m, '\n');
5438        }
5439
5440        retval = 0;
5441out_unlock:
5442        spin_unlock_irq(&css_set_lock);
5443        mutex_unlock(&cgroup_mutex);
5444        kfree(buf);
5445out:
5446        return retval;
5447}
5448
5449/**
5450 * cgroup_fork - initialize cgroup related fields during copy_process()
5451 * @child: pointer to task_struct of forking parent process.
5452 *
5453 * A task is associated with the init_css_set until cgroup_post_fork()
5454 * attaches it to the parent's css_set.  Empty cg_list indicates that
5455 * @child isn't holding reference to its css_set.
5456 */
5457void cgroup_fork(struct task_struct *child)
5458{
5459        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5460        INIT_LIST_HEAD(&child->cg_list);
5461}
5462
5463/**
5464 * cgroup_can_fork - called on a new task before the process is exposed
5465 * @child: the task in question.
5466 *
5467 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5468 * returns an error, the fork aborts with that error code. This allows for
5469 * a cgroup subsystem to conditionally allow or deny new forks.
5470 */
5471int cgroup_can_fork(struct task_struct *child)
5472{
5473        struct cgroup_subsys *ss;
5474        int i, j, ret;
5475
5476        do_each_subsys_mask(ss, i, have_canfork_callback) {
5477                ret = ss->can_fork(child);
5478                if (ret)
5479                        goto out_revert;
5480        } while_each_subsys_mask();
5481
5482        return 0;
5483
5484out_revert:
5485        for_each_subsys(ss, j) {
5486                if (j >= i)
5487                        break;
5488                if (ss->cancel_fork)
5489                        ss->cancel_fork(child);
5490        }
5491
5492        return ret;
5493}
5494
5495/**
5496 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5497 * @child: the task in question
5498 *
5499 * This calls the cancel_fork() callbacks if a fork failed *after*
5500 * cgroup_can_fork() succeded.
5501 */
5502void cgroup_cancel_fork(struct task_struct *child)
5503{
5504        struct cgroup_subsys *ss;
5505        int i;
5506
5507        for_each_subsys(ss, i)
5508                if (ss->cancel_fork)
5509                        ss->cancel_fork(child);
5510}
5511
5512/**
5513 * cgroup_post_fork - called on a new task after adding it to the task list
5514 * @child: the task in question
5515 *
5516 * Adds the task to the list running through its css_set if necessary and
5517 * call the subsystem fork() callbacks.  Has to be after the task is
5518 * visible on the task list in case we race with the first call to
5519 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5520 * list.
5521 */
5522void cgroup_post_fork(struct task_struct *child)
5523{
5524        struct cgroup_subsys *ss;
5525        int i;
5526
5527        /*
5528         * This may race against cgroup_enable_task_cg_lists().  As that
5529         * function sets use_task_css_set_links before grabbing
5530         * tasklist_lock and we just went through tasklist_lock to add
5531         * @child, it's guaranteed that either we see the set
5532         * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5533         * @child during its iteration.
5534         *
5535         * If we won the race, @child is associated with %current's
5536         * css_set.  Grabbing css_set_lock guarantees both that the
5537         * association is stable, and, on completion of the parent's
5538         * migration, @child is visible in the source of migration or
5539         * already in the destination cgroup.  This guarantee is necessary
5540         * when implementing operations which need to migrate all tasks of
5541         * a cgroup to another.
5542         *
5543         * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5544         * will remain in init_css_set.  This is safe because all tasks are
5545         * in the init_css_set before cg_links is enabled and there's no
5546         * operation which transfers all tasks out of init_css_set.
5547         */
5548        if (use_task_css_set_links) {
5549                struct css_set *cset;
5550
5551                spin_lock_irq(&css_set_lock);
5552                cset = task_css_set(current);
5553                if (list_empty(&child->cg_list)) {
5554                        get_css_set(cset);
5555                        cset->nr_tasks++;
5556                        css_set_move_task(child, NULL, cset, false);
5557                }
5558                spin_unlock_irq(&css_set_lock);
5559        }
5560
5561        /*
5562         * Call ss->fork().  This must happen after @child is linked on
5563         * css_set; otherwise, @child might change state between ->fork()
5564         * and addition to css_set.
5565         */
5566        do_each_subsys_mask(ss, i, have_fork_callback) {
5567                ss->fork(child);
5568        } while_each_subsys_mask();
5569}
5570
5571/**
5572 * cgroup_exit - detach cgroup from exiting task
5573 * @tsk: pointer to task_struct of exiting process
5574 *
5575 * Description: Detach cgroup from @tsk and release it.
5576 *
5577 * Note that cgroups marked notify_on_release force every task in
5578 * them to take the global cgroup_mutex mutex when exiting.
5579 * This could impact scaling on very large systems.  Be reluctant to
5580 * use notify_on_release cgroups where very high task exit scaling
5581 * is required on large systems.
5582 *
5583 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5584 * call cgroup_exit() while the task is still competent to handle
5585 * notify_on_release(), then leave the task attached to the root cgroup in
5586 * each hierarchy for the remainder of its exit.  No need to bother with
5587 * init_css_set refcnting.  init_css_set never goes away and we can't race
5588 * with migration path - PF_EXITING is visible to migration path.
5589 */
5590void cgroup_exit(struct task_struct *tsk)
5591{
5592        struct cgroup_subsys *ss;
5593        struct css_set *cset;
5594        int i;
5595
5596        /*
5597         * Unlink from @tsk from its css_set.  As migration path can't race
5598         * with us, we can check css_set and cg_list without synchronization.
5599         */
5600        cset = task_css_set(tsk);
5601
5602        if (!list_empty(&tsk->cg_list)) {
5603                spin_lock_irq(&css_set_lock);
5604                css_set_move_task(tsk, cset, NULL, false);
5605                cset->nr_tasks--;
5606                spin_unlock_irq(&css_set_lock);
5607        } else {
5608                get_css_set(cset);
5609        }
5610
5611        /* see cgroup_post_fork() for details */
5612        do_each_subsys_mask(ss, i, have_exit_callback) {
5613                ss->exit(tsk);
5614        } while_each_subsys_mask();
5615}
5616
5617void cgroup_free(struct task_struct *task)
5618{
5619        struct css_set *cset = task_css_set(task);
5620        struct cgroup_subsys *ss;
5621        int ssid;
5622
5623        do_each_subsys_mask(ss, ssid, have_free_callback) {
5624                ss->free(task);
5625        } while_each_subsys_mask();
5626
5627        put_css_set(cset);
5628}
5629
5630static int __init cgroup_disable(char *str)
5631{
5632        struct cgroup_subsys *ss;
5633        char *token;
5634        int i;
5635
5636        while ((token = strsep(&str, ",")) != NULL) {
5637                if (!*token)
5638                        continue;
5639
5640                for_each_subsys(ss, i) {
5641                        if (strcmp(token, ss->name) &&
5642                            strcmp(token, ss->legacy_name))
5643                                continue;
5644                        cgroup_disable_mask |= 1 << i;
5645                }
5646        }
5647        return 1;
5648}
5649__setup("cgroup_disable=", cgroup_disable);
5650
5651/**
5652 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5653 * @dentry: directory dentry of interest
5654 * @ss: subsystem of interest
5655 *
5656 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5657 * to get the corresponding css and return it.  If such css doesn't exist
5658 * or can't be pinned, an ERR_PTR value is returned.
5659 */
5660struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5661                                                       struct cgroup_subsys *ss)
5662{
5663        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5664        struct file_system_type *s_type = dentry->d_sb->s_type;
5665        struct cgroup_subsys_state *css = NULL;
5666        struct cgroup *cgrp;
5667
5668        /* is @dentry a cgroup dir? */
5669        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5670            !kn || kernfs_type(kn) != KERNFS_DIR)
5671                return ERR_PTR(-EBADF);
5672
5673        rcu_read_lock();
5674
5675        /*
5676         * This path doesn't originate from kernfs and @kn could already
5677         * have been or be removed at any point.  @kn->priv is RCU
5678         * protected for this access.  See css_release_work_fn() for details.
5679         */
5680        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5681        if (cgrp)
5682                css = cgroup_css(cgrp, ss);
5683
5684        if (!css || !css_tryget_online(css))
5685                css = ERR_PTR(-ENOENT);
5686
5687        rcu_read_unlock();
5688        return css;
5689}
5690
5691/**
5692 * css_from_id - lookup css by id
5693 * @id: the cgroup id
5694 * @ss: cgroup subsys to be looked into
5695 *
5696 * Returns the css if there's valid one with @id, otherwise returns NULL.
5697 * Should be called under rcu_read_lock().
5698 */
5699struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5700{
5701        WARN_ON_ONCE(!rcu_read_lock_held());
5702        return idr_find(&ss->css_idr, id);
5703}
5704
5705/**
5706 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5707 * @path: path on the default hierarchy
5708 *
5709 * Find the cgroup at @path on the default hierarchy, increment its
5710 * reference count and return it.  Returns pointer to the found cgroup on
5711 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5712 * if @path points to a non-directory.
5713 */
5714struct cgroup *cgroup_get_from_path(const char *path)
5715{
5716        struct kernfs_node *kn;
5717        struct cgroup *cgrp;
5718
5719        mutex_lock(&cgroup_mutex);
5720
5721        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5722        if (kn) {
5723                if (kernfs_type(kn) == KERNFS_DIR) {
5724                        cgrp = kn->priv;
5725                        cgroup_get_live(cgrp);
5726                } else {
5727                        cgrp = ERR_PTR(-ENOTDIR);
5728                }
5729                kernfs_put(kn);
5730        } else {
5731                cgrp = ERR_PTR(-ENOENT);
5732        }
5733
5734        mutex_unlock(&cgroup_mutex);
5735        return cgrp;
5736}
5737EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5738
5739/**
5740 * cgroup_get_from_fd - get a cgroup pointer from a fd
5741 * @fd: fd obtained by open(cgroup2_dir)
5742 *
5743 * Find the cgroup from a fd which should be obtained
5744 * by opening a cgroup directory.  Returns a pointer to the
5745 * cgroup on success. ERR_PTR is returned if the cgroup
5746 * cannot be found.
5747 */
5748struct cgroup *cgroup_get_from_fd(int fd)
5749{
5750        struct cgroup_subsys_state *css;
5751        struct cgroup *cgrp;
5752        struct file *f;
5753
5754        f = fget_raw(fd);
5755        if (!f)
5756                return ERR_PTR(-EBADF);
5757
5758        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5759        fput(f);
5760        if (IS_ERR(css))
5761                return ERR_CAST(css);
5762
5763        cgrp = css->cgroup;
5764        if (!cgroup_on_dfl(cgrp)) {
5765                cgroup_put(cgrp);
5766                return ERR_PTR(-EBADF);
5767        }
5768
5769        return cgrp;
5770}
5771EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5772
5773/*
5774 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5775 * definition in cgroup-defs.h.
5776 */
5777#ifdef CONFIG_SOCK_CGROUP_DATA
5778
5779#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5780
5781DEFINE_SPINLOCK(cgroup_sk_update_lock);
5782static bool cgroup_sk_alloc_disabled __read_mostly;
5783
5784void cgroup_sk_alloc_disable(void)
5785{
5786        if (cgroup_sk_alloc_disabled)
5787                return;
5788        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5789        cgroup_sk_alloc_disabled = true;
5790}
5791
5792#else
5793
5794#define cgroup_sk_alloc_disabled        false
5795
5796#endif
5797
5798void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5799{
5800        if (cgroup_sk_alloc_disabled)
5801                return;
5802
5803        /* Socket clone path */
5804        if (skcd->val) {
5805                /*
5806                 * We might be cloning a socket which is left in an empty
5807                 * cgroup and the cgroup might have already been rmdir'd.
5808                 * Don't use cgroup_get_live().
5809                 */
5810                cgroup_get(sock_cgroup_ptr(skcd));
5811                return;
5812        }
5813
5814        rcu_read_lock();
5815
5816        while (true) {
5817                struct css_set *cset;
5818
5819                cset = task_css_set(current);
5820                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5821                        skcd->val = (unsigned long)cset->dfl_cgrp;
5822                        break;
5823                }
5824                cpu_relax();
5825        }
5826
5827        rcu_read_unlock();
5828}
5829
5830void cgroup_sk_free(struct sock_cgroup_data *skcd)
5831{
5832        cgroup_put(sock_cgroup_ptr(skcd));
5833}
5834
5835#endif  /* CONFIG_SOCK_CGROUP_DATA */
5836
5837#ifdef CONFIG_CGROUP_BPF
5838int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5839                      enum bpf_attach_type type, u32 flags)
5840{
5841        int ret;
5842
5843        mutex_lock(&cgroup_mutex);
5844        ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5845        mutex_unlock(&cgroup_mutex);
5846        return ret;
5847}
5848int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5849                      enum bpf_attach_type type, u32 flags)
5850{
5851        int ret;
5852
5853        mutex_lock(&cgroup_mutex);
5854        ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5855        mutex_unlock(&cgroup_mutex);
5856        return ret;
5857}
5858int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5859                     union bpf_attr __user *uattr)
5860{
5861        int ret;
5862
5863        mutex_lock(&cgroup_mutex);
5864        ret = __cgroup_bpf_query(cgrp, attr, uattr);
5865        mutex_unlock(&cgroup_mutex);
5866        return ret;
5867}
5868#endif /* CONFIG_CGROUP_BPF */
5869
5870#ifdef CONFIG_SYSFS
5871static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5872                                      ssize_t size, const char *prefix)
5873{
5874        struct cftype *cft;
5875        ssize_t ret = 0;
5876
5877        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5878                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5879                        continue;
5880
5881                if (prefix)
5882                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5883
5884                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5885
5886                if (unlikely(ret >= size)) {
5887                        WARN_ON(1);
5888                        break;
5889                }
5890        }
5891
5892        return ret;
5893}
5894
5895static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5896                              char *buf)
5897{
5898        struct cgroup_subsys *ss;
5899        int ssid;
5900        ssize_t ret = 0;
5901
5902        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5903                                     NULL);
5904
5905        for_each_subsys(ss, ssid)
5906                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5907                                              PAGE_SIZE - ret,
5908                                              cgroup_subsys_name[ssid]);
5909
5910        return ret;
5911}
5912static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5913
5914static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5915                             char *buf)
5916{
5917        return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5918}
5919static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5920
5921static struct attribute *cgroup_sysfs_attrs[] = {
5922        &cgroup_delegate_attr.attr,
5923        &cgroup_features_attr.attr,
5924        NULL,
5925};
5926
5927static const struct attribute_group cgroup_sysfs_attr_group = {
5928        .attrs = cgroup_sysfs_attrs,
5929        .name = "cgroup",
5930};
5931
5932static int __init cgroup_sysfs_init(void)
5933{
5934        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5935}
5936subsys_initcall(cgroup_sysfs_init);
5937#endif /* CONFIG_SYSFS */
5938