linux/kernel/events/uprobes.c
<<
>>
Prefs
   1/*
   2 * User-space Probes (UProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2012
  19 * Authors:
  20 *      Srikar Dronamraju
  21 *      Jim Keniston
  22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>      /* read_mapping_page */
  28#include <linux/slab.h>
  29#include <linux/sched.h>
  30#include <linux/sched/mm.h>
  31#include <linux/sched/coredump.h>
  32#include <linux/export.h>
  33#include <linux/rmap.h>         /* anon_vma_prepare */
  34#include <linux/mmu_notifier.h> /* set_pte_at_notify */
  35#include <linux/swap.h>         /* try_to_free_swap */
  36#include <linux/ptrace.h>       /* user_enable_single_step */
  37#include <linux/kdebug.h>       /* notifier mechanism */
  38#include "../../mm/internal.h"  /* munlock_vma_page */
  39#include <linux/percpu-rwsem.h>
  40#include <linux/task_work.h>
  41#include <linux/shmem_fs.h>
  42
  43#include <linux/uprobes.h>
  44
  45#define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  46#define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
  47
  48static struct rb_root uprobes_tree = RB_ROOT;
  49/*
  50 * allows us to skip the uprobe_mmap if there are no uprobe events active
  51 * at this time.  Probably a fine grained per inode count is better?
  52 */
  53#define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
  54
  55static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
  56
  57#define UPROBES_HASH_SZ 13
  58/* serialize uprobe->pending_list */
  59static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  60#define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  61
  62static struct percpu_rw_semaphore dup_mmap_sem;
  63
  64/* Have a copy of original instruction */
  65#define UPROBE_COPY_INSN        0
  66
  67struct uprobe {
  68        struct rb_node          rb_node;        /* node in the rb tree */
  69        atomic_t                ref;
  70        struct rw_semaphore     register_rwsem;
  71        struct rw_semaphore     consumer_rwsem;
  72        struct list_head        pending_list;
  73        struct uprobe_consumer  *consumers;
  74        struct inode            *inode;         /* Also hold a ref to inode */
  75        loff_t                  offset;
  76        unsigned long           flags;
  77
  78        /*
  79         * The generic code assumes that it has two members of unknown type
  80         * owned by the arch-specific code:
  81         *
  82         *      insn -  copy_insn() saves the original instruction here for
  83         *              arch_uprobe_analyze_insn().
  84         *
  85         *      ixol -  potentially modified instruction to execute out of
  86         *              line, copied to xol_area by xol_get_insn_slot().
  87         */
  88        struct arch_uprobe      arch;
  89};
  90
  91/*
  92 * Execute out of line area: anonymous executable mapping installed
  93 * by the probed task to execute the copy of the original instruction
  94 * mangled by set_swbp().
  95 *
  96 * On a breakpoint hit, thread contests for a slot.  It frees the
  97 * slot after singlestep. Currently a fixed number of slots are
  98 * allocated.
  99 */
 100struct xol_area {
 101        wait_queue_head_t               wq;             /* if all slots are busy */
 102        atomic_t                        slot_count;     /* number of in-use slots */
 103        unsigned long                   *bitmap;        /* 0 = free slot */
 104
 105        struct vm_special_mapping       xol_mapping;
 106        struct page                     *pages[2];
 107        /*
 108         * We keep the vma's vm_start rather than a pointer to the vma
 109         * itself.  The probed process or a naughty kernel module could make
 110         * the vma go away, and we must handle that reasonably gracefully.
 111         */
 112        unsigned long                   vaddr;          /* Page(s) of instruction slots */
 113};
 114
 115/*
 116 * valid_vma: Verify if the specified vma is an executable vma
 117 * Relax restrictions while unregistering: vm_flags might have
 118 * changed after breakpoint was inserted.
 119 *      - is_register: indicates if we are in register context.
 120 *      - Return 1 if the specified virtual address is in an
 121 *        executable vma.
 122 */
 123static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 124{
 125        vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 126
 127        if (is_register)
 128                flags |= VM_WRITE;
 129
 130        return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 131}
 132
 133static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 134{
 135        return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 136}
 137
 138static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 139{
 140        return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 141}
 142
 143/**
 144 * __replace_page - replace page in vma by new page.
 145 * based on replace_page in mm/ksm.c
 146 *
 147 * @vma:      vma that holds the pte pointing to page
 148 * @addr:     address the old @page is mapped at
 149 * @page:     the cowed page we are replacing by kpage
 150 * @kpage:    the modified page we replace page by
 151 *
 152 * Returns 0 on success, -EFAULT on failure.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155                                struct page *old_page, struct page *new_page)
 156{
 157        struct mm_struct *mm = vma->vm_mm;
 158        struct page_vma_mapped_walk pvmw = {
 159                .page = old_page,
 160                .vma = vma,
 161                .address = addr,
 162        };
 163        int err;
 164        /* For mmu_notifiers */
 165        const unsigned long mmun_start = addr;
 166        const unsigned long mmun_end   = addr + PAGE_SIZE;
 167        struct mem_cgroup *memcg;
 168
 169        VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
 170
 171        err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
 172                        false);
 173        if (err)
 174                return err;
 175
 176        /* For try_to_free_swap() and munlock_vma_page() below */
 177        lock_page(old_page);
 178
 179        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 180        err = -EAGAIN;
 181        if (!page_vma_mapped_walk(&pvmw)) {
 182                mem_cgroup_cancel_charge(new_page, memcg, false);
 183                goto unlock;
 184        }
 185        VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 186
 187        get_page(new_page);
 188        page_add_new_anon_rmap(new_page, vma, addr, false);
 189        mem_cgroup_commit_charge(new_page, memcg, false, false);
 190        lru_cache_add_active_or_unevictable(new_page, vma);
 191
 192        if (!PageAnon(old_page)) {
 193                dec_mm_counter(mm, mm_counter_file(old_page));
 194                inc_mm_counter(mm, MM_ANONPAGES);
 195        }
 196
 197        flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 198        ptep_clear_flush_notify(vma, addr, pvmw.pte);
 199        set_pte_at_notify(mm, addr, pvmw.pte,
 200                        mk_pte(new_page, vma->vm_page_prot));
 201
 202        page_remove_rmap(old_page, false);
 203        if (!page_mapped(old_page))
 204                try_to_free_swap(old_page);
 205        page_vma_mapped_walk_done(&pvmw);
 206
 207        if (vma->vm_flags & VM_LOCKED)
 208                munlock_vma_page(old_page);
 209        put_page(old_page);
 210
 211        err = 0;
 212 unlock:
 213        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 214        unlock_page(old_page);
 215        return err;
 216}
 217
 218/**
 219 * is_swbp_insn - check if instruction is breakpoint instruction.
 220 * @insn: instruction to be checked.
 221 * Default implementation of is_swbp_insn
 222 * Returns true if @insn is a breakpoint instruction.
 223 */
 224bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 225{
 226        return *insn == UPROBE_SWBP_INSN;
 227}
 228
 229/**
 230 * is_trap_insn - check if instruction is breakpoint instruction.
 231 * @insn: instruction to be checked.
 232 * Default implementation of is_trap_insn
 233 * Returns true if @insn is a breakpoint instruction.
 234 *
 235 * This function is needed for the case where an architecture has multiple
 236 * trap instructions (like powerpc).
 237 */
 238bool __weak is_trap_insn(uprobe_opcode_t *insn)
 239{
 240        return is_swbp_insn(insn);
 241}
 242
 243static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 244{
 245        void *kaddr = kmap_atomic(page);
 246        memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 247        kunmap_atomic(kaddr);
 248}
 249
 250static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 251{
 252        void *kaddr = kmap_atomic(page);
 253        memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 254        kunmap_atomic(kaddr);
 255}
 256
 257static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 258{
 259        uprobe_opcode_t old_opcode;
 260        bool is_swbp;
 261
 262        /*
 263         * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 264         * We do not check if it is any other 'trap variant' which could
 265         * be conditional trap instruction such as the one powerpc supports.
 266         *
 267         * The logic is that we do not care if the underlying instruction
 268         * is a trap variant; uprobes always wins over any other (gdb)
 269         * breakpoint.
 270         */
 271        copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 272        is_swbp = is_swbp_insn(&old_opcode);
 273
 274        if (is_swbp_insn(new_opcode)) {
 275                if (is_swbp)            /* register: already installed? */
 276                        return 0;
 277        } else {
 278                if (!is_swbp)           /* unregister: was it changed by us? */
 279                        return 0;
 280        }
 281
 282        return 1;
 283}
 284
 285/*
 286 * NOTE:
 287 * Expect the breakpoint instruction to be the smallest size instruction for
 288 * the architecture. If an arch has variable length instruction and the
 289 * breakpoint instruction is not of the smallest length instruction
 290 * supported by that architecture then we need to modify is_trap_at_addr and
 291 * uprobe_write_opcode accordingly. This would never be a problem for archs
 292 * that have fixed length instructions.
 293 *
 294 * uprobe_write_opcode - write the opcode at a given virtual address.
 295 * @mm: the probed process address space.
 296 * @vaddr: the virtual address to store the opcode.
 297 * @opcode: opcode to be written at @vaddr.
 298 *
 299 * Called with mm->mmap_sem held for write.
 300 * Return 0 (success) or a negative errno.
 301 */
 302int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
 303                        uprobe_opcode_t opcode)
 304{
 305        struct page *old_page, *new_page;
 306        struct vm_area_struct *vma;
 307        int ret;
 308
 309retry:
 310        /* Read the page with vaddr into memory */
 311        ret = get_user_pages_remote(NULL, mm, vaddr, 1,
 312                        FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
 313        if (ret <= 0)
 314                return ret;
 315
 316        ret = verify_opcode(old_page, vaddr, &opcode);
 317        if (ret <= 0)
 318                goto put_old;
 319
 320        ret = anon_vma_prepare(vma);
 321        if (ret)
 322                goto put_old;
 323
 324        ret = -ENOMEM;
 325        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 326        if (!new_page)
 327                goto put_old;
 328
 329        __SetPageUptodate(new_page);
 330        copy_highpage(new_page, old_page);
 331        copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 332
 333        ret = __replace_page(vma, vaddr, old_page, new_page);
 334        put_page(new_page);
 335put_old:
 336        put_page(old_page);
 337
 338        if (unlikely(ret == -EAGAIN))
 339                goto retry;
 340        return ret;
 341}
 342
 343/**
 344 * set_swbp - store breakpoint at a given address.
 345 * @auprobe: arch specific probepoint information.
 346 * @mm: the probed process address space.
 347 * @vaddr: the virtual address to insert the opcode.
 348 *
 349 * For mm @mm, store the breakpoint instruction at @vaddr.
 350 * Return 0 (success) or a negative errno.
 351 */
 352int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 353{
 354        return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
 355}
 356
 357/**
 358 * set_orig_insn - Restore the original instruction.
 359 * @mm: the probed process address space.
 360 * @auprobe: arch specific probepoint information.
 361 * @vaddr: the virtual address to insert the opcode.
 362 *
 363 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 364 * Return 0 (success) or a negative errno.
 365 */
 366int __weak
 367set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 368{
 369        return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
 370}
 371
 372static struct uprobe *get_uprobe(struct uprobe *uprobe)
 373{
 374        atomic_inc(&uprobe->ref);
 375        return uprobe;
 376}
 377
 378static void put_uprobe(struct uprobe *uprobe)
 379{
 380        if (atomic_dec_and_test(&uprobe->ref))
 381                kfree(uprobe);
 382}
 383
 384static int match_uprobe(struct uprobe *l, struct uprobe *r)
 385{
 386        if (l->inode < r->inode)
 387                return -1;
 388
 389        if (l->inode > r->inode)
 390                return 1;
 391
 392        if (l->offset < r->offset)
 393                return -1;
 394
 395        if (l->offset > r->offset)
 396                return 1;
 397
 398        return 0;
 399}
 400
 401static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 402{
 403        struct uprobe u = { .inode = inode, .offset = offset };
 404        struct rb_node *n = uprobes_tree.rb_node;
 405        struct uprobe *uprobe;
 406        int match;
 407
 408        while (n) {
 409                uprobe = rb_entry(n, struct uprobe, rb_node);
 410                match = match_uprobe(&u, uprobe);
 411                if (!match)
 412                        return get_uprobe(uprobe);
 413
 414                if (match < 0)
 415                        n = n->rb_left;
 416                else
 417                        n = n->rb_right;
 418        }
 419        return NULL;
 420}
 421
 422/*
 423 * Find a uprobe corresponding to a given inode:offset
 424 * Acquires uprobes_treelock
 425 */
 426static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 427{
 428        struct uprobe *uprobe;
 429
 430        spin_lock(&uprobes_treelock);
 431        uprobe = __find_uprobe(inode, offset);
 432        spin_unlock(&uprobes_treelock);
 433
 434        return uprobe;
 435}
 436
 437static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 438{
 439        struct rb_node **p = &uprobes_tree.rb_node;
 440        struct rb_node *parent = NULL;
 441        struct uprobe *u;
 442        int match;
 443
 444        while (*p) {
 445                parent = *p;
 446                u = rb_entry(parent, struct uprobe, rb_node);
 447                match = match_uprobe(uprobe, u);
 448                if (!match)
 449                        return get_uprobe(u);
 450
 451                if (match < 0)
 452                        p = &parent->rb_left;
 453                else
 454                        p = &parent->rb_right;
 455
 456        }
 457
 458        u = NULL;
 459        rb_link_node(&uprobe->rb_node, parent, p);
 460        rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 461        /* get access + creation ref */
 462        atomic_set(&uprobe->ref, 2);
 463
 464        return u;
 465}
 466
 467/*
 468 * Acquire uprobes_treelock.
 469 * Matching uprobe already exists in rbtree;
 470 *      increment (access refcount) and return the matching uprobe.
 471 *
 472 * No matching uprobe; insert the uprobe in rb_tree;
 473 *      get a double refcount (access + creation) and return NULL.
 474 */
 475static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 476{
 477        struct uprobe *u;
 478
 479        spin_lock(&uprobes_treelock);
 480        u = __insert_uprobe(uprobe);
 481        spin_unlock(&uprobes_treelock);
 482
 483        return u;
 484}
 485
 486static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
 487{
 488        struct uprobe *uprobe, *cur_uprobe;
 489
 490        uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 491        if (!uprobe)
 492                return NULL;
 493
 494        uprobe->inode = inode;
 495        uprobe->offset = offset;
 496        init_rwsem(&uprobe->register_rwsem);
 497        init_rwsem(&uprobe->consumer_rwsem);
 498
 499        /* add to uprobes_tree, sorted on inode:offset */
 500        cur_uprobe = insert_uprobe(uprobe);
 501        /* a uprobe exists for this inode:offset combination */
 502        if (cur_uprobe) {
 503                kfree(uprobe);
 504                uprobe = cur_uprobe;
 505        }
 506
 507        return uprobe;
 508}
 509
 510static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 511{
 512        down_write(&uprobe->consumer_rwsem);
 513        uc->next = uprobe->consumers;
 514        uprobe->consumers = uc;
 515        up_write(&uprobe->consumer_rwsem);
 516}
 517
 518/*
 519 * For uprobe @uprobe, delete the consumer @uc.
 520 * Return true if the @uc is deleted successfully
 521 * or return false.
 522 */
 523static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 524{
 525        struct uprobe_consumer **con;
 526        bool ret = false;
 527
 528        down_write(&uprobe->consumer_rwsem);
 529        for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 530                if (*con == uc) {
 531                        *con = uc->next;
 532                        ret = true;
 533                        break;
 534                }
 535        }
 536        up_write(&uprobe->consumer_rwsem);
 537
 538        return ret;
 539}
 540
 541static int __copy_insn(struct address_space *mapping, struct file *filp,
 542                        void *insn, int nbytes, loff_t offset)
 543{
 544        struct page *page;
 545        /*
 546         * Ensure that the page that has the original instruction is populated
 547         * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 548         * see uprobe_register().
 549         */
 550        if (mapping->a_ops->readpage)
 551                page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 552        else
 553                page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 554        if (IS_ERR(page))
 555                return PTR_ERR(page);
 556
 557        copy_from_page(page, offset, insn, nbytes);
 558        put_page(page);
 559
 560        return 0;
 561}
 562
 563static int copy_insn(struct uprobe *uprobe, struct file *filp)
 564{
 565        struct address_space *mapping = uprobe->inode->i_mapping;
 566        loff_t offs = uprobe->offset;
 567        void *insn = &uprobe->arch.insn;
 568        int size = sizeof(uprobe->arch.insn);
 569        int len, err = -EIO;
 570
 571        /* Copy only available bytes, -EIO if nothing was read */
 572        do {
 573                if (offs >= i_size_read(uprobe->inode))
 574                        break;
 575
 576                len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 577                err = __copy_insn(mapping, filp, insn, len, offs);
 578                if (err)
 579                        break;
 580
 581                insn += len;
 582                offs += len;
 583                size -= len;
 584        } while (size);
 585
 586        return err;
 587}
 588
 589static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 590                                struct mm_struct *mm, unsigned long vaddr)
 591{
 592        int ret = 0;
 593
 594        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 595                return ret;
 596
 597        /* TODO: move this into _register, until then we abuse this sem. */
 598        down_write(&uprobe->consumer_rwsem);
 599        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 600                goto out;
 601
 602        ret = copy_insn(uprobe, file);
 603        if (ret)
 604                goto out;
 605
 606        ret = -ENOTSUPP;
 607        if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 608                goto out;
 609
 610        ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 611        if (ret)
 612                goto out;
 613
 614        /* uprobe_write_opcode() assumes we don't cross page boundary */
 615        BUG_ON((uprobe->offset & ~PAGE_MASK) +
 616                        UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 617
 618        smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
 619        set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 620
 621 out:
 622        up_write(&uprobe->consumer_rwsem);
 623
 624        return ret;
 625}
 626
 627static inline bool consumer_filter(struct uprobe_consumer *uc,
 628                                   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 629{
 630        return !uc->filter || uc->filter(uc, ctx, mm);
 631}
 632
 633static bool filter_chain(struct uprobe *uprobe,
 634                         enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 635{
 636        struct uprobe_consumer *uc;
 637        bool ret = false;
 638
 639        down_read(&uprobe->consumer_rwsem);
 640        for (uc = uprobe->consumers; uc; uc = uc->next) {
 641                ret = consumer_filter(uc, ctx, mm);
 642                if (ret)
 643                        break;
 644        }
 645        up_read(&uprobe->consumer_rwsem);
 646
 647        return ret;
 648}
 649
 650static int
 651install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 652                        struct vm_area_struct *vma, unsigned long vaddr)
 653{
 654        bool first_uprobe;
 655        int ret;
 656
 657        ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 658        if (ret)
 659                return ret;
 660
 661        /*
 662         * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 663         * the task can hit this breakpoint right after __replace_page().
 664         */
 665        first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 666        if (first_uprobe)
 667                set_bit(MMF_HAS_UPROBES, &mm->flags);
 668
 669        ret = set_swbp(&uprobe->arch, mm, vaddr);
 670        if (!ret)
 671                clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 672        else if (first_uprobe)
 673                clear_bit(MMF_HAS_UPROBES, &mm->flags);
 674
 675        return ret;
 676}
 677
 678static int
 679remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 680{
 681        set_bit(MMF_RECALC_UPROBES, &mm->flags);
 682        return set_orig_insn(&uprobe->arch, mm, vaddr);
 683}
 684
 685static inline bool uprobe_is_active(struct uprobe *uprobe)
 686{
 687        return !RB_EMPTY_NODE(&uprobe->rb_node);
 688}
 689/*
 690 * There could be threads that have already hit the breakpoint. They
 691 * will recheck the current insn and restart if find_uprobe() fails.
 692 * See find_active_uprobe().
 693 */
 694static void delete_uprobe(struct uprobe *uprobe)
 695{
 696        if (WARN_ON(!uprobe_is_active(uprobe)))
 697                return;
 698
 699        spin_lock(&uprobes_treelock);
 700        rb_erase(&uprobe->rb_node, &uprobes_tree);
 701        spin_unlock(&uprobes_treelock);
 702        RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 703        put_uprobe(uprobe);
 704}
 705
 706struct map_info {
 707        struct map_info *next;
 708        struct mm_struct *mm;
 709        unsigned long vaddr;
 710};
 711
 712static inline struct map_info *free_map_info(struct map_info *info)
 713{
 714        struct map_info *next = info->next;
 715        kfree(info);
 716        return next;
 717}
 718
 719static struct map_info *
 720build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 721{
 722        unsigned long pgoff = offset >> PAGE_SHIFT;
 723        struct vm_area_struct *vma;
 724        struct map_info *curr = NULL;
 725        struct map_info *prev = NULL;
 726        struct map_info *info;
 727        int more = 0;
 728
 729 again:
 730        i_mmap_lock_read(mapping);
 731        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 732                if (!valid_vma(vma, is_register))
 733                        continue;
 734
 735                if (!prev && !more) {
 736                        /*
 737                         * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 738                         * reclaim. This is optimistic, no harm done if it fails.
 739                         */
 740                        prev = kmalloc(sizeof(struct map_info),
 741                                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 742                        if (prev)
 743                                prev->next = NULL;
 744                }
 745                if (!prev) {
 746                        more++;
 747                        continue;
 748                }
 749
 750                if (!mmget_not_zero(vma->vm_mm))
 751                        continue;
 752
 753                info = prev;
 754                prev = prev->next;
 755                info->next = curr;
 756                curr = info;
 757
 758                info->mm = vma->vm_mm;
 759                info->vaddr = offset_to_vaddr(vma, offset);
 760        }
 761        i_mmap_unlock_read(mapping);
 762
 763        if (!more)
 764                goto out;
 765
 766        prev = curr;
 767        while (curr) {
 768                mmput(curr->mm);
 769                curr = curr->next;
 770        }
 771
 772        do {
 773                info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
 774                if (!info) {
 775                        curr = ERR_PTR(-ENOMEM);
 776                        goto out;
 777                }
 778                info->next = prev;
 779                prev = info;
 780        } while (--more);
 781
 782        goto again;
 783 out:
 784        while (prev)
 785                prev = free_map_info(prev);
 786        return curr;
 787}
 788
 789static int
 790register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
 791{
 792        bool is_register = !!new;
 793        struct map_info *info;
 794        int err = 0;
 795
 796        percpu_down_write(&dup_mmap_sem);
 797        info = build_map_info(uprobe->inode->i_mapping,
 798                                        uprobe->offset, is_register);
 799        if (IS_ERR(info)) {
 800                err = PTR_ERR(info);
 801                goto out;
 802        }
 803
 804        while (info) {
 805                struct mm_struct *mm = info->mm;
 806                struct vm_area_struct *vma;
 807
 808                if (err && is_register)
 809                        goto free;
 810
 811                down_write(&mm->mmap_sem);
 812                vma = find_vma(mm, info->vaddr);
 813                if (!vma || !valid_vma(vma, is_register) ||
 814                    file_inode(vma->vm_file) != uprobe->inode)
 815                        goto unlock;
 816
 817                if (vma->vm_start > info->vaddr ||
 818                    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
 819                        goto unlock;
 820
 821                if (is_register) {
 822                        /* consult only the "caller", new consumer. */
 823                        if (consumer_filter(new,
 824                                        UPROBE_FILTER_REGISTER, mm))
 825                                err = install_breakpoint(uprobe, mm, vma, info->vaddr);
 826                } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
 827                        if (!filter_chain(uprobe,
 828                                        UPROBE_FILTER_UNREGISTER, mm))
 829                                err |= remove_breakpoint(uprobe, mm, info->vaddr);
 830                }
 831
 832 unlock:
 833                up_write(&mm->mmap_sem);
 834 free:
 835                mmput(mm);
 836                info = free_map_info(info);
 837        }
 838 out:
 839        percpu_up_write(&dup_mmap_sem);
 840        return err;
 841}
 842
 843static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
 844{
 845        consumer_add(uprobe, uc);
 846        return register_for_each_vma(uprobe, uc);
 847}
 848
 849static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 850{
 851        int err;
 852
 853        if (WARN_ON(!consumer_del(uprobe, uc)))
 854                return;
 855
 856        err = register_for_each_vma(uprobe, NULL);
 857        /* TODO : cant unregister? schedule a worker thread */
 858        if (!uprobe->consumers && !err)
 859                delete_uprobe(uprobe);
 860}
 861
 862/*
 863 * uprobe_register - register a probe
 864 * @inode: the file in which the probe has to be placed.
 865 * @offset: offset from the start of the file.
 866 * @uc: information on howto handle the probe..
 867 *
 868 * Apart from the access refcount, uprobe_register() takes a creation
 869 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 870 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 871 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 872 * @uprobe even before the register operation is complete. Creation
 873 * refcount is released when the last @uc for the @uprobe
 874 * unregisters. Caller of uprobe_register() is required to keep @inode
 875 * (and the containing mount) referenced.
 876 *
 877 * Return errno if it cannot successully install probes
 878 * else return 0 (success)
 879 */
 880int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 881{
 882        struct uprobe *uprobe;
 883        int ret;
 884
 885        /* Uprobe must have at least one set consumer */
 886        if (!uc->handler && !uc->ret_handler)
 887                return -EINVAL;
 888
 889        /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
 890        if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
 891                return -EIO;
 892        /* Racy, just to catch the obvious mistakes */
 893        if (offset > i_size_read(inode))
 894                return -EINVAL;
 895
 896 retry:
 897        uprobe = alloc_uprobe(inode, offset);
 898        if (!uprobe)
 899                return -ENOMEM;
 900        /*
 901         * We can race with uprobe_unregister()->delete_uprobe().
 902         * Check uprobe_is_active() and retry if it is false.
 903         */
 904        down_write(&uprobe->register_rwsem);
 905        ret = -EAGAIN;
 906        if (likely(uprobe_is_active(uprobe))) {
 907                ret = __uprobe_register(uprobe, uc);
 908                if (ret)
 909                        __uprobe_unregister(uprobe, uc);
 910        }
 911        up_write(&uprobe->register_rwsem);
 912        put_uprobe(uprobe);
 913
 914        if (unlikely(ret == -EAGAIN))
 915                goto retry;
 916        return ret;
 917}
 918EXPORT_SYMBOL_GPL(uprobe_register);
 919
 920/*
 921 * uprobe_apply - unregister a already registered probe.
 922 * @inode: the file in which the probe has to be removed.
 923 * @offset: offset from the start of the file.
 924 * @uc: consumer which wants to add more or remove some breakpoints
 925 * @add: add or remove the breakpoints
 926 */
 927int uprobe_apply(struct inode *inode, loff_t offset,
 928                        struct uprobe_consumer *uc, bool add)
 929{
 930        struct uprobe *uprobe;
 931        struct uprobe_consumer *con;
 932        int ret = -ENOENT;
 933
 934        uprobe = find_uprobe(inode, offset);
 935        if (WARN_ON(!uprobe))
 936                return ret;
 937
 938        down_write(&uprobe->register_rwsem);
 939        for (con = uprobe->consumers; con && con != uc ; con = con->next)
 940                ;
 941        if (con)
 942                ret = register_for_each_vma(uprobe, add ? uc : NULL);
 943        up_write(&uprobe->register_rwsem);
 944        put_uprobe(uprobe);
 945
 946        return ret;
 947}
 948
 949/*
 950 * uprobe_unregister - unregister a already registered probe.
 951 * @inode: the file in which the probe has to be removed.
 952 * @offset: offset from the start of the file.
 953 * @uc: identify which probe if multiple probes are colocated.
 954 */
 955void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 956{
 957        struct uprobe *uprobe;
 958
 959        uprobe = find_uprobe(inode, offset);
 960        if (WARN_ON(!uprobe))
 961                return;
 962
 963        down_write(&uprobe->register_rwsem);
 964        __uprobe_unregister(uprobe, uc);
 965        up_write(&uprobe->register_rwsem);
 966        put_uprobe(uprobe);
 967}
 968EXPORT_SYMBOL_GPL(uprobe_unregister);
 969
 970static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
 971{
 972        struct vm_area_struct *vma;
 973        int err = 0;
 974
 975        down_read(&mm->mmap_sem);
 976        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 977                unsigned long vaddr;
 978                loff_t offset;
 979
 980                if (!valid_vma(vma, false) ||
 981                    file_inode(vma->vm_file) != uprobe->inode)
 982                        continue;
 983
 984                offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
 985                if (uprobe->offset <  offset ||
 986                    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
 987                        continue;
 988
 989                vaddr = offset_to_vaddr(vma, uprobe->offset);
 990                err |= remove_breakpoint(uprobe, mm, vaddr);
 991        }
 992        up_read(&mm->mmap_sem);
 993
 994        return err;
 995}
 996
 997static struct rb_node *
 998find_node_in_range(struct inode *inode, loff_t min, loff_t max)
 999{
1000        struct rb_node *n = uprobes_tree.rb_node;
1001
1002        while (n) {
1003                struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1004
1005                if (inode < u->inode) {
1006                        n = n->rb_left;
1007                } else if (inode > u->inode) {
1008                        n = n->rb_right;
1009                } else {
1010                        if (max < u->offset)
1011                                n = n->rb_left;
1012                        else if (min > u->offset)
1013                                n = n->rb_right;
1014                        else
1015                                break;
1016                }
1017        }
1018
1019        return n;
1020}
1021
1022/*
1023 * For a given range in vma, build a list of probes that need to be inserted.
1024 */
1025static void build_probe_list(struct inode *inode,
1026                                struct vm_area_struct *vma,
1027                                unsigned long start, unsigned long end,
1028                                struct list_head *head)
1029{
1030        loff_t min, max;
1031        struct rb_node *n, *t;
1032        struct uprobe *u;
1033
1034        INIT_LIST_HEAD(head);
1035        min = vaddr_to_offset(vma, start);
1036        max = min + (end - start) - 1;
1037
1038        spin_lock(&uprobes_treelock);
1039        n = find_node_in_range(inode, min, max);
1040        if (n) {
1041                for (t = n; t; t = rb_prev(t)) {
1042                        u = rb_entry(t, struct uprobe, rb_node);
1043                        if (u->inode != inode || u->offset < min)
1044                                break;
1045                        list_add(&u->pending_list, head);
1046                        get_uprobe(u);
1047                }
1048                for (t = n; (t = rb_next(t)); ) {
1049                        u = rb_entry(t, struct uprobe, rb_node);
1050                        if (u->inode != inode || u->offset > max)
1051                                break;
1052                        list_add(&u->pending_list, head);
1053                        get_uprobe(u);
1054                }
1055        }
1056        spin_unlock(&uprobes_treelock);
1057}
1058
1059/*
1060 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1061 *
1062 * Currently we ignore all errors and always return 0, the callers
1063 * can't handle the failure anyway.
1064 */
1065int uprobe_mmap(struct vm_area_struct *vma)
1066{
1067        struct list_head tmp_list;
1068        struct uprobe *uprobe, *u;
1069        struct inode *inode;
1070
1071        if (no_uprobe_events() || !valid_vma(vma, true))
1072                return 0;
1073
1074        inode = file_inode(vma->vm_file);
1075        if (!inode)
1076                return 0;
1077
1078        mutex_lock(uprobes_mmap_hash(inode));
1079        build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1080        /*
1081         * We can race with uprobe_unregister(), this uprobe can be already
1082         * removed. But in this case filter_chain() must return false, all
1083         * consumers have gone away.
1084         */
1085        list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1086                if (!fatal_signal_pending(current) &&
1087                    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1088                        unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1089                        install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1090                }
1091                put_uprobe(uprobe);
1092        }
1093        mutex_unlock(uprobes_mmap_hash(inode));
1094
1095        return 0;
1096}
1097
1098static bool
1099vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1100{
1101        loff_t min, max;
1102        struct inode *inode;
1103        struct rb_node *n;
1104
1105        inode = file_inode(vma->vm_file);
1106
1107        min = vaddr_to_offset(vma, start);
1108        max = min + (end - start) - 1;
1109
1110        spin_lock(&uprobes_treelock);
1111        n = find_node_in_range(inode, min, max);
1112        spin_unlock(&uprobes_treelock);
1113
1114        return !!n;
1115}
1116
1117/*
1118 * Called in context of a munmap of a vma.
1119 */
1120void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1121{
1122        if (no_uprobe_events() || !valid_vma(vma, false))
1123                return;
1124
1125        if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1126                return;
1127
1128        if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1129             test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1130                return;
1131
1132        if (vma_has_uprobes(vma, start, end))
1133                set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1134}
1135
1136/* Slot allocation for XOL */
1137static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1138{
1139        struct vm_area_struct *vma;
1140        int ret;
1141
1142        if (down_write_killable(&mm->mmap_sem))
1143                return -EINTR;
1144
1145        if (mm->uprobes_state.xol_area) {
1146                ret = -EALREADY;
1147                goto fail;
1148        }
1149
1150        if (!area->vaddr) {
1151                /* Try to map as high as possible, this is only a hint. */
1152                area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1153                                                PAGE_SIZE, 0, 0);
1154                if (area->vaddr & ~PAGE_MASK) {
1155                        ret = area->vaddr;
1156                        goto fail;
1157                }
1158        }
1159
1160        vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1161                                VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1162                                &area->xol_mapping);
1163        if (IS_ERR(vma)) {
1164                ret = PTR_ERR(vma);
1165                goto fail;
1166        }
1167
1168        ret = 0;
1169        /* pairs with get_xol_area() */
1170        smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1171 fail:
1172        up_write(&mm->mmap_sem);
1173
1174        return ret;
1175}
1176
1177static struct xol_area *__create_xol_area(unsigned long vaddr)
1178{
1179        struct mm_struct *mm = current->mm;
1180        uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1181        struct xol_area *area;
1182
1183        area = kmalloc(sizeof(*area), GFP_KERNEL);
1184        if (unlikely(!area))
1185                goto out;
1186
1187        area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1188        if (!area->bitmap)
1189                goto free_area;
1190
1191        area->xol_mapping.name = "[uprobes]";
1192        area->xol_mapping.fault = NULL;
1193        area->xol_mapping.pages = area->pages;
1194        area->pages[0] = alloc_page(GFP_HIGHUSER);
1195        if (!area->pages[0])
1196                goto free_bitmap;
1197        area->pages[1] = NULL;
1198
1199        area->vaddr = vaddr;
1200        init_waitqueue_head(&area->wq);
1201        /* Reserve the 1st slot for get_trampoline_vaddr() */
1202        set_bit(0, area->bitmap);
1203        atomic_set(&area->slot_count, 1);
1204        arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1205
1206        if (!xol_add_vma(mm, area))
1207                return area;
1208
1209        __free_page(area->pages[0]);
1210 free_bitmap:
1211        kfree(area->bitmap);
1212 free_area:
1213        kfree(area);
1214 out:
1215        return NULL;
1216}
1217
1218/*
1219 * get_xol_area - Allocate process's xol_area if necessary.
1220 * This area will be used for storing instructions for execution out of line.
1221 *
1222 * Returns the allocated area or NULL.
1223 */
1224static struct xol_area *get_xol_area(void)
1225{
1226        struct mm_struct *mm = current->mm;
1227        struct xol_area *area;
1228
1229        if (!mm->uprobes_state.xol_area)
1230                __create_xol_area(0);
1231
1232        /* Pairs with xol_add_vma() smp_store_release() */
1233        area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1234        return area;
1235}
1236
1237/*
1238 * uprobe_clear_state - Free the area allocated for slots.
1239 */
1240void uprobe_clear_state(struct mm_struct *mm)
1241{
1242        struct xol_area *area = mm->uprobes_state.xol_area;
1243
1244        if (!area)
1245                return;
1246
1247        put_page(area->pages[0]);
1248        kfree(area->bitmap);
1249        kfree(area);
1250}
1251
1252void uprobe_start_dup_mmap(void)
1253{
1254        percpu_down_read(&dup_mmap_sem);
1255}
1256
1257void uprobe_end_dup_mmap(void)
1258{
1259        percpu_up_read(&dup_mmap_sem);
1260}
1261
1262void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1263{
1264        if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1265                set_bit(MMF_HAS_UPROBES, &newmm->flags);
1266                /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1267                set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1268        }
1269}
1270
1271/*
1272 *  - search for a free slot.
1273 */
1274static unsigned long xol_take_insn_slot(struct xol_area *area)
1275{
1276        unsigned long slot_addr;
1277        int slot_nr;
1278
1279        do {
1280                slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1281                if (slot_nr < UINSNS_PER_PAGE) {
1282                        if (!test_and_set_bit(slot_nr, area->bitmap))
1283                                break;
1284
1285                        slot_nr = UINSNS_PER_PAGE;
1286                        continue;
1287                }
1288                wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1289        } while (slot_nr >= UINSNS_PER_PAGE);
1290
1291        slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1292        atomic_inc(&area->slot_count);
1293
1294        return slot_addr;
1295}
1296
1297/*
1298 * xol_get_insn_slot - allocate a slot for xol.
1299 * Returns the allocated slot address or 0.
1300 */
1301static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1302{
1303        struct xol_area *area;
1304        unsigned long xol_vaddr;
1305
1306        area = get_xol_area();
1307        if (!area)
1308                return 0;
1309
1310        xol_vaddr = xol_take_insn_slot(area);
1311        if (unlikely(!xol_vaddr))
1312                return 0;
1313
1314        arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1315                              &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1316
1317        return xol_vaddr;
1318}
1319
1320/*
1321 * xol_free_insn_slot - If slot was earlier allocated by
1322 * @xol_get_insn_slot(), make the slot available for
1323 * subsequent requests.
1324 */
1325static void xol_free_insn_slot(struct task_struct *tsk)
1326{
1327        struct xol_area *area;
1328        unsigned long vma_end;
1329        unsigned long slot_addr;
1330
1331        if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1332                return;
1333
1334        slot_addr = tsk->utask->xol_vaddr;
1335        if (unlikely(!slot_addr))
1336                return;
1337
1338        area = tsk->mm->uprobes_state.xol_area;
1339        vma_end = area->vaddr + PAGE_SIZE;
1340        if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1341                unsigned long offset;
1342                int slot_nr;
1343
1344                offset = slot_addr - area->vaddr;
1345                slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1346                if (slot_nr >= UINSNS_PER_PAGE)
1347                        return;
1348
1349                clear_bit(slot_nr, area->bitmap);
1350                atomic_dec(&area->slot_count);
1351                smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1352                if (waitqueue_active(&area->wq))
1353                        wake_up(&area->wq);
1354
1355                tsk->utask->xol_vaddr = 0;
1356        }
1357}
1358
1359void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1360                                  void *src, unsigned long len)
1361{
1362        /* Initialize the slot */
1363        copy_to_page(page, vaddr, src, len);
1364
1365        /*
1366         * We probably need flush_icache_user_range() but it needs vma.
1367         * This should work on most of architectures by default. If
1368         * architecture needs to do something different it can define
1369         * its own version of the function.
1370         */
1371        flush_dcache_page(page);
1372}
1373
1374/**
1375 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1376 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1377 * instruction.
1378 * Return the address of the breakpoint instruction.
1379 */
1380unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1381{
1382        return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1383}
1384
1385unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1386{
1387        struct uprobe_task *utask = current->utask;
1388
1389        if (unlikely(utask && utask->active_uprobe))
1390                return utask->vaddr;
1391
1392        return instruction_pointer(regs);
1393}
1394
1395static struct return_instance *free_ret_instance(struct return_instance *ri)
1396{
1397        struct return_instance *next = ri->next;
1398        put_uprobe(ri->uprobe);
1399        kfree(ri);
1400        return next;
1401}
1402
1403/*
1404 * Called with no locks held.
1405 * Called in context of a exiting or a exec-ing thread.
1406 */
1407void uprobe_free_utask(struct task_struct *t)
1408{
1409        struct uprobe_task *utask = t->utask;
1410        struct return_instance *ri;
1411
1412        if (!utask)
1413                return;
1414
1415        if (utask->active_uprobe)
1416                put_uprobe(utask->active_uprobe);
1417
1418        ri = utask->return_instances;
1419        while (ri)
1420                ri = free_ret_instance(ri);
1421
1422        xol_free_insn_slot(t);
1423        kfree(utask);
1424        t->utask = NULL;
1425}
1426
1427/*
1428 * Allocate a uprobe_task object for the task if if necessary.
1429 * Called when the thread hits a breakpoint.
1430 *
1431 * Returns:
1432 * - pointer to new uprobe_task on success
1433 * - NULL otherwise
1434 */
1435static struct uprobe_task *get_utask(void)
1436{
1437        if (!current->utask)
1438                current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1439        return current->utask;
1440}
1441
1442static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1443{
1444        struct uprobe_task *n_utask;
1445        struct return_instance **p, *o, *n;
1446
1447        n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1448        if (!n_utask)
1449                return -ENOMEM;
1450        t->utask = n_utask;
1451
1452        p = &n_utask->return_instances;
1453        for (o = o_utask->return_instances; o; o = o->next) {
1454                n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1455                if (!n)
1456                        return -ENOMEM;
1457
1458                *n = *o;
1459                get_uprobe(n->uprobe);
1460                n->next = NULL;
1461
1462                *p = n;
1463                p = &n->next;
1464                n_utask->depth++;
1465        }
1466
1467        return 0;
1468}
1469
1470static void uprobe_warn(struct task_struct *t, const char *msg)
1471{
1472        pr_warn("uprobe: %s:%d failed to %s\n",
1473                        current->comm, current->pid, msg);
1474}
1475
1476static void dup_xol_work(struct callback_head *work)
1477{
1478        if (current->flags & PF_EXITING)
1479                return;
1480
1481        if (!__create_xol_area(current->utask->dup_xol_addr) &&
1482                        !fatal_signal_pending(current))
1483                uprobe_warn(current, "dup xol area");
1484}
1485
1486/*
1487 * Called in context of a new clone/fork from copy_process.
1488 */
1489void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1490{
1491        struct uprobe_task *utask = current->utask;
1492        struct mm_struct *mm = current->mm;
1493        struct xol_area *area;
1494
1495        t->utask = NULL;
1496
1497        if (!utask || !utask->return_instances)
1498                return;
1499
1500        if (mm == t->mm && !(flags & CLONE_VFORK))
1501                return;
1502
1503        if (dup_utask(t, utask))
1504                return uprobe_warn(t, "dup ret instances");
1505
1506        /* The task can fork() after dup_xol_work() fails */
1507        area = mm->uprobes_state.xol_area;
1508        if (!area)
1509                return uprobe_warn(t, "dup xol area");
1510
1511        if (mm == t->mm)
1512                return;
1513
1514        t->utask->dup_xol_addr = area->vaddr;
1515        init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1516        task_work_add(t, &t->utask->dup_xol_work, true);
1517}
1518
1519/*
1520 * Current area->vaddr notion assume the trampoline address is always
1521 * equal area->vaddr.
1522 *
1523 * Returns -1 in case the xol_area is not allocated.
1524 */
1525static unsigned long get_trampoline_vaddr(void)
1526{
1527        struct xol_area *area;
1528        unsigned long trampoline_vaddr = -1;
1529
1530        /* Pairs with xol_add_vma() smp_store_release() */
1531        area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1532        if (area)
1533                trampoline_vaddr = area->vaddr;
1534
1535        return trampoline_vaddr;
1536}
1537
1538static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1539                                        struct pt_regs *regs)
1540{
1541        struct return_instance *ri = utask->return_instances;
1542        enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1543
1544        while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1545                ri = free_ret_instance(ri);
1546                utask->depth--;
1547        }
1548        utask->return_instances = ri;
1549}
1550
1551static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1552{
1553        struct return_instance *ri;
1554        struct uprobe_task *utask;
1555        unsigned long orig_ret_vaddr, trampoline_vaddr;
1556        bool chained;
1557
1558        if (!get_xol_area())
1559                return;
1560
1561        utask = get_utask();
1562        if (!utask)
1563                return;
1564
1565        if (utask->depth >= MAX_URETPROBE_DEPTH) {
1566                printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1567                                " nestedness limit pid/tgid=%d/%d\n",
1568                                current->pid, current->tgid);
1569                return;
1570        }
1571
1572        ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1573        if (!ri)
1574                return;
1575
1576        trampoline_vaddr = get_trampoline_vaddr();
1577        orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1578        if (orig_ret_vaddr == -1)
1579                goto fail;
1580
1581        /* drop the entries invalidated by longjmp() */
1582        chained = (orig_ret_vaddr == trampoline_vaddr);
1583        cleanup_return_instances(utask, chained, regs);
1584
1585        /*
1586         * We don't want to keep trampoline address in stack, rather keep the
1587         * original return address of first caller thru all the consequent
1588         * instances. This also makes breakpoint unwrapping easier.
1589         */
1590        if (chained) {
1591                if (!utask->return_instances) {
1592                        /*
1593                         * This situation is not possible. Likely we have an
1594                         * attack from user-space.
1595                         */
1596                        uprobe_warn(current, "handle tail call");
1597                        goto fail;
1598                }
1599                orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1600        }
1601
1602        ri->uprobe = get_uprobe(uprobe);
1603        ri->func = instruction_pointer(regs);
1604        ri->stack = user_stack_pointer(regs);
1605        ri->orig_ret_vaddr = orig_ret_vaddr;
1606        ri->chained = chained;
1607
1608        utask->depth++;
1609        ri->next = utask->return_instances;
1610        utask->return_instances = ri;
1611
1612        return;
1613 fail:
1614        kfree(ri);
1615}
1616
1617/* Prepare to single-step probed instruction out of line. */
1618static int
1619pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1620{
1621        struct uprobe_task *utask;
1622        unsigned long xol_vaddr;
1623        int err;
1624
1625        utask = get_utask();
1626        if (!utask)
1627                return -ENOMEM;
1628
1629        xol_vaddr = xol_get_insn_slot(uprobe);
1630        if (!xol_vaddr)
1631                return -ENOMEM;
1632
1633        utask->xol_vaddr = xol_vaddr;
1634        utask->vaddr = bp_vaddr;
1635
1636        err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1637        if (unlikely(err)) {
1638                xol_free_insn_slot(current);
1639                return err;
1640        }
1641
1642        utask->active_uprobe = uprobe;
1643        utask->state = UTASK_SSTEP;
1644        return 0;
1645}
1646
1647/*
1648 * If we are singlestepping, then ensure this thread is not connected to
1649 * non-fatal signals until completion of singlestep.  When xol insn itself
1650 * triggers the signal,  restart the original insn even if the task is
1651 * already SIGKILL'ed (since coredump should report the correct ip).  This
1652 * is even more important if the task has a handler for SIGSEGV/etc, The
1653 * _same_ instruction should be repeated again after return from the signal
1654 * handler, and SSTEP can never finish in this case.
1655 */
1656bool uprobe_deny_signal(void)
1657{
1658        struct task_struct *t = current;
1659        struct uprobe_task *utask = t->utask;
1660
1661        if (likely(!utask || !utask->active_uprobe))
1662                return false;
1663
1664        WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1665
1666        if (signal_pending(t)) {
1667                spin_lock_irq(&t->sighand->siglock);
1668                clear_tsk_thread_flag(t, TIF_SIGPENDING);
1669                spin_unlock_irq(&t->sighand->siglock);
1670
1671                if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1672                        utask->state = UTASK_SSTEP_TRAPPED;
1673                        set_tsk_thread_flag(t, TIF_UPROBE);
1674                }
1675        }
1676
1677        return true;
1678}
1679
1680static void mmf_recalc_uprobes(struct mm_struct *mm)
1681{
1682        struct vm_area_struct *vma;
1683
1684        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1685                if (!valid_vma(vma, false))
1686                        continue;
1687                /*
1688                 * This is not strictly accurate, we can race with
1689                 * uprobe_unregister() and see the already removed
1690                 * uprobe if delete_uprobe() was not yet called.
1691                 * Or this uprobe can be filtered out.
1692                 */
1693                if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1694                        return;
1695        }
1696
1697        clear_bit(MMF_HAS_UPROBES, &mm->flags);
1698}
1699
1700static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1701{
1702        struct page *page;
1703        uprobe_opcode_t opcode;
1704        int result;
1705
1706        pagefault_disable();
1707        result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1708        pagefault_enable();
1709
1710        if (likely(result == 0))
1711                goto out;
1712
1713        /*
1714         * The NULL 'tsk' here ensures that any faults that occur here
1715         * will not be accounted to the task.  'mm' *is* current->mm,
1716         * but we treat this as a 'remote' access since it is
1717         * essentially a kernel access to the memory.
1718         */
1719        result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1720                        NULL, NULL);
1721        if (result < 0)
1722                return result;
1723
1724        copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1725        put_page(page);
1726 out:
1727        /* This needs to return true for any variant of the trap insn */
1728        return is_trap_insn(&opcode);
1729}
1730
1731static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1732{
1733        struct mm_struct *mm = current->mm;
1734        struct uprobe *uprobe = NULL;
1735        struct vm_area_struct *vma;
1736
1737        down_read(&mm->mmap_sem);
1738        vma = find_vma(mm, bp_vaddr);
1739        if (vma && vma->vm_start <= bp_vaddr) {
1740                if (valid_vma(vma, false)) {
1741                        struct inode *inode = file_inode(vma->vm_file);
1742                        loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1743
1744                        uprobe = find_uprobe(inode, offset);
1745                }
1746
1747                if (!uprobe)
1748                        *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1749        } else {
1750                *is_swbp = -EFAULT;
1751        }
1752
1753        if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1754                mmf_recalc_uprobes(mm);
1755        up_read(&mm->mmap_sem);
1756
1757        return uprobe;
1758}
1759
1760static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1761{
1762        struct uprobe_consumer *uc;
1763        int remove = UPROBE_HANDLER_REMOVE;
1764        bool need_prep = false; /* prepare return uprobe, when needed */
1765
1766        down_read(&uprobe->register_rwsem);
1767        for (uc = uprobe->consumers; uc; uc = uc->next) {
1768                int rc = 0;
1769
1770                if (uc->handler) {
1771                        rc = uc->handler(uc, regs);
1772                        WARN(rc & ~UPROBE_HANDLER_MASK,
1773                                "bad rc=0x%x from %pf()\n", rc, uc->handler);
1774                }
1775
1776                if (uc->ret_handler)
1777                        need_prep = true;
1778
1779                remove &= rc;
1780        }
1781
1782        if (need_prep && !remove)
1783                prepare_uretprobe(uprobe, regs); /* put bp at return */
1784
1785        if (remove && uprobe->consumers) {
1786                WARN_ON(!uprobe_is_active(uprobe));
1787                unapply_uprobe(uprobe, current->mm);
1788        }
1789        up_read(&uprobe->register_rwsem);
1790}
1791
1792static void
1793handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1794{
1795        struct uprobe *uprobe = ri->uprobe;
1796        struct uprobe_consumer *uc;
1797
1798        down_read(&uprobe->register_rwsem);
1799        for (uc = uprobe->consumers; uc; uc = uc->next) {
1800                if (uc->ret_handler)
1801                        uc->ret_handler(uc, ri->func, regs);
1802        }
1803        up_read(&uprobe->register_rwsem);
1804}
1805
1806static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1807{
1808        bool chained;
1809
1810        do {
1811                chained = ri->chained;
1812                ri = ri->next;  /* can't be NULL if chained */
1813        } while (chained);
1814
1815        return ri;
1816}
1817
1818static void handle_trampoline(struct pt_regs *regs)
1819{
1820        struct uprobe_task *utask;
1821        struct return_instance *ri, *next;
1822        bool valid;
1823
1824        utask = current->utask;
1825        if (!utask)
1826                goto sigill;
1827
1828        ri = utask->return_instances;
1829        if (!ri)
1830                goto sigill;
1831
1832        do {
1833                /*
1834                 * We should throw out the frames invalidated by longjmp().
1835                 * If this chain is valid, then the next one should be alive
1836                 * or NULL; the latter case means that nobody but ri->func
1837                 * could hit this trampoline on return. TODO: sigaltstack().
1838                 */
1839                next = find_next_ret_chain(ri);
1840                valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1841
1842                instruction_pointer_set(regs, ri->orig_ret_vaddr);
1843                do {
1844                        if (valid)
1845                                handle_uretprobe_chain(ri, regs);
1846                        ri = free_ret_instance(ri);
1847                        utask->depth--;
1848                } while (ri != next);
1849        } while (!valid);
1850
1851        utask->return_instances = ri;
1852        return;
1853
1854 sigill:
1855        uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1856        force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1857
1858}
1859
1860bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1861{
1862        return false;
1863}
1864
1865bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1866                                        struct pt_regs *regs)
1867{
1868        return true;
1869}
1870
1871/*
1872 * Run handler and ask thread to singlestep.
1873 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1874 */
1875static void handle_swbp(struct pt_regs *regs)
1876{
1877        struct uprobe *uprobe;
1878        unsigned long bp_vaddr;
1879        int uninitialized_var(is_swbp);
1880
1881        bp_vaddr = uprobe_get_swbp_addr(regs);
1882        if (bp_vaddr == get_trampoline_vaddr())
1883                return handle_trampoline(regs);
1884
1885        uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1886        if (!uprobe) {
1887                if (is_swbp > 0) {
1888                        /* No matching uprobe; signal SIGTRAP. */
1889                        send_sig(SIGTRAP, current, 0);
1890                } else {
1891                        /*
1892                         * Either we raced with uprobe_unregister() or we can't
1893                         * access this memory. The latter is only possible if
1894                         * another thread plays with our ->mm. In both cases
1895                         * we can simply restart. If this vma was unmapped we
1896                         * can pretend this insn was not executed yet and get
1897                         * the (correct) SIGSEGV after restart.
1898                         */
1899                        instruction_pointer_set(regs, bp_vaddr);
1900                }
1901                return;
1902        }
1903
1904        /* change it in advance for ->handler() and restart */
1905        instruction_pointer_set(regs, bp_vaddr);
1906
1907        /*
1908         * TODO: move copy_insn/etc into _register and remove this hack.
1909         * After we hit the bp, _unregister + _register can install the
1910         * new and not-yet-analyzed uprobe at the same address, restart.
1911         */
1912        smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1913        if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1914                goto out;
1915
1916        /* Tracing handlers use ->utask to communicate with fetch methods */
1917        if (!get_utask())
1918                goto out;
1919
1920        if (arch_uprobe_ignore(&uprobe->arch, regs))
1921                goto out;
1922
1923        handler_chain(uprobe, regs);
1924
1925        if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1926                goto out;
1927
1928        if (!pre_ssout(uprobe, regs, bp_vaddr))
1929                return;
1930
1931        /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1932out:
1933        put_uprobe(uprobe);
1934}
1935
1936/*
1937 * Perform required fix-ups and disable singlestep.
1938 * Allow pending signals to take effect.
1939 */
1940static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1941{
1942        struct uprobe *uprobe;
1943        int err = 0;
1944
1945        uprobe = utask->active_uprobe;
1946        if (utask->state == UTASK_SSTEP_ACK)
1947                err = arch_uprobe_post_xol(&uprobe->arch, regs);
1948        else if (utask->state == UTASK_SSTEP_TRAPPED)
1949                arch_uprobe_abort_xol(&uprobe->arch, regs);
1950        else
1951                WARN_ON_ONCE(1);
1952
1953        put_uprobe(uprobe);
1954        utask->active_uprobe = NULL;
1955        utask->state = UTASK_RUNNING;
1956        xol_free_insn_slot(current);
1957
1958        spin_lock_irq(&current->sighand->siglock);
1959        recalc_sigpending(); /* see uprobe_deny_signal() */
1960        spin_unlock_irq(&current->sighand->siglock);
1961
1962        if (unlikely(err)) {
1963                uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1964                force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1965        }
1966}
1967
1968/*
1969 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1970 * allows the thread to return from interrupt. After that handle_swbp()
1971 * sets utask->active_uprobe.
1972 *
1973 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1974 * and allows the thread to return from interrupt.
1975 *
1976 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1977 * uprobe_notify_resume().
1978 */
1979void uprobe_notify_resume(struct pt_regs *regs)
1980{
1981        struct uprobe_task *utask;
1982
1983        clear_thread_flag(TIF_UPROBE);
1984
1985        utask = current->utask;
1986        if (utask && utask->active_uprobe)
1987                handle_singlestep(utask, regs);
1988        else
1989                handle_swbp(regs);
1990}
1991
1992/*
1993 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1994 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1995 */
1996int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1997{
1998        if (!current->mm)
1999                return 0;
2000
2001        if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2002            (!current->utask || !current->utask->return_instances))
2003                return 0;
2004
2005        set_thread_flag(TIF_UPROBE);
2006        return 1;
2007}
2008
2009/*
2010 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2011 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2012 */
2013int uprobe_post_sstep_notifier(struct pt_regs *regs)
2014{
2015        struct uprobe_task *utask = current->utask;
2016
2017        if (!current->mm || !utask || !utask->active_uprobe)
2018                /* task is currently not uprobed */
2019                return 0;
2020
2021        utask->state = UTASK_SSTEP_ACK;
2022        set_thread_flag(TIF_UPROBE);
2023        return 1;
2024}
2025
2026static struct notifier_block uprobe_exception_nb = {
2027        .notifier_call          = arch_uprobe_exception_notify,
2028        .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2029};
2030
2031static int __init init_uprobes(void)
2032{
2033        int i;
2034
2035        for (i = 0; i < UPROBES_HASH_SZ; i++)
2036                mutex_init(&uprobes_mmap_mutex[i]);
2037
2038        if (percpu_init_rwsem(&dup_mmap_sem))
2039                return -ENOMEM;
2040
2041        return register_die_notifier(&uprobe_exception_nb);
2042}
2043__initcall(init_uprobes);
2044