linux/kernel/locking/qspinlock.c
<<
>>
Prefs
   1/*
   2 * Queued spinlock
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
  15 * (C) Copyright 2013-2014 Red Hat, Inc.
  16 * (C) Copyright 2015 Intel Corp.
  17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
  18 *
  19 * Authors: Waiman Long <waiman.long@hpe.com>
  20 *          Peter Zijlstra <peterz@infradead.org>
  21 */
  22
  23#ifndef _GEN_PV_LOCK_SLOWPATH
  24
  25#include <linux/smp.h>
  26#include <linux/bug.h>
  27#include <linux/cpumask.h>
  28#include <linux/percpu.h>
  29#include <linux/hardirq.h>
  30#include <linux/mutex.h>
  31#include <linux/prefetch.h>
  32#include <asm/byteorder.h>
  33#include <asm/qspinlock.h>
  34
  35/*
  36 * The basic principle of a queue-based spinlock can best be understood
  37 * by studying a classic queue-based spinlock implementation called the
  38 * MCS lock. The paper below provides a good description for this kind
  39 * of lock.
  40 *
  41 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
  42 *
  43 * This queued spinlock implementation is based on the MCS lock, however to make
  44 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
  45 * API, we must modify it somehow.
  46 *
  47 * In particular; where the traditional MCS lock consists of a tail pointer
  48 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
  49 * unlock the next pending (next->locked), we compress both these: {tail,
  50 * next->locked} into a single u32 value.
  51 *
  52 * Since a spinlock disables recursion of its own context and there is a limit
  53 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
  54 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
  55 * we can encode the tail by combining the 2-bit nesting level with the cpu
  56 * number. With one byte for the lock value and 3 bytes for the tail, only a
  57 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
  58 * we extend it to a full byte to achieve better performance for architectures
  59 * that support atomic byte write.
  60 *
  61 * We also change the first spinner to spin on the lock bit instead of its
  62 * node; whereby avoiding the need to carry a node from lock to unlock, and
  63 * preserving existing lock API. This also makes the unlock code simpler and
  64 * faster.
  65 *
  66 * N.B. The current implementation only supports architectures that allow
  67 *      atomic operations on smaller 8-bit and 16-bit data types.
  68 *
  69 */
  70
  71#include "mcs_spinlock.h"
  72
  73#ifdef CONFIG_PARAVIRT_SPINLOCKS
  74#define MAX_NODES       8
  75#else
  76#define MAX_NODES       4
  77#endif
  78
  79/*
  80 * Per-CPU queue node structures; we can never have more than 4 nested
  81 * contexts: task, softirq, hardirq, nmi.
  82 *
  83 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
  84 *
  85 * PV doubles the storage and uses the second cacheline for PV state.
  86 */
  87static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
  88
  89/*
  90 * We must be able to distinguish between no-tail and the tail at 0:0,
  91 * therefore increment the cpu number by one.
  92 */
  93
  94static inline __pure u32 encode_tail(int cpu, int idx)
  95{
  96        u32 tail;
  97
  98#ifdef CONFIG_DEBUG_SPINLOCK
  99        BUG_ON(idx > 3);
 100#endif
 101        tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
 102        tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
 103
 104        return tail;
 105}
 106
 107static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
 108{
 109        int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
 110        int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
 111
 112        return per_cpu_ptr(&mcs_nodes[idx], cpu);
 113}
 114
 115#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
 116
 117/*
 118 * By using the whole 2nd least significant byte for the pending bit, we
 119 * can allow better optimization of the lock acquisition for the pending
 120 * bit holder.
 121 *
 122 * This internal structure is also used by the set_locked function which
 123 * is not restricted to _Q_PENDING_BITS == 8.
 124 */
 125struct __qspinlock {
 126        union {
 127                atomic_t val;
 128#ifdef __LITTLE_ENDIAN
 129                struct {
 130                        u8      locked;
 131                        u8      pending;
 132                };
 133                struct {
 134                        u16     locked_pending;
 135                        u16     tail;
 136                };
 137#else
 138                struct {
 139                        u16     tail;
 140                        u16     locked_pending;
 141                };
 142                struct {
 143                        u8      reserved[2];
 144                        u8      pending;
 145                        u8      locked;
 146                };
 147#endif
 148        };
 149};
 150
 151#if _Q_PENDING_BITS == 8
 152/**
 153 * clear_pending_set_locked - take ownership and clear the pending bit.
 154 * @lock: Pointer to queued spinlock structure
 155 *
 156 * *,1,0 -> *,0,1
 157 *
 158 * Lock stealing is not allowed if this function is used.
 159 */
 160static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
 161{
 162        struct __qspinlock *l = (void *)lock;
 163
 164        WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
 165}
 166
 167/*
 168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 169 * @lock : Pointer to queued spinlock structure
 170 * @tail : The new queue tail code word
 171 * Return: The previous queue tail code word
 172 *
 173 * xchg(lock, tail), which heads an address dependency
 174 *
 175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 176 */
 177static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
 178{
 179        struct __qspinlock *l = (void *)lock;
 180
 181        /*
 182         * Use release semantics to make sure that the MCS node is properly
 183         * initialized before changing the tail code.
 184         */
 185        return (u32)xchg_release(&l->tail,
 186                                 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
 187}
 188
 189#else /* _Q_PENDING_BITS == 8 */
 190
 191/**
 192 * clear_pending_set_locked - take ownership and clear the pending bit.
 193 * @lock: Pointer to queued spinlock structure
 194 *
 195 * *,1,0 -> *,0,1
 196 */
 197static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
 198{
 199        atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
 200}
 201
 202/**
 203 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 204 * @lock : Pointer to queued spinlock structure
 205 * @tail : The new queue tail code word
 206 * Return: The previous queue tail code word
 207 *
 208 * xchg(lock, tail)
 209 *
 210 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 211 */
 212static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
 213{
 214        u32 old, new, val = atomic_read(&lock->val);
 215
 216        for (;;) {
 217                new = (val & _Q_LOCKED_PENDING_MASK) | tail;
 218                /*
 219                 * Use release semantics to make sure that the MCS node is
 220                 * properly initialized before changing the tail code.
 221                 */
 222                old = atomic_cmpxchg_release(&lock->val, val, new);
 223                if (old == val)
 224                        break;
 225
 226                val = old;
 227        }
 228        return old;
 229}
 230#endif /* _Q_PENDING_BITS == 8 */
 231
 232/**
 233 * set_locked - Set the lock bit and own the lock
 234 * @lock: Pointer to queued spinlock structure
 235 *
 236 * *,*,0 -> *,0,1
 237 */
 238static __always_inline void set_locked(struct qspinlock *lock)
 239{
 240        struct __qspinlock *l = (void *)lock;
 241
 242        WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
 243}
 244
 245
 246/*
 247 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
 248 * all the PV callbacks.
 249 */
 250
 251static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
 252static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
 253                                           struct mcs_spinlock *prev) { }
 254static __always_inline void __pv_kick_node(struct qspinlock *lock,
 255                                           struct mcs_spinlock *node) { }
 256static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
 257                                                   struct mcs_spinlock *node)
 258                                                   { return 0; }
 259
 260#define pv_enabled()            false
 261
 262#define pv_init_node            __pv_init_node
 263#define pv_wait_node            __pv_wait_node
 264#define pv_kick_node            __pv_kick_node
 265#define pv_wait_head_or_lock    __pv_wait_head_or_lock
 266
 267#ifdef CONFIG_PARAVIRT_SPINLOCKS
 268#define queued_spin_lock_slowpath       native_queued_spin_lock_slowpath
 269#endif
 270
 271#endif /* _GEN_PV_LOCK_SLOWPATH */
 272
 273/**
 274 * queued_spin_lock_slowpath - acquire the queued spinlock
 275 * @lock: Pointer to queued spinlock structure
 276 * @val: Current value of the queued spinlock 32-bit word
 277 *
 278 * (queue tail, pending bit, lock value)
 279 *
 280 *              fast     :    slow                                  :    unlock
 281 *                       :                                          :
 282 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
 283 *                       :       | ^--------.------.             /  :
 284 *                       :       v           \      \            |  :
 285 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
 286 *                       :       | ^--'              |           |  :
 287 *                       :       v                   |           |  :
 288 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
 289 *   queue               :       | ^--'                          |  :
 290 *                       :       v                               |  :
 291 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
 292 *   queue               :         ^--'                             :
 293 */
 294void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
 295{
 296        struct mcs_spinlock *prev, *next, *node;
 297        u32 new, old, tail;
 298        int idx;
 299
 300        BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
 301
 302        if (pv_enabled())
 303                goto queue;
 304
 305        if (virt_spin_lock(lock))
 306                return;
 307
 308        /*
 309         * wait for in-progress pending->locked hand-overs
 310         *
 311         * 0,1,0 -> 0,0,1
 312         */
 313        if (val == _Q_PENDING_VAL) {
 314                while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
 315                        cpu_relax();
 316        }
 317
 318        /*
 319         * trylock || pending
 320         *
 321         * 0,0,0 -> 0,0,1 ; trylock
 322         * 0,0,1 -> 0,1,1 ; pending
 323         */
 324        for (;;) {
 325                /*
 326                 * If we observe any contention; queue.
 327                 */
 328                if (val & ~_Q_LOCKED_MASK)
 329                        goto queue;
 330
 331                new = _Q_LOCKED_VAL;
 332                if (val == new)
 333                        new |= _Q_PENDING_VAL;
 334
 335                /*
 336                 * Acquire semantic is required here as the function may
 337                 * return immediately if the lock was free.
 338                 */
 339                old = atomic_cmpxchg_acquire(&lock->val, val, new);
 340                if (old == val)
 341                        break;
 342
 343                val = old;
 344        }
 345
 346        /*
 347         * we won the trylock
 348         */
 349        if (new == _Q_LOCKED_VAL)
 350                return;
 351
 352        /*
 353         * we're pending, wait for the owner to go away.
 354         *
 355         * *,1,1 -> *,1,0
 356         *
 357         * this wait loop must be a load-acquire such that we match the
 358         * store-release that clears the locked bit and create lock
 359         * sequentiality; this is because not all clear_pending_set_locked()
 360         * implementations imply full barriers.
 361         */
 362        smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
 363
 364        /*
 365         * take ownership and clear the pending bit.
 366         *
 367         * *,1,0 -> *,0,1
 368         */
 369        clear_pending_set_locked(lock);
 370        return;
 371
 372        /*
 373         * End of pending bit optimistic spinning and beginning of MCS
 374         * queuing.
 375         */
 376queue:
 377        node = this_cpu_ptr(&mcs_nodes[0]);
 378        idx = node->count++;
 379        tail = encode_tail(smp_processor_id(), idx);
 380
 381        node += idx;
 382
 383        /*
 384         * Ensure that we increment the head node->count before initialising
 385         * the actual node. If the compiler is kind enough to reorder these
 386         * stores, then an IRQ could overwrite our assignments.
 387         */
 388        barrier();
 389
 390        node->locked = 0;
 391        node->next = NULL;
 392        pv_init_node(node);
 393
 394        /*
 395         * We touched a (possibly) cold cacheline in the per-cpu queue node;
 396         * attempt the trylock once more in the hope someone let go while we
 397         * weren't watching.
 398         */
 399        if (queued_spin_trylock(lock))
 400                goto release;
 401
 402        /*
 403         * We have already touched the queueing cacheline; don't bother with
 404         * pending stuff.
 405         *
 406         * p,*,* -> n,*,*
 407         *
 408         * RELEASE, such that the stores to @node must be complete.
 409         */
 410        old = xchg_tail(lock, tail);
 411        next = NULL;
 412
 413        /*
 414         * if there was a previous node; link it and wait until reaching the
 415         * head of the waitqueue.
 416         */
 417        if (old & _Q_TAIL_MASK) {
 418                prev = decode_tail(old);
 419
 420                /*
 421                 * We must ensure that the stores to @node are observed before
 422                 * the write to prev->next. The address dependency from
 423                 * xchg_tail is not sufficient to ensure this because the read
 424                 * component of xchg_tail is unordered with respect to the
 425                 * initialisation of @node.
 426                 */
 427                smp_store_release(&prev->next, node);
 428
 429                pv_wait_node(node, prev);
 430                arch_mcs_spin_lock_contended(&node->locked);
 431
 432                /*
 433                 * While waiting for the MCS lock, the next pointer may have
 434                 * been set by another lock waiter. We optimistically load
 435                 * the next pointer & prefetch the cacheline for writing
 436                 * to reduce latency in the upcoming MCS unlock operation.
 437                 */
 438                next = READ_ONCE(node->next);
 439                if (next)
 440                        prefetchw(next);
 441        }
 442
 443        /*
 444         * we're at the head of the waitqueue, wait for the owner & pending to
 445         * go away.
 446         *
 447         * *,x,y -> *,0,0
 448         *
 449         * this wait loop must use a load-acquire such that we match the
 450         * store-release that clears the locked bit and create lock
 451         * sequentiality; this is because the set_locked() function below
 452         * does not imply a full barrier.
 453         *
 454         * The PV pv_wait_head_or_lock function, if active, will acquire
 455         * the lock and return a non-zero value. So we have to skip the
 456         * smp_cond_load_acquire() call. As the next PV queue head hasn't been
 457         * designated yet, there is no way for the locked value to become
 458         * _Q_SLOW_VAL. So both the set_locked() and the
 459         * atomic_cmpxchg_relaxed() calls will be safe.
 460         *
 461         * If PV isn't active, 0 will be returned instead.
 462         *
 463         */
 464        if ((val = pv_wait_head_or_lock(lock, node)))
 465                goto locked;
 466
 467        val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
 468
 469locked:
 470        /*
 471         * claim the lock:
 472         *
 473         * n,0,0 -> 0,0,1 : lock, uncontended
 474         * *,0,0 -> *,0,1 : lock, contended
 475         *
 476         * If the queue head is the only one in the queue (lock value == tail),
 477         * clear the tail code and grab the lock. Otherwise, we only need
 478         * to grab the lock.
 479         */
 480        for (;;) {
 481                /* In the PV case we might already have _Q_LOCKED_VAL set */
 482                if ((val & _Q_TAIL_MASK) != tail) {
 483                        set_locked(lock);
 484                        break;
 485                }
 486                /*
 487                 * The smp_cond_load_acquire() call above has provided the
 488                 * necessary acquire semantics required for locking. At most
 489                 * two iterations of this loop may be ran.
 490                 */
 491                old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
 492                if (old == val)
 493                        goto release;   /* No contention */
 494
 495                val = old;
 496        }
 497
 498        /*
 499         * contended path; wait for next if not observed yet, release.
 500         */
 501        if (!next) {
 502                while (!(next = READ_ONCE(node->next)))
 503                        cpu_relax();
 504        }
 505
 506        arch_mcs_spin_unlock_contended(&next->locked);
 507        pv_kick_node(lock, next);
 508
 509release:
 510        /*
 511         * release the node
 512         */
 513        __this_cpu_dec(mcs_nodes[0].count);
 514}
 515EXPORT_SYMBOL(queued_spin_lock_slowpath);
 516
 517/*
 518 * Generate the paravirt code for queued_spin_unlock_slowpath().
 519 */
 520#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
 521#define _GEN_PV_LOCK_SLOWPATH
 522
 523#undef  pv_enabled
 524#define pv_enabled()    true
 525
 526#undef pv_init_node
 527#undef pv_wait_node
 528#undef pv_kick_node
 529#undef pv_wait_head_or_lock
 530
 531#undef  queued_spin_lock_slowpath
 532#define queued_spin_lock_slowpath       __pv_queued_spin_lock_slowpath
 533
 534#include "qspinlock_paravirt.h"
 535#include "qspinlock.c"
 536
 537#endif
 538