linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/trace_events.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47#include <linux/namei.h>
  48#include <linux/parser.h>
  49#include <linux/sched/clock.h>
  50#include <linux/sched/mm.h>
  51#include <linux/proc_ns.h>
  52#include <linux/mount.h>
  53
  54#include "internal.h"
  55
  56#include <asm/irq_regs.h>
  57
  58typedef int (*remote_function_f)(void *);
  59
  60struct remote_function_call {
  61        struct task_struct      *p;
  62        remote_function_f       func;
  63        void                    *info;
  64        int                     ret;
  65};
  66
  67static void remote_function(void *data)
  68{
  69        struct remote_function_call *tfc = data;
  70        struct task_struct *p = tfc->p;
  71
  72        if (p) {
  73                /* -EAGAIN */
  74                if (task_cpu(p) != smp_processor_id())
  75                        return;
  76
  77                /*
  78                 * Now that we're on right CPU with IRQs disabled, we can test
  79                 * if we hit the right task without races.
  80                 */
  81
  82                tfc->ret = -ESRCH; /* No such (running) process */
  83                if (p != current)
  84                        return;
  85        }
  86
  87        tfc->ret = tfc->func(tfc->info);
  88}
  89
  90/**
  91 * task_function_call - call a function on the cpu on which a task runs
  92 * @p:          the task to evaluate
  93 * @func:       the function to be called
  94 * @info:       the function call argument
  95 *
  96 * Calls the function @func when the task is currently running. This might
  97 * be on the current CPU, which just calls the function directly
  98 *
  99 * returns: @func return value, or
 100 *          -ESRCH  - when the process isn't running
 101 *          -EAGAIN - when the process moved away
 102 */
 103static int
 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
 105{
 106        struct remote_function_call data = {
 107                .p      = p,
 108                .func   = func,
 109                .info   = info,
 110                .ret    = -EAGAIN,
 111        };
 112        int ret;
 113
 114        do {
 115                ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 116                if (!ret)
 117                        ret = data.ret;
 118        } while (ret == -EAGAIN);
 119
 120        return ret;
 121}
 122
 123/**
 124 * cpu_function_call - call a function on the cpu
 125 * @func:       the function to be called
 126 * @info:       the function call argument
 127 *
 128 * Calls the function @func on the remote cpu.
 129 *
 130 * returns: @func return value or -ENXIO when the cpu is offline
 131 */
 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
 133{
 134        struct remote_function_call data = {
 135                .p      = NULL,
 136                .func   = func,
 137                .info   = info,
 138                .ret    = -ENXIO, /* No such CPU */
 139        };
 140
 141        smp_call_function_single(cpu, remote_function, &data, 1);
 142
 143        return data.ret;
 144}
 145
 146static inline struct perf_cpu_context *
 147__get_cpu_context(struct perf_event_context *ctx)
 148{
 149        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 150}
 151
 152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 153                          struct perf_event_context *ctx)
 154{
 155        raw_spin_lock(&cpuctx->ctx.lock);
 156        if (ctx)
 157                raw_spin_lock(&ctx->lock);
 158}
 159
 160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 161                            struct perf_event_context *ctx)
 162{
 163        if (ctx)
 164                raw_spin_unlock(&ctx->lock);
 165        raw_spin_unlock(&cpuctx->ctx.lock);
 166}
 167
 168#define TASK_TOMBSTONE ((void *)-1L)
 169
 170static bool is_kernel_event(struct perf_event *event)
 171{
 172        return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 173}
 174
 175/*
 176 * On task ctx scheduling...
 177 *
 178 * When !ctx->nr_events a task context will not be scheduled. This means
 179 * we can disable the scheduler hooks (for performance) without leaving
 180 * pending task ctx state.
 181 *
 182 * This however results in two special cases:
 183 *
 184 *  - removing the last event from a task ctx; this is relatively straight
 185 *    forward and is done in __perf_remove_from_context.
 186 *
 187 *  - adding the first event to a task ctx; this is tricky because we cannot
 188 *    rely on ctx->is_active and therefore cannot use event_function_call().
 189 *    See perf_install_in_context().
 190 *
 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 192 */
 193
 194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 195                        struct perf_event_context *, void *);
 196
 197struct event_function_struct {
 198        struct perf_event *event;
 199        event_f func;
 200        void *data;
 201};
 202
 203static int event_function(void *info)
 204{
 205        struct event_function_struct *efs = info;
 206        struct perf_event *event = efs->event;
 207        struct perf_event_context *ctx = event->ctx;
 208        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 209        struct perf_event_context *task_ctx = cpuctx->task_ctx;
 210        int ret = 0;
 211
 212        lockdep_assert_irqs_disabled();
 213
 214        perf_ctx_lock(cpuctx, task_ctx);
 215        /*
 216         * Since we do the IPI call without holding ctx->lock things can have
 217         * changed, double check we hit the task we set out to hit.
 218         */
 219        if (ctx->task) {
 220                if (ctx->task != current) {
 221                        ret = -ESRCH;
 222                        goto unlock;
 223                }
 224
 225                /*
 226                 * We only use event_function_call() on established contexts,
 227                 * and event_function() is only ever called when active (or
 228                 * rather, we'll have bailed in task_function_call() or the
 229                 * above ctx->task != current test), therefore we must have
 230                 * ctx->is_active here.
 231                 */
 232                WARN_ON_ONCE(!ctx->is_active);
 233                /*
 234                 * And since we have ctx->is_active, cpuctx->task_ctx must
 235                 * match.
 236                 */
 237                WARN_ON_ONCE(task_ctx != ctx);
 238        } else {
 239                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 240        }
 241
 242        efs->func(event, cpuctx, ctx, efs->data);
 243unlock:
 244        perf_ctx_unlock(cpuctx, task_ctx);
 245
 246        return ret;
 247}
 248
 249static void event_function_call(struct perf_event *event, event_f func, void *data)
 250{
 251        struct perf_event_context *ctx = event->ctx;
 252        struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 253        struct event_function_struct efs = {
 254                .event = event,
 255                .func = func,
 256                .data = data,
 257        };
 258
 259        if (!event->parent) {
 260                /*
 261                 * If this is a !child event, we must hold ctx::mutex to
 262                 * stabilize the the event->ctx relation. See
 263                 * perf_event_ctx_lock().
 264                 */
 265                lockdep_assert_held(&ctx->mutex);
 266        }
 267
 268        if (!task) {
 269                cpu_function_call(event->cpu, event_function, &efs);
 270                return;
 271        }
 272
 273        if (task == TASK_TOMBSTONE)
 274                return;
 275
 276again:
 277        if (!task_function_call(task, event_function, &efs))
 278                return;
 279
 280        raw_spin_lock_irq(&ctx->lock);
 281        /*
 282         * Reload the task pointer, it might have been changed by
 283         * a concurrent perf_event_context_sched_out().
 284         */
 285        task = ctx->task;
 286        if (task == TASK_TOMBSTONE) {
 287                raw_spin_unlock_irq(&ctx->lock);
 288                return;
 289        }
 290        if (ctx->is_active) {
 291                raw_spin_unlock_irq(&ctx->lock);
 292                goto again;
 293        }
 294        func(event, NULL, ctx, data);
 295        raw_spin_unlock_irq(&ctx->lock);
 296}
 297
 298/*
 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 300 * are already disabled and we're on the right CPU.
 301 */
 302static void event_function_local(struct perf_event *event, event_f func, void *data)
 303{
 304        struct perf_event_context *ctx = event->ctx;
 305        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 306        struct task_struct *task = READ_ONCE(ctx->task);
 307        struct perf_event_context *task_ctx = NULL;
 308
 309        lockdep_assert_irqs_disabled();
 310
 311        if (task) {
 312                if (task == TASK_TOMBSTONE)
 313                        return;
 314
 315                task_ctx = ctx;
 316        }
 317
 318        perf_ctx_lock(cpuctx, task_ctx);
 319
 320        task = ctx->task;
 321        if (task == TASK_TOMBSTONE)
 322                goto unlock;
 323
 324        if (task) {
 325                /*
 326                 * We must be either inactive or active and the right task,
 327                 * otherwise we're screwed, since we cannot IPI to somewhere
 328                 * else.
 329                 */
 330                if (ctx->is_active) {
 331                        if (WARN_ON_ONCE(task != current))
 332                                goto unlock;
 333
 334                        if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
 335                                goto unlock;
 336                }
 337        } else {
 338                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 339        }
 340
 341        func(event, cpuctx, ctx, data);
 342unlock:
 343        perf_ctx_unlock(cpuctx, task_ctx);
 344}
 345
 346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 347                       PERF_FLAG_FD_OUTPUT  |\
 348                       PERF_FLAG_PID_CGROUP |\
 349                       PERF_FLAG_FD_CLOEXEC)
 350
 351/*
 352 * branch priv levels that need permission checks
 353 */
 354#define PERF_SAMPLE_BRANCH_PERM_PLM \
 355        (PERF_SAMPLE_BRANCH_KERNEL |\
 356         PERF_SAMPLE_BRANCH_HV)
 357
 358enum event_type_t {
 359        EVENT_FLEXIBLE = 0x1,
 360        EVENT_PINNED = 0x2,
 361        EVENT_TIME = 0x4,
 362        /* see ctx_resched() for details */
 363        EVENT_CPU = 0x8,
 364        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 365};
 366
 367/*
 368 * perf_sched_events : >0 events exist
 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 370 */
 371
 372static void perf_sched_delayed(struct work_struct *work);
 373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 375static DEFINE_MUTEX(perf_sched_mutex);
 376static atomic_t perf_sched_count;
 377
 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
 381
 382static atomic_t nr_mmap_events __read_mostly;
 383static atomic_t nr_comm_events __read_mostly;
 384static atomic_t nr_namespaces_events __read_mostly;
 385static atomic_t nr_task_events __read_mostly;
 386static atomic_t nr_freq_events __read_mostly;
 387static atomic_t nr_switch_events __read_mostly;
 388
 389static LIST_HEAD(pmus);
 390static DEFINE_MUTEX(pmus_lock);
 391static struct srcu_struct pmus_srcu;
 392static cpumask_var_t perf_online_mask;
 393
 394/*
 395 * perf event paranoia level:
 396 *  -1 - not paranoid at all
 397 *   0 - disallow raw tracepoint access for unpriv
 398 *   1 - disallow cpu events for unpriv
 399 *   2 - disallow kernel profiling for unpriv
 400 */
 401int sysctl_perf_event_paranoid __read_mostly = 2;
 402
 403/* Minimum for 512 kiB + 1 user control page */
 404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 405
 406/*
 407 * max perf event sample rate
 408 */
 409#define DEFAULT_MAX_SAMPLE_RATE         100000
 410#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 411#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 412
 413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 414
 415static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 416static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 417
 418static int perf_sample_allowed_ns __read_mostly =
 419        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 420
 421static void update_perf_cpu_limits(void)
 422{
 423        u64 tmp = perf_sample_period_ns;
 424
 425        tmp *= sysctl_perf_cpu_time_max_percent;
 426        tmp = div_u64(tmp, 100);
 427        if (!tmp)
 428                tmp = 1;
 429
 430        WRITE_ONCE(perf_sample_allowed_ns, tmp);
 431}
 432
 433static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
 434
 435int perf_proc_update_handler(struct ctl_table *table, int write,
 436                void __user *buffer, size_t *lenp,
 437                loff_t *ppos)
 438{
 439        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 440
 441        if (ret || !write)
 442                return ret;
 443
 444        /*
 445         * If throttling is disabled don't allow the write:
 446         */
 447        if (sysctl_perf_cpu_time_max_percent == 100 ||
 448            sysctl_perf_cpu_time_max_percent == 0)
 449                return -EINVAL;
 450
 451        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 452        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 453        update_perf_cpu_limits();
 454
 455        return 0;
 456}
 457
 458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 459
 460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 461                                void __user *buffer, size_t *lenp,
 462                                loff_t *ppos)
 463{
 464        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 465
 466        if (ret || !write)
 467                return ret;
 468
 469        if (sysctl_perf_cpu_time_max_percent == 100 ||
 470            sysctl_perf_cpu_time_max_percent == 0) {
 471                printk(KERN_WARNING
 472                       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 473                WRITE_ONCE(perf_sample_allowed_ns, 0);
 474        } else {
 475                update_perf_cpu_limits();
 476        }
 477
 478        return 0;
 479}
 480
 481/*
 482 * perf samples are done in some very critical code paths (NMIs).
 483 * If they take too much CPU time, the system can lock up and not
 484 * get any real work done.  This will drop the sample rate when
 485 * we detect that events are taking too long.
 486 */
 487#define NR_ACCUMULATED_SAMPLES 128
 488static DEFINE_PER_CPU(u64, running_sample_length);
 489
 490static u64 __report_avg;
 491static u64 __report_allowed;
 492
 493static void perf_duration_warn(struct irq_work *w)
 494{
 495        printk_ratelimited(KERN_INFO
 496                "perf: interrupt took too long (%lld > %lld), lowering "
 497                "kernel.perf_event_max_sample_rate to %d\n",
 498                __report_avg, __report_allowed,
 499                sysctl_perf_event_sample_rate);
 500}
 501
 502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 503
 504void perf_sample_event_took(u64 sample_len_ns)
 505{
 506        u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 507        u64 running_len;
 508        u64 avg_len;
 509        u32 max;
 510
 511        if (max_len == 0)
 512                return;
 513
 514        /* Decay the counter by 1 average sample. */
 515        running_len = __this_cpu_read(running_sample_length);
 516        running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 517        running_len += sample_len_ns;
 518        __this_cpu_write(running_sample_length, running_len);
 519
 520        /*
 521         * Note: this will be biased artifically low until we have
 522         * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 523         * from having to maintain a count.
 524         */
 525        avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 526        if (avg_len <= max_len)
 527                return;
 528
 529        __report_avg = avg_len;
 530        __report_allowed = max_len;
 531
 532        /*
 533         * Compute a throttle threshold 25% below the current duration.
 534         */
 535        avg_len += avg_len / 4;
 536        max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 537        if (avg_len < max)
 538                max /= (u32)avg_len;
 539        else
 540                max = 1;
 541
 542        WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 543        WRITE_ONCE(max_samples_per_tick, max);
 544
 545        sysctl_perf_event_sample_rate = max * HZ;
 546        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 547
 548        if (!irq_work_queue(&perf_duration_work)) {
 549                early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 550                             "kernel.perf_event_max_sample_rate to %d\n",
 551                             __report_avg, __report_allowed,
 552                             sysctl_perf_event_sample_rate);
 553        }
 554}
 555
 556static atomic64_t perf_event_id;
 557
 558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 559                              enum event_type_t event_type);
 560
 561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 562                             enum event_type_t event_type,
 563                             struct task_struct *task);
 564
 565static void update_context_time(struct perf_event_context *ctx);
 566static u64 perf_event_time(struct perf_event *event);
 567
 568void __weak perf_event_print_debug(void)        { }
 569
 570extern __weak const char *perf_pmu_name(void)
 571{
 572        return "pmu";
 573}
 574
 575static inline u64 perf_clock(void)
 576{
 577        return local_clock();
 578}
 579
 580static inline u64 perf_event_clock(struct perf_event *event)
 581{
 582        return event->clock();
 583}
 584
 585/*
 586 * State based event timekeeping...
 587 *
 588 * The basic idea is to use event->state to determine which (if any) time
 589 * fields to increment with the current delta. This means we only need to
 590 * update timestamps when we change state or when they are explicitly requested
 591 * (read).
 592 *
 593 * Event groups make things a little more complicated, but not terribly so. The
 594 * rules for a group are that if the group leader is OFF the entire group is
 595 * OFF, irrespecive of what the group member states are. This results in
 596 * __perf_effective_state().
 597 *
 598 * A futher ramification is that when a group leader flips between OFF and
 599 * !OFF, we need to update all group member times.
 600 *
 601 *
 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 603 * need to make sure the relevant context time is updated before we try and
 604 * update our timestamps.
 605 */
 606
 607static __always_inline enum perf_event_state
 608__perf_effective_state(struct perf_event *event)
 609{
 610        struct perf_event *leader = event->group_leader;
 611
 612        if (leader->state <= PERF_EVENT_STATE_OFF)
 613                return leader->state;
 614
 615        return event->state;
 616}
 617
 618static __always_inline void
 619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
 620{
 621        enum perf_event_state state = __perf_effective_state(event);
 622        u64 delta = now - event->tstamp;
 623
 624        *enabled = event->total_time_enabled;
 625        if (state >= PERF_EVENT_STATE_INACTIVE)
 626                *enabled += delta;
 627
 628        *running = event->total_time_running;
 629        if (state >= PERF_EVENT_STATE_ACTIVE)
 630                *running += delta;
 631}
 632
 633static void perf_event_update_time(struct perf_event *event)
 634{
 635        u64 now = perf_event_time(event);
 636
 637        __perf_update_times(event, now, &event->total_time_enabled,
 638                                        &event->total_time_running);
 639        event->tstamp = now;
 640}
 641
 642static void perf_event_update_sibling_time(struct perf_event *leader)
 643{
 644        struct perf_event *sibling;
 645
 646        for_each_sibling_event(sibling, leader)
 647                perf_event_update_time(sibling);
 648}
 649
 650static void
 651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
 652{
 653        if (event->state == state)
 654                return;
 655
 656        perf_event_update_time(event);
 657        /*
 658         * If a group leader gets enabled/disabled all its siblings
 659         * are affected too.
 660         */
 661        if ((event->state < 0) ^ (state < 0))
 662                perf_event_update_sibling_time(event);
 663
 664        WRITE_ONCE(event->state, state);
 665}
 666
 667#ifdef CONFIG_CGROUP_PERF
 668
 669static inline bool
 670perf_cgroup_match(struct perf_event *event)
 671{
 672        struct perf_event_context *ctx = event->ctx;
 673        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 674
 675        /* @event doesn't care about cgroup */
 676        if (!event->cgrp)
 677                return true;
 678
 679        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 680        if (!cpuctx->cgrp)
 681                return false;
 682
 683        /*
 684         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 685         * also enabled for all its descendant cgroups.  If @cpuctx's
 686         * cgroup is a descendant of @event's (the test covers identity
 687         * case), it's a match.
 688         */
 689        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 690                                    event->cgrp->css.cgroup);
 691}
 692
 693static inline void perf_detach_cgroup(struct perf_event *event)
 694{
 695        css_put(&event->cgrp->css);
 696        event->cgrp = NULL;
 697}
 698
 699static inline int is_cgroup_event(struct perf_event *event)
 700{
 701        return event->cgrp != NULL;
 702}
 703
 704static inline u64 perf_cgroup_event_time(struct perf_event *event)
 705{
 706        struct perf_cgroup_info *t;
 707
 708        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 709        return t->time;
 710}
 711
 712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 713{
 714        struct perf_cgroup_info *info;
 715        u64 now;
 716
 717        now = perf_clock();
 718
 719        info = this_cpu_ptr(cgrp->info);
 720
 721        info->time += now - info->timestamp;
 722        info->timestamp = now;
 723}
 724
 725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 726{
 727        struct perf_cgroup *cgrp = cpuctx->cgrp;
 728        struct cgroup_subsys_state *css;
 729
 730        if (cgrp) {
 731                for (css = &cgrp->css; css; css = css->parent) {
 732                        cgrp = container_of(css, struct perf_cgroup, css);
 733                        __update_cgrp_time(cgrp);
 734                }
 735        }
 736}
 737
 738static inline void update_cgrp_time_from_event(struct perf_event *event)
 739{
 740        struct perf_cgroup *cgrp;
 741
 742        /*
 743         * ensure we access cgroup data only when needed and
 744         * when we know the cgroup is pinned (css_get)
 745         */
 746        if (!is_cgroup_event(event))
 747                return;
 748
 749        cgrp = perf_cgroup_from_task(current, event->ctx);
 750        /*
 751         * Do not update time when cgroup is not active
 752         */
 753       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 754                __update_cgrp_time(event->cgrp);
 755}
 756
 757static inline void
 758perf_cgroup_set_timestamp(struct task_struct *task,
 759                          struct perf_event_context *ctx)
 760{
 761        struct perf_cgroup *cgrp;
 762        struct perf_cgroup_info *info;
 763        struct cgroup_subsys_state *css;
 764
 765        /*
 766         * ctx->lock held by caller
 767         * ensure we do not access cgroup data
 768         * unless we have the cgroup pinned (css_get)
 769         */
 770        if (!task || !ctx->nr_cgroups)
 771                return;
 772
 773        cgrp = perf_cgroup_from_task(task, ctx);
 774
 775        for (css = &cgrp->css; css; css = css->parent) {
 776                cgrp = container_of(css, struct perf_cgroup, css);
 777                info = this_cpu_ptr(cgrp->info);
 778                info->timestamp = ctx->timestamp;
 779        }
 780}
 781
 782static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
 783
 784#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 785#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 786
 787/*
 788 * reschedule events based on the cgroup constraint of task.
 789 *
 790 * mode SWOUT : schedule out everything
 791 * mode SWIN : schedule in based on cgroup for next
 792 */
 793static void perf_cgroup_switch(struct task_struct *task, int mode)
 794{
 795        struct perf_cpu_context *cpuctx;
 796        struct list_head *list;
 797        unsigned long flags;
 798
 799        /*
 800         * Disable interrupts and preemption to avoid this CPU's
 801         * cgrp_cpuctx_entry to change under us.
 802         */
 803        local_irq_save(flags);
 804
 805        list = this_cpu_ptr(&cgrp_cpuctx_list);
 806        list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
 807                WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
 808
 809                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 810                perf_pmu_disable(cpuctx->ctx.pmu);
 811
 812                if (mode & PERF_CGROUP_SWOUT) {
 813                        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 814                        /*
 815                         * must not be done before ctxswout due
 816                         * to event_filter_match() in event_sched_out()
 817                         */
 818                        cpuctx->cgrp = NULL;
 819                }
 820
 821                if (mode & PERF_CGROUP_SWIN) {
 822                        WARN_ON_ONCE(cpuctx->cgrp);
 823                        /*
 824                         * set cgrp before ctxsw in to allow
 825                         * event_filter_match() to not have to pass
 826                         * task around
 827                         * we pass the cpuctx->ctx to perf_cgroup_from_task()
 828                         * because cgorup events are only per-cpu
 829                         */
 830                        cpuctx->cgrp = perf_cgroup_from_task(task,
 831                                                             &cpuctx->ctx);
 832                        cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 833                }
 834                perf_pmu_enable(cpuctx->ctx.pmu);
 835                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 836        }
 837
 838        local_irq_restore(flags);
 839}
 840
 841static inline void perf_cgroup_sched_out(struct task_struct *task,
 842                                         struct task_struct *next)
 843{
 844        struct perf_cgroup *cgrp1;
 845        struct perf_cgroup *cgrp2 = NULL;
 846
 847        rcu_read_lock();
 848        /*
 849         * we come here when we know perf_cgroup_events > 0
 850         * we do not need to pass the ctx here because we know
 851         * we are holding the rcu lock
 852         */
 853        cgrp1 = perf_cgroup_from_task(task, NULL);
 854        cgrp2 = perf_cgroup_from_task(next, NULL);
 855
 856        /*
 857         * only schedule out current cgroup events if we know
 858         * that we are switching to a different cgroup. Otherwise,
 859         * do no touch the cgroup events.
 860         */
 861        if (cgrp1 != cgrp2)
 862                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 863
 864        rcu_read_unlock();
 865}
 866
 867static inline void perf_cgroup_sched_in(struct task_struct *prev,
 868                                        struct task_struct *task)
 869{
 870        struct perf_cgroup *cgrp1;
 871        struct perf_cgroup *cgrp2 = NULL;
 872
 873        rcu_read_lock();
 874        /*
 875         * we come here when we know perf_cgroup_events > 0
 876         * we do not need to pass the ctx here because we know
 877         * we are holding the rcu lock
 878         */
 879        cgrp1 = perf_cgroup_from_task(task, NULL);
 880        cgrp2 = perf_cgroup_from_task(prev, NULL);
 881
 882        /*
 883         * only need to schedule in cgroup events if we are changing
 884         * cgroup during ctxsw. Cgroup events were not scheduled
 885         * out of ctxsw out if that was not the case.
 886         */
 887        if (cgrp1 != cgrp2)
 888                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 889
 890        rcu_read_unlock();
 891}
 892
 893static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 894                                      struct perf_event_attr *attr,
 895                                      struct perf_event *group_leader)
 896{
 897        struct perf_cgroup *cgrp;
 898        struct cgroup_subsys_state *css;
 899        struct fd f = fdget(fd);
 900        int ret = 0;
 901
 902        if (!f.file)
 903                return -EBADF;
 904
 905        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 906                                         &perf_event_cgrp_subsys);
 907        if (IS_ERR(css)) {
 908                ret = PTR_ERR(css);
 909                goto out;
 910        }
 911
 912        cgrp = container_of(css, struct perf_cgroup, css);
 913        event->cgrp = cgrp;
 914
 915        /*
 916         * all events in a group must monitor
 917         * the same cgroup because a task belongs
 918         * to only one perf cgroup at a time
 919         */
 920        if (group_leader && group_leader->cgrp != cgrp) {
 921                perf_detach_cgroup(event);
 922                ret = -EINVAL;
 923        }
 924out:
 925        fdput(f);
 926        return ret;
 927}
 928
 929static inline void
 930perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 931{
 932        struct perf_cgroup_info *t;
 933        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 934        event->shadow_ctx_time = now - t->timestamp;
 935}
 936
 937/*
 938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 939 * cleared when last cgroup event is removed.
 940 */
 941static inline void
 942list_update_cgroup_event(struct perf_event *event,
 943                         struct perf_event_context *ctx, bool add)
 944{
 945        struct perf_cpu_context *cpuctx;
 946        struct list_head *cpuctx_entry;
 947
 948        if (!is_cgroup_event(event))
 949                return;
 950
 951        /*
 952         * Because cgroup events are always per-cpu events,
 953         * this will always be called from the right CPU.
 954         */
 955        cpuctx = __get_cpu_context(ctx);
 956
 957        /*
 958         * Since setting cpuctx->cgrp is conditional on the current @cgrp
 959         * matching the event's cgroup, we must do this for every new event,
 960         * because if the first would mismatch, the second would not try again
 961         * and we would leave cpuctx->cgrp unset.
 962         */
 963        if (add && !cpuctx->cgrp) {
 964                struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
 965
 966                if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 967                        cpuctx->cgrp = cgrp;
 968        }
 969
 970        if (add && ctx->nr_cgroups++)
 971                return;
 972        else if (!add && --ctx->nr_cgroups)
 973                return;
 974
 975        /* no cgroup running */
 976        if (!add)
 977                cpuctx->cgrp = NULL;
 978
 979        cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
 980        if (add)
 981                list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
 982        else
 983                list_del(cpuctx_entry);
 984}
 985
 986#else /* !CONFIG_CGROUP_PERF */
 987
 988static inline bool
 989perf_cgroup_match(struct perf_event *event)
 990{
 991        return true;
 992}
 993
 994static inline void perf_detach_cgroup(struct perf_event *event)
 995{}
 996
 997static inline int is_cgroup_event(struct perf_event *event)
 998{
 999        return 0;
1000}
1001
1002static inline void update_cgrp_time_from_event(struct perf_event *event)
1003{
1004}
1005
1006static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007{
1008}
1009
1010static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                         struct task_struct *next)
1012{
1013}
1014
1015static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                        struct task_struct *task)
1017{
1018}
1019
1020static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                      struct perf_event_attr *attr,
1022                                      struct perf_event *group_leader)
1023{
1024        return -EINVAL;
1025}
1026
1027static inline void
1028perf_cgroup_set_timestamp(struct task_struct *task,
1029                          struct perf_event_context *ctx)
1030{
1031}
1032
1033void
1034perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035{
1036}
1037
1038static inline void
1039perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040{
1041}
1042
1043static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044{
1045        return 0;
1046}
1047
1048static inline void
1049list_update_cgroup_event(struct perf_event *event,
1050                         struct perf_event_context *ctx, bool add)
1051{
1052}
1053
1054#endif
1055
1056/*
1057 * set default to be dependent on timer tick just
1058 * like original code
1059 */
1060#define PERF_CPU_HRTIMER (1000 / HZ)
1061/*
1062 * function must be called with interrupts disabled
1063 */
1064static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065{
1066        struct perf_cpu_context *cpuctx;
1067        bool rotations;
1068
1069        lockdep_assert_irqs_disabled();
1070
1071        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072        rotations = perf_rotate_context(cpuctx);
1073
1074        raw_spin_lock(&cpuctx->hrtimer_lock);
1075        if (rotations)
1076                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077        else
1078                cpuctx->hrtimer_active = 0;
1079        raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081        return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082}
1083
1084static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085{
1086        struct hrtimer *timer = &cpuctx->hrtimer;
1087        struct pmu *pmu = cpuctx->ctx.pmu;
1088        u64 interval;
1089
1090        /* no multiplexing needed for SW PMU */
1091        if (pmu->task_ctx_nr == perf_sw_context)
1092                return;
1093
1094        /*
1095         * check default is sane, if not set then force to
1096         * default interval (1/tick)
1097         */
1098        interval = pmu->hrtimer_interval_ms;
1099        if (interval < 1)
1100                interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104        raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106        timer->function = perf_mux_hrtimer_handler;
1107}
1108
1109static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110{
1111        struct hrtimer *timer = &cpuctx->hrtimer;
1112        struct pmu *pmu = cpuctx->ctx.pmu;
1113        unsigned long flags;
1114
1115        /* not for SW PMU */
1116        if (pmu->task_ctx_nr == perf_sw_context)
1117                return 0;
1118
1119        raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120        if (!cpuctx->hrtimer_active) {
1121                cpuctx->hrtimer_active = 1;
1122                hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124        }
1125        raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127        return 0;
1128}
1129
1130void perf_pmu_disable(struct pmu *pmu)
1131{
1132        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133        if (!(*count)++)
1134                pmu->pmu_disable(pmu);
1135}
1136
1137void perf_pmu_enable(struct pmu *pmu)
1138{
1139        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140        if (!--(*count))
1141                pmu->pmu_enable(pmu);
1142}
1143
1144static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146/*
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
1151 */
1152static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153{
1154        struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156        lockdep_assert_irqs_disabled();
1157
1158        WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160        list_add(&ctx->active_ctx_list, head);
1161}
1162
1163static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164{
1165        lockdep_assert_irqs_disabled();
1166
1167        WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169        list_del_init(&ctx->active_ctx_list);
1170}
1171
1172static void get_ctx(struct perf_event_context *ctx)
1173{
1174        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175}
1176
1177static void free_ctx(struct rcu_head *head)
1178{
1179        struct perf_event_context *ctx;
1180
1181        ctx = container_of(head, struct perf_event_context, rcu_head);
1182        kfree(ctx->task_ctx_data);
1183        kfree(ctx);
1184}
1185
1186static void put_ctx(struct perf_event_context *ctx)
1187{
1188        if (atomic_dec_and_test(&ctx->refcount)) {
1189                if (ctx->parent_ctx)
1190                        put_ctx(ctx->parent_ctx);
1191                if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                        put_task_struct(ctx->task);
1193                call_rcu(&ctx->rcu_head, free_ctx);
1194        }
1195}
1196
1197/*
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1200 *
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203 *
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1206 *
1207 *  - perf_event_exit_task_context()    [ child , 0 ]
1208 *      perf_event_exit_event()
1209 *        put_event()                   [ parent, 1 ]
1210 *
1211 *  - perf_event_init_context()         [ parent, 0 ]
1212 *      inherit_task_group()
1213 *        inherit_group()
1214 *          inherit_event()
1215 *            perf_event_alloc()
1216 *              perf_init_event()
1217 *                perf_try_init_event() [ child , 1 ]
1218 *
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1223 *
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1226 * interact.
1227 *
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1232 *
1233 * The places that change perf_event::ctx will issue:
1234 *
1235 *   perf_remove_from_context();
1236 *   synchronize_rcu();
1237 *   perf_install_in_context();
1238 *
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1244 *
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247 * function.
1248 *
1249 * Lock order:
1250 *    cred_guard_mutex
1251 *      task_struct::perf_event_mutex
1252 *        perf_event_context::mutex
1253 *          perf_event::child_mutex;
1254 *            perf_event_context::lock
1255 *          perf_event::mmap_mutex
1256 *          mmap_sem
1257 *
1258 *    cpu_hotplug_lock
1259 *      pmus_lock
1260 *        cpuctx->mutex / perf_event_context::mutex
1261 */
1262static struct perf_event_context *
1263perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264{
1265        struct perf_event_context *ctx;
1266
1267again:
1268        rcu_read_lock();
1269        ctx = READ_ONCE(event->ctx);
1270        if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                rcu_read_unlock();
1272                goto again;
1273        }
1274        rcu_read_unlock();
1275
1276        mutex_lock_nested(&ctx->mutex, nesting);
1277        if (event->ctx != ctx) {
1278                mutex_unlock(&ctx->mutex);
1279                put_ctx(ctx);
1280                goto again;
1281        }
1282
1283        return ctx;
1284}
1285
1286static inline struct perf_event_context *
1287perf_event_ctx_lock(struct perf_event *event)
1288{
1289        return perf_event_ctx_lock_nested(event, 0);
1290}
1291
1292static void perf_event_ctx_unlock(struct perf_event *event,
1293                                  struct perf_event_context *ctx)
1294{
1295        mutex_unlock(&ctx->mutex);
1296        put_ctx(ctx);
1297}
1298
1299/*
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1303 */
1304static __must_check struct perf_event_context *
1305unclone_ctx(struct perf_event_context *ctx)
1306{
1307        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309        lockdep_assert_held(&ctx->lock);
1310
1311        if (parent_ctx)
1312                ctx->parent_ctx = NULL;
1313        ctx->generation++;
1314
1315        return parent_ctx;
1316}
1317
1318static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                enum pid_type type)
1320{
1321        u32 nr;
1322        /*
1323         * only top level events have the pid namespace they were created in
1324         */
1325        if (event->parent)
1326                event = event->parent;
1327
1328        nr = __task_pid_nr_ns(p, type, event->ns);
1329        /* avoid -1 if it is idle thread or runs in another ns */
1330        if (!nr && !pid_alive(p))
1331                nr = -1;
1332        return nr;
1333}
1334
1335static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336{
1337        return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338}
1339
1340static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341{
1342        return perf_event_pid_type(event, p, PIDTYPE_PID);
1343}
1344
1345/*
1346 * If we inherit events we want to return the parent event id
1347 * to userspace.
1348 */
1349static u64 primary_event_id(struct perf_event *event)
1350{
1351        u64 id = event->id;
1352
1353        if (event->parent)
1354                id = event->parent->id;
1355
1356        return id;
1357}
1358
1359/*
1360 * Get the perf_event_context for a task and lock it.
1361 *
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1364 */
1365static struct perf_event_context *
1366perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367{
1368        struct perf_event_context *ctx;
1369
1370retry:
1371        /*
1372         * One of the few rules of preemptible RCU is that one cannot do
1373         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374         * part of the read side critical section was irqs-enabled -- see
1375         * rcu_read_unlock_special().
1376         *
1377         * Since ctx->lock nests under rq->lock we must ensure the entire read
1378         * side critical section has interrupts disabled.
1379         */
1380        local_irq_save(*flags);
1381        rcu_read_lock();
1382        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383        if (ctx) {
1384                /*
1385                 * If this context is a clone of another, it might
1386                 * get swapped for another underneath us by
1387                 * perf_event_task_sched_out, though the
1388                 * rcu_read_lock() protects us from any context
1389                 * getting freed.  Lock the context and check if it
1390                 * got swapped before we could get the lock, and retry
1391                 * if so.  If we locked the right context, then it
1392                 * can't get swapped on us any more.
1393                 */
1394                raw_spin_lock(&ctx->lock);
1395                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                        raw_spin_unlock(&ctx->lock);
1397                        rcu_read_unlock();
1398                        local_irq_restore(*flags);
1399                        goto retry;
1400                }
1401
1402                if (ctx->task == TASK_TOMBSTONE ||
1403                    !atomic_inc_not_zero(&ctx->refcount)) {
1404                        raw_spin_unlock(&ctx->lock);
1405                        ctx = NULL;
1406                } else {
1407                        WARN_ON_ONCE(ctx->task != task);
1408                }
1409        }
1410        rcu_read_unlock();
1411        if (!ctx)
1412                local_irq_restore(*flags);
1413        return ctx;
1414}
1415
1416/*
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task.  This also increments its
1419 * reference count so that the context can't get freed.
1420 */
1421static struct perf_event_context *
1422perf_pin_task_context(struct task_struct *task, int ctxn)
1423{
1424        struct perf_event_context *ctx;
1425        unsigned long flags;
1426
1427        ctx = perf_lock_task_context(task, ctxn, &flags);
1428        if (ctx) {
1429                ++ctx->pin_count;
1430                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431        }
1432        return ctx;
1433}
1434
1435static void perf_unpin_context(struct perf_event_context *ctx)
1436{
1437        unsigned long flags;
1438
1439        raw_spin_lock_irqsave(&ctx->lock, flags);
1440        --ctx->pin_count;
1441        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442}
1443
1444/*
1445 * Update the record of the current time in a context.
1446 */
1447static void update_context_time(struct perf_event_context *ctx)
1448{
1449        u64 now = perf_clock();
1450
1451        ctx->time += now - ctx->timestamp;
1452        ctx->timestamp = now;
1453}
1454
1455static u64 perf_event_time(struct perf_event *event)
1456{
1457        struct perf_event_context *ctx = event->ctx;
1458
1459        if (is_cgroup_event(event))
1460                return perf_cgroup_event_time(event);
1461
1462        return ctx ? ctx->time : 0;
1463}
1464
1465static enum event_type_t get_event_type(struct perf_event *event)
1466{
1467        struct perf_event_context *ctx = event->ctx;
1468        enum event_type_t event_type;
1469
1470        lockdep_assert_held(&ctx->lock);
1471
1472        /*
1473         * It's 'group type', really, because if our group leader is
1474         * pinned, so are we.
1475         */
1476        if (event->group_leader != event)
1477                event = event->group_leader;
1478
1479        event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480        if (!ctx->task)
1481                event_type |= EVENT_CPU;
1482
1483        return event_type;
1484}
1485
1486/*
1487 * Helper function to initialize event group nodes.
1488 */
1489static void init_event_group(struct perf_event *event)
1490{
1491        RB_CLEAR_NODE(&event->group_node);
1492        event->group_index = 0;
1493}
1494
1495/*
1496 * Extract pinned or flexible groups from the context
1497 * based on event attrs bits.
1498 */
1499static struct perf_event_groups *
1500get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501{
1502        if (event->attr.pinned)
1503                return &ctx->pinned_groups;
1504        else
1505                return &ctx->flexible_groups;
1506}
1507
1508/*
1509 * Helper function to initializes perf_event_group trees.
1510 */
1511static void perf_event_groups_init(struct perf_event_groups *groups)
1512{
1513        groups->tree = RB_ROOT;
1514        groups->index = 0;
1515}
1516
1517/*
1518 * Compare function for event groups;
1519 *
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
1522 */
1523static bool
1524perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525{
1526        if (left->cpu < right->cpu)
1527                return true;
1528        if (left->cpu > right->cpu)
1529                return false;
1530
1531        if (left->group_index < right->group_index)
1532                return true;
1533        if (left->group_index > right->group_index)
1534                return false;
1535
1536        return false;
1537}
1538
1539/*
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1542 * subtree.
1543 */
1544static void
1545perf_event_groups_insert(struct perf_event_groups *groups,
1546                         struct perf_event *event)
1547{
1548        struct perf_event *node_event;
1549        struct rb_node *parent;
1550        struct rb_node **node;
1551
1552        event->group_index = ++groups->index;
1553
1554        node = &groups->tree.rb_node;
1555        parent = *node;
1556
1557        while (*node) {
1558                parent = *node;
1559                node_event = container_of(*node, struct perf_event, group_node);
1560
1561                if (perf_event_groups_less(event, node_event))
1562                        node = &parent->rb_left;
1563                else
1564                        node = &parent->rb_right;
1565        }
1566
1567        rb_link_node(&event->group_node, parent, node);
1568        rb_insert_color(&event->group_node, &groups->tree);
1569}
1570
1571/*
1572 * Helper function to insert event into the pinned or flexible groups.
1573 */
1574static void
1575add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576{
1577        struct perf_event_groups *groups;
1578
1579        groups = get_event_groups(event, ctx);
1580        perf_event_groups_insert(groups, event);
1581}
1582
1583/*
1584 * Delete a group from a tree.
1585 */
1586static void
1587perf_event_groups_delete(struct perf_event_groups *groups,
1588                         struct perf_event *event)
1589{
1590        WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                     RB_EMPTY_ROOT(&groups->tree));
1592
1593        rb_erase(&event->group_node, &groups->tree);
1594        init_event_group(event);
1595}
1596
1597/*
1598 * Helper function to delete event from its groups.
1599 */
1600static void
1601del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602{
1603        struct perf_event_groups *groups;
1604
1605        groups = get_event_groups(event, ctx);
1606        perf_event_groups_delete(groups, event);
1607}
1608
1609/*
1610 * Get the leftmost event in the @cpu subtree.
1611 */
1612static struct perf_event *
1613perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614{
1615        struct perf_event *node_event = NULL, *match = NULL;
1616        struct rb_node *node = groups->tree.rb_node;
1617
1618        while (node) {
1619                node_event = container_of(node, struct perf_event, group_node);
1620
1621                if (cpu < node_event->cpu) {
1622                        node = node->rb_left;
1623                } else if (cpu > node_event->cpu) {
1624                        node = node->rb_right;
1625                } else {
1626                        match = node_event;
1627                        node = node->rb_left;
1628                }
1629        }
1630
1631        return match;
1632}
1633
1634/*
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1636 */
1637static struct perf_event *
1638perf_event_groups_next(struct perf_event *event)
1639{
1640        struct perf_event *next;
1641
1642        next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643        if (next && next->cpu == event->cpu)
1644                return next;
1645
1646        return NULL;
1647}
1648
1649/*
1650 * Iterate through the whole groups tree.
1651 */
1652#define perf_event_groups_for_each(event, groups)                       \
1653        for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                typeof(*event), group_node); event;     \
1655                event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                typeof(*event), group_node))
1657
1658/*
1659 * Add a event from the lists for its context.
1660 * Must be called with ctx->mutex and ctx->lock held.
1661 */
1662static void
1663list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664{
1665        lockdep_assert_held(&ctx->lock);
1666
1667        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668        event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670        event->tstamp = perf_event_time(event);
1671
1672        /*
1673         * If we're a stand alone event or group leader, we go to the context
1674         * list, group events are kept attached to the group so that
1675         * perf_group_detach can, at all times, locate all siblings.
1676         */
1677        if (event->group_leader == event) {
1678                event->group_caps = event->event_caps;
1679                add_event_to_groups(event, ctx);
1680        }
1681
1682        list_update_cgroup_event(event, ctx, true);
1683
1684        list_add_rcu(&event->event_entry, &ctx->event_list);
1685        ctx->nr_events++;
1686        if (event->attr.inherit_stat)
1687                ctx->nr_stat++;
1688
1689        ctx->generation++;
1690}
1691
1692/*
1693 * Initialize event state based on the perf_event_attr::disabled.
1694 */
1695static inline void perf_event__state_init(struct perf_event *event)
1696{
1697        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                              PERF_EVENT_STATE_INACTIVE;
1699}
1700
1701static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702{
1703        int entry = sizeof(u64); /* value */
1704        int size = 0;
1705        int nr = 1;
1706
1707        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                size += sizeof(u64);
1709
1710        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                size += sizeof(u64);
1712
1713        if (event->attr.read_format & PERF_FORMAT_ID)
1714                entry += sizeof(u64);
1715
1716        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                nr += nr_siblings;
1718                size += sizeof(u64);
1719        }
1720
1721        size += entry * nr;
1722        event->read_size = size;
1723}
1724
1725static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726{
1727        struct perf_sample_data *data;
1728        u16 size = 0;
1729
1730        if (sample_type & PERF_SAMPLE_IP)
1731                size += sizeof(data->ip);
1732
1733        if (sample_type & PERF_SAMPLE_ADDR)
1734                size += sizeof(data->addr);
1735
1736        if (sample_type & PERF_SAMPLE_PERIOD)
1737                size += sizeof(data->period);
1738
1739        if (sample_type & PERF_SAMPLE_WEIGHT)
1740                size += sizeof(data->weight);
1741
1742        if (sample_type & PERF_SAMPLE_READ)
1743                size += event->read_size;
1744
1745        if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                size += sizeof(data->data_src.val);
1747
1748        if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                size += sizeof(data->txn);
1750
1751        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                size += sizeof(data->phys_addr);
1753
1754        event->header_size = size;
1755}
1756
1757/*
1758 * Called at perf_event creation and when events are attached/detached from a
1759 * group.
1760 */
1761static void perf_event__header_size(struct perf_event *event)
1762{
1763        __perf_event_read_size(event,
1764                               event->group_leader->nr_siblings);
1765        __perf_event_header_size(event, event->attr.sample_type);
1766}
1767
1768static void perf_event__id_header_size(struct perf_event *event)
1769{
1770        struct perf_sample_data *data;
1771        u64 sample_type = event->attr.sample_type;
1772        u16 size = 0;
1773
1774        if (sample_type & PERF_SAMPLE_TID)
1775                size += sizeof(data->tid_entry);
1776
1777        if (sample_type & PERF_SAMPLE_TIME)
1778                size += sizeof(data->time);
1779
1780        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                size += sizeof(data->id);
1782
1783        if (sample_type & PERF_SAMPLE_ID)
1784                size += sizeof(data->id);
1785
1786        if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                size += sizeof(data->stream_id);
1788
1789        if (sample_type & PERF_SAMPLE_CPU)
1790                size += sizeof(data->cpu_entry);
1791
1792        event->id_header_size = size;
1793}
1794
1795static bool perf_event_validate_size(struct perf_event *event)
1796{
1797        /*
1798         * The values computed here will be over-written when we actually
1799         * attach the event.
1800         */
1801        __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802        __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803        perf_event__id_header_size(event);
1804
1805        /*
1806         * Sum the lot; should not exceed the 64k limit we have on records.
1807         * Conservative limit to allow for callchains and other variable fields.
1808         */
1809        if (event->read_size + event->header_size +
1810            event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                return false;
1812
1813        return true;
1814}
1815
1816static void perf_group_attach(struct perf_event *event)
1817{
1818        struct perf_event *group_leader = event->group_leader, *pos;
1819
1820        lockdep_assert_held(&event->ctx->lock);
1821
1822        /*
1823         * We can have double attach due to group movement in perf_event_open.
1824         */
1825        if (event->attach_state & PERF_ATTACH_GROUP)
1826                return;
1827
1828        event->attach_state |= PERF_ATTACH_GROUP;
1829
1830        if (group_leader == event)
1831                return;
1832
1833        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835        group_leader->group_caps &= event->event_caps;
1836
1837        list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838        group_leader->nr_siblings++;
1839
1840        perf_event__header_size(group_leader);
1841
1842        for_each_sibling_event(pos, group_leader)
1843                perf_event__header_size(pos);
1844}
1845
1846/*
1847 * Remove a event from the lists for its context.
1848 * Must be called with ctx->mutex and ctx->lock held.
1849 */
1850static void
1851list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852{
1853        WARN_ON_ONCE(event->ctx != ctx);
1854        lockdep_assert_held(&ctx->lock);
1855
1856        /*
1857         * We can have double detach due to exit/hot-unplug + close.
1858         */
1859        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                return;
1861
1862        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864        list_update_cgroup_event(event, ctx, false);
1865
1866        ctx->nr_events--;
1867        if (event->attr.inherit_stat)
1868                ctx->nr_stat--;
1869
1870        list_del_rcu(&event->event_entry);
1871
1872        if (event->group_leader == event)
1873                del_event_from_groups(event, ctx);
1874
1875        /*
1876         * If event was in error state, then keep it
1877         * that way, otherwise bogus counts will be
1878         * returned on read(). The only way to get out
1879         * of error state is by explicit re-enabling
1880         * of the event
1881         */
1882        if (event->state > PERF_EVENT_STATE_OFF)
1883                perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885        ctx->generation++;
1886}
1887
1888static void perf_group_detach(struct perf_event *event)
1889{
1890        struct perf_event *sibling, *tmp;
1891        struct perf_event_context *ctx = event->ctx;
1892
1893        lockdep_assert_held(&ctx->lock);
1894
1895        /*
1896         * We can have double detach due to exit/hot-unplug + close.
1897         */
1898        if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                return;
1900
1901        event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903        /*
1904         * If this is a sibling, remove it from its group.
1905         */
1906        if (event->group_leader != event) {
1907                list_del_init(&event->sibling_list);
1908                event->group_leader->nr_siblings--;
1909                goto out;
1910        }
1911
1912        /*
1913         * If this was a group event with sibling events then
1914         * upgrade the siblings to singleton events by adding them
1915         * to whatever list we are on.
1916         */
1917        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                sibling->group_leader = sibling;
1920                list_del_init(&sibling->sibling_list);
1921
1922                /* Inherit group flags from the previous leader */
1923                sibling->group_caps = event->group_caps;
1924
1925                if (!RB_EMPTY_NODE(&event->group_node)) {
1926                        add_event_to_groups(sibling, event->ctx);
1927
1928                        if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                struct list_head *list = sibling->attr.pinned ?
1930                                        &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                list_add_tail(&sibling->active_list, list);
1933                        }
1934                }
1935
1936                WARN_ON_ONCE(sibling->ctx != event->ctx);
1937        }
1938
1939out:
1940        perf_event__header_size(event->group_leader);
1941
1942        for_each_sibling_event(tmp, event->group_leader)
1943                perf_event__header_size(tmp);
1944}
1945
1946static bool is_orphaned_event(struct perf_event *event)
1947{
1948        return event->state == PERF_EVENT_STATE_DEAD;
1949}
1950
1951static inline int __pmu_filter_match(struct perf_event *event)
1952{
1953        struct pmu *pmu = event->pmu;
1954        return pmu->filter_match ? pmu->filter_match(event) : 1;
1955}
1956
1957/*
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1962 */
1963static inline int pmu_filter_match(struct perf_event *event)
1964{
1965        struct perf_event *sibling;
1966
1967        if (!__pmu_filter_match(event))
1968                return 0;
1969
1970        for_each_sibling_event(sibling, event) {
1971                if (!__pmu_filter_match(sibling))
1972                        return 0;
1973        }
1974
1975        return 1;
1976}
1977
1978static inline int
1979event_filter_match(struct perf_event *event)
1980{
1981        return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982               perf_cgroup_match(event) && pmu_filter_match(event);
1983}
1984
1985static void
1986event_sched_out(struct perf_event *event,
1987                  struct perf_cpu_context *cpuctx,
1988                  struct perf_event_context *ctx)
1989{
1990        enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992        WARN_ON_ONCE(event->ctx != ctx);
1993        lockdep_assert_held(&ctx->lock);
1994
1995        if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                return;
1997
1998        /*
1999         * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000         * we can schedule events _OUT_ individually through things like
2001         * __perf_remove_from_context().
2002         */
2003        list_del_init(&event->active_list);
2004
2005        perf_pmu_disable(event->pmu);
2006
2007        event->pmu->del(event, 0);
2008        event->oncpu = -1;
2009
2010        if (event->pending_disable) {
2011                event->pending_disable = 0;
2012                state = PERF_EVENT_STATE_OFF;
2013        }
2014        perf_event_set_state(event, state);
2015
2016        if (!is_software_event(event))
2017                cpuctx->active_oncpu--;
2018        if (!--ctx->nr_active)
2019                perf_event_ctx_deactivate(ctx);
2020        if (event->attr.freq && event->attr.sample_freq)
2021                ctx->nr_freq--;
2022        if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                cpuctx->exclusive = 0;
2024
2025        perf_pmu_enable(event->pmu);
2026}
2027
2028static void
2029group_sched_out(struct perf_event *group_event,
2030                struct perf_cpu_context *cpuctx,
2031                struct perf_event_context *ctx)
2032{
2033        struct perf_event *event;
2034
2035        if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                return;
2037
2038        perf_pmu_disable(ctx->pmu);
2039
2040        event_sched_out(group_event, cpuctx, ctx);
2041
2042        /*
2043         * Schedule out siblings (if any):
2044         */
2045        for_each_sibling_event(event, group_event)
2046                event_sched_out(event, cpuctx, ctx);
2047
2048        perf_pmu_enable(ctx->pmu);
2049
2050        if (group_event->attr.exclusive)
2051                cpuctx->exclusive = 0;
2052}
2053
2054#define DETACH_GROUP    0x01UL
2055
2056/*
2057 * Cross CPU call to remove a performance event
2058 *
2059 * We disable the event on the hardware level first. After that we
2060 * remove it from the context list.
2061 */
2062static void
2063__perf_remove_from_context(struct perf_event *event,
2064                           struct perf_cpu_context *cpuctx,
2065                           struct perf_event_context *ctx,
2066                           void *info)
2067{
2068        unsigned long flags = (unsigned long)info;
2069
2070        if (ctx->is_active & EVENT_TIME) {
2071                update_context_time(ctx);
2072                update_cgrp_time_from_cpuctx(cpuctx);
2073        }
2074
2075        event_sched_out(event, cpuctx, ctx);
2076        if (flags & DETACH_GROUP)
2077                perf_group_detach(event);
2078        list_del_event(event, ctx);
2079
2080        if (!ctx->nr_events && ctx->is_active) {
2081                ctx->is_active = 0;
2082                if (ctx->task) {
2083                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                        cpuctx->task_ctx = NULL;
2085                }
2086        }
2087}
2088
2089/*
2090 * Remove the event from a task's (or a CPU's) list of events.
2091 *
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
2094 * remains valid.  This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
2096 * When called from perf_event_exit_task, it's OK because the
2097 * context has been detached from its task.
2098 */
2099static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100{
2101        struct perf_event_context *ctx = event->ctx;
2102
2103        lockdep_assert_held(&ctx->mutex);
2104
2105        event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107        /*
2108         * The above event_function_call() can NO-OP when it hits
2109         * TASK_TOMBSTONE. In that case we must already have been detached
2110         * from the context (by perf_event_exit_event()) but the grouping
2111         * might still be in-tact.
2112         */
2113        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114        if ((flags & DETACH_GROUP) &&
2115            (event->attach_state & PERF_ATTACH_GROUP)) {
2116                /*
2117                 * Since in that case we cannot possibly be scheduled, simply
2118                 * detach now.
2119                 */
2120                raw_spin_lock_irq(&ctx->lock);
2121                perf_group_detach(event);
2122                raw_spin_unlock_irq(&ctx->lock);
2123        }
2124}
2125
2126/*
2127 * Cross CPU call to disable a performance event
2128 */
2129static void __perf_event_disable(struct perf_event *event,
2130                                 struct perf_cpu_context *cpuctx,
2131                                 struct perf_event_context *ctx,
2132                                 void *info)
2133{
2134        if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                return;
2136
2137        if (ctx->is_active & EVENT_TIME) {
2138                update_context_time(ctx);
2139                update_cgrp_time_from_event(event);
2140        }
2141
2142        if (event == event->group_leader)
2143                group_sched_out(event, cpuctx, ctx);
2144        else
2145                event_sched_out(event, cpuctx, ctx);
2146
2147        perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148}
2149
2150/*
2151 * Disable a event.
2152 *
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
2155 * remains valid.  This condition is satisifed when called through
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
2158 * goes to exit will block in perf_event_exit_event().
2159 *
2160 * When called from perf_pending_event it's OK because event->ctx
2161 * is the current context on this CPU and preemption is disabled,
2162 * hence we can't get into perf_event_task_sched_out for this context.
2163 */
2164static void _perf_event_disable(struct perf_event *event)
2165{
2166        struct perf_event_context *ctx = event->ctx;
2167
2168        raw_spin_lock_irq(&ctx->lock);
2169        if (event->state <= PERF_EVENT_STATE_OFF) {
2170                raw_spin_unlock_irq(&ctx->lock);
2171                return;
2172        }
2173        raw_spin_unlock_irq(&ctx->lock);
2174
2175        event_function_call(event, __perf_event_disable, NULL);
2176}
2177
2178void perf_event_disable_local(struct perf_event *event)
2179{
2180        event_function_local(event, __perf_event_disable, NULL);
2181}
2182
2183/*
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2186 */
2187void perf_event_disable(struct perf_event *event)
2188{
2189        struct perf_event_context *ctx;
2190
2191        ctx = perf_event_ctx_lock(event);
2192        _perf_event_disable(event);
2193        perf_event_ctx_unlock(event, ctx);
2194}
2195EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197void perf_event_disable_inatomic(struct perf_event *event)
2198{
2199        event->pending_disable = 1;
2200        irq_work_queue(&event->pending);
2201}
2202
2203static void perf_set_shadow_time(struct perf_event *event,
2204                                 struct perf_event_context *ctx)
2205{
2206        /*
2207         * use the correct time source for the time snapshot
2208         *
2209         * We could get by without this by leveraging the
2210         * fact that to get to this function, the caller
2211         * has most likely already called update_context_time()
2212         * and update_cgrp_time_xx() and thus both timestamp
2213         * are identical (or very close). Given that tstamp is,
2214         * already adjusted for cgroup, we could say that:
2215         *    tstamp - ctx->timestamp
2216         * is equivalent to
2217         *    tstamp - cgrp->timestamp.
2218         *
2219         * Then, in perf_output_read(), the calculation would
2220         * work with no changes because:
2221         * - event is guaranteed scheduled in
2222         * - no scheduled out in between
2223         * - thus the timestamp would be the same
2224         *
2225         * But this is a bit hairy.
2226         *
2227         * So instead, we have an explicit cgroup call to remain
2228         * within the time time source all along. We believe it
2229         * is cleaner and simpler to understand.
2230         */
2231        if (is_cgroup_event(event))
2232                perf_cgroup_set_shadow_time(event, event->tstamp);
2233        else
2234                event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235}
2236
2237#define MAX_INTERRUPTS (~0ULL)
2238
2239static void perf_log_throttle(struct perf_event *event, int enable);
2240static void perf_log_itrace_start(struct perf_event *event);
2241
2242static int
2243event_sched_in(struct perf_event *event,
2244                 struct perf_cpu_context *cpuctx,
2245                 struct perf_event_context *ctx)
2246{
2247        int ret = 0;
2248
2249        lockdep_assert_held(&ctx->lock);
2250
2251        if (event->state <= PERF_EVENT_STATE_OFF)
2252                return 0;
2253
2254        WRITE_ONCE(event->oncpu, smp_processor_id());
2255        /*
2256         * Order event::oncpu write to happen before the ACTIVE state is
2257         * visible. This allows perf_event_{stop,read}() to observe the correct
2258         * ->oncpu if it sees ACTIVE.
2259         */
2260        smp_wmb();
2261        perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263        /*
2264         * Unthrottle events, since we scheduled we might have missed several
2265         * ticks already, also for a heavily scheduling task there is little
2266         * guarantee it'll get a tick in a timely manner.
2267         */
2268        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                perf_log_throttle(event, 1);
2270                event->hw.interrupts = 0;
2271        }
2272
2273        perf_pmu_disable(event->pmu);
2274
2275        perf_set_shadow_time(event, ctx);
2276
2277        perf_log_itrace_start(event);
2278
2279        if (event->pmu->add(event, PERF_EF_START)) {
2280                perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                event->oncpu = -1;
2282                ret = -EAGAIN;
2283                goto out;
2284        }
2285
2286        if (!is_software_event(event))
2287                cpuctx->active_oncpu++;
2288        if (!ctx->nr_active++)
2289                perf_event_ctx_activate(ctx);
2290        if (event->attr.freq && event->attr.sample_freq)
2291                ctx->nr_freq++;
2292
2293        if (event->attr.exclusive)
2294                cpuctx->exclusive = 1;
2295
2296out:
2297        perf_pmu_enable(event->pmu);
2298
2299        return ret;
2300}
2301
2302static int
2303group_sched_in(struct perf_event *group_event,
2304               struct perf_cpu_context *cpuctx,
2305               struct perf_event_context *ctx)
2306{
2307        struct perf_event *event, *partial_group = NULL;
2308        struct pmu *pmu = ctx->pmu;
2309
2310        if (group_event->state == PERF_EVENT_STATE_OFF)
2311                return 0;
2312
2313        pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315        if (event_sched_in(group_event, cpuctx, ctx)) {
2316                pmu->cancel_txn(pmu);
2317                perf_mux_hrtimer_restart(cpuctx);
2318                return -EAGAIN;
2319        }
2320
2321        /*
2322         * Schedule in siblings as one group (if any):
2323         */
2324        for_each_sibling_event(event, group_event) {
2325                if (event_sched_in(event, cpuctx, ctx)) {
2326                        partial_group = event;
2327                        goto group_error;
2328                }
2329        }
2330
2331        if (!pmu->commit_txn(pmu))
2332                return 0;
2333
2334group_error:
2335        /*
2336         * Groups can be scheduled in as one unit only, so undo any
2337         * partial group before returning:
2338         * The events up to the failed event are scheduled out normally.
2339         */
2340        for_each_sibling_event(event, group_event) {
2341                if (event == partial_group)
2342                        break;
2343
2344                event_sched_out(event, cpuctx, ctx);
2345        }
2346        event_sched_out(group_event, cpuctx, ctx);
2347
2348        pmu->cancel_txn(pmu);
2349
2350        perf_mux_hrtimer_restart(cpuctx);
2351
2352        return -EAGAIN;
2353}
2354
2355/*
2356 * Work out whether we can put this event group on the CPU now.
2357 */
2358static int group_can_go_on(struct perf_event *event,
2359                           struct perf_cpu_context *cpuctx,
2360                           int can_add_hw)
2361{
2362        /*
2363         * Groups consisting entirely of software events can always go on.
2364         */
2365        if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                return 1;
2367        /*
2368         * If an exclusive group is already on, no other hardware
2369         * events can go on.
2370         */
2371        if (cpuctx->exclusive)
2372                return 0;
2373        /*
2374         * If this group is exclusive and there are already
2375         * events on the CPU, it can't go on.
2376         */
2377        if (event->attr.exclusive && cpuctx->active_oncpu)
2378                return 0;
2379        /*
2380         * Otherwise, try to add it if all previous groups were able
2381         * to go on.
2382         */
2383        return can_add_hw;
2384}
2385
2386static void add_event_to_ctx(struct perf_event *event,
2387                               struct perf_event_context *ctx)
2388{
2389        list_add_event(event, ctx);
2390        perf_group_attach(event);
2391}
2392
2393static void ctx_sched_out(struct perf_event_context *ctx,
2394                          struct perf_cpu_context *cpuctx,
2395                          enum event_type_t event_type);
2396static void
2397ctx_sched_in(struct perf_event_context *ctx,
2398             struct perf_cpu_context *cpuctx,
2399             enum event_type_t event_type,
2400             struct task_struct *task);
2401
2402static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                               struct perf_event_context *ctx,
2404                               enum event_type_t event_type)
2405{
2406        if (!cpuctx->task_ctx)
2407                return;
2408
2409        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                return;
2411
2412        ctx_sched_out(ctx, cpuctx, event_type);
2413}
2414
2415static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                struct perf_event_context *ctx,
2417                                struct task_struct *task)
2418{
2419        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420        if (ctx)
2421                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423        if (ctx)
2424                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425}
2426
2427/*
2428 * We want to maintain the following priority of scheduling:
2429 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 *  - task pinned (EVENT_PINNED)
2431 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 *  - task flexible (EVENT_FLEXIBLE).
2433 *
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2436 * below.
2437 *
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441 */
2442static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                        struct perf_event_context *task_ctx,
2444                        enum event_type_t event_type)
2445{
2446        enum event_type_t ctx_event_type;
2447        bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449        /*
2450         * If pinned groups are involved, flexible groups also need to be
2451         * scheduled out.
2452         */
2453        if (event_type & EVENT_PINNED)
2454                event_type |= EVENT_FLEXIBLE;
2455
2456        ctx_event_type = event_type & EVENT_ALL;
2457
2458        perf_pmu_disable(cpuctx->ctx.pmu);
2459        if (task_ctx)
2460                task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462        /*
2463         * Decide which cpu ctx groups to schedule out based on the types
2464         * of events that caused rescheduling:
2465         *  - EVENT_CPU: schedule out corresponding groups;
2466         *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467         *  - otherwise, do nothing more.
2468         */
2469        if (cpu_event)
2470                cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471        else if (ctx_event_type & EVENT_PINNED)
2472                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474        perf_event_sched_in(cpuctx, task_ctx, current);
2475        perf_pmu_enable(cpuctx->ctx.pmu);
2476}
2477
2478/*
2479 * Cross CPU call to install and enable a performance event
2480 *
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
2483 */
2484static int  __perf_install_in_context(void *info)
2485{
2486        struct perf_event *event = info;
2487        struct perf_event_context *ctx = event->ctx;
2488        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490        bool reprogram = true;
2491        int ret = 0;
2492
2493        raw_spin_lock(&cpuctx->ctx.lock);
2494        if (ctx->task) {
2495                raw_spin_lock(&ctx->lock);
2496                task_ctx = ctx;
2497
2498                reprogram = (ctx->task == current);
2499
2500                /*
2501                 * If the task is running, it must be running on this CPU,
2502                 * otherwise we cannot reprogram things.
2503                 *
2504                 * If its not running, we don't care, ctx->lock will
2505                 * serialize against it becoming runnable.
2506                 */
2507                if (task_curr(ctx->task) && !reprogram) {
2508                        ret = -ESRCH;
2509                        goto unlock;
2510                }
2511
2512                WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513        } else if (task_ctx) {
2514                raw_spin_lock(&task_ctx->lock);
2515        }
2516
2517#ifdef CONFIG_CGROUP_PERF
2518        if (is_cgroup_event(event)) {
2519                /*
2520                 * If the current cgroup doesn't match the event's
2521                 * cgroup, we should not try to schedule it.
2522                 */
2523                struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                        event->cgrp->css.cgroup);
2526        }
2527#endif
2528
2529        if (reprogram) {
2530                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                add_event_to_ctx(event, ctx);
2532                ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533        } else {
2534                add_event_to_ctx(event, ctx);
2535        }
2536
2537unlock:
2538        perf_ctx_unlock(cpuctx, task_ctx);
2539
2540        return ret;
2541}
2542
2543/*
2544 * Attach a performance event to a context.
2545 *
2546 * Very similar to event_function_call, see comment there.
2547 */
2548static void
2549perf_install_in_context(struct perf_event_context *ctx,
2550                        struct perf_event *event,
2551                        int cpu)
2552{
2553        struct task_struct *task = READ_ONCE(ctx->task);
2554
2555        lockdep_assert_held(&ctx->mutex);
2556
2557        if (event->cpu != -1)
2558                event->cpu = cpu;
2559
2560        /*
2561         * Ensures that if we can observe event->ctx, both the event and ctx
2562         * will be 'complete'. See perf_iterate_sb_cpu().
2563         */
2564        smp_store_release(&event->ctx, ctx);
2565
2566        if (!task) {
2567                cpu_function_call(cpu, __perf_install_in_context, event);
2568                return;
2569        }
2570
2571        /*
2572         * Should not happen, we validate the ctx is still alive before calling.
2573         */
2574        if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                return;
2576
2577        /*
2578         * Installing events is tricky because we cannot rely on ctx->is_active
2579         * to be set in case this is the nr_events 0 -> 1 transition.
2580         *
2581         * Instead we use task_curr(), which tells us if the task is running.
2582         * However, since we use task_curr() outside of rq::lock, we can race
2583         * against the actual state. This means the result can be wrong.
2584         *
2585         * If we get a false positive, we retry, this is harmless.
2586         *
2587         * If we get a false negative, things are complicated. If we are after
2588         * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589         * value must be correct. If we're before, it doesn't matter since
2590         * perf_event_context_sched_in() will program the counter.
2591         *
2592         * However, this hinges on the remote context switch having observed
2593         * our task->perf_event_ctxp[] store, such that it will in fact take
2594         * ctx::lock in perf_event_context_sched_in().
2595         *
2596         * We do this by task_function_call(), if the IPI fails to hit the task
2597         * we know any future context switch of task must see the
2598         * perf_event_ctpx[] store.
2599         */
2600
2601        /*
2602         * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603         * task_cpu() load, such that if the IPI then does not find the task
2604         * running, a future context switch of that task must observe the
2605         * store.
2606         */
2607        smp_mb();
2608again:
2609        if (!task_function_call(task, __perf_install_in_context, event))
2610                return;
2611
2612        raw_spin_lock_irq(&ctx->lock);
2613        task = ctx->task;
2614        if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                /*
2616                 * Cannot happen because we already checked above (which also
2617                 * cannot happen), and we hold ctx->mutex, which serializes us
2618                 * against perf_event_exit_task_context().
2619                 */
2620                raw_spin_unlock_irq(&ctx->lock);
2621                return;
2622        }
2623        /*
2624         * If the task is not running, ctx->lock will avoid it becoming so,
2625         * thus we can safely install the event.
2626         */
2627        if (task_curr(task)) {
2628                raw_spin_unlock_irq(&ctx->lock);
2629                goto again;
2630        }
2631        add_event_to_ctx(event, ctx);
2632        raw_spin_unlock_irq(&ctx->lock);
2633}
2634
2635/*
2636 * Cross CPU call to enable a performance event
2637 */
2638static void __perf_event_enable(struct perf_event *event,
2639                                struct perf_cpu_context *cpuctx,
2640                                struct perf_event_context *ctx,
2641                                void *info)
2642{
2643        struct perf_event *leader = event->group_leader;
2644        struct perf_event_context *task_ctx;
2645
2646        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647            event->state <= PERF_EVENT_STATE_ERROR)
2648                return;
2649
2650        if (ctx->is_active)
2651                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653        perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655        if (!ctx->is_active)
2656                return;
2657
2658        if (!event_filter_match(event)) {
2659                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                return;
2661        }
2662
2663        /*
2664         * If the event is in a group and isn't the group leader,
2665         * then don't put it on unless the group is on.
2666         */
2667        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                return;
2670        }
2671
2672        task_ctx = cpuctx->task_ctx;
2673        if (ctx->task)
2674                WARN_ON_ONCE(task_ctx != ctx);
2675
2676        ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677}
2678
2679/*
2680 * Enable a event.
2681 *
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
2684 * remains valid.  This condition is satisfied when called through
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
2687 */
2688static void _perf_event_enable(struct perf_event *event)
2689{
2690        struct perf_event_context *ctx = event->ctx;
2691
2692        raw_spin_lock_irq(&ctx->lock);
2693        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694            event->state <  PERF_EVENT_STATE_ERROR) {
2695                raw_spin_unlock_irq(&ctx->lock);
2696                return;
2697        }
2698
2699        /*
2700         * If the event is in error state, clear that first.
2701         *
2702         * That way, if we see the event in error state below, we know that it
2703         * has gone back into error state, as distinct from the task having
2704         * been scheduled away before the cross-call arrived.
2705         */
2706        if (event->state == PERF_EVENT_STATE_ERROR)
2707                event->state = PERF_EVENT_STATE_OFF;
2708        raw_spin_unlock_irq(&ctx->lock);
2709
2710        event_function_call(event, __perf_event_enable, NULL);
2711}
2712
2713/*
2714 * See perf_event_disable();
2715 */
2716void perf_event_enable(struct perf_event *event)
2717{
2718        struct perf_event_context *ctx;
2719
2720        ctx = perf_event_ctx_lock(event);
2721        _perf_event_enable(event);
2722        perf_event_ctx_unlock(event, ctx);
2723}
2724EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726struct stop_event_data {
2727        struct perf_event       *event;
2728        unsigned int            restart;
2729};
2730
2731static int __perf_event_stop(void *info)
2732{
2733        struct stop_event_data *sd = info;
2734        struct perf_event *event = sd->event;
2735
2736        /* if it's already INACTIVE, do nothing */
2737        if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                return 0;
2739
2740        /* matches smp_wmb() in event_sched_in() */
2741        smp_rmb();
2742
2743        /*
2744         * There is a window with interrupts enabled before we get here,
2745         * so we need to check again lest we try to stop another CPU's event.
2746         */
2747        if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                return -EAGAIN;
2749
2750        event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752        /*
2753         * May race with the actual stop (through perf_pmu_output_stop()),
2754         * but it is only used for events with AUX ring buffer, and such
2755         * events will refuse to restart because of rb::aux_mmap_count==0,
2756         * see comments in perf_aux_output_begin().
2757         *
2758         * Since this is happening on a event-local CPU, no trace is lost
2759         * while restarting.
2760         */
2761        if (sd->restart)
2762                event->pmu->start(event, 0);
2763
2764        return 0;
2765}
2766
2767static int perf_event_stop(struct perf_event *event, int restart)
2768{
2769        struct stop_event_data sd = {
2770                .event          = event,
2771                .restart        = restart,
2772        };
2773        int ret = 0;
2774
2775        do {
2776                if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                        return 0;
2778
2779                /* matches smp_wmb() in event_sched_in() */
2780                smp_rmb();
2781
2782                /*
2783                 * We only want to restart ACTIVE events, so if the event goes
2784                 * inactive here (event->oncpu==-1), there's nothing more to do;
2785                 * fall through with ret==-ENXIO.
2786                 */
2787                ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                        __perf_event_stop, &sd);
2789        } while (ret == -EAGAIN);
2790
2791        return ret;
2792}
2793
2794/*
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2797 *
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 *      we update the addresses of corresponding vmas in
2800 *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 *      if the generation has changed since the previous call.
2804 *
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2806 *
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809 *     ioctl;
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812 *     for reading;
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814 *     of exec.
2815 */
2816void perf_event_addr_filters_sync(struct perf_event *event)
2817{
2818        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820        if (!has_addr_filter(event))
2821                return;
2822
2823        raw_spin_lock(&ifh->lock);
2824        if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                event->pmu->addr_filters_sync(event);
2826                event->hw.addr_filters_gen = event->addr_filters_gen;
2827        }
2828        raw_spin_unlock(&ifh->lock);
2829}
2830EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832static int _perf_event_refresh(struct perf_event *event, int refresh)
2833{
2834        /*
2835         * not supported on inherited events
2836         */
2837        if (event->attr.inherit || !is_sampling_event(event))
2838                return -EINVAL;
2839
2840        atomic_add(refresh, &event->event_limit);
2841        _perf_event_enable(event);
2842
2843        return 0;
2844}
2845
2846/*
2847 * See perf_event_disable()
2848 */
2849int perf_event_refresh(struct perf_event *event, int refresh)
2850{
2851        struct perf_event_context *ctx;
2852        int ret;
2853
2854        ctx = perf_event_ctx_lock(event);
2855        ret = _perf_event_refresh(event, refresh);
2856        perf_event_ctx_unlock(event, ctx);
2857
2858        return ret;
2859}
2860EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                         struct perf_event_attr *attr)
2864{
2865        int err;
2866
2867        _perf_event_disable(bp);
2868
2869        err = modify_user_hw_breakpoint_check(bp, attr, true);
2870        if (err) {
2871                if (!bp->attr.disabled)
2872                        _perf_event_enable(bp);
2873
2874                return err;
2875        }
2876
2877        if (!attr->disabled)
2878                _perf_event_enable(bp);
2879        return 0;
2880}
2881
2882static int perf_event_modify_attr(struct perf_event *event,
2883                                  struct perf_event_attr *attr)
2884{
2885        if (event->attr.type != attr->type)
2886                return -EINVAL;
2887
2888        switch (event->attr.type) {
2889        case PERF_TYPE_BREAKPOINT:
2890                return perf_event_modify_breakpoint(event, attr);
2891        default:
2892                /* Place holder for future additions. */
2893                return -EOPNOTSUPP;
2894        }
2895}
2896
2897static void ctx_sched_out(struct perf_event_context *ctx,
2898                          struct perf_cpu_context *cpuctx,
2899                          enum event_type_t event_type)
2900{
2901        struct perf_event *event, *tmp;
2902        int is_active = ctx->is_active;
2903
2904        lockdep_assert_held(&ctx->lock);
2905
2906        if (likely(!ctx->nr_events)) {
2907                /*
2908                 * See __perf_remove_from_context().
2909                 */
2910                WARN_ON_ONCE(ctx->is_active);
2911                if (ctx->task)
2912                        WARN_ON_ONCE(cpuctx->task_ctx);
2913                return;
2914        }
2915
2916        ctx->is_active &= ~event_type;
2917        if (!(ctx->is_active & EVENT_ALL))
2918                ctx->is_active = 0;
2919
2920        if (ctx->task) {
2921                WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922                if (!ctx->is_active)
2923                        cpuctx->task_ctx = NULL;
2924        }
2925
2926        /*
2927         * Always update time if it was set; not only when it changes.
2928         * Otherwise we can 'forget' to update time for any but the last
2929         * context we sched out. For example:
2930         *
2931         *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932         *   ctx_sched_out(.event_type = EVENT_PINNED)
2933         *
2934         * would only update time for the pinned events.
2935         */
2936        if (is_active & EVENT_TIME) {
2937                /* update (and stop) ctx time */
2938                update_context_time(ctx);
2939                update_cgrp_time_from_cpuctx(cpuctx);
2940        }
2941
2942        is_active ^= ctx->is_active; /* changed bits */
2943
2944        if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945                return;
2946
2947        perf_pmu_disable(ctx->pmu);
2948        if (is_active & EVENT_PINNED) {
2949                list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950                        group_sched_out(event, cpuctx, ctx);
2951        }
2952
2953        if (is_active & EVENT_FLEXIBLE) {
2954                list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955                        group_sched_out(event, cpuctx, ctx);
2956        }
2957        perf_pmu_enable(ctx->pmu);
2958}
2959
2960/*
2961 * Test whether two contexts are equivalent, i.e. whether they have both been
2962 * cloned from the same version of the same context.
2963 *
2964 * Equivalence is measured using a generation number in the context that is
2965 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966 * and list_del_event().
2967 */
2968static int context_equiv(struct perf_event_context *ctx1,
2969                         struct perf_event_context *ctx2)
2970{
2971        lockdep_assert_held(&ctx1->lock);
2972        lockdep_assert_held(&ctx2->lock);
2973
2974        /* Pinning disables the swap optimization */
2975        if (ctx1->pin_count || ctx2->pin_count)
2976                return 0;
2977
2978        /* If ctx1 is the parent of ctx2 */
2979        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980                return 1;
2981
2982        /* If ctx2 is the parent of ctx1 */
2983        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984                return 1;
2985
2986        /*
2987         * If ctx1 and ctx2 have the same parent; we flatten the parent
2988         * hierarchy, see perf_event_init_context().
2989         */
2990        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991                        ctx1->parent_gen == ctx2->parent_gen)
2992                return 1;
2993
2994        /* Unmatched */
2995        return 0;
2996}
2997
2998static void __perf_event_sync_stat(struct perf_event *event,
2999                                     struct perf_event *next_event)
3000{
3001        u64 value;
3002
3003        if (!event->attr.inherit_stat)
3004                return;
3005
3006        /*
3007         * Update the event value, we cannot use perf_event_read()
3008         * because we're in the middle of a context switch and have IRQs
3009         * disabled, which upsets smp_call_function_single(), however
3010         * we know the event must be on the current CPU, therefore we
3011         * don't need to use it.
3012         */
3013        if (event->state == PERF_EVENT_STATE_ACTIVE)
3014                event->pmu->read(event);
3015
3016        perf_event_update_time(event);
3017
3018        /*
3019         * In order to keep per-task stats reliable we need to flip the event
3020         * values when we flip the contexts.
3021         */
3022        value = local64_read(&next_event->count);
3023        value = local64_xchg(&event->count, value);
3024        local64_set(&next_event->count, value);
3025
3026        swap(event->total_time_enabled, next_event->total_time_enabled);
3027        swap(event->total_time_running, next_event->total_time_running);
3028
3029        /*
3030         * Since we swizzled the values, update the user visible data too.
3031         */
3032        perf_event_update_userpage(event);
3033        perf_event_update_userpage(next_event);
3034}
3035
3036static void perf_event_sync_stat(struct perf_event_context *ctx,
3037                                   struct perf_event_context *next_ctx)
3038{
3039        struct perf_event *event, *next_event;
3040
3041        if (!ctx->nr_stat)
3042                return;
3043
3044        update_context_time(ctx);
3045
3046        event = list_first_entry(&ctx->event_list,
3047                                   struct perf_event, event_entry);
3048
3049        next_event = list_first_entry(&next_ctx->event_list,
3050                                        struct perf_event, event_entry);
3051
3052        while (&event->event_entry != &ctx->event_list &&
3053               &next_event->event_entry != &next_ctx->event_list) {
3054
3055                __perf_event_sync_stat(event, next_event);
3056
3057                event = list_next_entry(event, event_entry);
3058                next_event = list_next_entry(next_event, event_entry);
3059        }
3060}
3061
3062static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063                                         struct task_struct *next)
3064{
3065        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066        struct perf_event_context *next_ctx;
3067        struct perf_event_context *parent, *next_parent;
3068        struct perf_cpu_context *cpuctx;
3069        int do_switch = 1;
3070
3071        if (likely(!ctx))
3072                return;
3073
3074        cpuctx = __get_cpu_context(ctx);
3075        if (!cpuctx->task_ctx)
3076                return;
3077
3078        rcu_read_lock();
3079        next_ctx = next->perf_event_ctxp[ctxn];
3080        if (!next_ctx)
3081                goto unlock;
3082
3083        parent = rcu_dereference(ctx->parent_ctx);
3084        next_parent = rcu_dereference(next_ctx->parent_ctx);
3085
3086        /* If neither context have a parent context; they cannot be clones. */
3087        if (!parent && !next_parent)
3088                goto unlock;
3089
3090        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091                /*
3092                 * Looks like the two contexts are clones, so we might be
3093                 * able to optimize the context switch.  We lock both
3094                 * contexts and check that they are clones under the
3095                 * lock (including re-checking that neither has been
3096                 * uncloned in the meantime).  It doesn't matter which
3097                 * order we take the locks because no other cpu could
3098                 * be trying to lock both of these tasks.
3099                 */
3100                raw_spin_lock(&ctx->lock);
3101                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102                if (context_equiv(ctx, next_ctx)) {
3103                        WRITE_ONCE(ctx->task, next);
3104                        WRITE_ONCE(next_ctx->task, task);
3105
3106                        swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107
3108                        /*
3109                         * RCU_INIT_POINTER here is safe because we've not
3110                         * modified the ctx and the above modification of
3111                         * ctx->task and ctx->task_ctx_data are immaterial
3112                         * since those values are always verified under
3113                         * ctx->lock which we're now holding.
3114                         */
3115                        RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116                        RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117
3118                        do_switch = 0;
3119
3120                        perf_event_sync_stat(ctx, next_ctx);
3121                }
3122                raw_spin_unlock(&next_ctx->lock);
3123                raw_spin_unlock(&ctx->lock);
3124        }
3125unlock:
3126        rcu_read_unlock();
3127
3128        if (do_switch) {
3129                raw_spin_lock(&ctx->lock);
3130                task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131                raw_spin_unlock(&ctx->lock);
3132        }
3133}
3134
3135static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136
3137void perf_sched_cb_dec(struct pmu *pmu)
3138{
3139        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140
3141        this_cpu_dec(perf_sched_cb_usages);
3142
3143        if (!--cpuctx->sched_cb_usage)
3144                list_del(&cpuctx->sched_cb_entry);
3145}
3146
3147
3148void perf_sched_cb_inc(struct pmu *pmu)
3149{
3150        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151
3152        if (!cpuctx->sched_cb_usage++)
3153                list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154
3155        this_cpu_inc(perf_sched_cb_usages);
3156}
3157
3158/*
3159 * This function provides the context switch callback to the lower code
3160 * layer. It is invoked ONLY when the context switch callback is enabled.
3161 *
3162 * This callback is relevant even to per-cpu events; for example multi event
3163 * PEBS requires this to provide PID/TID information. This requires we flush
3164 * all queued PEBS records before we context switch to a new task.
3165 */
3166static void perf_pmu_sched_task(struct task_struct *prev,
3167                                struct task_struct *next,
3168                                bool sched_in)
3169{
3170        struct perf_cpu_context *cpuctx;
3171        struct pmu *pmu;
3172
3173        if (prev == next)
3174                return;
3175
3176        list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177                pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178
3179                if (WARN_ON_ONCE(!pmu->sched_task))
3180                        continue;
3181
3182                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183                perf_pmu_disable(pmu);
3184
3185                pmu->sched_task(cpuctx->task_ctx, sched_in);
3186
3187                perf_pmu_enable(pmu);
3188                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189        }
3190}
3191
3192static void perf_event_switch(struct task_struct *task,
3193                              struct task_struct *next_prev, bool sched_in);
3194
3195#define for_each_task_context_nr(ctxn)                                  \
3196        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197
3198/*
3199 * Called from scheduler to remove the events of the current task,
3200 * with interrupts disabled.
3201 *
3202 * We stop each event and update the event value in event->count.
3203 *
3204 * This does not protect us against NMI, but disable()
3205 * sets the disabled bit in the control field of event _before_
3206 * accessing the event control register. If a NMI hits, then it will
3207 * not restart the event.
3208 */
3209void __perf_event_task_sched_out(struct task_struct *task,
3210                                 struct task_struct *next)
3211{
3212        int ctxn;
3213
3214        if (__this_cpu_read(perf_sched_cb_usages))
3215                perf_pmu_sched_task(task, next, false);
3216
3217        if (atomic_read(&nr_switch_events))
3218                perf_event_switch(task, next, false);
3219
3220        for_each_task_context_nr(ctxn)
3221                perf_event_context_sched_out(task, ctxn, next);
3222
3223        /*
3224         * if cgroup events exist on this CPU, then we need
3225         * to check if we have to switch out PMU state.
3226         * cgroup event are system-wide mode only
3227         */
3228        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229                perf_cgroup_sched_out(task, next);
3230}
3231
3232/*
3233 * Called with IRQs disabled
3234 */
3235static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236                              enum event_type_t event_type)
3237{
3238        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239}
3240
3241static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242                              int (*func)(struct perf_event *, void *), void *data)
3243{
3244        struct perf_event **evt, *evt1, *evt2;
3245        int ret;
3246
3247        evt1 = perf_event_groups_first(groups, -1);
3248        evt2 = perf_event_groups_first(groups, cpu);
3249
3250        while (evt1 || evt2) {
3251                if (evt1 && evt2) {
3252                        if (evt1->group_index < evt2->group_index)
3253                                evt = &evt1;
3254                        else
3255                                evt = &evt2;
3256                } else if (evt1) {
3257                        evt = &evt1;
3258                } else {
3259                        evt = &evt2;
3260                }
3261
3262                ret = func(*evt, data);
3263                if (ret)
3264                        return ret;
3265
3266                *evt = perf_event_groups_next(*evt);
3267        }
3268
3269        return 0;
3270}
3271
3272struct sched_in_data {
3273        struct perf_event_context *ctx;
3274        struct perf_cpu_context *cpuctx;
3275        int can_add_hw;
3276};
3277
3278static int pinned_sched_in(struct perf_event *event, void *data)
3279{
3280        struct sched_in_data *sid = data;
3281
3282        if (event->state <= PERF_EVENT_STATE_OFF)
3283                return 0;
3284
3285        if (!event_filter_match(event))
3286                return 0;
3287
3288        if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289                if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290                        list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291        }
3292
3293        /*
3294         * If this pinned group hasn't been scheduled,
3295         * put it in error state.
3296         */
3297        if (event->state == PERF_EVENT_STATE_INACTIVE)
3298                perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299
3300        return 0;
3301}
3302
3303static int flexible_sched_in(struct perf_event *event, void *data)
3304{
3305        struct sched_in_data *sid = data;
3306
3307        if (event->state <= PERF_EVENT_STATE_OFF)
3308                return 0;
3309
3310        if (!event_filter_match(event))
3311                return 0;
3312
3313        if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314                if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315                        list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316                else
3317                        sid->can_add_hw = 0;
3318        }
3319
3320        return 0;
3321}
3322
3323static void
3324ctx_pinned_sched_in(struct perf_event_context *ctx,
3325                    struct perf_cpu_context *cpuctx)
3326{
3327        struct sched_in_data sid = {
3328                .ctx = ctx,
3329                .cpuctx = cpuctx,
3330                .can_add_hw = 1,
3331        };
3332
3333        visit_groups_merge(&ctx->pinned_groups,
3334                           smp_processor_id(),
3335                           pinned_sched_in, &sid);
3336}
3337
3338static void
3339ctx_flexible_sched_in(struct perf_event_context *ctx,
3340                      struct perf_cpu_context *cpuctx)
3341{
3342        struct sched_in_data sid = {
3343                .ctx = ctx,
3344                .cpuctx = cpuctx,
3345                .can_add_hw = 1,
3346        };
3347
3348        visit_groups_merge(&ctx->flexible_groups,
3349                           smp_processor_id(),
3350                           flexible_sched_in, &sid);
3351}
3352
3353static void
3354ctx_sched_in(struct perf_event_context *ctx,
3355             struct perf_cpu_context *cpuctx,
3356             enum event_type_t event_type,
3357             struct task_struct *task)
3358{
3359        int is_active = ctx->is_active;
3360        u64 now;
3361
3362        lockdep_assert_held(&ctx->lock);
3363
3364        if (likely(!ctx->nr_events))
3365                return;
3366
3367        ctx->is_active |= (event_type | EVENT_TIME);
3368        if (ctx->task) {
3369                if (!is_active)
3370                        cpuctx->task_ctx = ctx;
3371                else
3372                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373        }
3374
3375        is_active ^= ctx->is_active; /* changed bits */
3376
3377        if (is_active & EVENT_TIME) {
3378                /* start ctx time */
3379                now = perf_clock();
3380                ctx->timestamp = now;
3381                perf_cgroup_set_timestamp(task, ctx);
3382        }
3383
3384        /*
3385         * First go through the list and put on any pinned groups
3386         * in order to give them the best chance of going on.
3387         */
3388        if (is_active & EVENT_PINNED)
3389                ctx_pinned_sched_in(ctx, cpuctx);
3390
3391        /* Then walk through the lower prio flexible groups */
3392        if (is_active & EVENT_FLEXIBLE)
3393                ctx_flexible_sched_in(ctx, cpuctx);
3394}
3395
3396static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397                             enum event_type_t event_type,
3398                             struct task_struct *task)
3399{
3400        struct perf_event_context *ctx = &cpuctx->ctx;
3401
3402        ctx_sched_in(ctx, cpuctx, event_type, task);
3403}
3404
3405static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406                                        struct task_struct *task)
3407{
3408        struct perf_cpu_context *cpuctx;
3409
3410        cpuctx = __get_cpu_context(ctx);
3411        if (cpuctx->task_ctx == ctx)
3412                return;
3413
3414        perf_ctx_lock(cpuctx, ctx);
3415        /*
3416         * We must check ctx->nr_events while holding ctx->lock, such
3417         * that we serialize against perf_install_in_context().
3418         */
3419        if (!ctx->nr_events)
3420                goto unlock;
3421
3422        perf_pmu_disable(ctx->pmu);
3423        /*
3424         * We want to keep the following priority order:
3425         * cpu pinned (that don't need to move), task pinned,
3426         * cpu flexible, task flexible.
3427         *
3428         * However, if task's ctx is not carrying any pinned
3429         * events, no need to flip the cpuctx's events around.
3430         */
3431        if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433        perf_event_sched_in(cpuctx, ctx, task);
3434        perf_pmu_enable(ctx->pmu);
3435
3436unlock:
3437        perf_ctx_unlock(cpuctx, ctx);
3438}
3439
3440/*
3441 * Called from scheduler to add the events of the current task
3442 * with interrupts disabled.
3443 *
3444 * We restore the event value and then enable it.
3445 *
3446 * This does not protect us against NMI, but enable()
3447 * sets the enabled bit in the control field of event _before_
3448 * accessing the event control register. If a NMI hits, then it will
3449 * keep the event running.
3450 */
3451void __perf_event_task_sched_in(struct task_struct *prev,
3452                                struct task_struct *task)
3453{
3454        struct perf_event_context *ctx;
3455        int ctxn;
3456
3457        /*
3458         * If cgroup events exist on this CPU, then we need to check if we have
3459         * to switch in PMU state; cgroup event are system-wide mode only.
3460         *
3461         * Since cgroup events are CPU events, we must schedule these in before
3462         * we schedule in the task events.
3463         */
3464        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465                perf_cgroup_sched_in(prev, task);
3466
3467        for_each_task_context_nr(ctxn) {
3468                ctx = task->perf_event_ctxp[ctxn];
3469                if (likely(!ctx))
3470                        continue;
3471
3472                perf_event_context_sched_in(ctx, task);
3473        }
3474
3475        if (atomic_read(&nr_switch_events))
3476                perf_event_switch(task, prev, true);
3477
3478        if (__this_cpu_read(perf_sched_cb_usages))
3479                perf_pmu_sched_task(prev, task, true);
3480}
3481
3482static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483{
3484        u64 frequency = event->attr.sample_freq;
3485        u64 sec = NSEC_PER_SEC;
3486        u64 divisor, dividend;
3487
3488        int count_fls, nsec_fls, frequency_fls, sec_fls;
3489
3490        count_fls = fls64(count);
3491        nsec_fls = fls64(nsec);
3492        frequency_fls = fls64(frequency);
3493        sec_fls = 30;
3494
3495        /*
3496         * We got @count in @nsec, with a target of sample_freq HZ
3497         * the target period becomes:
3498         *
3499         *             @count * 10^9
3500         * period = -------------------
3501         *          @nsec * sample_freq
3502         *
3503         */
3504
3505        /*
3506         * Reduce accuracy by one bit such that @a and @b converge
3507         * to a similar magnitude.
3508         */
3509#define REDUCE_FLS(a, b)                \
3510do {                                    \
3511        if (a##_fls > b##_fls) {        \
3512                a >>= 1;                \
3513                a##_fls--;              \
3514        } else {                        \
3515                b >>= 1;                \
3516                b##_fls--;              \
3517        }                               \
3518} while (0)
3519
3520        /*
3521         * Reduce accuracy until either term fits in a u64, then proceed with
3522         * the other, so that finally we can do a u64/u64 division.
3523         */
3524        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525                REDUCE_FLS(nsec, frequency);
3526                REDUCE_FLS(sec, count);
3527        }
3528
3529        if (count_fls + sec_fls > 64) {
3530                divisor = nsec * frequency;
3531
3532                while (count_fls + sec_fls > 64) {
3533                        REDUCE_FLS(count, sec);
3534                        divisor >>= 1;
3535                }
3536
3537                dividend = count * sec;
3538        } else {
3539                dividend = count * sec;
3540
3541                while (nsec_fls + frequency_fls > 64) {
3542                        REDUCE_FLS(nsec, frequency);
3543                        dividend >>= 1;
3544                }
3545
3546                divisor = nsec * frequency;
3547        }
3548
3549        if (!divisor)
3550                return dividend;
3551
3552        return div64_u64(dividend, divisor);
3553}
3554
3555static DEFINE_PER_CPU(int, perf_throttled_count);
3556static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557
3558static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559{
3560        struct hw_perf_event *hwc = &event->hw;
3561        s64 period, sample_period;
3562        s64 delta;
3563
3564        period = perf_calculate_period(event, nsec, count);
3565
3566        delta = (s64)(period - hwc->sample_period);
3567        delta = (delta + 7) / 8; /* low pass filter */
3568
3569        sample_period = hwc->sample_period + delta;
3570
3571        if (!sample_period)
3572                sample_period = 1;
3573
3574        hwc->sample_period = sample_period;
3575
3576        if (local64_read(&hwc->period_left) > 8*sample_period) {
3577                if (disable)
3578                        event->pmu->stop(event, PERF_EF_UPDATE);
3579
3580                local64_set(&hwc->period_left, 0);
3581
3582                if (disable)
3583                        event->pmu->start(event, PERF_EF_RELOAD);
3584        }
3585}
3586
3587/*
3588 * combine freq adjustment with unthrottling to avoid two passes over the
3589 * events. At the same time, make sure, having freq events does not change
3590 * the rate of unthrottling as that would introduce bias.
3591 */
3592static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593                                           int needs_unthr)
3594{
3595        struct perf_event *event;
3596        struct hw_perf_event *hwc;
3597        u64 now, period = TICK_NSEC;
3598        s64 delta;
3599
3600        /*
3601         * only need to iterate over all events iff:
3602         * - context have events in frequency mode (needs freq adjust)
3603         * - there are events to unthrottle on this cpu
3604         */
3605        if (!(ctx->nr_freq || needs_unthr))
3606                return;
3607
3608        raw_spin_lock(&ctx->lock);
3609        perf_pmu_disable(ctx->pmu);
3610
3611        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612                if (event->state != PERF_EVENT_STATE_ACTIVE)
3613                        continue;
3614
3615                if (!event_filter_match(event))
3616                        continue;
3617
3618                perf_pmu_disable(event->pmu);
3619
3620                hwc = &event->hw;
3621
3622                if (hwc->interrupts == MAX_INTERRUPTS) {
3623                        hwc->interrupts = 0;
3624                        perf_log_throttle(event, 1);
3625                        event->pmu->start(event, 0);
3626                }
3627
3628                if (!event->attr.freq || !event->attr.sample_freq)
3629                        goto next;
3630
3631                /*
3632                 * stop the event and update event->count
3633                 */
3634                event->pmu->stop(event, PERF_EF_UPDATE);
3635
3636                now = local64_read(&event->count);
3637                delta = now - hwc->freq_count_stamp;
3638                hwc->freq_count_stamp = now;
3639
3640                /*
3641                 * restart the event
3642                 * reload only if value has changed
3643                 * we have stopped the event so tell that
3644                 * to perf_adjust_period() to avoid stopping it
3645                 * twice.
3646                 */
3647                if (delta > 0)
3648                        perf_adjust_period(event, period, delta, false);
3649
3650                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651        next:
3652                perf_pmu_enable(event->pmu);
3653        }
3654
3655        perf_pmu_enable(ctx->pmu);
3656        raw_spin_unlock(&ctx->lock);
3657}
3658
3659/*
3660 * Move @event to the tail of the @ctx's elegible events.
3661 */
3662static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3663{
3664        /*
3665         * Rotate the first entry last of non-pinned groups. Rotation might be
3666         * disabled by the inheritance code.
3667         */
3668        if (ctx->rotate_disable)
3669                return;
3670
3671        perf_event_groups_delete(&ctx->flexible_groups, event);
3672        perf_event_groups_insert(&ctx->flexible_groups, event);
3673}
3674
3675static inline struct perf_event *
3676ctx_first_active(struct perf_event_context *ctx)
3677{
3678        return list_first_entry_or_null(&ctx->flexible_active,
3679                                        struct perf_event, active_list);
3680}
3681
3682static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683{
3684        struct perf_event *cpu_event = NULL, *task_event = NULL;
3685        bool cpu_rotate = false, task_rotate = false;
3686        struct perf_event_context *ctx = NULL;
3687
3688        /*
3689         * Since we run this from IRQ context, nobody can install new
3690         * events, thus the event count values are stable.
3691         */
3692
3693        if (cpuctx->ctx.nr_events) {
3694                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695                        cpu_rotate = true;
3696        }
3697
3698        ctx = cpuctx->task_ctx;
3699        if (ctx && ctx->nr_events) {
3700                if (ctx->nr_events != ctx->nr_active)
3701                        task_rotate = true;
3702        }
3703
3704        if (!(cpu_rotate || task_rotate))
3705                return false;
3706
3707        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708        perf_pmu_disable(cpuctx->ctx.pmu);
3709
3710        if (task_rotate)
3711                task_event = ctx_first_active(ctx);
3712        if (cpu_rotate)
3713                cpu_event = ctx_first_active(&cpuctx->ctx);
3714
3715        /*
3716         * As per the order given at ctx_resched() first 'pop' task flexible
3717         * and then, if needed CPU flexible.
3718         */
3719        if (task_event || (ctx && cpu_event))
3720                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721        if (cpu_event)
3722                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3723
3724        if (task_event)
3725                rotate_ctx(ctx, task_event);
3726        if (cpu_event)
3727                rotate_ctx(&cpuctx->ctx, cpu_event);
3728
3729        perf_event_sched_in(cpuctx, ctx, current);
3730
3731        perf_pmu_enable(cpuctx->ctx.pmu);
3732        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733
3734        return true;
3735}
3736
3737void perf_event_task_tick(void)
3738{
3739        struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740        struct perf_event_context *ctx, *tmp;
3741        int throttled;
3742
3743        lockdep_assert_irqs_disabled();
3744
3745        __this_cpu_inc(perf_throttled_seq);
3746        throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747        tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748
3749        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750                perf_adjust_freq_unthr_context(ctx, throttled);
3751}
3752
3753static int event_enable_on_exec(struct perf_event *event,
3754                                struct perf_event_context *ctx)
3755{
3756        if (!event->attr.enable_on_exec)
3757                return 0;
3758
3759        event->attr.enable_on_exec = 0;
3760        if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761                return 0;
3762
3763        perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764
3765        return 1;
3766}
3767
3768/*
3769 * Enable all of a task's events that have been marked enable-on-exec.
3770 * This expects task == current.
3771 */
3772static void perf_event_enable_on_exec(int ctxn)
3773{
3774        struct perf_event_context *ctx, *clone_ctx = NULL;
3775        enum event_type_t event_type = 0;
3776        struct perf_cpu_context *cpuctx;
3777        struct perf_event *event;
3778        unsigned long flags;
3779        int enabled = 0;
3780
3781        local_irq_save(flags);
3782        ctx = current->perf_event_ctxp[ctxn];
3783        if (!ctx || !ctx->nr_events)
3784                goto out;
3785
3786        cpuctx = __get_cpu_context(ctx);
3787        perf_ctx_lock(cpuctx, ctx);
3788        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789        list_for_each_entry(event, &ctx->event_list, event_entry) {
3790                enabled |= event_enable_on_exec(event, ctx);
3791                event_type |= get_event_type(event);
3792        }
3793
3794        /*
3795         * Unclone and reschedule this context if we enabled any event.
3796         */
3797        if (enabled) {
3798                clone_ctx = unclone_ctx(ctx);
3799                ctx_resched(cpuctx, ctx, event_type);
3800        } else {
3801                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802        }
3803        perf_ctx_unlock(cpuctx, ctx);
3804
3805out:
3806        local_irq_restore(flags);
3807
3808        if (clone_ctx)
3809                put_ctx(clone_ctx);
3810}
3811
3812struct perf_read_data {
3813        struct perf_event *event;
3814        bool group;
3815        int ret;
3816};
3817
3818static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819{
3820        u16 local_pkg, event_pkg;
3821
3822        if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823                int local_cpu = smp_processor_id();
3824
3825                event_pkg = topology_physical_package_id(event_cpu);
3826                local_pkg = topology_physical_package_id(local_cpu);
3827
3828                if (event_pkg == local_pkg)
3829                        return local_cpu;
3830        }
3831
3832        return event_cpu;
3833}
3834
3835/*
3836 * Cross CPU call to read the hardware event
3837 */
3838static void __perf_event_read(void *info)
3839{
3840        struct perf_read_data *data = info;
3841        struct perf_event *sub, *event = data->event;
3842        struct perf_event_context *ctx = event->ctx;
3843        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844        struct pmu *pmu = event->pmu;
3845
3846        /*
3847         * If this is a task context, we need to check whether it is
3848         * the current task context of this cpu.  If not it has been
3849         * scheduled out before the smp call arrived.  In that case
3850         * event->count would have been updated to a recent sample
3851         * when the event was scheduled out.
3852         */
3853        if (ctx->task && cpuctx->task_ctx != ctx)
3854                return;
3855
3856        raw_spin_lock(&ctx->lock);
3857        if (ctx->is_active & EVENT_TIME) {
3858                update_context_time(ctx);
3859                update_cgrp_time_from_event(event);
3860        }
3861
3862        perf_event_update_time(event);
3863        if (data->group)
3864                perf_event_update_sibling_time(event);
3865
3866        if (event->state != PERF_EVENT_STATE_ACTIVE)
3867                goto unlock;
3868
3869        if (!data->group) {
3870                pmu->read(event);
3871                data->ret = 0;
3872                goto unlock;
3873        }
3874
3875        pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876
3877        pmu->read(event);
3878
3879        for_each_sibling_event(sub, event) {
3880                if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881                        /*
3882                         * Use sibling's PMU rather than @event's since
3883                         * sibling could be on different (eg: software) PMU.
3884                         */
3885                        sub->pmu->read(sub);
3886                }
3887        }
3888
3889        data->ret = pmu->commit_txn(pmu);
3890
3891unlock:
3892        raw_spin_unlock(&ctx->lock);
3893}
3894
3895static inline u64 perf_event_count(struct perf_event *event)
3896{
3897        return local64_read(&event->count) + atomic64_read(&event->child_count);
3898}
3899
3900/*
3901 * NMI-safe method to read a local event, that is an event that
3902 * is:
3903 *   - either for the current task, or for this CPU
3904 *   - does not have inherit set, for inherited task events
3905 *     will not be local and we cannot read them atomically
3906 *   - must not have a pmu::count method
3907 */
3908int perf_event_read_local(struct perf_event *event, u64 *value,
3909                          u64 *enabled, u64 *running)
3910{
3911        unsigned long flags;
3912        int ret = 0;
3913
3914        /*
3915         * Disabling interrupts avoids all counter scheduling (context
3916         * switches, timer based rotation and IPIs).
3917         */
3918        local_irq_save(flags);
3919
3920        /*
3921         * It must not be an event with inherit set, we cannot read
3922         * all child counters from atomic context.
3923         */
3924        if (event->attr.inherit) {
3925                ret = -EOPNOTSUPP;
3926                goto out;
3927        }
3928
3929        /* If this is a per-task event, it must be for current */
3930        if ((event->attach_state & PERF_ATTACH_TASK) &&
3931            event->hw.target != current) {
3932                ret = -EINVAL;
3933                goto out;
3934        }
3935
3936        /* If this is a per-CPU event, it must be for this CPU */
3937        if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938            event->cpu != smp_processor_id()) {
3939                ret = -EINVAL;
3940                goto out;
3941        }
3942
3943        /*
3944         * If the event is currently on this CPU, its either a per-task event,
3945         * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946         * oncpu == -1).
3947         */
3948        if (event->oncpu == smp_processor_id())
3949                event->pmu->read(event);
3950
3951        *value = local64_read(&event->count);
3952        if (enabled || running) {
3953                u64 now = event->shadow_ctx_time + perf_clock();
3954                u64 __enabled, __running;
3955
3956                __perf_update_times(event, now, &__enabled, &__running);
3957                if (enabled)
3958                        *enabled = __enabled;
3959                if (running)
3960                        *running = __running;
3961        }
3962out:
3963        local_irq_restore(flags);
3964
3965        return ret;
3966}
3967
3968static int perf_event_read(struct perf_event *event, bool group)
3969{
3970        enum perf_event_state state = READ_ONCE(event->state);
3971        int event_cpu, ret = 0;
3972
3973        /*
3974         * If event is enabled and currently active on a CPU, update the
3975         * value in the event structure:
3976         */
3977again:
3978        if (state == PERF_EVENT_STATE_ACTIVE) {
3979                struct perf_read_data data;
3980
3981                /*
3982                 * Orders the ->state and ->oncpu loads such that if we see
3983                 * ACTIVE we must also see the right ->oncpu.
3984                 *
3985                 * Matches the smp_wmb() from event_sched_in().
3986                 */
3987                smp_rmb();
3988
3989                event_cpu = READ_ONCE(event->oncpu);
3990                if ((unsigned)event_cpu >= nr_cpu_ids)
3991                        return 0;
3992
3993                data = (struct perf_read_data){
3994                        .event = event,
3995                        .group = group,
3996                        .ret = 0,
3997                };
3998
3999                preempt_disable();
4000                event_cpu = __perf_event_read_cpu(event, event_cpu);
4001
4002                /*
4003                 * Purposely ignore the smp_call_function_single() return
4004                 * value.
4005                 *
4006                 * If event_cpu isn't a valid CPU it means the event got
4007                 * scheduled out and that will have updated the event count.
4008                 *
4009                 * Therefore, either way, we'll have an up-to-date event count
4010                 * after this.
4011                 */
4012                (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013                preempt_enable();
4014                ret = data.ret;
4015
4016        } else if (state == PERF_EVENT_STATE_INACTIVE) {
4017                struct perf_event_context *ctx = event->ctx;
4018                unsigned long flags;
4019
4020                raw_spin_lock_irqsave(&ctx->lock, flags);
4021                state = event->state;
4022                if (state != PERF_EVENT_STATE_INACTIVE) {
4023                        raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024                        goto again;
4025                }
4026
4027                /*
4028                 * May read while context is not active (e.g., thread is
4029                 * blocked), in that case we cannot update context time
4030                 */
4031                if (ctx->is_active & EVENT_TIME) {
4032                        update_context_time(ctx);
4033                        update_cgrp_time_from_event(event);
4034                }
4035
4036                perf_event_update_time(event);
4037                if (group)
4038                        perf_event_update_sibling_time(event);
4039                raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040        }
4041
4042        return ret;
4043}
4044
4045/*
4046 * Initialize the perf_event context in a task_struct:
4047 */
4048static void __perf_event_init_context(struct perf_event_context *ctx)
4049{
4050        raw_spin_lock_init(&ctx->lock);
4051        mutex_init(&ctx->mutex);
4052        INIT_LIST_HEAD(&ctx->active_ctx_list);
4053        perf_event_groups_init(&ctx->pinned_groups);
4054        perf_event_groups_init(&ctx->flexible_groups);
4055        INIT_LIST_HEAD(&ctx->event_list);
4056        INIT_LIST_HEAD(&ctx->pinned_active);
4057        INIT_LIST_HEAD(&ctx->flexible_active);
4058        atomic_set(&ctx->refcount, 1);
4059}
4060
4061static struct perf_event_context *
4062alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063{
4064        struct perf_event_context *ctx;
4065
4066        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067        if (!ctx)
4068                return NULL;
4069
4070        __perf_event_init_context(ctx);
4071        if (task) {
4072                ctx->task = task;
4073                get_task_struct(task);
4074        }
4075        ctx->pmu = pmu;
4076
4077        return ctx;
4078}
4079
4080static struct task_struct *
4081find_lively_task_by_vpid(pid_t vpid)
4082{
4083        struct task_struct *task;
4084
4085        rcu_read_lock();
4086        if (!vpid)
4087                task = current;
4088        else
4089                task = find_task_by_vpid(vpid);
4090        if (task)
4091                get_task_struct(task);
4092        rcu_read_unlock();
4093
4094        if (!task)
4095                return ERR_PTR(-ESRCH);
4096
4097        return task;
4098}
4099
4100/*
4101 * Returns a matching context with refcount and pincount.
4102 */
4103static struct perf_event_context *
4104find_get_context(struct pmu *pmu, struct task_struct *task,
4105                struct perf_event *event)
4106{
4107        struct perf_event_context *ctx, *clone_ctx = NULL;
4108        struct perf_cpu_context *cpuctx;
4109        void *task_ctx_data = NULL;
4110        unsigned long flags;
4111        int ctxn, err;
4112        int cpu = event->cpu;
4113
4114        if (!task) {
4115                /* Must be root to operate on a CPU event: */
4116                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117                        return ERR_PTR(-EACCES);
4118
4119                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120                ctx = &cpuctx->ctx;
4121                get_ctx(ctx);
4122                ++ctx->pin_count;
4123
4124                return ctx;
4125        }
4126
4127        err = -EINVAL;
4128        ctxn = pmu->task_ctx_nr;
4129        if (ctxn < 0)
4130                goto errout;
4131
4132        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133                task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134                if (!task_ctx_data) {
4135                        err = -ENOMEM;
4136                        goto errout;
4137                }
4138        }
4139
4140retry:
4141        ctx = perf_lock_task_context(task, ctxn, &flags);
4142        if (ctx) {
4143                clone_ctx = unclone_ctx(ctx);
4144                ++ctx->pin_count;
4145
4146                if (task_ctx_data && !ctx->task_ctx_data) {
4147                        ctx->task_ctx_data = task_ctx_data;
4148                        task_ctx_data = NULL;
4149                }
4150                raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151
4152                if (clone_ctx)
4153                        put_ctx(clone_ctx);
4154        } else {
4155                ctx = alloc_perf_context(pmu, task);
4156                err = -ENOMEM;
4157                if (!ctx)
4158                        goto errout;
4159
4160                if (task_ctx_data) {
4161                        ctx->task_ctx_data = task_ctx_data;
4162                        task_ctx_data = NULL;
4163                }
4164
4165                err = 0;
4166                mutex_lock(&task->perf_event_mutex);
4167                /*
4168                 * If it has already passed perf_event_exit_task().
4169                 * we must see PF_EXITING, it takes this mutex too.
4170                 */
4171                if (task->flags & PF_EXITING)
4172                        err = -ESRCH;
4173                else if (task->perf_event_ctxp[ctxn])
4174                        err = -EAGAIN;
4175                else {
4176                        get_ctx(ctx);
4177                        ++ctx->pin_count;
4178                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179                }
4180                mutex_unlock(&task->perf_event_mutex);
4181
4182                if (unlikely(err)) {
4183                        put_ctx(ctx);
4184
4185                        if (err == -EAGAIN)
4186                                goto retry;
4187                        goto errout;
4188                }
4189        }
4190
4191        kfree(task_ctx_data);
4192        return ctx;
4193
4194errout:
4195        kfree(task_ctx_data);
4196        return ERR_PTR(err);
4197}
4198
4199static void perf_event_free_filter(struct perf_event *event);
4200static void perf_event_free_bpf_prog(struct perf_event *event);
4201
4202static void free_event_rcu(struct rcu_head *head)
4203{
4204        struct perf_event *event;
4205
4206        event = container_of(head, struct perf_event, rcu_head);
4207        if (event->ns)
4208                put_pid_ns(event->ns);
4209        perf_event_free_filter(event);
4210        kfree(event);
4211}
4212
4213static void ring_buffer_attach(struct perf_event *event,
4214                               struct ring_buffer *rb);
4215
4216static void detach_sb_event(struct perf_event *event)
4217{
4218        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219
4220        raw_spin_lock(&pel->lock);
4221        list_del_rcu(&event->sb_list);
4222        raw_spin_unlock(&pel->lock);
4223}
4224
4225static bool is_sb_event(struct perf_event *event)
4226{
4227        struct perf_event_attr *attr = &event->attr;
4228
4229        if (event->parent)
4230                return false;
4231
4232        if (event->attach_state & PERF_ATTACH_TASK)
4233                return false;
4234
4235        if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236            attr->comm || attr->comm_exec ||
4237            attr->task ||
4238            attr->context_switch)
4239                return true;
4240        return false;
4241}
4242
4243static void unaccount_pmu_sb_event(struct perf_event *event)
4244{
4245        if (is_sb_event(event))
4246                detach_sb_event(event);
4247}
4248
4249static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250{
4251        if (event->parent)
4252                return;
4253
4254        if (is_cgroup_event(event))
4255                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256}
4257
4258#ifdef CONFIG_NO_HZ_FULL
4259static DEFINE_SPINLOCK(nr_freq_lock);
4260#endif
4261
4262static void unaccount_freq_event_nohz(void)
4263{
4264#ifdef CONFIG_NO_HZ_FULL
4265        spin_lock(&nr_freq_lock);
4266        if (atomic_dec_and_test(&nr_freq_events))
4267                tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268        spin_unlock(&nr_freq_lock);
4269#endif
4270}
4271
4272static void unaccount_freq_event(void)
4273{
4274        if (tick_nohz_full_enabled())
4275                unaccount_freq_event_nohz();
4276        else
4277                atomic_dec(&nr_freq_events);
4278}
4279
4280static void unaccount_event(struct perf_event *event)
4281{
4282        bool dec = false;
4283
4284        if (event->parent)
4285                return;
4286
4287        if (event->attach_state & PERF_ATTACH_TASK)
4288                dec = true;
4289        if (event->attr.mmap || event->attr.mmap_data)
4290                atomic_dec(&nr_mmap_events);
4291        if (event->attr.comm)
4292                atomic_dec(&nr_comm_events);
4293        if (event->attr.namespaces)
4294                atomic_dec(&nr_namespaces_events);
4295        if (event->attr.task)
4296                atomic_dec(&nr_task_events);
4297        if (event->attr.freq)
4298                unaccount_freq_event();
4299        if (event->attr.context_switch) {
4300                dec = true;
4301                atomic_dec(&nr_switch_events);
4302        }
4303        if (is_cgroup_event(event))
4304                dec = true;
4305        if (has_branch_stack(event))
4306                dec = true;
4307
4308        if (dec) {
4309                if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310                        schedule_delayed_work(&perf_sched_work, HZ);
4311        }
4312
4313        unaccount_event_cpu(event, event->cpu);
4314
4315        unaccount_pmu_sb_event(event);
4316}
4317
4318static void perf_sched_delayed(struct work_struct *work)
4319{
4320        mutex_lock(&perf_sched_mutex);
4321        if (atomic_dec_and_test(&perf_sched_count))
4322                static_branch_disable(&perf_sched_events);
4323        mutex_unlock(&perf_sched_mutex);
4324}
4325
4326/*
4327 * The following implement mutual exclusion of events on "exclusive" pmus
4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329 * at a time, so we disallow creating events that might conflict, namely:
4330 *
4331 *  1) cpu-wide events in the presence of per-task events,
4332 *  2) per-task events in the presence of cpu-wide events,
4333 *  3) two matching events on the same context.
4334 *
4335 * The former two cases are handled in the allocation path (perf_event_alloc(),
4336 * _free_event()), the latter -- before the first perf_install_in_context().
4337 */
4338static int exclusive_event_init(struct perf_event *event)
4339{
4340        struct pmu *pmu = event->pmu;
4341
4342        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343                return 0;
4344
4345        /*
4346         * Prevent co-existence of per-task and cpu-wide events on the
4347         * same exclusive pmu.
4348         *
4349         * Negative pmu::exclusive_cnt means there are cpu-wide
4350         * events on this "exclusive" pmu, positive means there are
4351         * per-task events.
4352         *
4353         * Since this is called in perf_event_alloc() path, event::ctx
4354         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355         * to mean "per-task event", because unlike other attach states it
4356         * never gets cleared.
4357         */
4358        if (event->attach_state & PERF_ATTACH_TASK) {
4359                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360                        return -EBUSY;
4361        } else {
4362                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363                        return -EBUSY;
4364        }
4365
4366        return 0;
4367}
4368
4369static void exclusive_event_destroy(struct perf_event *event)
4370{
4371        struct pmu *pmu = event->pmu;
4372
4373        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374                return;
4375
4376        /* see comment in exclusive_event_init() */
4377        if (event->attach_state & PERF_ATTACH_TASK)
4378                atomic_dec(&pmu->exclusive_cnt);
4379        else
4380                atomic_inc(&pmu->exclusive_cnt);
4381}
4382
4383static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384{
4385        if ((e1->pmu == e2->pmu) &&
4386            (e1->cpu == e2->cpu ||
4387             e1->cpu == -1 ||
4388             e2->cpu == -1))
4389                return true;
4390        return false;
4391}
4392
4393/* Called under the same ctx::mutex as perf_install_in_context() */
4394static bool exclusive_event_installable(struct perf_event *event,
4395                                        struct perf_event_context *ctx)
4396{
4397        struct perf_event *iter_event;
4398        struct pmu *pmu = event->pmu;
4399
4400        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401                return true;
4402
4403        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404                if (exclusive_event_match(iter_event, event))
4405                        return false;
4406        }
4407
4408        return true;
4409}
4410
4411static void perf_addr_filters_splice(struct perf_event *event,
4412                                       struct list_head *head);
4413
4414static void _free_event(struct perf_event *event)
4415{
4416        irq_work_sync(&event->pending);
4417
4418        unaccount_event(event);
4419
4420        if (event->rb) {
4421                /*
4422                 * Can happen when we close an event with re-directed output.
4423                 *
4424                 * Since we have a 0 refcount, perf_mmap_close() will skip
4425                 * over us; possibly making our ring_buffer_put() the last.
4426                 */
4427                mutex_lock(&event->mmap_mutex);
4428                ring_buffer_attach(event, NULL);
4429                mutex_unlock(&event->mmap_mutex);
4430        }
4431
4432        if (is_cgroup_event(event))
4433                perf_detach_cgroup(event);
4434
4435        if (!event->parent) {
4436                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437                        put_callchain_buffers();
4438        }
4439
4440        perf_event_free_bpf_prog(event);
4441        perf_addr_filters_splice(event, NULL);
4442        kfree(event->addr_filters_offs);
4443
4444        if (event->destroy)
4445                event->destroy(event);
4446
4447        if (event->ctx)
4448                put_ctx(event->ctx);
4449
4450        if (event->hw.target)
4451                put_task_struct(event->hw.target);
4452
4453        exclusive_event_destroy(event);
4454        module_put(event->pmu->module);
4455
4456        call_rcu(&event->rcu_head, free_event_rcu);
4457}
4458
4459/*
4460 * Used to free events which have a known refcount of 1, such as in error paths
4461 * where the event isn't exposed yet and inherited events.
4462 */
4463static void free_event(struct perf_event *event)
4464{
4465        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4466                                "unexpected event refcount: %ld; ptr=%p\n",
4467                                atomic_long_read(&event->refcount), event)) {
4468                /* leak to avoid use-after-free */
4469                return;
4470        }
4471
4472        _free_event(event);
4473}
4474
4475/*
4476 * Remove user event from the owner task.
4477 */
4478static void perf_remove_from_owner(struct perf_event *event)
4479{
4480        struct task_struct *owner;
4481
4482        rcu_read_lock();
4483        /*
4484         * Matches the smp_store_release() in perf_event_exit_task(). If we
4485         * observe !owner it means the list deletion is complete and we can
4486         * indeed free this event, otherwise we need to serialize on
4487         * owner->perf_event_mutex.
4488         */
4489        owner = READ_ONCE(event->owner);
4490        if (owner) {
4491                /*
4492                 * Since delayed_put_task_struct() also drops the last
4493                 * task reference we can safely take a new reference
4494                 * while holding the rcu_read_lock().
4495                 */
4496                get_task_struct(owner);
4497        }
4498        rcu_read_unlock();
4499
4500        if (owner) {
4501                /*
4502                 * If we're here through perf_event_exit_task() we're already
4503                 * holding ctx->mutex which would be an inversion wrt. the
4504                 * normal lock order.
4505                 *
4506                 * However we can safely take this lock because its the child
4507                 * ctx->mutex.
4508                 */
4509                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4510
4511                /*
4512                 * We have to re-check the event->owner field, if it is cleared
4513                 * we raced with perf_event_exit_task(), acquiring the mutex
4514                 * ensured they're done, and we can proceed with freeing the
4515                 * event.
4516                 */
4517                if (event->owner) {
4518                        list_del_init(&event->owner_entry);
4519                        smp_store_release(&event->owner, NULL);
4520                }
4521                mutex_unlock(&owner->perf_event_mutex);
4522                put_task_struct(owner);
4523        }
4524}
4525
4526static void put_event(struct perf_event *event)
4527{
4528        if (!atomic_long_dec_and_test(&event->refcount))
4529                return;
4530
4531        _free_event(event);
4532}
4533
4534/*
4535 * Kill an event dead; while event:refcount will preserve the event
4536 * object, it will not preserve its functionality. Once the last 'user'
4537 * gives up the object, we'll destroy the thing.
4538 */
4539int perf_event_release_kernel(struct perf_event *event)
4540{
4541        struct perf_event_context *ctx = event->ctx;
4542        struct perf_event *child, *tmp;
4543        LIST_HEAD(free_list);
4544
4545        /*
4546         * If we got here through err_file: fput(event_file); we will not have
4547         * attached to a context yet.
4548         */
4549        if (!ctx) {
4550                WARN_ON_ONCE(event->attach_state &
4551                                (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4552                goto no_ctx;
4553        }
4554
4555        if (!is_kernel_event(event))
4556                perf_remove_from_owner(event);
4557
4558        ctx = perf_event_ctx_lock(event);
4559        WARN_ON_ONCE(ctx->parent_ctx);
4560        perf_remove_from_context(event, DETACH_GROUP);
4561
4562        raw_spin_lock_irq(&ctx->lock);
4563        /*
4564         * Mark this event as STATE_DEAD, there is no external reference to it
4565         * anymore.
4566         *
4567         * Anybody acquiring event->child_mutex after the below loop _must_
4568         * also see this, most importantly inherit_event() which will avoid
4569         * placing more children on the list.
4570         *
4571         * Thus this guarantees that we will in fact observe and kill _ALL_
4572         * child events.
4573         */
4574        event->state = PERF_EVENT_STATE_DEAD;
4575        raw_spin_unlock_irq(&ctx->lock);
4576
4577        perf_event_ctx_unlock(event, ctx);
4578
4579again:
4580        mutex_lock(&event->child_mutex);
4581        list_for_each_entry(child, &event->child_list, child_list) {
4582
4583                /*
4584                 * Cannot change, child events are not migrated, see the
4585                 * comment with perf_event_ctx_lock_nested().
4586                 */
4587                ctx = READ_ONCE(child->ctx);
4588                /*
4589                 * Since child_mutex nests inside ctx::mutex, we must jump
4590                 * through hoops. We start by grabbing a reference on the ctx.
4591                 *
4592                 * Since the event cannot get freed while we hold the
4593                 * child_mutex, the context must also exist and have a !0
4594                 * reference count.
4595                 */
4596                get_ctx(ctx);
4597
4598                /*
4599                 * Now that we have a ctx ref, we can drop child_mutex, and
4600                 * acquire ctx::mutex without fear of it going away. Then we
4601                 * can re-acquire child_mutex.
4602                 */
4603                mutex_unlock(&event->child_mutex);
4604                mutex_lock(&ctx->mutex);
4605                mutex_lock(&event->child_mutex);
4606
4607                /*
4608                 * Now that we hold ctx::mutex and child_mutex, revalidate our
4609                 * state, if child is still the first entry, it didn't get freed
4610                 * and we can continue doing so.
4611                 */
4612                tmp = list_first_entry_or_null(&event->child_list,
4613                                               struct perf_event, child_list);
4614                if (tmp == child) {
4615                        perf_remove_from_context(child, DETACH_GROUP);
4616                        list_move(&child->child_list, &free_list);
4617                        /*
4618                         * This matches the refcount bump in inherit_event();
4619                         * this can't be the last reference.
4620                         */
4621                        put_event(event);
4622                }
4623
4624                mutex_unlock(&event->child_mutex);
4625                mutex_unlock(&ctx->mutex);
4626                put_ctx(ctx);
4627                goto again;
4628        }
4629        mutex_unlock(&event->child_mutex);
4630
4631        list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4632                list_del(&child->child_list);
4633                free_event(child);
4634        }
4635
4636no_ctx:
4637        put_event(event); /* Must be the 'last' reference */
4638        return 0;
4639}
4640EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4641
4642/*
4643 * Called when the last reference to the file is gone.
4644 */
4645static int perf_release(struct inode *inode, struct file *file)
4646{
4647        perf_event_release_kernel(file->private_data);
4648        return 0;
4649}
4650
4651static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4652{
4653        struct perf_event *child;
4654        u64 total = 0;
4655
4656        *enabled = 0;
4657        *running = 0;
4658
4659        mutex_lock(&event->child_mutex);
4660
4661        (void)perf_event_read(event, false);
4662        total += perf_event_count(event);
4663
4664        *enabled += event->total_time_enabled +
4665                        atomic64_read(&event->child_total_time_enabled);
4666        *running += event->total_time_running +
4667                        atomic64_read(&event->child_total_time_running);
4668
4669        list_for_each_entry(child, &event->child_list, child_list) {
4670                (void)perf_event_read(child, false);
4671                total += perf_event_count(child);
4672                *enabled += child->total_time_enabled;
4673                *running += child->total_time_running;
4674        }
4675        mutex_unlock(&event->child_mutex);
4676
4677        return total;
4678}
4679
4680u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4681{
4682        struct perf_event_context *ctx;
4683        u64 count;
4684
4685        ctx = perf_event_ctx_lock(event);
4686        count = __perf_event_read_value(event, enabled, running);
4687        perf_event_ctx_unlock(event, ctx);
4688
4689        return count;
4690}
4691EXPORT_SYMBOL_GPL(perf_event_read_value);
4692
4693static int __perf_read_group_add(struct perf_event *leader,
4694                                        u64 read_format, u64 *values)
4695{
4696        struct perf_event_context *ctx = leader->ctx;
4697        struct perf_event *sub;
4698        unsigned long flags;
4699        int n = 1; /* skip @nr */
4700        int ret;
4701
4702        ret = perf_event_read(leader, true);
4703        if (ret)
4704                return ret;
4705
4706        raw_spin_lock_irqsave(&ctx->lock, flags);
4707
4708        /*
4709         * Since we co-schedule groups, {enabled,running} times of siblings
4710         * will be identical to those of the leader, so we only publish one
4711         * set.
4712         */
4713        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4714                values[n++] += leader->total_time_enabled +
4715                        atomic64_read(&leader->child_total_time_enabled);
4716        }
4717
4718        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4719                values[n++] += leader->total_time_running +
4720                        atomic64_read(&leader->child_total_time_running);
4721        }
4722
4723        /*
4724         * Write {count,id} tuples for every sibling.
4725         */
4726        values[n++] += perf_event_count(leader);
4727        if (read_format & PERF_FORMAT_ID)
4728                values[n++] = primary_event_id(leader);
4729
4730        for_each_sibling_event(sub, leader) {
4731                values[n++] += perf_event_count(sub);
4732                if (read_format & PERF_FORMAT_ID)
4733                        values[n++] = primary_event_id(sub);
4734        }
4735
4736        raw_spin_unlock_irqrestore(&ctx->lock, flags);
4737        return 0;
4738}
4739
4740static int perf_read_group(struct perf_event *event,
4741                                   u64 read_format, char __user *buf)
4742{
4743        struct perf_event *leader = event->group_leader, *child;
4744        struct perf_event_context *ctx = leader->ctx;
4745        int ret;
4746        u64 *values;
4747
4748        lockdep_assert_held(&ctx->mutex);
4749
4750        values = kzalloc(event->read_size, GFP_KERNEL);
4751        if (!values)
4752                return -ENOMEM;
4753
4754        values[0] = 1 + leader->nr_siblings;
4755
4756        /*
4757         * By locking the child_mutex of the leader we effectively
4758         * lock the child list of all siblings.. XXX explain how.
4759         */
4760        mutex_lock(&leader->child_mutex);
4761
4762        ret = __perf_read_group_add(leader, read_format, values);
4763        if (ret)
4764                goto unlock;
4765
4766        list_for_each_entry(child, &leader->child_list, child_list) {
4767                ret = __perf_read_group_add(child, read_format, values);
4768                if (ret)
4769                        goto unlock;
4770        }
4771
4772        mutex_unlock(&leader->child_mutex);
4773
4774        ret = event->read_size;
4775        if (copy_to_user(buf, values, event->read_size))
4776                ret = -EFAULT;
4777        goto out;
4778
4779unlock:
4780        mutex_unlock(&leader->child_mutex);
4781out:
4782        kfree(values);
4783        return ret;
4784}
4785
4786static int perf_read_one(struct perf_event *event,
4787                                 u64 read_format, char __user *buf)
4788{
4789        u64 enabled, running;
4790        u64 values[4];
4791        int n = 0;
4792
4793        values[n++] = __perf_event_read_value(event, &enabled, &running);
4794        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4795                values[n++] = enabled;
4796        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4797                values[n++] = running;
4798        if (read_format & PERF_FORMAT_ID)
4799                values[n++] = primary_event_id(event);
4800
4801        if (copy_to_user(buf, values, n * sizeof(u64)))
4802                return -EFAULT;
4803
4804        return n * sizeof(u64);
4805}
4806
4807static bool is_event_hup(struct perf_event *event)
4808{
4809        bool no_children;
4810
4811        if (event->state > PERF_EVENT_STATE_EXIT)
4812                return false;
4813
4814        mutex_lock(&event->child_mutex);
4815        no_children = list_empty(&event->child_list);
4816        mutex_unlock(&event->child_mutex);
4817        return no_children;
4818}
4819
4820/*
4821 * Read the performance event - simple non blocking version for now
4822 */
4823static ssize_t
4824__perf_read(struct perf_event *event, char __user *buf, size_t count)
4825{
4826        u64 read_format = event->attr.read_format;
4827        int ret;
4828
4829        /*
4830         * Return end-of-file for a read on a event that is in
4831         * error state (i.e. because it was pinned but it couldn't be
4832         * scheduled on to the CPU at some point).
4833         */
4834        if (event->state == PERF_EVENT_STATE_ERROR)
4835                return 0;
4836
4837        if (count < event->read_size)
4838                return -ENOSPC;
4839
4840        WARN_ON_ONCE(event->ctx->parent_ctx);
4841        if (read_format & PERF_FORMAT_GROUP)
4842                ret = perf_read_group(event, read_format, buf);
4843        else
4844                ret = perf_read_one(event, read_format, buf);
4845
4846        return ret;
4847}
4848
4849static ssize_t
4850perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4851{
4852        struct perf_event *event = file->private_data;
4853        struct perf_event_context *ctx;
4854        int ret;
4855
4856        ctx = perf_event_ctx_lock(event);
4857        ret = __perf_read(event, buf, count);
4858        perf_event_ctx_unlock(event, ctx);
4859
4860        return ret;
4861}
4862
4863static __poll_t perf_poll(struct file *file, poll_table *wait)
4864{
4865        struct perf_event *event = file->private_data;
4866        struct ring_buffer *rb;
4867        __poll_t events = EPOLLHUP;
4868
4869        poll_wait(file, &event->waitq, wait);
4870
4871        if (is_event_hup(event))
4872                return events;
4873
4874        /*
4875         * Pin the event->rb by taking event->mmap_mutex; otherwise
4876         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4877         */
4878        mutex_lock(&event->mmap_mutex);
4879        rb = event->rb;
4880        if (rb)
4881                events = atomic_xchg(&rb->poll, 0);
4882        mutex_unlock(&event->mmap_mutex);
4883        return events;
4884}
4885
4886static void _perf_event_reset(struct perf_event *event)
4887{
4888        (void)perf_event_read(event, false);
4889        local64_set(&event->count, 0);
4890        perf_event_update_userpage(event);
4891}
4892
4893/*
4894 * Holding the top-level event's child_mutex means that any
4895 * descendant process that has inherited this event will block
4896 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897 * task existence requirements of perf_event_enable/disable.
4898 */
4899static void perf_event_for_each_child(struct perf_event *event,
4900                                        void (*func)(struct perf_event *))
4901{
4902        struct perf_event *child;
4903
4904        WARN_ON_ONCE(event->ctx->parent_ctx);
4905
4906        mutex_lock(&event->child_mutex);
4907        func(event);
4908        list_for_each_entry(child, &event->child_list, child_list)
4909                func(child);
4910        mutex_unlock(&event->child_mutex);
4911}
4912
4913static void perf_event_for_each(struct perf_event *event,
4914                                  void (*func)(struct perf_event *))
4915{
4916        struct perf_event_context *ctx = event->ctx;
4917        struct perf_event *sibling;
4918
4919        lockdep_assert_held(&ctx->mutex);
4920
4921        event = event->group_leader;
4922
4923        perf_event_for_each_child(event, func);
4924        for_each_sibling_event(sibling, event)
4925                perf_event_for_each_child(sibling, func);
4926}
4927
4928static void __perf_event_period(struct perf_event *event,
4929                                struct perf_cpu_context *cpuctx,
4930                                struct perf_event_context *ctx,
4931                                void *info)
4932{
4933        u64 value = *((u64 *)info);
4934        bool active;
4935
4936        if (event->attr.freq) {
4937                event->attr.sample_freq = value;
4938        } else {
4939                event->attr.sample_period = value;
4940                event->hw.sample_period = value;
4941        }
4942
4943        active = (event->state == PERF_EVENT_STATE_ACTIVE);
4944        if (active) {
4945                perf_pmu_disable(ctx->pmu);
4946                /*
4947                 * We could be throttled; unthrottle now to avoid the tick
4948                 * trying to unthrottle while we already re-started the event.
4949                 */
4950                if (event->hw.interrupts == MAX_INTERRUPTS) {
4951                        event->hw.interrupts = 0;
4952                        perf_log_throttle(event, 1);
4953                }
4954                event->pmu->stop(event, PERF_EF_UPDATE);
4955        }
4956
4957        local64_set(&event->hw.period_left, 0);
4958
4959        if (active) {
4960                event->pmu->start(event, PERF_EF_RELOAD);
4961                perf_pmu_enable(ctx->pmu);
4962        }
4963}
4964
4965static int perf_event_period(struct perf_event *event, u64 __user *arg)
4966{
4967        u64 value;
4968
4969        if (!is_sampling_event(event))
4970                return -EINVAL;
4971
4972        if (copy_from_user(&value, arg, sizeof(value)))
4973                return -EFAULT;
4974
4975        if (!value)
4976                return -EINVAL;
4977
4978        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4979                return -EINVAL;
4980
4981        event_function_call(event, __perf_event_period, &value);
4982
4983        return 0;
4984}
4985
4986static const struct file_operations perf_fops;
4987
4988static inline int perf_fget_light(int fd, struct fd *p)
4989{
4990        struct fd f = fdget(fd);
4991        if (!f.file)
4992                return -EBADF;
4993
4994        if (f.file->f_op != &perf_fops) {
4995                fdput(f);
4996                return -EBADF;
4997        }
4998        *p = f;
4999        return 0;
5000}
5001
5002static int perf_event_set_output(struct perf_event *event,
5003                                 struct perf_event *output_event);
5004static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5005static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5006static int perf_copy_attr(struct perf_event_attr __user *uattr,
5007                          struct perf_event_attr *attr);
5008
5009static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5010{
5011        void (*func)(struct perf_event *);
5012        u32 flags = arg;
5013
5014        switch (cmd) {
5015        case PERF_EVENT_IOC_ENABLE:
5016                func = _perf_event_enable;
5017                break;
5018        case PERF_EVENT_IOC_DISABLE:
5019                func = _perf_event_disable;
5020                break;
5021        case PERF_EVENT_IOC_RESET:
5022                func = _perf_event_reset;
5023                break;
5024
5025        case PERF_EVENT_IOC_REFRESH:
5026                return _perf_event_refresh(event, arg);
5027
5028        case PERF_EVENT_IOC_PERIOD:
5029                return perf_event_period(event, (u64 __user *)arg);
5030
5031        case PERF_EVENT_IOC_ID:
5032        {
5033                u64 id = primary_event_id(event);
5034
5035                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5036                        return -EFAULT;
5037                return 0;
5038        }
5039
5040        case PERF_EVENT_IOC_SET_OUTPUT:
5041        {
5042                int ret;
5043                if (arg != -1) {
5044                        struct perf_event *output_event;
5045                        struct fd output;
5046                        ret = perf_fget_light(arg, &output);
5047                        if (ret)
5048                                return ret;
5049                        output_event = output.file->private_data;
5050                        ret = perf_event_set_output(event, output_event);
5051                        fdput(output);
5052                } else {
5053                        ret = perf_event_set_output(event, NULL);
5054                }
5055                return ret;
5056        }
5057
5058        case PERF_EVENT_IOC_SET_FILTER:
5059                return perf_event_set_filter(event, (void __user *)arg);
5060
5061        case PERF_EVENT_IOC_SET_BPF:
5062                return perf_event_set_bpf_prog(event, arg);
5063
5064        case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5065                struct ring_buffer *rb;
5066
5067                rcu_read_lock();
5068                rb = rcu_dereference(event->rb);
5069                if (!rb || !rb->nr_pages) {
5070                        rcu_read_unlock();
5071                        return -EINVAL;
5072                }
5073                rb_toggle_paused(rb, !!arg);
5074                rcu_read_unlock();
5075                return 0;
5076        }
5077
5078        case PERF_EVENT_IOC_QUERY_BPF:
5079                return perf_event_query_prog_array(event, (void __user *)arg);
5080
5081        case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5082                struct perf_event_attr new_attr;
5083                int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5084                                         &new_attr);
5085
5086                if (err)
5087                        return err;
5088
5089                return perf_event_modify_attr(event,  &new_attr);
5090        }
5091        default:
5092                return -ENOTTY;
5093        }
5094
5095        if (flags & PERF_IOC_FLAG_GROUP)
5096                perf_event_for_each(event, func);
5097        else
5098                perf_event_for_each_child(event, func);
5099
5100        return 0;
5101}
5102
5103static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5104{
5105        struct perf_event *event = file->private_data;
5106        struct perf_event_context *ctx;
5107        long ret;
5108
5109        ctx = perf_event_ctx_lock(event);
5110        ret = _perf_ioctl(event, cmd, arg);
5111        perf_event_ctx_unlock(event, ctx);
5112
5113        return ret;
5114}
5115
5116#ifdef CONFIG_COMPAT
5117static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5118                                unsigned long arg)
5119{
5120        switch (_IOC_NR(cmd)) {
5121        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5122        case _IOC_NR(PERF_EVENT_IOC_ID):
5123                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5124                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5125                        cmd &= ~IOCSIZE_MASK;
5126                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5127                }
5128                break;
5129        }
5130        return perf_ioctl(file, cmd, arg);
5131}
5132#else
5133# define perf_compat_ioctl NULL
5134#endif
5135
5136int perf_event_task_enable(void)
5137{
5138        struct perf_event_context *ctx;
5139        struct perf_event *event;
5140
5141        mutex_lock(&current->perf_event_mutex);
5142        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5143                ctx = perf_event_ctx_lock(event);
5144                perf_event_for_each_child(event, _perf_event_enable);
5145                perf_event_ctx_unlock(event, ctx);
5146        }
5147        mutex_unlock(&current->perf_event_mutex);
5148
5149        return 0;
5150}
5151
5152int perf_event_task_disable(void)
5153{
5154        struct perf_event_context *ctx;
5155        struct perf_event *event;
5156
5157        mutex_lock(&current->perf_event_mutex);
5158        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5159                ctx = perf_event_ctx_lock(event);
5160                perf_event_for_each_child(event, _perf_event_disable);
5161                perf_event_ctx_unlock(event, ctx);
5162        }
5163        mutex_unlock(&current->perf_event_mutex);
5164
5165        return 0;
5166}
5167
5168static int perf_event_index(struct perf_event *event)
5169{
5170        if (event->hw.state & PERF_HES_STOPPED)
5171                return 0;
5172
5173        if (event->state != PERF_EVENT_STATE_ACTIVE)
5174                return 0;
5175
5176        return event->pmu->event_idx(event);
5177}
5178
5179static void calc_timer_values(struct perf_event *event,
5180                                u64 *now,
5181                                u64 *enabled,
5182                                u64 *running)
5183{
5184        u64 ctx_time;
5185
5186        *now = perf_clock();
5187        ctx_time = event->shadow_ctx_time + *now;
5188        __perf_update_times(event, ctx_time, enabled, running);
5189}
5190
5191static void perf_event_init_userpage(struct perf_event *event)
5192{
5193        struct perf_event_mmap_page *userpg;
5194        struct ring_buffer *rb;
5195
5196        rcu_read_lock();
5197        rb = rcu_dereference(event->rb);
5198        if (!rb)
5199                goto unlock;
5200
5201        userpg = rb->user_page;
5202
5203        /* Allow new userspace to detect that bit 0 is deprecated */
5204        userpg->cap_bit0_is_deprecated = 1;
5205        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5206        userpg->data_offset = PAGE_SIZE;
5207        userpg->data_size = perf_data_size(rb);
5208
5209unlock:
5210        rcu_read_unlock();
5211}
5212
5213void __weak arch_perf_update_userpage(
5214        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5215{
5216}
5217
5218/*
5219 * Callers need to ensure there can be no nesting of this function, otherwise
5220 * the seqlock logic goes bad. We can not serialize this because the arch
5221 * code calls this from NMI context.
5222 */
5223void perf_event_update_userpage(struct perf_event *event)
5224{
5225        struct perf_event_mmap_page *userpg;
5226        struct ring_buffer *rb;
5227        u64 enabled, running, now;
5228
5229        rcu_read_lock();
5230        rb = rcu_dereference(event->rb);
5231        if (!rb)
5232                goto unlock;
5233
5234        /*
5235         * compute total_time_enabled, total_time_running
5236         * based on snapshot values taken when the event
5237         * was last scheduled in.
5238         *
5239         * we cannot simply called update_context_time()
5240         * because of locking issue as we can be called in
5241         * NMI context
5242         */
5243        calc_timer_values(event, &now, &enabled, &running);
5244
5245        userpg = rb->user_page;
5246        /*
5247         * Disable preemption so as to not let the corresponding user-space
5248         * spin too long if we get preempted.
5249         */
5250        preempt_disable();
5251        ++userpg->lock;
5252        barrier();
5253        userpg->index = perf_event_index(event);
5254        userpg->offset = perf_event_count(event);
5255        if (userpg->index)
5256                userpg->offset -= local64_read(&event->hw.prev_count);
5257
5258        userpg->time_enabled = enabled +
5259                        atomic64_read(&event->child_total_time_enabled);
5260
5261        userpg->time_running = running +
5262                        atomic64_read(&event->child_total_time_running);
5263
5264        arch_perf_update_userpage(event, userpg, now);
5265
5266        barrier();
5267        ++userpg->lock;
5268        preempt_enable();
5269unlock:
5270        rcu_read_unlock();
5271}
5272EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5273
5274static int perf_mmap_fault(struct vm_fault *vmf)
5275{
5276        struct perf_event *event = vmf->vma->vm_file->private_data;
5277        struct ring_buffer *rb;
5278        int ret = VM_FAULT_SIGBUS;
5279
5280        if (vmf->flags & FAULT_FLAG_MKWRITE) {
5281                if (vmf->pgoff == 0)
5282                        ret = 0;
5283                return ret;
5284        }
5285
5286        rcu_read_lock();
5287        rb = rcu_dereference(event->rb);
5288        if (!rb)
5289                goto unlock;
5290
5291        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5292                goto unlock;
5293
5294        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5295        if (!vmf->page)
5296                goto unlock;
5297
5298        get_page(vmf->page);
5299        vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5300        vmf->page->index   = vmf->pgoff;
5301
5302        ret = 0;
5303unlock:
5304        rcu_read_unlock();
5305
5306        return ret;
5307}
5308
5309static void ring_buffer_attach(struct perf_event *event,
5310                               struct ring_buffer *rb)
5311{
5312        struct ring_buffer *old_rb = NULL;
5313        unsigned long flags;
5314
5315        if (event->rb) {
5316                /*
5317                 * Should be impossible, we set this when removing
5318                 * event->rb_entry and wait/clear when adding event->rb_entry.
5319                 */
5320                WARN_ON_ONCE(event->rcu_pending);
5321
5322                old_rb = event->rb;
5323                spin_lock_irqsave(&old_rb->event_lock, flags);
5324                list_del_rcu(&event->rb_entry);
5325                spin_unlock_irqrestore(&old_rb->event_lock, flags);
5326
5327                event->rcu_batches = get_state_synchronize_rcu();
5328                event->rcu_pending = 1;
5329        }
5330
5331        if (rb) {
5332                if (event->rcu_pending) {
5333                        cond_synchronize_rcu(event->rcu_batches);
5334                        event->rcu_pending = 0;
5335                }
5336
5337                spin_lock_irqsave(&rb->event_lock, flags);
5338                list_add_rcu(&event->rb_entry, &rb->event_list);
5339                spin_unlock_irqrestore(&rb->event_lock, flags);
5340        }
5341
5342        /*
5343         * Avoid racing with perf_mmap_close(AUX): stop the event
5344         * before swizzling the event::rb pointer; if it's getting
5345         * unmapped, its aux_mmap_count will be 0 and it won't
5346         * restart. See the comment in __perf_pmu_output_stop().
5347         *
5348         * Data will inevitably be lost when set_output is done in
5349         * mid-air, but then again, whoever does it like this is
5350         * not in for the data anyway.
5351         */
5352        if (has_aux(event))
5353                perf_event_stop(event, 0);
5354
5355        rcu_assign_pointer(event->rb, rb);
5356
5357        if (old_rb) {
5358                ring_buffer_put(old_rb);
5359                /*
5360                 * Since we detached before setting the new rb, so that we
5361                 * could attach the new rb, we could have missed a wakeup.
5362                 * Provide it now.
5363                 */
5364                wake_up_all(&event->waitq);
5365        }
5366}
5367
5368static void ring_buffer_wakeup(struct perf_event *event)
5369{
5370        struct ring_buffer *rb;
5371
5372        rcu_read_lock();
5373        rb = rcu_dereference(event->rb);
5374        if (rb) {
5375                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5376                        wake_up_all(&event->waitq);
5377        }
5378        rcu_read_unlock();
5379}
5380
5381struct ring_buffer *ring_buffer_get(struct perf_event *event)
5382{
5383        struct ring_buffer *rb;
5384
5385        rcu_read_lock();
5386        rb = rcu_dereference(event->rb);
5387        if (rb) {
5388                if (!atomic_inc_not_zero(&rb->refcount))
5389                        rb = NULL;
5390        }
5391        rcu_read_unlock();
5392
5393        return rb;
5394}
5395
5396void ring_buffer_put(struct ring_buffer *rb)
5397{
5398        if (!atomic_dec_and_test(&rb->refcount))
5399                return;
5400
5401        WARN_ON_ONCE(!list_empty(&rb->event_list));
5402
5403        call_rcu(&rb->rcu_head, rb_free_rcu);
5404}
5405
5406static void perf_mmap_open(struct vm_area_struct *vma)
5407{
5408        struct perf_event *event = vma->vm_file->private_data;
5409
5410        atomic_inc(&event->mmap_count);
5411        atomic_inc(&event->rb->mmap_count);
5412
5413        if (vma->vm_pgoff)
5414                atomic_inc(&event->rb->aux_mmap_count);
5415
5416        if (event->pmu->event_mapped)
5417                event->pmu->event_mapped(event, vma->vm_mm);
5418}
5419
5420static void perf_pmu_output_stop(struct perf_event *event);
5421
5422/*
5423 * A buffer can be mmap()ed multiple times; either directly through the same
5424 * event, or through other events by use of perf_event_set_output().
5425 *
5426 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5427 * the buffer here, where we still have a VM context. This means we need
5428 * to detach all events redirecting to us.
5429 */
5430static void perf_mmap_close(struct vm_area_struct *vma)
5431{
5432        struct perf_event *event = vma->vm_file->private_data;
5433
5434        struct ring_buffer *rb = ring_buffer_get(event);
5435        struct user_struct *mmap_user = rb->mmap_user;
5436        int mmap_locked = rb->mmap_locked;
5437        unsigned long size = perf_data_size(rb);
5438
5439        if (event->pmu->event_unmapped)
5440                event->pmu->event_unmapped(event, vma->vm_mm);
5441
5442        /*
5443         * rb->aux_mmap_count will always drop before rb->mmap_count and
5444         * event->mmap_count, so it is ok to use event->mmap_mutex to
5445         * serialize with perf_mmap here.
5446         */
5447        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5448            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5449                /*
5450                 * Stop all AUX events that are writing to this buffer,
5451                 * so that we can free its AUX pages and corresponding PMU
5452                 * data. Note that after rb::aux_mmap_count dropped to zero,
5453                 * they won't start any more (see perf_aux_output_begin()).
5454                 */
5455                perf_pmu_output_stop(event);
5456
5457                /* now it's safe to free the pages */
5458                atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5459                vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5460
5461                /* this has to be the last one */
5462                rb_free_aux(rb);
5463                WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5464
5465                mutex_unlock(&event->mmap_mutex);
5466        }
5467
5468        atomic_dec(&rb->mmap_count);
5469
5470        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5471                goto out_put;
5472
5473        ring_buffer_attach(event, NULL);
5474        mutex_unlock(&event->mmap_mutex);
5475
5476        /* If there's still other mmap()s of this buffer, we're done. */
5477        if (atomic_read(&rb->mmap_count))
5478                goto out_put;
5479
5480        /*
5481         * No other mmap()s, detach from all other events that might redirect
5482         * into the now unreachable buffer. Somewhat complicated by the
5483         * fact that rb::event_lock otherwise nests inside mmap_mutex.
5484         */
5485again:
5486        rcu_read_lock();
5487        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5488                if (!atomic_long_inc_not_zero(&event->refcount)) {
5489                        /*
5490                         * This event is en-route to free_event() which will
5491                         * detach it and remove it from the list.
5492                         */
5493                        continue;
5494                }
5495                rcu_read_unlock();
5496
5497                mutex_lock(&event->mmap_mutex);
5498                /*
5499                 * Check we didn't race with perf_event_set_output() which can
5500                 * swizzle the rb from under us while we were waiting to
5501                 * acquire mmap_mutex.
5502                 *
5503                 * If we find a different rb; ignore this event, a next
5504                 * iteration will no longer find it on the list. We have to
5505                 * still restart the iteration to make sure we're not now
5506                 * iterating the wrong list.
5507                 */
5508                if (event->rb == rb)
5509                        ring_buffer_attach(event, NULL);
5510
5511                mutex_unlock(&event->mmap_mutex);
5512                put_event(event);
5513
5514                /*
5515                 * Restart the iteration; either we're on the wrong list or
5516                 * destroyed its integrity by doing a deletion.
5517                 */
5518                goto again;
5519        }
5520        rcu_read_unlock();
5521
5522        /*
5523         * It could be there's still a few 0-ref events on the list; they'll
5524         * get cleaned up by free_event() -- they'll also still have their
5525         * ref on the rb and will free it whenever they are done with it.
5526         *
5527         * Aside from that, this buffer is 'fully' detached and unmapped,
5528         * undo the VM accounting.
5529         */
5530
5531        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5532        vma->vm_mm->pinned_vm -= mmap_locked;
5533        free_uid(mmap_user);
5534
5535out_put:
5536        ring_buffer_put(rb); /* could be last */
5537}
5538
5539static const struct vm_operations_struct perf_mmap_vmops = {
5540        .open           = perf_mmap_open,
5541        .close          = perf_mmap_close, /* non mergable */
5542        .fault          = perf_mmap_fault,
5543        .page_mkwrite   = perf_mmap_fault,
5544};
5545
5546static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5547{
5548        struct perf_event *event = file->private_data;
5549        unsigned long user_locked, user_lock_limit;
5550        struct user_struct *user = current_user();
5551        unsigned long locked, lock_limit;
5552        struct ring_buffer *rb = NULL;
5553        unsigned long vma_size;
5554        unsigned long nr_pages;
5555        long user_extra = 0, extra = 0;
5556        int ret = 0, flags = 0;
5557
5558        /*
5559         * Don't allow mmap() of inherited per-task counters. This would
5560         * create a performance issue due to all children writing to the
5561         * same rb.
5562         */
5563        if (event->cpu == -1 && event->attr.inherit)
5564                return -EINVAL;
5565
5566        if (!(vma->vm_flags & VM_SHARED))
5567                return -EINVAL;
5568
5569        vma_size = vma->vm_end - vma->vm_start;
5570
5571        if (vma->vm_pgoff == 0) {
5572                nr_pages = (vma_size / PAGE_SIZE) - 1;
5573        } else {
5574                /*
5575                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5576                 * mapped, all subsequent mappings should have the same size
5577                 * and offset. Must be above the normal perf buffer.
5578                 */
5579                u64 aux_offset, aux_size;
5580
5581                if (!event->rb)
5582                        return -EINVAL;
5583
5584                nr_pages = vma_size / PAGE_SIZE;
5585
5586                mutex_lock(&event->mmap_mutex);
5587                ret = -EINVAL;
5588
5589                rb = event->rb;
5590                if (!rb)
5591                        goto aux_unlock;
5592
5593                aux_offset = READ_ONCE(rb->user_page->aux_offset);
5594                aux_size = READ_ONCE(rb->user_page->aux_size);
5595
5596                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5597                        goto aux_unlock;
5598
5599                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5600                        goto aux_unlock;
5601
5602                /* already mapped with a different offset */
5603                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5604                        goto aux_unlock;
5605
5606                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5607                        goto aux_unlock;
5608
5609                /* already mapped with a different size */
5610                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5611                        goto aux_unlock;
5612
5613                if (!is_power_of_2(nr_pages))
5614                        goto aux_unlock;
5615
5616                if (!atomic_inc_not_zero(&rb->mmap_count))
5617                        goto aux_unlock;
5618
5619                if (rb_has_aux(rb)) {
5620                        atomic_inc(&rb->aux_mmap_count);
5621                        ret = 0;
5622                        goto unlock;
5623                }
5624
5625                atomic_set(&rb->aux_mmap_count, 1);
5626                user_extra = nr_pages;
5627
5628                goto accounting;
5629        }
5630
5631        /*
5632         * If we have rb pages ensure they're a power-of-two number, so we
5633         * can do bitmasks instead of modulo.
5634         */
5635        if (nr_pages != 0 && !is_power_of_2(nr_pages))
5636                return -EINVAL;
5637
5638        if (vma_size != PAGE_SIZE * (1 + nr_pages))
5639                return -EINVAL;
5640
5641        WARN_ON_ONCE(event->ctx->parent_ctx);
5642again:
5643        mutex_lock(&event->mmap_mutex);
5644        if (event->rb) {
5645                if (event->rb->nr_pages != nr_pages) {
5646                        ret = -EINVAL;
5647                        goto unlock;
5648                }
5649
5650                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5651                        /*
5652                         * Raced against perf_mmap_close() through
5653                         * perf_event_set_output(). Try again, hope for better
5654                         * luck.
5655                         */
5656                        mutex_unlock(&event->mmap_mutex);
5657                        goto again;
5658                }
5659
5660                goto unlock;
5661        }
5662
5663        user_extra = nr_pages + 1;
5664
5665accounting:
5666        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5667
5668        /*
5669         * Increase the limit linearly with more CPUs:
5670         */
5671        user_lock_limit *= num_online_cpus();
5672
5673        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5674
5675        if (user_locked > user_lock_limit)
5676                extra = user_locked - user_lock_limit;
5677
5678        lock_limit = rlimit(RLIMIT_MEMLOCK);
5679        lock_limit >>= PAGE_SHIFT;
5680        locked = vma->vm_mm->pinned_vm + extra;
5681
5682        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5683                !capable(CAP_IPC_LOCK)) {
5684                ret = -EPERM;
5685                goto unlock;
5686        }
5687
5688        WARN_ON(!rb && event->rb);
5689
5690        if (vma->vm_flags & VM_WRITE)
5691                flags |= RING_BUFFER_WRITABLE;
5692
5693        if (!rb) {
5694                rb = rb_alloc(nr_pages,
5695                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
5696                              event->cpu, flags);
5697
5698                if (!rb) {
5699                        ret = -ENOMEM;
5700                        goto unlock;
5701                }
5702
5703                atomic_set(&rb->mmap_count, 1);
5704                rb->mmap_user = get_current_user();
5705                rb->mmap_locked = extra;
5706
5707                ring_buffer_attach(event, rb);
5708
5709                perf_event_init_userpage(event);
5710                perf_event_update_userpage(event);
5711        } else {
5712                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5713                                   event->attr.aux_watermark, flags);
5714                if (!ret)
5715                        rb->aux_mmap_locked = extra;
5716        }
5717
5718unlock:
5719        if (!ret) {
5720                atomic_long_add(user_extra, &user->locked_vm);
5721                vma->vm_mm->pinned_vm += extra;
5722
5723                atomic_inc(&event->mmap_count);
5724        } else if (rb) {
5725                atomic_dec(&rb->mmap_count);
5726        }
5727aux_unlock:
5728        mutex_unlock(&event->mmap_mutex);
5729
5730        /*
5731         * Since pinned accounting is per vm we cannot allow fork() to copy our
5732         * vma.
5733         */
5734        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5735        vma->vm_ops = &perf_mmap_vmops;
5736
5737        if (event->pmu->event_mapped)
5738                event->pmu->event_mapped(event, vma->vm_mm);
5739
5740        return ret;
5741}
5742
5743static int perf_fasync(int fd, struct file *filp, int on)
5744{
5745        struct inode *inode = file_inode(filp);
5746        struct perf_event *event = filp->private_data;
5747        int retval;
5748
5749        inode_lock(inode);
5750        retval = fasync_helper(fd, filp, on, &event->fasync);
5751        inode_unlock(inode);
5752
5753        if (retval < 0)
5754                return retval;
5755
5756        return 0;
5757}
5758
5759static const struct file_operations perf_fops = {
5760        .llseek                 = no_llseek,
5761        .release                = perf_release,
5762        .read                   = perf_read,
5763        .poll                   = perf_poll,
5764        .unlocked_ioctl         = perf_ioctl,
5765        .compat_ioctl           = perf_compat_ioctl,
5766        .mmap                   = perf_mmap,
5767        .fasync                 = perf_fasync,
5768};
5769
5770/*
5771 * Perf event wakeup
5772 *
5773 * If there's data, ensure we set the poll() state and publish everything
5774 * to user-space before waking everybody up.
5775 */
5776
5777static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5778{
5779        /* only the parent has fasync state */
5780        if (event->parent)
5781                event = event->parent;
5782        return &event->fasync;
5783}
5784
5785void perf_event_wakeup(struct perf_event *event)
5786{
5787        ring_buffer_wakeup(event);
5788
5789        if (event->pending_kill) {
5790                kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5791                event->pending_kill = 0;
5792        }
5793}
5794
5795static void perf_pending_event(struct irq_work *entry)
5796{
5797        struct perf_event *event = container_of(entry,
5798                        struct perf_event, pending);
5799        int rctx;
5800
5801        rctx = perf_swevent_get_recursion_context();
5802        /*
5803         * If we 'fail' here, that's OK, it means recursion is already disabled
5804         * and we won't recurse 'further'.
5805         */
5806
5807        if (event->pending_disable) {
5808                event->pending_disable = 0;
5809                perf_event_disable_local(event);
5810        }
5811
5812        if (event->pending_wakeup) {
5813                event->pending_wakeup = 0;
5814                perf_event_wakeup(event);
5815        }
5816
5817        if (rctx >= 0)
5818                perf_swevent_put_recursion_context(rctx);
5819}
5820
5821/*
5822 * We assume there is only KVM supporting the callbacks.
5823 * Later on, we might change it to a list if there is
5824 * another virtualization implementation supporting the callbacks.
5825 */
5826struct perf_guest_info_callbacks *perf_guest_cbs;
5827
5828int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5829{
5830        perf_guest_cbs = cbs;
5831        return 0;
5832}
5833EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5834
5835int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5836{
5837        perf_guest_cbs = NULL;
5838        return 0;
5839}
5840EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5841
5842static void
5843perf_output_sample_regs(struct perf_output_handle *handle,
5844                        struct pt_regs *regs, u64 mask)
5845{
5846        int bit;
5847        DECLARE_BITMAP(_mask, 64);
5848
5849        bitmap_from_u64(_mask, mask);
5850        for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5851                u64 val;
5852
5853                val = perf_reg_value(regs, bit);
5854                perf_output_put(handle, val);
5855        }
5856}
5857
5858static void perf_sample_regs_user(struct perf_regs *regs_user,
5859                                  struct pt_regs *regs,
5860                                  struct pt_regs *regs_user_copy)
5861{
5862        if (user_mode(regs)) {
5863                regs_user->abi = perf_reg_abi(current);
5864                regs_user->regs = regs;
5865        } else if (current->mm) {
5866                perf_get_regs_user(regs_user, regs, regs_user_copy);
5867        } else {
5868                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5869                regs_user->regs = NULL;
5870        }
5871}
5872
5873static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5874                                  struct pt_regs *regs)
5875{
5876        regs_intr->regs = regs;
5877        regs_intr->abi  = perf_reg_abi(current);
5878}
5879
5880
5881/*
5882 * Get remaining task size from user stack pointer.
5883 *
5884 * It'd be better to take stack vma map and limit this more
5885 * precisly, but there's no way to get it safely under interrupt,
5886 * so using TASK_SIZE as limit.
5887 */
5888static u64 perf_ustack_task_size(struct pt_regs *regs)
5889{
5890        unsigned long addr = perf_user_stack_pointer(regs);
5891
5892        if (!addr || addr >= TASK_SIZE)
5893                return 0;
5894
5895        return TASK_SIZE - addr;
5896}
5897
5898static u16
5899perf_sample_ustack_size(u16 stack_size, u16 header_size,
5900                        struct pt_regs *regs)
5901{
5902        u64 task_size;
5903
5904        /* No regs, no stack pointer, no dump. */
5905        if (!regs)
5906                return 0;
5907
5908        /*
5909         * Check if we fit in with the requested stack size into the:
5910         * - TASK_SIZE
5911         *   If we don't, we limit the size to the TASK_SIZE.
5912         *
5913         * - remaining sample size
5914         *   If we don't, we customize the stack size to
5915         *   fit in to the remaining sample size.
5916         */
5917
5918        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5919        stack_size = min(stack_size, (u16) task_size);
5920
5921        /* Current header size plus static size and dynamic size. */
5922        header_size += 2 * sizeof(u64);
5923
5924        /* Do we fit in with the current stack dump size? */
5925        if ((u16) (header_size + stack_size) < header_size) {
5926                /*
5927                 * If we overflow the maximum size for the sample,
5928                 * we customize the stack dump size to fit in.
5929                 */
5930                stack_size = USHRT_MAX - header_size - sizeof(u64);
5931                stack_size = round_up(stack_size, sizeof(u64));
5932        }
5933
5934        return stack_size;
5935}
5936
5937static void
5938perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5939                          struct pt_regs *regs)
5940{
5941        /* Case of a kernel thread, nothing to dump */
5942        if (!regs) {
5943                u64 size = 0;
5944                perf_output_put(handle, size);
5945        } else {
5946                unsigned long sp;
5947                unsigned int rem;
5948                u64 dyn_size;
5949
5950                /*
5951                 * We dump:
5952                 * static size
5953                 *   - the size requested by user or the best one we can fit
5954                 *     in to the sample max size
5955                 * data
5956                 *   - user stack dump data
5957                 * dynamic size
5958                 *   - the actual dumped size
5959                 */
5960
5961                /* Static size. */
5962                perf_output_put(handle, dump_size);
5963
5964                /* Data. */
5965                sp = perf_user_stack_pointer(regs);
5966                rem = __output_copy_user(handle, (void *) sp, dump_size);
5967                dyn_size = dump_size - rem;
5968
5969                perf_output_skip(handle, rem);
5970
5971                /* Dynamic size. */
5972                perf_output_put(handle, dyn_size);
5973        }
5974}
5975
5976static void __perf_event_header__init_id(struct perf_event_header *header,
5977                                         struct perf_sample_data *data,
5978                                         struct perf_event *event)
5979{
5980        u64 sample_type = event->attr.sample_type;
5981
5982        data->type = sample_type;
5983        header->size += event->id_header_size;
5984
5985        if (sample_type & PERF_SAMPLE_TID) {
5986                /* namespace issues */
5987                data->tid_entry.pid = perf_event_pid(event, current);
5988                data->tid_entry.tid = perf_event_tid(event, current);
5989        }
5990
5991        if (sample_type & PERF_SAMPLE_TIME)
5992                data->time = perf_event_clock(event);
5993
5994        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5995                data->id = primary_event_id(event);
5996
5997        if (sample_type & PERF_SAMPLE_STREAM_ID)
5998                data->stream_id = event->id;
5999
6000        if (sample_type & PERF_SAMPLE_CPU) {
6001                data->cpu_entry.cpu      = raw_smp_processor_id();
6002                data->cpu_entry.reserved = 0;
6003        }
6004}
6005
6006void perf_event_header__init_id(struct perf_event_header *header,
6007                                struct perf_sample_data *data,
6008                                struct perf_event *event)
6009{
6010        if (event->attr.sample_id_all)
6011                __perf_event_header__init_id(header, data, event);
6012}
6013
6014static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6015                                           struct perf_sample_data *data)
6016{
6017        u64 sample_type = data->type;
6018
6019        if (sample_type & PERF_SAMPLE_TID)
6020                perf_output_put(handle, data->tid_entry);
6021
6022        if (sample_type & PERF_SAMPLE_TIME)
6023                perf_output_put(handle, data->time);
6024
6025        if (sample_type & PERF_SAMPLE_ID)
6026                perf_output_put(handle, data->id);
6027
6028        if (sample_type & PERF_SAMPLE_STREAM_ID)
6029                perf_output_put(handle, data->stream_id);
6030
6031        if (sample_type & PERF_SAMPLE_CPU)
6032                perf_output_put(handle, data->cpu_entry);
6033
6034        if (sample_type & PERF_SAMPLE_IDENTIFIER)
6035                perf_output_put(handle, data->id);
6036}
6037
6038void perf_event__output_id_sample(struct perf_event *event,
6039                                  struct perf_output_handle *handle,
6040                                  struct perf_sample_data *sample)
6041{
6042        if (event->attr.sample_id_all)
6043                __perf_event__output_id_sample(handle, sample);
6044}
6045
6046static void perf_output_read_one(struct perf_output_handle *handle,
6047                                 struct perf_event *event,
6048                                 u64 enabled, u64 running)
6049{
6050        u64 read_format = event->attr.read_format;
6051        u64 values[4];
6052        int n = 0;
6053
6054        values[n++] = perf_event_count(event);
6055        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6056                values[n++] = enabled +
6057                        atomic64_read(&event->child_total_time_enabled);
6058        }
6059        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6060                values[n++] = running +
6061                        atomic64_read(&event->child_total_time_running);
6062        }
6063        if (read_format & PERF_FORMAT_ID)
6064                values[n++] = primary_event_id(event);
6065
6066        __output_copy(handle, values, n * sizeof(u64));
6067}
6068
6069static void perf_output_read_group(struct perf_output_handle *handle,
6070                            struct perf_event *event,
6071                            u64 enabled, u64 running)
6072{
6073        struct perf_event *leader = event->group_leader, *sub;
6074        u64 read_format = event->attr.read_format;
6075        u64 values[5];
6076        int n = 0;
6077
6078        values[n++] = 1 + leader->nr_siblings;
6079
6080        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6081                values[n++] = enabled;
6082
6083        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6084                values[n++] = running;
6085
6086        if ((leader != event) &&
6087            (leader->state == PERF_EVENT_STATE_ACTIVE))
6088                leader->pmu->read(leader);
6089
6090        values[n++] = perf_event_count(leader);
6091        if (read_format & PERF_FORMAT_ID)
6092                values[n++] = primary_event_id(leader);
6093
6094        __output_copy(handle, values, n * sizeof(u64));
6095
6096        for_each_sibling_event(sub, leader) {
6097                n = 0;
6098
6099                if ((sub != event) &&
6100                    (sub->state == PERF_EVENT_STATE_ACTIVE))
6101                        sub->pmu->read(sub);
6102
6103                values[n++] = perf_event_count(sub);
6104                if (read_format & PERF_FORMAT_ID)
6105                        values[n++] = primary_event_id(sub);
6106
6107                __output_copy(handle, values, n * sizeof(u64));
6108        }
6109}
6110
6111#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6112                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
6113
6114/*
6115 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6116 *
6117 * The problem is that its both hard and excessively expensive to iterate the
6118 * child list, not to mention that its impossible to IPI the children running
6119 * on another CPU, from interrupt/NMI context.
6120 */
6121static void perf_output_read(struct perf_output_handle *handle,
6122                             struct perf_event *event)
6123{
6124        u64 enabled = 0, running = 0, now;
6125        u64 read_format = event->attr.read_format;
6126
6127        /*
6128         * compute total_time_enabled, total_time_running
6129         * based on snapshot values taken when the event
6130         * was last scheduled in.
6131         *
6132         * we cannot simply called update_context_time()
6133         * because of locking issue as we are called in
6134         * NMI context
6135         */
6136        if (read_format & PERF_FORMAT_TOTAL_TIMES)
6137                calc_timer_values(event, &now, &enabled, &running);
6138
6139        if (event->attr.read_format & PERF_FORMAT_GROUP)
6140                perf_output_read_group(handle, event, enabled, running);
6141        else
6142                perf_output_read_one(handle, event, enabled, running);
6143}
6144
6145void perf_output_sample(struct perf_output_handle *handle,
6146                        struct perf_event_header *header,
6147                        struct perf_sample_data *data,
6148                        struct perf_event *event)
6149{
6150        u64 sample_type = data->type;
6151
6152        perf_output_put(handle, *header);
6153
6154        if (sample_type & PERF_SAMPLE_IDENTIFIER)
6155                perf_output_put(handle, data->id);
6156
6157        if (sample_type & PERF_SAMPLE_IP)
6158                perf_output_put(handle, data->ip);
6159
6160        if (sample_type & PERF_SAMPLE_TID)
6161                perf_output_put(handle, data->tid_entry);
6162
6163        if (sample_type & PERF_SAMPLE_TIME)
6164                perf_output_put(handle, data->time);
6165
6166        if (sample_type & PERF_SAMPLE_ADDR)
6167                perf_output_put(handle, data->addr);
6168
6169        if (sample_type & PERF_SAMPLE_ID)
6170                perf_output_put(handle, data->id);
6171
6172        if (sample_type & PERF_SAMPLE_STREAM_ID)
6173                perf_output_put(handle, data->stream_id);
6174
6175        if (sample_type & PERF_SAMPLE_CPU)
6176                perf_output_put(handle, data->cpu_entry);
6177
6178        if (sample_type & PERF_SAMPLE_PERIOD)
6179                perf_output_put(handle, data->period);
6180
6181        if (sample_type & PERF_SAMPLE_READ)
6182                perf_output_read(handle, event);
6183
6184        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6185                int size = 1;
6186
6187                size += data->callchain->nr;
6188                size *= sizeof(u64);
6189                __output_copy(handle, data->callchain, size);
6190        }
6191
6192        if (sample_type & PERF_SAMPLE_RAW) {
6193                struct perf_raw_record *raw = data->raw;
6194
6195                if (raw) {
6196                        struct perf_raw_frag *frag = &raw->frag;
6197
6198                        perf_output_put(handle, raw->size);
6199                        do {
6200                                if (frag->copy) {
6201                                        __output_custom(handle, frag->copy,
6202                                                        frag->data, frag->size);
6203                                } else {
6204                                        __output_copy(handle, frag->data,
6205                                                      frag->size);
6206                                }
6207                                if (perf_raw_frag_last(frag))
6208                                        break;
6209                                frag = frag->next;
6210                        } while (1);
6211                        if (frag->pad)
6212                                __output_skip(handle, NULL, frag->pad);
6213                } else {
6214                        struct {
6215                                u32     size;
6216                                u32     data;
6217                        } raw = {
6218                                .size = sizeof(u32),
6219                                .data = 0,
6220                        };
6221                        perf_output_put(handle, raw);
6222                }
6223        }
6224
6225        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6226                if (data->br_stack) {
6227                        size_t size;
6228
6229                        size = data->br_stack->nr
6230                             * sizeof(struct perf_branch_entry);
6231
6232                        perf_output_put(handle, data->br_stack->nr);
6233                        perf_output_copy(handle, data->br_stack->entries, size);
6234                } else {
6235                        /*
6236                         * we always store at least the value of nr
6237                         */
6238                        u64 nr = 0;
6239                        perf_output_put(handle, nr);
6240                }
6241        }
6242
6243        if (sample_type & PERF_SAMPLE_REGS_USER) {
6244                u64 abi = data->regs_user.abi;
6245
6246                /*
6247                 * If there are no regs to dump, notice it through
6248                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6249                 */
6250                perf_output_put(handle, abi);
6251
6252                if (abi) {
6253                        u64 mask = event->attr.sample_regs_user;
6254                        perf_output_sample_regs(handle,
6255                                                data->regs_user.regs,
6256                                                mask);
6257                }
6258        }
6259
6260        if (sample_type & PERF_SAMPLE_STACK_USER) {
6261                perf_output_sample_ustack(handle,
6262                                          data->stack_user_size,
6263                                          data->regs_user.regs);
6264        }
6265
6266        if (sample_type & PERF_SAMPLE_WEIGHT)
6267                perf_output_put(handle, data->weight);
6268
6269        if (sample_type & PERF_SAMPLE_DATA_SRC)
6270                perf_output_put(handle, data->data_src.val);
6271
6272        if (sample_type & PERF_SAMPLE_TRANSACTION)
6273                perf_output_put(handle, data->txn);
6274
6275        if (sample_type & PERF_SAMPLE_REGS_INTR) {
6276                u64 abi = data->regs_intr.abi;
6277                /*
6278                 * If there are no regs to dump, notice it through
6279                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6280                 */
6281                perf_output_put(handle, abi);
6282
6283                if (abi) {
6284                        u64 mask = event->attr.sample_regs_intr;
6285
6286                        perf_output_sample_regs(handle,
6287                                                data->regs_intr.regs,
6288                                                mask);
6289                }
6290        }
6291
6292        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6293                perf_output_put(handle, data->phys_addr);
6294
6295        if (!event->attr.watermark) {
6296                int wakeup_events = event->attr.wakeup_events;
6297
6298                if (wakeup_events) {
6299                        struct ring_buffer *rb = handle->rb;
6300                        int events = local_inc_return(&rb->events);
6301
6302                        if (events >= wakeup_events) {
6303                                local_sub(wakeup_events, &rb->events);
6304                                local_inc(&rb->wakeup);
6305                        }
6306                }
6307        }
6308}
6309
6310static u64 perf_virt_to_phys(u64 virt)
6311{
6312        u64 phys_addr = 0;
6313        struct page *p = NULL;
6314
6315        if (!virt)
6316                return 0;
6317
6318        if (virt >= TASK_SIZE) {
6319                /* If it's vmalloc()d memory, leave phys_addr as 0 */
6320                if (virt_addr_valid((void *)(uintptr_t)virt) &&
6321                    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6322                        phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6323        } else {
6324                /*
6325                 * Walking the pages tables for user address.
6326                 * Interrupts are disabled, so it prevents any tear down
6327                 * of the page tables.
6328                 * Try IRQ-safe __get_user_pages_fast first.
6329                 * If failed, leave phys_addr as 0.
6330                 */
6331                if ((current->mm != NULL) &&
6332                    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6333                        phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6334
6335                if (p)
6336                        put_page(p);
6337        }
6338
6339        return phys_addr;
6340}
6341
6342static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6343
6344static struct perf_callchain_entry *
6345perf_callchain(struct perf_event *event, struct pt_regs *regs)
6346{
6347        bool kernel = !event->attr.exclude_callchain_kernel;
6348        bool user   = !event->attr.exclude_callchain_user;
6349        /* Disallow cross-task user callchains. */
6350        bool crosstask = event->ctx->task && event->ctx->task != current;
6351        const u32 max_stack = event->attr.sample_max_stack;
6352        struct perf_callchain_entry *callchain;
6353
6354        if (!kernel && !user)
6355                return &__empty_callchain;
6356
6357        callchain = get_perf_callchain(regs, 0, kernel, user,
6358                                       max_stack, crosstask, true);
6359        return callchain ?: &__empty_callchain;
6360}
6361
6362void perf_prepare_sample(struct perf_event_header *header,
6363                         struct perf_sample_data *data,
6364                         struct perf_event *event,
6365                         struct pt_regs *regs)
6366{
6367        u64 sample_type = event->attr.sample_type;
6368
6369        header->type = PERF_RECORD_SAMPLE;
6370        header->size = sizeof(*header) + event->header_size;
6371
6372        header->misc = 0;
6373        header->misc |= perf_misc_flags(regs);
6374
6375        __perf_event_header__init_id(header, data, event);
6376
6377        if (sample_type & PERF_SAMPLE_IP)
6378                data->ip = perf_instruction_pointer(regs);
6379
6380        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6381                int size = 1;
6382
6383                data->callchain = perf_callchain(event, regs);
6384                size += data->callchain->nr;
6385
6386                header->size += size * sizeof(u64);
6387        }
6388
6389        if (sample_type & PERF_SAMPLE_RAW) {
6390                struct perf_raw_record *raw = data->raw;
6391                int size;
6392
6393                if (raw) {
6394                        struct perf_raw_frag *frag = &raw->frag;
6395                        u32 sum = 0;
6396
6397                        do {
6398                                sum += frag->size;
6399                                if (perf_raw_frag_last(frag))
6400                                        break;
6401                                frag = frag->next;
6402                        } while (1);
6403
6404                        size = round_up(sum + sizeof(u32), sizeof(u64));
6405                        raw->size = size - sizeof(u32);
6406                        frag->pad = raw->size - sum;
6407                } else {
6408                        size = sizeof(u64);
6409                }
6410
6411                header->size += size;
6412        }
6413
6414        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6415                int size = sizeof(u64); /* nr */
6416                if (data->br_stack) {
6417                        size += data->br_stack->nr
6418                              * sizeof(struct perf_branch_entry);
6419                }
6420                header->size += size;
6421        }
6422
6423        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6424                perf_sample_regs_user(&data->regs_user, regs,
6425                                      &data->regs_user_copy);
6426
6427        if (sample_type & PERF_SAMPLE_REGS_USER) {
6428                /* regs dump ABI info */
6429                int size = sizeof(u64);
6430
6431                if (data->regs_user.regs) {
6432                        u64 mask = event->attr.sample_regs_user;
6433                        size += hweight64(mask) * sizeof(u64);
6434                }
6435
6436                header->size += size;
6437        }
6438
6439        if (sample_type & PERF_SAMPLE_STACK_USER) {
6440                /*
6441                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6442                 * processed as the last one or have additional check added
6443                 * in case new sample type is added, because we could eat
6444                 * up the rest of the sample size.
6445                 */
6446                u16 stack_size = event->attr.sample_stack_user;
6447                u16 size = sizeof(u64);
6448
6449                stack_size = perf_sample_ustack_size(stack_size, header->size,
6450                                                     data->regs_user.regs);
6451
6452                /*
6453                 * If there is something to dump, add space for the dump
6454                 * itself and for the field that tells the dynamic size,
6455                 * which is how many have been actually dumped.
6456                 */
6457                if (stack_size)
6458                        size += sizeof(u64) + stack_size;
6459
6460                data->stack_user_size = stack_size;
6461                header->size += size;
6462        }
6463
6464        if (sample_type & PERF_SAMPLE_REGS_INTR) {
6465                /* regs dump ABI info */
6466                int size = sizeof(u64);
6467
6468                perf_sample_regs_intr(&data->regs_intr, regs);
6469
6470                if (data->regs_intr.regs) {
6471                        u64 mask = event->attr.sample_regs_intr;
6472
6473                        size += hweight64(mask) * sizeof(u64);
6474                }
6475
6476                header->size += size;
6477        }
6478
6479        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6480                data->phys_addr = perf_virt_to_phys(data->addr);
6481}
6482
6483static void __always_inline
6484__perf_event_output(struct perf_event *event,
6485                    struct perf_sample_data *data,
6486                    struct pt_regs *regs,
6487                    int (*output_begin)(struct perf_output_handle *,
6488                                        struct perf_event *,
6489                                        unsigned int))
6490{
6491        struct perf_output_handle handle;
6492        struct perf_event_header header;
6493
6494        /* protect the callchain buffers */
6495        rcu_read_lock();
6496
6497        perf_prepare_sample(&header, data, event, regs);
6498
6499        if (output_begin(&handle, event, header.size))
6500                goto exit;
6501
6502        perf_output_sample(&handle, &header, data, event);
6503
6504        perf_output_end(&handle);
6505
6506exit:
6507        rcu_read_unlock();
6508}
6509
6510void
6511perf_event_output_forward(struct perf_event *event,
6512                         struct perf_sample_data *data,
6513                         struct pt_regs *regs)
6514{
6515        __perf_event_output(event, data, regs, perf_output_begin_forward);
6516}
6517
6518void
6519perf_event_output_backward(struct perf_event *event,
6520                           struct perf_sample_data *data,
6521                           struct pt_regs *regs)
6522{
6523        __perf_event_output(event, data, regs, perf_output_begin_backward);
6524}
6525
6526void
6527perf_event_output(struct perf_event *event,
6528                  struct perf_sample_data *data,
6529                  struct pt_regs *regs)
6530{
6531        __perf_event_output(event, data, regs, perf_output_begin);
6532}
6533
6534/*
6535 * read event_id
6536 */
6537
6538struct perf_read_event {
6539        struct perf_event_header        header;
6540
6541        u32                             pid;
6542        u32                             tid;
6543};
6544
6545static void
6546perf_event_read_event(struct perf_event *event,
6547                        struct task_struct *task)
6548{
6549        struct perf_output_handle handle;
6550        struct perf_sample_data sample;
6551        struct perf_read_event read_event = {
6552                .header = {
6553                        .type = PERF_RECORD_READ,
6554                        .misc = 0,
6555                        .size = sizeof(read_event) + event->read_size,
6556                },
6557                .pid = perf_event_pid(event, task),
6558                .tid = perf_event_tid(event, task),
6559        };
6560        int ret;
6561
6562        perf_event_header__init_id(&read_event.header, &sample, event);
6563        ret = perf_output_begin(&handle, event, read_event.header.size);
6564        if (ret)
6565                return;
6566
6567        perf_output_put(&handle, read_event);
6568        perf_output_read(&handle, event);
6569        perf_event__output_id_sample(event, &handle, &sample);
6570
6571        perf_output_end(&handle);
6572}
6573
6574typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6575
6576static void
6577perf_iterate_ctx(struct perf_event_context *ctx,
6578                   perf_iterate_f output,
6579                   void *data, bool all)
6580{
6581        struct perf_event *event;
6582
6583        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6584                if (!all) {
6585                        if (event->state < PERF_EVENT_STATE_INACTIVE)
6586                                continue;
6587                        if (!event_filter_match(event))
6588                                continue;
6589                }
6590
6591                output(event, data);
6592        }
6593}
6594
6595static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6596{
6597        struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6598        struct perf_event *event;
6599
6600        list_for_each_entry_rcu(event, &pel->list, sb_list) {
6601                /*
6602                 * Skip events that are not fully formed yet; ensure that
6603                 * if we observe event->ctx, both event and ctx will be
6604                 * complete enough. See perf_install_in_context().
6605                 */
6606                if (!smp_load_acquire(&event->ctx))
6607                        continue;
6608
6609                if (event->state < PERF_EVENT_STATE_INACTIVE)
6610                        continue;
6611                if (!event_filter_match(event))
6612                        continue;
6613                output(event, data);
6614        }
6615}
6616
6617/*
6618 * Iterate all events that need to receive side-band events.
6619 *
6620 * For new callers; ensure that account_pmu_sb_event() includes
6621 * your event, otherwise it might not get delivered.
6622 */
6623static void
6624perf_iterate_sb(perf_iterate_f output, void *data,
6625               struct perf_event_context *task_ctx)
6626{
6627        struct perf_event_context *ctx;
6628        int ctxn;
6629
6630        rcu_read_lock();
6631        preempt_disable();
6632
6633        /*
6634         * If we have task_ctx != NULL we only notify the task context itself.
6635         * The task_ctx is set only for EXIT events before releasing task
6636         * context.
6637         */
6638        if (task_ctx) {
6639                perf_iterate_ctx(task_ctx, output, data, false);
6640                goto done;
6641        }
6642
6643        perf_iterate_sb_cpu(output, data);
6644
6645        for_each_task_context_nr(ctxn) {
6646                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6647                if (ctx)
6648                        perf_iterate_ctx(ctx, output, data, false);
6649        }
6650done:
6651        preempt_enable();
6652        rcu_read_unlock();
6653}
6654
6655/*
6656 * Clear all file-based filters at exec, they'll have to be
6657 * re-instated when/if these objects are mmapped again.
6658 */
6659static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6660{
6661        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6662        struct perf_addr_filter *filter;
6663        unsigned int restart = 0, count = 0;
6664        unsigned long flags;
6665
6666        if (!has_addr_filter(event))
6667                return;
6668
6669        raw_spin_lock_irqsave(&ifh->lock, flags);
6670        list_for_each_entry(filter, &ifh->list, entry) {
6671                if (filter->inode) {
6672                        event->addr_filters_offs[count] = 0;
6673                        restart++;
6674                }
6675
6676                count++;
6677        }
6678
6679        if (restart)
6680                event->addr_filters_gen++;
6681        raw_spin_unlock_irqrestore(&ifh->lock, flags);
6682
6683        if (restart)
6684                perf_event_stop(event, 1);
6685}
6686
6687void perf_event_exec(void)
6688{
6689        struct perf_event_context *ctx;
6690        int ctxn;
6691
6692        rcu_read_lock();
6693        for_each_task_context_nr(ctxn) {
6694                ctx = current->perf_event_ctxp[ctxn];
6695                if (!ctx)
6696                        continue;
6697
6698                perf_event_enable_on_exec(ctxn);
6699
6700                perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6701                                   true);
6702        }
6703        rcu_read_unlock();
6704}
6705
6706struct remote_output {
6707        struct ring_buffer      *rb;
6708        int                     err;
6709};
6710
6711static void __perf_event_output_stop(struct perf_event *event, void *data)
6712{
6713        struct perf_event *parent = event->parent;
6714        struct remote_output *ro = data;
6715        struct ring_buffer *rb = ro->rb;
6716        struct stop_event_data sd = {
6717                .event  = event,
6718        };
6719
6720        if (!has_aux(event))
6721                return;
6722
6723        if (!parent)
6724                parent = event;
6725
6726        /*
6727         * In case of inheritance, it will be the parent that links to the
6728         * ring-buffer, but it will be the child that's actually using it.
6729         *
6730         * We are using event::rb to determine if the event should be stopped,
6731         * however this may race with ring_buffer_attach() (through set_output),
6732         * which will make us skip the event that actually needs to be stopped.
6733         * So ring_buffer_attach() has to stop an aux event before re-assigning
6734         * its rb pointer.
6735         */
6736        if (rcu_dereference(parent->rb) == rb)
6737                ro->err = __perf_event_stop(&sd);
6738}
6739
6740static int __perf_pmu_output_stop(void *info)
6741{
6742        struct perf_event *event = info;
6743        struct pmu *pmu = event->pmu;
6744        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6745        struct remote_output ro = {
6746                .rb     = event->rb,
6747        };
6748
6749        rcu_read_lock();
6750        perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6751        if (cpuctx->task_ctx)
6752                perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6753                                   &ro, false);
6754        rcu_read_unlock();
6755
6756        return ro.err;
6757}
6758
6759static void perf_pmu_output_stop(struct perf_event *event)
6760{
6761        struct perf_event *iter;
6762        int err, cpu;
6763
6764restart:
6765        rcu_read_lock();
6766        list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6767                /*
6768                 * For per-CPU events, we need to make sure that neither they
6769                 * nor their children are running; for cpu==-1 events it's
6770                 * sufficient to stop the event itself if it's active, since
6771                 * it can't have children.
6772                 */
6773                cpu = iter->cpu;
6774                if (cpu == -1)
6775                        cpu = READ_ONCE(iter->oncpu);
6776
6777                if (cpu == -1)
6778                        continue;
6779
6780                err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6781                if (err == -EAGAIN) {
6782                        rcu_read_unlock();
6783                        goto restart;
6784                }
6785        }
6786        rcu_read_unlock();
6787}
6788
6789/*
6790 * task tracking -- fork/exit
6791 *
6792 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6793 */
6794
6795struct perf_task_event {
6796        struct task_struct              *task;
6797        struct perf_event_context       *task_ctx;
6798
6799        struct {
6800                struct perf_event_header        header;
6801
6802                u32                             pid;
6803                u32                             ppid;
6804                u32                             tid;
6805                u32                             ptid;
6806                u64                             time;
6807        } event_id;
6808};
6809
6810static int perf_event_task_match(struct perf_event *event)
6811{
6812        return event->attr.comm  || event->attr.mmap ||
6813               event->attr.mmap2 || event->attr.mmap_data ||
6814               event->attr.task;
6815}
6816
6817static void perf_event_task_output(struct perf_event *event,
6818                                   void *data)
6819{
6820        struct perf_task_event *task_event = data;
6821        struct perf_output_handle handle;
6822        struct perf_sample_data sample;
6823        struct task_struct *task = task_event->task;
6824        int ret, size = task_event->event_id.header.size;
6825
6826        if (!perf_event_task_match(event))
6827                return;
6828
6829        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6830
6831        ret = perf_output_begin(&handle, event,
6832                                task_event->event_id.header.size);
6833        if (ret)
6834                goto out;
6835
6836        task_event->event_id.pid = perf_event_pid(event, task);
6837        task_event->event_id.ppid = perf_event_pid(event, current);
6838
6839        task_event->event_id.tid = perf_event_tid(event, task);
6840        task_event->event_id.ptid = perf_event_tid(event, current);
6841
6842        task_event->event_id.time = perf_event_clock(event);
6843
6844        perf_output_put(&handle, task_event->event_id);
6845
6846        perf_event__output_id_sample(event, &handle, &sample);
6847
6848        perf_output_end(&handle);
6849out:
6850        task_event->event_id.header.size = size;
6851}
6852
6853static void perf_event_task(struct task_struct *task,
6854                              struct perf_event_context *task_ctx,
6855                              int new)
6856{
6857        struct perf_task_event task_event;
6858
6859        if (!atomic_read(&nr_comm_events) &&
6860            !atomic_read(&nr_mmap_events) &&
6861            !atomic_read(&nr_task_events))
6862                return;
6863
6864        task_event = (struct perf_task_event){
6865                .task     = task,
6866                .task_ctx = task_ctx,
6867                .event_id    = {
6868                        .header = {
6869                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6870                                .misc = 0,
6871                                .size = sizeof(task_event.event_id),
6872                        },
6873                        /* .pid  */
6874                        /* .ppid */
6875                        /* .tid  */
6876                        /* .ptid */
6877                        /* .time */
6878                },
6879        };
6880
6881        perf_iterate_sb(perf_event_task_output,
6882                       &task_event,
6883                       task_ctx);
6884}
6885
6886void perf_event_fork(struct task_struct *task)
6887{
6888        perf_event_task(task, NULL, 1);
6889        perf_event_namespaces(task);
6890}
6891
6892/*
6893 * comm tracking
6894 */
6895
6896struct perf_comm_event {
6897        struct task_struct      *task;
6898        char                    *comm;
6899        int                     comm_size;
6900
6901        struct {
6902                struct perf_event_header        header;
6903
6904                u32                             pid;
6905                u32                             tid;
6906        } event_id;
6907};
6908
6909static int perf_event_comm_match(struct perf_event *event)
6910{
6911        return event->attr.comm;
6912}
6913
6914static void perf_event_comm_output(struct perf_event *event,
6915                                   void *data)
6916{
6917        struct perf_comm_event *comm_event = data;
6918        struct perf_output_handle handle;
6919        struct perf_sample_data sample;
6920        int size = comm_event->event_id.header.size;
6921        int ret;
6922
6923        if (!perf_event_comm_match(event))
6924                return;
6925
6926        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6927        ret = perf_output_begin(&handle, event,
6928                                comm_event->event_id.header.size);
6929
6930        if (ret)
6931                goto out;
6932
6933        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6934        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6935
6936        perf_output_put(&handle, comm_event->event_id);
6937        __output_copy(&handle, comm_event->comm,
6938                                   comm_event->comm_size);
6939
6940        perf_event__output_id_sample(event, &handle, &sample);
6941
6942        perf_output_end(&handle);
6943out:
6944        comm_event->event_id.header.size = size;
6945}
6946
6947static void perf_event_comm_event(struct perf_comm_event *comm_event)
6948{
6949        char comm[TASK_COMM_LEN];
6950        unsigned int size;
6951
6952        memset(comm, 0, sizeof(comm));
6953        strlcpy(comm, comm_event->task->comm, sizeof(comm));
6954        size = ALIGN(strlen(comm)+1, sizeof(u64));
6955
6956        comm_event->comm = comm;
6957        comm_event->comm_size = size;
6958
6959        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6960
6961        perf_iterate_sb(perf_event_comm_output,
6962                       comm_event,
6963                       NULL);
6964}
6965
6966void perf_event_comm(struct task_struct *task, bool exec)
6967{
6968        struct perf_comm_event comm_event;
6969
6970        if (!atomic_read(&nr_comm_events))
6971                return;
6972
6973        comm_event = (struct perf_comm_event){
6974                .task   = task,
6975                /* .comm      */
6976                /* .comm_size */
6977                .event_id  = {
6978                        .header = {
6979                                .type = PERF_RECORD_COMM,
6980                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6981                                /* .size */
6982                        },
6983                        /* .pid */
6984                        /* .tid */
6985                },
6986        };
6987
6988        perf_event_comm_event(&comm_event);
6989}
6990
6991/*
6992 * namespaces tracking
6993 */
6994
6995struct perf_namespaces_event {
6996        struct task_struct              *task;
6997
6998        struct {
6999                struct perf_event_header        header;
7000
7001                u32                             pid;
7002                u32                             tid;
7003                u64                             nr_namespaces;
7004                struct perf_ns_link_info        link_info[NR_NAMESPACES];
7005        } event_id;
7006};
7007
7008static int perf_event_namespaces_match(struct perf_event *event)
7009{
7010        return event->attr.namespaces;
7011}
7012
7013static void perf_event_namespaces_output(struct perf_event *event,
7014                                         void *data)
7015{
7016        struct perf_namespaces_event *namespaces_event = data;
7017        struct perf_output_handle handle;
7018        struct perf_sample_data sample;
7019        u16 header_size = namespaces_event->event_id.header.size;
7020        int ret;
7021
7022        if (!perf_event_namespaces_match(event))
7023                return;
7024
7025        perf_event_header__init_id(&namespaces_event->event_id.header,
7026                                   &sample, event);
7027        ret = perf_output_begin(&handle, event,
7028                                namespaces_event->event_id.header.size);
7029        if (ret)
7030                goto out;
7031
7032        namespaces_event->event_id.pid = perf_event_pid(event,
7033                                                        namespaces_event->task);
7034        namespaces_event->event_id.tid = perf_event_tid(event,
7035                                                        namespaces_event->task);
7036
7037        perf_output_put(&handle, namespaces_event->event_id);
7038
7039        perf_event__output_id_sample(event, &handle, &sample);
7040
7041        perf_output_end(&handle);
7042out:
7043        namespaces_event->event_id.header.size = header_size;
7044}
7045
7046static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7047                                   struct task_struct *task,
7048                                   const struct proc_ns_operations *ns_ops)
7049{
7050        struct path ns_path;
7051        struct inode *ns_inode;
7052        void *error;
7053
7054        error = ns_get_path(&ns_path, task, ns_ops);
7055        if (!error) {
7056                ns_inode = ns_path.dentry->d_inode;
7057                ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7058                ns_link_info->ino = ns_inode->i_ino;
7059                path_put(&ns_path);
7060        }
7061}
7062
7063void perf_event_namespaces(struct task_struct *task)
7064{
7065        struct perf_namespaces_event namespaces_event;
7066        struct perf_ns_link_info *ns_link_info;
7067
7068        if (!atomic_read(&nr_namespaces_events))
7069                return;
7070
7071        namespaces_event = (struct perf_namespaces_event){
7072                .task   = task,
7073                .event_id  = {
7074                        .header = {
7075                                .type = PERF_RECORD_NAMESPACES,
7076                                .misc = 0,
7077                                .size = sizeof(namespaces_event.event_id),
7078                        },
7079                        /* .pid */
7080                        /* .tid */
7081                        .nr_namespaces = NR_NAMESPACES,
7082                        /* .link_info[NR_NAMESPACES] */
7083                },
7084        };
7085
7086        ns_link_info = namespaces_event.event_id.link_info;
7087
7088        perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7089                               task, &mntns_operations);
7090
7091#ifdef CONFIG_USER_NS
7092        perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7093                               task, &userns_operations);
7094#endif
7095#ifdef CONFIG_NET_NS
7096        perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7097                               task, &netns_operations);
7098#endif
7099#ifdef CONFIG_UTS_NS
7100        perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7101                               task, &utsns_operations);
7102#endif
7103#ifdef CONFIG_IPC_NS
7104        perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7105                               task, &ipcns_operations);
7106#endif
7107#ifdef CONFIG_PID_NS
7108        perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7109                               task, &pidns_operations);
7110#endif
7111#ifdef CONFIG_CGROUPS
7112        perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7113                               task, &cgroupns_operations);
7114#endif
7115
7116        perf_iterate_sb(perf_event_namespaces_output,
7117                        &namespaces_event,
7118                        NULL);
7119}
7120
7121/*
7122 * mmap tracking
7123 */
7124
7125struct perf_mmap_event {
7126        struct vm_area_struct   *vma;
7127
7128        const char              *file_name;
7129        int                     file_size;
7130        int                     maj, min;
7131        u64                     ino;
7132        u64                     ino_generation;
7133        u32                     prot, flags;
7134
7135        struct {
7136                struct perf_event_header        header;
7137
7138                u32                             pid;
7139                u32                             tid;
7140                u64                             start;
7141                u64                             len;
7142                u64                             pgoff;
7143        } event_id;
7144};
7145
7146static int perf_event_mmap_match(struct perf_event *event,
7147                                 void *data)
7148{
7149        struct perf_mmap_event *mmap_event = data;
7150        struct vm_area_struct *vma = mmap_event->vma;
7151        int executable = vma->vm_flags & VM_EXEC;
7152
7153        return (!executable && event->attr.mmap_data) ||
7154               (executable && (event->attr.mmap || event->attr.mmap2));
7155}
7156
7157static void perf_event_mmap_output(struct perf_event *event,
7158                                   void *data)
7159{
7160        struct perf_mmap_event *mmap_event = data;
7161        struct perf_output_handle handle;
7162        struct perf_sample_data sample;
7163        int size = mmap_event->event_id.header.size;
7164        int ret;
7165
7166        if (!perf_event_mmap_match(event, data))
7167                return;
7168
7169        if (event->attr.mmap2) {
7170                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7171                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7172                mmap_event->event_id.header.size += sizeof(mmap_event->min);
7173                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7174                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7175                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7176                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7177        }
7178
7179        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7180        ret = perf_output_begin(&handle, event,
7181                                mmap_event->event_id.header.size);
7182        if (ret)
7183                goto out;
7184
7185        mmap_event->event_id.pid = perf_event_pid(event, current);
7186        mmap_event->event_id.tid = perf_event_tid(event, current);
7187
7188        perf_output_put(&handle, mmap_event->event_id);
7189
7190        if (event->attr.mmap2) {
7191                perf_output_put(&handle, mmap_event->maj);
7192                perf_output_put(&handle, mmap_event->min);
7193                perf_output_put(&handle, mmap_event->ino);
7194                perf_output_put(&handle, mmap_event->ino_generation);
7195                perf_output_put(&handle, mmap_event->prot);
7196                perf_output_put(&handle, mmap_event->flags);
7197        }
7198
7199        __output_copy(&handle, mmap_event->file_name,
7200                                   mmap_event->file_size);
7201
7202        perf_event__output_id_sample(event, &handle, &sample);
7203
7204        perf_output_end(&handle);
7205out:
7206        mmap_event->event_id.header.size = size;
7207}
7208
7209static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7210{
7211        struct vm_area_struct *vma = mmap_event->vma;
7212        struct file *file = vma->vm_file;
7213        int maj = 0, min = 0;
7214        u64 ino = 0, gen = 0;
7215        u32 prot = 0, flags = 0;
7216        unsigned int size;
7217        char tmp[16];
7218        char *buf = NULL;
7219        char *name;
7220
7221        if (vma->vm_flags & VM_READ)
7222                prot |= PROT_READ;
7223        if (vma->vm_flags & VM_WRITE)
7224                prot |= PROT_WRITE;
7225        if (vma->vm_flags & VM_EXEC)
7226                prot |= PROT_EXEC;
7227
7228        if (vma->vm_flags & VM_MAYSHARE)
7229                flags = MAP_SHARED;
7230        else
7231                flags = MAP_PRIVATE;
7232
7233        if (vma->vm_flags & VM_DENYWRITE)
7234                flags |= MAP_DENYWRITE;
7235        if (vma->vm_flags & VM_MAYEXEC)
7236                flags |= MAP_EXECUTABLE;
7237        if (vma->vm_flags & VM_LOCKED)
7238                flags |= MAP_LOCKED;
7239        if (vma->vm_flags & VM_HUGETLB)
7240                flags |= MAP_HUGETLB;
7241
7242        if (file) {
7243                struct inode *inode;
7244                dev_t dev;
7245
7246                buf = kmalloc(PATH_MAX, GFP_KERNEL);
7247                if (!buf) {
7248                        name = "//enomem";
7249                        goto cpy_name;
7250                }
7251                /*
7252                 * d_path() works from the end of the rb backwards, so we
7253                 * need to add enough zero bytes after the string to handle
7254                 * the 64bit alignment we do later.
7255                 */
7256                name = file_path(file, buf, PATH_MAX - sizeof(u64));
7257                if (IS_ERR(name)) {
7258                        name = "//toolong";
7259                        goto cpy_name;
7260                }
7261                inode = file_inode(vma->vm_file);
7262                dev = inode->i_sb->s_dev;
7263                ino = inode->i_ino;
7264                gen = inode->i_generation;
7265                maj = MAJOR(dev);
7266                min = MINOR(dev);
7267
7268                goto got_name;
7269        } else {
7270                if (vma->vm_ops && vma->vm_ops->name) {
7271                        name = (char *) vma->vm_ops->name(vma);
7272                        if (name)
7273                                goto cpy_name;
7274                }
7275
7276                name = (char *)arch_vma_name(vma);
7277                if (name)
7278                        goto cpy_name;
7279
7280                if (vma->vm_start <= vma->vm_mm->start_brk &&
7281                                vma->vm_end >= vma->vm_mm->brk) {
7282                        name = "[heap]";
7283                        goto cpy_name;
7284                }
7285                if (vma->vm_start <= vma->vm_mm->start_stack &&
7286                                vma->vm_end >= vma->vm_mm->start_stack) {
7287                        name = "[stack]";
7288                        goto cpy_name;
7289                }
7290
7291                name = "//anon";
7292                goto cpy_name;
7293        }
7294
7295cpy_name:
7296        strlcpy(tmp, name, sizeof(tmp));
7297        name = tmp;
7298got_name:
7299        /*
7300         * Since our buffer works in 8 byte units we need to align our string
7301         * size to a multiple of 8. However, we must guarantee the tail end is
7302         * zero'd out to avoid leaking random bits to userspace.
7303         */
7304        size = strlen(name)+1;
7305        while (!IS_ALIGNED(size, sizeof(u64)))
7306                name[size++] = '\0';
7307
7308        mmap_event->file_name = name;
7309        mmap_event->file_size = size;
7310        mmap_event->maj = maj;
7311        mmap_event->min = min;
7312        mmap_event->ino = ino;
7313        mmap_event->ino_generation = gen;
7314        mmap_event->prot = prot;
7315        mmap_event->flags = flags;
7316
7317        if (!(vma->vm_flags & VM_EXEC))
7318                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7319
7320        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7321
7322        perf_iterate_sb(perf_event_mmap_output,
7323                       mmap_event,
7324                       NULL);
7325
7326        kfree(buf);
7327}
7328
7329/*
7330 * Check whether inode and address range match filter criteria.
7331 */
7332static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7333                                     struct file *file, unsigned long offset,
7334                                     unsigned long size)
7335{
7336        if (filter->inode != file_inode(file))
7337                return false;
7338
7339        if (filter->offset > offset + size)
7340                return false;
7341
7342        if (filter->offset + filter->size < offset)
7343                return false;
7344
7345        return true;
7346}
7347
7348static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7349{
7350        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7351        struct vm_area_struct *vma = data;
7352        unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7353        struct file *file = vma->vm_file;
7354        struct perf_addr_filter *filter;
7355        unsigned int restart = 0, count = 0;
7356
7357        if (!has_addr_filter(event))
7358                return;
7359
7360        if (!file)
7361                return;
7362
7363        raw_spin_lock_irqsave(&ifh->lock, flags);
7364        list_for_each_entry(filter, &ifh->list, entry) {
7365                if (perf_addr_filter_match(filter, file, off,
7366                                             vma->vm_end - vma->vm_start)) {
7367                        event->addr_filters_offs[count] = vma->vm_start;
7368                        restart++;
7369                }
7370
7371                count++;
7372        }
7373
7374        if (restart)
7375                event->addr_filters_gen++;
7376        raw_spin_unlock_irqrestore(&ifh->lock, flags);
7377
7378        if (restart)
7379                perf_event_stop(event, 1);
7380}
7381
7382/*
7383 * Adjust all task's events' filters to the new vma
7384 */
7385static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7386{
7387        struct perf_event_context *ctx;
7388        int ctxn;
7389
7390        /*
7391         * Data tracing isn't supported yet and as such there is no need
7392         * to keep track of anything that isn't related to executable code:
7393         */
7394        if (!(vma->vm_flags & VM_EXEC))
7395                return;
7396
7397        rcu_read_lock();
7398        for_each_task_context_nr(ctxn) {
7399                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7400                if (!ctx)
7401                        continue;
7402
7403                perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7404        }
7405        rcu_read_unlock();
7406}
7407
7408void perf_event_mmap(struct vm_area_struct *vma)
7409{
7410        struct perf_mmap_event mmap_event;
7411
7412        if (!atomic_read(&nr_mmap_events))
7413                return;
7414
7415        mmap_event = (struct perf_mmap_event){
7416                .vma    = vma,
7417                /* .file_name */
7418                /* .file_size */
7419                .event_id  = {
7420                        .header = {
7421                                .type = PERF_RECORD_MMAP,
7422                                .misc = PERF_RECORD_MISC_USER,
7423                                /* .size */
7424                        },
7425                        /* .pid */
7426                        /* .tid */
7427                        .start  = vma->vm_start,
7428                        .len    = vma->vm_end - vma->vm_start,
7429                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7430                },
7431                /* .maj (attr_mmap2 only) */
7432                /* .min (attr_mmap2 only) */
7433                /* .ino (attr_mmap2 only) */
7434                /* .ino_generation (attr_mmap2 only) */
7435                /* .prot (attr_mmap2 only) */
7436                /* .flags (attr_mmap2 only) */
7437        };
7438
7439        perf_addr_filters_adjust(vma);
7440        perf_event_mmap_event(&mmap_event);
7441}
7442
7443void perf_event_aux_event(struct perf_event *event, unsigned long head,
7444                          unsigned long size, u64 flags)
7445{
7446        struct perf_output_handle handle;
7447        struct perf_sample_data sample;
7448        struct perf_aux_event {
7449                struct perf_event_header        header;
7450                u64                             offset;
7451                u64                             size;
7452                u64                             flags;
7453        } rec = {
7454                .header = {
7455                        .type = PERF_RECORD_AUX,
7456                        .misc = 0,
7457                        .size = sizeof(rec),
7458                },
7459                .offset         = head,
7460                .size           = size,
7461                .flags          = flags,
7462        };
7463        int ret;
7464
7465        perf_event_header__init_id(&rec.header, &sample, event);
7466        ret = perf_output_begin(&handle, event, rec.header.size);
7467
7468        if (ret)
7469                return;
7470
7471        perf_output_put(&handle, rec);
7472        perf_event__output_id_sample(event, &handle, &sample);
7473
7474        perf_output_end(&handle);
7475}
7476
7477/*
7478 * Lost/dropped samples logging
7479 */
7480void perf_log_lost_samples(struct perf_event *event, u64 lost)
7481{
7482        struct perf_output_handle handle;
7483        struct perf_sample_data sample;
7484        int ret;
7485
7486        struct {
7487                struct perf_event_header        header;
7488                u64                             lost;
7489        } lost_samples_event = {
7490                .header = {
7491                        .type = PERF_RECORD_LOST_SAMPLES,
7492                        .misc = 0,
7493                        .size = sizeof(lost_samples_event),
7494                },
7495                .lost           = lost,
7496        };
7497
7498        perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7499
7500        ret = perf_output_begin(&handle, event,
7501                                lost_samples_event.header.size);
7502        if (ret)
7503                return;
7504
7505        perf_output_put(&handle, lost_samples_event);
7506        perf_event__output_id_sample(event, &handle, &sample);
7507        perf_output_end(&handle);
7508}
7509
7510/*
7511 * context_switch tracking
7512 */
7513
7514struct perf_switch_event {
7515        struct task_struct      *task;
7516        struct task_struct      *next_prev;
7517
7518        struct {
7519                struct perf_event_header        header;
7520                u32                             next_prev_pid;
7521                u32                             next_prev_tid;
7522        } event_id;
7523};
7524
7525static int perf_event_switch_match(struct perf_event *event)
7526{
7527        return event->attr.context_switch;
7528}
7529
7530static void perf_event_switch_output(struct perf_event *event, void *data)
7531{
7532        struct perf_switch_event *se = data;
7533        struct perf_output_handle handle;
7534        struct perf_sample_data sample;
7535        int ret;
7536
7537        if (!perf_event_switch_match(event))
7538                return;
7539
7540        /* Only CPU-wide events are allowed to see next/prev pid/tid */
7541        if (event->ctx->task) {
7542                se->event_id.header.type = PERF_RECORD_SWITCH;
7543                se->event_id.header.size = sizeof(se->event_id.header);
7544        } else {
7545                se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7546                se->event_id.header.size = sizeof(se->event_id);
7547                se->event_id.next_prev_pid =
7548                                        perf_event_pid(event, se->next_prev);
7549                se->event_id.next_prev_tid =
7550                                        perf_event_tid(event, se->next_prev);
7551        }
7552
7553        perf_event_header__init_id(&se->event_id.header, &sample, event);
7554
7555        ret = perf_output_begin(&handle, event, se->event_id.header.size);
7556        if (ret)
7557                return;
7558
7559        if (event->ctx->task)
7560                perf_output_put(&handle, se->event_id.header);
7561        else
7562                perf_output_put(&handle, se->event_id);
7563
7564        perf_event__output_id_sample(event, &handle, &sample);
7565
7566        perf_output_end(&handle);
7567}
7568
7569static void perf_event_switch(struct task_struct *task,
7570                              struct task_struct *next_prev, bool sched_in)
7571{
7572        struct perf_switch_event switch_event;
7573
7574        /* N.B. caller checks nr_switch_events != 0 */
7575
7576        switch_event = (struct perf_switch_event){
7577                .task           = task,
7578                .next_prev      = next_prev,
7579                .event_id       = {
7580                        .header = {
7581                                /* .type */
7582                                .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7583                                /* .size */
7584                        },
7585                        /* .next_prev_pid */
7586                        /* .next_prev_tid */
7587                },
7588        };
7589
7590        if (!sched_in && task->state == TASK_RUNNING)
7591                switch_event.event_id.header.misc |=
7592                                PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7593
7594        perf_iterate_sb(perf_event_switch_output,
7595                       &switch_event,
7596                       NULL);
7597}
7598
7599/*
7600 * IRQ throttle logging
7601 */
7602
7603static void perf_log_throttle(struct perf_event *event, int enable)
7604{
7605        struct perf_output_handle handle;
7606        struct perf_sample_data sample;
7607        int ret;
7608
7609        struct {
7610                struct perf_event_header        header;
7611                u64                             time;
7612                u64                             id;
7613                u64                             stream_id;
7614        } throttle_event = {
7615                .header = {
7616                        .type = PERF_RECORD_THROTTLE,
7617                        .misc = 0,
7618                        .size = sizeof(throttle_event),
7619                },
7620                .time           = perf_event_clock(event),
7621                .id             = primary_event_id(event),
7622                .stream_id      = event->id,
7623        };
7624
7625        if (enable)
7626                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7627
7628        perf_event_header__init_id(&throttle_event.header, &sample, event);
7629
7630        ret = perf_output_begin(&handle, event,
7631                                throttle_event.header.size);
7632        if (ret)
7633                return;
7634
7635        perf_output_put(&handle, throttle_event);
7636        perf_event__output_id_sample(event, &handle, &sample);
7637        perf_output_end(&handle);
7638}
7639
7640void perf_event_itrace_started(struct perf_event *event)
7641{
7642        event->attach_state |= PERF_ATTACH_ITRACE;
7643}
7644
7645static void perf_log_itrace_start(struct perf_event *event)
7646{
7647        struct perf_output_handle handle;
7648        struct perf_sample_data sample;
7649        struct perf_aux_event {
7650                struct perf_event_header        header;
7651                u32                             pid;
7652                u32                             tid;
7653        } rec;
7654        int ret;
7655
7656        if (event->parent)
7657                event = event->parent;
7658
7659        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7660            event->attach_state & PERF_ATTACH_ITRACE)
7661                return;
7662
7663        rec.header.type = PERF_RECORD_ITRACE_START;
7664        rec.header.misc = 0;
7665        rec.header.size = sizeof(rec);
7666        rec.pid = perf_event_pid(event, current);
7667        rec.tid = perf_event_tid(event, current);
7668
7669        perf_event_header__init_id(&rec.header, &sample, event);
7670        ret = perf_output_begin(&handle, event, rec.header.size);
7671
7672        if (ret)
7673                return;
7674
7675        perf_output_put(&handle, rec);
7676        perf_event__output_id_sample(event, &handle, &sample);
7677
7678        perf_output_end(&handle);
7679}
7680
7681static int
7682__perf_event_account_interrupt(struct perf_event *event, int throttle)
7683{
7684        struct hw_perf_event *hwc = &event->hw;
7685        int ret = 0;
7686        u64 seq;
7687
7688        seq = __this_cpu_read(perf_throttled_seq);
7689        if (seq != hwc->interrupts_seq) {
7690                hwc->interrupts_seq = seq;
7691                hwc->interrupts = 1;
7692        } else {
7693                hwc->interrupts++;
7694                if (unlikely(throttle
7695                             && hwc->interrupts >= max_samples_per_tick)) {
7696                        __this_cpu_inc(perf_throttled_count);
7697                        tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7698                        hwc->interrupts = MAX_INTERRUPTS;
7699                        perf_log_throttle(event, 0);
7700                        ret = 1;
7701                }
7702        }
7703
7704        if (event->attr.freq) {
7705                u64 now = perf_clock();
7706                s64 delta = now - hwc->freq_time_stamp;
7707
7708                hwc->freq_time_stamp = now;
7709
7710                if (delta > 0 && delta < 2*TICK_NSEC)
7711                        perf_adjust_period(event, delta, hwc->last_period, true);
7712        }
7713
7714        return ret;
7715}
7716
7717int perf_event_account_interrupt(struct perf_event *event)
7718{
7719        return __perf_event_account_interrupt(event, 1);
7720}
7721
7722/*
7723 * Generic event overflow handling, sampling.
7724 */
7725
7726static int __perf_event_overflow(struct perf_event *event,
7727                                   int throttle, struct perf_sample_data *data,
7728                                   struct pt_regs *regs)
7729{
7730        int events = atomic_read(&event->event_limit);
7731        int ret = 0;
7732
7733        /*
7734         * Non-sampling counters might still use the PMI to fold short
7735         * hardware counters, ignore those.
7736         */
7737        if (unlikely(!is_sampling_event(event)))
7738                return 0;
7739
7740        ret = __perf_event_account_interrupt(event, throttle);
7741
7742        /*
7743         * XXX event_limit might not quite work as expected on inherited
7744         * events
7745         */
7746
7747        event->pending_kill = POLL_IN;
7748        if (events && atomic_dec_and_test(&event->event_limit)) {
7749                ret = 1;
7750                event->pending_kill = POLL_HUP;
7751
7752                perf_event_disable_inatomic(event);
7753        }
7754
7755        READ_ONCE(event->overflow_handler)(event, data, regs);
7756
7757        if (*perf_event_fasync(event) && event->pending_kill) {
7758                event->pending_wakeup = 1;
7759                irq_work_queue(&event->pending);
7760        }
7761
7762        return ret;
7763}
7764
7765int perf_event_overflow(struct perf_event *event,
7766                          struct perf_sample_data *data,
7767                          struct pt_regs *regs)
7768{
7769        return __perf_event_overflow(event, 1, data, regs);
7770}
7771
7772/*
7773 * Generic software event infrastructure
7774 */
7775
7776struct swevent_htable {
7777        struct swevent_hlist            *swevent_hlist;
7778        struct mutex                    hlist_mutex;
7779        int                             hlist_refcount;
7780
7781        /* Recursion avoidance in each contexts */
7782        int                             recursion[PERF_NR_CONTEXTS];
7783};
7784
7785static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7786
7787/*
7788 * We directly increment event->count and keep a second value in
7789 * event->hw.period_left to count intervals. This period event
7790 * is kept in the range [-sample_period, 0] so that we can use the
7791 * sign as trigger.
7792 */
7793
7794u64 perf_swevent_set_period(struct perf_event *event)
7795{
7796        struct hw_perf_event *hwc = &event->hw;
7797        u64 period = hwc->last_period;
7798        u64 nr, offset;
7799        s64 old, val;
7800
7801        hwc->last_period = hwc->sample_period;
7802
7803again:
7804        old = val = local64_read(&hwc->period_left);
7805        if (val < 0)
7806                return 0;
7807
7808        nr = div64_u64(period + val, period);
7809        offset = nr * period;
7810        val -= offset;
7811        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7812                goto again;
7813
7814        return nr;
7815}
7816
7817static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7818                                    struct perf_sample_data *data,
7819                                    struct pt_regs *regs)
7820{
7821        struct hw_perf_event *hwc = &event->hw;
7822        int throttle = 0;
7823
7824        if (!overflow)
7825                overflow = perf_swevent_set_period(event);
7826
7827        if (hwc->interrupts == MAX_INTERRUPTS)
7828                return;
7829
7830        for (; overflow; overflow--) {
7831                if (__perf_event_overflow(event, throttle,
7832                                            data, regs)) {
7833                        /*
7834                         * We inhibit the overflow from happening when
7835                         * hwc->interrupts == MAX_INTERRUPTS.
7836                         */
7837                        break;
7838                }
7839                throttle = 1;
7840        }
7841}
7842
7843static void perf_swevent_event(struct perf_event *event, u64 nr,
7844                               struct perf_sample_data *data,
7845                               struct pt_regs *regs)
7846{
7847        struct hw_perf_event *hwc = &event->hw;
7848
7849        local64_add(nr, &event->count);
7850
7851        if (!regs)
7852                return;
7853
7854        if (!is_sampling_event(event))
7855                return;
7856
7857        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7858                data->period = nr;
7859                return perf_swevent_overflow(event, 1, data, regs);
7860        } else
7861                data->period = event->hw.last_period;
7862
7863        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7864                return perf_swevent_overflow(event, 1, data, regs);
7865
7866        if (local64_add_negative(nr, &hwc->period_left))
7867                return;
7868
7869        perf_swevent_overflow(event, 0, data, regs);
7870}
7871
7872static int perf_exclude_event(struct perf_event *event,
7873                              struct pt_regs *regs)
7874{
7875        if (event->hw.state & PERF_HES_STOPPED)
7876                return 1;
7877
7878        if (regs) {
7879                if (event->attr.exclude_user && user_mode(regs))
7880                        return 1;
7881
7882                if (event->attr.exclude_kernel && !user_mode(regs))
7883                        return 1;
7884        }
7885
7886        return 0;
7887}
7888
7889static int perf_swevent_match(struct perf_event *event,
7890                                enum perf_type_id type,
7891                                u32 event_id,
7892                                struct perf_sample_data *data,
7893                                struct pt_regs *regs)
7894{
7895        if (event->attr.type != type)
7896                return 0;
7897
7898        if (event->attr.config != event_id)
7899                return 0;
7900
7901        if (perf_exclude_event(event, regs))
7902                return 0;
7903
7904        return 1;
7905}
7906
7907static inline u64 swevent_hash(u64 type, u32 event_id)
7908{
7909        u64 val = event_id | (type << 32);
7910
7911        return hash_64(val, SWEVENT_HLIST_BITS);
7912}
7913
7914static inline struct hlist_head *
7915__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7916{
7917        u64 hash = swevent_hash(type, event_id);
7918
7919        return &hlist->heads[hash];
7920}
7921
7922/* For the read side: events when they trigger */
7923static inline struct hlist_head *
7924find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7925{
7926        struct swevent_hlist *hlist;
7927
7928        hlist = rcu_dereference(swhash->swevent_hlist);
7929        if (!hlist)
7930                return NULL;
7931
7932        return __find_swevent_head(hlist, type, event_id);
7933}
7934
7935/* For the event head insertion and removal in the hlist */
7936static inline struct hlist_head *
7937find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7938{
7939        struct swevent_hlist *hlist;
7940        u32 event_id = event->attr.config;
7941        u64 type = event->attr.type;
7942
7943        /*
7944         * Event scheduling is always serialized against hlist allocation
7945         * and release. Which makes the protected version suitable here.
7946         * The context lock guarantees that.
7947         */
7948        hlist = rcu_dereference_protected(swhash->swevent_hlist,
7949                                          lockdep_is_held(&event->ctx->lock));
7950        if (!hlist)
7951                return NULL;
7952
7953        return __find_swevent_head(hlist, type, event_id);
7954}
7955
7956static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7957                                    u64 nr,
7958                                    struct perf_sample_data *data,
7959                                    struct pt_regs *regs)
7960{
7961        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7962        struct perf_event *event;
7963        struct hlist_head *head;
7964
7965        rcu_read_lock();
7966        head = find_swevent_head_rcu(swhash, type, event_id);
7967        if (!head)
7968                goto end;
7969
7970        hlist_for_each_entry_rcu(event, head, hlist_entry) {
7971                if (perf_swevent_match(event, type, event_id, data, regs))
7972                        perf_swevent_event(event, nr, data, regs);
7973        }
7974end:
7975        rcu_read_unlock();
7976}
7977
7978DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7979
7980int perf_swevent_get_recursion_context(void)
7981{
7982        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7983
7984        return get_recursion_context(swhash->recursion);
7985}
7986EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7987
7988void perf_swevent_put_recursion_context(int rctx)
7989{
7990        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7991
7992        put_recursion_context(swhash->recursion, rctx);
7993}
7994
7995void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7996{
7997        struct perf_sample_data data;
7998
7999        if (WARN_ON_ONCE(!regs))
8000                return;
8001
8002        perf_sample_data_init(&data, addr, 0);
8003        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8004}
8005
8006void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8007{
8008        int rctx;
8009
8010        preempt_disable_notrace();
8011        rctx = perf_swevent_get_recursion_context();
8012        if (unlikely(rctx < 0))
8013                goto fail;
8014
8015        ___perf_sw_event(event_id, nr, regs, addr);
8016
8017        perf_swevent_put_recursion_context(rctx);
8018fail:
8019        preempt_enable_notrace();
8020}
8021
8022static void perf_swevent_read(struct perf_event *event)
8023{
8024}
8025
8026static int perf_swevent_add(struct perf_event *event, int flags)
8027{
8028        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8029        struct hw_perf_event *hwc = &event->hw;
8030        struct hlist_head *head;
8031
8032        if (is_sampling_event(event)) {
8033                hwc->last_period = hwc->sample_period;
8034                perf_swevent_set_period(event);
8035        }
8036
8037        hwc->state = !(flags & PERF_EF_START);
8038
8039        head = find_swevent_head(swhash, event);
8040        if (WARN_ON_ONCE(!head))
8041                return -EINVAL;
8042
8043        hlist_add_head_rcu(&event->hlist_entry, head);
8044        perf_event_update_userpage(event);
8045
8046        return 0;
8047}
8048
8049static void perf_swevent_del(struct perf_event *event, int flags)
8050{
8051        hlist_del_rcu(&event->hlist_entry);
8052}
8053
8054static void perf_swevent_start(struct perf_event *event, int flags)
8055{
8056        event->hw.state = 0;
8057}
8058
8059static void perf_swevent_stop(struct perf_event *event, int flags)
8060{
8061        event->hw.state = PERF_HES_STOPPED;
8062}
8063
8064/* Deref the hlist from the update side */
8065static inline struct swevent_hlist *
8066swevent_hlist_deref(struct swevent_htable *swhash)
8067{
8068        return rcu_dereference_protected(swhash->swevent_hlist,
8069                                         lockdep_is_held(&swhash->hlist_mutex));
8070}
8071
8072static void swevent_hlist_release(struct swevent_htable *swhash)
8073{
8074        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8075
8076        if (!hlist)
8077                return;
8078
8079        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8080        kfree_rcu(hlist, rcu_head);
8081}
8082
8083static void swevent_hlist_put_cpu(int cpu)
8084{
8085        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8086
8087        mutex_lock(&swhash->hlist_mutex);
8088
8089        if (!--swhash->hlist_refcount)
8090                swevent_hlist_release(swhash);
8091
8092        mutex_unlock(&swhash->hlist_mutex);
8093}
8094
8095static void swevent_hlist_put(void)
8096{
8097        int cpu;
8098
8099        for_each_possible_cpu(cpu)
8100                swevent_hlist_put_cpu(cpu);
8101}
8102
8103static int swevent_hlist_get_cpu(int cpu)
8104{
8105        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8106        int err = 0;
8107
8108        mutex_lock(&swhash->hlist_mutex);
8109        if (!swevent_hlist_deref(swhash) &&
8110            cpumask_test_cpu(cpu, perf_online_mask)) {
8111                struct swevent_hlist *hlist;
8112
8113                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8114                if (!hlist) {
8115                        err = -ENOMEM;
8116                        goto exit;
8117                }
8118                rcu_assign_pointer(swhash->swevent_hlist, hlist);
8119        }
8120        swhash->hlist_refcount++;
8121exit:
8122        mutex_unlock(&swhash->hlist_mutex);
8123
8124        return err;
8125}
8126
8127static int swevent_hlist_get(void)
8128{
8129        int err, cpu, failed_cpu;
8130
8131        mutex_lock(&pmus_lock);
8132        for_each_possible_cpu(cpu) {
8133                err = swevent_hlist_get_cpu(cpu);
8134                if (err) {
8135                        failed_cpu = cpu;
8136                        goto fail;
8137                }
8138        }
8139        mutex_unlock(&pmus_lock);
8140        return 0;
8141fail:
8142        for_each_possible_cpu(cpu) {
8143                if (cpu == failed_cpu)
8144                        break;
8145                swevent_hlist_put_cpu(cpu);
8146        }
8147        mutex_unlock(&pmus_lock);
8148        return err;
8149}
8150
8151struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8152
8153static void sw_perf_event_destroy(struct perf_event *event)
8154{
8155        u64 event_id = event->attr.config;
8156
8157        WARN_ON(event->parent);
8158
8159        static_key_slow_dec(&perf_swevent_enabled[event_id]);
8160        swevent_hlist_put();
8161}
8162
8163static int perf_swevent_init(struct perf_event *event)
8164{
8165        u64 event_id = event->attr.config;
8166
8167        if (event->attr.type != PERF_TYPE_SOFTWARE)
8168                return -ENOENT;
8169
8170        /*
8171         * no branch sampling for software events
8172         */
8173        if (has_branch_stack(event))
8174                return -EOPNOTSUPP;
8175
8176        switch (event_id) {
8177        case PERF_COUNT_SW_CPU_CLOCK:
8178        case PERF_COUNT_SW_TASK_CLOCK:
8179                return -ENOENT;
8180
8181        default:
8182                break;
8183        }
8184
8185        if (event_id >= PERF_COUNT_SW_MAX)
8186                return -ENOENT;
8187
8188        if (!event->parent) {
8189                int err;
8190
8191                err = swevent_hlist_get();
8192                if (err)
8193                        return err;
8194
8195                static_key_slow_inc(&perf_swevent_enabled[event_id]);
8196                event->destroy = sw_perf_event_destroy;
8197        }
8198
8199        return 0;
8200}
8201
8202static struct pmu perf_swevent = {
8203        .task_ctx_nr    = perf_sw_context,
8204
8205        .capabilities   = PERF_PMU_CAP_NO_NMI,
8206
8207        .event_init     = perf_swevent_init,
8208        .add            = perf_swevent_add,
8209        .del            = perf_swevent_del,
8210        .start          = perf_swevent_start,
8211        .stop           = perf_swevent_stop,
8212        .read           = perf_swevent_read,
8213};
8214
8215#ifdef CONFIG_EVENT_TRACING
8216
8217static int perf_tp_filter_match(struct perf_event *event,
8218                                struct perf_sample_data *data)
8219{
8220        void *record = data->raw->frag.data;
8221
8222        /* only top level events have filters set */
8223        if (event->parent)
8224                event = event->parent;
8225
8226        if (likely(!event->filter) || filter_match_preds(event->filter, record))
8227                return 1;
8228        return 0;
8229}
8230
8231static int perf_tp_event_match(struct perf_event *event,
8232                                struct perf_sample_data *data,
8233                                struct pt_regs *regs)
8234{
8235        if (event->hw.state & PERF_HES_STOPPED)
8236                return 0;
8237        /*
8238         * All tracepoints are from kernel-space.
8239         */
8240        if (event->attr.exclude_kernel)
8241                return 0;
8242
8243        if (!perf_tp_filter_match(event, data))
8244                return 0;
8245
8246        return 1;
8247}
8248
8249void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8250                               struct trace_event_call *call, u64 count,
8251                               struct pt_regs *regs, struct hlist_head *head,
8252                               struct task_struct *task)
8253{
8254        if (bpf_prog_array_valid(call)) {
8255                *(struct pt_regs **)raw_data = regs;
8256                if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8257                        perf_swevent_put_recursion_context(rctx);
8258                        return;
8259                }
8260        }
8261        perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8262                      rctx, task);
8263}
8264EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8265
8266void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8267                   struct pt_regs *regs, struct hlist_head *head, int rctx,
8268                   struct task_struct *task)
8269{
8270        struct perf_sample_data data;
8271        struct perf_event *event;
8272
8273        struct perf_raw_record raw = {
8274                .frag = {
8275                        .size = entry_size,
8276                        .data = record,
8277                },
8278        };
8279
8280        perf_sample_data_init(&data, 0, 0);
8281        data.raw = &raw;
8282
8283        perf_trace_buf_update(record, event_type);
8284
8285        hlist_for_each_entry_rcu(event, head, hlist_entry) {
8286                if (perf_tp_event_match(event, &data, regs))
8287                        perf_swevent_event(event, count, &data, regs);
8288        }
8289
8290        /*
8291         * If we got specified a target task, also iterate its context and
8292         * deliver this event there too.
8293         */
8294        if (task && task != current) {
8295                struct perf_event_context *ctx;
8296                struct trace_entry *entry = record;
8297
8298                rcu_read_lock();
8299                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8300                if (!ctx)
8301                        goto unlock;
8302
8303                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8304                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
8305                                continue;
8306                        if (event->attr.config != entry->type)
8307                                continue;
8308                        if (perf_tp_event_match(event, &data, regs))
8309                                perf_swevent_event(event, count, &data, regs);
8310                }
8311unlock:
8312                rcu_read_unlock();
8313        }
8314
8315        perf_swevent_put_recursion_context(rctx);
8316}
8317EXPORT_SYMBOL_GPL(perf_tp_event);
8318
8319static void tp_perf_event_destroy(struct perf_event *event)
8320{
8321        perf_trace_destroy(event);
8322}
8323
8324static int perf_tp_event_init(struct perf_event *event)
8325{
8326        int err;
8327
8328        if (event->attr.type != PERF_TYPE_TRACEPOINT)
8329                return -ENOENT;
8330
8331        /*
8332         * no branch sampling for tracepoint events
8333         */
8334        if (has_branch_stack(event))
8335                return -EOPNOTSUPP;
8336
8337        err = perf_trace_init(event);
8338        if (err)
8339                return err;
8340
8341        event->destroy = tp_perf_event_destroy;
8342
8343        return 0;
8344}
8345
8346static struct pmu perf_tracepoint = {
8347        .task_ctx_nr    = perf_sw_context,
8348
8349        .event_init     = perf_tp_event_init,
8350        .add            = perf_trace_add,
8351        .del            = perf_trace_del,
8352        .start          = perf_swevent_start,
8353        .stop           = perf_swevent_stop,
8354        .read           = perf_swevent_read,
8355};
8356
8357#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8358/*
8359 * Flags in config, used by dynamic PMU kprobe and uprobe
8360 * The flags should match following PMU_FORMAT_ATTR().
8361 *
8362 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8363 *                               if not set, create kprobe/uprobe
8364 */
8365enum perf_probe_config {
8366        PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8367};
8368
8369PMU_FORMAT_ATTR(retprobe, "config:0");
8370
8371static struct attribute *probe_attrs[] = {
8372        &format_attr_retprobe.attr,
8373        NULL,
8374};
8375
8376static struct attribute_group probe_format_group = {
8377        .name = "format",
8378        .attrs = probe_attrs,
8379};
8380
8381static const struct attribute_group *probe_attr_groups[] = {
8382        &probe_format_group,
8383        NULL,
8384};
8385#endif
8386
8387#ifdef CONFIG_KPROBE_EVENTS
8388static int perf_kprobe_event_init(struct perf_event *event);
8389static struct pmu perf_kprobe = {
8390        .task_ctx_nr    = perf_sw_context,
8391        .event_init     = perf_kprobe_event_init,
8392        .add            = perf_trace_add,
8393        .del            = perf_trace_del,
8394        .start          = perf_swevent_start,
8395        .stop           = perf_swevent_stop,
8396        .read           = perf_swevent_read,
8397        .attr_groups    = probe_attr_groups,
8398};
8399
8400static int perf_kprobe_event_init(struct perf_event *event)
8401{
8402        int err;
8403        bool is_retprobe;
8404
8405        if (event->attr.type != perf_kprobe.type)
8406                return -ENOENT;
8407
8408        if (!capable(CAP_SYS_ADMIN))
8409                return -EACCES;
8410
8411        /*
8412         * no branch sampling for probe events
8413         */
8414        if (has_branch_stack(event))
8415                return -EOPNOTSUPP;
8416
8417        is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8418        err = perf_kprobe_init(event, is_retprobe);
8419        if (err)
8420                return err;
8421
8422        event->destroy = perf_kprobe_destroy;
8423
8424        return 0;
8425}
8426#endif /* CONFIG_KPROBE_EVENTS */
8427
8428#ifdef CONFIG_UPROBE_EVENTS
8429static int perf_uprobe_event_init(struct perf_event *event);
8430static struct pmu perf_uprobe = {
8431        .task_ctx_nr    = perf_sw_context,
8432        .event_init     = perf_uprobe_event_init,
8433        .add            = perf_trace_add,
8434        .del            = perf_trace_del,
8435        .start          = perf_swevent_start,
8436        .stop           = perf_swevent_stop,
8437        .read           = perf_swevent_read,
8438        .attr_groups    = probe_attr_groups,
8439};
8440
8441static int perf_uprobe_event_init(struct perf_event *event)
8442{
8443        int err;
8444        bool is_retprobe;
8445
8446        if (event->attr.type != perf_uprobe.type)
8447                return -ENOENT;
8448
8449        if (!capable(CAP_SYS_ADMIN))
8450                return -EACCES;
8451
8452        /*
8453         * no branch sampling for probe events
8454         */
8455        if (has_branch_stack(event))
8456                return -EOPNOTSUPP;
8457
8458        is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8459        err = perf_uprobe_init(event, is_retprobe);
8460        if (err)
8461                return err;
8462
8463        event->destroy = perf_uprobe_destroy;
8464
8465        return 0;
8466}
8467#endif /* CONFIG_UPROBE_EVENTS */
8468
8469static inline void perf_tp_register(void)
8470{
8471        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8472#ifdef CONFIG_KPROBE_EVENTS
8473        perf_pmu_register(&perf_kprobe, "kprobe", -1);
8474#endif
8475#ifdef CONFIG_UPROBE_EVENTS
8476        perf_pmu_register(&perf_uprobe, "uprobe", -1);
8477#endif
8478}
8479
8480static void perf_event_free_filter(struct perf_event *event)
8481{
8482        ftrace_profile_free_filter(event);
8483}
8484
8485#ifdef CONFIG_BPF_SYSCALL
8486static void bpf_overflow_handler(struct perf_event *event,
8487                                 struct perf_sample_data *data,
8488                                 struct pt_regs *regs)
8489{
8490        struct bpf_perf_event_data_kern ctx = {
8491                .data = data,
8492                .event = event,
8493        };
8494        int ret = 0;
8495
8496        ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8497        preempt_disable();
8498        if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8499                goto out;
8500        rcu_read_lock();
8501        ret = BPF_PROG_RUN(event->prog, &ctx);
8502        rcu_read_unlock();
8503out:
8504        __this_cpu_dec(bpf_prog_active);
8505        preempt_enable();
8506        if (!ret)
8507                return;
8508
8509        event->orig_overflow_handler(event, data, regs);
8510}
8511
8512static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8513{
8514        struct bpf_prog *prog;
8515
8516        if (event->overflow_handler_context)
8517                /* hw breakpoint or kernel counter */
8518                return -EINVAL;
8519
8520        if (event->prog)
8521                return -EEXIST;
8522
8523        prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8524        if (IS_ERR(prog))
8525                return PTR_ERR(prog);
8526
8527        event->prog = prog;
8528        event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8529        WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8530        return 0;
8531}
8532
8533static void perf_event_free_bpf_handler(struct perf_event *event)
8534{
8535        struct bpf_prog *prog = event->prog;
8536
8537        if (!prog)
8538                return;
8539
8540        WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8541        event->prog = NULL;
8542        bpf_prog_put(prog);
8543}
8544#else
8545static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8546{
8547        return -EOPNOTSUPP;
8548}
8549static void perf_event_free_bpf_handler(struct perf_event *event)
8550{
8551}
8552#endif
8553
8554/*
8555 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8556 * with perf_event_open()
8557 */
8558static inline bool perf_event_is_tracing(struct perf_event *event)
8559{
8560        if (event->pmu == &perf_tracepoint)
8561                return true;
8562#ifdef CONFIG_KPROBE_EVENTS
8563        if (event->pmu == &perf_kprobe)
8564                return true;
8565#endif
8566#ifdef CONFIG_UPROBE_EVENTS
8567        if (event->pmu == &perf_uprobe)
8568                return true;
8569#endif
8570        return false;
8571}
8572
8573static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8574{
8575        bool is_kprobe, is_tracepoint, is_syscall_tp;
8576        struct bpf_prog *prog;
8577        int ret;
8578
8579        if (!perf_event_is_tracing(event))
8580                return perf_event_set_bpf_handler(event, prog_fd);
8581
8582        is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8583        is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8584        is_syscall_tp = is_syscall_trace_event(event->tp_event);
8585        if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8586                /* bpf programs can only be attached to u/kprobe or tracepoint */
8587                return -EINVAL;
8588
8589        prog = bpf_prog_get(prog_fd);
8590        if (IS_ERR(prog))
8591                return PTR_ERR(prog);
8592
8593        if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8594            (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8595            (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8596                /* valid fd, but invalid bpf program type */
8597                bpf_prog_put(prog);
8598                return -EINVAL;
8599        }
8600
8601        /* Kprobe override only works for kprobes, not uprobes. */
8602        if (prog->kprobe_override &&
8603            !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8604                bpf_prog_put(prog);
8605                return -EINVAL;
8606        }
8607
8608        if (is_tracepoint || is_syscall_tp) {
8609                int off = trace_event_get_offsets(event->tp_event);
8610
8611                if (prog->aux->max_ctx_offset > off) {
8612                        bpf_prog_put(prog);
8613                        return -EACCES;
8614                }
8615        }
8616
8617        ret = perf_event_attach_bpf_prog(event, prog);
8618        if (ret)
8619                bpf_prog_put(prog);
8620        return ret;
8621}
8622
8623static void perf_event_free_bpf_prog(struct perf_event *event)
8624{
8625        if (!perf_event_is_tracing(event)) {
8626                perf_event_free_bpf_handler(event);
8627                return;
8628        }
8629        perf_event_detach_bpf_prog(event);
8630}
8631
8632#else
8633
8634static inline void perf_tp_register(void)
8635{
8636}
8637
8638static void perf_event_free_filter(struct perf_event *event)
8639{
8640}
8641
8642static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8643{
8644        return -ENOENT;
8645}
8646
8647static void perf_event_free_bpf_prog(struct perf_event *event)
8648{
8649}
8650#endif /* CONFIG_EVENT_TRACING */
8651
8652#ifdef CONFIG_HAVE_HW_BREAKPOINT
8653void perf_bp_event(struct perf_event *bp, void *data)
8654{
8655        struct perf_sample_data sample;
8656        struct pt_regs *regs = data;
8657
8658        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8659
8660        if (!bp->hw.state && !perf_exclude_event(bp, regs))
8661                perf_swevent_event(bp, 1, &sample, regs);
8662}
8663#endif
8664
8665/*
8666 * Allocate a new address filter
8667 */
8668static struct perf_addr_filter *
8669perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8670{
8671        int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8672        struct perf_addr_filter *filter;
8673
8674        filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8675        if (!filter)
8676                return NULL;
8677
8678        INIT_LIST_HEAD(&filter->entry);
8679        list_add_tail(&filter->entry, filters);
8680
8681        return filter;
8682}
8683
8684static void free_filters_list(struct list_head *filters)
8685{
8686        struct perf_addr_filter *filter, *iter;
8687
8688        list_for_each_entry_safe(filter, iter, filters, entry) {
8689                if (filter->inode)
8690                        iput(filter->inode);
8691                list_del(&filter->entry);
8692                kfree(filter);
8693        }
8694}
8695
8696/*
8697 * Free existing address filters and optionally install new ones
8698 */
8699static void perf_addr_filters_splice(struct perf_event *event,
8700                                     struct list_head *head)
8701{
8702        unsigned long flags;
8703        LIST_HEAD(list);
8704
8705        if (!has_addr_filter(event))
8706                return;
8707
8708        /* don't bother with children, they don't have their own filters */
8709        if (event->parent)
8710                return;
8711
8712        raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8713
8714        list_splice_init(&event->addr_filters.list, &list);
8715        if (head)
8716                list_splice(head, &event->addr_filters.list);
8717
8718        raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8719
8720        free_filters_list(&list);
8721}
8722
8723/*
8724 * Scan through mm's vmas and see if one of them matches the
8725 * @filter; if so, adjust filter's address range.
8726 * Called with mm::mmap_sem down for reading.
8727 */
8728static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8729                                            struct mm_struct *mm)
8730{
8731        struct vm_area_struct *vma;
8732
8733        for (vma = mm->mmap; vma; vma = vma->vm_next) {
8734                struct file *file = vma->vm_file;
8735                unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8736                unsigned long vma_size = vma->vm_end - vma->vm_start;
8737
8738                if (!file)
8739                        continue;
8740
8741                if (!perf_addr_filter_match(filter, file, off, vma_size))
8742                        continue;
8743
8744                return vma->vm_start;
8745        }
8746
8747        return 0;
8748}
8749
8750/*
8751 * Update event's address range filters based on the
8752 * task's existing mappings, if any.
8753 */
8754static void perf_event_addr_filters_apply(struct perf_event *event)
8755{
8756        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8757        struct task_struct *task = READ_ONCE(event->ctx->task);
8758        struct perf_addr_filter *filter;
8759        struct mm_struct *mm = NULL;
8760        unsigned int count = 0;
8761        unsigned long flags;
8762
8763        /*
8764         * We may observe TASK_TOMBSTONE, which means that the event tear-down
8765         * will stop on the parent's child_mutex that our caller is also holding
8766         */
8767        if (task == TASK_TOMBSTONE)
8768                return;
8769
8770        if (!ifh->nr_file_filters)
8771                return;
8772
8773        mm = get_task_mm(event->ctx->task);
8774        if (!mm)
8775                goto restart;
8776
8777        down_read(&mm->mmap_sem);
8778
8779        raw_spin_lock_irqsave(&ifh->lock, flags);
8780        list_for_each_entry(filter, &ifh->list, entry) {
8781                event->addr_filters_offs[count] = 0;
8782
8783                /*
8784                 * Adjust base offset if the filter is associated to a binary
8785                 * that needs to be mapped:
8786                 */
8787                if (filter->inode)
8788                        event->addr_filters_offs[count] =
8789                                perf_addr_filter_apply(filter, mm);
8790
8791                count++;
8792        }
8793
8794        event->addr_filters_gen++;
8795        raw_spin_unlock_irqrestore(&ifh->lock, flags);
8796
8797        up_read(&mm->mmap_sem);
8798
8799        mmput(mm);
8800
8801restart:
8802        perf_event_stop(event, 1);
8803}
8804
8805/*
8806 * Address range filtering: limiting the data to certain
8807 * instruction address ranges. Filters are ioctl()ed to us from
8808 * userspace as ascii strings.
8809 *
8810 * Filter string format:
8811 *
8812 * ACTION RANGE_SPEC
8813 * where ACTION is one of the
8814 *  * "filter": limit the trace to this region
8815 *  * "start": start tracing from this address
8816 *  * "stop": stop tracing at this address/region;
8817 * RANGE_SPEC is
8818 *  * for kernel addresses: <start address>[/<size>]
8819 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8820 *
8821 * if <size> is not specified or is zero, the range is treated as a single
8822 * address; not valid for ACTION=="filter".
8823 */
8824enum {
8825        IF_ACT_NONE = -1,
8826        IF_ACT_FILTER,
8827        IF_ACT_START,
8828        IF_ACT_STOP,
8829        IF_SRC_FILE,
8830        IF_SRC_KERNEL,
8831        IF_SRC_FILEADDR,
8832        IF_SRC_KERNELADDR,
8833};
8834
8835enum {
8836        IF_STATE_ACTION = 0,
8837        IF_STATE_SOURCE,
8838        IF_STATE_END,
8839};
8840
8841static const match_table_t if_tokens = {
8842        { IF_ACT_FILTER,        "filter" },
8843        { IF_ACT_START,         "start" },
8844        { IF_ACT_STOP,          "stop" },
8845        { IF_SRC_FILE,          "%u/%u@%s" },
8846        { IF_SRC_KERNEL,        "%u/%u" },
8847        { IF_SRC_FILEADDR,      "%u@%s" },
8848        { IF_SRC_KERNELADDR,    "%u" },
8849        { IF_ACT_NONE,          NULL },
8850};
8851
8852/*
8853 * Address filter string parser
8854 */
8855static int
8856perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8857                             struct list_head *filters)
8858{
8859        struct perf_addr_filter *filter = NULL;
8860        char *start, *orig, *filename = NULL;
8861        struct path path;
8862        substring_t args[MAX_OPT_ARGS];
8863        int state = IF_STATE_ACTION, token;
8864        unsigned int kernel = 0;
8865        int ret = -EINVAL;
8866
8867        orig = fstr = kstrdup(fstr, GFP_KERNEL);
8868        if (!fstr)
8869                return -ENOMEM;
8870
8871        while ((start = strsep(&fstr, " ,\n")) != NULL) {
8872                static const enum perf_addr_filter_action_t actions[] = {
8873                        [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8874                        [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8875                        [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8876                };
8877                ret = -EINVAL;
8878
8879                if (!*start)
8880                        continue;
8881
8882                /* filter definition begins */
8883                if (state == IF_STATE_ACTION) {
8884                        filter = perf_addr_filter_new(event, filters);
8885                        if (!filter)
8886                                goto fail;
8887                }
8888
8889                token = match_token(start, if_tokens, args);
8890                switch (token) {
8891                case IF_ACT_FILTER:
8892                case IF_ACT_START:
8893                case IF_ACT_STOP:
8894                        if (state != IF_STATE_ACTION)
8895                                goto fail;
8896
8897                        filter->action = actions[token];
8898                        state = IF_STATE_SOURCE;
8899                        break;
8900
8901                case IF_SRC_KERNELADDR:
8902                case IF_SRC_KERNEL:
8903                        kernel = 1;
8904
8905                case IF_SRC_FILEADDR:
8906                case IF_SRC_FILE:
8907                        if (state != IF_STATE_SOURCE)
8908                                goto fail;
8909
8910                        *args[0].to = 0;
8911                        ret = kstrtoul(args[0].from, 0, &filter->offset);
8912                        if (ret)
8913                                goto fail;
8914
8915                        if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8916                                *args[1].to = 0;
8917                                ret = kstrtoul(args[1].from, 0, &filter->size);
8918                                if (ret)
8919                                        goto fail;
8920                        }
8921
8922                        if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8923                                int fpos = token == IF_SRC_FILE ? 2 : 1;
8924
8925                                filename = match_strdup(&args[fpos]);
8926                                if (!filename) {
8927                                        ret = -ENOMEM;
8928                                        goto fail;
8929                                }
8930                        }
8931
8932                        state = IF_STATE_END;
8933                        break;
8934
8935                default:
8936                        goto fail;
8937                }
8938
8939                /*
8940                 * Filter definition is fully parsed, validate and install it.
8941                 * Make sure that it doesn't contradict itself or the event's
8942                 * attribute.
8943                 */
8944                if (state == IF_STATE_END) {
8945                        ret = -EINVAL;
8946                        if (kernel && event->attr.exclude_kernel)
8947                                goto fail;
8948
8949                        /*
8950                         * ACTION "filter" must have a non-zero length region
8951                         * specified.
8952                         */
8953                        if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8954                            !filter->size)
8955                                goto fail;
8956
8957                        if (!kernel) {
8958                                if (!filename)
8959                                        goto fail;
8960
8961                                /*
8962                                 * For now, we only support file-based filters
8963                                 * in per-task events; doing so for CPU-wide
8964                                 * events requires additional context switching
8965                                 * trickery, since same object code will be
8966                                 * mapped at different virtual addresses in
8967                                 * different processes.
8968                                 */
8969                                ret = -EOPNOTSUPP;
8970                                if (!event->ctx->task)
8971                                        goto fail_free_name;
8972
8973                                /* look up the path and grab its inode */
8974                                ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8975                                if (ret)
8976                                        goto fail_free_name;
8977
8978                                filter->inode = igrab(d_inode(path.dentry));
8979                                path_put(&path);
8980                                kfree(filename);
8981                                filename = NULL;
8982
8983                                ret = -EINVAL;
8984                                if (!filter->inode ||
8985                                    !S_ISREG(filter->inode->i_mode))
8986                                        /* free_filters_list() will iput() */
8987                                        goto fail;
8988
8989                                event->addr_filters.nr_file_filters++;
8990                        }
8991
8992                        /* ready to consume more filters */
8993                        state = IF_STATE_ACTION;
8994                        filter = NULL;
8995                }
8996        }
8997
8998        if (state != IF_STATE_ACTION)
8999                goto fail;
9000
9001        kfree(orig);
9002
9003        return 0;
9004
9005fail_free_name:
9006        kfree(filename);
9007fail:
9008        free_filters_list(filters);
9009        kfree(orig);
9010
9011        return ret;
9012}
9013
9014static int
9015perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9016{
9017        LIST_HEAD(filters);
9018        int ret;
9019
9020        /*
9021         * Since this is called in perf_ioctl() path, we're already holding
9022         * ctx::mutex.
9023         */
9024        lockdep_assert_held(&event->ctx->mutex);
9025
9026        if (WARN_ON_ONCE(event->parent))
9027                return -EINVAL;
9028
9029        ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9030        if (ret)
9031                goto fail_clear_files;
9032
9033        ret = event->pmu->addr_filters_validate(&filters);
9034        if (ret)
9035                goto fail_free_filters;
9036
9037        /* remove existing filters, if any */
9038        perf_addr_filters_splice(event, &filters);
9039
9040        /* install new filters */
9041        perf_event_for_each_child(event, perf_event_addr_filters_apply);
9042
9043        return ret;
9044
9045fail_free_filters:
9046        free_filters_list(&filters);
9047
9048fail_clear_files:
9049        event->addr_filters.nr_file_filters = 0;
9050
9051        return ret;
9052}
9053
9054static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9055{
9056        int ret = -EINVAL;
9057        char *filter_str;
9058
9059        filter_str = strndup_user(arg, PAGE_SIZE);
9060        if (IS_ERR(filter_str))
9061                return PTR_ERR(filter_str);
9062
9063#ifdef CONFIG_EVENT_TRACING
9064        if (perf_event_is_tracing(event)) {
9065                struct perf_event_context *ctx = event->ctx;
9066
9067                /*
9068                 * Beware, here be dragons!!
9069                 *
9070                 * the tracepoint muck will deadlock against ctx->mutex, but
9071                 * the tracepoint stuff does not actually need it. So
9072                 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9073                 * already have a reference on ctx.
9074                 *
9075                 * This can result in event getting moved to a different ctx,
9076                 * but that does not affect the tracepoint state.
9077                 */
9078                mutex_unlock(&ctx->mutex);
9079                ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9080                mutex_lock(&ctx->mutex);
9081        } else
9082#endif
9083        if (has_addr_filter(event))
9084                ret = perf_event_set_addr_filter(event, filter_str);
9085
9086        kfree(filter_str);
9087        return ret;
9088}
9089
9090/*
9091 * hrtimer based swevent callback
9092 */
9093
9094static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9095{
9096        enum hrtimer_restart ret = HRTIMER_RESTART;
9097        struct perf_sample_data data;
9098        struct pt_regs *regs;
9099        struct perf_event *event;
9100        u64 period;
9101
9102        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9103
9104        if (event->state != PERF_EVENT_STATE_ACTIVE)
9105                return HRTIMER_NORESTART;
9106
9107        event->pmu->read(event);
9108
9109        perf_sample_data_init(&data, 0, event->hw.last_period);
9110        regs = get_irq_regs();
9111
9112        if (regs && !perf_exclude_event(event, regs)) {
9113                if (!(event->attr.exclude_idle && is_idle_task(current)))
9114                        if (__perf_event_overflow(event, 1, &data, regs))
9115                                ret = HRTIMER_NORESTART;
9116        }
9117
9118        period = max_t(u64, 10000, event->hw.sample_period);
9119        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9120
9121        return ret;
9122}
9123
9124static void perf_swevent_start_hrtimer(struct perf_event *event)
9125{
9126        struct hw_perf_event *hwc = &event->hw;
9127        s64 period;
9128
9129        if (!is_sampling_event(event))
9130                return;
9131
9132        period = local64_read(&hwc->period_left);
9133        if (period) {
9134                if (period < 0)
9135                        period = 10000;
9136
9137                local64_set(&hwc->period_left, 0);
9138        } else {
9139                period = max_t(u64, 10000, hwc->sample_period);
9140        }
9141        hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9142                      HRTIMER_MODE_REL_PINNED);
9143}
9144
9145static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9146{
9147        struct hw_perf_event *hwc = &event->hw;
9148
9149        if (is_sampling_event(event)) {
9150                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9151                local64_set(&hwc->period_left, ktime_to_ns(remaining));
9152
9153                hrtimer_cancel(&hwc->hrtimer);
9154        }
9155}
9156
9157static void perf_swevent_init_hrtimer(struct perf_event *event)
9158{
9159        struct hw_perf_event *hwc = &event->hw;
9160
9161        if (!is_sampling_event(event))
9162                return;
9163
9164        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9165        hwc->hrtimer.function = perf_swevent_hrtimer;
9166
9167        /*
9168         * Since hrtimers have a fixed rate, we can do a static freq->period
9169         * mapping and avoid the whole period adjust feedback stuff.
9170         */
9171        if (event->attr.freq) {
9172                long freq = event->attr.sample_freq;
9173
9174                event->attr.sample_period = NSEC_PER_SEC / freq;
9175                hwc->sample_period = event->attr.sample_period;
9176                local64_set(&hwc->period_left, hwc->sample_period);
9177                hwc->last_period = hwc->sample_period;
9178                event->attr.freq = 0;
9179        }
9180}
9181
9182/*
9183 * Software event: cpu wall time clock
9184 */
9185
9186static void cpu_clock_event_update(struct perf_event *event)
9187{
9188        s64 prev;
9189        u64 now;
9190
9191        now = local_clock();
9192        prev = local64_xchg(&event->hw.prev_count, now);
9193        local64_add(now - prev, &event->count);
9194}
9195
9196static void cpu_clock_event_start(struct perf_event *event, int flags)
9197{
9198        local64_set(&event->hw.prev_count, local_clock());
9199        perf_swevent_start_hrtimer(event);
9200}
9201
9202static void cpu_clock_event_stop(struct perf_event *event, int flags)
9203{
9204        perf_swevent_cancel_hrtimer(event);
9205        cpu_clock_event_update(event);
9206}
9207
9208static int cpu_clock_event_add(struct perf_event *event, int flags)
9209{
9210        if (flags & PERF_EF_START)
9211                cpu_clock_event_start(event, flags);
9212        perf_event_update_userpage(event);
9213
9214        return 0;
9215}
9216
9217static void cpu_clock_event_del(struct perf_event *event, int flags)
9218{
9219        cpu_clock_event_stop(event, flags);
9220}
9221
9222static void cpu_clock_event_read(struct perf_event *event)
9223{
9224        cpu_clock_event_update(event);
9225}
9226
9227static int cpu_clock_event_init(struct perf_event *event)
9228{
9229        if (event->attr.type != PERF_TYPE_SOFTWARE)
9230                return -ENOENT;
9231
9232        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9233                return -ENOENT;
9234
9235        /*
9236         * no branch sampling for software events
9237         */
9238        if (has_branch_stack(event))
9239                return -EOPNOTSUPP;
9240
9241        perf_swevent_init_hrtimer(event);
9242
9243        return 0;
9244}
9245
9246static struct pmu perf_cpu_clock = {
9247        .task_ctx_nr    = perf_sw_context,
9248
9249        .capabilities   = PERF_PMU_CAP_NO_NMI,
9250
9251        .event_init     = cpu_clock_event_init,
9252        .add            = cpu_clock_event_add,
9253        .del            = cpu_clock_event_del,
9254        .start          = cpu_clock_event_start,
9255        .stop           = cpu_clock_event_stop,
9256        .read           = cpu_clock_event_read,
9257};
9258
9259/*
9260 * Software event: task time clock
9261 */
9262
9263static void task_clock_event_update(struct perf_event *event, u64 now)
9264{
9265        u64 prev;
9266        s64 delta;
9267
9268        prev = local64_xchg(&event->hw.prev_count, now);
9269        delta = now - prev;
9270        local64_add(delta, &event->count);
9271}
9272
9273static void task_clock_event_start(struct perf_event *event, int flags)
9274{
9275        local64_set(&event->hw.prev_count, event->ctx->time);
9276        perf_swevent_start_hrtimer(event);
9277}
9278
9279static void task_clock_event_stop(struct perf_event *event, int flags)
9280{
9281        perf_swevent_cancel_hrtimer(event);
9282        task_clock_event_update(event, event->ctx->time);
9283}
9284
9285static int task_clock_event_add(struct perf_event *event, int flags)
9286{
9287        if (flags & PERF_EF_START)
9288                task_clock_event_start(event, flags);
9289        perf_event_update_userpage(event);
9290
9291        return 0;
9292}
9293
9294static void task_clock_event_del(struct perf_event *event, int flags)
9295{
9296        task_clock_event_stop(event, PERF_EF_UPDATE);
9297}
9298
9299static void task_clock_event_read(struct perf_event *event)
9300{
9301        u64 now = perf_clock();
9302        u64 delta = now - event->ctx->timestamp;
9303        u64 time = event->ctx->time + delta;
9304
9305        task_clock_event_update(event, time);
9306}
9307
9308static int task_clock_event_init(struct perf_event *event)
9309{
9310        if (event->attr.type != PERF_TYPE_SOFTWARE)
9311                return -ENOENT;
9312
9313        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9314                return -ENOENT;
9315
9316        /*
9317         * no branch sampling for software events
9318         */
9319        if (has_branch_stack(event))
9320                return -EOPNOTSUPP;
9321
9322        perf_swevent_init_hrtimer(event);
9323
9324        return 0;
9325}
9326
9327static struct pmu perf_task_clock = {
9328        .task_ctx_nr    = perf_sw_context,
9329
9330        .capabilities   = PERF_PMU_CAP_NO_NMI,
9331
9332        .event_init     = task_clock_event_init,
9333        .add            = task_clock_event_add,
9334        .del            = task_clock_event_del,
9335        .start          = task_clock_event_start,
9336        .stop           = task_clock_event_stop,
9337        .read           = task_clock_event_read,
9338};
9339
9340static void perf_pmu_nop_void(struct pmu *pmu)
9341{
9342}
9343
9344static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9345{
9346}
9347
9348static int perf_pmu_nop_int(struct pmu *pmu)
9349{
9350        return 0;
9351}
9352
9353static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9354
9355static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9356{
9357        __this_cpu_write(nop_txn_flags, flags);
9358
9359        if (flags & ~PERF_PMU_TXN_ADD)
9360                return;
9361
9362        perf_pmu_disable(pmu);
9363}
9364
9365static int perf_pmu_commit_txn(struct pmu *pmu)
9366{
9367        unsigned int flags = __this_cpu_read(nop_txn_flags);
9368
9369        __this_cpu_write(nop_txn_flags, 0);
9370
9371        if (flags & ~PERF_PMU_TXN_ADD)
9372                return 0;
9373
9374        perf_pmu_enable(pmu);
9375        return 0;
9376}
9377
9378static void perf_pmu_cancel_txn(struct pmu *pmu)
9379{
9380        unsigned int flags =  __this_cpu_read(nop_txn_flags);
9381
9382        __this_cpu_write(nop_txn_flags, 0);
9383
9384        if (flags & ~PERF_PMU_TXN_ADD)
9385                return;
9386
9387        perf_pmu_enable(pmu);
9388}
9389
9390static int perf_event_idx_default(struct perf_event *event)
9391{
9392        return 0;
9393}
9394
9395/*
9396 * Ensures all contexts with the same task_ctx_nr have the same
9397 * pmu_cpu_context too.
9398 */
9399static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9400{
9401        struct pmu *pmu;
9402
9403        if (ctxn < 0)
9404                return NULL;
9405
9406        list_for_each_entry(pmu, &pmus, entry) {
9407                if (pmu->task_ctx_nr == ctxn)
9408                        return pmu->pmu_cpu_context;
9409        }
9410
9411        return NULL;
9412}
9413
9414static void free_pmu_context(struct pmu *pmu)
9415{
9416        /*
9417         * Static contexts such as perf_sw_context have a global lifetime
9418         * and may be shared between different PMUs. Avoid freeing them
9419         * when a single PMU is going away.
9420         */
9421        if (pmu->task_ctx_nr > perf_invalid_context)
9422                return;
9423
9424        mutex_lock(&pmus_lock);
9425        free_percpu(pmu->pmu_cpu_context);
9426        mutex_unlock(&pmus_lock);
9427}
9428
9429/*
9430 * Let userspace know that this PMU supports address range filtering:
9431 */
9432static ssize_t nr_addr_filters_show(struct device *dev,
9433                                    struct device_attribute *attr,
9434                                    char *page)
9435{
9436        struct pmu *pmu = dev_get_drvdata(dev);
9437
9438        return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9439}
9440DEVICE_ATTR_RO(nr_addr_filters);
9441
9442static struct idr pmu_idr;
9443
9444static ssize_t
9445type_show(struct device *dev, struct device_attribute *attr, char *page)
9446{
9447        struct pmu *pmu = dev_get_drvdata(dev);
9448
9449        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9450}
9451static DEVICE_ATTR_RO(type);
9452
9453static ssize_t
9454perf_event_mux_interval_ms_show(struct device *dev,
9455                                struct device_attribute *attr,
9456                                char *page)
9457{
9458        struct pmu *pmu = dev_get_drvdata(dev);
9459
9460        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9461}
9462
9463static DEFINE_MUTEX(mux_interval_mutex);
9464
9465static ssize_t
9466perf_event_mux_interval_ms_store(struct device *dev,
9467                                 struct device_attribute *attr,
9468                                 const char *buf, size_t count)
9469{
9470        struct pmu *pmu = dev_get_drvdata(dev);
9471        int timer, cpu, ret;
9472
9473        ret = kstrtoint(buf, 0, &timer);
9474        if (ret)
9475                return ret;
9476
9477        if (timer < 1)
9478                return -EINVAL;
9479
9480        /* same value, noting to do */
9481        if (timer == pmu->hrtimer_interval_ms)
9482                return count;
9483
9484        mutex_lock(&mux_interval_mutex);
9485        pmu->hrtimer_interval_ms = timer;
9486
9487        /* update all cpuctx for this PMU */
9488        cpus_read_lock();
9489        for_each_online_cpu(cpu) {
9490                struct perf_cpu_context *cpuctx;
9491                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9492                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9493
9494                cpu_function_call(cpu,
9495                        (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9496        }
9497        cpus_read_unlock();
9498        mutex_unlock(&mux_interval_mutex);
9499
9500        return count;
9501}
9502static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9503
9504static struct attribute *pmu_dev_attrs[] = {
9505        &dev_attr_type.attr,
9506        &dev_attr_perf_event_mux_interval_ms.attr,
9507        NULL,
9508};
9509ATTRIBUTE_GROUPS(pmu_dev);
9510
9511static int pmu_bus_running;
9512static struct bus_type pmu_bus = {
9513        .name           = "event_source",
9514        .dev_groups     = pmu_dev_groups,
9515};
9516
9517static void pmu_dev_release(struct device *dev)
9518{
9519        kfree(dev);
9520}
9521
9522static int pmu_dev_alloc(struct pmu *pmu)
9523{
9524        int ret = -ENOMEM;
9525
9526        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9527        if (!pmu->dev)
9528                goto out;
9529
9530        pmu->dev->groups = pmu->attr_groups;
9531        device_initialize(pmu->dev);
9532        ret = dev_set_name(pmu->dev, "%s", pmu->name);
9533        if (ret)
9534                goto free_dev;
9535
9536        dev_set_drvdata(pmu->dev, pmu);
9537        pmu->dev->bus = &pmu_bus;
9538        pmu->dev->release = pmu_dev_release;
9539        ret = device_add(pmu->dev);
9540        if (ret)
9541                goto free_dev;
9542
9543        /* For PMUs with address filters, throw in an extra attribute: */
9544        if (pmu->nr_addr_filters)
9545                ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9546
9547        if (ret)
9548                goto del_dev;
9549
9550out:
9551        return ret;
9552
9553del_dev:
9554        device_del(pmu->dev);
9555
9556free_dev:
9557        put_device(pmu->dev);
9558        goto out;
9559}
9560
9561static struct lock_class_key cpuctx_mutex;
9562static struct lock_class_key cpuctx_lock;
9563
9564int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9565{
9566        int cpu, ret;
9567
9568        mutex_lock(&pmus_lock);
9569        ret = -ENOMEM;
9570        pmu->pmu_disable_count = alloc_percpu(int);
9571        if (!pmu->pmu_disable_count)
9572                goto unlock;
9573
9574        pmu->type = -1;
9575        if (!name)
9576                goto skip_type;
9577        pmu->name = name;
9578
9579        if (type < 0) {
9580                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9581                if (type < 0) {
9582                        ret = type;
9583                        goto free_pdc;
9584                }
9585        }
9586        pmu->type = type;
9587
9588        if (pmu_bus_running) {
9589                ret = pmu_dev_alloc(pmu);
9590                if (ret)
9591                        goto free_idr;
9592        }
9593
9594skip_type:
9595        if (pmu->task_ctx_nr == perf_hw_context) {
9596                static int hw_context_taken = 0;
9597
9598                /*
9599                 * Other than systems with heterogeneous CPUs, it never makes
9600                 * sense for two PMUs to share perf_hw_context. PMUs which are
9601                 * uncore must use perf_invalid_context.
9602                 */
9603                if (WARN_ON_ONCE(hw_context_taken &&
9604                    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9605                        pmu->task_ctx_nr = perf_invalid_context;
9606
9607                hw_context_taken = 1;
9608        }
9609
9610        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9611        if (pmu->pmu_cpu_context)
9612                goto got_cpu_context;
9613
9614        ret = -ENOMEM;
9615        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9616        if (!pmu->pmu_cpu_context)
9617                goto free_dev;
9618
9619        for_each_possible_cpu(cpu) {
9620                struct perf_cpu_context *cpuctx;
9621
9622                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9623                __perf_event_init_context(&cpuctx->ctx);
9624                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9625                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9626                cpuctx->ctx.pmu = pmu;
9627                cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9628
9629                __perf_mux_hrtimer_init(cpuctx, cpu);
9630        }
9631
9632got_cpu_context:
9633        if (!pmu->start_txn) {
9634                if (pmu->pmu_enable) {
9635                        /*
9636                         * If we have pmu_enable/pmu_disable calls, install
9637                         * transaction stubs that use that to try and batch
9638                         * hardware accesses.
9639                         */
9640                        pmu->start_txn  = perf_pmu_start_txn;
9641                        pmu->commit_txn = perf_pmu_commit_txn;
9642                        pmu->cancel_txn = perf_pmu_cancel_txn;
9643                } else {
9644                        pmu->start_txn  = perf_pmu_nop_txn;
9645                        pmu->commit_txn = perf_pmu_nop_int;
9646                        pmu->cancel_txn = perf_pmu_nop_void;
9647                }
9648        }
9649
9650        if (!pmu->pmu_enable) {
9651                pmu->pmu_enable  = perf_pmu_nop_void;
9652                pmu->pmu_disable = perf_pmu_nop_void;
9653        }
9654
9655        if (!pmu->event_idx)
9656                pmu->event_idx = perf_event_idx_default;
9657
9658        list_add_rcu(&pmu->entry, &pmus);
9659        atomic_set(&pmu->exclusive_cnt, 0);
9660        ret = 0;
9661unlock:
9662        mutex_unlock(&pmus_lock);
9663
9664        return ret;
9665
9666free_dev:
9667        device_del(pmu->dev);
9668        put_device(pmu->dev);
9669
9670free_idr:
9671        if (pmu->type >= PERF_TYPE_MAX)
9672                idr_remove(&pmu_idr, pmu->type);
9673
9674free_pdc:
9675        free_percpu(pmu->pmu_disable_count);
9676        goto unlock;
9677}
9678EXPORT_SYMBOL_GPL(perf_pmu_register);
9679
9680void perf_pmu_unregister(struct pmu *pmu)
9681{
9682        int remove_device;
9683
9684        mutex_lock(&pmus_lock);
9685        remove_device = pmu_bus_running;
9686        list_del_rcu(&pmu->entry);
9687        mutex_unlock(&pmus_lock);
9688
9689        /*
9690         * We dereference the pmu list under both SRCU and regular RCU, so
9691         * synchronize against both of those.
9692         */
9693        synchronize_srcu(&pmus_srcu);
9694        synchronize_rcu();
9695
9696        free_percpu(pmu->pmu_disable_count);
9697        if (pmu->type >= PERF_TYPE_MAX)
9698                idr_remove(&pmu_idr, pmu->type);
9699        if (remove_device) {
9700                if (pmu->nr_addr_filters)
9701                        device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9702                device_del(pmu->dev);
9703                put_device(pmu->dev);
9704        }
9705        free_pmu_context(pmu);
9706}
9707EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9708
9709static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9710{
9711        struct perf_event_context *ctx = NULL;
9712        int ret;
9713
9714        if (!try_module_get(pmu->module))
9715                return -ENODEV;
9716
9717        /*
9718         * A number of pmu->event_init() methods iterate the sibling_list to,
9719         * for example, validate if the group fits on the PMU. Therefore,
9720         * if this is a sibling event, acquire the ctx->mutex to protect
9721         * the sibling_list.
9722         */
9723        if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9724                /*
9725                 * This ctx->mutex can nest when we're called through
9726                 * inheritance. See the perf_event_ctx_lock_nested() comment.
9727                 */
9728                ctx = perf_event_ctx_lock_nested(event->group_leader,
9729                                                 SINGLE_DEPTH_NESTING);
9730                BUG_ON(!ctx);
9731        }
9732
9733        event->pmu = pmu;
9734        ret = pmu->event_init(event);
9735
9736        if (ctx)
9737                perf_event_ctx_unlock(event->group_leader, ctx);
9738
9739        if (ret)
9740                module_put(pmu->module);
9741
9742        return ret;
9743}
9744
9745static struct pmu *perf_init_event(struct perf_event *event)
9746{
9747        struct pmu *pmu;
9748        int idx;
9749        int ret;
9750
9751        idx = srcu_read_lock(&pmus_srcu);
9752
9753        /* Try parent's PMU first: */
9754        if (event->parent && event->parent->pmu) {
9755                pmu = event->parent->pmu;
9756                ret = perf_try_init_event(pmu, event);
9757                if (!ret)
9758                        goto unlock;
9759        }
9760
9761        rcu_read_lock();
9762        pmu = idr_find(&pmu_idr, event->attr.type);
9763        rcu_read_unlock();
9764        if (pmu) {
9765                ret = perf_try_init_event(pmu, event);
9766                if (ret)
9767                        pmu = ERR_PTR(ret);
9768                goto unlock;
9769        }
9770
9771        list_for_each_entry_rcu(pmu, &pmus, entry) {
9772                ret = perf_try_init_event(pmu, event);
9773                if (!ret)
9774                        goto unlock;
9775
9776                if (ret != -ENOENT) {
9777                        pmu = ERR_PTR(ret);
9778                        goto unlock;
9779                }
9780        }
9781        pmu = ERR_PTR(-ENOENT);
9782unlock:
9783        srcu_read_unlock(&pmus_srcu, idx);
9784
9785        return pmu;
9786}
9787
9788static void attach_sb_event(struct perf_event *event)
9789{
9790        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9791
9792        raw_spin_lock(&pel->lock);
9793        list_add_rcu(&event->sb_list, &pel->list);
9794        raw_spin_unlock(&pel->lock);
9795}
9796
9797/*
9798 * We keep a list of all !task (and therefore per-cpu) events
9799 * that need to receive side-band records.
9800 *
9801 * This avoids having to scan all the various PMU per-cpu contexts
9802 * looking for them.
9803 */
9804static void account_pmu_sb_event(struct perf_event *event)
9805{
9806        if (is_sb_event(event))
9807                attach_sb_event(event);
9808}
9809
9810static void account_event_cpu(struct perf_event *event, int cpu)
9811{
9812        if (event->parent)
9813                return;
9814
9815        if (is_cgroup_event(event))
9816                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9817}
9818
9819/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9820static void account_freq_event_nohz(void)
9821{
9822#ifdef CONFIG_NO_HZ_FULL
9823        /* Lock so we don't race with concurrent unaccount */
9824        spin_lock(&nr_freq_lock);
9825        if (atomic_inc_return(&nr_freq_events) == 1)
9826                tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9827        spin_unlock(&nr_freq_lock);
9828#endif
9829}
9830
9831static void account_freq_event(void)
9832{
9833        if (tick_nohz_full_enabled())
9834                account_freq_event_nohz();
9835        else
9836                atomic_inc(&nr_freq_events);
9837}
9838
9839
9840static void account_event(struct perf_event *event)
9841{
9842        bool inc = false;
9843
9844        if (event->parent)
9845                return;
9846
9847        if (event->attach_state & PERF_ATTACH_TASK)
9848                inc = true;
9849        if (event->attr.mmap || event->attr.mmap_data)
9850                atomic_inc(&nr_mmap_events);
9851        if (event->attr.comm)
9852                atomic_inc(&nr_comm_events);
9853        if (event->attr.namespaces)
9854                atomic_inc(&nr_namespaces_events);
9855        if (event->attr.task)
9856                atomic_inc(&nr_task_events);
9857        if (event->attr.freq)
9858                account_freq_event();
9859        if (event->attr.context_switch) {
9860                atomic_inc(&nr_switch_events);
9861                inc = true;
9862        }
9863        if (has_branch_stack(event))
9864                inc = true;
9865        if (is_cgroup_event(event))
9866                inc = true;
9867
9868        if (inc) {
9869                /*
9870                 * We need the mutex here because static_branch_enable()
9871                 * must complete *before* the perf_sched_count increment
9872                 * becomes visible.
9873                 */
9874                if (atomic_inc_not_zero(&perf_sched_count))
9875                        goto enabled;
9876
9877                mutex_lock(&perf_sched_mutex);
9878                if (!atomic_read(&perf_sched_count)) {
9879                        static_branch_enable(&perf_sched_events);
9880                        /*
9881                         * Guarantee that all CPUs observe they key change and
9882                         * call the perf scheduling hooks before proceeding to
9883                         * install events that need them.
9884                         */
9885                        synchronize_sched();
9886                }
9887                /*
9888                 * Now that we have waited for the sync_sched(), allow further
9889                 * increments to by-pass the mutex.
9890                 */
9891                atomic_inc(&perf_sched_count);
9892                mutex_unlock(&perf_sched_mutex);
9893        }
9894enabled:
9895
9896        account_event_cpu(event, event->cpu);
9897
9898        account_pmu_sb_event(event);
9899}
9900
9901/*
9902 * Allocate and initialize a event structure
9903 */
9904static struct perf_event *
9905perf_event_alloc(struct perf_event_attr *attr, int cpu,
9906                 struct task_struct *task,
9907                 struct perf_event *group_leader,
9908                 struct perf_event *parent_event,
9909                 perf_overflow_handler_t overflow_handler,
9910                 void *context, int cgroup_fd)
9911{
9912        struct pmu *pmu;
9913        struct perf_event *event;
9914        struct hw_perf_event *hwc;
9915        long err = -EINVAL;
9916
9917        if ((unsigned)cpu >= nr_cpu_ids) {
9918                if (!task || cpu != -1)
9919                        return ERR_PTR(-EINVAL);
9920        }
9921
9922        event = kzalloc(sizeof(*event), GFP_KERNEL);
9923        if (!event)
9924                return ERR_PTR(-ENOMEM);
9925
9926        /*
9927         * Single events are their own group leaders, with an
9928         * empty sibling list:
9929         */
9930        if (!group_leader)
9931                group_leader = event;
9932
9933        mutex_init(&event->child_mutex);
9934        INIT_LIST_HEAD(&event->child_list);
9935
9936        INIT_LIST_HEAD(&event->event_entry);
9937        INIT_LIST_HEAD(&event->sibling_list);
9938        INIT_LIST_HEAD(&event->active_list);
9939        init_event_group(event);
9940        INIT_LIST_HEAD(&event->rb_entry);
9941        INIT_LIST_HEAD(&event->active_entry);
9942        INIT_LIST_HEAD(&event->addr_filters.list);
9943        INIT_HLIST_NODE(&event->hlist_entry);
9944
9945
9946        init_waitqueue_head(&event->waitq);
9947        init_irq_work(&event->pending, perf_pending_event);
9948
9949        mutex_init(&event->mmap_mutex);
9950        raw_spin_lock_init(&event->addr_filters.lock);
9951
9952        atomic_long_set(&event->refcount, 1);
9953        event->cpu              = cpu;
9954        event->attr             = *attr;
9955        event->group_leader     = group_leader;
9956        event->pmu              = NULL;
9957        event->oncpu            = -1;
9958
9959        event->parent           = parent_event;
9960
9961        event->ns               = get_pid_ns(task_active_pid_ns(current));
9962        event->id               = atomic64_inc_return(&perf_event_id);
9963
9964        event->state            = PERF_EVENT_STATE_INACTIVE;
9965
9966        if (task) {
9967                event->attach_state = PERF_ATTACH_TASK;
9968                /*
9969                 * XXX pmu::event_init needs to know what task to account to
9970                 * and we cannot use the ctx information because we need the
9971                 * pmu before we get a ctx.
9972                 */
9973                get_task_struct(task);
9974                event->hw.target = task;
9975        }
9976
9977        event->clock = &local_clock;
9978        if (parent_event)
9979                event->clock = parent_event->clock;
9980
9981        if (!overflow_handler && parent_event) {
9982                overflow_handler = parent_event->overflow_handler;
9983                context = parent_event->overflow_handler_context;
9984#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9985                if (overflow_handler == bpf_overflow_handler) {
9986                        struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9987
9988                        if (IS_ERR(prog)) {
9989                                err = PTR_ERR(prog);
9990                                goto err_ns;
9991                        }
9992                        event->prog = prog;
9993                        event->orig_overflow_handler =
9994                                parent_event->orig_overflow_handler;
9995                }
9996#endif
9997        }
9998
9999        if (overflow_handler) {
10000                event->overflow_handler = overflow_handler;
10001                event->overflow_handler_context = context;
10002        } else if (is_write_backward(event)){
10003                event->overflow_handler = perf_event_output_backward;
10004                event->overflow_handler_context = NULL;
10005        } else {
10006                event->overflow_handler = perf_event_output_forward;
10007                event->overflow_handler_context = NULL;
10008        }
10009
10010        perf_event__state_init(event);
10011
10012        pmu = NULL;
10013
10014        hwc = &event->hw;
10015        hwc->sample_period = attr->sample_period;
10016        if (attr->freq && attr->sample_freq)
10017                hwc->sample_period = 1;
10018        hwc->last_period = hwc->sample_period;
10019
10020        local64_set(&hwc->period_left, hwc->sample_period);
10021
10022        /*
10023         * We currently do not support PERF_SAMPLE_READ on inherited events.
10024         * See perf_output_read().
10025         */
10026        if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10027                goto err_ns;
10028
10029        if (!has_branch_stack(event))
10030                event->attr.branch_sample_type = 0;
10031
10032        if (cgroup_fd != -1) {
10033                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10034                if (err)
10035                        goto err_ns;
10036        }
10037
10038        pmu = perf_init_event(event);
10039        if (IS_ERR(pmu)) {
10040                err = PTR_ERR(pmu);
10041                goto err_ns;
10042        }
10043
10044        err = exclusive_event_init(event);
10045        if (err)
10046                goto err_pmu;
10047
10048        if (has_addr_filter(event)) {
10049                event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10050                                                   sizeof(unsigned long),
10051                                                   GFP_KERNEL);
10052                if (!event->addr_filters_offs) {
10053                        err = -ENOMEM;
10054                        goto err_per_task;
10055                }
10056
10057                /* force hw sync on the address filters */
10058                event->addr_filters_gen = 1;
10059        }
10060
10061        if (!event->parent) {
10062                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10063                        err = get_callchain_buffers(attr->sample_max_stack);
10064                        if (err)
10065                                goto err_addr_filters;
10066                }
10067        }
10068
10069        /* symmetric to unaccount_event() in _free_event() */
10070        account_event(event);
10071
10072        return event;
10073
10074err_addr_filters:
10075        kfree(event->addr_filters_offs);
10076
10077err_per_task:
10078        exclusive_event_destroy(event);
10079
10080err_pmu:
10081        if (event->destroy)
10082                event->destroy(event);
10083        module_put(pmu->module);
10084err_ns:
10085        if (is_cgroup_event(event))
10086                perf_detach_cgroup(event);
10087        if (event->ns)
10088                put_pid_ns(event->ns);
10089        if (event->hw.target)
10090                put_task_struct(event->hw.target);
10091        kfree(event);
10092
10093        return ERR_PTR(err);
10094}
10095
10096static int perf_copy_attr(struct perf_event_attr __user *uattr,
10097                          struct perf_event_attr *attr)
10098{
10099        u32 size;
10100        int ret;
10101
10102        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10103                return -EFAULT;
10104
10105        /*
10106         * zero the full structure, so that a short copy will be nice.
10107         */
10108        memset(attr, 0, sizeof(*attr));
10109
10110        ret = get_user(size, &uattr->size);
10111        if (ret)
10112                return ret;
10113
10114        if (size > PAGE_SIZE)   /* silly large */
10115                goto err_size;
10116
10117        if (!size)              /* abi compat */
10118                size = PERF_ATTR_SIZE_VER0;
10119
10120        if (size < PERF_ATTR_SIZE_VER0)
10121                goto err_size;
10122
10123        /*
10124         * If we're handed a bigger struct than we know of,
10125         * ensure all the unknown bits are 0 - i.e. new
10126         * user-space does not rely on any kernel feature
10127         * extensions we dont know about yet.
10128         */
10129        if (size > sizeof(*attr)) {
10130                unsigned char __user *addr;
10131                unsigned char __user *end;
10132                unsigned char val;
10133
10134                addr = (void __user *)uattr + sizeof(*attr);
10135                end  = (void __user *)uattr + size;
10136
10137                for (; addr < end; addr++) {
10138                        ret = get_user(val, addr);
10139                        if (ret)
10140                                return ret;
10141                        if (val)
10142                                goto err_size;
10143                }
10144                size = sizeof(*attr);
10145        }
10146
10147        ret = copy_from_user(attr, uattr, size);
10148        if (ret)
10149                return -EFAULT;
10150
10151        attr->size = size;
10152
10153        if (attr->__reserved_1)
10154                return -EINVAL;
10155
10156        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10157                return -EINVAL;
10158
10159        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10160                return -EINVAL;
10161
10162        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10163                u64 mask = attr->branch_sample_type;
10164
10165                /* only using defined bits */
10166                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10167                        return -EINVAL;
10168
10169                /* at least one branch bit must be set */
10170                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10171                        return -EINVAL;
10172
10173                /* propagate priv level, when not set for branch */
10174                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10175
10176                        /* exclude_kernel checked on syscall entry */
10177                        if (!attr->exclude_kernel)
10178                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
10179
10180                        if (!attr->exclude_user)
10181                                mask |= PERF_SAMPLE_BRANCH_USER;
10182
10183                        if (!attr->exclude_hv)
10184                                mask |= PERF_SAMPLE_BRANCH_HV;
10185                        /*
10186                         * adjust user setting (for HW filter setup)
10187                         */
10188                        attr->branch_sample_type = mask;
10189                }
10190                /* privileged levels capture (kernel, hv): check permissions */
10191                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10192                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10193                        return -EACCES;
10194        }
10195
10196        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10197                ret = perf_reg_validate(attr->sample_regs_user);
10198                if (ret)
10199                        return ret;
10200        }
10201
10202        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10203                if (!arch_perf_have_user_stack_dump())
10204                        return -ENOSYS;
10205
10206                /*
10207                 * We have __u32 type for the size, but so far
10208                 * we can only use __u16 as maximum due to the
10209                 * __u16 sample size limit.
10210                 */
10211                if (attr->sample_stack_user >= USHRT_MAX)
10212                        return -EINVAL;
10213                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10214                        return -EINVAL;
10215        }
10216
10217        if (!attr->sample_max_stack)
10218                attr->sample_max_stack = sysctl_perf_event_max_stack;
10219
10220        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10221                ret = perf_reg_validate(attr->sample_regs_intr);
10222out:
10223        return ret;
10224
10225err_size:
10226        put_user(sizeof(*attr), &uattr->size);
10227        ret = -E2BIG;
10228        goto out;
10229}
10230
10231static int
10232perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10233{
10234        struct ring_buffer *rb = NULL;
10235        int ret = -EINVAL;
10236
10237        if (!output_event)
10238                goto set;
10239
10240        /* don't allow circular references */
10241        if (event == output_event)
10242                goto out;
10243
10244        /*
10245         * Don't allow cross-cpu buffers
10246         */
10247        if (output_event->cpu != event->cpu)
10248                goto out;
10249
10250        /*
10251         * If its not a per-cpu rb, it must be the same task.
10252         */
10253        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10254                goto out;
10255
10256        /*
10257         * Mixing clocks in the same buffer is trouble you don't need.
10258         */
10259        if (output_event->clock != event->clock)
10260                goto out;
10261
10262        /*
10263         * Either writing ring buffer from beginning or from end.
10264         * Mixing is not allowed.
10265         */
10266        if (is_write_backward(output_event) != is_write_backward(event))
10267                goto out;
10268
10269        /*
10270         * If both events generate aux data, they must be on the same PMU
10271         */
10272        if (has_aux(event) && has_aux(output_event) &&
10273            event->pmu != output_event->pmu)
10274                goto out;
10275
10276set:
10277        mutex_lock(&event->mmap_mutex);
10278        /* Can't redirect output if we've got an active mmap() */
10279        if (atomic_read(&event->mmap_count))
10280                goto unlock;
10281
10282        if (output_event) {
10283                /* get the rb we want to redirect to */
10284                rb = ring_buffer_get(output_event);
10285                if (!rb)
10286                        goto unlock;
10287        }
10288
10289        ring_buffer_attach(event, rb);
10290
10291        ret = 0;
10292unlock:
10293        mutex_unlock(&event->mmap_mutex);
10294
10295out:
10296        return ret;
10297}
10298
10299static void mutex_lock_double(struct mutex *a, struct mutex *b)
10300{
10301        if (b < a)
10302                swap(a, b);
10303
10304        mutex_lock(a);
10305        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10306}
10307
10308static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10309{
10310        bool nmi_safe = false;
10311
10312        switch (clk_id) {
10313        case CLOCK_MONOTONIC:
10314                event->clock = &ktime_get_mono_fast_ns;
10315                nmi_safe = true;
10316                break;
10317
10318        case CLOCK_MONOTONIC_RAW:
10319                event->clock = &ktime_get_raw_fast_ns;
10320                nmi_safe = true;
10321                break;
10322
10323        case CLOCK_REALTIME:
10324                event->clock = &ktime_get_real_ns;
10325                break;
10326
10327        case CLOCK_BOOTTIME:
10328                event->clock = &ktime_get_boot_ns;
10329                break;
10330
10331        case CLOCK_TAI:
10332                event->clock = &ktime_get_tai_ns;
10333                break;
10334
10335        default:
10336                return -EINVAL;
10337        }
10338
10339        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10340                return -EINVAL;
10341
10342        return 0;
10343}
10344
10345/*
10346 * Variation on perf_event_ctx_lock_nested(), except we take two context
10347 * mutexes.
10348 */
10349static struct perf_event_context *
10350__perf_event_ctx_lock_double(struct perf_event *group_leader,
10351                             struct perf_event_context *ctx)
10352{
10353        struct perf_event_context *gctx;
10354
10355again:
10356        rcu_read_lock();
10357        gctx = READ_ONCE(group_leader->ctx);
10358        if (!atomic_inc_not_zero(&gctx->refcount)) {
10359                rcu_read_unlock();
10360                goto again;
10361        }
10362        rcu_read_unlock();
10363
10364        mutex_lock_double(&gctx->mutex, &ctx->mutex);
10365
10366        if (group_leader->ctx != gctx) {
10367                mutex_unlock(&ctx->mutex);
10368                mutex_unlock(&gctx->mutex);
10369                put_ctx(gctx);
10370                goto again;
10371        }
10372
10373        return gctx;
10374}
10375
10376/**
10377 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10378 *
10379 * @attr_uptr:  event_id type attributes for monitoring/sampling
10380 * @pid:                target pid
10381 * @cpu:                target cpu
10382 * @group_fd:           group leader event fd
10383 */
10384SYSCALL_DEFINE5(perf_event_open,
10385                struct perf_event_attr __user *, attr_uptr,
10386                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10387{
10388        struct perf_event *group_leader = NULL, *output_event = NULL;
10389        struct perf_event *event, *sibling;
10390        struct perf_event_attr attr;
10391        struct perf_event_context *ctx, *uninitialized_var(gctx);
10392        struct file *event_file = NULL;
10393        struct fd group = {NULL, 0};
10394        struct task_struct *task = NULL;
10395        struct pmu *pmu;
10396        int event_fd;
10397        int move_group = 0;
10398        int err;
10399        int f_flags = O_RDWR;
10400        int cgroup_fd = -1;
10401
10402        /* for future expandability... */
10403        if (flags & ~PERF_FLAG_ALL)
10404                return -EINVAL;
10405
10406        err = perf_copy_attr(attr_uptr, &attr);
10407        if (err)
10408                return err;
10409
10410        if (!attr.exclude_kernel) {
10411                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10412                        return -EACCES;
10413        }
10414
10415        if (attr.namespaces) {
10416                if (!capable(CAP_SYS_ADMIN))
10417                        return -EACCES;
10418        }
10419
10420        if (attr.freq) {
10421                if (attr.sample_freq > sysctl_perf_event_sample_rate)
10422                        return -EINVAL;
10423        } else {
10424                if (attr.sample_period & (1ULL << 63))
10425                        return -EINVAL;
10426        }
10427
10428        /* Only privileged users can get physical addresses */
10429        if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10430            perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10431                return -EACCES;
10432
10433        /*
10434         * In cgroup mode, the pid argument is used to pass the fd
10435         * opened to the cgroup directory in cgroupfs. The cpu argument
10436         * designates the cpu on which to monitor threads from that
10437         * cgroup.
10438         */
10439        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10440                return -EINVAL;
10441
10442        if (flags & PERF_FLAG_FD_CLOEXEC)
10443                f_flags |= O_CLOEXEC;
10444
10445        event_fd = get_unused_fd_flags(f_flags);
10446        if (event_fd < 0)
10447                return event_fd;
10448
10449        if (group_fd != -1) {
10450                err = perf_fget_light(group_fd, &group);
10451                if (err)
10452                        goto err_fd;
10453                group_leader = group.file->private_data;
10454                if (flags & PERF_FLAG_FD_OUTPUT)
10455                        output_event = group_leader;
10456                if (flags & PERF_FLAG_FD_NO_GROUP)
10457                        group_leader = NULL;
10458        }
10459
10460        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10461                task = find_lively_task_by_vpid(pid);
10462                if (IS_ERR(task)) {
10463                        err = PTR_ERR(task);
10464                        goto err_group_fd;
10465                }
10466        }
10467
10468        if (task && group_leader &&
10469            group_leader->attr.inherit != attr.inherit) {
10470                err = -EINVAL;
10471                goto err_task;
10472        }
10473
10474        if (task) {
10475                err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10476                if (err)
10477                        goto err_task;
10478
10479                /*
10480                 * Reuse ptrace permission checks for now.
10481                 *
10482                 * We must hold cred_guard_mutex across this and any potential
10483                 * perf_install_in_context() call for this new event to
10484                 * serialize against exec() altering our credentials (and the
10485                 * perf_event_exit_task() that could imply).
10486                 */
10487                err = -EACCES;
10488                if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10489                        goto err_cred;
10490        }
10491
10492        if (flags & PERF_FLAG_PID_CGROUP)
10493                cgroup_fd = pid;
10494
10495        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10496                                 NULL, NULL, cgroup_fd);
10497        if (IS_ERR(event)) {
10498                err = PTR_ERR(event);
10499                goto err_cred;
10500        }
10501
10502        if (is_sampling_event(event)) {
10503                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10504                        err = -EOPNOTSUPP;
10505                        goto err_alloc;
10506                }
10507        }
10508
10509        /*
10510         * Special case software events and allow them to be part of
10511         * any hardware group.
10512         */
10513        pmu = event->pmu;
10514
10515        if (attr.use_clockid) {
10516                err = perf_event_set_clock(event, attr.clockid);
10517                if (err)
10518                        goto err_alloc;
10519        }
10520
10521        if (pmu->task_ctx_nr == perf_sw_context)
10522                event->event_caps |= PERF_EV_CAP_SOFTWARE;
10523
10524        if (group_leader &&
10525            (is_software_event(event) != is_software_event(group_leader))) {
10526                if (is_software_event(event)) {
10527                        /*
10528                         * If event and group_leader are not both a software
10529                         * event, and event is, then group leader is not.
10530                         *
10531                         * Allow the addition of software events to !software
10532                         * groups, this is safe because software events never
10533                         * fail to schedule.
10534                         */
10535                        pmu = group_leader->pmu;
10536                } else if (is_software_event(group_leader) &&
10537                           (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10538                        /*
10539                         * In case the group is a pure software group, and we
10540                         * try to add a hardware event, move the whole group to
10541                         * the hardware context.
10542                         */
10543                        move_group = 1;
10544                }
10545        }
10546
10547        /*
10548         * Get the target context (task or percpu):
10549         */
10550        ctx = find_get_context(pmu, task, event);
10551        if (IS_ERR(ctx)) {
10552                err = PTR_ERR(ctx);
10553                goto err_alloc;
10554        }
10555
10556        if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10557                err = -EBUSY;
10558                goto err_context;
10559        }
10560
10561        /*
10562         * Look up the group leader (we will attach this event to it):
10563         */
10564        if (group_leader) {
10565                err = -EINVAL;
10566
10567                /*
10568                 * Do not allow a recursive hierarchy (this new sibling
10569                 * becoming part of another group-sibling):
10570                 */
10571                if (group_leader->group_leader != group_leader)
10572                        goto err_context;
10573
10574                /* All events in a group should have the same clock */
10575                if (group_leader->clock != event->clock)
10576                        goto err_context;
10577
10578                /*
10579                 * Make sure we're both events for the same CPU;
10580                 * grouping events for different CPUs is broken; since
10581                 * you can never concurrently schedule them anyhow.
10582                 */
10583                if (group_leader->cpu != event->cpu)
10584                        goto err_context;
10585
10586                /*
10587                 * Make sure we're both on the same task, or both
10588                 * per-CPU events.
10589                 */
10590                if (group_leader->ctx->task != ctx->task)
10591                        goto err_context;
10592
10593                /*
10594                 * Do not allow to attach to a group in a different task
10595                 * or CPU context. If we're moving SW events, we'll fix
10596                 * this up later, so allow that.
10597                 */
10598                if (!move_group && group_leader->ctx != ctx)
10599                        goto err_context;
10600
10601                /*
10602                 * Only a group leader can be exclusive or pinned
10603                 */
10604                if (attr.exclusive || attr.pinned)
10605                        goto err_context;
10606        }
10607
10608        if (output_event) {
10609                err = perf_event_set_output(event, output_event);
10610                if (err)
10611                        goto err_context;
10612        }
10613
10614        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10615                                        f_flags);
10616        if (IS_ERR(event_file)) {
10617                err = PTR_ERR(event_file);
10618                event_file = NULL;
10619                goto err_context;
10620        }
10621
10622        if (move_group) {
10623                gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10624
10625                if (gctx->task == TASK_TOMBSTONE) {
10626                        err = -ESRCH;
10627                        goto err_locked;
10628                }
10629
10630                /*
10631                 * Check if we raced against another sys_perf_event_open() call
10632                 * moving the software group underneath us.
10633                 */
10634                if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10635                        /*
10636                         * If someone moved the group out from under us, check
10637                         * if this new event wound up on the same ctx, if so
10638                         * its the regular !move_group case, otherwise fail.
10639                         */
10640                        if (gctx != ctx) {
10641                                err = -EINVAL;
10642                                goto err_locked;
10643                        } else {
10644                                perf_event_ctx_unlock(group_leader, gctx);
10645                                move_group = 0;
10646                        }
10647                }
10648        } else {
10649                mutex_lock(&ctx->mutex);
10650        }
10651
10652        if (ctx->task == TASK_TOMBSTONE) {
10653                err = -ESRCH;
10654                goto err_locked;
10655        }
10656
10657        if (!perf_event_validate_size(event)) {
10658                err = -E2BIG;
10659                goto err_locked;
10660        }
10661
10662        if (!task) {
10663                /*
10664                 * Check if the @cpu we're creating an event for is online.
10665                 *
10666                 * We use the perf_cpu_context::ctx::mutex to serialize against
10667                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10668                 */
10669                struct perf_cpu_context *cpuctx =
10670                        container_of(ctx, struct perf_cpu_context, ctx);
10671
10672                if (!cpuctx->online) {
10673                        err = -ENODEV;
10674                        goto err_locked;
10675                }
10676        }
10677
10678
10679        /*
10680         * Must be under the same ctx::mutex as perf_install_in_context(),
10681         * because we need to serialize with concurrent event creation.
10682         */
10683        if (!exclusive_event_installable(event, ctx)) {
10684                /* exclusive and group stuff are assumed mutually exclusive */
10685                WARN_ON_ONCE(move_group);
10686
10687                err = -EBUSY;
10688                goto err_locked;
10689        }
10690
10691        WARN_ON_ONCE(ctx->parent_ctx);
10692
10693        /*
10694         * This is the point on no return; we cannot fail hereafter. This is
10695         * where we start modifying current state.
10696         */
10697
10698        if (move_group) {
10699                /*
10700                 * See perf_event_ctx_lock() for comments on the details
10701                 * of swizzling perf_event::ctx.
10702                 */
10703                perf_remove_from_context(group_leader, 0);
10704                put_ctx(gctx);
10705
10706                for_each_sibling_event(sibling, group_leader) {
10707                        perf_remove_from_context(sibling, 0);
10708                        put_ctx(gctx);
10709                }
10710
10711                /*
10712                 * Wait for everybody to stop referencing the events through
10713                 * the old lists, before installing it on new lists.
10714                 */
10715                synchronize_rcu();
10716
10717                /*
10718                 * Install the group siblings before the group leader.
10719                 *
10720                 * Because a group leader will try and install the entire group
10721                 * (through the sibling list, which is still in-tact), we can
10722                 * end up with siblings installed in the wrong context.
10723                 *
10724                 * By installing siblings first we NO-OP because they're not
10725                 * reachable through the group lists.
10726                 */
10727                for_each_sibling_event(sibling, group_leader) {
10728                        perf_event__state_init(sibling);
10729                        perf_install_in_context(ctx, sibling, sibling->cpu);
10730                        get_ctx(ctx);
10731                }
10732
10733                /*
10734                 * Removing from the context ends up with disabled
10735                 * event. What we want here is event in the initial
10736                 * startup state, ready to be add into new context.
10737                 */
10738                perf_event__state_init(group_leader);
10739                perf_install_in_context(ctx, group_leader, group_leader->cpu);
10740                get_ctx(ctx);
10741        }
10742
10743        /*
10744         * Precalculate sample_data sizes; do while holding ctx::mutex such
10745         * that we're serialized against further additions and before
10746         * perf_install_in_context() which is the point the event is active and
10747         * can use these values.
10748         */
10749        perf_event__header_size(event);
10750        perf_event__id_header_size(event);
10751
10752        event->owner = current;
10753
10754        perf_install_in_context(ctx, event, event->cpu);
10755        perf_unpin_context(ctx);
10756
10757        if (move_group)
10758                perf_event_ctx_unlock(group_leader, gctx);
10759        mutex_unlock(&ctx->mutex);
10760
10761        if (task) {
10762                mutex_unlock(&task->signal->cred_guard_mutex);
10763                put_task_struct(task);
10764        }
10765
10766        mutex_lock(&current->perf_event_mutex);
10767        list_add_tail(&event->owner_entry, &current->perf_event_list);
10768        mutex_unlock(&current->perf_event_mutex);
10769
10770        /*
10771         * Drop the reference on the group_event after placing the
10772         * new event on the sibling_list. This ensures destruction
10773         * of the group leader will find the pointer to itself in
10774         * perf_group_detach().
10775         */
10776        fdput(group);
10777        fd_install(event_fd, event_file);
10778        return event_fd;
10779
10780err_locked:
10781        if (move_group)
10782                perf_event_ctx_unlock(group_leader, gctx);
10783        mutex_unlock(&ctx->mutex);
10784/* err_file: */
10785        fput(event_file);
10786err_context:
10787        perf_unpin_context(ctx);
10788        put_ctx(ctx);
10789err_alloc:
10790        /*
10791         * If event_file is set, the fput() above will have called ->release()
10792         * and that will take care of freeing the event.
10793         */
10794        if (!event_file)
10795                free_event(event);
10796err_cred:
10797        if (task)
10798                mutex_unlock(&task->signal->cred_guard_mutex);
10799err_task:
10800        if (task)
10801                put_task_struct(task);
10802err_group_fd:
10803        fdput(group);
10804err_fd:
10805        put_unused_fd(event_fd);
10806        return err;
10807}
10808
10809/**
10810 * perf_event_create_kernel_counter
10811 *
10812 * @attr: attributes of the counter to create
10813 * @cpu: cpu in which the counter is bound
10814 * @task: task to profile (NULL for percpu)
10815 */
10816struct perf_event *
10817perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10818                                 struct task_struct *task,
10819                                 perf_overflow_handler_t overflow_handler,
10820                                 void *context)
10821{
10822        struct perf_event_context *ctx;
10823        struct perf_event *event;
10824        int err;
10825
10826        /*
10827         * Get the target context (task or percpu):
10828         */
10829
10830        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10831                                 overflow_handler, context, -1);
10832        if (IS_ERR(event)) {
10833                err = PTR_ERR(event);
10834                goto err;
10835        }
10836
10837        /* Mark owner so we could distinguish it from user events. */
10838        event->owner = TASK_TOMBSTONE;
10839
10840        ctx = find_get_context(event->pmu, task, event);
10841        if (IS_ERR(ctx)) {
10842                err = PTR_ERR(ctx);
10843                goto err_free;
10844        }
10845
10846        WARN_ON_ONCE(ctx->parent_ctx);
10847        mutex_lock(&ctx->mutex);
10848        if (ctx->task == TASK_TOMBSTONE) {
10849                err = -ESRCH;
10850                goto err_unlock;
10851        }
10852
10853        if (!task) {
10854                /*
10855                 * Check if the @cpu we're creating an event for is online.
10856                 *
10857                 * We use the perf_cpu_context::ctx::mutex to serialize against
10858                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10859                 */
10860                struct perf_cpu_context *cpuctx =
10861                        container_of(ctx, struct perf_cpu_context, ctx);
10862                if (!cpuctx->online) {
10863                        err = -ENODEV;
10864                        goto err_unlock;
10865                }
10866        }
10867
10868        if (!exclusive_event_installable(event, ctx)) {
10869                err = -EBUSY;
10870                goto err_unlock;
10871        }
10872
10873        perf_install_in_context(ctx, event, cpu);
10874        perf_unpin_context(ctx);
10875        mutex_unlock(&ctx->mutex);
10876
10877        return event;
10878
10879err_unlock:
10880        mutex_unlock(&ctx->mutex);
10881        perf_unpin_context(ctx);
10882        put_ctx(ctx);
10883err_free:
10884        free_event(event);
10885err:
10886        return ERR_PTR(err);
10887}
10888EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10889
10890void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10891{
10892        struct perf_event_context *src_ctx;
10893        struct perf_event_context *dst_ctx;
10894        struct perf_event *event, *tmp;
10895        LIST_HEAD(events);
10896
10897        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10898        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10899
10900        /*
10901         * See perf_event_ctx_lock() for comments on the details
10902         * of swizzling perf_event::ctx.
10903         */
10904        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10905        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10906                                 event_entry) {
10907                perf_remove_from_context(event, 0);
10908                unaccount_event_cpu(event, src_cpu);
10909                put_ctx(src_ctx);
10910                list_add(&event->migrate_entry, &events);
10911        }
10912
10913        /*
10914         * Wait for the events to quiesce before re-instating them.
10915         */
10916        synchronize_rcu();
10917
10918        /*
10919         * Re-instate events in 2 passes.
10920         *
10921         * Skip over group leaders and only install siblings on this first
10922         * pass, siblings will not get enabled without a leader, however a
10923         * leader will enable its siblings, even if those are still on the old
10924         * context.
10925         */
10926        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10927                if (event->group_leader == event)
10928                        continue;
10929
10930                list_del(&event->migrate_entry);
10931                if (event->state >= PERF_EVENT_STATE_OFF)
10932                        event->state = PERF_EVENT_STATE_INACTIVE;
10933                account_event_cpu(event, dst_cpu);
10934                perf_install_in_context(dst_ctx, event, dst_cpu);
10935                get_ctx(dst_ctx);
10936        }
10937
10938        /*
10939         * Once all the siblings are setup properly, install the group leaders
10940         * to make it go.
10941         */
10942        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10943                list_del(&event->migrate_entry);
10944                if (event->state >= PERF_EVENT_STATE_OFF)
10945                        event->state = PERF_EVENT_STATE_INACTIVE;
10946                account_event_cpu(event, dst_cpu);
10947                perf_install_in_context(dst_ctx, event, dst_cpu);
10948                get_ctx(dst_ctx);
10949        }
10950        mutex_unlock(&dst_ctx->mutex);
10951        mutex_unlock(&src_ctx->mutex);
10952}
10953EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10954
10955static void sync_child_event(struct perf_event *child_event,
10956                               struct task_struct *child)
10957{
10958        struct perf_event *parent_event = child_event->parent;
10959        u64 child_val;
10960
10961        if (child_event->attr.inherit_stat)
10962                perf_event_read_event(child_event, child);
10963
10964        child_val = perf_event_count(child_event);
10965
10966        /*
10967         * Add back the child's count to the parent's count:
10968         */
10969        atomic64_add(child_val, &parent_event->child_count);
10970        atomic64_add(child_event->total_time_enabled,
10971                     &parent_event->child_total_time_enabled);
10972        atomic64_add(child_event->total_time_running,
10973                     &parent_event->child_total_time_running);
10974}
10975
10976static void
10977perf_event_exit_event(struct perf_event *child_event,
10978                      struct perf_event_context *child_ctx,
10979                      struct task_struct *child)
10980{
10981        struct perf_event *parent_event = child_event->parent;
10982
10983        /*
10984         * Do not destroy the 'original' grouping; because of the context
10985         * switch optimization the original events could've ended up in a
10986         * random child task.
10987         *
10988         * If we were to destroy the original group, all group related
10989         * operations would cease to function properly after this random
10990         * child dies.
10991         *
10992         * Do destroy all inherited groups, we don't care about those
10993         * and being thorough is better.
10994         */
10995        raw_spin_lock_irq(&child_ctx->lock);
10996        WARN_ON_ONCE(child_ctx->is_active);
10997
10998        if (parent_event)
10999                perf_group_detach(child_event);
11000        list_del_event(child_event, child_ctx);
11001        perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11002        raw_spin_unlock_irq(&child_ctx->lock);
11003
11004        /*
11005         * Parent events are governed by their filedesc, retain them.
11006         */
11007        if (!parent_event) {
11008                perf_event_wakeup(child_event);
11009                return;
11010        }
11011        /*
11012         * Child events can be cleaned up.
11013         */
11014
11015        sync_child_event(child_event, child);
11016
11017        /*
11018         * Remove this event from the parent's list
11019         */
11020        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11021        mutex_lock(&parent_event->child_mutex);
11022        list_del_init(&child_event->child_list);
11023        mutex_unlock(&parent_event->child_mutex);
11024
11025        /*
11026         * Kick perf_poll() for is_event_hup().
11027         */
11028        perf_event_wakeup(parent_event);
11029        free_event(child_event);
11030        put_event(parent_event);
11031}
11032
11033static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11034{
11035        struct perf_event_context *child_ctx, *clone_ctx = NULL;
11036        struct perf_event *child_event, *next;
11037
11038        WARN_ON_ONCE(child != current);
11039
11040        child_ctx = perf_pin_task_context(child, ctxn);
11041        if (!child_ctx)
11042                return;
11043
11044        /*
11045         * In order to reduce the amount of tricky in ctx tear-down, we hold
11046         * ctx::mutex over the entire thing. This serializes against almost
11047         * everything that wants to access the ctx.
11048         *
11049         * The exception is sys_perf_event_open() /
11050         * perf_event_create_kernel_count() which does find_get_context()
11051         * without ctx::mutex (it cannot because of the move_group double mutex
11052         * lock thing). See the comments in perf_install_in_context().
11053         */
11054        mutex_lock(&child_ctx->mutex);
11055
11056        /*
11057         * In a single ctx::lock section, de-schedule the events and detach the
11058         * context from the task such that we cannot ever get it scheduled back
11059         * in.
11060         */
11061        raw_spin_lock_irq(&child_ctx->lock);
11062        task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11063
11064        /*
11065         * Now that the context is inactive, destroy the task <-> ctx relation
11066         * and mark the context dead.
11067         */
11068        RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11069        put_ctx(child_ctx); /* cannot be last */
11070        WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11071        put_task_struct(current); /* cannot be last */
11072
11073        clone_ctx = unclone_ctx(child_ctx);
11074        raw_spin_unlock_irq(&child_ctx->lock);
11075
11076        if (clone_ctx)
11077                put_ctx(clone_ctx);
11078
11079        /*
11080         * Report the task dead after unscheduling the events so that we
11081         * won't get any samples after PERF_RECORD_EXIT. We can however still
11082         * get a few PERF_RECORD_READ events.
11083         */
11084        perf_event_task(child, child_ctx, 0);
11085
11086        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11087                perf_event_exit_event(child_event, child_ctx, child);
11088
11089        mutex_unlock(&child_ctx->mutex);
11090
11091        put_ctx(child_ctx);
11092}
11093
11094/*
11095 * When a child task exits, feed back event values to parent events.
11096 *
11097 * Can be called with cred_guard_mutex held when called from
11098 * install_exec_creds().
11099 */
11100void perf_event_exit_task(struct task_struct *child)
11101{
11102        struct perf_event *event, *tmp;
11103        int ctxn;
11104
11105        mutex_lock(&child->perf_event_mutex);
11106        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11107                                 owner_entry) {
11108                list_del_init(&event->owner_entry);
11109
11110                /*
11111                 * Ensure the list deletion is visible before we clear
11112                 * the owner, closes a race against perf_release() where
11113                 * we need to serialize on the owner->perf_event_mutex.
11114                 */
11115                smp_store_release(&event->owner, NULL);
11116        }
11117        mutex_unlock(&child->perf_event_mutex);
11118
11119        for_each_task_context_nr(ctxn)
11120                perf_event_exit_task_context(child, ctxn);
11121
11122        /*
11123         * The perf_event_exit_task_context calls perf_event_task
11124         * with child's task_ctx, which generates EXIT events for
11125         * child contexts and sets child->perf_event_ctxp[] to NULL.
11126         * At this point we need to send EXIT events to cpu contexts.
11127         */
11128        perf_event_task(child, NULL, 0);
11129}
11130
11131static void perf_free_event(struct perf_event *event,
11132                            struct perf_event_context *ctx)
11133{
11134        struct perf_event *parent = event->parent;
11135
11136        if (WARN_ON_ONCE(!parent))
11137                return;
11138
11139        mutex_lock(&parent->child_mutex);
11140        list_del_init(&event->child_list);
11141        mutex_unlock(&parent->child_mutex);
11142
11143        put_event(parent);
11144
11145        raw_spin_lock_irq(&ctx->lock);
11146        perf_group_detach(event);
11147        list_del_event(event, ctx);
11148        raw_spin_unlock_irq(&ctx->lock);
11149        free_event(event);
11150}
11151
11152/*
11153 * Free an unexposed, unused context as created by inheritance by
11154 * perf_event_init_task below, used by fork() in case of fail.
11155 *
11156 * Not all locks are strictly required, but take them anyway to be nice and
11157 * help out with the lockdep assertions.
11158 */
11159void perf_event_free_task(struct task_struct *task)
11160{
11161        struct perf_event_context *ctx;
11162        struct perf_event *event, *tmp;
11163        int ctxn;
11164
11165        for_each_task_context_nr(ctxn) {
11166                ctx = task->perf_event_ctxp[ctxn];
11167                if (!ctx)
11168                        continue;
11169
11170                mutex_lock(&ctx->mutex);
11171                raw_spin_lock_irq(&ctx->lock);
11172                /*
11173                 * Destroy the task <-> ctx relation and mark the context dead.
11174                 *
11175                 * This is important because even though the task hasn't been
11176                 * exposed yet the context has been (through child_list).
11177                 */
11178                RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11179                WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11180                put_task_struct(task); /* cannot be last */
11181                raw_spin_unlock_irq(&ctx->lock);
11182
11183                list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11184                        perf_free_event(event, ctx);
11185
11186                mutex_unlock(&ctx->mutex);
11187                put_ctx(ctx);
11188        }
11189}
11190
11191void perf_event_delayed_put(struct task_struct *task)
11192{
11193        int ctxn;
11194
11195        for_each_task_context_nr(ctxn)
11196                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11197}
11198
11199struct file *perf_event_get(unsigned int fd)
11200{
11201        struct file *file;
11202
11203        file = fget_raw(fd);
11204        if (!file)
11205                return ERR_PTR(-EBADF);
11206
11207        if (file->f_op != &perf_fops) {
11208                fput(file);
11209                return ERR_PTR(-EBADF);
11210        }
11211
11212        return file;
11213}
11214
11215const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11216{
11217        if (!event)
11218                return ERR_PTR(-EINVAL);
11219
11220        return &event->attr;
11221}
11222
11223/*
11224 * Inherit a event from parent task to child task.
11225 *
11226 * Returns:
11227 *  - valid pointer on success
11228 *  - NULL for orphaned events
11229 *  - IS_ERR() on error
11230 */
11231static struct perf_event *
11232inherit_event(struct perf_event *parent_event,
11233              struct task_struct *parent,
11234              struct perf_event_context *parent_ctx,
11235              struct task_struct *child,
11236              struct perf_event *group_leader,
11237              struct perf_event_context *child_ctx)
11238{
11239        enum perf_event_state parent_state = parent_event->state;
11240        struct perf_event *child_event;
11241        unsigned long flags;
11242
11243        /*
11244         * Instead of creating recursive hierarchies of events,
11245         * we link inherited events back to the original parent,
11246         * which has a filp for sure, which we use as the reference
11247         * count:
11248         */
11249        if (parent_event->parent)
11250                parent_event = parent_event->parent;
11251
11252        child_event = perf_event_alloc(&parent_event->attr,
11253                                           parent_event->cpu,
11254                                           child,
11255                                           group_leader, parent_event,
11256                                           NULL, NULL, -1);
11257        if (IS_ERR(child_event))
11258                return child_event;
11259
11260
11261        if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11262            !child_ctx->task_ctx_data) {
11263                struct pmu *pmu = child_event->pmu;
11264
11265                child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11266                                                   GFP_KERNEL);
11267                if (!child_ctx->task_ctx_data) {
11268                        free_event(child_event);
11269                        return NULL;
11270                }
11271        }
11272
11273        /*
11274         * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11275         * must be under the same lock in order to serialize against
11276         * perf_event_release_kernel(), such that either we must observe
11277         * is_orphaned_event() or they will observe us on the child_list.
11278         */
11279        mutex_lock(&parent_event->child_mutex);
11280        if (is_orphaned_event(parent_event) ||
11281            !atomic_long_inc_not_zero(&parent_event->refcount)) {
11282                mutex_unlock(&parent_event->child_mutex);
11283                /* task_ctx_data is freed with child_ctx */
11284                free_event(child_event);
11285                return NULL;
11286        }
11287
11288        get_ctx(child_ctx);
11289
11290        /*
11291         * Make the child state follow the state of the parent event,
11292         * not its attr.disabled bit.  We hold the parent's mutex,
11293         * so we won't race with perf_event_{en, dis}able_family.
11294         */
11295        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11296                child_event->state = PERF_EVENT_STATE_INACTIVE;
11297        else
11298                child_event->state = PERF_EVENT_STATE_OFF;
11299
11300        if (parent_event->attr.freq) {
11301                u64 sample_period = parent_event->hw.sample_period;
11302                struct hw_perf_event *hwc = &child_event->hw;
11303
11304                hwc->sample_period = sample_period;
11305                hwc->last_period   = sample_period;
11306
11307                local64_set(&hwc->period_left, sample_period);
11308        }
11309
11310        child_event->ctx = child_ctx;
11311        child_event->overflow_handler = parent_event->overflow_handler;
11312        child_event->overflow_handler_context
11313                = parent_event->overflow_handler_context;
11314
11315        /*
11316         * Precalculate sample_data sizes
11317         */
11318        perf_event__header_size(child_event);
11319        perf_event__id_header_size(child_event);
11320
11321        /*
11322         * Link it up in the child's context:
11323         */
11324        raw_spin_lock_irqsave(&child_ctx->lock, flags);
11325        add_event_to_ctx(child_event, child_ctx);
11326        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11327
11328        /*
11329         * Link this into the parent event's child list
11330         */
11331        list_add_tail(&child_event->child_list, &parent_event->child_list);
11332        mutex_unlock(&parent_event->child_mutex);
11333
11334        return child_event;
11335}
11336
11337/*
11338 * Inherits an event group.
11339 *
11340 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11341 * This matches with perf_event_release_kernel() removing all child events.
11342 *
11343 * Returns:
11344 *  - 0 on success
11345 *  - <0 on error
11346 */
11347static int inherit_group(struct perf_event *parent_event,
11348              struct task_struct *parent,
11349              struct perf_event_context *parent_ctx,
11350              struct task_struct *child,
11351              struct perf_event_context *child_ctx)
11352{
11353        struct perf_event *leader;
11354        struct perf_event *sub;
11355        struct perf_event *child_ctr;
11356
11357        leader = inherit_event(parent_event, parent, parent_ctx,
11358                                 child, NULL, child_ctx);
11359        if (IS_ERR(leader))
11360                return PTR_ERR(leader);
11361        /*
11362         * @leader can be NULL here because of is_orphaned_event(). In this
11363         * case inherit_event() will create individual events, similar to what
11364         * perf_group_detach() would do anyway.
11365         */
11366        for_each_sibling_event(sub, parent_event) {
11367                child_ctr = inherit_event(sub, parent, parent_ctx,
11368                                            child, leader, child_ctx);
11369                if (IS_ERR(child_ctr))
11370                        return PTR_ERR(child_ctr);
11371        }
11372        return 0;
11373}
11374
11375/*
11376 * Creates the child task context and tries to inherit the event-group.
11377 *
11378 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11379 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11380 * consistent with perf_event_release_kernel() removing all child events.
11381 *
11382 * Returns:
11383 *  - 0 on success
11384 *  - <0 on error
11385 */
11386static int
11387inherit_task_group(struct perf_event *event, struct task_struct *parent,
11388                   struct perf_event_context *parent_ctx,
11389                   struct task_struct *child, int ctxn,
11390                   int *inherited_all)
11391{
11392        int ret;
11393        struct perf_event_context *child_ctx;
11394
11395        if (!event->attr.inherit) {
11396                *inherited_all = 0;
11397                return 0;
11398        }
11399
11400        child_ctx = child->perf_event_ctxp[ctxn];
11401        if (!child_ctx) {
11402                /*
11403                 * This is executed from the parent task context, so
11404                 * inherit events that have been marked for cloning.
11405                 * First allocate and initialize a context for the
11406                 * child.
11407                 */
11408                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11409                if (!child_ctx)
11410                        return -ENOMEM;
11411
11412                child->perf_event_ctxp[ctxn] = child_ctx;
11413        }
11414
11415        ret = inherit_group(event, parent, parent_ctx,
11416                            child, child_ctx);
11417
11418        if (ret)
11419                *inherited_all = 0;
11420
11421        return ret;
11422}
11423
11424/*
11425 * Initialize the perf_event context in task_struct
11426 */
11427static int perf_event_init_context(struct task_struct *child, int ctxn)
11428{
11429        struct perf_event_context *child_ctx, *parent_ctx;
11430        struct perf_event_context *cloned_ctx;
11431        struct perf_event *event;
11432        struct task_struct *parent = current;
11433        int inherited_all = 1;
11434        unsigned long flags;
11435        int ret = 0;
11436
11437        if (likely(!parent->perf_event_ctxp[ctxn]))
11438                return 0;
11439
11440        /*
11441         * If the parent's context is a clone, pin it so it won't get
11442         * swapped under us.
11443         */
11444        parent_ctx = perf_pin_task_context(parent, ctxn);
11445        if (!parent_ctx)
11446                return 0;
11447
11448        /*
11449         * No need to check if parent_ctx != NULL here; since we saw
11450         * it non-NULL earlier, the only reason for it to become NULL
11451         * is if we exit, and since we're currently in the middle of
11452         * a fork we can't be exiting at the same time.
11453         */
11454
11455        /*
11456         * Lock the parent list. No need to lock the child - not PID
11457         * hashed yet and not running, so nobody can access it.
11458         */
11459        mutex_lock(&parent_ctx->mutex);
11460
11461        /*
11462         * We dont have to disable NMIs - we are only looking at
11463         * the list, not manipulating it:
11464         */
11465        perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11466                ret = inherit_task_group(event, parent, parent_ctx,
11467                                         child, ctxn, &inherited_all);
11468                if (ret)
11469                        goto out_unlock;
11470        }
11471
11472        /*
11473         * We can't hold ctx->lock when iterating the ->flexible_group list due
11474         * to allocations, but we need to prevent rotation because
11475         * rotate_ctx() will change the list from interrupt context.
11476         */
11477        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11478        parent_ctx->rotate_disable = 1;
11479        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11480
11481        perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11482                ret = inherit_task_group(event, parent, parent_ctx,
11483                                         child, ctxn, &inherited_all);
11484                if (ret)
11485                        goto out_unlock;
11486        }
11487
11488        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11489        parent_ctx->rotate_disable = 0;
11490
11491        child_ctx = child->perf_event_ctxp[ctxn];
11492
11493        if (child_ctx && inherited_all) {
11494                /*
11495                 * Mark the child context as a clone of the parent
11496                 * context, or of whatever the parent is a clone of.
11497                 *
11498                 * Note that if the parent is a clone, the holding of
11499                 * parent_ctx->lock avoids it from being uncloned.
11500                 */
11501                cloned_ctx = parent_ctx->parent_ctx;
11502                if (cloned_ctx) {
11503                        child_ctx->parent_ctx = cloned_ctx;
11504                        child_ctx->parent_gen = parent_ctx->parent_gen;
11505                } else {
11506                        child_ctx->parent_ctx = parent_ctx;
11507                        child_ctx->parent_gen = parent_ctx->generation;
11508                }
11509                get_ctx(child_ctx->parent_ctx);
11510        }
11511
11512        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11513out_unlock:
11514        mutex_unlock(&parent_ctx->mutex);
11515
11516        perf_unpin_context(parent_ctx);
11517        put_ctx(parent_ctx);
11518
11519        return ret;
11520}
11521
11522/*
11523 * Initialize the perf_event context in task_struct
11524 */
11525int perf_event_init_task(struct task_struct *child)
11526{
11527        int ctxn, ret;
11528
11529        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11530        mutex_init(&child->perf_event_mutex);
11531        INIT_LIST_HEAD(&child->perf_event_list);
11532
11533        for_each_task_context_nr(ctxn) {
11534                ret = perf_event_init_context(child, ctxn);
11535                if (ret) {
11536                        perf_event_free_task(child);
11537                        return ret;
11538                }
11539        }
11540
11541        return 0;
11542}
11543
11544static void __init perf_event_init_all_cpus(void)
11545{
11546        struct swevent_htable *swhash;
11547        int cpu;
11548
11549        zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11550
11551        for_each_possible_cpu(cpu) {
11552                swhash = &per_cpu(swevent_htable, cpu);
11553                mutex_init(&swhash->hlist_mutex);
11554                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11555
11556                INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11557                raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11558
11559#ifdef CONFIG_CGROUP_PERF
11560                INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11561#endif
11562                INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11563        }
11564}
11565
11566void perf_swevent_init_cpu(unsigned int cpu)
11567{
11568        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11569
11570        mutex_lock(&swhash->hlist_mutex);
11571        if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11572                struct swevent_hlist *hlist;
11573
11574                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11575                WARN_ON(!hlist);
11576                rcu_assign_pointer(swhash->swevent_hlist, hlist);
11577        }
11578        mutex_unlock(&swhash->hlist_mutex);
11579}
11580
11581#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11582static void __perf_event_exit_context(void *__info)
11583{
11584        struct perf_event_context *ctx = __info;
11585        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11586        struct perf_event *event;
11587
11588        raw_spin_lock(&ctx->lock);
11589        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11590        list_for_each_entry(event, &ctx->event_list, event_entry)
11591                __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11592        raw_spin_unlock(&ctx->lock);
11593}
11594
11595static void perf_event_exit_cpu_context(int cpu)
11596{
11597        struct perf_cpu_context *cpuctx;
11598        struct perf_event_context *ctx;
11599        struct pmu *pmu;
11600
11601        mutex_lock(&pmus_lock);
11602        list_for_each_entry(pmu, &pmus, entry) {
11603                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11604                ctx = &cpuctx->ctx;
11605
11606                mutex_lock(&ctx->mutex);
11607                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11608                cpuctx->online = 0;
11609                mutex_unlock(&ctx->mutex);
11610        }
11611        cpumask_clear_cpu(cpu, perf_online_mask);
11612        mutex_unlock(&pmus_lock);
11613}
11614#else
11615
11616static void perf_event_exit_cpu_context(int cpu) { }
11617
11618#endif
11619
11620int perf_event_init_cpu(unsigned int cpu)
11621{
11622        struct perf_cpu_context *cpuctx;
11623        struct perf_event_context *ctx;
11624        struct pmu *pmu;
11625
11626        perf_swevent_init_cpu(cpu);
11627
11628        mutex_lock(&pmus_lock);
11629        cpumask_set_cpu(cpu, perf_online_mask);
11630        list_for_each_entry(pmu, &pmus, entry) {
11631                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11632                ctx = &cpuctx->ctx;
11633
11634                mutex_lock(&ctx->mutex);
11635                cpuctx->online = 1;
11636                mutex_unlock(&ctx->mutex);
11637        }
11638        mutex_unlock(&pmus_lock);
11639
11640        return 0;
11641}
11642
11643int perf_event_exit_cpu(unsigned int cpu)
11644{
11645        perf_event_exit_cpu_context(cpu);
11646        return 0;
11647}
11648
11649static int
11650perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11651{
11652        int cpu;
11653
11654        for_each_online_cpu(cpu)
11655                perf_event_exit_cpu(cpu);
11656
11657        return NOTIFY_OK;
11658}
11659
11660/*
11661 * Run the perf reboot notifier at the very last possible moment so that
11662 * the generic watchdog code runs as long as possible.
11663 */
11664static struct notifier_block perf_reboot_notifier = {
11665        .notifier_call = perf_reboot,
11666        .priority = INT_MIN,
11667};
11668
11669void __init perf_event_init(void)
11670{
11671        int ret;
11672
11673        idr_init(&pmu_idr);
11674
11675        perf_event_init_all_cpus();
11676        init_srcu_struct(&pmus_srcu);
11677        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11678        perf_pmu_register(&perf_cpu_clock, NULL, -1);
11679        perf_pmu_register(&perf_task_clock, NULL, -1);
11680        perf_tp_register();
11681        perf_event_init_cpu(smp_processor_id());
11682        register_reboot_notifier(&perf_reboot_notifier);
11683
11684        ret = init_hw_breakpoint();
11685        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11686
11687        /*
11688         * Build time assertion that we keep the data_head at the intended
11689         * location.  IOW, validation we got the __reserved[] size right.
11690         */
11691        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11692                     != 1024);
11693}
11694
11695ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11696                              char *page)
11697{
11698        struct perf_pmu_events_attr *pmu_attr =
11699                container_of(attr, struct perf_pmu_events_attr, attr);
11700
11701        if (pmu_attr->event_str)
11702                return sprintf(page, "%s\n", pmu_attr->event_str);
11703
11704        return 0;
11705}
11706EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11707
11708static int __init perf_event_sysfs_init(void)
11709{
11710        struct pmu *pmu;
11711        int ret;
11712
11713        mutex_lock(&pmus_lock);
11714
11715        ret = bus_register(&pmu_bus);
11716        if (ret)
11717                goto unlock;
11718
11719        list_for_each_entry(pmu, &pmus, entry) {
11720                if (!pmu->name || pmu->type < 0)
11721                        continue;
11722
11723                ret = pmu_dev_alloc(pmu);
11724                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11725        }
11726        pmu_bus_running = 1;
11727        ret = 0;
11728
11729unlock:
11730        mutex_unlock(&pmus_lock);
11731
11732        return ret;
11733}
11734device_initcall(perf_event_sysfs_init);
11735
11736#ifdef CONFIG_CGROUP_PERF
11737static struct cgroup_subsys_state *
11738perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11739{
11740        struct perf_cgroup *jc;
11741
11742        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11743        if (!jc)
11744                return ERR_PTR(-ENOMEM);
11745
11746        jc->info = alloc_percpu(struct perf_cgroup_info);
11747        if (!jc->info) {
11748                kfree(jc);
11749                return ERR_PTR(-ENOMEM);
11750        }
11751
11752        return &jc->css;
11753}
11754
11755static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11756{
11757        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11758
11759        free_percpu(jc->info);
11760        kfree(jc);
11761}
11762
11763static int __perf_cgroup_move(void *info)
11764{
11765        struct task_struct *task = info;
11766        rcu_read_lock();
11767        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11768        rcu_read_unlock();
11769        return 0;
11770}
11771
11772static void perf_cgroup_attach(struct cgroup_taskset *tset)
11773{
11774        struct task_struct *task;
11775        struct cgroup_subsys_state *css;
11776
11777        cgroup_taskset_for_each(task, css, tset)
11778                task_function_call(task, __perf_cgroup_move, task);
11779}
11780
11781struct cgroup_subsys perf_event_cgrp_subsys = {
11782        .css_alloc      = perf_cgroup_css_alloc,
11783        .css_free       = perf_cgroup_css_free,
11784        .attach         = perf_cgroup_attach,
11785        /*
11786         * Implicitly enable on dfl hierarchy so that perf events can
11787         * always be filtered by cgroup2 path as long as perf_event
11788         * controller is not mounted on a legacy hierarchy.
11789         */
11790        .implicit_on_dfl = true,
11791        .threaded       = true,
11792};
11793#endif /* CONFIG_CGROUP_PERF */
11794