linux/kernel/irq/manage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/sched/rt.h>
  19#include <linux/sched/task.h>
  20#include <uapi/linux/sched/types.h>
  21#include <linux/task_work.h>
  22
  23#include "internals.h"
  24
  25#ifdef CONFIG_IRQ_FORCED_THREADING
  26__read_mostly bool force_irqthreads;
  27
  28static int __init setup_forced_irqthreads(char *arg)
  29{
  30        force_irqthreads = true;
  31        return 0;
  32}
  33early_param("threadirqs", setup_forced_irqthreads);
  34#endif
  35
  36static void __synchronize_hardirq(struct irq_desc *desc)
  37{
  38        bool inprogress;
  39
  40        do {
  41                unsigned long flags;
  42
  43                /*
  44                 * Wait until we're out of the critical section.  This might
  45                 * give the wrong answer due to the lack of memory barriers.
  46                 */
  47                while (irqd_irq_inprogress(&desc->irq_data))
  48                        cpu_relax();
  49
  50                /* Ok, that indicated we're done: double-check carefully. */
  51                raw_spin_lock_irqsave(&desc->lock, flags);
  52                inprogress = irqd_irq_inprogress(&desc->irq_data);
  53                raw_spin_unlock_irqrestore(&desc->lock, flags);
  54
  55                /* Oops, that failed? */
  56        } while (inprogress);
  57}
  58
  59/**
  60 *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  61 *      @irq: interrupt number to wait for
  62 *
  63 *      This function waits for any pending hard IRQ handlers for this
  64 *      interrupt to complete before returning. If you use this
  65 *      function while holding a resource the IRQ handler may need you
  66 *      will deadlock. It does not take associated threaded handlers
  67 *      into account.
  68 *
  69 *      Do not use this for shutdown scenarios where you must be sure
  70 *      that all parts (hardirq and threaded handler) have completed.
  71 *
  72 *      Returns: false if a threaded handler is active.
  73 *
  74 *      This function may be called - with care - from IRQ context.
  75 */
  76bool synchronize_hardirq(unsigned int irq)
  77{
  78        struct irq_desc *desc = irq_to_desc(irq);
  79
  80        if (desc) {
  81                __synchronize_hardirq(desc);
  82                return !atomic_read(&desc->threads_active);
  83        }
  84
  85        return true;
  86}
  87EXPORT_SYMBOL(synchronize_hardirq);
  88
  89/**
  90 *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
  91 *      @irq: interrupt number to wait for
  92 *
  93 *      This function waits for any pending IRQ handlers for this interrupt
  94 *      to complete before returning. If you use this function while
  95 *      holding a resource the IRQ handler may need you will deadlock.
  96 *
  97 *      This function may be called - with care - from IRQ context.
  98 */
  99void synchronize_irq(unsigned int irq)
 100{
 101        struct irq_desc *desc = irq_to_desc(irq);
 102
 103        if (desc) {
 104                __synchronize_hardirq(desc);
 105                /*
 106                 * We made sure that no hardirq handler is
 107                 * running. Now verify that no threaded handlers are
 108                 * active.
 109                 */
 110                wait_event(desc->wait_for_threads,
 111                           !atomic_read(&desc->threads_active));
 112        }
 113}
 114EXPORT_SYMBOL(synchronize_irq);
 115
 116#ifdef CONFIG_SMP
 117cpumask_var_t irq_default_affinity;
 118
 119static bool __irq_can_set_affinity(struct irq_desc *desc)
 120{
 121        if (!desc || !irqd_can_balance(&desc->irq_data) ||
 122            !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 123                return false;
 124        return true;
 125}
 126
 127/**
 128 *      irq_can_set_affinity - Check if the affinity of a given irq can be set
 129 *      @irq:           Interrupt to check
 130 *
 131 */
 132int irq_can_set_affinity(unsigned int irq)
 133{
 134        return __irq_can_set_affinity(irq_to_desc(irq));
 135}
 136
 137/**
 138 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 139 * @irq:        Interrupt to check
 140 *
 141 * Like irq_can_set_affinity() above, but additionally checks for the
 142 * AFFINITY_MANAGED flag.
 143 */
 144bool irq_can_set_affinity_usr(unsigned int irq)
 145{
 146        struct irq_desc *desc = irq_to_desc(irq);
 147
 148        return __irq_can_set_affinity(desc) &&
 149                !irqd_affinity_is_managed(&desc->irq_data);
 150}
 151
 152/**
 153 *      irq_set_thread_affinity - Notify irq threads to adjust affinity
 154 *      @desc:          irq descriptor which has affitnity changed
 155 *
 156 *      We just set IRQTF_AFFINITY and delegate the affinity setting
 157 *      to the interrupt thread itself. We can not call
 158 *      set_cpus_allowed_ptr() here as we hold desc->lock and this
 159 *      code can be called from hard interrupt context.
 160 */
 161void irq_set_thread_affinity(struct irq_desc *desc)
 162{
 163        struct irqaction *action;
 164
 165        for_each_action_of_desc(desc, action)
 166                if (action->thread)
 167                        set_bit(IRQTF_AFFINITY, &action->thread_flags);
 168}
 169
 170static void irq_validate_effective_affinity(struct irq_data *data)
 171{
 172#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 173        const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 174        struct irq_chip *chip = irq_data_get_irq_chip(data);
 175
 176        if (!cpumask_empty(m))
 177                return;
 178        pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 179                     chip->name, data->irq);
 180#endif
 181}
 182
 183int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 184                        bool force)
 185{
 186        struct irq_desc *desc = irq_data_to_desc(data);
 187        struct irq_chip *chip = irq_data_get_irq_chip(data);
 188        int ret;
 189
 190        if (!chip || !chip->irq_set_affinity)
 191                return -EINVAL;
 192
 193        ret = chip->irq_set_affinity(data, mask, force);
 194        switch (ret) {
 195        case IRQ_SET_MASK_OK:
 196        case IRQ_SET_MASK_OK_DONE:
 197                cpumask_copy(desc->irq_common_data.affinity, mask);
 198        case IRQ_SET_MASK_OK_NOCOPY:
 199                irq_validate_effective_affinity(data);
 200                irq_set_thread_affinity(desc);
 201                ret = 0;
 202        }
 203
 204        return ret;
 205}
 206
 207int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 208                            bool force)
 209{
 210        struct irq_chip *chip = irq_data_get_irq_chip(data);
 211        struct irq_desc *desc = irq_data_to_desc(data);
 212        int ret = 0;
 213
 214        if (!chip || !chip->irq_set_affinity)
 215                return -EINVAL;
 216
 217        if (irq_can_move_pcntxt(data)) {
 218                ret = irq_do_set_affinity(data, mask, force);
 219        } else {
 220                irqd_set_move_pending(data);
 221                irq_copy_pending(desc, mask);
 222        }
 223
 224        if (desc->affinity_notify) {
 225                kref_get(&desc->affinity_notify->kref);
 226                schedule_work(&desc->affinity_notify->work);
 227        }
 228        irqd_set(data, IRQD_AFFINITY_SET);
 229
 230        return ret;
 231}
 232
 233int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 234{
 235        struct irq_desc *desc = irq_to_desc(irq);
 236        unsigned long flags;
 237        int ret;
 238
 239        if (!desc)
 240                return -EINVAL;
 241
 242        raw_spin_lock_irqsave(&desc->lock, flags);
 243        ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 244        raw_spin_unlock_irqrestore(&desc->lock, flags);
 245        return ret;
 246}
 247
 248int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 249{
 250        unsigned long flags;
 251        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 252
 253        if (!desc)
 254                return -EINVAL;
 255        desc->affinity_hint = m;
 256        irq_put_desc_unlock(desc, flags);
 257        /* set the initial affinity to prevent every interrupt being on CPU0 */
 258        if (m)
 259                __irq_set_affinity(irq, m, false);
 260        return 0;
 261}
 262EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 263
 264static void irq_affinity_notify(struct work_struct *work)
 265{
 266        struct irq_affinity_notify *notify =
 267                container_of(work, struct irq_affinity_notify, work);
 268        struct irq_desc *desc = irq_to_desc(notify->irq);
 269        cpumask_var_t cpumask;
 270        unsigned long flags;
 271
 272        if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 273                goto out;
 274
 275        raw_spin_lock_irqsave(&desc->lock, flags);
 276        if (irq_move_pending(&desc->irq_data))
 277                irq_get_pending(cpumask, desc);
 278        else
 279                cpumask_copy(cpumask, desc->irq_common_data.affinity);
 280        raw_spin_unlock_irqrestore(&desc->lock, flags);
 281
 282        notify->notify(notify, cpumask);
 283
 284        free_cpumask_var(cpumask);
 285out:
 286        kref_put(&notify->kref, notify->release);
 287}
 288
 289/**
 290 *      irq_set_affinity_notifier - control notification of IRQ affinity changes
 291 *      @irq:           Interrupt for which to enable/disable notification
 292 *      @notify:        Context for notification, or %NULL to disable
 293 *                      notification.  Function pointers must be initialised;
 294 *                      the other fields will be initialised by this function.
 295 *
 296 *      Must be called in process context.  Notification may only be enabled
 297 *      after the IRQ is allocated and must be disabled before the IRQ is
 298 *      freed using free_irq().
 299 */
 300int
 301irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 302{
 303        struct irq_desc *desc = irq_to_desc(irq);
 304        struct irq_affinity_notify *old_notify;
 305        unsigned long flags;
 306
 307        /* The release function is promised process context */
 308        might_sleep();
 309
 310        if (!desc)
 311                return -EINVAL;
 312
 313        /* Complete initialisation of *notify */
 314        if (notify) {
 315                notify->irq = irq;
 316                kref_init(&notify->kref);
 317                INIT_WORK(&notify->work, irq_affinity_notify);
 318        }
 319
 320        raw_spin_lock_irqsave(&desc->lock, flags);
 321        old_notify = desc->affinity_notify;
 322        desc->affinity_notify = notify;
 323        raw_spin_unlock_irqrestore(&desc->lock, flags);
 324
 325        if (old_notify)
 326                kref_put(&old_notify->kref, old_notify->release);
 327
 328        return 0;
 329}
 330EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 331
 332#ifndef CONFIG_AUTO_IRQ_AFFINITY
 333/*
 334 * Generic version of the affinity autoselector.
 335 */
 336int irq_setup_affinity(struct irq_desc *desc)
 337{
 338        struct cpumask *set = irq_default_affinity;
 339        int ret, node = irq_desc_get_node(desc);
 340        static DEFINE_RAW_SPINLOCK(mask_lock);
 341        static struct cpumask mask;
 342
 343        /* Excludes PER_CPU and NO_BALANCE interrupts */
 344        if (!__irq_can_set_affinity(desc))
 345                return 0;
 346
 347        raw_spin_lock(&mask_lock);
 348        /*
 349         * Preserve the managed affinity setting and a userspace affinity
 350         * setup, but make sure that one of the targets is online.
 351         */
 352        if (irqd_affinity_is_managed(&desc->irq_data) ||
 353            irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 354                if (cpumask_intersects(desc->irq_common_data.affinity,
 355                                       cpu_online_mask))
 356                        set = desc->irq_common_data.affinity;
 357                else
 358                        irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 359        }
 360
 361        cpumask_and(&mask, cpu_online_mask, set);
 362        if (node != NUMA_NO_NODE) {
 363                const struct cpumask *nodemask = cpumask_of_node(node);
 364
 365                /* make sure at least one of the cpus in nodemask is online */
 366                if (cpumask_intersects(&mask, nodemask))
 367                        cpumask_and(&mask, &mask, nodemask);
 368        }
 369        ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 370        raw_spin_unlock(&mask_lock);
 371        return ret;
 372}
 373#else
 374/* Wrapper for ALPHA specific affinity selector magic */
 375int irq_setup_affinity(struct irq_desc *desc)
 376{
 377        return irq_select_affinity(irq_desc_get_irq(desc));
 378}
 379#endif
 380
 381/*
 382 * Called when a bogus affinity is set via /proc/irq
 383 */
 384int irq_select_affinity_usr(unsigned int irq)
 385{
 386        struct irq_desc *desc = irq_to_desc(irq);
 387        unsigned long flags;
 388        int ret;
 389
 390        raw_spin_lock_irqsave(&desc->lock, flags);
 391        ret = irq_setup_affinity(desc);
 392        raw_spin_unlock_irqrestore(&desc->lock, flags);
 393        return ret;
 394}
 395#endif
 396
 397/**
 398 *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 399 *      @irq: interrupt number to set affinity
 400 *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 401 *                  specific data for percpu_devid interrupts
 402 *
 403 *      This function uses the vCPU specific data to set the vCPU
 404 *      affinity for an irq. The vCPU specific data is passed from
 405 *      outside, such as KVM. One example code path is as below:
 406 *      KVM -> IOMMU -> irq_set_vcpu_affinity().
 407 */
 408int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 409{
 410        unsigned long flags;
 411        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 412        struct irq_data *data;
 413        struct irq_chip *chip;
 414        int ret = -ENOSYS;
 415
 416        if (!desc)
 417                return -EINVAL;
 418
 419        data = irq_desc_get_irq_data(desc);
 420        do {
 421                chip = irq_data_get_irq_chip(data);
 422                if (chip && chip->irq_set_vcpu_affinity)
 423                        break;
 424#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 425                data = data->parent_data;
 426#else
 427                data = NULL;
 428#endif
 429        } while (data);
 430
 431        if (data)
 432                ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 433        irq_put_desc_unlock(desc, flags);
 434
 435        return ret;
 436}
 437EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 438
 439void __disable_irq(struct irq_desc *desc)
 440{
 441        if (!desc->depth++)
 442                irq_disable(desc);
 443}
 444
 445static int __disable_irq_nosync(unsigned int irq)
 446{
 447        unsigned long flags;
 448        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 449
 450        if (!desc)
 451                return -EINVAL;
 452        __disable_irq(desc);
 453        irq_put_desc_busunlock(desc, flags);
 454        return 0;
 455}
 456
 457/**
 458 *      disable_irq_nosync - disable an irq without waiting
 459 *      @irq: Interrupt to disable
 460 *
 461 *      Disable the selected interrupt line.  Disables and Enables are
 462 *      nested.
 463 *      Unlike disable_irq(), this function does not ensure existing
 464 *      instances of the IRQ handler have completed before returning.
 465 *
 466 *      This function may be called from IRQ context.
 467 */
 468void disable_irq_nosync(unsigned int irq)
 469{
 470        __disable_irq_nosync(irq);
 471}
 472EXPORT_SYMBOL(disable_irq_nosync);
 473
 474/**
 475 *      disable_irq - disable an irq and wait for completion
 476 *      @irq: Interrupt to disable
 477 *
 478 *      Disable the selected interrupt line.  Enables and Disables are
 479 *      nested.
 480 *      This function waits for any pending IRQ handlers for this interrupt
 481 *      to complete before returning. If you use this function while
 482 *      holding a resource the IRQ handler may need you will deadlock.
 483 *
 484 *      This function may be called - with care - from IRQ context.
 485 */
 486void disable_irq(unsigned int irq)
 487{
 488        if (!__disable_irq_nosync(irq))
 489                synchronize_irq(irq);
 490}
 491EXPORT_SYMBOL(disable_irq);
 492
 493/**
 494 *      disable_hardirq - disables an irq and waits for hardirq completion
 495 *      @irq: Interrupt to disable
 496 *
 497 *      Disable the selected interrupt line.  Enables and Disables are
 498 *      nested.
 499 *      This function waits for any pending hard IRQ handlers for this
 500 *      interrupt to complete before returning. If you use this function while
 501 *      holding a resource the hard IRQ handler may need you will deadlock.
 502 *
 503 *      When used to optimistically disable an interrupt from atomic context
 504 *      the return value must be checked.
 505 *
 506 *      Returns: false if a threaded handler is active.
 507 *
 508 *      This function may be called - with care - from IRQ context.
 509 */
 510bool disable_hardirq(unsigned int irq)
 511{
 512        if (!__disable_irq_nosync(irq))
 513                return synchronize_hardirq(irq);
 514
 515        return false;
 516}
 517EXPORT_SYMBOL_GPL(disable_hardirq);
 518
 519void __enable_irq(struct irq_desc *desc)
 520{
 521        switch (desc->depth) {
 522        case 0:
 523 err_out:
 524                WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 525                     irq_desc_get_irq(desc));
 526                break;
 527        case 1: {
 528                if (desc->istate & IRQS_SUSPENDED)
 529                        goto err_out;
 530                /* Prevent probing on this irq: */
 531                irq_settings_set_noprobe(desc);
 532                /*
 533                 * Call irq_startup() not irq_enable() here because the
 534                 * interrupt might be marked NOAUTOEN. So irq_startup()
 535                 * needs to be invoked when it gets enabled the first
 536                 * time. If it was already started up, then irq_startup()
 537                 * will invoke irq_enable() under the hood.
 538                 */
 539                irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 540                break;
 541        }
 542        default:
 543                desc->depth--;
 544        }
 545}
 546
 547/**
 548 *      enable_irq - enable handling of an irq
 549 *      @irq: Interrupt to enable
 550 *
 551 *      Undoes the effect of one call to disable_irq().  If this
 552 *      matches the last disable, processing of interrupts on this
 553 *      IRQ line is re-enabled.
 554 *
 555 *      This function may be called from IRQ context only when
 556 *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 557 */
 558void enable_irq(unsigned int irq)
 559{
 560        unsigned long flags;
 561        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 562
 563        if (!desc)
 564                return;
 565        if (WARN(!desc->irq_data.chip,
 566                 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 567                goto out;
 568
 569        __enable_irq(desc);
 570out:
 571        irq_put_desc_busunlock(desc, flags);
 572}
 573EXPORT_SYMBOL(enable_irq);
 574
 575static int set_irq_wake_real(unsigned int irq, unsigned int on)
 576{
 577        struct irq_desc *desc = irq_to_desc(irq);
 578        int ret = -ENXIO;
 579
 580        if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 581                return 0;
 582
 583        if (desc->irq_data.chip->irq_set_wake)
 584                ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 585
 586        return ret;
 587}
 588
 589/**
 590 *      irq_set_irq_wake - control irq power management wakeup
 591 *      @irq:   interrupt to control
 592 *      @on:    enable/disable power management wakeup
 593 *
 594 *      Enable/disable power management wakeup mode, which is
 595 *      disabled by default.  Enables and disables must match,
 596 *      just as they match for non-wakeup mode support.
 597 *
 598 *      Wakeup mode lets this IRQ wake the system from sleep
 599 *      states like "suspend to RAM".
 600 */
 601int irq_set_irq_wake(unsigned int irq, unsigned int on)
 602{
 603        unsigned long flags;
 604        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 605        int ret = 0;
 606
 607        if (!desc)
 608                return -EINVAL;
 609
 610        /* wakeup-capable irqs can be shared between drivers that
 611         * don't need to have the same sleep mode behaviors.
 612         */
 613        if (on) {
 614                if (desc->wake_depth++ == 0) {
 615                        ret = set_irq_wake_real(irq, on);
 616                        if (ret)
 617                                desc->wake_depth = 0;
 618                        else
 619                                irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 620                }
 621        } else {
 622                if (desc->wake_depth == 0) {
 623                        WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 624                } else if (--desc->wake_depth == 0) {
 625                        ret = set_irq_wake_real(irq, on);
 626                        if (ret)
 627                                desc->wake_depth = 1;
 628                        else
 629                                irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 630                }
 631        }
 632        irq_put_desc_busunlock(desc, flags);
 633        return ret;
 634}
 635EXPORT_SYMBOL(irq_set_irq_wake);
 636
 637/*
 638 * Internal function that tells the architecture code whether a
 639 * particular irq has been exclusively allocated or is available
 640 * for driver use.
 641 */
 642int can_request_irq(unsigned int irq, unsigned long irqflags)
 643{
 644        unsigned long flags;
 645        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 646        int canrequest = 0;
 647
 648        if (!desc)
 649                return 0;
 650
 651        if (irq_settings_can_request(desc)) {
 652                if (!desc->action ||
 653                    irqflags & desc->action->flags & IRQF_SHARED)
 654                        canrequest = 1;
 655        }
 656        irq_put_desc_unlock(desc, flags);
 657        return canrequest;
 658}
 659
 660int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 661{
 662        struct irq_chip *chip = desc->irq_data.chip;
 663        int ret, unmask = 0;
 664
 665        if (!chip || !chip->irq_set_type) {
 666                /*
 667                 * IRQF_TRIGGER_* but the PIC does not support multiple
 668                 * flow-types?
 669                 */
 670                pr_debug("No set_type function for IRQ %d (%s)\n",
 671                         irq_desc_get_irq(desc),
 672                         chip ? (chip->name ? : "unknown") : "unknown");
 673                return 0;
 674        }
 675
 676        if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 677                if (!irqd_irq_masked(&desc->irq_data))
 678                        mask_irq(desc);
 679                if (!irqd_irq_disabled(&desc->irq_data))
 680                        unmask = 1;
 681        }
 682
 683        /* Mask all flags except trigger mode */
 684        flags &= IRQ_TYPE_SENSE_MASK;
 685        ret = chip->irq_set_type(&desc->irq_data, flags);
 686
 687        switch (ret) {
 688        case IRQ_SET_MASK_OK:
 689        case IRQ_SET_MASK_OK_DONE:
 690                irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 691                irqd_set(&desc->irq_data, flags);
 692
 693        case IRQ_SET_MASK_OK_NOCOPY:
 694                flags = irqd_get_trigger_type(&desc->irq_data);
 695                irq_settings_set_trigger_mask(desc, flags);
 696                irqd_clear(&desc->irq_data, IRQD_LEVEL);
 697                irq_settings_clr_level(desc);
 698                if (flags & IRQ_TYPE_LEVEL_MASK) {
 699                        irq_settings_set_level(desc);
 700                        irqd_set(&desc->irq_data, IRQD_LEVEL);
 701                }
 702
 703                ret = 0;
 704                break;
 705        default:
 706                pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
 707                       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 708        }
 709        if (unmask)
 710                unmask_irq(desc);
 711        return ret;
 712}
 713
 714#ifdef CONFIG_HARDIRQS_SW_RESEND
 715int irq_set_parent(int irq, int parent_irq)
 716{
 717        unsigned long flags;
 718        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 719
 720        if (!desc)
 721                return -EINVAL;
 722
 723        desc->parent_irq = parent_irq;
 724
 725        irq_put_desc_unlock(desc, flags);
 726        return 0;
 727}
 728EXPORT_SYMBOL_GPL(irq_set_parent);
 729#endif
 730
 731/*
 732 * Default primary interrupt handler for threaded interrupts. Is
 733 * assigned as primary handler when request_threaded_irq is called
 734 * with handler == NULL. Useful for oneshot interrupts.
 735 */
 736static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 737{
 738        return IRQ_WAKE_THREAD;
 739}
 740
 741/*
 742 * Primary handler for nested threaded interrupts. Should never be
 743 * called.
 744 */
 745static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 746{
 747        WARN(1, "Primary handler called for nested irq %d\n", irq);
 748        return IRQ_NONE;
 749}
 750
 751static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 752{
 753        WARN(1, "Secondary action handler called for irq %d\n", irq);
 754        return IRQ_NONE;
 755}
 756
 757static int irq_wait_for_interrupt(struct irqaction *action)
 758{
 759        set_current_state(TASK_INTERRUPTIBLE);
 760
 761        while (!kthread_should_stop()) {
 762
 763                if (test_and_clear_bit(IRQTF_RUNTHREAD,
 764                                       &action->thread_flags)) {
 765                        __set_current_state(TASK_RUNNING);
 766                        return 0;
 767                }
 768                schedule();
 769                set_current_state(TASK_INTERRUPTIBLE);
 770        }
 771        __set_current_state(TASK_RUNNING);
 772        return -1;
 773}
 774
 775/*
 776 * Oneshot interrupts keep the irq line masked until the threaded
 777 * handler finished. unmask if the interrupt has not been disabled and
 778 * is marked MASKED.
 779 */
 780static void irq_finalize_oneshot(struct irq_desc *desc,
 781                                 struct irqaction *action)
 782{
 783        if (!(desc->istate & IRQS_ONESHOT) ||
 784            action->handler == irq_forced_secondary_handler)
 785                return;
 786again:
 787        chip_bus_lock(desc);
 788        raw_spin_lock_irq(&desc->lock);
 789
 790        /*
 791         * Implausible though it may be we need to protect us against
 792         * the following scenario:
 793         *
 794         * The thread is faster done than the hard interrupt handler
 795         * on the other CPU. If we unmask the irq line then the
 796         * interrupt can come in again and masks the line, leaves due
 797         * to IRQS_INPROGRESS and the irq line is masked forever.
 798         *
 799         * This also serializes the state of shared oneshot handlers
 800         * versus "desc->threads_onehsot |= action->thread_mask;" in
 801         * irq_wake_thread(). See the comment there which explains the
 802         * serialization.
 803         */
 804        if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 805                raw_spin_unlock_irq(&desc->lock);
 806                chip_bus_sync_unlock(desc);
 807                cpu_relax();
 808                goto again;
 809        }
 810
 811        /*
 812         * Now check again, whether the thread should run. Otherwise
 813         * we would clear the threads_oneshot bit of this thread which
 814         * was just set.
 815         */
 816        if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 817                goto out_unlock;
 818
 819        desc->threads_oneshot &= ~action->thread_mask;
 820
 821        if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 822            irqd_irq_masked(&desc->irq_data))
 823                unmask_threaded_irq(desc);
 824
 825out_unlock:
 826        raw_spin_unlock_irq(&desc->lock);
 827        chip_bus_sync_unlock(desc);
 828}
 829
 830#ifdef CONFIG_SMP
 831/*
 832 * Check whether we need to change the affinity of the interrupt thread.
 833 */
 834static void
 835irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 836{
 837        cpumask_var_t mask;
 838        bool valid = true;
 839
 840        if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 841                return;
 842
 843        /*
 844         * In case we are out of memory we set IRQTF_AFFINITY again and
 845         * try again next time
 846         */
 847        if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 848                set_bit(IRQTF_AFFINITY, &action->thread_flags);
 849                return;
 850        }
 851
 852        raw_spin_lock_irq(&desc->lock);
 853        /*
 854         * This code is triggered unconditionally. Check the affinity
 855         * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 856         */
 857        if (cpumask_available(desc->irq_common_data.affinity)) {
 858                const struct cpumask *m;
 859
 860                m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 861                cpumask_copy(mask, m);
 862        } else {
 863                valid = false;
 864        }
 865        raw_spin_unlock_irq(&desc->lock);
 866
 867        if (valid)
 868                set_cpus_allowed_ptr(current, mask);
 869        free_cpumask_var(mask);
 870}
 871#else
 872static inline void
 873irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 874#endif
 875
 876/*
 877 * Interrupts which are not explicitely requested as threaded
 878 * interrupts rely on the implicit bh/preempt disable of the hard irq
 879 * context. So we need to disable bh here to avoid deadlocks and other
 880 * side effects.
 881 */
 882static irqreturn_t
 883irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 884{
 885        irqreturn_t ret;
 886
 887        local_bh_disable();
 888        ret = action->thread_fn(action->irq, action->dev_id);
 889        irq_finalize_oneshot(desc, action);
 890        local_bh_enable();
 891        return ret;
 892}
 893
 894/*
 895 * Interrupts explicitly requested as threaded interrupts want to be
 896 * preemtible - many of them need to sleep and wait for slow busses to
 897 * complete.
 898 */
 899static irqreturn_t irq_thread_fn(struct irq_desc *desc,
 900                struct irqaction *action)
 901{
 902        irqreturn_t ret;
 903
 904        ret = action->thread_fn(action->irq, action->dev_id);
 905        irq_finalize_oneshot(desc, action);
 906        return ret;
 907}
 908
 909static void wake_threads_waitq(struct irq_desc *desc)
 910{
 911        if (atomic_dec_and_test(&desc->threads_active))
 912                wake_up(&desc->wait_for_threads);
 913}
 914
 915static void irq_thread_dtor(struct callback_head *unused)
 916{
 917        struct task_struct *tsk = current;
 918        struct irq_desc *desc;
 919        struct irqaction *action;
 920
 921        if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
 922                return;
 923
 924        action = kthread_data(tsk);
 925
 926        pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
 927               tsk->comm, tsk->pid, action->irq);
 928
 929
 930        desc = irq_to_desc(action->irq);
 931        /*
 932         * If IRQTF_RUNTHREAD is set, we need to decrement
 933         * desc->threads_active and wake possible waiters.
 934         */
 935        if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 936                wake_threads_waitq(desc);
 937
 938        /* Prevent a stale desc->threads_oneshot */
 939        irq_finalize_oneshot(desc, action);
 940}
 941
 942static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
 943{
 944        struct irqaction *secondary = action->secondary;
 945
 946        if (WARN_ON_ONCE(!secondary))
 947                return;
 948
 949        raw_spin_lock_irq(&desc->lock);
 950        __irq_wake_thread(desc, secondary);
 951        raw_spin_unlock_irq(&desc->lock);
 952}
 953
 954/*
 955 * Interrupt handler thread
 956 */
 957static int irq_thread(void *data)
 958{
 959        struct callback_head on_exit_work;
 960        struct irqaction *action = data;
 961        struct irq_desc *desc = irq_to_desc(action->irq);
 962        irqreturn_t (*handler_fn)(struct irq_desc *desc,
 963                        struct irqaction *action);
 964
 965        if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
 966                                        &action->thread_flags))
 967                handler_fn = irq_forced_thread_fn;
 968        else
 969                handler_fn = irq_thread_fn;
 970
 971        init_task_work(&on_exit_work, irq_thread_dtor);
 972        task_work_add(current, &on_exit_work, false);
 973
 974        irq_thread_check_affinity(desc, action);
 975
 976        while (!irq_wait_for_interrupt(action)) {
 977                irqreturn_t action_ret;
 978
 979                irq_thread_check_affinity(desc, action);
 980
 981                action_ret = handler_fn(desc, action);
 982                if (action_ret == IRQ_HANDLED)
 983                        atomic_inc(&desc->threads_handled);
 984                if (action_ret == IRQ_WAKE_THREAD)
 985                        irq_wake_secondary(desc, action);
 986
 987                wake_threads_waitq(desc);
 988        }
 989
 990        /*
 991         * This is the regular exit path. __free_irq() is stopping the
 992         * thread via kthread_stop() after calling
 993         * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
 994         * oneshot mask bit can be set. We cannot verify that as we
 995         * cannot touch the oneshot mask at this point anymore as
 996         * __setup_irq() might have given out currents thread_mask
 997         * again.
 998         */
 999        task_work_cancel(current, irq_thread_dtor);
1000        return 0;
1001}
1002
1003/**
1004 *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1005 *      @irq:           Interrupt line
1006 *      @dev_id:        Device identity for which the thread should be woken
1007 *
1008 */
1009void irq_wake_thread(unsigned int irq, void *dev_id)
1010{
1011        struct irq_desc *desc = irq_to_desc(irq);
1012        struct irqaction *action;
1013        unsigned long flags;
1014
1015        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1016                return;
1017
1018        raw_spin_lock_irqsave(&desc->lock, flags);
1019        for_each_action_of_desc(desc, action) {
1020                if (action->dev_id == dev_id) {
1021                        if (action->thread)
1022                                __irq_wake_thread(desc, action);
1023                        break;
1024                }
1025        }
1026        raw_spin_unlock_irqrestore(&desc->lock, flags);
1027}
1028EXPORT_SYMBOL_GPL(irq_wake_thread);
1029
1030static int irq_setup_forced_threading(struct irqaction *new)
1031{
1032        if (!force_irqthreads)
1033                return 0;
1034        if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1035                return 0;
1036
1037        new->flags |= IRQF_ONESHOT;
1038
1039        /*
1040         * Handle the case where we have a real primary handler and a
1041         * thread handler. We force thread them as well by creating a
1042         * secondary action.
1043         */
1044        if (new->handler != irq_default_primary_handler && new->thread_fn) {
1045                /* Allocate the secondary action */
1046                new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1047                if (!new->secondary)
1048                        return -ENOMEM;
1049                new->secondary->handler = irq_forced_secondary_handler;
1050                new->secondary->thread_fn = new->thread_fn;
1051                new->secondary->dev_id = new->dev_id;
1052                new->secondary->irq = new->irq;
1053                new->secondary->name = new->name;
1054        }
1055        /* Deal with the primary handler */
1056        set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1057        new->thread_fn = new->handler;
1058        new->handler = irq_default_primary_handler;
1059        return 0;
1060}
1061
1062static int irq_request_resources(struct irq_desc *desc)
1063{
1064        struct irq_data *d = &desc->irq_data;
1065        struct irq_chip *c = d->chip;
1066
1067        return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1068}
1069
1070static void irq_release_resources(struct irq_desc *desc)
1071{
1072        struct irq_data *d = &desc->irq_data;
1073        struct irq_chip *c = d->chip;
1074
1075        if (c->irq_release_resources)
1076                c->irq_release_resources(d);
1077}
1078
1079static int
1080setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1081{
1082        struct task_struct *t;
1083        struct sched_param param = {
1084                .sched_priority = MAX_USER_RT_PRIO/2,
1085        };
1086
1087        if (!secondary) {
1088                t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1089                                   new->name);
1090        } else {
1091                t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1092                                   new->name);
1093                param.sched_priority -= 1;
1094        }
1095
1096        if (IS_ERR(t))
1097                return PTR_ERR(t);
1098
1099        sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1100
1101        /*
1102         * We keep the reference to the task struct even if
1103         * the thread dies to avoid that the interrupt code
1104         * references an already freed task_struct.
1105         */
1106        get_task_struct(t);
1107        new->thread = t;
1108        /*
1109         * Tell the thread to set its affinity. This is
1110         * important for shared interrupt handlers as we do
1111         * not invoke setup_affinity() for the secondary
1112         * handlers as everything is already set up. Even for
1113         * interrupts marked with IRQF_NO_BALANCE this is
1114         * correct as we want the thread to move to the cpu(s)
1115         * on which the requesting code placed the interrupt.
1116         */
1117        set_bit(IRQTF_AFFINITY, &new->thread_flags);
1118        return 0;
1119}
1120
1121/*
1122 * Internal function to register an irqaction - typically used to
1123 * allocate special interrupts that are part of the architecture.
1124 *
1125 * Locking rules:
1126 *
1127 * desc->request_mutex  Provides serialization against a concurrent free_irq()
1128 *   chip_bus_lock      Provides serialization for slow bus operations
1129 *     desc->lock       Provides serialization against hard interrupts
1130 *
1131 * chip_bus_lock and desc->lock are sufficient for all other management and
1132 * interrupt related functions. desc->request_mutex solely serializes
1133 * request/free_irq().
1134 */
1135static int
1136__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1137{
1138        struct irqaction *old, **old_ptr;
1139        unsigned long flags, thread_mask = 0;
1140        int ret, nested, shared = 0;
1141
1142        if (!desc)
1143                return -EINVAL;
1144
1145        if (desc->irq_data.chip == &no_irq_chip)
1146                return -ENOSYS;
1147        if (!try_module_get(desc->owner))
1148                return -ENODEV;
1149
1150        new->irq = irq;
1151
1152        /*
1153         * If the trigger type is not specified by the caller,
1154         * then use the default for this interrupt.
1155         */
1156        if (!(new->flags & IRQF_TRIGGER_MASK))
1157                new->flags |= irqd_get_trigger_type(&desc->irq_data);
1158
1159        /*
1160         * Check whether the interrupt nests into another interrupt
1161         * thread.
1162         */
1163        nested = irq_settings_is_nested_thread(desc);
1164        if (nested) {
1165                if (!new->thread_fn) {
1166                        ret = -EINVAL;
1167                        goto out_mput;
1168                }
1169                /*
1170                 * Replace the primary handler which was provided from
1171                 * the driver for non nested interrupt handling by the
1172                 * dummy function which warns when called.
1173                 */
1174                new->handler = irq_nested_primary_handler;
1175        } else {
1176                if (irq_settings_can_thread(desc)) {
1177                        ret = irq_setup_forced_threading(new);
1178                        if (ret)
1179                                goto out_mput;
1180                }
1181        }
1182
1183        /*
1184         * Create a handler thread when a thread function is supplied
1185         * and the interrupt does not nest into another interrupt
1186         * thread.
1187         */
1188        if (new->thread_fn && !nested) {
1189                ret = setup_irq_thread(new, irq, false);
1190                if (ret)
1191                        goto out_mput;
1192                if (new->secondary) {
1193                        ret = setup_irq_thread(new->secondary, irq, true);
1194                        if (ret)
1195                                goto out_thread;
1196                }
1197        }
1198
1199        /*
1200         * Drivers are often written to work w/o knowledge about the
1201         * underlying irq chip implementation, so a request for a
1202         * threaded irq without a primary hard irq context handler
1203         * requires the ONESHOT flag to be set. Some irq chips like
1204         * MSI based interrupts are per se one shot safe. Check the
1205         * chip flags, so we can avoid the unmask dance at the end of
1206         * the threaded handler for those.
1207         */
1208        if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1209                new->flags &= ~IRQF_ONESHOT;
1210
1211        /*
1212         * Protects against a concurrent __free_irq() call which might wait
1213         * for synchronize_irq() to complete without holding the optional
1214         * chip bus lock and desc->lock.
1215         */
1216        mutex_lock(&desc->request_mutex);
1217
1218        /*
1219         * Acquire bus lock as the irq_request_resources() callback below
1220         * might rely on the serialization or the magic power management
1221         * functions which are abusing the irq_bus_lock() callback,
1222         */
1223        chip_bus_lock(desc);
1224
1225        /* First installed action requests resources. */
1226        if (!desc->action) {
1227                ret = irq_request_resources(desc);
1228                if (ret) {
1229                        pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1230                               new->name, irq, desc->irq_data.chip->name);
1231                        goto out_bus_unlock;
1232                }
1233        }
1234
1235        /*
1236         * The following block of code has to be executed atomically
1237         * protected against a concurrent interrupt and any of the other
1238         * management calls which are not serialized via
1239         * desc->request_mutex or the optional bus lock.
1240         */
1241        raw_spin_lock_irqsave(&desc->lock, flags);
1242        old_ptr = &desc->action;
1243        old = *old_ptr;
1244        if (old) {
1245                /*
1246                 * Can't share interrupts unless both agree to and are
1247                 * the same type (level, edge, polarity). So both flag
1248                 * fields must have IRQF_SHARED set and the bits which
1249                 * set the trigger type must match. Also all must
1250                 * agree on ONESHOT.
1251                 */
1252                unsigned int oldtype;
1253
1254                /*
1255                 * If nobody did set the configuration before, inherit
1256                 * the one provided by the requester.
1257                 */
1258                if (irqd_trigger_type_was_set(&desc->irq_data)) {
1259                        oldtype = irqd_get_trigger_type(&desc->irq_data);
1260                } else {
1261                        oldtype = new->flags & IRQF_TRIGGER_MASK;
1262                        irqd_set_trigger_type(&desc->irq_data, oldtype);
1263                }
1264
1265                if (!((old->flags & new->flags) & IRQF_SHARED) ||
1266                    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1267                    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1268                        goto mismatch;
1269
1270                /* All handlers must agree on per-cpuness */
1271                if ((old->flags & IRQF_PERCPU) !=
1272                    (new->flags & IRQF_PERCPU))
1273                        goto mismatch;
1274
1275                /* add new interrupt at end of irq queue */
1276                do {
1277                        /*
1278                         * Or all existing action->thread_mask bits,
1279                         * so we can find the next zero bit for this
1280                         * new action.
1281                         */
1282                        thread_mask |= old->thread_mask;
1283                        old_ptr = &old->next;
1284                        old = *old_ptr;
1285                } while (old);
1286                shared = 1;
1287        }
1288
1289        /*
1290         * Setup the thread mask for this irqaction for ONESHOT. For
1291         * !ONESHOT irqs the thread mask is 0 so we can avoid a
1292         * conditional in irq_wake_thread().
1293         */
1294        if (new->flags & IRQF_ONESHOT) {
1295                /*
1296                 * Unlikely to have 32 resp 64 irqs sharing one line,
1297                 * but who knows.
1298                 */
1299                if (thread_mask == ~0UL) {
1300                        ret = -EBUSY;
1301                        goto out_unlock;
1302                }
1303                /*
1304                 * The thread_mask for the action is or'ed to
1305                 * desc->thread_active to indicate that the
1306                 * IRQF_ONESHOT thread handler has been woken, but not
1307                 * yet finished. The bit is cleared when a thread
1308                 * completes. When all threads of a shared interrupt
1309                 * line have completed desc->threads_active becomes
1310                 * zero and the interrupt line is unmasked. See
1311                 * handle.c:irq_wake_thread() for further information.
1312                 *
1313                 * If no thread is woken by primary (hard irq context)
1314                 * interrupt handlers, then desc->threads_active is
1315                 * also checked for zero to unmask the irq line in the
1316                 * affected hard irq flow handlers
1317                 * (handle_[fasteoi|level]_irq).
1318                 *
1319                 * The new action gets the first zero bit of
1320                 * thread_mask assigned. See the loop above which or's
1321                 * all existing action->thread_mask bits.
1322                 */
1323                new->thread_mask = 1UL << ffz(thread_mask);
1324
1325        } else if (new->handler == irq_default_primary_handler &&
1326                   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1327                /*
1328                 * The interrupt was requested with handler = NULL, so
1329                 * we use the default primary handler for it. But it
1330                 * does not have the oneshot flag set. In combination
1331                 * with level interrupts this is deadly, because the
1332                 * default primary handler just wakes the thread, then
1333                 * the irq lines is reenabled, but the device still
1334                 * has the level irq asserted. Rinse and repeat....
1335                 *
1336                 * While this works for edge type interrupts, we play
1337                 * it safe and reject unconditionally because we can't
1338                 * say for sure which type this interrupt really
1339                 * has. The type flags are unreliable as the
1340                 * underlying chip implementation can override them.
1341                 */
1342                pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1343                       irq);
1344                ret = -EINVAL;
1345                goto out_unlock;
1346        }
1347
1348        if (!shared) {
1349                init_waitqueue_head(&desc->wait_for_threads);
1350
1351                /* Setup the type (level, edge polarity) if configured: */
1352                if (new->flags & IRQF_TRIGGER_MASK) {
1353                        ret = __irq_set_trigger(desc,
1354                                                new->flags & IRQF_TRIGGER_MASK);
1355
1356                        if (ret)
1357                                goto out_unlock;
1358                }
1359
1360                /*
1361                 * Activate the interrupt. That activation must happen
1362                 * independently of IRQ_NOAUTOEN. request_irq() can fail
1363                 * and the callers are supposed to handle
1364                 * that. enable_irq() of an interrupt requested with
1365                 * IRQ_NOAUTOEN is not supposed to fail. The activation
1366                 * keeps it in shutdown mode, it merily associates
1367                 * resources if necessary and if that's not possible it
1368                 * fails. Interrupts which are in managed shutdown mode
1369                 * will simply ignore that activation request.
1370                 */
1371                ret = irq_activate(desc);
1372                if (ret)
1373                        goto out_unlock;
1374
1375                desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1376                                  IRQS_ONESHOT | IRQS_WAITING);
1377                irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1378
1379                if (new->flags & IRQF_PERCPU) {
1380                        irqd_set(&desc->irq_data, IRQD_PER_CPU);
1381                        irq_settings_set_per_cpu(desc);
1382                }
1383
1384                if (new->flags & IRQF_ONESHOT)
1385                        desc->istate |= IRQS_ONESHOT;
1386
1387                /* Exclude IRQ from balancing if requested */
1388                if (new->flags & IRQF_NOBALANCING) {
1389                        irq_settings_set_no_balancing(desc);
1390                        irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1391                }
1392
1393                if (irq_settings_can_autoenable(desc)) {
1394                        irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1395                } else {
1396                        /*
1397                         * Shared interrupts do not go well with disabling
1398                         * auto enable. The sharing interrupt might request
1399                         * it while it's still disabled and then wait for
1400                         * interrupts forever.
1401                         */
1402                        WARN_ON_ONCE(new->flags & IRQF_SHARED);
1403                        /* Undo nested disables: */
1404                        desc->depth = 1;
1405                }
1406
1407        } else if (new->flags & IRQF_TRIGGER_MASK) {
1408                unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1409                unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1410
1411                if (nmsk != omsk)
1412                        /* hope the handler works with current  trigger mode */
1413                        pr_warn("irq %d uses trigger mode %u; requested %u\n",
1414                                irq, omsk, nmsk);
1415        }
1416
1417        *old_ptr = new;
1418
1419        irq_pm_install_action(desc, new);
1420
1421        /* Reset broken irq detection when installing new handler */
1422        desc->irq_count = 0;
1423        desc->irqs_unhandled = 0;
1424
1425        /*
1426         * Check whether we disabled the irq via the spurious handler
1427         * before. Reenable it and give it another chance.
1428         */
1429        if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1430                desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1431                __enable_irq(desc);
1432        }
1433
1434        raw_spin_unlock_irqrestore(&desc->lock, flags);
1435        chip_bus_sync_unlock(desc);
1436        mutex_unlock(&desc->request_mutex);
1437
1438        irq_setup_timings(desc, new);
1439
1440        /*
1441         * Strictly no need to wake it up, but hung_task complains
1442         * when no hard interrupt wakes the thread up.
1443         */
1444        if (new->thread)
1445                wake_up_process(new->thread);
1446        if (new->secondary)
1447                wake_up_process(new->secondary->thread);
1448
1449        register_irq_proc(irq, desc);
1450        new->dir = NULL;
1451        register_handler_proc(irq, new);
1452        return 0;
1453
1454mismatch:
1455        if (!(new->flags & IRQF_PROBE_SHARED)) {
1456                pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1457                       irq, new->flags, new->name, old->flags, old->name);
1458#ifdef CONFIG_DEBUG_SHIRQ
1459                dump_stack();
1460#endif
1461        }
1462        ret = -EBUSY;
1463
1464out_unlock:
1465        raw_spin_unlock_irqrestore(&desc->lock, flags);
1466
1467        if (!desc->action)
1468                irq_release_resources(desc);
1469out_bus_unlock:
1470        chip_bus_sync_unlock(desc);
1471        mutex_unlock(&desc->request_mutex);
1472
1473out_thread:
1474        if (new->thread) {
1475                struct task_struct *t = new->thread;
1476
1477                new->thread = NULL;
1478                kthread_stop(t);
1479                put_task_struct(t);
1480        }
1481        if (new->secondary && new->secondary->thread) {
1482                struct task_struct *t = new->secondary->thread;
1483
1484                new->secondary->thread = NULL;
1485                kthread_stop(t);
1486                put_task_struct(t);
1487        }
1488out_mput:
1489        module_put(desc->owner);
1490        return ret;
1491}
1492
1493/**
1494 *      setup_irq - setup an interrupt
1495 *      @irq: Interrupt line to setup
1496 *      @act: irqaction for the interrupt
1497 *
1498 * Used to statically setup interrupts in the early boot process.
1499 */
1500int setup_irq(unsigned int irq, struct irqaction *act)
1501{
1502        int retval;
1503        struct irq_desc *desc = irq_to_desc(irq);
1504
1505        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1506                return -EINVAL;
1507
1508        retval = irq_chip_pm_get(&desc->irq_data);
1509        if (retval < 0)
1510                return retval;
1511
1512        retval = __setup_irq(irq, desc, act);
1513
1514        if (retval)
1515                irq_chip_pm_put(&desc->irq_data);
1516
1517        return retval;
1518}
1519EXPORT_SYMBOL_GPL(setup_irq);
1520
1521/*
1522 * Internal function to unregister an irqaction - used to free
1523 * regular and special interrupts that are part of the architecture.
1524 */
1525static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1526{
1527        unsigned irq = desc->irq_data.irq;
1528        struct irqaction *action, **action_ptr;
1529        unsigned long flags;
1530
1531        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1532
1533        if (!desc)
1534                return NULL;
1535
1536        mutex_lock(&desc->request_mutex);
1537        chip_bus_lock(desc);
1538        raw_spin_lock_irqsave(&desc->lock, flags);
1539
1540        /*
1541         * There can be multiple actions per IRQ descriptor, find the right
1542         * one based on the dev_id:
1543         */
1544        action_ptr = &desc->action;
1545        for (;;) {
1546                action = *action_ptr;
1547
1548                if (!action) {
1549                        WARN(1, "Trying to free already-free IRQ %d\n", irq);
1550                        raw_spin_unlock_irqrestore(&desc->lock, flags);
1551                        chip_bus_sync_unlock(desc);
1552                        mutex_unlock(&desc->request_mutex);
1553                        return NULL;
1554                }
1555
1556                if (action->dev_id == dev_id)
1557                        break;
1558                action_ptr = &action->next;
1559        }
1560
1561        /* Found it - now remove it from the list of entries: */
1562        *action_ptr = action->next;
1563
1564        irq_pm_remove_action(desc, action);
1565
1566        /* If this was the last handler, shut down the IRQ line: */
1567        if (!desc->action) {
1568                irq_settings_clr_disable_unlazy(desc);
1569                irq_shutdown(desc);
1570        }
1571
1572#ifdef CONFIG_SMP
1573        /* make sure affinity_hint is cleaned up */
1574        if (WARN_ON_ONCE(desc->affinity_hint))
1575                desc->affinity_hint = NULL;
1576#endif
1577
1578        raw_spin_unlock_irqrestore(&desc->lock, flags);
1579        /*
1580         * Drop bus_lock here so the changes which were done in the chip
1581         * callbacks above are synced out to the irq chips which hang
1582         * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1583         *
1584         * Aside of that the bus_lock can also be taken from the threaded
1585         * handler in irq_finalize_oneshot() which results in a deadlock
1586         * because synchronize_irq() would wait forever for the thread to
1587         * complete, which is blocked on the bus lock.
1588         *
1589         * The still held desc->request_mutex() protects against a
1590         * concurrent request_irq() of this irq so the release of resources
1591         * and timing data is properly serialized.
1592         */
1593        chip_bus_sync_unlock(desc);
1594
1595        unregister_handler_proc(irq, action);
1596
1597        /* Make sure it's not being used on another CPU: */
1598        synchronize_irq(irq);
1599
1600#ifdef CONFIG_DEBUG_SHIRQ
1601        /*
1602         * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1603         * event to happen even now it's being freed, so let's make sure that
1604         * is so by doing an extra call to the handler ....
1605         *
1606         * ( We do this after actually deregistering it, to make sure that a
1607         *   'real' IRQ doesn't run in * parallel with our fake. )
1608         */
1609        if (action->flags & IRQF_SHARED) {
1610                local_irq_save(flags);
1611                action->handler(irq, dev_id);
1612                local_irq_restore(flags);
1613        }
1614#endif
1615
1616        if (action->thread) {
1617                kthread_stop(action->thread);
1618                put_task_struct(action->thread);
1619                if (action->secondary && action->secondary->thread) {
1620                        kthread_stop(action->secondary->thread);
1621                        put_task_struct(action->secondary->thread);
1622                }
1623        }
1624
1625        /* Last action releases resources */
1626        if (!desc->action) {
1627                /*
1628                 * Reaquire bus lock as irq_release_resources() might
1629                 * require it to deallocate resources over the slow bus.
1630                 */
1631                chip_bus_lock(desc);
1632                irq_release_resources(desc);
1633                chip_bus_sync_unlock(desc);
1634                irq_remove_timings(desc);
1635        }
1636
1637        mutex_unlock(&desc->request_mutex);
1638
1639        irq_chip_pm_put(&desc->irq_data);
1640        module_put(desc->owner);
1641        kfree(action->secondary);
1642        return action;
1643}
1644
1645/**
1646 *      remove_irq - free an interrupt
1647 *      @irq: Interrupt line to free
1648 *      @act: irqaction for the interrupt
1649 *
1650 * Used to remove interrupts statically setup by the early boot process.
1651 */
1652void remove_irq(unsigned int irq, struct irqaction *act)
1653{
1654        struct irq_desc *desc = irq_to_desc(irq);
1655
1656        if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1657                __free_irq(desc, act->dev_id);
1658}
1659EXPORT_SYMBOL_GPL(remove_irq);
1660
1661/**
1662 *      free_irq - free an interrupt allocated with request_irq
1663 *      @irq: Interrupt line to free
1664 *      @dev_id: Device identity to free
1665 *
1666 *      Remove an interrupt handler. The handler is removed and if the
1667 *      interrupt line is no longer in use by any driver it is disabled.
1668 *      On a shared IRQ the caller must ensure the interrupt is disabled
1669 *      on the card it drives before calling this function. The function
1670 *      does not return until any executing interrupts for this IRQ
1671 *      have completed.
1672 *
1673 *      This function must not be called from interrupt context.
1674 *
1675 *      Returns the devname argument passed to request_irq.
1676 */
1677const void *free_irq(unsigned int irq, void *dev_id)
1678{
1679        struct irq_desc *desc = irq_to_desc(irq);
1680        struct irqaction *action;
1681        const char *devname;
1682
1683        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1684                return NULL;
1685
1686#ifdef CONFIG_SMP
1687        if (WARN_ON(desc->affinity_notify))
1688                desc->affinity_notify = NULL;
1689#endif
1690
1691        action = __free_irq(desc, dev_id);
1692
1693        if (!action)
1694                return NULL;
1695
1696        devname = action->name;
1697        kfree(action);
1698        return devname;
1699}
1700EXPORT_SYMBOL(free_irq);
1701
1702/**
1703 *      request_threaded_irq - allocate an interrupt line
1704 *      @irq: Interrupt line to allocate
1705 *      @handler: Function to be called when the IRQ occurs.
1706 *                Primary handler for threaded interrupts
1707 *                If NULL and thread_fn != NULL the default
1708 *                primary handler is installed
1709 *      @thread_fn: Function called from the irq handler thread
1710 *                  If NULL, no irq thread is created
1711 *      @irqflags: Interrupt type flags
1712 *      @devname: An ascii name for the claiming device
1713 *      @dev_id: A cookie passed back to the handler function
1714 *
1715 *      This call allocates interrupt resources and enables the
1716 *      interrupt line and IRQ handling. From the point this
1717 *      call is made your handler function may be invoked. Since
1718 *      your handler function must clear any interrupt the board
1719 *      raises, you must take care both to initialise your hardware
1720 *      and to set up the interrupt handler in the right order.
1721 *
1722 *      If you want to set up a threaded irq handler for your device
1723 *      then you need to supply @handler and @thread_fn. @handler is
1724 *      still called in hard interrupt context and has to check
1725 *      whether the interrupt originates from the device. If yes it
1726 *      needs to disable the interrupt on the device and return
1727 *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1728 *      @thread_fn. This split handler design is necessary to support
1729 *      shared interrupts.
1730 *
1731 *      Dev_id must be globally unique. Normally the address of the
1732 *      device data structure is used as the cookie. Since the handler
1733 *      receives this value it makes sense to use it.
1734 *
1735 *      If your interrupt is shared you must pass a non NULL dev_id
1736 *      as this is required when freeing the interrupt.
1737 *
1738 *      Flags:
1739 *
1740 *      IRQF_SHARED             Interrupt is shared
1741 *      IRQF_TRIGGER_*          Specify active edge(s) or level
1742 *
1743 */
1744int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1745                         irq_handler_t thread_fn, unsigned long irqflags,
1746                         const char *devname, void *dev_id)
1747{
1748        struct irqaction *action;
1749        struct irq_desc *desc;
1750        int retval;
1751
1752        if (irq == IRQ_NOTCONNECTED)
1753                return -ENOTCONN;
1754
1755        /*
1756         * Sanity-check: shared interrupts must pass in a real dev-ID,
1757         * otherwise we'll have trouble later trying to figure out
1758         * which interrupt is which (messes up the interrupt freeing
1759         * logic etc).
1760         *
1761         * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1762         * it cannot be set along with IRQF_NO_SUSPEND.
1763         */
1764        if (((irqflags & IRQF_SHARED) && !dev_id) ||
1765            (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1766            ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1767                return -EINVAL;
1768
1769        desc = irq_to_desc(irq);
1770        if (!desc)
1771                return -EINVAL;
1772
1773        if (!irq_settings_can_request(desc) ||
1774            WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1775                return -EINVAL;
1776
1777        if (!handler) {
1778                if (!thread_fn)
1779                        return -EINVAL;
1780                handler = irq_default_primary_handler;
1781        }
1782
1783        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1784        if (!action)
1785                return -ENOMEM;
1786
1787        action->handler = handler;
1788        action->thread_fn = thread_fn;
1789        action->flags = irqflags;
1790        action->name = devname;
1791        action->dev_id = dev_id;
1792
1793        retval = irq_chip_pm_get(&desc->irq_data);
1794        if (retval < 0) {
1795                kfree(action);
1796                return retval;
1797        }
1798
1799        retval = __setup_irq(irq, desc, action);
1800
1801        if (retval) {
1802                irq_chip_pm_put(&desc->irq_data);
1803                kfree(action->secondary);
1804                kfree(action);
1805        }
1806
1807#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1808        if (!retval && (irqflags & IRQF_SHARED)) {
1809                /*
1810                 * It's a shared IRQ -- the driver ought to be prepared for it
1811                 * to happen immediately, so let's make sure....
1812                 * We disable the irq to make sure that a 'real' IRQ doesn't
1813                 * run in parallel with our fake.
1814                 */
1815                unsigned long flags;
1816
1817                disable_irq(irq);
1818                local_irq_save(flags);
1819
1820                handler(irq, dev_id);
1821
1822                local_irq_restore(flags);
1823                enable_irq(irq);
1824        }
1825#endif
1826        return retval;
1827}
1828EXPORT_SYMBOL(request_threaded_irq);
1829
1830/**
1831 *      request_any_context_irq - allocate an interrupt line
1832 *      @irq: Interrupt line to allocate
1833 *      @handler: Function to be called when the IRQ occurs.
1834 *                Threaded handler for threaded interrupts.
1835 *      @flags: Interrupt type flags
1836 *      @name: An ascii name for the claiming device
1837 *      @dev_id: A cookie passed back to the handler function
1838 *
1839 *      This call allocates interrupt resources and enables the
1840 *      interrupt line and IRQ handling. It selects either a
1841 *      hardirq or threaded handling method depending on the
1842 *      context.
1843 *
1844 *      On failure, it returns a negative value. On success,
1845 *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1846 */
1847int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1848                            unsigned long flags, const char *name, void *dev_id)
1849{
1850        struct irq_desc *desc;
1851        int ret;
1852
1853        if (irq == IRQ_NOTCONNECTED)
1854                return -ENOTCONN;
1855
1856        desc = irq_to_desc(irq);
1857        if (!desc)
1858                return -EINVAL;
1859
1860        if (irq_settings_is_nested_thread(desc)) {
1861                ret = request_threaded_irq(irq, NULL, handler,
1862                                           flags, name, dev_id);
1863                return !ret ? IRQC_IS_NESTED : ret;
1864        }
1865
1866        ret = request_irq(irq, handler, flags, name, dev_id);
1867        return !ret ? IRQC_IS_HARDIRQ : ret;
1868}
1869EXPORT_SYMBOL_GPL(request_any_context_irq);
1870
1871void enable_percpu_irq(unsigned int irq, unsigned int type)
1872{
1873        unsigned int cpu = smp_processor_id();
1874        unsigned long flags;
1875        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1876
1877        if (!desc)
1878                return;
1879
1880        /*
1881         * If the trigger type is not specified by the caller, then
1882         * use the default for this interrupt.
1883         */
1884        type &= IRQ_TYPE_SENSE_MASK;
1885        if (type == IRQ_TYPE_NONE)
1886                type = irqd_get_trigger_type(&desc->irq_data);
1887
1888        if (type != IRQ_TYPE_NONE) {
1889                int ret;
1890
1891                ret = __irq_set_trigger(desc, type);
1892
1893                if (ret) {
1894                        WARN(1, "failed to set type for IRQ%d\n", irq);
1895                        goto out;
1896                }
1897        }
1898
1899        irq_percpu_enable(desc, cpu);
1900out:
1901        irq_put_desc_unlock(desc, flags);
1902}
1903EXPORT_SYMBOL_GPL(enable_percpu_irq);
1904
1905/**
1906 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1907 * @irq:        Linux irq number to check for
1908 *
1909 * Must be called from a non migratable context. Returns the enable
1910 * state of a per cpu interrupt on the current cpu.
1911 */
1912bool irq_percpu_is_enabled(unsigned int irq)
1913{
1914        unsigned int cpu = smp_processor_id();
1915        struct irq_desc *desc;
1916        unsigned long flags;
1917        bool is_enabled;
1918
1919        desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1920        if (!desc)
1921                return false;
1922
1923        is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1924        irq_put_desc_unlock(desc, flags);
1925
1926        return is_enabled;
1927}
1928EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1929
1930void disable_percpu_irq(unsigned int irq)
1931{
1932        unsigned int cpu = smp_processor_id();
1933        unsigned long flags;
1934        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1935
1936        if (!desc)
1937                return;
1938
1939        irq_percpu_disable(desc, cpu);
1940        irq_put_desc_unlock(desc, flags);
1941}
1942EXPORT_SYMBOL_GPL(disable_percpu_irq);
1943
1944/*
1945 * Internal function to unregister a percpu irqaction.
1946 */
1947static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1948{
1949        struct irq_desc *desc = irq_to_desc(irq);
1950        struct irqaction *action;
1951        unsigned long flags;
1952
1953        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1954
1955        if (!desc)
1956                return NULL;
1957
1958        raw_spin_lock_irqsave(&desc->lock, flags);
1959
1960        action = desc->action;
1961        if (!action || action->percpu_dev_id != dev_id) {
1962                WARN(1, "Trying to free already-free IRQ %d\n", irq);
1963                goto bad;
1964        }
1965
1966        if (!cpumask_empty(desc->percpu_enabled)) {
1967                WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1968                     irq, cpumask_first(desc->percpu_enabled));
1969                goto bad;
1970        }
1971
1972        /* Found it - now remove it from the list of entries: */
1973        desc->action = NULL;
1974
1975        raw_spin_unlock_irqrestore(&desc->lock, flags);
1976
1977        unregister_handler_proc(irq, action);
1978
1979        irq_chip_pm_put(&desc->irq_data);
1980        module_put(desc->owner);
1981        return action;
1982
1983bad:
1984        raw_spin_unlock_irqrestore(&desc->lock, flags);
1985        return NULL;
1986}
1987
1988/**
1989 *      remove_percpu_irq - free a per-cpu interrupt
1990 *      @irq: Interrupt line to free
1991 *      @act: irqaction for the interrupt
1992 *
1993 * Used to remove interrupts statically setup by the early boot process.
1994 */
1995void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1996{
1997        struct irq_desc *desc = irq_to_desc(irq);
1998
1999        if (desc && irq_settings_is_per_cpu_devid(desc))
2000            __free_percpu_irq(irq, act->percpu_dev_id);
2001}
2002
2003/**
2004 *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2005 *      @irq: Interrupt line to free
2006 *      @dev_id: Device identity to free
2007 *
2008 *      Remove a percpu interrupt handler. The handler is removed, but
2009 *      the interrupt line is not disabled. This must be done on each
2010 *      CPU before calling this function. The function does not return
2011 *      until any executing interrupts for this IRQ have completed.
2012 *
2013 *      This function must not be called from interrupt context.
2014 */
2015void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2016{
2017        struct irq_desc *desc = irq_to_desc(irq);
2018
2019        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2020                return;
2021
2022        chip_bus_lock(desc);
2023        kfree(__free_percpu_irq(irq, dev_id));
2024        chip_bus_sync_unlock(desc);
2025}
2026EXPORT_SYMBOL_GPL(free_percpu_irq);
2027
2028/**
2029 *      setup_percpu_irq - setup a per-cpu interrupt
2030 *      @irq: Interrupt line to setup
2031 *      @act: irqaction for the interrupt
2032 *
2033 * Used to statically setup per-cpu interrupts in the early boot process.
2034 */
2035int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2036{
2037        struct irq_desc *desc = irq_to_desc(irq);
2038        int retval;
2039
2040        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2041                return -EINVAL;
2042
2043        retval = irq_chip_pm_get(&desc->irq_data);
2044        if (retval < 0)
2045                return retval;
2046
2047        retval = __setup_irq(irq, desc, act);
2048
2049        if (retval)
2050                irq_chip_pm_put(&desc->irq_data);
2051
2052        return retval;
2053}
2054
2055/**
2056 *      __request_percpu_irq - allocate a percpu interrupt line
2057 *      @irq: Interrupt line to allocate
2058 *      @handler: Function to be called when the IRQ occurs.
2059 *      @flags: Interrupt type flags (IRQF_TIMER only)
2060 *      @devname: An ascii name for the claiming device
2061 *      @dev_id: A percpu cookie passed back to the handler function
2062 *
2063 *      This call allocates interrupt resources and enables the
2064 *      interrupt on the local CPU. If the interrupt is supposed to be
2065 *      enabled on other CPUs, it has to be done on each CPU using
2066 *      enable_percpu_irq().
2067 *
2068 *      Dev_id must be globally unique. It is a per-cpu variable, and
2069 *      the handler gets called with the interrupted CPU's instance of
2070 *      that variable.
2071 */
2072int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2073                         unsigned long flags, const char *devname,
2074                         void __percpu *dev_id)
2075{
2076        struct irqaction *action;
2077        struct irq_desc *desc;
2078        int retval;
2079
2080        if (!dev_id)
2081                return -EINVAL;
2082
2083        desc = irq_to_desc(irq);
2084        if (!desc || !irq_settings_can_request(desc) ||
2085            !irq_settings_is_per_cpu_devid(desc))
2086                return -EINVAL;
2087
2088        if (flags && flags != IRQF_TIMER)
2089                return -EINVAL;
2090
2091        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2092        if (!action)
2093                return -ENOMEM;
2094
2095        action->handler = handler;
2096        action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2097        action->name = devname;
2098        action->percpu_dev_id = dev_id;
2099
2100        retval = irq_chip_pm_get(&desc->irq_data);
2101        if (retval < 0) {
2102                kfree(action);
2103                return retval;
2104        }
2105
2106        retval = __setup_irq(irq, desc, action);
2107
2108        if (retval) {
2109                irq_chip_pm_put(&desc->irq_data);
2110                kfree(action);
2111        }
2112
2113        return retval;
2114}
2115EXPORT_SYMBOL_GPL(__request_percpu_irq);
2116
2117/**
2118 *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2119 *      @irq: Interrupt line that is forwarded to a VM
2120 *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2121 *      @state: a pointer to a boolean where the state is to be storeed
2122 *
2123 *      This call snapshots the internal irqchip state of an
2124 *      interrupt, returning into @state the bit corresponding to
2125 *      stage @which
2126 *
2127 *      This function should be called with preemption disabled if the
2128 *      interrupt controller has per-cpu registers.
2129 */
2130int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2131                          bool *state)
2132{
2133        struct irq_desc *desc;
2134        struct irq_data *data;
2135        struct irq_chip *chip;
2136        unsigned long flags;
2137        int err = -EINVAL;
2138
2139        desc = irq_get_desc_buslock(irq, &flags, 0);
2140        if (!desc)
2141                return err;
2142
2143        data = irq_desc_get_irq_data(desc);
2144
2145        do {
2146                chip = irq_data_get_irq_chip(data);
2147                if (chip->irq_get_irqchip_state)
2148                        break;
2149#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2150                data = data->parent_data;
2151#else
2152                data = NULL;
2153#endif
2154        } while (data);
2155
2156        if (data)
2157                err = chip->irq_get_irqchip_state(data, which, state);
2158
2159        irq_put_desc_busunlock(desc, flags);
2160        return err;
2161}
2162EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2163
2164/**
2165 *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2166 *      @irq: Interrupt line that is forwarded to a VM
2167 *      @which: State to be restored (one of IRQCHIP_STATE_*)
2168 *      @val: Value corresponding to @which
2169 *
2170 *      This call sets the internal irqchip state of an interrupt,
2171 *      depending on the value of @which.
2172 *
2173 *      This function should be called with preemption disabled if the
2174 *      interrupt controller has per-cpu registers.
2175 */
2176int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2177                          bool val)
2178{
2179        struct irq_desc *desc;
2180        struct irq_data *data;
2181        struct irq_chip *chip;
2182        unsigned long flags;
2183        int err = -EINVAL;
2184
2185        desc = irq_get_desc_buslock(irq, &flags, 0);
2186        if (!desc)
2187                return err;
2188
2189        data = irq_desc_get_irq_data(desc);
2190
2191        do {
2192                chip = irq_data_get_irq_chip(data);
2193                if (chip->irq_set_irqchip_state)
2194                        break;
2195#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2196                data = data->parent_data;
2197#else
2198                data = NULL;
2199#endif
2200        } while (data);
2201
2202        if (data)
2203                err = chip->irq_set_irqchip_state(data, which, val);
2204
2205        irq_put_desc_busunlock(desc, flags);
2206        return err;
2207}
2208EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2209