linux/kernel/pid_namespace.c
<<
>>
Prefs
   1/*
   2 * Pid namespaces
   3 *
   4 * Authors:
   5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   7 *     Many thanks to Oleg Nesterov for comments and help
   8 *
   9 */
  10
  11#include <linux/pid.h>
  12#include <linux/pid_namespace.h>
  13#include <linux/user_namespace.h>
  14#include <linux/syscalls.h>
  15#include <linux/cred.h>
  16#include <linux/err.h>
  17#include <linux/acct.h>
  18#include <linux/slab.h>
  19#include <linux/proc_ns.h>
  20#include <linux/reboot.h>
  21#include <linux/export.h>
  22#include <linux/sched/task.h>
  23#include <linux/sched/signal.h>
  24#include <linux/idr.h>
  25
  26static DEFINE_MUTEX(pid_caches_mutex);
  27static struct kmem_cache *pid_ns_cachep;
  28/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  29#define MAX_PID_NS_LEVEL 32
  30/* Write once array, filled from the beginning. */
  31static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
  32
  33/*
  34 * creates the kmem cache to allocate pids from.
  35 * @level: pid namespace level
  36 */
  37
  38static struct kmem_cache *create_pid_cachep(unsigned int level)
  39{
  40        /* Level 0 is init_pid_ns.pid_cachep */
  41        struct kmem_cache **pkc = &pid_cache[level - 1];
  42        struct kmem_cache *kc;
  43        char name[4 + 10 + 1];
  44        unsigned int len;
  45
  46        kc = READ_ONCE(*pkc);
  47        if (kc)
  48                return kc;
  49
  50        snprintf(name, sizeof(name), "pid_%u", level + 1);
  51        len = sizeof(struct pid) + level * sizeof(struct upid);
  52        mutex_lock(&pid_caches_mutex);
  53        /* Name collision forces to do allocation under mutex. */
  54        if (!*pkc)
  55                *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
  56        mutex_unlock(&pid_caches_mutex);
  57        /* current can fail, but someone else can succeed. */
  58        return READ_ONCE(*pkc);
  59}
  60
  61static void proc_cleanup_work(struct work_struct *work)
  62{
  63        struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  64        pid_ns_release_proc(ns);
  65}
  66
  67static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  68{
  69        return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  70}
  71
  72static void dec_pid_namespaces(struct ucounts *ucounts)
  73{
  74        dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  75}
  76
  77static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  78        struct pid_namespace *parent_pid_ns)
  79{
  80        struct pid_namespace *ns;
  81        unsigned int level = parent_pid_ns->level + 1;
  82        struct ucounts *ucounts;
  83        int err;
  84
  85        err = -EINVAL;
  86        if (!in_userns(parent_pid_ns->user_ns, user_ns))
  87                goto out;
  88
  89        err = -ENOSPC;
  90        if (level > MAX_PID_NS_LEVEL)
  91                goto out;
  92        ucounts = inc_pid_namespaces(user_ns);
  93        if (!ucounts)
  94                goto out;
  95
  96        err = -ENOMEM;
  97        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  98        if (ns == NULL)
  99                goto out_dec;
 100
 101        idr_init(&ns->idr);
 102
 103        ns->pid_cachep = create_pid_cachep(level);
 104        if (ns->pid_cachep == NULL)
 105                goto out_free_idr;
 106
 107        err = ns_alloc_inum(&ns->ns);
 108        if (err)
 109                goto out_free_idr;
 110        ns->ns.ops = &pidns_operations;
 111
 112        kref_init(&ns->kref);
 113        ns->level = level;
 114        ns->parent = get_pid_ns(parent_pid_ns);
 115        ns->user_ns = get_user_ns(user_ns);
 116        ns->ucounts = ucounts;
 117        ns->pid_allocated = PIDNS_ADDING;
 118        INIT_WORK(&ns->proc_work, proc_cleanup_work);
 119
 120        return ns;
 121
 122out_free_idr:
 123        idr_destroy(&ns->idr);
 124        kmem_cache_free(pid_ns_cachep, ns);
 125out_dec:
 126        dec_pid_namespaces(ucounts);
 127out:
 128        return ERR_PTR(err);
 129}
 130
 131static void delayed_free_pidns(struct rcu_head *p)
 132{
 133        struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 134
 135        dec_pid_namespaces(ns->ucounts);
 136        put_user_ns(ns->user_ns);
 137
 138        kmem_cache_free(pid_ns_cachep, ns);
 139}
 140
 141static void destroy_pid_namespace(struct pid_namespace *ns)
 142{
 143        ns_free_inum(&ns->ns);
 144
 145        idr_destroy(&ns->idr);
 146        call_rcu(&ns->rcu, delayed_free_pidns);
 147}
 148
 149struct pid_namespace *copy_pid_ns(unsigned long flags,
 150        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 151{
 152        if (!(flags & CLONE_NEWPID))
 153                return get_pid_ns(old_ns);
 154        if (task_active_pid_ns(current) != old_ns)
 155                return ERR_PTR(-EINVAL);
 156        return create_pid_namespace(user_ns, old_ns);
 157}
 158
 159static void free_pid_ns(struct kref *kref)
 160{
 161        struct pid_namespace *ns;
 162
 163        ns = container_of(kref, struct pid_namespace, kref);
 164        destroy_pid_namespace(ns);
 165}
 166
 167void put_pid_ns(struct pid_namespace *ns)
 168{
 169        struct pid_namespace *parent;
 170
 171        while (ns != &init_pid_ns) {
 172                parent = ns->parent;
 173                if (!kref_put(&ns->kref, free_pid_ns))
 174                        break;
 175                ns = parent;
 176        }
 177}
 178EXPORT_SYMBOL_GPL(put_pid_ns);
 179
 180void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 181{
 182        int nr;
 183        int rc;
 184        struct task_struct *task, *me = current;
 185        int init_pids = thread_group_leader(me) ? 1 : 2;
 186        struct pid *pid;
 187
 188        /* Don't allow any more processes into the pid namespace */
 189        disable_pid_allocation(pid_ns);
 190
 191        /*
 192         * Ignore SIGCHLD causing any terminated children to autoreap.
 193         * This speeds up the namespace shutdown, plus see the comment
 194         * below.
 195         */
 196        spin_lock_irq(&me->sighand->siglock);
 197        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 198        spin_unlock_irq(&me->sighand->siglock);
 199
 200        /*
 201         * The last thread in the cgroup-init thread group is terminating.
 202         * Find remaining pid_ts in the namespace, signal and wait for them
 203         * to exit.
 204         *
 205         * Note:  This signals each threads in the namespace - even those that
 206         *        belong to the same thread group, To avoid this, we would have
 207         *        to walk the entire tasklist looking a processes in this
 208         *        namespace, but that could be unnecessarily expensive if the
 209         *        pid namespace has just a few processes. Or we need to
 210         *        maintain a tasklist for each pid namespace.
 211         *
 212         */
 213        rcu_read_lock();
 214        read_lock(&tasklist_lock);
 215        nr = 2;
 216        idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
 217                task = pid_task(pid, PIDTYPE_PID);
 218                if (task && !__fatal_signal_pending(task))
 219                        send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
 220        }
 221        read_unlock(&tasklist_lock);
 222        rcu_read_unlock();
 223
 224        /*
 225         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 226         * kernel_wait4() will also block until our children traced from the
 227         * parent namespace are detached and become EXIT_DEAD.
 228         */
 229        do {
 230                clear_thread_flag(TIF_SIGPENDING);
 231                rc = kernel_wait4(-1, NULL, __WALL, NULL);
 232        } while (rc != -ECHILD);
 233
 234        /*
 235         * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
 236         * really care, we could reparent them to the global init. We could
 237         * exit and reap ->child_reaper even if it is not the last thread in
 238         * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
 239         * pid_ns can not go away until proc_kill_sb() drops the reference.
 240         *
 241         * But this ns can also have other tasks injected by setns()+fork().
 242         * Again, ignoring the user visible semantics we do not really need
 243         * to wait until they are all reaped, but they can be reparented to
 244         * us and thus we need to ensure that pid->child_reaper stays valid
 245         * until they all go away. See free_pid()->wake_up_process().
 246         *
 247         * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
 248         * if reparented.
 249         */
 250        for (;;) {
 251                set_current_state(TASK_INTERRUPTIBLE);
 252                if (pid_ns->pid_allocated == init_pids)
 253                        break;
 254                schedule();
 255        }
 256        __set_current_state(TASK_RUNNING);
 257
 258        if (pid_ns->reboot)
 259                current->signal->group_exit_code = pid_ns->reboot;
 260
 261        acct_exit_ns(pid_ns);
 262        return;
 263}
 264
 265#ifdef CONFIG_CHECKPOINT_RESTORE
 266static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 267                void __user *buffer, size_t *lenp, loff_t *ppos)
 268{
 269        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 270        struct ctl_table tmp = *table;
 271        int ret, next;
 272
 273        if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
 274                return -EPERM;
 275
 276        /*
 277         * Writing directly to ns' last_pid field is OK, since this field
 278         * is volatile in a living namespace anyway and a code writing to
 279         * it should synchronize its usage with external means.
 280         */
 281
 282        next = idr_get_cursor(&pid_ns->idr) - 1;
 283
 284        tmp.data = &next;
 285        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 286        if (!ret && write)
 287                idr_set_cursor(&pid_ns->idr, next + 1);
 288
 289        return ret;
 290}
 291
 292extern int pid_max;
 293static int zero = 0;
 294static struct ctl_table pid_ns_ctl_table[] = {
 295        {
 296                .procname = "ns_last_pid",
 297                .maxlen = sizeof(int),
 298                .mode = 0666, /* permissions are checked in the handler */
 299                .proc_handler = pid_ns_ctl_handler,
 300                .extra1 = &zero,
 301                .extra2 = &pid_max,
 302        },
 303        { }
 304};
 305static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 306#endif  /* CONFIG_CHECKPOINT_RESTORE */
 307
 308int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 309{
 310        if (pid_ns == &init_pid_ns)
 311                return 0;
 312
 313        switch (cmd) {
 314        case LINUX_REBOOT_CMD_RESTART2:
 315        case LINUX_REBOOT_CMD_RESTART:
 316                pid_ns->reboot = SIGHUP;
 317                break;
 318
 319        case LINUX_REBOOT_CMD_POWER_OFF:
 320        case LINUX_REBOOT_CMD_HALT:
 321                pid_ns->reboot = SIGINT;
 322                break;
 323        default:
 324                return -EINVAL;
 325        }
 326
 327        read_lock(&tasklist_lock);
 328        force_sig(SIGKILL, pid_ns->child_reaper);
 329        read_unlock(&tasklist_lock);
 330
 331        do_exit(0);
 332
 333        /* Not reached */
 334        return 0;
 335}
 336
 337static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 338{
 339        return container_of(ns, struct pid_namespace, ns);
 340}
 341
 342static struct ns_common *pidns_get(struct task_struct *task)
 343{
 344        struct pid_namespace *ns;
 345
 346        rcu_read_lock();
 347        ns = task_active_pid_ns(task);
 348        if (ns)
 349                get_pid_ns(ns);
 350        rcu_read_unlock();
 351
 352        return ns ? &ns->ns : NULL;
 353}
 354
 355static struct ns_common *pidns_for_children_get(struct task_struct *task)
 356{
 357        struct pid_namespace *ns = NULL;
 358
 359        task_lock(task);
 360        if (task->nsproxy) {
 361                ns = task->nsproxy->pid_ns_for_children;
 362                get_pid_ns(ns);
 363        }
 364        task_unlock(task);
 365
 366        if (ns) {
 367                read_lock(&tasklist_lock);
 368                if (!ns->child_reaper) {
 369                        put_pid_ns(ns);
 370                        ns = NULL;
 371                }
 372                read_unlock(&tasklist_lock);
 373        }
 374
 375        return ns ? &ns->ns : NULL;
 376}
 377
 378static void pidns_put(struct ns_common *ns)
 379{
 380        put_pid_ns(to_pid_ns(ns));
 381}
 382
 383static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 384{
 385        struct pid_namespace *active = task_active_pid_ns(current);
 386        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 387
 388        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 389            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 390                return -EPERM;
 391
 392        /*
 393         * Only allow entering the current active pid namespace
 394         * or a child of the current active pid namespace.
 395         *
 396         * This is required for fork to return a usable pid value and
 397         * this maintains the property that processes and their
 398         * children can not escape their current pid namespace.
 399         */
 400        if (new->level < active->level)
 401                return -EINVAL;
 402
 403        ancestor = new;
 404        while (ancestor->level > active->level)
 405                ancestor = ancestor->parent;
 406        if (ancestor != active)
 407                return -EINVAL;
 408
 409        put_pid_ns(nsproxy->pid_ns_for_children);
 410        nsproxy->pid_ns_for_children = get_pid_ns(new);
 411        return 0;
 412}
 413
 414static struct ns_common *pidns_get_parent(struct ns_common *ns)
 415{
 416        struct pid_namespace *active = task_active_pid_ns(current);
 417        struct pid_namespace *pid_ns, *p;
 418
 419        /* See if the parent is in the current namespace */
 420        pid_ns = p = to_pid_ns(ns)->parent;
 421        for (;;) {
 422                if (!p)
 423                        return ERR_PTR(-EPERM);
 424                if (p == active)
 425                        break;
 426                p = p->parent;
 427        }
 428
 429        return &get_pid_ns(pid_ns)->ns;
 430}
 431
 432static struct user_namespace *pidns_owner(struct ns_common *ns)
 433{
 434        return to_pid_ns(ns)->user_ns;
 435}
 436
 437const struct proc_ns_operations pidns_operations = {
 438        .name           = "pid",
 439        .type           = CLONE_NEWPID,
 440        .get            = pidns_get,
 441        .put            = pidns_put,
 442        .install        = pidns_install,
 443        .owner          = pidns_owner,
 444        .get_parent     = pidns_get_parent,
 445};
 446
 447const struct proc_ns_operations pidns_for_children_operations = {
 448        .name           = "pid_for_children",
 449        .real_ns_name   = "pid",
 450        .type           = CLONE_NEWPID,
 451        .get            = pidns_for_children_get,
 452        .put            = pidns_put,
 453        .install        = pidns_install,
 454        .owner          = pidns_owner,
 455        .get_parent     = pidns_get_parent,
 456};
 457
 458static __init int pid_namespaces_init(void)
 459{
 460        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 461
 462#ifdef CONFIG_CHECKPOINT_RESTORE
 463        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 464#endif
 465        return 0;
 466}
 467
 468__initcall(pid_namespaces_init);
 469