linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/wake_q.h>
  65#include <linux/sched/mm.h>
  66#include <linux/hugetlb.h>
  67#include <linux/freezer.h>
  68#include <linux/bootmem.h>
  69#include <linux/fault-inject.h>
  70
  71#include <asm/futex.h>
  72
  73#include "locking/rtmutex_common.h"
  74
  75/*
  76 * READ this before attempting to hack on futexes!
  77 *
  78 * Basic futex operation and ordering guarantees
  79 * =============================================
  80 *
  81 * The waiter reads the futex value in user space and calls
  82 * futex_wait(). This function computes the hash bucket and acquires
  83 * the hash bucket lock. After that it reads the futex user space value
  84 * again and verifies that the data has not changed. If it has not changed
  85 * it enqueues itself into the hash bucket, releases the hash bucket lock
  86 * and schedules.
  87 *
  88 * The waker side modifies the user space value of the futex and calls
  89 * futex_wake(). This function computes the hash bucket and acquires the
  90 * hash bucket lock. Then it looks for waiters on that futex in the hash
  91 * bucket and wakes them.
  92 *
  93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  94 * the hb spinlock can be avoided and simply return. In order for this
  95 * optimization to work, ordering guarantees must exist so that the waiter
  96 * being added to the list is acknowledged when the list is concurrently being
  97 * checked by the waker, avoiding scenarios like the following:
  98 *
  99 * CPU 0                               CPU 1
 100 * val = *futex;
 101 * sys_futex(WAIT, futex, val);
 102 *   futex_wait(futex, val);
 103 *   uval = *futex;
 104 *                                     *futex = newval;
 105 *                                     sys_futex(WAKE, futex);
 106 *                                       futex_wake(futex);
 107 *                                       if (queue_empty())
 108 *                                         return;
 109 *   if (uval == val)
 110 *      lock(hash_bucket(futex));
 111 *      queue();
 112 *     unlock(hash_bucket(futex));
 113 *     schedule();
 114 *
 115 * This would cause the waiter on CPU 0 to wait forever because it
 116 * missed the transition of the user space value from val to newval
 117 * and the waker did not find the waiter in the hash bucket queue.
 118 *
 119 * The correct serialization ensures that a waiter either observes
 120 * the changed user space value before blocking or is woken by a
 121 * concurrent waker:
 122 *
 123 * CPU 0                                 CPU 1
 124 * val = *futex;
 125 * sys_futex(WAIT, futex, val);
 126 *   futex_wait(futex, val);
 127 *
 128 *   waiters++; (a)
 129 *   smp_mb(); (A) <-- paired with -.
 130 *                                  |
 131 *   lock(hash_bucket(futex));      |
 132 *                                  |
 133 *   uval = *futex;                 |
 134 *                                  |        *futex = newval;
 135 *                                  |        sys_futex(WAKE, futex);
 136 *                                  |          futex_wake(futex);
 137 *                                  |
 138 *                                  `--------> smp_mb(); (B)
 139 *   if (uval == val)
 140 *     queue();
 141 *     unlock(hash_bucket(futex));
 142 *     schedule();                         if (waiters)
 143 *                                           lock(hash_bucket(futex));
 144 *   else                                    wake_waiters(futex);
 145 *     waiters--; (b)                        unlock(hash_bucket(futex));
 146 *
 147 * Where (A) orders the waiters increment and the futex value read through
 148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 149 * to futex and the waiters read -- this is done by the barriers for both
 150 * shared and private futexes in get_futex_key_refs().
 151 *
 152 * This yields the following case (where X:=waiters, Y:=futex):
 153 *
 154 *      X = Y = 0
 155 *
 156 *      w[X]=1          w[Y]=1
 157 *      MB              MB
 158 *      r[Y]=y          r[X]=x
 159 *
 160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 161 * the guarantee that we cannot both miss the futex variable change and the
 162 * enqueue.
 163 *
 164 * Note that a new waiter is accounted for in (a) even when it is possible that
 165 * the wait call can return error, in which case we backtrack from it in (b).
 166 * Refer to the comment in queue_lock().
 167 *
 168 * Similarly, in order to account for waiters being requeued on another
 169 * address we always increment the waiters for the destination bucket before
 170 * acquiring the lock. It then decrements them again  after releasing it -
 171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 172 * will do the additional required waiter count housekeeping. This is done for
 173 * double_lock_hb() and double_unlock_hb(), respectively.
 174 */
 175
 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 177int __read_mostly futex_cmpxchg_enabled;
 178#endif
 179
 180/*
 181 * Futex flags used to encode options to functions and preserve them across
 182 * restarts.
 183 */
 184#ifdef CONFIG_MMU
 185# define FLAGS_SHARED           0x01
 186#else
 187/*
 188 * NOMMU does not have per process address space. Let the compiler optimize
 189 * code away.
 190 */
 191# define FLAGS_SHARED           0x00
 192#endif
 193#define FLAGS_CLOCKRT           0x02
 194#define FLAGS_HAS_TIMEOUT       0x04
 195
 196/*
 197 * Priority Inheritance state:
 198 */
 199struct futex_pi_state {
 200        /*
 201         * list of 'owned' pi_state instances - these have to be
 202         * cleaned up in do_exit() if the task exits prematurely:
 203         */
 204        struct list_head list;
 205
 206        /*
 207         * The PI object:
 208         */
 209        struct rt_mutex pi_mutex;
 210
 211        struct task_struct *owner;
 212        atomic_t refcount;
 213
 214        union futex_key key;
 215} __randomize_layout;
 216
 217/**
 218 * struct futex_q - The hashed futex queue entry, one per waiting task
 219 * @list:               priority-sorted list of tasks waiting on this futex
 220 * @task:               the task waiting on the futex
 221 * @lock_ptr:           the hash bucket lock
 222 * @key:                the key the futex is hashed on
 223 * @pi_state:           optional priority inheritance state
 224 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 225 * @requeue_pi_key:     the requeue_pi target futex key
 226 * @bitset:             bitset for the optional bitmasked wakeup
 227 *
 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 229 * we can wake only the relevant ones (hashed queues may be shared).
 230 *
 231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 233 * The order of wakeup is always to make the first condition true, then
 234 * the second.
 235 *
 236 * PI futexes are typically woken before they are removed from the hash list via
 237 * the rt_mutex code. See unqueue_me_pi().
 238 */
 239struct futex_q {
 240        struct plist_node list;
 241
 242        struct task_struct *task;
 243        spinlock_t *lock_ptr;
 244        union futex_key key;
 245        struct futex_pi_state *pi_state;
 246        struct rt_mutex_waiter *rt_waiter;
 247        union futex_key *requeue_pi_key;
 248        u32 bitset;
 249} __randomize_layout;
 250
 251static const struct futex_q futex_q_init = {
 252        /* list gets initialized in queue_me()*/
 253        .key = FUTEX_KEY_INIT,
 254        .bitset = FUTEX_BITSET_MATCH_ANY
 255};
 256
 257/*
 258 * Hash buckets are shared by all the futex_keys that hash to the same
 259 * location.  Each key may have multiple futex_q structures, one for each task
 260 * waiting on a futex.
 261 */
 262struct futex_hash_bucket {
 263        atomic_t waiters;
 264        spinlock_t lock;
 265        struct plist_head chain;
 266} ____cacheline_aligned_in_smp;
 267
 268/*
 269 * The base of the bucket array and its size are always used together
 270 * (after initialization only in hash_futex()), so ensure that they
 271 * reside in the same cacheline.
 272 */
 273static struct {
 274        struct futex_hash_bucket *queues;
 275        unsigned long            hashsize;
 276} __futex_data __read_mostly __aligned(2*sizeof(long));
 277#define futex_queues   (__futex_data.queues)
 278#define futex_hashsize (__futex_data.hashsize)
 279
 280
 281/*
 282 * Fault injections for futexes.
 283 */
 284#ifdef CONFIG_FAIL_FUTEX
 285
 286static struct {
 287        struct fault_attr attr;
 288
 289        bool ignore_private;
 290} fail_futex = {
 291        .attr = FAULT_ATTR_INITIALIZER,
 292        .ignore_private = false,
 293};
 294
 295static int __init setup_fail_futex(char *str)
 296{
 297        return setup_fault_attr(&fail_futex.attr, str);
 298}
 299__setup("fail_futex=", setup_fail_futex);
 300
 301static bool should_fail_futex(bool fshared)
 302{
 303        if (fail_futex.ignore_private && !fshared)
 304                return false;
 305
 306        return should_fail(&fail_futex.attr, 1);
 307}
 308
 309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 310
 311static int __init fail_futex_debugfs(void)
 312{
 313        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 314        struct dentry *dir;
 315
 316        dir = fault_create_debugfs_attr("fail_futex", NULL,
 317                                        &fail_futex.attr);
 318        if (IS_ERR(dir))
 319                return PTR_ERR(dir);
 320
 321        if (!debugfs_create_bool("ignore-private", mode, dir,
 322                                 &fail_futex.ignore_private)) {
 323                debugfs_remove_recursive(dir);
 324                return -ENOMEM;
 325        }
 326
 327        return 0;
 328}
 329
 330late_initcall(fail_futex_debugfs);
 331
 332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 333
 334#else
 335static inline bool should_fail_futex(bool fshared)
 336{
 337        return false;
 338}
 339#endif /* CONFIG_FAIL_FUTEX */
 340
 341static inline void futex_get_mm(union futex_key *key)
 342{
 343        mmgrab(key->private.mm);
 344        /*
 345         * Ensure futex_get_mm() implies a full barrier such that
 346         * get_futex_key() implies a full barrier. This is relied upon
 347         * as smp_mb(); (B), see the ordering comment above.
 348         */
 349        smp_mb__after_atomic();
 350}
 351
 352/*
 353 * Reflects a new waiter being added to the waitqueue.
 354 */
 355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 356{
 357#ifdef CONFIG_SMP
 358        atomic_inc(&hb->waiters);
 359        /*
 360         * Full barrier (A), see the ordering comment above.
 361         */
 362        smp_mb__after_atomic();
 363#endif
 364}
 365
 366/*
 367 * Reflects a waiter being removed from the waitqueue by wakeup
 368 * paths.
 369 */
 370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 371{
 372#ifdef CONFIG_SMP
 373        atomic_dec(&hb->waiters);
 374#endif
 375}
 376
 377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 378{
 379#ifdef CONFIG_SMP
 380        return atomic_read(&hb->waiters);
 381#else
 382        return 1;
 383#endif
 384}
 385
 386/**
 387 * hash_futex - Return the hash bucket in the global hash
 388 * @key:        Pointer to the futex key for which the hash is calculated
 389 *
 390 * We hash on the keys returned from get_futex_key (see below) and return the
 391 * corresponding hash bucket in the global hash.
 392 */
 393static struct futex_hash_bucket *hash_futex(union futex_key *key)
 394{
 395        u32 hash = jhash2((u32*)&key->both.word,
 396                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 397                          key->both.offset);
 398        return &futex_queues[hash & (futex_hashsize - 1)];
 399}
 400
 401
 402/**
 403 * match_futex - Check whether two futex keys are equal
 404 * @key1:       Pointer to key1
 405 * @key2:       Pointer to key2
 406 *
 407 * Return 1 if two futex_keys are equal, 0 otherwise.
 408 */
 409static inline int match_futex(union futex_key *key1, union futex_key *key2)
 410{
 411        return (key1 && key2
 412                && key1->both.word == key2->both.word
 413                && key1->both.ptr == key2->both.ptr
 414                && key1->both.offset == key2->both.offset);
 415}
 416
 417/*
 418 * Take a reference to the resource addressed by a key.
 419 * Can be called while holding spinlocks.
 420 *
 421 */
 422static void get_futex_key_refs(union futex_key *key)
 423{
 424        if (!key->both.ptr)
 425                return;
 426
 427        /*
 428         * On MMU less systems futexes are always "private" as there is no per
 429         * process address space. We need the smp wmb nevertheless - yes,
 430         * arch/blackfin has MMU less SMP ...
 431         */
 432        if (!IS_ENABLED(CONFIG_MMU)) {
 433                smp_mb(); /* explicit smp_mb(); (B) */
 434                return;
 435        }
 436
 437        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 438        case FUT_OFF_INODE:
 439                ihold(key->shared.inode); /* implies smp_mb(); (B) */
 440                break;
 441        case FUT_OFF_MMSHARED:
 442                futex_get_mm(key); /* implies smp_mb(); (B) */
 443                break;
 444        default:
 445                /*
 446                 * Private futexes do not hold reference on an inode or
 447                 * mm, therefore the only purpose of calling get_futex_key_refs
 448                 * is because we need the barrier for the lockless waiter check.
 449                 */
 450                smp_mb(); /* explicit smp_mb(); (B) */
 451        }
 452}
 453
 454/*
 455 * Drop a reference to the resource addressed by a key.
 456 * The hash bucket spinlock must not be held. This is
 457 * a no-op for private futexes, see comment in the get
 458 * counterpart.
 459 */
 460static void drop_futex_key_refs(union futex_key *key)
 461{
 462        if (!key->both.ptr) {
 463                /* If we're here then we tried to put a key we failed to get */
 464                WARN_ON_ONCE(1);
 465                return;
 466        }
 467
 468        if (!IS_ENABLED(CONFIG_MMU))
 469                return;
 470
 471        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 472        case FUT_OFF_INODE:
 473                iput(key->shared.inode);
 474                break;
 475        case FUT_OFF_MMSHARED:
 476                mmdrop(key->private.mm);
 477                break;
 478        }
 479}
 480
 481/**
 482 * get_futex_key() - Get parameters which are the keys for a futex
 483 * @uaddr:      virtual address of the futex
 484 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 485 * @key:        address where result is stored.
 486 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 487 *              VERIFY_WRITE)
 488 *
 489 * Return: a negative error code or 0
 490 *
 491 * The key words are stored in @key on success.
 492 *
 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 494 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 495 * We can usually work out the index without swapping in the page.
 496 *
 497 * lock_page() might sleep, the caller should not hold a spinlock.
 498 */
 499static int
 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 501{
 502        unsigned long address = (unsigned long)uaddr;
 503        struct mm_struct *mm = current->mm;
 504        struct page *page, *tail;
 505        struct address_space *mapping;
 506        int err, ro = 0;
 507
 508        /*
 509         * The futex address must be "naturally" aligned.
 510         */
 511        key->both.offset = address % PAGE_SIZE;
 512        if (unlikely((address % sizeof(u32)) != 0))
 513                return -EINVAL;
 514        address -= key->both.offset;
 515
 516        if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 517                return -EFAULT;
 518
 519        if (unlikely(should_fail_futex(fshared)))
 520                return -EFAULT;
 521
 522        /*
 523         * PROCESS_PRIVATE futexes are fast.
 524         * As the mm cannot disappear under us and the 'key' only needs
 525         * virtual address, we dont even have to find the underlying vma.
 526         * Note : We do have to check 'uaddr' is a valid user address,
 527         *        but access_ok() should be faster than find_vma()
 528         */
 529        if (!fshared) {
 530                key->private.mm = mm;
 531                key->private.address = address;
 532                get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 533                return 0;
 534        }
 535
 536again:
 537        /* Ignore any VERIFY_READ mapping (futex common case) */
 538        if (unlikely(should_fail_futex(fshared)))
 539                return -EFAULT;
 540
 541        err = get_user_pages_fast(address, 1, 1, &page);
 542        /*
 543         * If write access is not required (eg. FUTEX_WAIT), try
 544         * and get read-only access.
 545         */
 546        if (err == -EFAULT && rw == VERIFY_READ) {
 547                err = get_user_pages_fast(address, 1, 0, &page);
 548                ro = 1;
 549        }
 550        if (err < 0)
 551                return err;
 552        else
 553                err = 0;
 554
 555        /*
 556         * The treatment of mapping from this point on is critical. The page
 557         * lock protects many things but in this context the page lock
 558         * stabilizes mapping, prevents inode freeing in the shared
 559         * file-backed region case and guards against movement to swap cache.
 560         *
 561         * Strictly speaking the page lock is not needed in all cases being
 562         * considered here and page lock forces unnecessarily serialization
 563         * From this point on, mapping will be re-verified if necessary and
 564         * page lock will be acquired only if it is unavoidable
 565         *
 566         * Mapping checks require the head page for any compound page so the
 567         * head page and mapping is looked up now. For anonymous pages, it
 568         * does not matter if the page splits in the future as the key is
 569         * based on the address. For filesystem-backed pages, the tail is
 570         * required as the index of the page determines the key. For
 571         * base pages, there is no tail page and tail == page.
 572         */
 573        tail = page;
 574        page = compound_head(page);
 575        mapping = READ_ONCE(page->mapping);
 576
 577        /*
 578         * If page->mapping is NULL, then it cannot be a PageAnon
 579         * page; but it might be the ZERO_PAGE or in the gate area or
 580         * in a special mapping (all cases which we are happy to fail);
 581         * or it may have been a good file page when get_user_pages_fast
 582         * found it, but truncated or holepunched or subjected to
 583         * invalidate_complete_page2 before we got the page lock (also
 584         * cases which we are happy to fail).  And we hold a reference,
 585         * so refcount care in invalidate_complete_page's remove_mapping
 586         * prevents drop_caches from setting mapping to NULL beneath us.
 587         *
 588         * The case we do have to guard against is when memory pressure made
 589         * shmem_writepage move it from filecache to swapcache beneath us:
 590         * an unlikely race, but we do need to retry for page->mapping.
 591         */
 592        if (unlikely(!mapping)) {
 593                int shmem_swizzled;
 594
 595                /*
 596                 * Page lock is required to identify which special case above
 597                 * applies. If this is really a shmem page then the page lock
 598                 * will prevent unexpected transitions.
 599                 */
 600                lock_page(page);
 601                shmem_swizzled = PageSwapCache(page) || page->mapping;
 602                unlock_page(page);
 603                put_page(page);
 604
 605                if (shmem_swizzled)
 606                        goto again;
 607
 608                return -EFAULT;
 609        }
 610
 611        /*
 612         * Private mappings are handled in a simple way.
 613         *
 614         * If the futex key is stored on an anonymous page, then the associated
 615         * object is the mm which is implicitly pinned by the calling process.
 616         *
 617         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 618         * it's a read-only handle, it's expected that futexes attach to
 619         * the object not the particular process.
 620         */
 621        if (PageAnon(page)) {
 622                /*
 623                 * A RO anonymous page will never change and thus doesn't make
 624                 * sense for futex operations.
 625                 */
 626                if (unlikely(should_fail_futex(fshared)) || ro) {
 627                        err = -EFAULT;
 628                        goto out;
 629                }
 630
 631                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 632                key->private.mm = mm;
 633                key->private.address = address;
 634
 635                get_futex_key_refs(key); /* implies smp_mb(); (B) */
 636
 637        } else {
 638                struct inode *inode;
 639
 640                /*
 641                 * The associated futex object in this case is the inode and
 642                 * the page->mapping must be traversed. Ordinarily this should
 643                 * be stabilised under page lock but it's not strictly
 644                 * necessary in this case as we just want to pin the inode, not
 645                 * update the radix tree or anything like that.
 646                 *
 647                 * The RCU read lock is taken as the inode is finally freed
 648                 * under RCU. If the mapping still matches expectations then the
 649                 * mapping->host can be safely accessed as being a valid inode.
 650                 */
 651                rcu_read_lock();
 652
 653                if (READ_ONCE(page->mapping) != mapping) {
 654                        rcu_read_unlock();
 655                        put_page(page);
 656
 657                        goto again;
 658                }
 659
 660                inode = READ_ONCE(mapping->host);
 661                if (!inode) {
 662                        rcu_read_unlock();
 663                        put_page(page);
 664
 665                        goto again;
 666                }
 667
 668                /*
 669                 * Take a reference unless it is about to be freed. Previously
 670                 * this reference was taken by ihold under the page lock
 671                 * pinning the inode in place so i_lock was unnecessary. The
 672                 * only way for this check to fail is if the inode was
 673                 * truncated in parallel which is almost certainly an
 674                 * application bug. In such a case, just retry.
 675                 *
 676                 * We are not calling into get_futex_key_refs() in file-backed
 677                 * cases, therefore a successful atomic_inc return below will
 678                 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 679                 */
 680                if (!atomic_inc_not_zero(&inode->i_count)) {
 681                        rcu_read_unlock();
 682                        put_page(page);
 683
 684                        goto again;
 685                }
 686
 687                /* Should be impossible but lets be paranoid for now */
 688                if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 689                        err = -EFAULT;
 690                        rcu_read_unlock();
 691                        iput(inode);
 692
 693                        goto out;
 694                }
 695
 696                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 697                key->shared.inode = inode;
 698                key->shared.pgoff = basepage_index(tail);
 699                rcu_read_unlock();
 700        }
 701
 702out:
 703        put_page(page);
 704        return err;
 705}
 706
 707static inline void put_futex_key(union futex_key *key)
 708{
 709        drop_futex_key_refs(key);
 710}
 711
 712/**
 713 * fault_in_user_writeable() - Fault in user address and verify RW access
 714 * @uaddr:      pointer to faulting user space address
 715 *
 716 * Slow path to fixup the fault we just took in the atomic write
 717 * access to @uaddr.
 718 *
 719 * We have no generic implementation of a non-destructive write to the
 720 * user address. We know that we faulted in the atomic pagefault
 721 * disabled section so we can as well avoid the #PF overhead by
 722 * calling get_user_pages() right away.
 723 */
 724static int fault_in_user_writeable(u32 __user *uaddr)
 725{
 726        struct mm_struct *mm = current->mm;
 727        int ret;
 728
 729        down_read(&mm->mmap_sem);
 730        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 731                               FAULT_FLAG_WRITE, NULL);
 732        up_read(&mm->mmap_sem);
 733
 734        return ret < 0 ? ret : 0;
 735}
 736
 737/**
 738 * futex_top_waiter() - Return the highest priority waiter on a futex
 739 * @hb:         the hash bucket the futex_q's reside in
 740 * @key:        the futex key (to distinguish it from other futex futex_q's)
 741 *
 742 * Must be called with the hb lock held.
 743 */
 744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 745                                        union futex_key *key)
 746{
 747        struct futex_q *this;
 748
 749        plist_for_each_entry(this, &hb->chain, list) {
 750                if (match_futex(&this->key, key))
 751                        return this;
 752        }
 753        return NULL;
 754}
 755
 756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 757                                      u32 uval, u32 newval)
 758{
 759        int ret;
 760
 761        pagefault_disable();
 762        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 763        pagefault_enable();
 764
 765        return ret;
 766}
 767
 768static int get_futex_value_locked(u32 *dest, u32 __user *from)
 769{
 770        int ret;
 771
 772        pagefault_disable();
 773        ret = __get_user(*dest, from);
 774        pagefault_enable();
 775
 776        return ret ? -EFAULT : 0;
 777}
 778
 779
 780/*
 781 * PI code:
 782 */
 783static int refill_pi_state_cache(void)
 784{
 785        struct futex_pi_state *pi_state;
 786
 787        if (likely(current->pi_state_cache))
 788                return 0;
 789
 790        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 791
 792        if (!pi_state)
 793                return -ENOMEM;
 794
 795        INIT_LIST_HEAD(&pi_state->list);
 796        /* pi_mutex gets initialized later */
 797        pi_state->owner = NULL;
 798        atomic_set(&pi_state->refcount, 1);
 799        pi_state->key = FUTEX_KEY_INIT;
 800
 801        current->pi_state_cache = pi_state;
 802
 803        return 0;
 804}
 805
 806static struct futex_pi_state *alloc_pi_state(void)
 807{
 808        struct futex_pi_state *pi_state = current->pi_state_cache;
 809
 810        WARN_ON(!pi_state);
 811        current->pi_state_cache = NULL;
 812
 813        return pi_state;
 814}
 815
 816static void get_pi_state(struct futex_pi_state *pi_state)
 817{
 818        WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
 819}
 820
 821/*
 822 * Drops a reference to the pi_state object and frees or caches it
 823 * when the last reference is gone.
 824 */
 825static void put_pi_state(struct futex_pi_state *pi_state)
 826{
 827        if (!pi_state)
 828                return;
 829
 830        if (!atomic_dec_and_test(&pi_state->refcount))
 831                return;
 832
 833        /*
 834         * If pi_state->owner is NULL, the owner is most probably dying
 835         * and has cleaned up the pi_state already
 836         */
 837        if (pi_state->owner) {
 838                struct task_struct *owner;
 839
 840                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 841                owner = pi_state->owner;
 842                if (owner) {
 843                        raw_spin_lock(&owner->pi_lock);
 844                        list_del_init(&pi_state->list);
 845                        raw_spin_unlock(&owner->pi_lock);
 846                }
 847                rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 848                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 849        }
 850
 851        if (current->pi_state_cache) {
 852                kfree(pi_state);
 853        } else {
 854                /*
 855                 * pi_state->list is already empty.
 856                 * clear pi_state->owner.
 857                 * refcount is at 0 - put it back to 1.
 858                 */
 859                pi_state->owner = NULL;
 860                atomic_set(&pi_state->refcount, 1);
 861                current->pi_state_cache = pi_state;
 862        }
 863}
 864
 865#ifdef CONFIG_FUTEX_PI
 866
 867/*
 868 * This task is holding PI mutexes at exit time => bad.
 869 * Kernel cleans up PI-state, but userspace is likely hosed.
 870 * (Robust-futex cleanup is separate and might save the day for userspace.)
 871 */
 872void exit_pi_state_list(struct task_struct *curr)
 873{
 874        struct list_head *next, *head = &curr->pi_state_list;
 875        struct futex_pi_state *pi_state;
 876        struct futex_hash_bucket *hb;
 877        union futex_key key = FUTEX_KEY_INIT;
 878
 879        if (!futex_cmpxchg_enabled)
 880                return;
 881        /*
 882         * We are a ZOMBIE and nobody can enqueue itself on
 883         * pi_state_list anymore, but we have to be careful
 884         * versus waiters unqueueing themselves:
 885         */
 886        raw_spin_lock_irq(&curr->pi_lock);
 887        while (!list_empty(head)) {
 888                next = head->next;
 889                pi_state = list_entry(next, struct futex_pi_state, list);
 890                key = pi_state->key;
 891                hb = hash_futex(&key);
 892
 893                /*
 894                 * We can race against put_pi_state() removing itself from the
 895                 * list (a waiter going away). put_pi_state() will first
 896                 * decrement the reference count and then modify the list, so
 897                 * its possible to see the list entry but fail this reference
 898                 * acquire.
 899                 *
 900                 * In that case; drop the locks to let put_pi_state() make
 901                 * progress and retry the loop.
 902                 */
 903                if (!atomic_inc_not_zero(&pi_state->refcount)) {
 904                        raw_spin_unlock_irq(&curr->pi_lock);
 905                        cpu_relax();
 906                        raw_spin_lock_irq(&curr->pi_lock);
 907                        continue;
 908                }
 909                raw_spin_unlock_irq(&curr->pi_lock);
 910
 911                spin_lock(&hb->lock);
 912                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 913                raw_spin_lock(&curr->pi_lock);
 914                /*
 915                 * We dropped the pi-lock, so re-check whether this
 916                 * task still owns the PI-state:
 917                 */
 918                if (head->next != next) {
 919                        /* retain curr->pi_lock for the loop invariant */
 920                        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 921                        spin_unlock(&hb->lock);
 922                        put_pi_state(pi_state);
 923                        continue;
 924                }
 925
 926                WARN_ON(pi_state->owner != curr);
 927                WARN_ON(list_empty(&pi_state->list));
 928                list_del_init(&pi_state->list);
 929                pi_state->owner = NULL;
 930
 931                raw_spin_unlock(&curr->pi_lock);
 932                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 933                spin_unlock(&hb->lock);
 934
 935                rt_mutex_futex_unlock(&pi_state->pi_mutex);
 936                put_pi_state(pi_state);
 937
 938                raw_spin_lock_irq(&curr->pi_lock);
 939        }
 940        raw_spin_unlock_irq(&curr->pi_lock);
 941}
 942
 943#endif
 944
 945/*
 946 * We need to check the following states:
 947 *
 948 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 949 *
 950 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 951 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 952 *
 953 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 954 *
 955 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 956 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 957 *
 958 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 959 *
 960 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 961 *
 962 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 963 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 964 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 965 *
 966 * [1]  Indicates that the kernel can acquire the futex atomically. We
 967 *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 968 *
 969 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 970 *      thread is found then it indicates that the owner TID has died.
 971 *
 972 * [3]  Invalid. The waiter is queued on a non PI futex
 973 *
 974 * [4]  Valid state after exit_robust_list(), which sets the user space
 975 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 976 *
 977 * [5]  The user space value got manipulated between exit_robust_list()
 978 *      and exit_pi_state_list()
 979 *
 980 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
 981 *      the pi_state but cannot access the user space value.
 982 *
 983 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 984 *
 985 * [8]  Owner and user space value match
 986 *
 987 * [9]  There is no transient state which sets the user space TID to 0
 988 *      except exit_robust_list(), but this is indicated by the
 989 *      FUTEX_OWNER_DIED bit. See [4]
 990 *
 991 * [10] There is no transient state which leaves owner and user space
 992 *      TID out of sync.
 993 *
 994 *
 995 * Serialization and lifetime rules:
 996 *
 997 * hb->lock:
 998 *
 999 *      hb -> futex_q, relation
1000 *      futex_q -> pi_state, relation
1001 *
1002 *      (cannot be raw because hb can contain arbitrary amount
1003 *       of futex_q's)
1004 *
1005 * pi_mutex->wait_lock:
1006 *
1007 *      {uval, pi_state}
1008 *
1009 *      (and pi_mutex 'obviously')
1010 *
1011 * p->pi_lock:
1012 *
1013 *      p->pi_state_list -> pi_state->list, relation
1014 *
1015 * pi_state->refcount:
1016 *
1017 *      pi_state lifetime
1018 *
1019 *
1020 * Lock order:
1021 *
1022 *   hb->lock
1023 *     pi_mutex->wait_lock
1024 *       p->pi_lock
1025 *
1026 */
1027
1028/*
1029 * Validate that the existing waiter has a pi_state and sanity check
1030 * the pi_state against the user space value. If correct, attach to
1031 * it.
1032 */
1033static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034                              struct futex_pi_state *pi_state,
1035                              struct futex_pi_state **ps)
1036{
1037        pid_t pid = uval & FUTEX_TID_MASK;
1038        u32 uval2;
1039        int ret;
1040
1041        /*
1042         * Userspace might have messed up non-PI and PI futexes [3]
1043         */
1044        if (unlikely(!pi_state))
1045                return -EINVAL;
1046
1047        /*
1048         * We get here with hb->lock held, and having found a
1049         * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050         * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051         * which in turn means that futex_lock_pi() still has a reference on
1052         * our pi_state.
1053         *
1054         * The waiter holding a reference on @pi_state also protects against
1055         * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056         * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057         * free pi_state before we can take a reference ourselves.
1058         */
1059        WARN_ON(!atomic_read(&pi_state->refcount));
1060
1061        /*
1062         * Now that we have a pi_state, we can acquire wait_lock
1063         * and do the state validation.
1064         */
1065        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066
1067        /*
1068         * Since {uval, pi_state} is serialized by wait_lock, and our current
1069         * uval was read without holding it, it can have changed. Verify it
1070         * still is what we expect it to be, otherwise retry the entire
1071         * operation.
1072         */
1073        if (get_futex_value_locked(&uval2, uaddr))
1074                goto out_efault;
1075
1076        if (uval != uval2)
1077                goto out_eagain;
1078
1079        /*
1080         * Handle the owner died case:
1081         */
1082        if (uval & FUTEX_OWNER_DIED) {
1083                /*
1084                 * exit_pi_state_list sets owner to NULL and wakes the
1085                 * topmost waiter. The task which acquires the
1086                 * pi_state->rt_mutex will fixup owner.
1087                 */
1088                if (!pi_state->owner) {
1089                        /*
1090                         * No pi state owner, but the user space TID
1091                         * is not 0. Inconsistent state. [5]
1092                         */
1093                        if (pid)
1094                                goto out_einval;
1095                        /*
1096                         * Take a ref on the state and return success. [4]
1097                         */
1098                        goto out_attach;
1099                }
1100
1101                /*
1102                 * If TID is 0, then either the dying owner has not
1103                 * yet executed exit_pi_state_list() or some waiter
1104                 * acquired the rtmutex in the pi state, but did not
1105                 * yet fixup the TID in user space.
1106                 *
1107                 * Take a ref on the state and return success. [6]
1108                 */
1109                if (!pid)
1110                        goto out_attach;
1111        } else {
1112                /*
1113                 * If the owner died bit is not set, then the pi_state
1114                 * must have an owner. [7]
1115                 */
1116                if (!pi_state->owner)
1117                        goto out_einval;
1118        }
1119
1120        /*
1121         * Bail out if user space manipulated the futex value. If pi
1122         * state exists then the owner TID must be the same as the
1123         * user space TID. [9/10]
1124         */
1125        if (pid != task_pid_vnr(pi_state->owner))
1126                goto out_einval;
1127
1128out_attach:
1129        get_pi_state(pi_state);
1130        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131        *ps = pi_state;
1132        return 0;
1133
1134out_einval:
1135        ret = -EINVAL;
1136        goto out_error;
1137
1138out_eagain:
1139        ret = -EAGAIN;
1140        goto out_error;
1141
1142out_efault:
1143        ret = -EFAULT;
1144        goto out_error;
1145
1146out_error:
1147        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148        return ret;
1149}
1150
1151/*
1152 * Lookup the task for the TID provided from user space and attach to
1153 * it after doing proper sanity checks.
1154 */
1155static int attach_to_pi_owner(u32 uval, union futex_key *key,
1156                              struct futex_pi_state **ps)
1157{
1158        pid_t pid = uval & FUTEX_TID_MASK;
1159        struct futex_pi_state *pi_state;
1160        struct task_struct *p;
1161
1162        /*
1163         * We are the first waiter - try to look up the real owner and attach
1164         * the new pi_state to it, but bail out when TID = 0 [1]
1165         */
1166        if (!pid)
1167                return -ESRCH;
1168        p = find_get_task_by_vpid(pid);
1169        if (!p)
1170                return -ESRCH;
1171
1172        if (unlikely(p->flags & PF_KTHREAD)) {
1173                put_task_struct(p);
1174                return -EPERM;
1175        }
1176
1177        /*
1178         * We need to look at the task state flags to figure out,
1179         * whether the task is exiting. To protect against the do_exit
1180         * change of the task flags, we do this protected by
1181         * p->pi_lock:
1182         */
1183        raw_spin_lock_irq(&p->pi_lock);
1184        if (unlikely(p->flags & PF_EXITING)) {
1185                /*
1186                 * The task is on the way out. When PF_EXITPIDONE is
1187                 * set, we know that the task has finished the
1188                 * cleanup:
1189                 */
1190                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1191
1192                raw_spin_unlock_irq(&p->pi_lock);
1193                put_task_struct(p);
1194                return ret;
1195        }
1196
1197        /*
1198         * No existing pi state. First waiter. [2]
1199         *
1200         * This creates pi_state, we have hb->lock held, this means nothing can
1201         * observe this state, wait_lock is irrelevant.
1202         */
1203        pi_state = alloc_pi_state();
1204
1205        /*
1206         * Initialize the pi_mutex in locked state and make @p
1207         * the owner of it:
1208         */
1209        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1210
1211        /* Store the key for possible exit cleanups: */
1212        pi_state->key = *key;
1213
1214        WARN_ON(!list_empty(&pi_state->list));
1215        list_add(&pi_state->list, &p->pi_state_list);
1216        /*
1217         * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1218         * because there is no concurrency as the object is not published yet.
1219         */
1220        pi_state->owner = p;
1221        raw_spin_unlock_irq(&p->pi_lock);
1222
1223        put_task_struct(p);
1224
1225        *ps = pi_state;
1226
1227        return 0;
1228}
1229
1230static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1231                           struct futex_hash_bucket *hb,
1232                           union futex_key *key, struct futex_pi_state **ps)
1233{
1234        struct futex_q *top_waiter = futex_top_waiter(hb, key);
1235
1236        /*
1237         * If there is a waiter on that futex, validate it and
1238         * attach to the pi_state when the validation succeeds.
1239         */
1240        if (top_waiter)
1241                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1242
1243        /*
1244         * We are the first waiter - try to look up the owner based on
1245         * @uval and attach to it.
1246         */
1247        return attach_to_pi_owner(uval, key, ps);
1248}
1249
1250static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1251{
1252        u32 uninitialized_var(curval);
1253
1254        if (unlikely(should_fail_futex(true)))
1255                return -EFAULT;
1256
1257        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1258                return -EFAULT;
1259
1260        /* If user space value changed, let the caller retry */
1261        return curval != uval ? -EAGAIN : 0;
1262}
1263
1264/**
1265 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1266 * @uaddr:              the pi futex user address
1267 * @hb:                 the pi futex hash bucket
1268 * @key:                the futex key associated with uaddr and hb
1269 * @ps:                 the pi_state pointer where we store the result of the
1270 *                      lookup
1271 * @task:               the task to perform the atomic lock work for.  This will
1272 *                      be "current" except in the case of requeue pi.
1273 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1274 *
1275 * Return:
1276 *  -  0 - ready to wait;
1277 *  -  1 - acquired the lock;
1278 *  - <0 - error
1279 *
1280 * The hb->lock and futex_key refs shall be held by the caller.
1281 */
1282static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1283                                union futex_key *key,
1284                                struct futex_pi_state **ps,
1285                                struct task_struct *task, int set_waiters)
1286{
1287        u32 uval, newval, vpid = task_pid_vnr(task);
1288        struct futex_q *top_waiter;
1289        int ret;
1290
1291        /*
1292         * Read the user space value first so we can validate a few
1293         * things before proceeding further.
1294         */
1295        if (get_futex_value_locked(&uval, uaddr))
1296                return -EFAULT;
1297
1298        if (unlikely(should_fail_futex(true)))
1299                return -EFAULT;
1300
1301        /*
1302         * Detect deadlocks.
1303         */
1304        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1305                return -EDEADLK;
1306
1307        if ((unlikely(should_fail_futex(true))))
1308                return -EDEADLK;
1309
1310        /*
1311         * Lookup existing state first. If it exists, try to attach to
1312         * its pi_state.
1313         */
1314        top_waiter = futex_top_waiter(hb, key);
1315        if (top_waiter)
1316                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318        /*
1319         * No waiter and user TID is 0. We are here because the
1320         * waiters or the owner died bit is set or called from
1321         * requeue_cmp_pi or for whatever reason something took the
1322         * syscall.
1323         */
1324        if (!(uval & FUTEX_TID_MASK)) {
1325                /*
1326                 * We take over the futex. No other waiters and the user space
1327                 * TID is 0. We preserve the owner died bit.
1328                 */
1329                newval = uval & FUTEX_OWNER_DIED;
1330                newval |= vpid;
1331
1332                /* The futex requeue_pi code can enforce the waiters bit */
1333                if (set_waiters)
1334                        newval |= FUTEX_WAITERS;
1335
1336                ret = lock_pi_update_atomic(uaddr, uval, newval);
1337                /* If the take over worked, return 1 */
1338                return ret < 0 ? ret : 1;
1339        }
1340
1341        /*
1342         * First waiter. Set the waiters bit before attaching ourself to
1343         * the owner. If owner tries to unlock, it will be forced into
1344         * the kernel and blocked on hb->lock.
1345         */
1346        newval = uval | FUTEX_WAITERS;
1347        ret = lock_pi_update_atomic(uaddr, uval, newval);
1348        if (ret)
1349                return ret;
1350        /*
1351         * If the update of the user space value succeeded, we try to
1352         * attach to the owner. If that fails, no harm done, we only
1353         * set the FUTEX_WAITERS bit in the user space variable.
1354         */
1355        return attach_to_pi_owner(uval, key, ps);
1356}
1357
1358/**
1359 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1360 * @q:  The futex_q to unqueue
1361 *
1362 * The q->lock_ptr must not be NULL and must be held by the caller.
1363 */
1364static void __unqueue_futex(struct futex_q *q)
1365{
1366        struct futex_hash_bucket *hb;
1367
1368        if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1369            || WARN_ON(plist_node_empty(&q->list)))
1370                return;
1371
1372        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1373        plist_del(&q->list, &hb->chain);
1374        hb_waiters_dec(hb);
1375}
1376
1377/*
1378 * The hash bucket lock must be held when this is called.
1379 * Afterwards, the futex_q must not be accessed. Callers
1380 * must ensure to later call wake_up_q() for the actual
1381 * wakeups to occur.
1382 */
1383static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1384{
1385        struct task_struct *p = q->task;
1386
1387        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1388                return;
1389
1390        /*
1391         * Queue the task for later wakeup for after we've released
1392         * the hb->lock. wake_q_add() grabs reference to p.
1393         */
1394        wake_q_add(wake_q, p);
1395        __unqueue_futex(q);
1396        /*
1397         * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1398         * is written, without taking any locks. This is possible in the event
1399         * of a spurious wakeup, for example. A memory barrier is required here
1400         * to prevent the following store to lock_ptr from getting ahead of the
1401         * plist_del in __unqueue_futex().
1402         */
1403        smp_store_release(&q->lock_ptr, NULL);
1404}
1405
1406/*
1407 * Caller must hold a reference on @pi_state.
1408 */
1409static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1410{
1411        u32 uninitialized_var(curval), newval;
1412        struct task_struct *new_owner;
1413        bool postunlock = false;
1414        DEFINE_WAKE_Q(wake_q);
1415        int ret = 0;
1416
1417        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1418        if (WARN_ON_ONCE(!new_owner)) {
1419                /*
1420                 * As per the comment in futex_unlock_pi() this should not happen.
1421                 *
1422                 * When this happens, give up our locks and try again, giving
1423                 * the futex_lock_pi() instance time to complete, either by
1424                 * waiting on the rtmutex or removing itself from the futex
1425                 * queue.
1426                 */
1427                ret = -EAGAIN;
1428                goto out_unlock;
1429        }
1430
1431        /*
1432         * We pass it to the next owner. The WAITERS bit is always kept
1433         * enabled while there is PI state around. We cleanup the owner
1434         * died bit, because we are the owner.
1435         */
1436        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1437
1438        if (unlikely(should_fail_futex(true)))
1439                ret = -EFAULT;
1440
1441        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1442                ret = -EFAULT;
1443
1444        } else if (curval != uval) {
1445                /*
1446                 * If a unconditional UNLOCK_PI operation (user space did not
1447                 * try the TID->0 transition) raced with a waiter setting the
1448                 * FUTEX_WAITERS flag between get_user() and locking the hash
1449                 * bucket lock, retry the operation.
1450                 */
1451                if ((FUTEX_TID_MASK & curval) == uval)
1452                        ret = -EAGAIN;
1453                else
1454                        ret = -EINVAL;
1455        }
1456
1457        if (ret)
1458                goto out_unlock;
1459
1460        /*
1461         * This is a point of no return; once we modify the uval there is no
1462         * going back and subsequent operations must not fail.
1463         */
1464
1465        raw_spin_lock(&pi_state->owner->pi_lock);
1466        WARN_ON(list_empty(&pi_state->list));
1467        list_del_init(&pi_state->list);
1468        raw_spin_unlock(&pi_state->owner->pi_lock);
1469
1470        raw_spin_lock(&new_owner->pi_lock);
1471        WARN_ON(!list_empty(&pi_state->list));
1472        list_add(&pi_state->list, &new_owner->pi_state_list);
1473        pi_state->owner = new_owner;
1474        raw_spin_unlock(&new_owner->pi_lock);
1475
1476        postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1477
1478out_unlock:
1479        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1480
1481        if (postunlock)
1482                rt_mutex_postunlock(&wake_q);
1483
1484        return ret;
1485}
1486
1487/*
1488 * Express the locking dependencies for lockdep:
1489 */
1490static inline void
1491double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1492{
1493        if (hb1 <= hb2) {
1494                spin_lock(&hb1->lock);
1495                if (hb1 < hb2)
1496                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1497        } else { /* hb1 > hb2 */
1498                spin_lock(&hb2->lock);
1499                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1500        }
1501}
1502
1503static inline void
1504double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1505{
1506        spin_unlock(&hb1->lock);
1507        if (hb1 != hb2)
1508                spin_unlock(&hb2->lock);
1509}
1510
1511/*
1512 * Wake up waiters matching bitset queued on this futex (uaddr).
1513 */
1514static int
1515futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1516{
1517        struct futex_hash_bucket *hb;
1518        struct futex_q *this, *next;
1519        union futex_key key = FUTEX_KEY_INIT;
1520        int ret;
1521        DEFINE_WAKE_Q(wake_q);
1522
1523        if (!bitset)
1524                return -EINVAL;
1525
1526        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1527        if (unlikely(ret != 0))
1528                goto out;
1529
1530        hb = hash_futex(&key);
1531
1532        /* Make sure we really have tasks to wakeup */
1533        if (!hb_waiters_pending(hb))
1534                goto out_put_key;
1535
1536        spin_lock(&hb->lock);
1537
1538        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1539                if (match_futex (&this->key, &key)) {
1540                        if (this->pi_state || this->rt_waiter) {
1541                                ret = -EINVAL;
1542                                break;
1543                        }
1544
1545                        /* Check if one of the bits is set in both bitsets */
1546                        if (!(this->bitset & bitset))
1547                                continue;
1548
1549                        mark_wake_futex(&wake_q, this);
1550                        if (++ret >= nr_wake)
1551                                break;
1552                }
1553        }
1554
1555        spin_unlock(&hb->lock);
1556        wake_up_q(&wake_q);
1557out_put_key:
1558        put_futex_key(&key);
1559out:
1560        return ret;
1561}
1562
1563static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1564{
1565        unsigned int op =         (encoded_op & 0x70000000) >> 28;
1566        unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1567        int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1568        int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1569        int oldval, ret;
1570
1571        if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1572                if (oparg < 0 || oparg > 31) {
1573                        char comm[sizeof(current->comm)];
1574                        /*
1575                         * kill this print and return -EINVAL when userspace
1576                         * is sane again
1577                         */
1578                        pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1579                                        get_task_comm(comm, current), oparg);
1580                        oparg &= 31;
1581                }
1582                oparg = 1 << oparg;
1583        }
1584
1585        if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1586                return -EFAULT;
1587
1588        ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1589        if (ret)
1590                return ret;
1591
1592        switch (cmp) {
1593        case FUTEX_OP_CMP_EQ:
1594                return oldval == cmparg;
1595        case FUTEX_OP_CMP_NE:
1596                return oldval != cmparg;
1597        case FUTEX_OP_CMP_LT:
1598                return oldval < cmparg;
1599        case FUTEX_OP_CMP_GE:
1600                return oldval >= cmparg;
1601        case FUTEX_OP_CMP_LE:
1602                return oldval <= cmparg;
1603        case FUTEX_OP_CMP_GT:
1604                return oldval > cmparg;
1605        default:
1606                return -ENOSYS;
1607        }
1608}
1609
1610/*
1611 * Wake up all waiters hashed on the physical page that is mapped
1612 * to this virtual address:
1613 */
1614static int
1615futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1616              int nr_wake, int nr_wake2, int op)
1617{
1618        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1619        struct futex_hash_bucket *hb1, *hb2;
1620        struct futex_q *this, *next;
1621        int ret, op_ret;
1622        DEFINE_WAKE_Q(wake_q);
1623
1624retry:
1625        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1626        if (unlikely(ret != 0))
1627                goto out;
1628        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1629        if (unlikely(ret != 0))
1630                goto out_put_key1;
1631
1632        hb1 = hash_futex(&key1);
1633        hb2 = hash_futex(&key2);
1634
1635retry_private:
1636        double_lock_hb(hb1, hb2);
1637        op_ret = futex_atomic_op_inuser(op, uaddr2);
1638        if (unlikely(op_ret < 0)) {
1639
1640                double_unlock_hb(hb1, hb2);
1641
1642#ifndef CONFIG_MMU
1643                /*
1644                 * we don't get EFAULT from MMU faults if we don't have an MMU,
1645                 * but we might get them from range checking
1646                 */
1647                ret = op_ret;
1648                goto out_put_keys;
1649#endif
1650
1651                if (unlikely(op_ret != -EFAULT)) {
1652                        ret = op_ret;
1653                        goto out_put_keys;
1654                }
1655
1656                ret = fault_in_user_writeable(uaddr2);
1657                if (ret)
1658                        goto out_put_keys;
1659
1660                if (!(flags & FLAGS_SHARED))
1661                        goto retry_private;
1662
1663                put_futex_key(&key2);
1664                put_futex_key(&key1);
1665                goto retry;
1666        }
1667
1668        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1669                if (match_futex (&this->key, &key1)) {
1670                        if (this->pi_state || this->rt_waiter) {
1671                                ret = -EINVAL;
1672                                goto out_unlock;
1673                        }
1674                        mark_wake_futex(&wake_q, this);
1675                        if (++ret >= nr_wake)
1676                                break;
1677                }
1678        }
1679
1680        if (op_ret > 0) {
1681                op_ret = 0;
1682                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1683                        if (match_futex (&this->key, &key2)) {
1684                                if (this->pi_state || this->rt_waiter) {
1685                                        ret = -EINVAL;
1686                                        goto out_unlock;
1687                                }
1688                                mark_wake_futex(&wake_q, this);
1689                                if (++op_ret >= nr_wake2)
1690                                        break;
1691                        }
1692                }
1693                ret += op_ret;
1694        }
1695
1696out_unlock:
1697        double_unlock_hb(hb1, hb2);
1698        wake_up_q(&wake_q);
1699out_put_keys:
1700        put_futex_key(&key2);
1701out_put_key1:
1702        put_futex_key(&key1);
1703out:
1704        return ret;
1705}
1706
1707/**
1708 * requeue_futex() - Requeue a futex_q from one hb to another
1709 * @q:          the futex_q to requeue
1710 * @hb1:        the source hash_bucket
1711 * @hb2:        the target hash_bucket
1712 * @key2:       the new key for the requeued futex_q
1713 */
1714static inline
1715void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1716                   struct futex_hash_bucket *hb2, union futex_key *key2)
1717{
1718
1719        /*
1720         * If key1 and key2 hash to the same bucket, no need to
1721         * requeue.
1722         */
1723        if (likely(&hb1->chain != &hb2->chain)) {
1724                plist_del(&q->list, &hb1->chain);
1725                hb_waiters_dec(hb1);
1726                hb_waiters_inc(hb2);
1727                plist_add(&q->list, &hb2->chain);
1728                q->lock_ptr = &hb2->lock;
1729        }
1730        get_futex_key_refs(key2);
1731        q->key = *key2;
1732}
1733
1734/**
1735 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1736 * @q:          the futex_q
1737 * @key:        the key of the requeue target futex
1738 * @hb:         the hash_bucket of the requeue target futex
1739 *
1740 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1741 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1742 * to the requeue target futex so the waiter can detect the wakeup on the right
1743 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1744 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1745 * to protect access to the pi_state to fixup the owner later.  Must be called
1746 * with both q->lock_ptr and hb->lock held.
1747 */
1748static inline
1749void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1750                           struct futex_hash_bucket *hb)
1751{
1752        get_futex_key_refs(key);
1753        q->key = *key;
1754
1755        __unqueue_futex(q);
1756
1757        WARN_ON(!q->rt_waiter);
1758        q->rt_waiter = NULL;
1759
1760        q->lock_ptr = &hb->lock;
1761
1762        wake_up_state(q->task, TASK_NORMAL);
1763}
1764
1765/**
1766 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1767 * @pifutex:            the user address of the to futex
1768 * @hb1:                the from futex hash bucket, must be locked by the caller
1769 * @hb2:                the to futex hash bucket, must be locked by the caller
1770 * @key1:               the from futex key
1771 * @key2:               the to futex key
1772 * @ps:                 address to store the pi_state pointer
1773 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1774 *
1775 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1776 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1777 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1778 * hb1 and hb2 must be held by the caller.
1779 *
1780 * Return:
1781 *  -  0 - failed to acquire the lock atomically;
1782 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1783 *  - <0 - error
1784 */
1785static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1786                                 struct futex_hash_bucket *hb1,
1787                                 struct futex_hash_bucket *hb2,
1788                                 union futex_key *key1, union futex_key *key2,
1789                                 struct futex_pi_state **ps, int set_waiters)
1790{
1791        struct futex_q *top_waiter = NULL;
1792        u32 curval;
1793        int ret, vpid;
1794
1795        if (get_futex_value_locked(&curval, pifutex))
1796                return -EFAULT;
1797
1798        if (unlikely(should_fail_futex(true)))
1799                return -EFAULT;
1800
1801        /*
1802         * Find the top_waiter and determine if there are additional waiters.
1803         * If the caller intends to requeue more than 1 waiter to pifutex,
1804         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1805         * as we have means to handle the possible fault.  If not, don't set
1806         * the bit unecessarily as it will force the subsequent unlock to enter
1807         * the kernel.
1808         */
1809        top_waiter = futex_top_waiter(hb1, key1);
1810
1811        /* There are no waiters, nothing for us to do. */
1812        if (!top_waiter)
1813                return 0;
1814
1815        /* Ensure we requeue to the expected futex. */
1816        if (!match_futex(top_waiter->requeue_pi_key, key2))
1817                return -EINVAL;
1818
1819        /*
1820         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1821         * the contended case or if set_waiters is 1.  The pi_state is returned
1822         * in ps in contended cases.
1823         */
1824        vpid = task_pid_vnr(top_waiter->task);
1825        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1826                                   set_waiters);
1827        if (ret == 1) {
1828                requeue_pi_wake_futex(top_waiter, key2, hb2);
1829                return vpid;
1830        }
1831        return ret;
1832}
1833
1834/**
1835 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1836 * @uaddr1:     source futex user address
1837 * @flags:      futex flags (FLAGS_SHARED, etc.)
1838 * @uaddr2:     target futex user address
1839 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1840 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1841 * @cmpval:     @uaddr1 expected value (or %NULL)
1842 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1843 *              pi futex (pi to pi requeue is not supported)
1844 *
1845 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1846 * uaddr2 atomically on behalf of the top waiter.
1847 *
1848 * Return:
1849 *  - >=0 - on success, the number of tasks requeued or woken;
1850 *  -  <0 - on error
1851 */
1852static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1853                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1854                         u32 *cmpval, int requeue_pi)
1855{
1856        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1857        int drop_count = 0, task_count = 0, ret;
1858        struct futex_pi_state *pi_state = NULL;
1859        struct futex_hash_bucket *hb1, *hb2;
1860        struct futex_q *this, *next;
1861        DEFINE_WAKE_Q(wake_q);
1862
1863        if (nr_wake < 0 || nr_requeue < 0)
1864                return -EINVAL;
1865
1866        /*
1867         * When PI not supported: return -ENOSYS if requeue_pi is true,
1868         * consequently the compiler knows requeue_pi is always false past
1869         * this point which will optimize away all the conditional code
1870         * further down.
1871         */
1872        if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1873                return -ENOSYS;
1874
1875        if (requeue_pi) {
1876                /*
1877                 * Requeue PI only works on two distinct uaddrs. This
1878                 * check is only valid for private futexes. See below.
1879                 */
1880                if (uaddr1 == uaddr2)
1881                        return -EINVAL;
1882
1883                /*
1884                 * requeue_pi requires a pi_state, try to allocate it now
1885                 * without any locks in case it fails.
1886                 */
1887                if (refill_pi_state_cache())
1888                        return -ENOMEM;
1889                /*
1890                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1891                 * + nr_requeue, since it acquires the rt_mutex prior to
1892                 * returning to userspace, so as to not leave the rt_mutex with
1893                 * waiters and no owner.  However, second and third wake-ups
1894                 * cannot be predicted as they involve race conditions with the
1895                 * first wake and a fault while looking up the pi_state.  Both
1896                 * pthread_cond_signal() and pthread_cond_broadcast() should
1897                 * use nr_wake=1.
1898                 */
1899                if (nr_wake != 1)
1900                        return -EINVAL;
1901        }
1902
1903retry:
1904        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1905        if (unlikely(ret != 0))
1906                goto out;
1907        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1908                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1909        if (unlikely(ret != 0))
1910                goto out_put_key1;
1911
1912        /*
1913         * The check above which compares uaddrs is not sufficient for
1914         * shared futexes. We need to compare the keys:
1915         */
1916        if (requeue_pi && match_futex(&key1, &key2)) {
1917                ret = -EINVAL;
1918                goto out_put_keys;
1919        }
1920
1921        hb1 = hash_futex(&key1);
1922        hb2 = hash_futex(&key2);
1923
1924retry_private:
1925        hb_waiters_inc(hb2);
1926        double_lock_hb(hb1, hb2);
1927
1928        if (likely(cmpval != NULL)) {
1929                u32 curval;
1930
1931                ret = get_futex_value_locked(&curval, uaddr1);
1932
1933                if (unlikely(ret)) {
1934                        double_unlock_hb(hb1, hb2);
1935                        hb_waiters_dec(hb2);
1936
1937                        ret = get_user(curval, uaddr1);
1938                        if (ret)
1939                                goto out_put_keys;
1940
1941                        if (!(flags & FLAGS_SHARED))
1942                                goto retry_private;
1943
1944                        put_futex_key(&key2);
1945                        put_futex_key(&key1);
1946                        goto retry;
1947                }
1948                if (curval != *cmpval) {
1949                        ret = -EAGAIN;
1950                        goto out_unlock;
1951                }
1952        }
1953
1954        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1955                /*
1956                 * Attempt to acquire uaddr2 and wake the top waiter. If we
1957                 * intend to requeue waiters, force setting the FUTEX_WAITERS
1958                 * bit.  We force this here where we are able to easily handle
1959                 * faults rather in the requeue loop below.
1960                 */
1961                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1962                                                 &key2, &pi_state, nr_requeue);
1963
1964                /*
1965                 * At this point the top_waiter has either taken uaddr2 or is
1966                 * waiting on it.  If the former, then the pi_state will not
1967                 * exist yet, look it up one more time to ensure we have a
1968                 * reference to it. If the lock was taken, ret contains the
1969                 * vpid of the top waiter task.
1970                 * If the lock was not taken, we have pi_state and an initial
1971                 * refcount on it. In case of an error we have nothing.
1972                 */
1973                if (ret > 0) {
1974                        WARN_ON(pi_state);
1975                        drop_count++;
1976                        task_count++;
1977                        /*
1978                         * If we acquired the lock, then the user space value
1979                         * of uaddr2 should be vpid. It cannot be changed by
1980                         * the top waiter as it is blocked on hb2 lock if it
1981                         * tries to do so. If something fiddled with it behind
1982                         * our back the pi state lookup might unearth it. So
1983                         * we rather use the known value than rereading and
1984                         * handing potential crap to lookup_pi_state.
1985                         *
1986                         * If that call succeeds then we have pi_state and an
1987                         * initial refcount on it.
1988                         */
1989                        ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1990                }
1991
1992                switch (ret) {
1993                case 0:
1994                        /* We hold a reference on the pi state. */
1995                        break;
1996
1997                        /* If the above failed, then pi_state is NULL */
1998                case -EFAULT:
1999                        double_unlock_hb(hb1, hb2);
2000                        hb_waiters_dec(hb2);
2001                        put_futex_key(&key2);
2002                        put_futex_key(&key1);
2003                        ret = fault_in_user_writeable(uaddr2);
2004                        if (!ret)
2005                                goto retry;
2006                        goto out;
2007                case -EAGAIN:
2008                        /*
2009                         * Two reasons for this:
2010                         * - Owner is exiting and we just wait for the
2011                         *   exit to complete.
2012                         * - The user space value changed.
2013                         */
2014                        double_unlock_hb(hb1, hb2);
2015                        hb_waiters_dec(hb2);
2016                        put_futex_key(&key2);
2017                        put_futex_key(&key1);
2018                        cond_resched();
2019                        goto retry;
2020                default:
2021                        goto out_unlock;
2022                }
2023        }
2024
2025        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2026                if (task_count - nr_wake >= nr_requeue)
2027                        break;
2028
2029                if (!match_futex(&this->key, &key1))
2030                        continue;
2031
2032                /*
2033                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2034                 * be paired with each other and no other futex ops.
2035                 *
2036                 * We should never be requeueing a futex_q with a pi_state,
2037                 * which is awaiting a futex_unlock_pi().
2038                 */
2039                if ((requeue_pi && !this->rt_waiter) ||
2040                    (!requeue_pi && this->rt_waiter) ||
2041                    this->pi_state) {
2042                        ret = -EINVAL;
2043                        break;
2044                }
2045
2046                /*
2047                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2048                 * lock, we already woke the top_waiter.  If not, it will be
2049                 * woken by futex_unlock_pi().
2050                 */
2051                if (++task_count <= nr_wake && !requeue_pi) {
2052                        mark_wake_futex(&wake_q, this);
2053                        continue;
2054                }
2055
2056                /* Ensure we requeue to the expected futex for requeue_pi. */
2057                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2058                        ret = -EINVAL;
2059                        break;
2060                }
2061
2062                /*
2063                 * Requeue nr_requeue waiters and possibly one more in the case
2064                 * of requeue_pi if we couldn't acquire the lock atomically.
2065                 */
2066                if (requeue_pi) {
2067                        /*
2068                         * Prepare the waiter to take the rt_mutex. Take a
2069                         * refcount on the pi_state and store the pointer in
2070                         * the futex_q object of the waiter.
2071                         */
2072                        get_pi_state(pi_state);
2073                        this->pi_state = pi_state;
2074                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2075                                                        this->rt_waiter,
2076                                                        this->task);
2077                        if (ret == 1) {
2078                                /*
2079                                 * We got the lock. We do neither drop the
2080                                 * refcount on pi_state nor clear
2081                                 * this->pi_state because the waiter needs the
2082                                 * pi_state for cleaning up the user space
2083                                 * value. It will drop the refcount after
2084                                 * doing so.
2085                                 */
2086                                requeue_pi_wake_futex(this, &key2, hb2);
2087                                drop_count++;
2088                                continue;
2089                        } else if (ret) {
2090                                /*
2091                                 * rt_mutex_start_proxy_lock() detected a
2092                                 * potential deadlock when we tried to queue
2093                                 * that waiter. Drop the pi_state reference
2094                                 * which we took above and remove the pointer
2095                                 * to the state from the waiters futex_q
2096                                 * object.
2097                                 */
2098                                this->pi_state = NULL;
2099                                put_pi_state(pi_state);
2100                                /*
2101                                 * We stop queueing more waiters and let user
2102                                 * space deal with the mess.
2103                                 */
2104                                break;
2105                        }
2106                }
2107                requeue_futex(this, hb1, hb2, &key2);
2108                drop_count++;
2109        }
2110
2111        /*
2112         * We took an extra initial reference to the pi_state either
2113         * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2114         * need to drop it here again.
2115         */
2116        put_pi_state(pi_state);
2117
2118out_unlock:
2119        double_unlock_hb(hb1, hb2);
2120        wake_up_q(&wake_q);
2121        hb_waiters_dec(hb2);
2122
2123        /*
2124         * drop_futex_key_refs() must be called outside the spinlocks. During
2125         * the requeue we moved futex_q's from the hash bucket at key1 to the
2126         * one at key2 and updated their key pointer.  We no longer need to
2127         * hold the references to key1.
2128         */
2129        while (--drop_count >= 0)
2130                drop_futex_key_refs(&key1);
2131
2132out_put_keys:
2133        put_futex_key(&key2);
2134out_put_key1:
2135        put_futex_key(&key1);
2136out:
2137        return ret ? ret : task_count;
2138}
2139
2140/* The key must be already stored in q->key. */
2141static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2142        __acquires(&hb->lock)
2143{
2144        struct futex_hash_bucket *hb;
2145
2146        hb = hash_futex(&q->key);
2147
2148        /*
2149         * Increment the counter before taking the lock so that
2150         * a potential waker won't miss a to-be-slept task that is
2151         * waiting for the spinlock. This is safe as all queue_lock()
2152         * users end up calling queue_me(). Similarly, for housekeeping,
2153         * decrement the counter at queue_unlock() when some error has
2154         * occurred and we don't end up adding the task to the list.
2155         */
2156        hb_waiters_inc(hb);
2157
2158        q->lock_ptr = &hb->lock;
2159
2160        spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2161        return hb;
2162}
2163
2164static inline void
2165queue_unlock(struct futex_hash_bucket *hb)
2166        __releases(&hb->lock)
2167{
2168        spin_unlock(&hb->lock);
2169        hb_waiters_dec(hb);
2170}
2171
2172static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2173{
2174        int prio;
2175
2176        /*
2177         * The priority used to register this element is
2178         * - either the real thread-priority for the real-time threads
2179         * (i.e. threads with a priority lower than MAX_RT_PRIO)
2180         * - or MAX_RT_PRIO for non-RT threads.
2181         * Thus, all RT-threads are woken first in priority order, and
2182         * the others are woken last, in FIFO order.
2183         */
2184        prio = min(current->normal_prio, MAX_RT_PRIO);
2185
2186        plist_node_init(&q->list, prio);
2187        plist_add(&q->list, &hb->chain);
2188        q->task = current;
2189}
2190
2191/**
2192 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2193 * @q:  The futex_q to enqueue
2194 * @hb: The destination hash bucket
2195 *
2196 * The hb->lock must be held by the caller, and is released here. A call to
2197 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2198 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2199 * or nothing if the unqueue is done as part of the wake process and the unqueue
2200 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2201 * an example).
2202 */
2203static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2204        __releases(&hb->lock)
2205{
2206        __queue_me(q, hb);
2207        spin_unlock(&hb->lock);
2208}
2209
2210/**
2211 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2212 * @q:  The futex_q to unqueue
2213 *
2214 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2215 * be paired with exactly one earlier call to queue_me().
2216 *
2217 * Return:
2218 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2219 *  - 0 - if the futex_q was already removed by the waking thread
2220 */
2221static int unqueue_me(struct futex_q *q)
2222{
2223        spinlock_t *lock_ptr;
2224        int ret = 0;
2225
2226        /* In the common case we don't take the spinlock, which is nice. */
2227retry:
2228        /*
2229         * q->lock_ptr can change between this read and the following spin_lock.
2230         * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2231         * optimizing lock_ptr out of the logic below.
2232         */
2233        lock_ptr = READ_ONCE(q->lock_ptr);
2234        if (lock_ptr != NULL) {
2235                spin_lock(lock_ptr);
2236                /*
2237                 * q->lock_ptr can change between reading it and
2238                 * spin_lock(), causing us to take the wrong lock.  This
2239                 * corrects the race condition.
2240                 *
2241                 * Reasoning goes like this: if we have the wrong lock,
2242                 * q->lock_ptr must have changed (maybe several times)
2243                 * between reading it and the spin_lock().  It can
2244                 * change again after the spin_lock() but only if it was
2245                 * already changed before the spin_lock().  It cannot,
2246                 * however, change back to the original value.  Therefore
2247                 * we can detect whether we acquired the correct lock.
2248                 */
2249                if (unlikely(lock_ptr != q->lock_ptr)) {
2250                        spin_unlock(lock_ptr);
2251                        goto retry;
2252                }
2253                __unqueue_futex(q);
2254
2255                BUG_ON(q->pi_state);
2256
2257                spin_unlock(lock_ptr);
2258                ret = 1;
2259        }
2260
2261        drop_futex_key_refs(&q->key);
2262        return ret;
2263}
2264
2265/*
2266 * PI futexes can not be requeued and must remove themself from the
2267 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2268 * and dropped here.
2269 */
2270static void unqueue_me_pi(struct futex_q *q)
2271        __releases(q->lock_ptr)
2272{
2273        __unqueue_futex(q);
2274
2275        BUG_ON(!q->pi_state);
2276        put_pi_state(q->pi_state);
2277        q->pi_state = NULL;
2278
2279        spin_unlock(q->lock_ptr);
2280}
2281
2282static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2283                                struct task_struct *argowner)
2284{
2285        struct futex_pi_state *pi_state = q->pi_state;
2286        u32 uval, uninitialized_var(curval), newval;
2287        struct task_struct *oldowner, *newowner;
2288        u32 newtid;
2289        int ret;
2290
2291        lockdep_assert_held(q->lock_ptr);
2292
2293        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2294
2295        oldowner = pi_state->owner;
2296
2297        /*
2298         * We are here because either:
2299         *
2300         *  - we stole the lock and pi_state->owner needs updating to reflect
2301         *    that (@argowner == current),
2302         *
2303         * or:
2304         *
2305         *  - someone stole our lock and we need to fix things to point to the
2306         *    new owner (@argowner == NULL).
2307         *
2308         * Either way, we have to replace the TID in the user space variable.
2309         * This must be atomic as we have to preserve the owner died bit here.
2310         *
2311         * Note: We write the user space value _before_ changing the pi_state
2312         * because we can fault here. Imagine swapped out pages or a fork
2313         * that marked all the anonymous memory readonly for cow.
2314         *
2315         * Modifying pi_state _before_ the user space value would leave the
2316         * pi_state in an inconsistent state when we fault here, because we
2317         * need to drop the locks to handle the fault. This might be observed
2318         * in the PID check in lookup_pi_state.
2319         */
2320retry:
2321        if (!argowner) {
2322                if (oldowner != current) {
2323                        /*
2324                         * We raced against a concurrent self; things are
2325                         * already fixed up. Nothing to do.
2326                         */
2327                        ret = 0;
2328                        goto out_unlock;
2329                }
2330
2331                if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2332                        /* We got the lock after all, nothing to fix. */
2333                        ret = 0;
2334                        goto out_unlock;
2335                }
2336
2337                /*
2338                 * Since we just failed the trylock; there must be an owner.
2339                 */
2340                newowner = rt_mutex_owner(&pi_state->pi_mutex);
2341                BUG_ON(!newowner);
2342        } else {
2343                WARN_ON_ONCE(argowner != current);
2344                if (oldowner == current) {
2345                        /*
2346                         * We raced against a concurrent self; things are
2347                         * already fixed up. Nothing to do.
2348                         */
2349                        ret = 0;
2350                        goto out_unlock;
2351                }
2352                newowner = argowner;
2353        }
2354
2355        newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2356        /* Owner died? */
2357        if (!pi_state->owner)
2358                newtid |= FUTEX_OWNER_DIED;
2359
2360        if (get_futex_value_locked(&uval, uaddr))
2361                goto handle_fault;
2362
2363        for (;;) {
2364                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2365
2366                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2367                        goto handle_fault;
2368                if (curval == uval)
2369                        break;
2370                uval = curval;
2371        }
2372
2373        /*
2374         * We fixed up user space. Now we need to fix the pi_state
2375         * itself.
2376         */
2377        if (pi_state->owner != NULL) {
2378                raw_spin_lock(&pi_state->owner->pi_lock);
2379                WARN_ON(list_empty(&pi_state->list));
2380                list_del_init(&pi_state->list);
2381                raw_spin_unlock(&pi_state->owner->pi_lock);
2382        }
2383
2384        pi_state->owner = newowner;
2385
2386        raw_spin_lock(&newowner->pi_lock);
2387        WARN_ON(!list_empty(&pi_state->list));
2388        list_add(&pi_state->list, &newowner->pi_state_list);
2389        raw_spin_unlock(&newowner->pi_lock);
2390        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2391
2392        return 0;
2393
2394        /*
2395         * To handle the page fault we need to drop the locks here. That gives
2396         * the other task (either the highest priority waiter itself or the
2397         * task which stole the rtmutex) the chance to try the fixup of the
2398         * pi_state. So once we are back from handling the fault we need to
2399         * check the pi_state after reacquiring the locks and before trying to
2400         * do another fixup. When the fixup has been done already we simply
2401         * return.
2402         *
2403         * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2404         * drop hb->lock since the caller owns the hb -> futex_q relation.
2405         * Dropping the pi_mutex->wait_lock requires the state revalidate.
2406         */
2407handle_fault:
2408        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409        spin_unlock(q->lock_ptr);
2410
2411        ret = fault_in_user_writeable(uaddr);
2412
2413        spin_lock(q->lock_ptr);
2414        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2415
2416        /*
2417         * Check if someone else fixed it for us:
2418         */
2419        if (pi_state->owner != oldowner) {
2420                ret = 0;
2421                goto out_unlock;
2422        }
2423
2424        if (ret)
2425                goto out_unlock;
2426
2427        goto retry;
2428
2429out_unlock:
2430        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2431        return ret;
2432}
2433
2434static long futex_wait_restart(struct restart_block *restart);
2435
2436/**
2437 * fixup_owner() - Post lock pi_state and corner case management
2438 * @uaddr:      user address of the futex
2439 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2440 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2441 *
2442 * After attempting to lock an rt_mutex, this function is called to cleanup
2443 * the pi_state owner as well as handle race conditions that may allow us to
2444 * acquire the lock. Must be called with the hb lock held.
2445 *
2446 * Return:
2447 *  -  1 - success, lock taken;
2448 *  -  0 - success, lock not taken;
2449 *  - <0 - on error (-EFAULT)
2450 */
2451static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2452{
2453        int ret = 0;
2454
2455        if (locked) {
2456                /*
2457                 * Got the lock. We might not be the anticipated owner if we
2458                 * did a lock-steal - fix up the PI-state in that case:
2459                 *
2460                 * Speculative pi_state->owner read (we don't hold wait_lock);
2461                 * since we own the lock pi_state->owner == current is the
2462                 * stable state, anything else needs more attention.
2463                 */
2464                if (q->pi_state->owner != current)
2465                        ret = fixup_pi_state_owner(uaddr, q, current);
2466                goto out;
2467        }
2468
2469        /*
2470         * If we didn't get the lock; check if anybody stole it from us. In
2471         * that case, we need to fix up the uval to point to them instead of
2472         * us, otherwise bad things happen. [10]
2473         *
2474         * Another speculative read; pi_state->owner == current is unstable
2475         * but needs our attention.
2476         */
2477        if (q->pi_state->owner == current) {
2478                ret = fixup_pi_state_owner(uaddr, q, NULL);
2479                goto out;
2480        }
2481
2482        /*
2483         * Paranoia check. If we did not take the lock, then we should not be
2484         * the owner of the rt_mutex.
2485         */
2486        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2487                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2488                                "pi-state %p\n", ret,
2489                                q->pi_state->pi_mutex.owner,
2490                                q->pi_state->owner);
2491        }
2492
2493out:
2494        return ret ? ret : locked;
2495}
2496
2497/**
2498 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2499 * @hb:         the futex hash bucket, must be locked by the caller
2500 * @q:          the futex_q to queue up on
2501 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2502 */
2503static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2504                                struct hrtimer_sleeper *timeout)
2505{
2506        /*
2507         * The task state is guaranteed to be set before another task can
2508         * wake it. set_current_state() is implemented using smp_store_mb() and
2509         * queue_me() calls spin_unlock() upon completion, both serializing
2510         * access to the hash list and forcing another memory barrier.
2511         */
2512        set_current_state(TASK_INTERRUPTIBLE);
2513        queue_me(q, hb);
2514
2515        /* Arm the timer */
2516        if (timeout)
2517                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2518
2519        /*
2520         * If we have been removed from the hash list, then another task
2521         * has tried to wake us, and we can skip the call to schedule().
2522         */
2523        if (likely(!plist_node_empty(&q->list))) {
2524                /*
2525                 * If the timer has already expired, current will already be
2526                 * flagged for rescheduling. Only call schedule if there
2527                 * is no timeout, or if it has yet to expire.
2528                 */
2529                if (!timeout || timeout->task)
2530                        freezable_schedule();
2531        }
2532        __set_current_state(TASK_RUNNING);
2533}
2534
2535/**
2536 * futex_wait_setup() - Prepare to wait on a futex
2537 * @uaddr:      the futex userspace address
2538 * @val:        the expected value
2539 * @flags:      futex flags (FLAGS_SHARED, etc.)
2540 * @q:          the associated futex_q
2541 * @hb:         storage for hash_bucket pointer to be returned to caller
2542 *
2543 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2544 * compare it with the expected value.  Handle atomic faults internally.
2545 * Return with the hb lock held and a q.key reference on success, and unlocked
2546 * with no q.key reference on failure.
2547 *
2548 * Return:
2549 *  -  0 - uaddr contains val and hb has been locked;
2550 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2551 */
2552static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2553                           struct futex_q *q, struct futex_hash_bucket **hb)
2554{
2555        u32 uval;
2556        int ret;
2557
2558        /*
2559         * Access the page AFTER the hash-bucket is locked.
2560         * Order is important:
2561         *
2562         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2563         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2564         *
2565         * The basic logical guarantee of a futex is that it blocks ONLY
2566         * if cond(var) is known to be true at the time of blocking, for
2567         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2568         * would open a race condition where we could block indefinitely with
2569         * cond(var) false, which would violate the guarantee.
2570         *
2571         * On the other hand, we insert q and release the hash-bucket only
2572         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2573         * absorb a wakeup if *uaddr does not match the desired values
2574         * while the syscall executes.
2575         */
2576retry:
2577        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2578        if (unlikely(ret != 0))
2579                return ret;
2580
2581retry_private:
2582        *hb = queue_lock(q);
2583
2584        ret = get_futex_value_locked(&uval, uaddr);
2585
2586        if (ret) {
2587                queue_unlock(*hb);
2588
2589                ret = get_user(uval, uaddr);
2590                if (ret)
2591                        goto out;
2592
2593                if (!(flags & FLAGS_SHARED))
2594                        goto retry_private;
2595
2596                put_futex_key(&q->key);
2597                goto retry;
2598        }
2599
2600        if (uval != val) {
2601                queue_unlock(*hb);
2602                ret = -EWOULDBLOCK;
2603        }
2604
2605out:
2606        if (ret)
2607                put_futex_key(&q->key);
2608        return ret;
2609}
2610
2611static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2612                      ktime_t *abs_time, u32 bitset)
2613{
2614        struct hrtimer_sleeper timeout, *to = NULL;
2615        struct restart_block *restart;
2616        struct futex_hash_bucket *hb;
2617        struct futex_q q = futex_q_init;
2618        int ret;
2619
2620        if (!bitset)
2621                return -EINVAL;
2622        q.bitset = bitset;
2623
2624        if (abs_time) {
2625                to = &timeout;
2626
2627                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2628                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2629                                      HRTIMER_MODE_ABS);
2630                hrtimer_init_sleeper(to, current);
2631                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2632                                             current->timer_slack_ns);
2633        }
2634
2635retry:
2636        /*
2637         * Prepare to wait on uaddr. On success, holds hb lock and increments
2638         * q.key refs.
2639         */
2640        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2641        if (ret)
2642                goto out;
2643
2644        /* queue_me and wait for wakeup, timeout, or a signal. */
2645        futex_wait_queue_me(hb, &q, to);
2646
2647        /* If we were woken (and unqueued), we succeeded, whatever. */
2648        ret = 0;
2649        /* unqueue_me() drops q.key ref */
2650        if (!unqueue_me(&q))
2651                goto out;
2652        ret = -ETIMEDOUT;
2653        if (to && !to->task)
2654                goto out;
2655
2656        /*
2657         * We expect signal_pending(current), but we might be the
2658         * victim of a spurious wakeup as well.
2659         */
2660        if (!signal_pending(current))
2661                goto retry;
2662
2663        ret = -ERESTARTSYS;
2664        if (!abs_time)
2665                goto out;
2666
2667        restart = &current->restart_block;
2668        restart->fn = futex_wait_restart;
2669        restart->futex.uaddr = uaddr;
2670        restart->futex.val = val;
2671        restart->futex.time = *abs_time;
2672        restart->futex.bitset = bitset;
2673        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2674
2675        ret = -ERESTART_RESTARTBLOCK;
2676
2677out:
2678        if (to) {
2679                hrtimer_cancel(&to->timer);
2680                destroy_hrtimer_on_stack(&to->timer);
2681        }
2682        return ret;
2683}
2684
2685
2686static long futex_wait_restart(struct restart_block *restart)
2687{
2688        u32 __user *uaddr = restart->futex.uaddr;
2689        ktime_t t, *tp = NULL;
2690
2691        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2692                t = restart->futex.time;
2693                tp = &t;
2694        }
2695        restart->fn = do_no_restart_syscall;
2696
2697        return (long)futex_wait(uaddr, restart->futex.flags,
2698                                restart->futex.val, tp, restart->futex.bitset);
2699}
2700
2701
2702/*
2703 * Userspace tried a 0 -> TID atomic transition of the futex value
2704 * and failed. The kernel side here does the whole locking operation:
2705 * if there are waiters then it will block as a consequence of relying
2706 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2707 * a 0 value of the futex too.).
2708 *
2709 * Also serves as futex trylock_pi()'ing, and due semantics.
2710 */
2711static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2712                         ktime_t *time, int trylock)
2713{
2714        struct hrtimer_sleeper timeout, *to = NULL;
2715        struct futex_pi_state *pi_state = NULL;
2716        struct rt_mutex_waiter rt_waiter;
2717        struct futex_hash_bucket *hb;
2718        struct futex_q q = futex_q_init;
2719        int res, ret;
2720
2721        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2722                return -ENOSYS;
2723
2724        if (refill_pi_state_cache())
2725                return -ENOMEM;
2726
2727        if (time) {
2728                to = &timeout;
2729                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2730                                      HRTIMER_MODE_ABS);
2731                hrtimer_init_sleeper(to, current);
2732                hrtimer_set_expires(&to->timer, *time);
2733        }
2734
2735retry:
2736        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2737        if (unlikely(ret != 0))
2738                goto out;
2739
2740retry_private:
2741        hb = queue_lock(&q);
2742
2743        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2744        if (unlikely(ret)) {
2745                /*
2746                 * Atomic work succeeded and we got the lock,
2747                 * or failed. Either way, we do _not_ block.
2748                 */
2749                switch (ret) {
2750                case 1:
2751                        /* We got the lock. */
2752                        ret = 0;
2753                        goto out_unlock_put_key;
2754                case -EFAULT:
2755                        goto uaddr_faulted;
2756                case -EAGAIN:
2757                        /*
2758                         * Two reasons for this:
2759                         * - Task is exiting and we just wait for the
2760                         *   exit to complete.
2761                         * - The user space value changed.
2762                         */
2763                        queue_unlock(hb);
2764                        put_futex_key(&q.key);
2765                        cond_resched();
2766                        goto retry;
2767                default:
2768                        goto out_unlock_put_key;
2769                }
2770        }
2771
2772        WARN_ON(!q.pi_state);
2773
2774        /*
2775         * Only actually queue now that the atomic ops are done:
2776         */
2777        __queue_me(&q, hb);
2778
2779        if (trylock) {
2780                ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2781                /* Fixup the trylock return value: */
2782                ret = ret ? 0 : -EWOULDBLOCK;
2783                goto no_block;
2784        }
2785
2786        rt_mutex_init_waiter(&rt_waiter);
2787
2788        /*
2789         * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2790         * hold it while doing rt_mutex_start_proxy(), because then it will
2791         * include hb->lock in the blocking chain, even through we'll not in
2792         * fact hold it while blocking. This will lead it to report -EDEADLK
2793         * and BUG when futex_unlock_pi() interleaves with this.
2794         *
2795         * Therefore acquire wait_lock while holding hb->lock, but drop the
2796         * latter before calling rt_mutex_start_proxy_lock(). This still fully
2797         * serializes against futex_unlock_pi() as that does the exact same
2798         * lock handoff sequence.
2799         */
2800        raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2801        spin_unlock(q.lock_ptr);
2802        ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2803        raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2804
2805        if (ret) {
2806                if (ret == 1)
2807                        ret = 0;
2808
2809                spin_lock(q.lock_ptr);
2810                goto no_block;
2811        }
2812
2813
2814        if (unlikely(to))
2815                hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2816
2817        ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2818
2819        spin_lock(q.lock_ptr);
2820        /*
2821         * If we failed to acquire the lock (signal/timeout), we must
2822         * first acquire the hb->lock before removing the lock from the
2823         * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2824         * wait lists consistent.
2825         *
2826         * In particular; it is important that futex_unlock_pi() can not
2827         * observe this inconsistency.
2828         */
2829        if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2830                ret = 0;
2831
2832no_block:
2833        /*
2834         * Fixup the pi_state owner and possibly acquire the lock if we
2835         * haven't already.
2836         */
2837        res = fixup_owner(uaddr, &q, !ret);
2838        /*
2839         * If fixup_owner() returned an error, proprogate that.  If it acquired
2840         * the lock, clear our -ETIMEDOUT or -EINTR.
2841         */
2842        if (res)
2843                ret = (res < 0) ? res : 0;
2844
2845        /*
2846         * If fixup_owner() faulted and was unable to handle the fault, unlock
2847         * it and return the fault to userspace.
2848         */
2849        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2850                pi_state = q.pi_state;
2851                get_pi_state(pi_state);
2852        }
2853
2854        /* Unqueue and drop the lock */
2855        unqueue_me_pi(&q);
2856
2857        if (pi_state) {
2858                rt_mutex_futex_unlock(&pi_state->pi_mutex);
2859                put_pi_state(pi_state);
2860        }
2861
2862        goto out_put_key;
2863
2864out_unlock_put_key:
2865        queue_unlock(hb);
2866
2867out_put_key:
2868        put_futex_key(&q.key);
2869out:
2870        if (to) {
2871                hrtimer_cancel(&to->timer);
2872                destroy_hrtimer_on_stack(&to->timer);
2873        }
2874        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2875
2876uaddr_faulted:
2877        queue_unlock(hb);
2878
2879        ret = fault_in_user_writeable(uaddr);
2880        if (ret)
2881                goto out_put_key;
2882
2883        if (!(flags & FLAGS_SHARED))
2884                goto retry_private;
2885
2886        put_futex_key(&q.key);
2887        goto retry;
2888}
2889
2890/*
2891 * Userspace attempted a TID -> 0 atomic transition, and failed.
2892 * This is the in-kernel slowpath: we look up the PI state (if any),
2893 * and do the rt-mutex unlock.
2894 */
2895static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2896{
2897        u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2898        union futex_key key = FUTEX_KEY_INIT;
2899        struct futex_hash_bucket *hb;
2900        struct futex_q *top_waiter;
2901        int ret;
2902
2903        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2904                return -ENOSYS;
2905
2906retry:
2907        if (get_user(uval, uaddr))
2908                return -EFAULT;
2909        /*
2910         * We release only a lock we actually own:
2911         */
2912        if ((uval & FUTEX_TID_MASK) != vpid)
2913                return -EPERM;
2914
2915        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2916        if (ret)
2917                return ret;
2918
2919        hb = hash_futex(&key);
2920        spin_lock(&hb->lock);
2921
2922        /*
2923         * Check waiters first. We do not trust user space values at
2924         * all and we at least want to know if user space fiddled
2925         * with the futex value instead of blindly unlocking.
2926         */
2927        top_waiter = futex_top_waiter(hb, &key);
2928        if (top_waiter) {
2929                struct futex_pi_state *pi_state = top_waiter->pi_state;
2930
2931                ret = -EINVAL;
2932                if (!pi_state)
2933                        goto out_unlock;
2934
2935                /*
2936                 * If current does not own the pi_state then the futex is
2937                 * inconsistent and user space fiddled with the futex value.
2938                 */
2939                if (pi_state->owner != current)
2940                        goto out_unlock;
2941
2942                get_pi_state(pi_state);
2943                /*
2944                 * By taking wait_lock while still holding hb->lock, we ensure
2945                 * there is no point where we hold neither; and therefore
2946                 * wake_futex_pi() must observe a state consistent with what we
2947                 * observed.
2948                 */
2949                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2950                spin_unlock(&hb->lock);
2951
2952                /* drops pi_state->pi_mutex.wait_lock */
2953                ret = wake_futex_pi(uaddr, uval, pi_state);
2954
2955                put_pi_state(pi_state);
2956
2957                /*
2958                 * Success, we're done! No tricky corner cases.
2959                 */
2960                if (!ret)
2961                        goto out_putkey;
2962                /*
2963                 * The atomic access to the futex value generated a
2964                 * pagefault, so retry the user-access and the wakeup:
2965                 */
2966                if (ret == -EFAULT)
2967                        goto pi_faulted;
2968                /*
2969                 * A unconditional UNLOCK_PI op raced against a waiter
2970                 * setting the FUTEX_WAITERS bit. Try again.
2971                 */
2972                if (ret == -EAGAIN) {
2973                        put_futex_key(&key);
2974                        goto retry;
2975                }
2976                /*
2977                 * wake_futex_pi has detected invalid state. Tell user
2978                 * space.
2979                 */
2980                goto out_putkey;
2981        }
2982
2983        /*
2984         * We have no kernel internal state, i.e. no waiters in the
2985         * kernel. Waiters which are about to queue themselves are stuck
2986         * on hb->lock. So we can safely ignore them. We do neither
2987         * preserve the WAITERS bit not the OWNER_DIED one. We are the
2988         * owner.
2989         */
2990        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2991                spin_unlock(&hb->lock);
2992                goto pi_faulted;
2993        }
2994
2995        /*
2996         * If uval has changed, let user space handle it.
2997         */
2998        ret = (curval == uval) ? 0 : -EAGAIN;
2999
3000out_unlock:
3001        spin_unlock(&hb->lock);
3002out_putkey:
3003        put_futex_key(&key);
3004        return ret;
3005
3006pi_faulted:
3007        put_futex_key(&key);
3008
3009        ret = fault_in_user_writeable(uaddr);
3010        if (!ret)
3011                goto retry;
3012
3013        return ret;
3014}
3015
3016/**
3017 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3018 * @hb:         the hash_bucket futex_q was original enqueued on
3019 * @q:          the futex_q woken while waiting to be requeued
3020 * @key2:       the futex_key of the requeue target futex
3021 * @timeout:    the timeout associated with the wait (NULL if none)
3022 *
3023 * Detect if the task was woken on the initial futex as opposed to the requeue
3024 * target futex.  If so, determine if it was a timeout or a signal that caused
3025 * the wakeup and return the appropriate error code to the caller.  Must be
3026 * called with the hb lock held.
3027 *
3028 * Return:
3029 *  -  0 = no early wakeup detected;
3030 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3031 */
3032static inline
3033int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3034                                   struct futex_q *q, union futex_key *key2,
3035                                   struct hrtimer_sleeper *timeout)
3036{
3037        int ret = 0;
3038
3039        /*
3040         * With the hb lock held, we avoid races while we process the wakeup.
3041         * We only need to hold hb (and not hb2) to ensure atomicity as the
3042         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3043         * It can't be requeued from uaddr2 to something else since we don't
3044         * support a PI aware source futex for requeue.
3045         */
3046        if (!match_futex(&q->key, key2)) {
3047                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3048                /*
3049                 * We were woken prior to requeue by a timeout or a signal.
3050                 * Unqueue the futex_q and determine which it was.
3051                 */
3052                plist_del(&q->list, &hb->chain);
3053                hb_waiters_dec(hb);
3054
3055                /* Handle spurious wakeups gracefully */
3056                ret = -EWOULDBLOCK;
3057                if (timeout && !timeout->task)
3058                        ret = -ETIMEDOUT;
3059                else if (signal_pending(current))
3060                        ret = -ERESTARTNOINTR;
3061        }
3062        return ret;
3063}
3064
3065/**
3066 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3067 * @uaddr:      the futex we initially wait on (non-pi)
3068 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3069 *              the same type, no requeueing from private to shared, etc.
3070 * @val:        the expected value of uaddr
3071 * @abs_time:   absolute timeout
3072 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3073 * @uaddr2:     the pi futex we will take prior to returning to user-space
3074 *
3075 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3076 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3077 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3078 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3079 * without one, the pi logic would not know which task to boost/deboost, if
3080 * there was a need to.
3081 *
3082 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3083 * via the following--
3084 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3085 * 2) wakeup on uaddr2 after a requeue
3086 * 3) signal
3087 * 4) timeout
3088 *
3089 * If 3, cleanup and return -ERESTARTNOINTR.
3090 *
3091 * If 2, we may then block on trying to take the rt_mutex and return via:
3092 * 5) successful lock
3093 * 6) signal
3094 * 7) timeout
3095 * 8) other lock acquisition failure
3096 *
3097 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3098 *
3099 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3100 *
3101 * Return:
3102 *  -  0 - On success;
3103 *  - <0 - On error
3104 */
3105static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3106                                 u32 val, ktime_t *abs_time, u32 bitset,
3107                                 u32 __user *uaddr2)
3108{
3109        struct hrtimer_sleeper timeout, *to = NULL;
3110        struct futex_pi_state *pi_state = NULL;
3111        struct rt_mutex_waiter rt_waiter;
3112        struct futex_hash_bucket *hb;
3113        union futex_key key2 = FUTEX_KEY_INIT;
3114        struct futex_q q = futex_q_init;
3115        int res, ret;
3116
3117        if (!IS_ENABLED(CONFIG_FUTEX_PI))
3118                return -ENOSYS;
3119
3120        if (uaddr == uaddr2)
3121                return -EINVAL;
3122
3123        if (!bitset)
3124                return -EINVAL;
3125
3126        if (abs_time) {
3127                to = &timeout;
3128                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3129                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
3130                                      HRTIMER_MODE_ABS);
3131                hrtimer_init_sleeper(to, current);
3132                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3133                                             current->timer_slack_ns);
3134        }
3135
3136        /*
3137         * The waiter is allocated on our stack, manipulated by the requeue
3138         * code while we sleep on uaddr.
3139         */
3140        rt_mutex_init_waiter(&rt_waiter);
3141
3142        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3143        if (unlikely(ret != 0))
3144                goto out;
3145
3146        q.bitset = bitset;
3147        q.rt_waiter = &rt_waiter;
3148        q.requeue_pi_key = &key2;
3149
3150        /*
3151         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3152         * count.
3153         */
3154        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3155        if (ret)
3156                goto out_key2;
3157
3158        /*
3159         * The check above which compares uaddrs is not sufficient for
3160         * shared futexes. We need to compare the keys:
3161         */
3162        if (match_futex(&q.key, &key2)) {
3163                queue_unlock(hb);
3164                ret = -EINVAL;
3165                goto out_put_keys;
3166        }
3167
3168        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3169        futex_wait_queue_me(hb, &q, to);
3170
3171        spin_lock(&hb->lock);
3172        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3173        spin_unlock(&hb->lock);
3174        if (ret)
3175                goto out_put_keys;
3176
3177        /*
3178         * In order for us to be here, we know our q.key == key2, and since
3179         * we took the hb->lock above, we also know that futex_requeue() has
3180         * completed and we no longer have to concern ourselves with a wakeup
3181         * race with the atomic proxy lock acquisition by the requeue code. The
3182         * futex_requeue dropped our key1 reference and incremented our key2
3183         * reference count.
3184         */
3185
3186        /* Check if the requeue code acquired the second futex for us. */
3187        if (!q.rt_waiter) {
3188                /*
3189                 * Got the lock. We might not be the anticipated owner if we
3190                 * did a lock-steal - fix up the PI-state in that case.
3191                 */
3192                if (q.pi_state && (q.pi_state->owner != current)) {
3193                        spin_lock(q.lock_ptr);
3194                        ret = fixup_pi_state_owner(uaddr2, &q, current);
3195                        if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3196                                pi_state = q.pi_state;
3197                                get_pi_state(pi_state);
3198                        }
3199                        /*
3200                         * Drop the reference to the pi state which
3201                         * the requeue_pi() code acquired for us.
3202                         */
3203                        put_pi_state(q.pi_state);
3204                        spin_unlock(q.lock_ptr);
3205                }
3206        } else {
3207                struct rt_mutex *pi_mutex;
3208
3209                /*
3210                 * We have been woken up by futex_unlock_pi(), a timeout, or a
3211                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3212                 * the pi_state.
3213                 */
3214                WARN_ON(!q.pi_state);
3215                pi_mutex = &q.pi_state->pi_mutex;
3216                ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3217
3218                spin_lock(q.lock_ptr);
3219                if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3220                        ret = 0;
3221
3222                debug_rt_mutex_free_waiter(&rt_waiter);
3223                /*
3224                 * Fixup the pi_state owner and possibly acquire the lock if we
3225                 * haven't already.
3226                 */
3227                res = fixup_owner(uaddr2, &q, !ret);
3228                /*
3229                 * If fixup_owner() returned an error, proprogate that.  If it
3230                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3231                 */
3232                if (res)
3233                        ret = (res < 0) ? res : 0;
3234
3235                /*
3236                 * If fixup_pi_state_owner() faulted and was unable to handle
3237                 * the fault, unlock the rt_mutex and return the fault to
3238                 * userspace.
3239                 */
3240                if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3241                        pi_state = q.pi_state;
3242                        get_pi_state(pi_state);
3243                }
3244
3245                /* Unqueue and drop the lock. */
3246                unqueue_me_pi(&q);
3247        }
3248
3249        if (pi_state) {
3250                rt_mutex_futex_unlock(&pi_state->pi_mutex);
3251                put_pi_state(pi_state);
3252        }
3253
3254        if (ret == -EINTR) {
3255                /*
3256                 * We've already been requeued, but cannot restart by calling
3257                 * futex_lock_pi() directly. We could restart this syscall, but
3258                 * it would detect that the user space "val" changed and return
3259                 * -EWOULDBLOCK.  Save the overhead of the restart and return
3260                 * -EWOULDBLOCK directly.
3261                 */
3262                ret = -EWOULDBLOCK;
3263        }
3264
3265out_put_keys:
3266        put_futex_key(&q.key);
3267out_key2:
3268        put_futex_key(&key2);
3269
3270out:
3271        if (to) {
3272                hrtimer_cancel(&to->timer);
3273                destroy_hrtimer_on_stack(&to->timer);
3274        }
3275        return ret;
3276}
3277
3278/*
3279 * Support for robust futexes: the kernel cleans up held futexes at
3280 * thread exit time.
3281 *
3282 * Implementation: user-space maintains a per-thread list of locks it
3283 * is holding. Upon do_exit(), the kernel carefully walks this list,
3284 * and marks all locks that are owned by this thread with the
3285 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3286 * always manipulated with the lock held, so the list is private and
3287 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3288 * field, to allow the kernel to clean up if the thread dies after
3289 * acquiring the lock, but just before it could have added itself to
3290 * the list. There can only be one such pending lock.
3291 */
3292
3293/**
3294 * sys_set_robust_list() - Set the robust-futex list head of a task
3295 * @head:       pointer to the list-head
3296 * @len:        length of the list-head, as userspace expects
3297 */
3298SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3299                size_t, len)
3300{
3301        if (!futex_cmpxchg_enabled)
3302                return -ENOSYS;
3303        /*
3304         * The kernel knows only one size for now:
3305         */
3306        if (unlikely(len != sizeof(*head)))
3307                return -EINVAL;
3308
3309        current->robust_list = head;
3310
3311        return 0;
3312}
3313
3314/**
3315 * sys_get_robust_list() - Get the robust-futex list head of a task
3316 * @pid:        pid of the process [zero for current task]
3317 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3318 * @len_ptr:    pointer to a length field, the kernel fills in the header size
3319 */
3320SYSCALL_DEFINE3(get_robust_list, int, pid,
3321                struct robust_list_head __user * __user *, head_ptr,
3322                size_t __user *, len_ptr)
3323{
3324        struct robust_list_head __user *head;
3325        unsigned long ret;
3326        struct task_struct *p;
3327
3328        if (!futex_cmpxchg_enabled)
3329                return -ENOSYS;
3330
3331        rcu_read_lock();
3332
3333        ret = -ESRCH;
3334        if (!pid)
3335                p = current;
3336        else {
3337                p = find_task_by_vpid(pid);
3338                if (!p)
3339                        goto err_unlock;
3340        }
3341
3342        ret = -EPERM;
3343        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3344                goto err_unlock;
3345
3346        head = p->robust_list;
3347        rcu_read_unlock();
3348
3349        if (put_user(sizeof(*head), len_ptr))
3350                return -EFAULT;
3351        return put_user(head, head_ptr);
3352
3353err_unlock:
3354        rcu_read_unlock();
3355
3356        return ret;
3357}
3358
3359/*
3360 * Process a futex-list entry, check whether it's owned by the
3361 * dying task, and do notification if so:
3362 */
3363int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3364{
3365        u32 uval, uninitialized_var(nval), mval;
3366
3367retry:
3368        if (get_user(uval, uaddr))
3369                return -1;
3370
3371        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3372                /*
3373                 * Ok, this dying thread is truly holding a futex
3374                 * of interest. Set the OWNER_DIED bit atomically
3375                 * via cmpxchg, and if the value had FUTEX_WAITERS
3376                 * set, wake up a waiter (if any). (We have to do a
3377                 * futex_wake() even if OWNER_DIED is already set -
3378                 * to handle the rare but possible case of recursive
3379                 * thread-death.) The rest of the cleanup is done in
3380                 * userspace.
3381                 */
3382                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3383                /*
3384                 * We are not holding a lock here, but we want to have
3385                 * the pagefault_disable/enable() protection because
3386                 * we want to handle the fault gracefully. If the
3387                 * access fails we try to fault in the futex with R/W
3388                 * verification via get_user_pages. get_user() above
3389                 * does not guarantee R/W access. If that fails we
3390                 * give up and leave the futex locked.
3391                 */
3392                if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3393                        if (fault_in_user_writeable(uaddr))
3394                                return -1;
3395                        goto retry;
3396                }
3397                if (nval != uval)
3398                        goto retry;
3399
3400                /*
3401                 * Wake robust non-PI futexes here. The wakeup of
3402                 * PI futexes happens in exit_pi_state():
3403                 */
3404                if (!pi && (uval & FUTEX_WAITERS))
3405                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3406        }
3407        return 0;
3408}
3409
3410/*
3411 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3412 */
3413static inline int fetch_robust_entry(struct robust_list __user **entry,
3414                                     struct robust_list __user * __user *head,
3415                                     unsigned int *pi)
3416{
3417        unsigned long uentry;
3418
3419        if (get_user(uentry, (unsigned long __user *)head))
3420                return -EFAULT;
3421
3422        *entry = (void __user *)(uentry & ~1UL);
3423        *pi = uentry & 1;
3424
3425        return 0;
3426}
3427
3428/*
3429 * Walk curr->robust_list (very carefully, it's a userspace list!)
3430 * and mark any locks found there dead, and notify any waiters.
3431 *
3432 * We silently return on any sign of list-walking problem.
3433 */
3434void exit_robust_list(struct task_struct *curr)
3435{
3436        struct robust_list_head __user *head = curr->robust_list;
3437        struct robust_list __user *entry, *next_entry, *pending;
3438        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3439        unsigned int uninitialized_var(next_pi);
3440        unsigned long futex_offset;
3441        int rc;
3442
3443        if (!futex_cmpxchg_enabled)
3444                return;
3445
3446        /*
3447         * Fetch the list head (which was registered earlier, via
3448         * sys_set_robust_list()):
3449         */
3450        if (fetch_robust_entry(&entry, &head->list.next, &pi))
3451                return;
3452        /*
3453         * Fetch the relative futex offset:
3454         */
3455        if (get_user(futex_offset, &head->futex_offset))
3456                return;
3457        /*
3458         * Fetch any possibly pending lock-add first, and handle it
3459         * if it exists:
3460         */
3461        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3462                return;
3463
3464        next_entry = NULL;      /* avoid warning with gcc */
3465        while (entry != &head->list) {
3466                /*
3467                 * Fetch the next entry in the list before calling
3468                 * handle_futex_death:
3469                 */
3470                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3471                /*
3472                 * A pending lock might already be on the list, so
3473                 * don't process it twice:
3474                 */
3475                if (entry != pending)
3476                        if (handle_futex_death((void __user *)entry + futex_offset,
3477                                                curr, pi))
3478                                return;
3479                if (rc)
3480                        return;
3481                entry = next_entry;
3482                pi = next_pi;
3483                /*
3484                 * Avoid excessively long or circular lists:
3485                 */
3486                if (!--limit)
3487                        break;
3488
3489                cond_resched();
3490        }
3491
3492        if (pending)
3493                handle_futex_death((void __user *)pending + futex_offset,
3494                                   curr, pip);
3495}
3496
3497long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3498                u32 __user *uaddr2, u32 val2, u32 val3)
3499{
3500        int cmd = op & FUTEX_CMD_MASK;
3501        unsigned int flags = 0;
3502
3503        if (!(op & FUTEX_PRIVATE_FLAG))
3504                flags |= FLAGS_SHARED;
3505
3506        if (op & FUTEX_CLOCK_REALTIME) {
3507                flags |= FLAGS_CLOCKRT;
3508                if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3509                    cmd != FUTEX_WAIT_REQUEUE_PI)
3510                        return -ENOSYS;
3511        }
3512
3513        switch (cmd) {
3514        case FUTEX_LOCK_PI:
3515        case FUTEX_UNLOCK_PI:
3516        case FUTEX_TRYLOCK_PI:
3517        case FUTEX_WAIT_REQUEUE_PI:
3518        case FUTEX_CMP_REQUEUE_PI:
3519                if (!futex_cmpxchg_enabled)
3520                        return -ENOSYS;
3521        }
3522
3523        switch (cmd) {
3524        case FUTEX_WAIT:
3525                val3 = FUTEX_BITSET_MATCH_ANY;
3526        case FUTEX_WAIT_BITSET:
3527                return futex_wait(uaddr, flags, val, timeout, val3);
3528        case FUTEX_WAKE:
3529                val3 = FUTEX_BITSET_MATCH_ANY;
3530        case FUTEX_WAKE_BITSET:
3531                return futex_wake(uaddr, flags, val, val3);
3532        case FUTEX_REQUEUE:
3533                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3534        case FUTEX_CMP_REQUEUE:
3535                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3536        case FUTEX_WAKE_OP:
3537                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3538        case FUTEX_LOCK_PI:
3539                return futex_lock_pi(uaddr, flags, timeout, 0);
3540        case FUTEX_UNLOCK_PI:
3541                return futex_unlock_pi(uaddr, flags);
3542        case FUTEX_TRYLOCK_PI:
3543                return futex_lock_pi(uaddr, flags, NULL, 1);
3544        case FUTEX_WAIT_REQUEUE_PI:
3545                val3 = FUTEX_BITSET_MATCH_ANY;
3546                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3547                                             uaddr2);
3548        case FUTEX_CMP_REQUEUE_PI:
3549                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3550        }
3551        return -ENOSYS;
3552}
3553
3554
3555SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3556                struct timespec __user *, utime, u32 __user *, uaddr2,
3557                u32, val3)
3558{
3559        struct timespec ts;
3560        ktime_t t, *tp = NULL;
3561        u32 val2 = 0;
3562        int cmd = op & FUTEX_CMD_MASK;
3563
3564        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3565                      cmd == FUTEX_WAIT_BITSET ||
3566                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3567                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3568                        return -EFAULT;
3569                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3570                        return -EFAULT;
3571                if (!timespec_valid(&ts))
3572                        return -EINVAL;
3573
3574                t = timespec_to_ktime(ts);
3575                if (cmd == FUTEX_WAIT)
3576                        t = ktime_add_safe(ktime_get(), t);
3577                tp = &t;
3578        }
3579        /*
3580         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3581         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3582         */
3583        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3584            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3585                val2 = (u32) (unsigned long) utime;
3586
3587        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3588}
3589
3590static void __init futex_detect_cmpxchg(void)
3591{
3592#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3593        u32 curval;
3594
3595        /*
3596         * This will fail and we want it. Some arch implementations do
3597         * runtime detection of the futex_atomic_cmpxchg_inatomic()
3598         * functionality. We want to know that before we call in any
3599         * of the complex code paths. Also we want to prevent
3600         * registration of robust lists in that case. NULL is
3601         * guaranteed to fault and we get -EFAULT on functional
3602         * implementation, the non-functional ones will return
3603         * -ENOSYS.
3604         */
3605        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3606                futex_cmpxchg_enabled = 1;
3607#endif
3608}
3609
3610static int __init futex_init(void)
3611{
3612        unsigned int futex_shift;
3613        unsigned long i;
3614
3615#if CONFIG_BASE_SMALL
3616        futex_hashsize = 16;
3617#else
3618        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3619#endif
3620
3621        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3622                                               futex_hashsize, 0,
3623                                               futex_hashsize < 256 ? HASH_SMALL : 0,
3624                                               &futex_shift, NULL,
3625                                               futex_hashsize, futex_hashsize);
3626        futex_hashsize = 1UL << futex_shift;
3627
3628        futex_detect_cmpxchg();
3629
3630        for (i = 0; i < futex_hashsize; i++) {
3631                atomic_set(&futex_queues[i].waiters, 0);
3632                plist_head_init(&futex_queues[i].chain);
3633                spin_lock_init(&futex_queues[i].lock);
3634        }
3635
3636        return 0;
3637}
3638core_initcall(futex_init);
3639