linux/kernel/cpu.c
<<
>>
Prefs
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/sched/task.h>
  13#include <linux/unistd.h>
  14#include <linux/cpu.h>
  15#include <linux/oom.h>
  16#include <linux/rcupdate.h>
  17#include <linux/export.h>
  18#include <linux/bug.h>
  19#include <linux/kthread.h>
  20#include <linux/stop_machine.h>
  21#include <linux/mutex.h>
  22#include <linux/gfp.h>
  23#include <linux/suspend.h>
  24#include <linux/lockdep.h>
  25#include <linux/tick.h>
  26#include <linux/irq.h>
  27#include <linux/nmi.h>
  28#include <linux/smpboot.h>
  29#include <linux/relay.h>
  30#include <linux/slab.h>
  31#include <linux/percpu-rwsem.h>
  32
  33#include <trace/events/power.h>
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/cpuhp.h>
  36
  37#include "smpboot.h"
  38
  39/**
  40 * cpuhp_cpu_state - Per cpu hotplug state storage
  41 * @state:      The current cpu state
  42 * @target:     The target state
  43 * @thread:     Pointer to the hotplug thread
  44 * @should_run: Thread should execute
  45 * @rollback:   Perform a rollback
  46 * @single:     Single callback invocation
  47 * @bringup:    Single callback bringup or teardown selector
  48 * @cb_state:   The state for a single callback (install/uninstall)
  49 * @result:     Result of the operation
  50 * @done_up:    Signal completion to the issuer of the task for cpu-up
  51 * @done_down:  Signal completion to the issuer of the task for cpu-down
  52 */
  53struct cpuhp_cpu_state {
  54        enum cpuhp_state        state;
  55        enum cpuhp_state        target;
  56        enum cpuhp_state        fail;
  57#ifdef CONFIG_SMP
  58        struct task_struct      *thread;
  59        bool                    should_run;
  60        bool                    rollback;
  61        bool                    single;
  62        bool                    bringup;
  63        struct hlist_node       *node;
  64        struct hlist_node       *last;
  65        enum cpuhp_state        cb_state;
  66        int                     result;
  67        struct completion       done_up;
  68        struct completion       done_down;
  69#endif
  70};
  71
  72static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  73        .fail = CPUHP_INVALID,
  74};
  75
  76#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  77static struct lockdep_map cpuhp_state_up_map =
  78        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  79static struct lockdep_map cpuhp_state_down_map =
  80        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  81
  82
  83static inline void cpuhp_lock_acquire(bool bringup)
  84{
  85        lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  86}
  87
  88static inline void cpuhp_lock_release(bool bringup)
  89{
  90        lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  91}
  92#else
  93
  94static inline void cpuhp_lock_acquire(bool bringup) { }
  95static inline void cpuhp_lock_release(bool bringup) { }
  96
  97#endif
  98
  99/**
 100 * cpuhp_step - Hotplug state machine step
 101 * @name:       Name of the step
 102 * @startup:    Startup function of the step
 103 * @teardown:   Teardown function of the step
 104 * @skip_onerr: Do not invoke the functions on error rollback
 105 *              Will go away once the notifiers are gone
 106 * @cant_stop:  Bringup/teardown can't be stopped at this step
 107 */
 108struct cpuhp_step {
 109        const char              *name;
 110        union {
 111                int             (*single)(unsigned int cpu);
 112                int             (*multi)(unsigned int cpu,
 113                                         struct hlist_node *node);
 114        } startup;
 115        union {
 116                int             (*single)(unsigned int cpu);
 117                int             (*multi)(unsigned int cpu,
 118                                         struct hlist_node *node);
 119        } teardown;
 120        struct hlist_head       list;
 121        bool                    skip_onerr;
 122        bool                    cant_stop;
 123        bool                    multi_instance;
 124};
 125
 126static DEFINE_MUTEX(cpuhp_state_mutex);
 127static struct cpuhp_step cpuhp_hp_states[];
 128
 129static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 130{
 131        return cpuhp_hp_states + state;
 132}
 133
 134/**
 135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 136 * @cpu:        The cpu for which the callback should be invoked
 137 * @state:      The state to do callbacks for
 138 * @bringup:    True if the bringup callback should be invoked
 139 * @node:       For multi-instance, do a single entry callback for install/remove
 140 * @lastp:      For multi-instance rollback, remember how far we got
 141 *
 142 * Called from cpu hotplug and from the state register machinery.
 143 */
 144static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 145                                 bool bringup, struct hlist_node *node,
 146                                 struct hlist_node **lastp)
 147{
 148        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 149        struct cpuhp_step *step = cpuhp_get_step(state);
 150        int (*cbm)(unsigned int cpu, struct hlist_node *node);
 151        int (*cb)(unsigned int cpu);
 152        int ret, cnt;
 153
 154        if (st->fail == state) {
 155                st->fail = CPUHP_INVALID;
 156
 157                if (!(bringup ? step->startup.single : step->teardown.single))
 158                        return 0;
 159
 160                return -EAGAIN;
 161        }
 162
 163        if (!step->multi_instance) {
 164                WARN_ON_ONCE(lastp && *lastp);
 165                cb = bringup ? step->startup.single : step->teardown.single;
 166                if (!cb)
 167                        return 0;
 168                trace_cpuhp_enter(cpu, st->target, state, cb);
 169                ret = cb(cpu);
 170                trace_cpuhp_exit(cpu, st->state, state, ret);
 171                return ret;
 172        }
 173        cbm = bringup ? step->startup.multi : step->teardown.multi;
 174        if (!cbm)
 175                return 0;
 176
 177        /* Single invocation for instance add/remove */
 178        if (node) {
 179                WARN_ON_ONCE(lastp && *lastp);
 180                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 181                ret = cbm(cpu, node);
 182                trace_cpuhp_exit(cpu, st->state, state, ret);
 183                return ret;
 184        }
 185
 186        /* State transition. Invoke on all instances */
 187        cnt = 0;
 188        hlist_for_each(node, &step->list) {
 189                if (lastp && node == *lastp)
 190                        break;
 191
 192                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 193                ret = cbm(cpu, node);
 194                trace_cpuhp_exit(cpu, st->state, state, ret);
 195                if (ret) {
 196                        if (!lastp)
 197                                goto err;
 198
 199                        *lastp = node;
 200                        return ret;
 201                }
 202                cnt++;
 203        }
 204        if (lastp)
 205                *lastp = NULL;
 206        return 0;
 207err:
 208        /* Rollback the instances if one failed */
 209        cbm = !bringup ? step->startup.multi : step->teardown.multi;
 210        if (!cbm)
 211                return ret;
 212
 213        hlist_for_each(node, &step->list) {
 214                if (!cnt--)
 215                        break;
 216
 217                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 218                ret = cbm(cpu, node);
 219                trace_cpuhp_exit(cpu, st->state, state, ret);
 220                /*
 221                 * Rollback must not fail,
 222                 */
 223                WARN_ON_ONCE(ret);
 224        }
 225        return ret;
 226}
 227
 228#ifdef CONFIG_SMP
 229static bool cpuhp_is_ap_state(enum cpuhp_state state)
 230{
 231        /*
 232         * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 233         * purposes as that state is handled explicitly in cpu_down.
 234         */
 235        return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 236}
 237
 238static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 239{
 240        struct completion *done = bringup ? &st->done_up : &st->done_down;
 241        wait_for_completion(done);
 242}
 243
 244static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 245{
 246        struct completion *done = bringup ? &st->done_up : &st->done_down;
 247        complete(done);
 248}
 249
 250/*
 251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 252 */
 253static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 254{
 255        return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 256}
 257
 258/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 259static DEFINE_MUTEX(cpu_add_remove_lock);
 260bool cpuhp_tasks_frozen;
 261EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 262
 263/*
 264 * The following two APIs (cpu_maps_update_begin/done) must be used when
 265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 266 */
 267void cpu_maps_update_begin(void)
 268{
 269        mutex_lock(&cpu_add_remove_lock);
 270}
 271
 272void cpu_maps_update_done(void)
 273{
 274        mutex_unlock(&cpu_add_remove_lock);
 275}
 276
 277/*
 278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 279 * Should always be manipulated under cpu_add_remove_lock
 280 */
 281static int cpu_hotplug_disabled;
 282
 283#ifdef CONFIG_HOTPLUG_CPU
 284
 285DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 286
 287void cpus_read_lock(void)
 288{
 289        percpu_down_read(&cpu_hotplug_lock);
 290}
 291EXPORT_SYMBOL_GPL(cpus_read_lock);
 292
 293void cpus_read_unlock(void)
 294{
 295        percpu_up_read(&cpu_hotplug_lock);
 296}
 297EXPORT_SYMBOL_GPL(cpus_read_unlock);
 298
 299void cpus_write_lock(void)
 300{
 301        percpu_down_write(&cpu_hotplug_lock);
 302}
 303
 304void cpus_write_unlock(void)
 305{
 306        percpu_up_write(&cpu_hotplug_lock);
 307}
 308
 309void lockdep_assert_cpus_held(void)
 310{
 311        percpu_rwsem_assert_held(&cpu_hotplug_lock);
 312}
 313
 314/*
 315 * Wait for currently running CPU hotplug operations to complete (if any) and
 316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 318 * hotplug path before performing hotplug operations. So acquiring that lock
 319 * guarantees mutual exclusion from any currently running hotplug operations.
 320 */
 321void cpu_hotplug_disable(void)
 322{
 323        cpu_maps_update_begin();
 324        cpu_hotplug_disabled++;
 325        cpu_maps_update_done();
 326}
 327EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 328
 329static void __cpu_hotplug_enable(void)
 330{
 331        if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 332                return;
 333        cpu_hotplug_disabled--;
 334}
 335
 336void cpu_hotplug_enable(void)
 337{
 338        cpu_maps_update_begin();
 339        __cpu_hotplug_enable();
 340        cpu_maps_update_done();
 341}
 342EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 343#endif  /* CONFIG_HOTPLUG_CPU */
 344
 345static inline enum cpuhp_state
 346cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 347{
 348        enum cpuhp_state prev_state = st->state;
 349
 350        st->rollback = false;
 351        st->last = NULL;
 352
 353        st->target = target;
 354        st->single = false;
 355        st->bringup = st->state < target;
 356
 357        return prev_state;
 358}
 359
 360static inline void
 361cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 362{
 363        st->rollback = true;
 364
 365        /*
 366         * If we have st->last we need to undo partial multi_instance of this
 367         * state first. Otherwise start undo at the previous state.
 368         */
 369        if (!st->last) {
 370                if (st->bringup)
 371                        st->state--;
 372                else
 373                        st->state++;
 374        }
 375
 376        st->target = prev_state;
 377        st->bringup = !st->bringup;
 378}
 379
 380/* Regular hotplug invocation of the AP hotplug thread */
 381static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 382{
 383        if (!st->single && st->state == st->target)
 384                return;
 385
 386        st->result = 0;
 387        /*
 388         * Make sure the above stores are visible before should_run becomes
 389         * true. Paired with the mb() above in cpuhp_thread_fun()
 390         */
 391        smp_mb();
 392        st->should_run = true;
 393        wake_up_process(st->thread);
 394        wait_for_ap_thread(st, st->bringup);
 395}
 396
 397static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 398{
 399        enum cpuhp_state prev_state;
 400        int ret;
 401
 402        prev_state = cpuhp_set_state(st, target);
 403        __cpuhp_kick_ap(st);
 404        if ((ret = st->result)) {
 405                cpuhp_reset_state(st, prev_state);
 406                __cpuhp_kick_ap(st);
 407        }
 408
 409        return ret;
 410}
 411
 412static int bringup_wait_for_ap(unsigned int cpu)
 413{
 414        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 415
 416        /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 417        wait_for_ap_thread(st, true);
 418        if (WARN_ON_ONCE((!cpu_online(cpu))))
 419                return -ECANCELED;
 420
 421        /* Unpark the stopper thread and the hotplug thread of the target cpu */
 422        stop_machine_unpark(cpu);
 423        kthread_unpark(st->thread);
 424
 425        if (st->target <= CPUHP_AP_ONLINE_IDLE)
 426                return 0;
 427
 428        return cpuhp_kick_ap(st, st->target);
 429}
 430
 431static int bringup_cpu(unsigned int cpu)
 432{
 433        struct task_struct *idle = idle_thread_get(cpu);
 434        int ret;
 435
 436        /*
 437         * Some architectures have to walk the irq descriptors to
 438         * setup the vector space for the cpu which comes online.
 439         * Prevent irq alloc/free across the bringup.
 440         */
 441        irq_lock_sparse();
 442
 443        /* Arch-specific enabling code. */
 444        ret = __cpu_up(cpu, idle);
 445        irq_unlock_sparse();
 446        if (ret)
 447                return ret;
 448        return bringup_wait_for_ap(cpu);
 449}
 450
 451/*
 452 * Hotplug state machine related functions
 453 */
 454
 455static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 456{
 457        for (st->state--; st->state > st->target; st->state--) {
 458                struct cpuhp_step *step = cpuhp_get_step(st->state);
 459
 460                if (!step->skip_onerr)
 461                        cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 462        }
 463}
 464
 465static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 466                              enum cpuhp_state target)
 467{
 468        enum cpuhp_state prev_state = st->state;
 469        int ret = 0;
 470
 471        while (st->state < target) {
 472                st->state++;
 473                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 474                if (ret) {
 475                        st->target = prev_state;
 476                        undo_cpu_up(cpu, st);
 477                        break;
 478                }
 479        }
 480        return ret;
 481}
 482
 483/*
 484 * The cpu hotplug threads manage the bringup and teardown of the cpus
 485 */
 486static void cpuhp_create(unsigned int cpu)
 487{
 488        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 489
 490        init_completion(&st->done_up);
 491        init_completion(&st->done_down);
 492}
 493
 494static int cpuhp_should_run(unsigned int cpu)
 495{
 496        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 497
 498        return st->should_run;
 499}
 500
 501/*
 502 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 503 * callbacks when a state gets [un]installed at runtime.
 504 *
 505 * Each invocation of this function by the smpboot thread does a single AP
 506 * state callback.
 507 *
 508 * It has 3 modes of operation:
 509 *  - single: runs st->cb_state
 510 *  - up:     runs ++st->state, while st->state < st->target
 511 *  - down:   runs st->state--, while st->state > st->target
 512 *
 513 * When complete or on error, should_run is cleared and the completion is fired.
 514 */
 515static void cpuhp_thread_fun(unsigned int cpu)
 516{
 517        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 518        bool bringup = st->bringup;
 519        enum cpuhp_state state;
 520
 521        /*
 522         * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 523         * that if we see ->should_run we also see the rest of the state.
 524         */
 525        smp_mb();
 526
 527        if (WARN_ON_ONCE(!st->should_run))
 528                return;
 529
 530        cpuhp_lock_acquire(bringup);
 531
 532        if (st->single) {
 533                state = st->cb_state;
 534                st->should_run = false;
 535        } else {
 536                if (bringup) {
 537                        st->state++;
 538                        state = st->state;
 539                        st->should_run = (st->state < st->target);
 540                        WARN_ON_ONCE(st->state > st->target);
 541                } else {
 542                        state = st->state;
 543                        st->state--;
 544                        st->should_run = (st->state > st->target);
 545                        WARN_ON_ONCE(st->state < st->target);
 546                }
 547        }
 548
 549        WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 550
 551        if (st->rollback) {
 552                struct cpuhp_step *step = cpuhp_get_step(state);
 553                if (step->skip_onerr)
 554                        goto next;
 555        }
 556
 557        if (cpuhp_is_atomic_state(state)) {
 558                local_irq_disable();
 559                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 560                local_irq_enable();
 561
 562                /*
 563                 * STARTING/DYING must not fail!
 564                 */
 565                WARN_ON_ONCE(st->result);
 566        } else {
 567                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 568        }
 569
 570        if (st->result) {
 571                /*
 572                 * If we fail on a rollback, we're up a creek without no
 573                 * paddle, no way forward, no way back. We loose, thanks for
 574                 * playing.
 575                 */
 576                WARN_ON_ONCE(st->rollback);
 577                st->should_run = false;
 578        }
 579
 580next:
 581        cpuhp_lock_release(bringup);
 582
 583        if (!st->should_run)
 584                complete_ap_thread(st, bringup);
 585}
 586
 587/* Invoke a single callback on a remote cpu */
 588static int
 589cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 590                         struct hlist_node *node)
 591{
 592        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 593        int ret;
 594
 595        if (!cpu_online(cpu))
 596                return 0;
 597
 598        cpuhp_lock_acquire(false);
 599        cpuhp_lock_release(false);
 600
 601        cpuhp_lock_acquire(true);
 602        cpuhp_lock_release(true);
 603
 604        /*
 605         * If we are up and running, use the hotplug thread. For early calls
 606         * we invoke the thread function directly.
 607         */
 608        if (!st->thread)
 609                return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 610
 611        st->rollback = false;
 612        st->last = NULL;
 613
 614        st->node = node;
 615        st->bringup = bringup;
 616        st->cb_state = state;
 617        st->single = true;
 618
 619        __cpuhp_kick_ap(st);
 620
 621        /*
 622         * If we failed and did a partial, do a rollback.
 623         */
 624        if ((ret = st->result) && st->last) {
 625                st->rollback = true;
 626                st->bringup = !bringup;
 627
 628                __cpuhp_kick_ap(st);
 629        }
 630
 631        /*
 632         * Clean up the leftovers so the next hotplug operation wont use stale
 633         * data.
 634         */
 635        st->node = st->last = NULL;
 636        return ret;
 637}
 638
 639static int cpuhp_kick_ap_work(unsigned int cpu)
 640{
 641        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 642        enum cpuhp_state prev_state = st->state;
 643        int ret;
 644
 645        cpuhp_lock_acquire(false);
 646        cpuhp_lock_release(false);
 647
 648        cpuhp_lock_acquire(true);
 649        cpuhp_lock_release(true);
 650
 651        trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 652        ret = cpuhp_kick_ap(st, st->target);
 653        trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 654
 655        return ret;
 656}
 657
 658static struct smp_hotplug_thread cpuhp_threads = {
 659        .store                  = &cpuhp_state.thread,
 660        .create                 = &cpuhp_create,
 661        .thread_should_run      = cpuhp_should_run,
 662        .thread_fn              = cpuhp_thread_fun,
 663        .thread_comm            = "cpuhp/%u",
 664        .selfparking            = true,
 665};
 666
 667void __init cpuhp_threads_init(void)
 668{
 669        BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 670        kthread_unpark(this_cpu_read(cpuhp_state.thread));
 671}
 672
 673#ifdef CONFIG_HOTPLUG_CPU
 674/**
 675 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 676 * @cpu: a CPU id
 677 *
 678 * This function walks all processes, finds a valid mm struct for each one and
 679 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 680 * trivial, there are various non-obvious corner cases, which this function
 681 * tries to solve in a safe manner.
 682 *
 683 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 684 * be called only for an already offlined CPU.
 685 */
 686void clear_tasks_mm_cpumask(int cpu)
 687{
 688        struct task_struct *p;
 689
 690        /*
 691         * This function is called after the cpu is taken down and marked
 692         * offline, so its not like new tasks will ever get this cpu set in
 693         * their mm mask. -- Peter Zijlstra
 694         * Thus, we may use rcu_read_lock() here, instead of grabbing
 695         * full-fledged tasklist_lock.
 696         */
 697        WARN_ON(cpu_online(cpu));
 698        rcu_read_lock();
 699        for_each_process(p) {
 700                struct task_struct *t;
 701
 702                /*
 703                 * Main thread might exit, but other threads may still have
 704                 * a valid mm. Find one.
 705                 */
 706                t = find_lock_task_mm(p);
 707                if (!t)
 708                        continue;
 709                cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 710                task_unlock(t);
 711        }
 712        rcu_read_unlock();
 713}
 714
 715/* Take this CPU down. */
 716static int take_cpu_down(void *_param)
 717{
 718        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 719        enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 720        int err, cpu = smp_processor_id();
 721        int ret;
 722
 723        /* Ensure this CPU doesn't handle any more interrupts. */
 724        err = __cpu_disable();
 725        if (err < 0)
 726                return err;
 727
 728        /*
 729         * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 730         * do this step again.
 731         */
 732        WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 733        st->state--;
 734        /* Invoke the former CPU_DYING callbacks */
 735        for (; st->state > target; st->state--) {
 736                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 737                /*
 738                 * DYING must not fail!
 739                 */
 740                WARN_ON_ONCE(ret);
 741        }
 742
 743        /* Give up timekeeping duties */
 744        tick_handover_do_timer();
 745        /* Park the stopper thread */
 746        stop_machine_park(cpu);
 747        return 0;
 748}
 749
 750static int takedown_cpu(unsigned int cpu)
 751{
 752        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 753        int err;
 754
 755        /* Park the smpboot threads */
 756        kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 757        smpboot_park_threads(cpu);
 758
 759        /*
 760         * Prevent irq alloc/free while the dying cpu reorganizes the
 761         * interrupt affinities.
 762         */
 763        irq_lock_sparse();
 764
 765        /*
 766         * So now all preempt/rcu users must observe !cpu_active().
 767         */
 768        err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 769        if (err) {
 770                /* CPU refused to die */
 771                irq_unlock_sparse();
 772                /* Unpark the hotplug thread so we can rollback there */
 773                kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 774                return err;
 775        }
 776        BUG_ON(cpu_online(cpu));
 777
 778        /*
 779         * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 780         * all runnable tasks from the CPU, there's only the idle task left now
 781         * that the migration thread is done doing the stop_machine thing.
 782         *
 783         * Wait for the stop thread to go away.
 784         */
 785        wait_for_ap_thread(st, false);
 786        BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 787
 788        /* Interrupts are moved away from the dying cpu, reenable alloc/free */
 789        irq_unlock_sparse();
 790
 791        hotplug_cpu__broadcast_tick_pull(cpu);
 792        /* This actually kills the CPU. */
 793        __cpu_die(cpu);
 794
 795        tick_cleanup_dead_cpu(cpu);
 796        rcutree_migrate_callbacks(cpu);
 797        return 0;
 798}
 799
 800static void cpuhp_complete_idle_dead(void *arg)
 801{
 802        struct cpuhp_cpu_state *st = arg;
 803
 804        complete_ap_thread(st, false);
 805}
 806
 807void cpuhp_report_idle_dead(void)
 808{
 809        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 810
 811        BUG_ON(st->state != CPUHP_AP_OFFLINE);
 812        rcu_report_dead(smp_processor_id());
 813        st->state = CPUHP_AP_IDLE_DEAD;
 814        /*
 815         * We cannot call complete after rcu_report_dead() so we delegate it
 816         * to an online cpu.
 817         */
 818        smp_call_function_single(cpumask_first(cpu_online_mask),
 819                                 cpuhp_complete_idle_dead, st, 0);
 820}
 821
 822static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 823{
 824        for (st->state++; st->state < st->target; st->state++) {
 825                struct cpuhp_step *step = cpuhp_get_step(st->state);
 826
 827                if (!step->skip_onerr)
 828                        cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 829        }
 830}
 831
 832static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 833                                enum cpuhp_state target)
 834{
 835        enum cpuhp_state prev_state = st->state;
 836        int ret = 0;
 837
 838        for (; st->state > target; st->state--) {
 839                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 840                if (ret) {
 841                        st->target = prev_state;
 842                        undo_cpu_down(cpu, st);
 843                        break;
 844                }
 845        }
 846        return ret;
 847}
 848
 849/* Requires cpu_add_remove_lock to be held */
 850static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 851                           enum cpuhp_state target)
 852{
 853        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 854        int prev_state, ret = 0;
 855
 856        if (num_online_cpus() == 1)
 857                return -EBUSY;
 858
 859        if (!cpu_present(cpu))
 860                return -EINVAL;
 861
 862        cpus_write_lock();
 863
 864        cpuhp_tasks_frozen = tasks_frozen;
 865
 866        prev_state = cpuhp_set_state(st, target);
 867        /*
 868         * If the current CPU state is in the range of the AP hotplug thread,
 869         * then we need to kick the thread.
 870         */
 871        if (st->state > CPUHP_TEARDOWN_CPU) {
 872                st->target = max((int)target, CPUHP_TEARDOWN_CPU);
 873                ret = cpuhp_kick_ap_work(cpu);
 874                /*
 875                 * The AP side has done the error rollback already. Just
 876                 * return the error code..
 877                 */
 878                if (ret)
 879                        goto out;
 880
 881                /*
 882                 * We might have stopped still in the range of the AP hotplug
 883                 * thread. Nothing to do anymore.
 884                 */
 885                if (st->state > CPUHP_TEARDOWN_CPU)
 886                        goto out;
 887
 888                st->target = target;
 889        }
 890        /*
 891         * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 892         * to do the further cleanups.
 893         */
 894        ret = cpuhp_down_callbacks(cpu, st, target);
 895        if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 896                cpuhp_reset_state(st, prev_state);
 897                __cpuhp_kick_ap(st);
 898        }
 899
 900out:
 901        cpus_write_unlock();
 902        /*
 903         * Do post unplug cleanup. This is still protected against
 904         * concurrent CPU hotplug via cpu_add_remove_lock.
 905         */
 906        lockup_detector_cleanup();
 907        return ret;
 908}
 909
 910static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 911{
 912        int err;
 913
 914        cpu_maps_update_begin();
 915
 916        if (cpu_hotplug_disabled) {
 917                err = -EBUSY;
 918                goto out;
 919        }
 920
 921        err = _cpu_down(cpu, 0, target);
 922
 923out:
 924        cpu_maps_update_done();
 925        return err;
 926}
 927
 928int cpu_down(unsigned int cpu)
 929{
 930        return do_cpu_down(cpu, CPUHP_OFFLINE);
 931}
 932EXPORT_SYMBOL(cpu_down);
 933
 934#else
 935#define takedown_cpu            NULL
 936#endif /*CONFIG_HOTPLUG_CPU*/
 937
 938/**
 939 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
 940 * @cpu: cpu that just started
 941 *
 942 * It must be called by the arch code on the new cpu, before the new cpu
 943 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 944 */
 945void notify_cpu_starting(unsigned int cpu)
 946{
 947        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 948        enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 949        int ret;
 950
 951        rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
 952        while (st->state < target) {
 953                st->state++;
 954                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 955                /*
 956                 * STARTING must not fail!
 957                 */
 958                WARN_ON_ONCE(ret);
 959        }
 960}
 961
 962/*
 963 * Called from the idle task. Wake up the controlling task which brings the
 964 * stopper and the hotplug thread of the upcoming CPU up and then delegates
 965 * the rest of the online bringup to the hotplug thread.
 966 */
 967void cpuhp_online_idle(enum cpuhp_state state)
 968{
 969        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 970
 971        /* Happens for the boot cpu */
 972        if (state != CPUHP_AP_ONLINE_IDLE)
 973                return;
 974
 975        st->state = CPUHP_AP_ONLINE_IDLE;
 976        complete_ap_thread(st, true);
 977}
 978
 979/* Requires cpu_add_remove_lock to be held */
 980static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 981{
 982        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 983        struct task_struct *idle;
 984        int ret = 0;
 985
 986        cpus_write_lock();
 987
 988        if (!cpu_present(cpu)) {
 989                ret = -EINVAL;
 990                goto out;
 991        }
 992
 993        /*
 994         * The caller of do_cpu_up might have raced with another
 995         * caller. Ignore it for now.
 996         */
 997        if (st->state >= target)
 998                goto out;
 999
1000        if (st->state == CPUHP_OFFLINE) {
1001                /* Let it fail before we try to bring the cpu up */
1002                idle = idle_thread_get(cpu);
1003                if (IS_ERR(idle)) {
1004                        ret = PTR_ERR(idle);
1005                        goto out;
1006                }
1007        }
1008
1009        cpuhp_tasks_frozen = tasks_frozen;
1010
1011        cpuhp_set_state(st, target);
1012        /*
1013         * If the current CPU state is in the range of the AP hotplug thread,
1014         * then we need to kick the thread once more.
1015         */
1016        if (st->state > CPUHP_BRINGUP_CPU) {
1017                ret = cpuhp_kick_ap_work(cpu);
1018                /*
1019                 * The AP side has done the error rollback already. Just
1020                 * return the error code..
1021                 */
1022                if (ret)
1023                        goto out;
1024        }
1025
1026        /*
1027         * Try to reach the target state. We max out on the BP at
1028         * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1029         * responsible for bringing it up to the target state.
1030         */
1031        target = min((int)target, CPUHP_BRINGUP_CPU);
1032        ret = cpuhp_up_callbacks(cpu, st, target);
1033out:
1034        cpus_write_unlock();
1035        return ret;
1036}
1037
1038static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1039{
1040        int err = 0;
1041
1042        if (!cpu_possible(cpu)) {
1043                pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1044                       cpu);
1045#if defined(CONFIG_IA64)
1046                pr_err("please check additional_cpus= boot parameter\n");
1047#endif
1048                return -EINVAL;
1049        }
1050
1051        err = try_online_node(cpu_to_node(cpu));
1052        if (err)
1053                return err;
1054
1055        cpu_maps_update_begin();
1056
1057        if (cpu_hotplug_disabled) {
1058                err = -EBUSY;
1059                goto out;
1060        }
1061
1062        err = _cpu_up(cpu, 0, target);
1063out:
1064        cpu_maps_update_done();
1065        return err;
1066}
1067
1068int cpu_up(unsigned int cpu)
1069{
1070        return do_cpu_up(cpu, CPUHP_ONLINE);
1071}
1072EXPORT_SYMBOL_GPL(cpu_up);
1073
1074#ifdef CONFIG_PM_SLEEP_SMP
1075static cpumask_var_t frozen_cpus;
1076
1077int freeze_secondary_cpus(int primary)
1078{
1079        int cpu, error = 0;
1080
1081        cpu_maps_update_begin();
1082        if (!cpu_online(primary))
1083                primary = cpumask_first(cpu_online_mask);
1084        /*
1085         * We take down all of the non-boot CPUs in one shot to avoid races
1086         * with the userspace trying to use the CPU hotplug at the same time
1087         */
1088        cpumask_clear(frozen_cpus);
1089
1090        pr_info("Disabling non-boot CPUs ...\n");
1091        for_each_online_cpu(cpu) {
1092                if (cpu == primary)
1093                        continue;
1094                trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1095                error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1096                trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1097                if (!error)
1098                        cpumask_set_cpu(cpu, frozen_cpus);
1099                else {
1100                        pr_err("Error taking CPU%d down: %d\n", cpu, error);
1101                        break;
1102                }
1103        }
1104
1105        if (!error)
1106                BUG_ON(num_online_cpus() > 1);
1107        else
1108                pr_err("Non-boot CPUs are not disabled\n");
1109
1110        /*
1111         * Make sure the CPUs won't be enabled by someone else. We need to do
1112         * this even in case of failure as all disable_nonboot_cpus() users are
1113         * supposed to do enable_nonboot_cpus() on the failure path.
1114         */
1115        cpu_hotplug_disabled++;
1116
1117        cpu_maps_update_done();
1118        return error;
1119}
1120
1121void __weak arch_enable_nonboot_cpus_begin(void)
1122{
1123}
1124
1125void __weak arch_enable_nonboot_cpus_end(void)
1126{
1127}
1128
1129void enable_nonboot_cpus(void)
1130{
1131        int cpu, error;
1132
1133        /* Allow everyone to use the CPU hotplug again */
1134        cpu_maps_update_begin();
1135        __cpu_hotplug_enable();
1136        if (cpumask_empty(frozen_cpus))
1137                goto out;
1138
1139        pr_info("Enabling non-boot CPUs ...\n");
1140
1141        arch_enable_nonboot_cpus_begin();
1142
1143        for_each_cpu(cpu, frozen_cpus) {
1144                trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1145                error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1146                trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1147                if (!error) {
1148                        pr_info("CPU%d is up\n", cpu);
1149                        continue;
1150                }
1151                pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1152        }
1153
1154        arch_enable_nonboot_cpus_end();
1155
1156        cpumask_clear(frozen_cpus);
1157out:
1158        cpu_maps_update_done();
1159}
1160
1161static int __init alloc_frozen_cpus(void)
1162{
1163        if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1164                return -ENOMEM;
1165        return 0;
1166}
1167core_initcall(alloc_frozen_cpus);
1168
1169/*
1170 * When callbacks for CPU hotplug notifications are being executed, we must
1171 * ensure that the state of the system with respect to the tasks being frozen
1172 * or not, as reported by the notification, remains unchanged *throughout the
1173 * duration* of the execution of the callbacks.
1174 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1175 *
1176 * This synchronization is implemented by mutually excluding regular CPU
1177 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1178 * Hibernate notifications.
1179 */
1180static int
1181cpu_hotplug_pm_callback(struct notifier_block *nb,
1182                        unsigned long action, void *ptr)
1183{
1184        switch (action) {
1185
1186        case PM_SUSPEND_PREPARE:
1187        case PM_HIBERNATION_PREPARE:
1188                cpu_hotplug_disable();
1189                break;
1190
1191        case PM_POST_SUSPEND:
1192        case PM_POST_HIBERNATION:
1193                cpu_hotplug_enable();
1194                break;
1195
1196        default:
1197                return NOTIFY_DONE;
1198        }
1199
1200        return NOTIFY_OK;
1201}
1202
1203
1204static int __init cpu_hotplug_pm_sync_init(void)
1205{
1206        /*
1207         * cpu_hotplug_pm_callback has higher priority than x86
1208         * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1209         * to disable cpu hotplug to avoid cpu hotplug race.
1210         */
1211        pm_notifier(cpu_hotplug_pm_callback, 0);
1212        return 0;
1213}
1214core_initcall(cpu_hotplug_pm_sync_init);
1215
1216#endif /* CONFIG_PM_SLEEP_SMP */
1217
1218int __boot_cpu_id;
1219
1220#endif /* CONFIG_SMP */
1221
1222/* Boot processor state steps */
1223static struct cpuhp_step cpuhp_hp_states[] = {
1224        [CPUHP_OFFLINE] = {
1225                .name                   = "offline",
1226                .startup.single         = NULL,
1227                .teardown.single        = NULL,
1228        },
1229#ifdef CONFIG_SMP
1230        [CPUHP_CREATE_THREADS]= {
1231                .name                   = "threads:prepare",
1232                .startup.single         = smpboot_create_threads,
1233                .teardown.single        = NULL,
1234                .cant_stop              = true,
1235        },
1236        [CPUHP_PERF_PREPARE] = {
1237                .name                   = "perf:prepare",
1238                .startup.single         = perf_event_init_cpu,
1239                .teardown.single        = perf_event_exit_cpu,
1240        },
1241        [CPUHP_WORKQUEUE_PREP] = {
1242                .name                   = "workqueue:prepare",
1243                .startup.single         = workqueue_prepare_cpu,
1244                .teardown.single        = NULL,
1245        },
1246        [CPUHP_HRTIMERS_PREPARE] = {
1247                .name                   = "hrtimers:prepare",
1248                .startup.single         = hrtimers_prepare_cpu,
1249                .teardown.single        = hrtimers_dead_cpu,
1250        },
1251        [CPUHP_SMPCFD_PREPARE] = {
1252                .name                   = "smpcfd:prepare",
1253                .startup.single         = smpcfd_prepare_cpu,
1254                .teardown.single        = smpcfd_dead_cpu,
1255        },
1256        [CPUHP_RELAY_PREPARE] = {
1257                .name                   = "relay:prepare",
1258                .startup.single         = relay_prepare_cpu,
1259                .teardown.single        = NULL,
1260        },
1261        [CPUHP_SLAB_PREPARE] = {
1262                .name                   = "slab:prepare",
1263                .startup.single         = slab_prepare_cpu,
1264                .teardown.single        = slab_dead_cpu,
1265        },
1266        [CPUHP_RCUTREE_PREP] = {
1267                .name                   = "RCU/tree:prepare",
1268                .startup.single         = rcutree_prepare_cpu,
1269                .teardown.single        = rcutree_dead_cpu,
1270        },
1271        /*
1272         * On the tear-down path, timers_dead_cpu() must be invoked
1273         * before blk_mq_queue_reinit_notify() from notify_dead(),
1274         * otherwise a RCU stall occurs.
1275         */
1276        [CPUHP_TIMERS_PREPARE] = {
1277                .name                   = "timers:dead",
1278                .startup.single         = timers_prepare_cpu,
1279                .teardown.single        = timers_dead_cpu,
1280        },
1281        /* Kicks the plugged cpu into life */
1282        [CPUHP_BRINGUP_CPU] = {
1283                .name                   = "cpu:bringup",
1284                .startup.single         = bringup_cpu,
1285                .teardown.single        = NULL,
1286                .cant_stop              = true,
1287        },
1288        /* Final state before CPU kills itself */
1289        [CPUHP_AP_IDLE_DEAD] = {
1290                .name                   = "idle:dead",
1291        },
1292        /*
1293         * Last state before CPU enters the idle loop to die. Transient state
1294         * for synchronization.
1295         */
1296        [CPUHP_AP_OFFLINE] = {
1297                .name                   = "ap:offline",
1298                .cant_stop              = true,
1299        },
1300        /* First state is scheduler control. Interrupts are disabled */
1301        [CPUHP_AP_SCHED_STARTING] = {
1302                .name                   = "sched:starting",
1303                .startup.single         = sched_cpu_starting,
1304                .teardown.single        = sched_cpu_dying,
1305        },
1306        [CPUHP_AP_RCUTREE_DYING] = {
1307                .name                   = "RCU/tree:dying",
1308                .startup.single         = NULL,
1309                .teardown.single        = rcutree_dying_cpu,
1310        },
1311        [CPUHP_AP_SMPCFD_DYING] = {
1312                .name                   = "smpcfd:dying",
1313                .startup.single         = NULL,
1314                .teardown.single        = smpcfd_dying_cpu,
1315        },
1316        /* Entry state on starting. Interrupts enabled from here on. Transient
1317         * state for synchronsization */
1318        [CPUHP_AP_ONLINE] = {
1319                .name                   = "ap:online",
1320        },
1321        /*
1322         * Handled on controll processor until the plugged processor manages
1323         * this itself.
1324         */
1325        [CPUHP_TEARDOWN_CPU] = {
1326                .name                   = "cpu:teardown",
1327                .startup.single         = NULL,
1328                .teardown.single        = takedown_cpu,
1329                .cant_stop              = true,
1330        },
1331        /* Handle smpboot threads park/unpark */
1332        [CPUHP_AP_SMPBOOT_THREADS] = {
1333                .name                   = "smpboot/threads:online",
1334                .startup.single         = smpboot_unpark_threads,
1335                .teardown.single        = NULL,
1336        },
1337        [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1338                .name                   = "irq/affinity:online",
1339                .startup.single         = irq_affinity_online_cpu,
1340                .teardown.single        = NULL,
1341        },
1342        [CPUHP_AP_PERF_ONLINE] = {
1343                .name                   = "perf:online",
1344                .startup.single         = perf_event_init_cpu,
1345                .teardown.single        = perf_event_exit_cpu,
1346        },
1347        [CPUHP_AP_WORKQUEUE_ONLINE] = {
1348                .name                   = "workqueue:online",
1349                .startup.single         = workqueue_online_cpu,
1350                .teardown.single        = workqueue_offline_cpu,
1351        },
1352        [CPUHP_AP_RCUTREE_ONLINE] = {
1353                .name                   = "RCU/tree:online",
1354                .startup.single         = rcutree_online_cpu,
1355                .teardown.single        = rcutree_offline_cpu,
1356        },
1357#endif
1358        /*
1359         * The dynamically registered state space is here
1360         */
1361
1362#ifdef CONFIG_SMP
1363        /* Last state is scheduler control setting the cpu active */
1364        [CPUHP_AP_ACTIVE] = {
1365                .name                   = "sched:active",
1366                .startup.single         = sched_cpu_activate,
1367                .teardown.single        = sched_cpu_deactivate,
1368        },
1369#endif
1370
1371        /* CPU is fully up and running. */
1372        [CPUHP_ONLINE] = {
1373                .name                   = "online",
1374                .startup.single         = NULL,
1375                .teardown.single        = NULL,
1376        },
1377};
1378
1379/* Sanity check for callbacks */
1380static int cpuhp_cb_check(enum cpuhp_state state)
1381{
1382        if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1383                return -EINVAL;
1384        return 0;
1385}
1386
1387/*
1388 * Returns a free for dynamic slot assignment of the Online state. The states
1389 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1390 * by having no name assigned.
1391 */
1392static int cpuhp_reserve_state(enum cpuhp_state state)
1393{
1394        enum cpuhp_state i, end;
1395        struct cpuhp_step *step;
1396
1397        switch (state) {
1398        case CPUHP_AP_ONLINE_DYN:
1399                step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1400                end = CPUHP_AP_ONLINE_DYN_END;
1401                break;
1402        case CPUHP_BP_PREPARE_DYN:
1403                step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1404                end = CPUHP_BP_PREPARE_DYN_END;
1405                break;
1406        default:
1407                return -EINVAL;
1408        }
1409
1410        for (i = state; i <= end; i++, step++) {
1411                if (!step->name)
1412                        return i;
1413        }
1414        WARN(1, "No more dynamic states available for CPU hotplug\n");
1415        return -ENOSPC;
1416}
1417
1418static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1419                                 int (*startup)(unsigned int cpu),
1420                                 int (*teardown)(unsigned int cpu),
1421                                 bool multi_instance)
1422{
1423        /* (Un)Install the callbacks for further cpu hotplug operations */
1424        struct cpuhp_step *sp;
1425        int ret = 0;
1426
1427        /*
1428         * If name is NULL, then the state gets removed.
1429         *
1430         * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1431         * the first allocation from these dynamic ranges, so the removal
1432         * would trigger a new allocation and clear the wrong (already
1433         * empty) state, leaving the callbacks of the to be cleared state
1434         * dangling, which causes wreckage on the next hotplug operation.
1435         */
1436        if (name && (state == CPUHP_AP_ONLINE_DYN ||
1437                     state == CPUHP_BP_PREPARE_DYN)) {
1438                ret = cpuhp_reserve_state(state);
1439                if (ret < 0)
1440                        return ret;
1441                state = ret;
1442        }
1443        sp = cpuhp_get_step(state);
1444        if (name && sp->name)
1445                return -EBUSY;
1446
1447        sp->startup.single = startup;
1448        sp->teardown.single = teardown;
1449        sp->name = name;
1450        sp->multi_instance = multi_instance;
1451        INIT_HLIST_HEAD(&sp->list);
1452        return ret;
1453}
1454
1455static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1456{
1457        return cpuhp_get_step(state)->teardown.single;
1458}
1459
1460/*
1461 * Call the startup/teardown function for a step either on the AP or
1462 * on the current CPU.
1463 */
1464static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1465                            struct hlist_node *node)
1466{
1467        struct cpuhp_step *sp = cpuhp_get_step(state);
1468        int ret;
1469
1470        /*
1471         * If there's nothing to do, we done.
1472         * Relies on the union for multi_instance.
1473         */
1474        if ((bringup && !sp->startup.single) ||
1475            (!bringup && !sp->teardown.single))
1476                return 0;
1477        /*
1478         * The non AP bound callbacks can fail on bringup. On teardown
1479         * e.g. module removal we crash for now.
1480         */
1481#ifdef CONFIG_SMP
1482        if (cpuhp_is_ap_state(state))
1483                ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1484        else
1485                ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1486#else
1487        ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1488#endif
1489        BUG_ON(ret && !bringup);
1490        return ret;
1491}
1492
1493/*
1494 * Called from __cpuhp_setup_state on a recoverable failure.
1495 *
1496 * Note: The teardown callbacks for rollback are not allowed to fail!
1497 */
1498static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1499                                   struct hlist_node *node)
1500{
1501        int cpu;
1502
1503        /* Roll back the already executed steps on the other cpus */
1504        for_each_present_cpu(cpu) {
1505                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1506                int cpustate = st->state;
1507
1508                if (cpu >= failedcpu)
1509                        break;
1510
1511                /* Did we invoke the startup call on that cpu ? */
1512                if (cpustate >= state)
1513                        cpuhp_issue_call(cpu, state, false, node);
1514        }
1515}
1516
1517int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1518                                          struct hlist_node *node,
1519                                          bool invoke)
1520{
1521        struct cpuhp_step *sp;
1522        int cpu;
1523        int ret;
1524
1525        lockdep_assert_cpus_held();
1526
1527        sp = cpuhp_get_step(state);
1528        if (sp->multi_instance == false)
1529                return -EINVAL;
1530
1531        mutex_lock(&cpuhp_state_mutex);
1532
1533        if (!invoke || !sp->startup.multi)
1534                goto add_node;
1535
1536        /*
1537         * Try to call the startup callback for each present cpu
1538         * depending on the hotplug state of the cpu.
1539         */
1540        for_each_present_cpu(cpu) {
1541                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1542                int cpustate = st->state;
1543
1544                if (cpustate < state)
1545                        continue;
1546
1547                ret = cpuhp_issue_call(cpu, state, true, node);
1548                if (ret) {
1549                        if (sp->teardown.multi)
1550                                cpuhp_rollback_install(cpu, state, node);
1551                        goto unlock;
1552                }
1553        }
1554add_node:
1555        ret = 0;
1556        hlist_add_head(node, &sp->list);
1557unlock:
1558        mutex_unlock(&cpuhp_state_mutex);
1559        return ret;
1560}
1561
1562int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1563                               bool invoke)
1564{
1565        int ret;
1566
1567        cpus_read_lock();
1568        ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1569        cpus_read_unlock();
1570        return ret;
1571}
1572EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1573
1574/**
1575 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1576 * @state:              The state to setup
1577 * @invoke:             If true, the startup function is invoked for cpus where
1578 *                      cpu state >= @state
1579 * @startup:            startup callback function
1580 * @teardown:           teardown callback function
1581 * @multi_instance:     State is set up for multiple instances which get
1582 *                      added afterwards.
1583 *
1584 * The caller needs to hold cpus read locked while calling this function.
1585 * Returns:
1586 *   On success:
1587 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1588 *      0 for all other states
1589 *   On failure: proper (negative) error code
1590 */
1591int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1592                                   const char *name, bool invoke,
1593                                   int (*startup)(unsigned int cpu),
1594                                   int (*teardown)(unsigned int cpu),
1595                                   bool multi_instance)
1596{
1597        int cpu, ret = 0;
1598        bool dynstate;
1599
1600        lockdep_assert_cpus_held();
1601
1602        if (cpuhp_cb_check(state) || !name)
1603                return -EINVAL;
1604
1605        mutex_lock(&cpuhp_state_mutex);
1606
1607        ret = cpuhp_store_callbacks(state, name, startup, teardown,
1608                                    multi_instance);
1609
1610        dynstate = state == CPUHP_AP_ONLINE_DYN;
1611        if (ret > 0 && dynstate) {
1612                state = ret;
1613                ret = 0;
1614        }
1615
1616        if (ret || !invoke || !startup)
1617                goto out;
1618
1619        /*
1620         * Try to call the startup callback for each present cpu
1621         * depending on the hotplug state of the cpu.
1622         */
1623        for_each_present_cpu(cpu) {
1624                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625                int cpustate = st->state;
1626
1627                if (cpustate < state)
1628                        continue;
1629
1630                ret = cpuhp_issue_call(cpu, state, true, NULL);
1631                if (ret) {
1632                        if (teardown)
1633                                cpuhp_rollback_install(cpu, state, NULL);
1634                        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635                        goto out;
1636                }
1637        }
1638out:
1639        mutex_unlock(&cpuhp_state_mutex);
1640        /*
1641         * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1642         * dynamically allocated state in case of success.
1643         */
1644        if (!ret && dynstate)
1645                return state;
1646        return ret;
1647}
1648EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1649
1650int __cpuhp_setup_state(enum cpuhp_state state,
1651                        const char *name, bool invoke,
1652                        int (*startup)(unsigned int cpu),
1653                        int (*teardown)(unsigned int cpu),
1654                        bool multi_instance)
1655{
1656        int ret;
1657
1658        cpus_read_lock();
1659        ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1660                                             teardown, multi_instance);
1661        cpus_read_unlock();
1662        return ret;
1663}
1664EXPORT_SYMBOL(__cpuhp_setup_state);
1665
1666int __cpuhp_state_remove_instance(enum cpuhp_state state,
1667                                  struct hlist_node *node, bool invoke)
1668{
1669        struct cpuhp_step *sp = cpuhp_get_step(state);
1670        int cpu;
1671
1672        BUG_ON(cpuhp_cb_check(state));
1673
1674        if (!sp->multi_instance)
1675                return -EINVAL;
1676
1677        cpus_read_lock();
1678        mutex_lock(&cpuhp_state_mutex);
1679
1680        if (!invoke || !cpuhp_get_teardown_cb(state))
1681                goto remove;
1682        /*
1683         * Call the teardown callback for each present cpu depending
1684         * on the hotplug state of the cpu. This function is not
1685         * allowed to fail currently!
1686         */
1687        for_each_present_cpu(cpu) {
1688                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1689                int cpustate = st->state;
1690
1691                if (cpustate >= state)
1692                        cpuhp_issue_call(cpu, state, false, node);
1693        }
1694
1695remove:
1696        hlist_del(node);
1697        mutex_unlock(&cpuhp_state_mutex);
1698        cpus_read_unlock();
1699
1700        return 0;
1701}
1702EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1703
1704/**
1705 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1706 * @state:      The state to remove
1707 * @invoke:     If true, the teardown function is invoked for cpus where
1708 *              cpu state >= @state
1709 *
1710 * The caller needs to hold cpus read locked while calling this function.
1711 * The teardown callback is currently not allowed to fail. Think
1712 * about module removal!
1713 */
1714void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1715{
1716        struct cpuhp_step *sp = cpuhp_get_step(state);
1717        int cpu;
1718
1719        BUG_ON(cpuhp_cb_check(state));
1720
1721        lockdep_assert_cpus_held();
1722
1723        mutex_lock(&cpuhp_state_mutex);
1724        if (sp->multi_instance) {
1725                WARN(!hlist_empty(&sp->list),
1726                     "Error: Removing state %d which has instances left.\n",
1727                     state);
1728                goto remove;
1729        }
1730
1731        if (!invoke || !cpuhp_get_teardown_cb(state))
1732                goto remove;
1733
1734        /*
1735         * Call the teardown callback for each present cpu depending
1736         * on the hotplug state of the cpu. This function is not
1737         * allowed to fail currently!
1738         */
1739        for_each_present_cpu(cpu) {
1740                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1741                int cpustate = st->state;
1742
1743                if (cpustate >= state)
1744                        cpuhp_issue_call(cpu, state, false, NULL);
1745        }
1746remove:
1747        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1748        mutex_unlock(&cpuhp_state_mutex);
1749}
1750EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1751
1752void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1753{
1754        cpus_read_lock();
1755        __cpuhp_remove_state_cpuslocked(state, invoke);
1756        cpus_read_unlock();
1757}
1758EXPORT_SYMBOL(__cpuhp_remove_state);
1759
1760#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1761static ssize_t show_cpuhp_state(struct device *dev,
1762                                struct device_attribute *attr, char *buf)
1763{
1764        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1765
1766        return sprintf(buf, "%d\n", st->state);
1767}
1768static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1769
1770static ssize_t write_cpuhp_target(struct device *dev,
1771                                  struct device_attribute *attr,
1772                                  const char *buf, size_t count)
1773{
1774        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1775        struct cpuhp_step *sp;
1776        int target, ret;
1777
1778        ret = kstrtoint(buf, 10, &target);
1779        if (ret)
1780                return ret;
1781
1782#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1783        if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1784                return -EINVAL;
1785#else
1786        if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1787                return -EINVAL;
1788#endif
1789
1790        ret = lock_device_hotplug_sysfs();
1791        if (ret)
1792                return ret;
1793
1794        mutex_lock(&cpuhp_state_mutex);
1795        sp = cpuhp_get_step(target);
1796        ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1797        mutex_unlock(&cpuhp_state_mutex);
1798        if (ret)
1799                goto out;
1800
1801        if (st->state < target)
1802                ret = do_cpu_up(dev->id, target);
1803        else
1804                ret = do_cpu_down(dev->id, target);
1805out:
1806        unlock_device_hotplug();
1807        return ret ? ret : count;
1808}
1809
1810static ssize_t show_cpuhp_target(struct device *dev,
1811                                 struct device_attribute *attr, char *buf)
1812{
1813        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1814
1815        return sprintf(buf, "%d\n", st->target);
1816}
1817static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1818
1819
1820static ssize_t write_cpuhp_fail(struct device *dev,
1821                                struct device_attribute *attr,
1822                                const char *buf, size_t count)
1823{
1824        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1825        struct cpuhp_step *sp;
1826        int fail, ret;
1827
1828        ret = kstrtoint(buf, 10, &fail);
1829        if (ret)
1830                return ret;
1831
1832        /*
1833         * Cannot fail STARTING/DYING callbacks.
1834         */
1835        if (cpuhp_is_atomic_state(fail))
1836                return -EINVAL;
1837
1838        /*
1839         * Cannot fail anything that doesn't have callbacks.
1840         */
1841        mutex_lock(&cpuhp_state_mutex);
1842        sp = cpuhp_get_step(fail);
1843        if (!sp->startup.single && !sp->teardown.single)
1844                ret = -EINVAL;
1845        mutex_unlock(&cpuhp_state_mutex);
1846        if (ret)
1847                return ret;
1848
1849        st->fail = fail;
1850
1851        return count;
1852}
1853
1854static ssize_t show_cpuhp_fail(struct device *dev,
1855                               struct device_attribute *attr, char *buf)
1856{
1857        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1858
1859        return sprintf(buf, "%d\n", st->fail);
1860}
1861
1862static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1863
1864static struct attribute *cpuhp_cpu_attrs[] = {
1865        &dev_attr_state.attr,
1866        &dev_attr_target.attr,
1867        &dev_attr_fail.attr,
1868        NULL
1869};
1870
1871static const struct attribute_group cpuhp_cpu_attr_group = {
1872        .attrs = cpuhp_cpu_attrs,
1873        .name = "hotplug",
1874        NULL
1875};
1876
1877static ssize_t show_cpuhp_states(struct device *dev,
1878                                 struct device_attribute *attr, char *buf)
1879{
1880        ssize_t cur, res = 0;
1881        int i;
1882
1883        mutex_lock(&cpuhp_state_mutex);
1884        for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1885                struct cpuhp_step *sp = cpuhp_get_step(i);
1886
1887                if (sp->name) {
1888                        cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1889                        buf += cur;
1890                        res += cur;
1891                }
1892        }
1893        mutex_unlock(&cpuhp_state_mutex);
1894        return res;
1895}
1896static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1897
1898static struct attribute *cpuhp_cpu_root_attrs[] = {
1899        &dev_attr_states.attr,
1900        NULL
1901};
1902
1903static const struct attribute_group cpuhp_cpu_root_attr_group = {
1904        .attrs = cpuhp_cpu_root_attrs,
1905        .name = "hotplug",
1906        NULL
1907};
1908
1909static int __init cpuhp_sysfs_init(void)
1910{
1911        int cpu, ret;
1912
1913        ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1914                                 &cpuhp_cpu_root_attr_group);
1915        if (ret)
1916                return ret;
1917
1918        for_each_possible_cpu(cpu) {
1919                struct device *dev = get_cpu_device(cpu);
1920
1921                if (!dev)
1922                        continue;
1923                ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1924                if (ret)
1925                        return ret;
1926        }
1927        return 0;
1928}
1929device_initcall(cpuhp_sysfs_init);
1930#endif
1931
1932/*
1933 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1934 * represents all NR_CPUS bits binary values of 1<<nr.
1935 *
1936 * It is used by cpumask_of() to get a constant address to a CPU
1937 * mask value that has a single bit set only.
1938 */
1939
1940/* cpu_bit_bitmap[0] is empty - so we can back into it */
1941#define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1942#define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1943#define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1944#define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1945
1946const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1947
1948        MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1949        MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1950#if BITS_PER_LONG > 32
1951        MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1952        MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1953#endif
1954};
1955EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1956
1957const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1958EXPORT_SYMBOL(cpu_all_bits);
1959
1960#ifdef CONFIG_INIT_ALL_POSSIBLE
1961struct cpumask __cpu_possible_mask __read_mostly
1962        = {CPU_BITS_ALL};
1963#else
1964struct cpumask __cpu_possible_mask __read_mostly;
1965#endif
1966EXPORT_SYMBOL(__cpu_possible_mask);
1967
1968struct cpumask __cpu_online_mask __read_mostly;
1969EXPORT_SYMBOL(__cpu_online_mask);
1970
1971struct cpumask __cpu_present_mask __read_mostly;
1972EXPORT_SYMBOL(__cpu_present_mask);
1973
1974struct cpumask __cpu_active_mask __read_mostly;
1975EXPORT_SYMBOL(__cpu_active_mask);
1976
1977void init_cpu_present(const struct cpumask *src)
1978{
1979        cpumask_copy(&__cpu_present_mask, src);
1980}
1981
1982void init_cpu_possible(const struct cpumask *src)
1983{
1984        cpumask_copy(&__cpu_possible_mask, src);
1985}
1986
1987void init_cpu_online(const struct cpumask *src)
1988{
1989        cpumask_copy(&__cpu_online_mask, src);
1990}
1991
1992/*
1993 * Activate the first processor.
1994 */
1995void __init boot_cpu_init(void)
1996{
1997        int cpu = smp_processor_id();
1998
1999        /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2000        set_cpu_online(cpu, true);
2001        set_cpu_active(cpu, true);
2002        set_cpu_present(cpu, true);
2003        set_cpu_possible(cpu, true);
2004
2005#ifdef CONFIG_SMP
2006        __boot_cpu_id = cpu;
2007#endif
2008}
2009
2010/*
2011 * Must be called _AFTER_ setting up the per_cpu areas
2012 */
2013void __init boot_cpu_state_init(void)
2014{
2015        per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2016}
2017