linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/sched/autogroup.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/coredump.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/numa_balancing.h>
  20#include <linux/sched/stat.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/sched/cputime.h>
  24#include <linux/rtmutex.h>
  25#include <linux/init.h>
  26#include <linux/unistd.h>
  27#include <linux/module.h>
  28#include <linux/vmalloc.h>
  29#include <linux/completion.h>
  30#include <linux/personality.h>
  31#include <linux/mempolicy.h>
  32#include <linux/sem.h>
  33#include <linux/file.h>
  34#include <linux/fdtable.h>
  35#include <linux/iocontext.h>
  36#include <linux/key.h>
  37#include <linux/binfmts.h>
  38#include <linux/mman.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/hmm.h>
  41#include <linux/fs.h>
  42#include <linux/mm.h>
  43#include <linux/vmacache.h>
  44#include <linux/nsproxy.h>
  45#include <linux/capability.h>
  46#include <linux/cpu.h>
  47#include <linux/cgroup.h>
  48#include <linux/security.h>
  49#include <linux/hugetlb.h>
  50#include <linux/seccomp.h>
  51#include <linux/swap.h>
  52#include <linux/syscalls.h>
  53#include <linux/jiffies.h>
  54#include <linux/futex.h>
  55#include <linux/compat.h>
  56#include <linux/kthread.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/rcupdate.h>
  59#include <linux/ptrace.h>
  60#include <linux/mount.h>
  61#include <linux/audit.h>
  62#include <linux/memcontrol.h>
  63#include <linux/ftrace.h>
  64#include <linux/proc_fs.h>
  65#include <linux/profile.h>
  66#include <linux/rmap.h>
  67#include <linux/ksm.h>
  68#include <linux/acct.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/tsacct_kern.h>
  71#include <linux/cn_proc.h>
  72#include <linux/freezer.h>
  73#include <linux/delayacct.h>
  74#include <linux/taskstats_kern.h>
  75#include <linux/random.h>
  76#include <linux/tty.h>
  77#include <linux/blkdev.h>
  78#include <linux/fs_struct.h>
  79#include <linux/magic.h>
  80#include <linux/sched/mm.h>
  81#include <linux/perf_event.h>
  82#include <linux/posix-timers.h>
  83#include <linux/user-return-notifier.h>
  84#include <linux/oom.h>
  85#include <linux/khugepaged.h>
  86#include <linux/signalfd.h>
  87#include <linux/uprobes.h>
  88#include <linux/aio.h>
  89#include <linux/compiler.h>
  90#include <linux/sysctl.h>
  91#include <linux/kcov.h>
  92#include <linux/livepatch.h>
  93#include <linux/thread_info.h>
  94
  95#include <asm/pgtable.h>
  96#include <asm/pgalloc.h>
  97#include <linux/uaccess.h>
  98#include <asm/mmu_context.h>
  99#include <asm/cacheflush.h>
 100#include <asm/tlbflush.h>
 101
 102#include <trace/events/sched.h>
 103
 104#define CREATE_TRACE_POINTS
 105#include <trace/events/task.h>
 106
 107/*
 108 * Minimum number of threads to boot the kernel
 109 */
 110#define MIN_THREADS 20
 111
 112/*
 113 * Maximum number of threads
 114 */
 115#define MAX_THREADS FUTEX_TID_MASK
 116
 117/*
 118 * Protected counters by write_lock_irq(&tasklist_lock)
 119 */
 120unsigned long total_forks;      /* Handle normal Linux uptimes. */
 121int nr_threads;                 /* The idle threads do not count.. */
 122
 123int max_threads;                /* tunable limit on nr_threads */
 124
 125DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 126
 127__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 128
 129#ifdef CONFIG_PROVE_RCU
 130int lockdep_tasklist_lock_is_held(void)
 131{
 132        return lockdep_is_held(&tasklist_lock);
 133}
 134EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 135#endif /* #ifdef CONFIG_PROVE_RCU */
 136
 137int nr_processes(void)
 138{
 139        int cpu;
 140        int total = 0;
 141
 142        for_each_possible_cpu(cpu)
 143                total += per_cpu(process_counts, cpu);
 144
 145        return total;
 146}
 147
 148void __weak arch_release_task_struct(struct task_struct *tsk)
 149{
 150}
 151
 152#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 153static struct kmem_cache *task_struct_cachep;
 154
 155static inline struct task_struct *alloc_task_struct_node(int node)
 156{
 157        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 158}
 159
 160static inline void free_task_struct(struct task_struct *tsk)
 161{
 162        kmem_cache_free(task_struct_cachep, tsk);
 163}
 164#endif
 165
 166void __weak arch_release_thread_stack(unsigned long *stack)
 167{
 168}
 169
 170#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 171
 172/*
 173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 174 * kmemcache based allocator.
 175 */
 176# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 177
 178#ifdef CONFIG_VMAP_STACK
 179/*
 180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 181 * flush.  Try to minimize the number of calls by caching stacks.
 182 */
 183#define NR_CACHED_STACKS 2
 184static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 185
 186static int free_vm_stack_cache(unsigned int cpu)
 187{
 188        struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 189        int i;
 190
 191        for (i = 0; i < NR_CACHED_STACKS; i++) {
 192                struct vm_struct *vm_stack = cached_vm_stacks[i];
 193
 194                if (!vm_stack)
 195                        continue;
 196
 197                vfree(vm_stack->addr);
 198                cached_vm_stacks[i] = NULL;
 199        }
 200
 201        return 0;
 202}
 203#endif
 204
 205static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 206{
 207#ifdef CONFIG_VMAP_STACK
 208        void *stack;
 209        int i;
 210
 211        for (i = 0; i < NR_CACHED_STACKS; i++) {
 212                struct vm_struct *s;
 213
 214                s = this_cpu_xchg(cached_stacks[i], NULL);
 215
 216                if (!s)
 217                        continue;
 218
 219                /* Clear stale pointers from reused stack. */
 220                memset(s->addr, 0, THREAD_SIZE);
 221
 222                tsk->stack_vm_area = s;
 223                return s->addr;
 224        }
 225
 226        stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 227                                     VMALLOC_START, VMALLOC_END,
 228                                     THREADINFO_GFP,
 229                                     PAGE_KERNEL,
 230                                     0, node, __builtin_return_address(0));
 231
 232        /*
 233         * We can't call find_vm_area() in interrupt context, and
 234         * free_thread_stack() can be called in interrupt context,
 235         * so cache the vm_struct.
 236         */
 237        if (stack)
 238                tsk->stack_vm_area = find_vm_area(stack);
 239        return stack;
 240#else
 241        struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 242                                             THREAD_SIZE_ORDER);
 243
 244        return page ? page_address(page) : NULL;
 245#endif
 246}
 247
 248static inline void free_thread_stack(struct task_struct *tsk)
 249{
 250#ifdef CONFIG_VMAP_STACK
 251        if (task_stack_vm_area(tsk)) {
 252                int i;
 253
 254                for (i = 0; i < NR_CACHED_STACKS; i++) {
 255                        if (this_cpu_cmpxchg(cached_stacks[i],
 256                                        NULL, tsk->stack_vm_area) != NULL)
 257                                continue;
 258
 259                        return;
 260                }
 261
 262                vfree_atomic(tsk->stack);
 263                return;
 264        }
 265#endif
 266
 267        __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 268}
 269# else
 270static struct kmem_cache *thread_stack_cache;
 271
 272static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 273                                                  int node)
 274{
 275        return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 276}
 277
 278static void free_thread_stack(struct task_struct *tsk)
 279{
 280        kmem_cache_free(thread_stack_cache, tsk->stack);
 281}
 282
 283void thread_stack_cache_init(void)
 284{
 285        thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 286                                        THREAD_SIZE, THREAD_SIZE, 0, 0,
 287                                        THREAD_SIZE, NULL);
 288        BUG_ON(thread_stack_cache == NULL);
 289}
 290# endif
 291#endif
 292
 293/* SLAB cache for signal_struct structures (tsk->signal) */
 294static struct kmem_cache *signal_cachep;
 295
 296/* SLAB cache for sighand_struct structures (tsk->sighand) */
 297struct kmem_cache *sighand_cachep;
 298
 299/* SLAB cache for files_struct structures (tsk->files) */
 300struct kmem_cache *files_cachep;
 301
 302/* SLAB cache for fs_struct structures (tsk->fs) */
 303struct kmem_cache *fs_cachep;
 304
 305/* SLAB cache for vm_area_struct structures */
 306struct kmem_cache *vm_area_cachep;
 307
 308/* SLAB cache for mm_struct structures (tsk->mm) */
 309static struct kmem_cache *mm_cachep;
 310
 311static void account_kernel_stack(struct task_struct *tsk, int account)
 312{
 313        void *stack = task_stack_page(tsk);
 314        struct vm_struct *vm = task_stack_vm_area(tsk);
 315
 316        BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 317
 318        if (vm) {
 319                int i;
 320
 321                BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 322
 323                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 324                        mod_zone_page_state(page_zone(vm->pages[i]),
 325                                            NR_KERNEL_STACK_KB,
 326                                            PAGE_SIZE / 1024 * account);
 327                }
 328
 329                /* All stack pages belong to the same memcg. */
 330                mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 331                                     account * (THREAD_SIZE / 1024));
 332        } else {
 333                /*
 334                 * All stack pages are in the same zone and belong to the
 335                 * same memcg.
 336                 */
 337                struct page *first_page = virt_to_page(stack);
 338
 339                mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 340                                    THREAD_SIZE / 1024 * account);
 341
 342                mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 343                                     account * (THREAD_SIZE / 1024));
 344        }
 345}
 346
 347static void release_task_stack(struct task_struct *tsk)
 348{
 349        if (WARN_ON(tsk->state != TASK_DEAD))
 350                return;  /* Better to leak the stack than to free prematurely */
 351
 352        account_kernel_stack(tsk, -1);
 353        arch_release_thread_stack(tsk->stack);
 354        free_thread_stack(tsk);
 355        tsk->stack = NULL;
 356#ifdef CONFIG_VMAP_STACK
 357        tsk->stack_vm_area = NULL;
 358#endif
 359}
 360
 361#ifdef CONFIG_THREAD_INFO_IN_TASK
 362void put_task_stack(struct task_struct *tsk)
 363{
 364        if (atomic_dec_and_test(&tsk->stack_refcount))
 365                release_task_stack(tsk);
 366}
 367#endif
 368
 369void free_task(struct task_struct *tsk)
 370{
 371#ifndef CONFIG_THREAD_INFO_IN_TASK
 372        /*
 373         * The task is finally done with both the stack and thread_info,
 374         * so free both.
 375         */
 376        release_task_stack(tsk);
 377#else
 378        /*
 379         * If the task had a separate stack allocation, it should be gone
 380         * by now.
 381         */
 382        WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 383#endif
 384        rt_mutex_debug_task_free(tsk);
 385        ftrace_graph_exit_task(tsk);
 386        put_seccomp_filter(tsk);
 387        arch_release_task_struct(tsk);
 388        if (tsk->flags & PF_KTHREAD)
 389                free_kthread_struct(tsk);
 390        free_task_struct(tsk);
 391}
 392EXPORT_SYMBOL(free_task);
 393
 394#ifdef CONFIG_MMU
 395static __latent_entropy int dup_mmap(struct mm_struct *mm,
 396                                        struct mm_struct *oldmm)
 397{
 398        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 399        struct rb_node **rb_link, *rb_parent;
 400        int retval;
 401        unsigned long charge;
 402        LIST_HEAD(uf);
 403
 404        uprobe_start_dup_mmap();
 405        if (down_write_killable(&oldmm->mmap_sem)) {
 406                retval = -EINTR;
 407                goto fail_uprobe_end;
 408        }
 409        flush_cache_dup_mm(oldmm);
 410        uprobe_dup_mmap(oldmm, mm);
 411        /*
 412         * Not linked in yet - no deadlock potential:
 413         */
 414        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 415
 416        /* No ordering required: file already has been exposed. */
 417        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 418
 419        mm->total_vm = oldmm->total_vm;
 420        mm->data_vm = oldmm->data_vm;
 421        mm->exec_vm = oldmm->exec_vm;
 422        mm->stack_vm = oldmm->stack_vm;
 423
 424        rb_link = &mm->mm_rb.rb_node;
 425        rb_parent = NULL;
 426        pprev = &mm->mmap;
 427        retval = ksm_fork(mm, oldmm);
 428        if (retval)
 429                goto out;
 430        retval = khugepaged_fork(mm, oldmm);
 431        if (retval)
 432                goto out;
 433
 434        prev = NULL;
 435        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 436                struct file *file;
 437
 438                if (mpnt->vm_flags & VM_DONTCOPY) {
 439                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 440                        continue;
 441                }
 442                charge = 0;
 443                if (mpnt->vm_flags & VM_ACCOUNT) {
 444                        unsigned long len = vma_pages(mpnt);
 445
 446                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 447                                goto fail_nomem;
 448                        charge = len;
 449                }
 450                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 451                if (!tmp)
 452                        goto fail_nomem;
 453                *tmp = *mpnt;
 454                INIT_LIST_HEAD(&tmp->anon_vma_chain);
 455                retval = vma_dup_policy(mpnt, tmp);
 456                if (retval)
 457                        goto fail_nomem_policy;
 458                tmp->vm_mm = mm;
 459                retval = dup_userfaultfd(tmp, &uf);
 460                if (retval)
 461                        goto fail_nomem_anon_vma_fork;
 462                if (tmp->vm_flags & VM_WIPEONFORK) {
 463                        /* VM_WIPEONFORK gets a clean slate in the child. */
 464                        tmp->anon_vma = NULL;
 465                        if (anon_vma_prepare(tmp))
 466                                goto fail_nomem_anon_vma_fork;
 467                } else if (anon_vma_fork(tmp, mpnt))
 468                        goto fail_nomem_anon_vma_fork;
 469                tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 470                tmp->vm_next = tmp->vm_prev = NULL;
 471                file = tmp->vm_file;
 472                if (file) {
 473                        struct inode *inode = file_inode(file);
 474                        struct address_space *mapping = file->f_mapping;
 475
 476                        get_file(file);
 477                        if (tmp->vm_flags & VM_DENYWRITE)
 478                                atomic_dec(&inode->i_writecount);
 479                        i_mmap_lock_write(mapping);
 480                        if (tmp->vm_flags & VM_SHARED)
 481                                atomic_inc(&mapping->i_mmap_writable);
 482                        flush_dcache_mmap_lock(mapping);
 483                        /* insert tmp into the share list, just after mpnt */
 484                        vma_interval_tree_insert_after(tmp, mpnt,
 485                                        &mapping->i_mmap);
 486                        flush_dcache_mmap_unlock(mapping);
 487                        i_mmap_unlock_write(mapping);
 488                }
 489
 490                /*
 491                 * Clear hugetlb-related page reserves for children. This only
 492                 * affects MAP_PRIVATE mappings. Faults generated by the child
 493                 * are not guaranteed to succeed, even if read-only
 494                 */
 495                if (is_vm_hugetlb_page(tmp))
 496                        reset_vma_resv_huge_pages(tmp);
 497
 498                /*
 499                 * Link in the new vma and copy the page table entries.
 500                 */
 501                *pprev = tmp;
 502                pprev = &tmp->vm_next;
 503                tmp->vm_prev = prev;
 504                prev = tmp;
 505
 506                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 507                rb_link = &tmp->vm_rb.rb_right;
 508                rb_parent = &tmp->vm_rb;
 509
 510                mm->map_count++;
 511                if (!(tmp->vm_flags & VM_WIPEONFORK))
 512                        retval = copy_page_range(mm, oldmm, mpnt);
 513
 514                if (tmp->vm_ops && tmp->vm_ops->open)
 515                        tmp->vm_ops->open(tmp);
 516
 517                if (retval)
 518                        goto out;
 519        }
 520        /* a new mm has just been created */
 521        arch_dup_mmap(oldmm, mm);
 522        retval = 0;
 523out:
 524        up_write(&mm->mmap_sem);
 525        flush_tlb_mm(oldmm);
 526        up_write(&oldmm->mmap_sem);
 527        dup_userfaultfd_complete(&uf);
 528fail_uprobe_end:
 529        uprobe_end_dup_mmap();
 530        return retval;
 531fail_nomem_anon_vma_fork:
 532        mpol_put(vma_policy(tmp));
 533fail_nomem_policy:
 534        kmem_cache_free(vm_area_cachep, tmp);
 535fail_nomem:
 536        retval = -ENOMEM;
 537        vm_unacct_memory(charge);
 538        goto out;
 539}
 540
 541static inline int mm_alloc_pgd(struct mm_struct *mm)
 542{
 543        mm->pgd = pgd_alloc(mm);
 544        if (unlikely(!mm->pgd))
 545                return -ENOMEM;
 546        return 0;
 547}
 548
 549static inline void mm_free_pgd(struct mm_struct *mm)
 550{
 551        pgd_free(mm, mm->pgd);
 552}
 553#else
 554static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 555{
 556        down_write(&oldmm->mmap_sem);
 557        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 558        up_write(&oldmm->mmap_sem);
 559        return 0;
 560}
 561#define mm_alloc_pgd(mm)        (0)
 562#define mm_free_pgd(mm)
 563#endif /* CONFIG_MMU */
 564
 565static void check_mm(struct mm_struct *mm)
 566{
 567        int i;
 568
 569        for (i = 0; i < NR_MM_COUNTERS; i++) {
 570                long x = atomic_long_read(&mm->rss_stat.count[i]);
 571
 572                if (unlikely(x))
 573                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 574                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 575        }
 576
 577        if (mm_pgtables_bytes(mm))
 578                pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 579                                mm_pgtables_bytes(mm));
 580
 581#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 582        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 583#endif
 584}
 585
 586#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 587#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 588
 589/*
 590 * Called when the last reference to the mm
 591 * is dropped: either by a lazy thread or by
 592 * mmput. Free the page directory and the mm.
 593 */
 594void __mmdrop(struct mm_struct *mm)
 595{
 596        BUG_ON(mm == &init_mm);
 597        WARN_ON_ONCE(mm == current->mm);
 598        WARN_ON_ONCE(mm == current->active_mm);
 599        mm_free_pgd(mm);
 600        destroy_context(mm);
 601        hmm_mm_destroy(mm);
 602        mmu_notifier_mm_destroy(mm);
 603        check_mm(mm);
 604        put_user_ns(mm->user_ns);
 605        free_mm(mm);
 606}
 607EXPORT_SYMBOL_GPL(__mmdrop);
 608
 609static void mmdrop_async_fn(struct work_struct *work)
 610{
 611        struct mm_struct *mm;
 612
 613        mm = container_of(work, struct mm_struct, async_put_work);
 614        __mmdrop(mm);
 615}
 616
 617static void mmdrop_async(struct mm_struct *mm)
 618{
 619        if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 620                INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 621                schedule_work(&mm->async_put_work);
 622        }
 623}
 624
 625static inline void free_signal_struct(struct signal_struct *sig)
 626{
 627        taskstats_tgid_free(sig);
 628        sched_autogroup_exit(sig);
 629        /*
 630         * __mmdrop is not safe to call from softirq context on x86 due to
 631         * pgd_dtor so postpone it to the async context
 632         */
 633        if (sig->oom_mm)
 634                mmdrop_async(sig->oom_mm);
 635        kmem_cache_free(signal_cachep, sig);
 636}
 637
 638static inline void put_signal_struct(struct signal_struct *sig)
 639{
 640        if (atomic_dec_and_test(&sig->sigcnt))
 641                free_signal_struct(sig);
 642}
 643
 644void __put_task_struct(struct task_struct *tsk)
 645{
 646        WARN_ON(!tsk->exit_state);
 647        WARN_ON(atomic_read(&tsk->usage));
 648        WARN_ON(tsk == current);
 649
 650        cgroup_free(tsk);
 651        task_numa_free(tsk);
 652        security_task_free(tsk);
 653        exit_creds(tsk);
 654        delayacct_tsk_free(tsk);
 655        put_signal_struct(tsk->signal);
 656
 657        if (!profile_handoff_task(tsk))
 658                free_task(tsk);
 659}
 660EXPORT_SYMBOL_GPL(__put_task_struct);
 661
 662void __init __weak arch_task_cache_init(void) { }
 663
 664/*
 665 * set_max_threads
 666 */
 667static void set_max_threads(unsigned int max_threads_suggested)
 668{
 669        u64 threads;
 670
 671        /*
 672         * The number of threads shall be limited such that the thread
 673         * structures may only consume a small part of the available memory.
 674         */
 675        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 676                threads = MAX_THREADS;
 677        else
 678                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 679                                    (u64) THREAD_SIZE * 8UL);
 680
 681        if (threads > max_threads_suggested)
 682                threads = max_threads_suggested;
 683
 684        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 685}
 686
 687#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 688/* Initialized by the architecture: */
 689int arch_task_struct_size __read_mostly;
 690#endif
 691
 692static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 693{
 694        /* Fetch thread_struct whitelist for the architecture. */
 695        arch_thread_struct_whitelist(offset, size);
 696
 697        /*
 698         * Handle zero-sized whitelist or empty thread_struct, otherwise
 699         * adjust offset to position of thread_struct in task_struct.
 700         */
 701        if (unlikely(*size == 0))
 702                *offset = 0;
 703        else
 704                *offset += offsetof(struct task_struct, thread);
 705}
 706
 707void __init fork_init(void)
 708{
 709        int i;
 710#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 711#ifndef ARCH_MIN_TASKALIGN
 712#define ARCH_MIN_TASKALIGN      0
 713#endif
 714        int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 715        unsigned long useroffset, usersize;
 716
 717        /* create a slab on which task_structs can be allocated */
 718        task_struct_whitelist(&useroffset, &usersize);
 719        task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 720                        arch_task_struct_size, align,
 721                        SLAB_PANIC|SLAB_ACCOUNT,
 722                        useroffset, usersize, NULL);
 723#endif
 724
 725        /* do the arch specific task caches init */
 726        arch_task_cache_init();
 727
 728        set_max_threads(MAX_THREADS);
 729
 730        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 731        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 732        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 733                init_task.signal->rlim[RLIMIT_NPROC];
 734
 735        for (i = 0; i < UCOUNT_COUNTS; i++) {
 736                init_user_ns.ucount_max[i] = max_threads/2;
 737        }
 738
 739#ifdef CONFIG_VMAP_STACK
 740        cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 741                          NULL, free_vm_stack_cache);
 742#endif
 743
 744        lockdep_init_task(&init_task);
 745}
 746
 747int __weak arch_dup_task_struct(struct task_struct *dst,
 748                                               struct task_struct *src)
 749{
 750        *dst = *src;
 751        return 0;
 752}
 753
 754void set_task_stack_end_magic(struct task_struct *tsk)
 755{
 756        unsigned long *stackend;
 757
 758        stackend = end_of_stack(tsk);
 759        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 760}
 761
 762static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 763{
 764        struct task_struct *tsk;
 765        unsigned long *stack;
 766        struct vm_struct *stack_vm_area;
 767        int err;
 768
 769        if (node == NUMA_NO_NODE)
 770                node = tsk_fork_get_node(orig);
 771        tsk = alloc_task_struct_node(node);
 772        if (!tsk)
 773                return NULL;
 774
 775        stack = alloc_thread_stack_node(tsk, node);
 776        if (!stack)
 777                goto free_tsk;
 778
 779        stack_vm_area = task_stack_vm_area(tsk);
 780
 781        err = arch_dup_task_struct(tsk, orig);
 782
 783        /*
 784         * arch_dup_task_struct() clobbers the stack-related fields.  Make
 785         * sure they're properly initialized before using any stack-related
 786         * functions again.
 787         */
 788        tsk->stack = stack;
 789#ifdef CONFIG_VMAP_STACK
 790        tsk->stack_vm_area = stack_vm_area;
 791#endif
 792#ifdef CONFIG_THREAD_INFO_IN_TASK
 793        atomic_set(&tsk->stack_refcount, 1);
 794#endif
 795
 796        if (err)
 797                goto free_stack;
 798
 799#ifdef CONFIG_SECCOMP
 800        /*
 801         * We must handle setting up seccomp filters once we're under
 802         * the sighand lock in case orig has changed between now and
 803         * then. Until then, filter must be NULL to avoid messing up
 804         * the usage counts on the error path calling free_task.
 805         */
 806        tsk->seccomp.filter = NULL;
 807#endif
 808
 809        setup_thread_stack(tsk, orig);
 810        clear_user_return_notifier(tsk);
 811        clear_tsk_need_resched(tsk);
 812        set_task_stack_end_magic(tsk);
 813
 814#ifdef CONFIG_CC_STACKPROTECTOR
 815        tsk->stack_canary = get_random_canary();
 816#endif
 817
 818        /*
 819         * One for us, one for whoever does the "release_task()" (usually
 820         * parent)
 821         */
 822        atomic_set(&tsk->usage, 2);
 823#ifdef CONFIG_BLK_DEV_IO_TRACE
 824        tsk->btrace_seq = 0;
 825#endif
 826        tsk->splice_pipe = NULL;
 827        tsk->task_frag.page = NULL;
 828        tsk->wake_q.next = NULL;
 829
 830        account_kernel_stack(tsk, 1);
 831
 832        kcov_task_init(tsk);
 833
 834#ifdef CONFIG_FAULT_INJECTION
 835        tsk->fail_nth = 0;
 836#endif
 837
 838        return tsk;
 839
 840free_stack:
 841        free_thread_stack(tsk);
 842free_tsk:
 843        free_task_struct(tsk);
 844        return NULL;
 845}
 846
 847__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 848
 849static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 850
 851static int __init coredump_filter_setup(char *s)
 852{
 853        default_dump_filter =
 854                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 855                MMF_DUMP_FILTER_MASK;
 856        return 1;
 857}
 858
 859__setup("coredump_filter=", coredump_filter_setup);
 860
 861#include <linux/init_task.h>
 862
 863static void mm_init_aio(struct mm_struct *mm)
 864{
 865#ifdef CONFIG_AIO
 866        spin_lock_init(&mm->ioctx_lock);
 867        mm->ioctx_table = NULL;
 868#endif
 869}
 870
 871static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 872{
 873#ifdef CONFIG_MEMCG
 874        mm->owner = p;
 875#endif
 876}
 877
 878static void mm_init_uprobes_state(struct mm_struct *mm)
 879{
 880#ifdef CONFIG_UPROBES
 881        mm->uprobes_state.xol_area = NULL;
 882#endif
 883}
 884
 885static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 886        struct user_namespace *user_ns)
 887{
 888        mm->mmap = NULL;
 889        mm->mm_rb = RB_ROOT;
 890        mm->vmacache_seqnum = 0;
 891        atomic_set(&mm->mm_users, 1);
 892        atomic_set(&mm->mm_count, 1);
 893        init_rwsem(&mm->mmap_sem);
 894        INIT_LIST_HEAD(&mm->mmlist);
 895        mm->core_state = NULL;
 896        mm_pgtables_bytes_init(mm);
 897        mm->map_count = 0;
 898        mm->locked_vm = 0;
 899        mm->pinned_vm = 0;
 900        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 901        spin_lock_init(&mm->page_table_lock);
 902        mm_init_cpumask(mm);
 903        mm_init_aio(mm);
 904        mm_init_owner(mm, p);
 905        RCU_INIT_POINTER(mm->exe_file, NULL);
 906        mmu_notifier_mm_init(mm);
 907        hmm_mm_init(mm);
 908        init_tlb_flush_pending(mm);
 909#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 910        mm->pmd_huge_pte = NULL;
 911#endif
 912        mm_init_uprobes_state(mm);
 913
 914        if (current->mm) {
 915                mm->flags = current->mm->flags & MMF_INIT_MASK;
 916                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 917        } else {
 918                mm->flags = default_dump_filter;
 919                mm->def_flags = 0;
 920        }
 921
 922        if (mm_alloc_pgd(mm))
 923                goto fail_nopgd;
 924
 925        if (init_new_context(p, mm))
 926                goto fail_nocontext;
 927
 928        mm->user_ns = get_user_ns(user_ns);
 929        return mm;
 930
 931fail_nocontext:
 932        mm_free_pgd(mm);
 933fail_nopgd:
 934        free_mm(mm);
 935        return NULL;
 936}
 937
 938/*
 939 * Allocate and initialize an mm_struct.
 940 */
 941struct mm_struct *mm_alloc(void)
 942{
 943        struct mm_struct *mm;
 944
 945        mm = allocate_mm();
 946        if (!mm)
 947                return NULL;
 948
 949        memset(mm, 0, sizeof(*mm));
 950        return mm_init(mm, current, current_user_ns());
 951}
 952
 953static inline void __mmput(struct mm_struct *mm)
 954{
 955        VM_BUG_ON(atomic_read(&mm->mm_users));
 956
 957        uprobe_clear_state(mm);
 958        exit_aio(mm);
 959        ksm_exit(mm);
 960        khugepaged_exit(mm); /* must run before exit_mmap */
 961        exit_mmap(mm);
 962        mm_put_huge_zero_page(mm);
 963        set_mm_exe_file(mm, NULL);
 964        if (!list_empty(&mm->mmlist)) {
 965                spin_lock(&mmlist_lock);
 966                list_del(&mm->mmlist);
 967                spin_unlock(&mmlist_lock);
 968        }
 969        if (mm->binfmt)
 970                module_put(mm->binfmt->module);
 971        mmdrop(mm);
 972}
 973
 974/*
 975 * Decrement the use count and release all resources for an mm.
 976 */
 977void mmput(struct mm_struct *mm)
 978{
 979        might_sleep();
 980
 981        if (atomic_dec_and_test(&mm->mm_users))
 982                __mmput(mm);
 983}
 984EXPORT_SYMBOL_GPL(mmput);
 985
 986#ifdef CONFIG_MMU
 987static void mmput_async_fn(struct work_struct *work)
 988{
 989        struct mm_struct *mm = container_of(work, struct mm_struct,
 990                                            async_put_work);
 991
 992        __mmput(mm);
 993}
 994
 995void mmput_async(struct mm_struct *mm)
 996{
 997        if (atomic_dec_and_test(&mm->mm_users)) {
 998                INIT_WORK(&mm->async_put_work, mmput_async_fn);
 999                schedule_work(&mm->async_put_work);
1000        }
1001}
1002#endif
1003
1004/**
1005 * set_mm_exe_file - change a reference to the mm's executable file
1006 *
1007 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1008 *
1009 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1010 * invocations: in mmput() nobody alive left, in execve task is single
1011 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1012 * mm->exe_file, but does so without using set_mm_exe_file() in order
1013 * to do avoid the need for any locks.
1014 */
1015void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1016{
1017        struct file *old_exe_file;
1018
1019        /*
1020         * It is safe to dereference the exe_file without RCU as
1021         * this function is only called if nobody else can access
1022         * this mm -- see comment above for justification.
1023         */
1024        old_exe_file = rcu_dereference_raw(mm->exe_file);
1025
1026        if (new_exe_file)
1027                get_file(new_exe_file);
1028        rcu_assign_pointer(mm->exe_file, new_exe_file);
1029        if (old_exe_file)
1030                fput(old_exe_file);
1031}
1032
1033/**
1034 * get_mm_exe_file - acquire a reference to the mm's executable file
1035 *
1036 * Returns %NULL if mm has no associated executable file.
1037 * User must release file via fput().
1038 */
1039struct file *get_mm_exe_file(struct mm_struct *mm)
1040{
1041        struct file *exe_file;
1042
1043        rcu_read_lock();
1044        exe_file = rcu_dereference(mm->exe_file);
1045        if (exe_file && !get_file_rcu(exe_file))
1046                exe_file = NULL;
1047        rcu_read_unlock();
1048        return exe_file;
1049}
1050EXPORT_SYMBOL(get_mm_exe_file);
1051
1052/**
1053 * get_task_exe_file - acquire a reference to the task's executable file
1054 *
1055 * Returns %NULL if task's mm (if any) has no associated executable file or
1056 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1057 * User must release file via fput().
1058 */
1059struct file *get_task_exe_file(struct task_struct *task)
1060{
1061        struct file *exe_file = NULL;
1062        struct mm_struct *mm;
1063
1064        task_lock(task);
1065        mm = task->mm;
1066        if (mm) {
1067                if (!(task->flags & PF_KTHREAD))
1068                        exe_file = get_mm_exe_file(mm);
1069        }
1070        task_unlock(task);
1071        return exe_file;
1072}
1073EXPORT_SYMBOL(get_task_exe_file);
1074
1075/**
1076 * get_task_mm - acquire a reference to the task's mm
1077 *
1078 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1079 * this kernel workthread has transiently adopted a user mm with use_mm,
1080 * to do its AIO) is not set and if so returns a reference to it, after
1081 * bumping up the use count.  User must release the mm via mmput()
1082 * after use.  Typically used by /proc and ptrace.
1083 */
1084struct mm_struct *get_task_mm(struct task_struct *task)
1085{
1086        struct mm_struct *mm;
1087
1088        task_lock(task);
1089        mm = task->mm;
1090        if (mm) {
1091                if (task->flags & PF_KTHREAD)
1092                        mm = NULL;
1093                else
1094                        mmget(mm);
1095        }
1096        task_unlock(task);
1097        return mm;
1098}
1099EXPORT_SYMBOL_GPL(get_task_mm);
1100
1101struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1102{
1103        struct mm_struct *mm;
1104        int err;
1105
1106        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1107        if (err)
1108                return ERR_PTR(err);
1109
1110        mm = get_task_mm(task);
1111        if (mm && mm != current->mm &&
1112                        !ptrace_may_access(task, mode)) {
1113                mmput(mm);
1114                mm = ERR_PTR(-EACCES);
1115        }
1116        mutex_unlock(&task->signal->cred_guard_mutex);
1117
1118        return mm;
1119}
1120
1121static void complete_vfork_done(struct task_struct *tsk)
1122{
1123        struct completion *vfork;
1124
1125        task_lock(tsk);
1126        vfork = tsk->vfork_done;
1127        if (likely(vfork)) {
1128                tsk->vfork_done = NULL;
1129                complete(vfork);
1130        }
1131        task_unlock(tsk);
1132}
1133
1134static int wait_for_vfork_done(struct task_struct *child,
1135                                struct completion *vfork)
1136{
1137        int killed;
1138
1139        freezer_do_not_count();
1140        killed = wait_for_completion_killable(vfork);
1141        freezer_count();
1142
1143        if (killed) {
1144                task_lock(child);
1145                child->vfork_done = NULL;
1146                task_unlock(child);
1147        }
1148
1149        put_task_struct(child);
1150        return killed;
1151}
1152
1153/* Please note the differences between mmput and mm_release.
1154 * mmput is called whenever we stop holding onto a mm_struct,
1155 * error success whatever.
1156 *
1157 * mm_release is called after a mm_struct has been removed
1158 * from the current process.
1159 *
1160 * This difference is important for error handling, when we
1161 * only half set up a mm_struct for a new process and need to restore
1162 * the old one.  Because we mmput the new mm_struct before
1163 * restoring the old one. . .
1164 * Eric Biederman 10 January 1998
1165 */
1166void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1167{
1168        /* Get rid of any futexes when releasing the mm */
1169#ifdef CONFIG_FUTEX
1170        if (unlikely(tsk->robust_list)) {
1171                exit_robust_list(tsk);
1172                tsk->robust_list = NULL;
1173        }
1174#ifdef CONFIG_COMPAT
1175        if (unlikely(tsk->compat_robust_list)) {
1176                compat_exit_robust_list(tsk);
1177                tsk->compat_robust_list = NULL;
1178        }
1179#endif
1180        if (unlikely(!list_empty(&tsk->pi_state_list)))
1181                exit_pi_state_list(tsk);
1182#endif
1183
1184        uprobe_free_utask(tsk);
1185
1186        /* Get rid of any cached register state */
1187        deactivate_mm(tsk, mm);
1188
1189        /*
1190         * Signal userspace if we're not exiting with a core dump
1191         * because we want to leave the value intact for debugging
1192         * purposes.
1193         */
1194        if (tsk->clear_child_tid) {
1195                if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1196                    atomic_read(&mm->mm_users) > 1) {
1197                        /*
1198                         * We don't check the error code - if userspace has
1199                         * not set up a proper pointer then tough luck.
1200                         */
1201                        put_user(0, tsk->clear_child_tid);
1202                        do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1203                                        1, NULL, NULL, 0, 0);
1204                }
1205                tsk->clear_child_tid = NULL;
1206        }
1207
1208        /*
1209         * All done, finally we can wake up parent and return this mm to him.
1210         * Also kthread_stop() uses this completion for synchronization.
1211         */
1212        if (tsk->vfork_done)
1213                complete_vfork_done(tsk);
1214}
1215
1216/*
1217 * Allocate a new mm structure and copy contents from the
1218 * mm structure of the passed in task structure.
1219 */
1220static struct mm_struct *dup_mm(struct task_struct *tsk)
1221{
1222        struct mm_struct *mm, *oldmm = current->mm;
1223        int err;
1224
1225        mm = allocate_mm();
1226        if (!mm)
1227                goto fail_nomem;
1228
1229        memcpy(mm, oldmm, sizeof(*mm));
1230
1231        if (!mm_init(mm, tsk, mm->user_ns))
1232                goto fail_nomem;
1233
1234        err = dup_mmap(mm, oldmm);
1235        if (err)
1236                goto free_pt;
1237
1238        mm->hiwater_rss = get_mm_rss(mm);
1239        mm->hiwater_vm = mm->total_vm;
1240
1241        if (mm->binfmt && !try_module_get(mm->binfmt->module))
1242                goto free_pt;
1243
1244        return mm;
1245
1246free_pt:
1247        /* don't put binfmt in mmput, we haven't got module yet */
1248        mm->binfmt = NULL;
1249        mmput(mm);
1250
1251fail_nomem:
1252        return NULL;
1253}
1254
1255static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1256{
1257        struct mm_struct *mm, *oldmm;
1258        int retval;
1259
1260        tsk->min_flt = tsk->maj_flt = 0;
1261        tsk->nvcsw = tsk->nivcsw = 0;
1262#ifdef CONFIG_DETECT_HUNG_TASK
1263        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1264#endif
1265
1266        tsk->mm = NULL;
1267        tsk->active_mm = NULL;
1268
1269        /*
1270         * Are we cloning a kernel thread?
1271         *
1272         * We need to steal a active VM for that..
1273         */
1274        oldmm = current->mm;
1275        if (!oldmm)
1276                return 0;
1277
1278        /* initialize the new vmacache entries */
1279        vmacache_flush(tsk);
1280
1281        if (clone_flags & CLONE_VM) {
1282                mmget(oldmm);
1283                mm = oldmm;
1284                goto good_mm;
1285        }
1286
1287        retval = -ENOMEM;
1288        mm = dup_mm(tsk);
1289        if (!mm)
1290                goto fail_nomem;
1291
1292good_mm:
1293        tsk->mm = mm;
1294        tsk->active_mm = mm;
1295        return 0;
1296
1297fail_nomem:
1298        return retval;
1299}
1300
1301static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1302{
1303        struct fs_struct *fs = current->fs;
1304        if (clone_flags & CLONE_FS) {
1305                /* tsk->fs is already what we want */
1306                spin_lock(&fs->lock);
1307                if (fs->in_exec) {
1308                        spin_unlock(&fs->lock);
1309                        return -EAGAIN;
1310                }
1311                fs->users++;
1312                spin_unlock(&fs->lock);
1313                return 0;
1314        }
1315        tsk->fs = copy_fs_struct(fs);
1316        if (!tsk->fs)
1317                return -ENOMEM;
1318        return 0;
1319}
1320
1321static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1322{
1323        struct files_struct *oldf, *newf;
1324        int error = 0;
1325
1326        /*
1327         * A background process may not have any files ...
1328         */
1329        oldf = current->files;
1330        if (!oldf)
1331                goto out;
1332
1333        if (clone_flags & CLONE_FILES) {
1334                atomic_inc(&oldf->count);
1335                goto out;
1336        }
1337
1338        newf = dup_fd(oldf, &error);
1339        if (!newf)
1340                goto out;
1341
1342        tsk->files = newf;
1343        error = 0;
1344out:
1345        return error;
1346}
1347
1348static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1349{
1350#ifdef CONFIG_BLOCK
1351        struct io_context *ioc = current->io_context;
1352        struct io_context *new_ioc;
1353
1354        if (!ioc)
1355                return 0;
1356        /*
1357         * Share io context with parent, if CLONE_IO is set
1358         */
1359        if (clone_flags & CLONE_IO) {
1360                ioc_task_link(ioc);
1361                tsk->io_context = ioc;
1362        } else if (ioprio_valid(ioc->ioprio)) {
1363                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1364                if (unlikely(!new_ioc))
1365                        return -ENOMEM;
1366
1367                new_ioc->ioprio = ioc->ioprio;
1368                put_io_context(new_ioc);
1369        }
1370#endif
1371        return 0;
1372}
1373
1374static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1375{
1376        struct sighand_struct *sig;
1377
1378        if (clone_flags & CLONE_SIGHAND) {
1379                atomic_inc(&current->sighand->count);
1380                return 0;
1381        }
1382        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1383        rcu_assign_pointer(tsk->sighand, sig);
1384        if (!sig)
1385                return -ENOMEM;
1386
1387        atomic_set(&sig->count, 1);
1388        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1389        return 0;
1390}
1391
1392void __cleanup_sighand(struct sighand_struct *sighand)
1393{
1394        if (atomic_dec_and_test(&sighand->count)) {
1395                signalfd_cleanup(sighand);
1396                /*
1397                 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1398                 * without an RCU grace period, see __lock_task_sighand().
1399                 */
1400                kmem_cache_free(sighand_cachep, sighand);
1401        }
1402}
1403
1404#ifdef CONFIG_POSIX_TIMERS
1405/*
1406 * Initialize POSIX timer handling for a thread group.
1407 */
1408static void posix_cpu_timers_init_group(struct signal_struct *sig)
1409{
1410        unsigned long cpu_limit;
1411
1412        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1413        if (cpu_limit != RLIM_INFINITY) {
1414                sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1415                sig->cputimer.running = true;
1416        }
1417
1418        /* The timer lists. */
1419        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1420        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1421        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1422}
1423#else
1424static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1425#endif
1426
1427static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1428{
1429        struct signal_struct *sig;
1430
1431        if (clone_flags & CLONE_THREAD)
1432                return 0;
1433
1434        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1435        tsk->signal = sig;
1436        if (!sig)
1437                return -ENOMEM;
1438
1439        sig->nr_threads = 1;
1440        atomic_set(&sig->live, 1);
1441        atomic_set(&sig->sigcnt, 1);
1442
1443        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1444        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1445        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1446
1447        init_waitqueue_head(&sig->wait_chldexit);
1448        sig->curr_target = tsk;
1449        init_sigpending(&sig->shared_pending);
1450        seqlock_init(&sig->stats_lock);
1451        prev_cputime_init(&sig->prev_cputime);
1452
1453#ifdef CONFIG_POSIX_TIMERS
1454        INIT_LIST_HEAD(&sig->posix_timers);
1455        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1456        sig->real_timer.function = it_real_fn;
1457#endif
1458
1459        task_lock(current->group_leader);
1460        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1461        task_unlock(current->group_leader);
1462
1463        posix_cpu_timers_init_group(sig);
1464
1465        tty_audit_fork(sig);
1466        sched_autogroup_fork(sig);
1467
1468        sig->oom_score_adj = current->signal->oom_score_adj;
1469        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1470
1471        mutex_init(&sig->cred_guard_mutex);
1472
1473        return 0;
1474}
1475
1476static void copy_seccomp(struct task_struct *p)
1477{
1478#ifdef CONFIG_SECCOMP
1479        /*
1480         * Must be called with sighand->lock held, which is common to
1481         * all threads in the group. Holding cred_guard_mutex is not
1482         * needed because this new task is not yet running and cannot
1483         * be racing exec.
1484         */
1485        assert_spin_locked(&current->sighand->siglock);
1486
1487        /* Ref-count the new filter user, and assign it. */
1488        get_seccomp_filter(current);
1489        p->seccomp = current->seccomp;
1490
1491        /*
1492         * Explicitly enable no_new_privs here in case it got set
1493         * between the task_struct being duplicated and holding the
1494         * sighand lock. The seccomp state and nnp must be in sync.
1495         */
1496        if (task_no_new_privs(current))
1497                task_set_no_new_privs(p);
1498
1499        /*
1500         * If the parent gained a seccomp mode after copying thread
1501         * flags and between before we held the sighand lock, we have
1502         * to manually enable the seccomp thread flag here.
1503         */
1504        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1505                set_tsk_thread_flag(p, TIF_SECCOMP);
1506#endif
1507}
1508
1509SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1510{
1511        current->clear_child_tid = tidptr;
1512
1513        return task_pid_vnr(current);
1514}
1515
1516static void rt_mutex_init_task(struct task_struct *p)
1517{
1518        raw_spin_lock_init(&p->pi_lock);
1519#ifdef CONFIG_RT_MUTEXES
1520        p->pi_waiters = RB_ROOT_CACHED;
1521        p->pi_top_task = NULL;
1522        p->pi_blocked_on = NULL;
1523#endif
1524}
1525
1526#ifdef CONFIG_POSIX_TIMERS
1527/*
1528 * Initialize POSIX timer handling for a single task.
1529 */
1530static void posix_cpu_timers_init(struct task_struct *tsk)
1531{
1532        tsk->cputime_expires.prof_exp = 0;
1533        tsk->cputime_expires.virt_exp = 0;
1534        tsk->cputime_expires.sched_exp = 0;
1535        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1536        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1537        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1538}
1539#else
1540static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1541#endif
1542
1543static inline void
1544init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1545{
1546         task->pids[type].pid = pid;
1547}
1548
1549static inline void rcu_copy_process(struct task_struct *p)
1550{
1551#ifdef CONFIG_PREEMPT_RCU
1552        p->rcu_read_lock_nesting = 0;
1553        p->rcu_read_unlock_special.s = 0;
1554        p->rcu_blocked_node = NULL;
1555        INIT_LIST_HEAD(&p->rcu_node_entry);
1556#endif /* #ifdef CONFIG_PREEMPT_RCU */
1557#ifdef CONFIG_TASKS_RCU
1558        p->rcu_tasks_holdout = false;
1559        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1560        p->rcu_tasks_idle_cpu = -1;
1561#endif /* #ifdef CONFIG_TASKS_RCU */
1562}
1563
1564/*
1565 * This creates a new process as a copy of the old one,
1566 * but does not actually start it yet.
1567 *
1568 * It copies the registers, and all the appropriate
1569 * parts of the process environment (as per the clone
1570 * flags). The actual kick-off is left to the caller.
1571 */
1572static __latent_entropy struct task_struct *copy_process(
1573                                        unsigned long clone_flags,
1574                                        unsigned long stack_start,
1575                                        unsigned long stack_size,
1576                                        int __user *child_tidptr,
1577                                        struct pid *pid,
1578                                        int trace,
1579                                        unsigned long tls,
1580                                        int node)
1581{
1582        int retval;
1583        struct task_struct *p;
1584
1585        /*
1586         * Don't allow sharing the root directory with processes in a different
1587         * namespace
1588         */
1589        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1590                return ERR_PTR(-EINVAL);
1591
1592        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1593                return ERR_PTR(-EINVAL);
1594
1595        /*
1596         * Thread groups must share signals as well, and detached threads
1597         * can only be started up within the thread group.
1598         */
1599        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1600                return ERR_PTR(-EINVAL);
1601
1602        /*
1603         * Shared signal handlers imply shared VM. By way of the above,
1604         * thread groups also imply shared VM. Blocking this case allows
1605         * for various simplifications in other code.
1606         */
1607        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1608                return ERR_PTR(-EINVAL);
1609
1610        /*
1611         * Siblings of global init remain as zombies on exit since they are
1612         * not reaped by their parent (swapper). To solve this and to avoid
1613         * multi-rooted process trees, prevent global and container-inits
1614         * from creating siblings.
1615         */
1616        if ((clone_flags & CLONE_PARENT) &&
1617                                current->signal->flags & SIGNAL_UNKILLABLE)
1618                return ERR_PTR(-EINVAL);
1619
1620        /*
1621         * If the new process will be in a different pid or user namespace
1622         * do not allow it to share a thread group with the forking task.
1623         */
1624        if (clone_flags & CLONE_THREAD) {
1625                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1626                    (task_active_pid_ns(current) !=
1627                                current->nsproxy->pid_ns_for_children))
1628                        return ERR_PTR(-EINVAL);
1629        }
1630
1631        retval = -ENOMEM;
1632        p = dup_task_struct(current, node);
1633        if (!p)
1634                goto fork_out;
1635
1636        /*
1637         * This _must_ happen before we call free_task(), i.e. before we jump
1638         * to any of the bad_fork_* labels. This is to avoid freeing
1639         * p->set_child_tid which is (ab)used as a kthread's data pointer for
1640         * kernel threads (PF_KTHREAD).
1641         */
1642        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1643        /*
1644         * Clear TID on mm_release()?
1645         */
1646        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1647
1648        ftrace_graph_init_task(p);
1649
1650        rt_mutex_init_task(p);
1651
1652#ifdef CONFIG_PROVE_LOCKING
1653        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1654        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1655#endif
1656        retval = -EAGAIN;
1657        if (atomic_read(&p->real_cred->user->processes) >=
1658                        task_rlimit(p, RLIMIT_NPROC)) {
1659                if (p->real_cred->user != INIT_USER &&
1660                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1661                        goto bad_fork_free;
1662        }
1663        current->flags &= ~PF_NPROC_EXCEEDED;
1664
1665        retval = copy_creds(p, clone_flags);
1666        if (retval < 0)
1667                goto bad_fork_free;
1668
1669        /*
1670         * If multiple threads are within copy_process(), then this check
1671         * triggers too late. This doesn't hurt, the check is only there
1672         * to stop root fork bombs.
1673         */
1674        retval = -EAGAIN;
1675        if (nr_threads >= max_threads)
1676                goto bad_fork_cleanup_count;
1677
1678        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1679        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1680        p->flags |= PF_FORKNOEXEC;
1681        INIT_LIST_HEAD(&p->children);
1682        INIT_LIST_HEAD(&p->sibling);
1683        rcu_copy_process(p);
1684        p->vfork_done = NULL;
1685        spin_lock_init(&p->alloc_lock);
1686
1687        init_sigpending(&p->pending);
1688
1689        p->utime = p->stime = p->gtime = 0;
1690#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1691        p->utimescaled = p->stimescaled = 0;
1692#endif
1693        prev_cputime_init(&p->prev_cputime);
1694
1695#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1696        seqcount_init(&p->vtime.seqcount);
1697        p->vtime.starttime = 0;
1698        p->vtime.state = VTIME_INACTIVE;
1699#endif
1700
1701#if defined(SPLIT_RSS_COUNTING)
1702        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1703#endif
1704
1705        p->default_timer_slack_ns = current->timer_slack_ns;
1706
1707        task_io_accounting_init(&p->ioac);
1708        acct_clear_integrals(p);
1709
1710        posix_cpu_timers_init(p);
1711
1712        p->start_time = ktime_get_ns();
1713        p->real_start_time = ktime_get_boot_ns();
1714        p->io_context = NULL;
1715        p->audit_context = NULL;
1716        cgroup_fork(p);
1717#ifdef CONFIG_NUMA
1718        p->mempolicy = mpol_dup(p->mempolicy);
1719        if (IS_ERR(p->mempolicy)) {
1720                retval = PTR_ERR(p->mempolicy);
1721                p->mempolicy = NULL;
1722                goto bad_fork_cleanup_threadgroup_lock;
1723        }
1724#endif
1725#ifdef CONFIG_CPUSETS
1726        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1727        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1728        seqcount_init(&p->mems_allowed_seq);
1729#endif
1730#ifdef CONFIG_TRACE_IRQFLAGS
1731        p->irq_events = 0;
1732        p->hardirqs_enabled = 0;
1733        p->hardirq_enable_ip = 0;
1734        p->hardirq_enable_event = 0;
1735        p->hardirq_disable_ip = _THIS_IP_;
1736        p->hardirq_disable_event = 0;
1737        p->softirqs_enabled = 1;
1738        p->softirq_enable_ip = _THIS_IP_;
1739        p->softirq_enable_event = 0;
1740        p->softirq_disable_ip = 0;
1741        p->softirq_disable_event = 0;
1742        p->hardirq_context = 0;
1743        p->softirq_context = 0;
1744#endif
1745
1746        p->pagefault_disabled = 0;
1747
1748#ifdef CONFIG_LOCKDEP
1749        p->lockdep_depth = 0; /* no locks held yet */
1750        p->curr_chain_key = 0;
1751        p->lockdep_recursion = 0;
1752        lockdep_init_task(p);
1753#endif
1754
1755#ifdef CONFIG_DEBUG_MUTEXES
1756        p->blocked_on = NULL; /* not blocked yet */
1757#endif
1758#ifdef CONFIG_BCACHE
1759        p->sequential_io        = 0;
1760        p->sequential_io_avg    = 0;
1761#endif
1762
1763        /* Perform scheduler related setup. Assign this task to a CPU. */
1764        retval = sched_fork(clone_flags, p);
1765        if (retval)
1766                goto bad_fork_cleanup_policy;
1767
1768        retval = perf_event_init_task(p);
1769        if (retval)
1770                goto bad_fork_cleanup_policy;
1771        retval = audit_alloc(p);
1772        if (retval)
1773                goto bad_fork_cleanup_perf;
1774        /* copy all the process information */
1775        shm_init_task(p);
1776        retval = security_task_alloc(p, clone_flags);
1777        if (retval)
1778                goto bad_fork_cleanup_audit;
1779        retval = copy_semundo(clone_flags, p);
1780        if (retval)
1781                goto bad_fork_cleanup_security;
1782        retval = copy_files(clone_flags, p);
1783        if (retval)
1784                goto bad_fork_cleanup_semundo;
1785        retval = copy_fs(clone_flags, p);
1786        if (retval)
1787                goto bad_fork_cleanup_files;
1788        retval = copy_sighand(clone_flags, p);
1789        if (retval)
1790                goto bad_fork_cleanup_fs;
1791        retval = copy_signal(clone_flags, p);
1792        if (retval)
1793                goto bad_fork_cleanup_sighand;
1794        retval = copy_mm(clone_flags, p);
1795        if (retval)
1796                goto bad_fork_cleanup_signal;
1797        retval = copy_namespaces(clone_flags, p);
1798        if (retval)
1799                goto bad_fork_cleanup_mm;
1800        retval = copy_io(clone_flags, p);
1801        if (retval)
1802                goto bad_fork_cleanup_namespaces;
1803        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1804        if (retval)
1805                goto bad_fork_cleanup_io;
1806
1807        if (pid != &init_struct_pid) {
1808                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1809                if (IS_ERR(pid)) {
1810                        retval = PTR_ERR(pid);
1811                        goto bad_fork_cleanup_thread;
1812                }
1813        }
1814
1815#ifdef CONFIG_BLOCK
1816        p->plug = NULL;
1817#endif
1818#ifdef CONFIG_FUTEX
1819        p->robust_list = NULL;
1820#ifdef CONFIG_COMPAT
1821        p->compat_robust_list = NULL;
1822#endif
1823        INIT_LIST_HEAD(&p->pi_state_list);
1824        p->pi_state_cache = NULL;
1825#endif
1826        /*
1827         * sigaltstack should be cleared when sharing the same VM
1828         */
1829        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1830                sas_ss_reset(p);
1831
1832        /*
1833         * Syscall tracing and stepping should be turned off in the
1834         * child regardless of CLONE_PTRACE.
1835         */
1836        user_disable_single_step(p);
1837        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1838#ifdef TIF_SYSCALL_EMU
1839        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1840#endif
1841        clear_all_latency_tracing(p);
1842
1843        /* ok, now we should be set up.. */
1844        p->pid = pid_nr(pid);
1845        if (clone_flags & CLONE_THREAD) {
1846                p->exit_signal = -1;
1847                p->group_leader = current->group_leader;
1848                p->tgid = current->tgid;
1849        } else {
1850                if (clone_flags & CLONE_PARENT)
1851                        p->exit_signal = current->group_leader->exit_signal;
1852                else
1853                        p->exit_signal = (clone_flags & CSIGNAL);
1854                p->group_leader = p;
1855                p->tgid = p->pid;
1856        }
1857
1858        p->nr_dirtied = 0;
1859        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1860        p->dirty_paused_when = 0;
1861
1862        p->pdeath_signal = 0;
1863        INIT_LIST_HEAD(&p->thread_group);
1864        p->task_works = NULL;
1865
1866        cgroup_threadgroup_change_begin(current);
1867        /*
1868         * Ensure that the cgroup subsystem policies allow the new process to be
1869         * forked. It should be noted the the new process's css_set can be changed
1870         * between here and cgroup_post_fork() if an organisation operation is in
1871         * progress.
1872         */
1873        retval = cgroup_can_fork(p);
1874        if (retval)
1875                goto bad_fork_free_pid;
1876
1877        /*
1878         * Make it visible to the rest of the system, but dont wake it up yet.
1879         * Need tasklist lock for parent etc handling!
1880         */
1881        write_lock_irq(&tasklist_lock);
1882
1883        /* CLONE_PARENT re-uses the old parent */
1884        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1885                p->real_parent = current->real_parent;
1886                p->parent_exec_id = current->parent_exec_id;
1887        } else {
1888                p->real_parent = current;
1889                p->parent_exec_id = current->self_exec_id;
1890        }
1891
1892        klp_copy_process(p);
1893
1894        spin_lock(&current->sighand->siglock);
1895
1896        /*
1897         * Copy seccomp details explicitly here, in case they were changed
1898         * before holding sighand lock.
1899         */
1900        copy_seccomp(p);
1901
1902        /*
1903         * Process group and session signals need to be delivered to just the
1904         * parent before the fork or both the parent and the child after the
1905         * fork. Restart if a signal comes in before we add the new process to
1906         * it's process group.
1907         * A fatal signal pending means that current will exit, so the new
1908         * thread can't slip out of an OOM kill (or normal SIGKILL).
1909        */
1910        recalc_sigpending();
1911        if (signal_pending(current)) {
1912                retval = -ERESTARTNOINTR;
1913                goto bad_fork_cancel_cgroup;
1914        }
1915        if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1916                retval = -ENOMEM;
1917                goto bad_fork_cancel_cgroup;
1918        }
1919
1920        if (likely(p->pid)) {
1921                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1922
1923                init_task_pid(p, PIDTYPE_PID, pid);
1924                if (thread_group_leader(p)) {
1925                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1926                        init_task_pid(p, PIDTYPE_SID, task_session(current));
1927
1928                        if (is_child_reaper(pid)) {
1929                                ns_of_pid(pid)->child_reaper = p;
1930                                p->signal->flags |= SIGNAL_UNKILLABLE;
1931                        }
1932
1933                        p->signal->leader_pid = pid;
1934                        p->signal->tty = tty_kref_get(current->signal->tty);
1935                        /*
1936                         * Inherit has_child_subreaper flag under the same
1937                         * tasklist_lock with adding child to the process tree
1938                         * for propagate_has_child_subreaper optimization.
1939                         */
1940                        p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1941                                                         p->real_parent->signal->is_child_subreaper;
1942                        list_add_tail(&p->sibling, &p->real_parent->children);
1943                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1944                        attach_pid(p, PIDTYPE_PGID);
1945                        attach_pid(p, PIDTYPE_SID);
1946                        __this_cpu_inc(process_counts);
1947                } else {
1948                        current->signal->nr_threads++;
1949                        atomic_inc(&current->signal->live);
1950                        atomic_inc(&current->signal->sigcnt);
1951                        list_add_tail_rcu(&p->thread_group,
1952                                          &p->group_leader->thread_group);
1953                        list_add_tail_rcu(&p->thread_node,
1954                                          &p->signal->thread_head);
1955                }
1956                attach_pid(p, PIDTYPE_PID);
1957                nr_threads++;
1958        }
1959
1960        total_forks++;
1961        spin_unlock(&current->sighand->siglock);
1962        syscall_tracepoint_update(p);
1963        write_unlock_irq(&tasklist_lock);
1964
1965        proc_fork_connector(p);
1966        cgroup_post_fork(p);
1967        cgroup_threadgroup_change_end(current);
1968        perf_event_fork(p);
1969
1970        trace_task_newtask(p, clone_flags);
1971        uprobe_copy_process(p, clone_flags);
1972
1973        return p;
1974
1975bad_fork_cancel_cgroup:
1976        spin_unlock(&current->sighand->siglock);
1977        write_unlock_irq(&tasklist_lock);
1978        cgroup_cancel_fork(p);
1979bad_fork_free_pid:
1980        cgroup_threadgroup_change_end(current);
1981        if (pid != &init_struct_pid)
1982                free_pid(pid);
1983bad_fork_cleanup_thread:
1984        exit_thread(p);
1985bad_fork_cleanup_io:
1986        if (p->io_context)
1987                exit_io_context(p);
1988bad_fork_cleanup_namespaces:
1989        exit_task_namespaces(p);
1990bad_fork_cleanup_mm:
1991        if (p->mm)
1992                mmput(p->mm);
1993bad_fork_cleanup_signal:
1994        if (!(clone_flags & CLONE_THREAD))
1995                free_signal_struct(p->signal);
1996bad_fork_cleanup_sighand:
1997        __cleanup_sighand(p->sighand);
1998bad_fork_cleanup_fs:
1999        exit_fs(p); /* blocking */
2000bad_fork_cleanup_files:
2001        exit_files(p); /* blocking */
2002bad_fork_cleanup_semundo:
2003        exit_sem(p);
2004bad_fork_cleanup_security:
2005        security_task_free(p);
2006bad_fork_cleanup_audit:
2007        audit_free(p);
2008bad_fork_cleanup_perf:
2009        perf_event_free_task(p);
2010bad_fork_cleanup_policy:
2011        lockdep_free_task(p);
2012#ifdef CONFIG_NUMA
2013        mpol_put(p->mempolicy);
2014bad_fork_cleanup_threadgroup_lock:
2015#endif
2016        delayacct_tsk_free(p);
2017bad_fork_cleanup_count:
2018        atomic_dec(&p->cred->user->processes);
2019        exit_creds(p);
2020bad_fork_free:
2021        p->state = TASK_DEAD;
2022        put_task_stack(p);
2023        free_task(p);
2024fork_out:
2025        return ERR_PTR(retval);
2026}
2027
2028static inline void init_idle_pids(struct pid_link *links)
2029{
2030        enum pid_type type;
2031
2032        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2033                INIT_HLIST_NODE(&links[type].node); /* not really needed */
2034                links[type].pid = &init_struct_pid;
2035        }
2036}
2037
2038struct task_struct *fork_idle(int cpu)
2039{
2040        struct task_struct *task;
2041        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2042                            cpu_to_node(cpu));
2043        if (!IS_ERR(task)) {
2044                init_idle_pids(task->pids);
2045                init_idle(task, cpu);
2046        }
2047
2048        return task;
2049}
2050
2051/*
2052 *  Ok, this is the main fork-routine.
2053 *
2054 * It copies the process, and if successful kick-starts
2055 * it and waits for it to finish using the VM if required.
2056 */
2057long _do_fork(unsigned long clone_flags,
2058              unsigned long stack_start,
2059              unsigned long stack_size,
2060              int __user *parent_tidptr,
2061              int __user *child_tidptr,
2062              unsigned long tls)
2063{
2064        struct completion vfork;
2065        struct pid *pid;
2066        struct task_struct *p;
2067        int trace = 0;
2068        long nr;
2069
2070        /*
2071         * Determine whether and which event to report to ptracer.  When
2072         * called from kernel_thread or CLONE_UNTRACED is explicitly
2073         * requested, no event is reported; otherwise, report if the event
2074         * for the type of forking is enabled.
2075         */
2076        if (!(clone_flags & CLONE_UNTRACED)) {
2077                if (clone_flags & CLONE_VFORK)
2078                        trace = PTRACE_EVENT_VFORK;
2079                else if ((clone_flags & CSIGNAL) != SIGCHLD)
2080                        trace = PTRACE_EVENT_CLONE;
2081                else
2082                        trace = PTRACE_EVENT_FORK;
2083
2084                if (likely(!ptrace_event_enabled(current, trace)))
2085                        trace = 0;
2086        }
2087
2088        p = copy_process(clone_flags, stack_start, stack_size,
2089                         child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2090        add_latent_entropy();
2091
2092        if (IS_ERR(p))
2093                return PTR_ERR(p);
2094
2095        /*
2096         * Do this prior waking up the new thread - the thread pointer
2097         * might get invalid after that point, if the thread exits quickly.
2098         */
2099        trace_sched_process_fork(current, p);
2100
2101        pid = get_task_pid(p, PIDTYPE_PID);
2102        nr = pid_vnr(pid);
2103
2104        if (clone_flags & CLONE_PARENT_SETTID)
2105                put_user(nr, parent_tidptr);
2106
2107        if (clone_flags & CLONE_VFORK) {
2108                p->vfork_done = &vfork;
2109                init_completion(&vfork);
2110                get_task_struct(p);
2111        }
2112
2113        wake_up_new_task(p);
2114
2115        /* forking complete and child started to run, tell ptracer */
2116        if (unlikely(trace))
2117                ptrace_event_pid(trace, pid);
2118
2119        if (clone_flags & CLONE_VFORK) {
2120                if (!wait_for_vfork_done(p, &vfork))
2121                        ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2122        }
2123
2124        put_pid(pid);
2125        return nr;
2126}
2127
2128#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2129/* For compatibility with architectures that call do_fork directly rather than
2130 * using the syscall entry points below. */
2131long do_fork(unsigned long clone_flags,
2132              unsigned long stack_start,
2133              unsigned long stack_size,
2134              int __user *parent_tidptr,
2135              int __user *child_tidptr)
2136{
2137        return _do_fork(clone_flags, stack_start, stack_size,
2138                        parent_tidptr, child_tidptr, 0);
2139}
2140#endif
2141
2142/*
2143 * Create a kernel thread.
2144 */
2145pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2146{
2147        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2148                (unsigned long)arg, NULL, NULL, 0);
2149}
2150
2151#ifdef __ARCH_WANT_SYS_FORK
2152SYSCALL_DEFINE0(fork)
2153{
2154#ifdef CONFIG_MMU
2155        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2156#else
2157        /* can not support in nommu mode */
2158        return -EINVAL;
2159#endif
2160}
2161#endif
2162
2163#ifdef __ARCH_WANT_SYS_VFORK
2164SYSCALL_DEFINE0(vfork)
2165{
2166        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2167                        0, NULL, NULL, 0);
2168}
2169#endif
2170
2171#ifdef __ARCH_WANT_SYS_CLONE
2172#ifdef CONFIG_CLONE_BACKWARDS
2173SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2174                 int __user *, parent_tidptr,
2175                 unsigned long, tls,
2176                 int __user *, child_tidptr)
2177#elif defined(CONFIG_CLONE_BACKWARDS2)
2178SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2179                 int __user *, parent_tidptr,
2180                 int __user *, child_tidptr,
2181                 unsigned long, tls)
2182#elif defined(CONFIG_CLONE_BACKWARDS3)
2183SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2184                int, stack_size,
2185                int __user *, parent_tidptr,
2186                int __user *, child_tidptr,
2187                unsigned long, tls)
2188#else
2189SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2190                 int __user *, parent_tidptr,
2191                 int __user *, child_tidptr,
2192                 unsigned long, tls)
2193#endif
2194{
2195        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2196}
2197#endif
2198
2199void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2200{
2201        struct task_struct *leader, *parent, *child;
2202        int res;
2203
2204        read_lock(&tasklist_lock);
2205        leader = top = top->group_leader;
2206down:
2207        for_each_thread(leader, parent) {
2208                list_for_each_entry(child, &parent->children, sibling) {
2209                        res = visitor(child, data);
2210                        if (res) {
2211                                if (res < 0)
2212                                        goto out;
2213                                leader = child;
2214                                goto down;
2215                        }
2216up:
2217                        ;
2218                }
2219        }
2220
2221        if (leader != top) {
2222                child = leader;
2223                parent = child->real_parent;
2224                leader = parent->group_leader;
2225                goto up;
2226        }
2227out:
2228        read_unlock(&tasklist_lock);
2229}
2230
2231#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2232#define ARCH_MIN_MMSTRUCT_ALIGN 0
2233#endif
2234
2235static void sighand_ctor(void *data)
2236{
2237        struct sighand_struct *sighand = data;
2238
2239        spin_lock_init(&sighand->siglock);
2240        init_waitqueue_head(&sighand->signalfd_wqh);
2241}
2242
2243void __init proc_caches_init(void)
2244{
2245        sighand_cachep = kmem_cache_create("sighand_cache",
2246                        sizeof(struct sighand_struct), 0,
2247                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2248                        SLAB_ACCOUNT, sighand_ctor);
2249        signal_cachep = kmem_cache_create("signal_cache",
2250                        sizeof(struct signal_struct), 0,
2251                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2252                        NULL);
2253        files_cachep = kmem_cache_create("files_cache",
2254                        sizeof(struct files_struct), 0,
2255                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2256                        NULL);
2257        fs_cachep = kmem_cache_create("fs_cache",
2258                        sizeof(struct fs_struct), 0,
2259                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2260                        NULL);
2261        /*
2262         * FIXME! The "sizeof(struct mm_struct)" currently includes the
2263         * whole struct cpumask for the OFFSTACK case. We could change
2264         * this to *only* allocate as much of it as required by the
2265         * maximum number of CPU's we can ever have.  The cpumask_allocation
2266         * is at the end of the structure, exactly for that reason.
2267         */
2268        mm_cachep = kmem_cache_create_usercopy("mm_struct",
2269                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2270                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2271                        offsetof(struct mm_struct, saved_auxv),
2272                        sizeof_field(struct mm_struct, saved_auxv),
2273                        NULL);
2274        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2275        mmap_init();
2276        nsproxy_cache_init();
2277}
2278
2279/*
2280 * Check constraints on flags passed to the unshare system call.
2281 */
2282static int check_unshare_flags(unsigned long unshare_flags)
2283{
2284        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2285                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2286                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2287                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2288                return -EINVAL;
2289        /*
2290         * Not implemented, but pretend it works if there is nothing
2291         * to unshare.  Note that unsharing the address space or the
2292         * signal handlers also need to unshare the signal queues (aka
2293         * CLONE_THREAD).
2294         */
2295        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2296                if (!thread_group_empty(current))
2297                        return -EINVAL;
2298        }
2299        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2300                if (atomic_read(&current->sighand->count) > 1)
2301                        return -EINVAL;
2302        }
2303        if (unshare_flags & CLONE_VM) {
2304                if (!current_is_single_threaded())
2305                        return -EINVAL;
2306        }
2307
2308        return 0;
2309}
2310
2311/*
2312 * Unshare the filesystem structure if it is being shared
2313 */
2314static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2315{
2316        struct fs_struct *fs = current->fs;
2317
2318        if (!(unshare_flags & CLONE_FS) || !fs)
2319                return 0;
2320
2321        /* don't need lock here; in the worst case we'll do useless copy */
2322        if (fs->users == 1)
2323                return 0;
2324
2325        *new_fsp = copy_fs_struct(fs);
2326        if (!*new_fsp)
2327                return -ENOMEM;
2328
2329        return 0;
2330}
2331
2332/*
2333 * Unshare file descriptor table if it is being shared
2334 */
2335static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2336{
2337        struct files_struct *fd = current->files;
2338        int error = 0;
2339
2340        if ((unshare_flags & CLONE_FILES) &&
2341            (fd && atomic_read(&fd->count) > 1)) {
2342                *new_fdp = dup_fd(fd, &error);
2343                if (!*new_fdp)
2344                        return error;
2345        }
2346
2347        return 0;
2348}
2349
2350/*
2351 * unshare allows a process to 'unshare' part of the process
2352 * context which was originally shared using clone.  copy_*
2353 * functions used by do_fork() cannot be used here directly
2354 * because they modify an inactive task_struct that is being
2355 * constructed. Here we are modifying the current, active,
2356 * task_struct.
2357 */
2358int ksys_unshare(unsigned long unshare_flags)
2359{
2360        struct fs_struct *fs, *new_fs = NULL;
2361        struct files_struct *fd, *new_fd = NULL;
2362        struct cred *new_cred = NULL;
2363        struct nsproxy *new_nsproxy = NULL;
2364        int do_sysvsem = 0;
2365        int err;
2366
2367        /*
2368         * If unsharing a user namespace must also unshare the thread group
2369         * and unshare the filesystem root and working directories.
2370         */
2371        if (unshare_flags & CLONE_NEWUSER)
2372                unshare_flags |= CLONE_THREAD | CLONE_FS;
2373        /*
2374         * If unsharing vm, must also unshare signal handlers.
2375         */
2376        if (unshare_flags & CLONE_VM)
2377                unshare_flags |= CLONE_SIGHAND;
2378        /*
2379         * If unsharing a signal handlers, must also unshare the signal queues.
2380         */
2381        if (unshare_flags & CLONE_SIGHAND)
2382                unshare_flags |= CLONE_THREAD;
2383        /*
2384         * If unsharing namespace, must also unshare filesystem information.
2385         */
2386        if (unshare_flags & CLONE_NEWNS)
2387                unshare_flags |= CLONE_FS;
2388
2389        err = check_unshare_flags(unshare_flags);
2390        if (err)
2391                goto bad_unshare_out;
2392        /*
2393         * CLONE_NEWIPC must also detach from the undolist: after switching
2394         * to a new ipc namespace, the semaphore arrays from the old
2395         * namespace are unreachable.
2396         */
2397        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2398                do_sysvsem = 1;
2399        err = unshare_fs(unshare_flags, &new_fs);
2400        if (err)
2401                goto bad_unshare_out;
2402        err = unshare_fd(unshare_flags, &new_fd);
2403        if (err)
2404                goto bad_unshare_cleanup_fs;
2405        err = unshare_userns(unshare_flags, &new_cred);
2406        if (err)
2407                goto bad_unshare_cleanup_fd;
2408        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2409                                         new_cred, new_fs);
2410        if (err)
2411                goto bad_unshare_cleanup_cred;
2412
2413        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2414                if (do_sysvsem) {
2415                        /*
2416                         * CLONE_SYSVSEM is equivalent to sys_exit().
2417                         */
2418                        exit_sem(current);
2419                }
2420                if (unshare_flags & CLONE_NEWIPC) {
2421                        /* Orphan segments in old ns (see sem above). */
2422                        exit_shm(current);
2423                        shm_init_task(current);
2424                }
2425
2426                if (new_nsproxy)
2427                        switch_task_namespaces(current, new_nsproxy);
2428
2429                task_lock(current);
2430
2431                if (new_fs) {
2432                        fs = current->fs;
2433                        spin_lock(&fs->lock);
2434                        current->fs = new_fs;
2435                        if (--fs->users)
2436                                new_fs = NULL;
2437                        else
2438                                new_fs = fs;
2439                        spin_unlock(&fs->lock);
2440                }
2441
2442                if (new_fd) {
2443                        fd = current->files;
2444                        current->files = new_fd;
2445                        new_fd = fd;
2446                }
2447
2448                task_unlock(current);
2449
2450                if (new_cred) {
2451                        /* Install the new user namespace */
2452                        commit_creds(new_cred);
2453                        new_cred = NULL;
2454                }
2455        }
2456
2457        perf_event_namespaces(current);
2458
2459bad_unshare_cleanup_cred:
2460        if (new_cred)
2461                put_cred(new_cred);
2462bad_unshare_cleanup_fd:
2463        if (new_fd)
2464                put_files_struct(new_fd);
2465
2466bad_unshare_cleanup_fs:
2467        if (new_fs)
2468                free_fs_struct(new_fs);
2469
2470bad_unshare_out:
2471        return err;
2472}
2473
2474SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2475{
2476        return ksys_unshare(unshare_flags);
2477}
2478
2479/*
2480 *      Helper to unshare the files of the current task.
2481 *      We don't want to expose copy_files internals to
2482 *      the exec layer of the kernel.
2483 */
2484
2485int unshare_files(struct files_struct **displaced)
2486{
2487        struct task_struct *task = current;
2488        struct files_struct *copy = NULL;
2489        int error;
2490
2491        error = unshare_fd(CLONE_FILES, &copy);
2492        if (error || !copy) {
2493                *displaced = NULL;
2494                return error;
2495        }
2496        *displaced = task->files;
2497        task_lock(task);
2498        task->files = copy;
2499        task_unlock(task);
2500        return 0;
2501}
2502
2503int sysctl_max_threads(struct ctl_table *table, int write,
2504                       void __user *buffer, size_t *lenp, loff_t *ppos)
2505{
2506        struct ctl_table t;
2507        int ret;
2508        int threads = max_threads;
2509        int min = MIN_THREADS;
2510        int max = MAX_THREADS;
2511
2512        t = *table;
2513        t.data = &threads;
2514        t.extra1 = &min;
2515        t.extra2 = &max;
2516
2517        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2518        if (ret || !write)
2519                return ret;
2520
2521        set_max_threads(threads);
2522
2523        return 0;
2524}
2525