linux/kernel/rcu/tree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate_wait.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/sched/debug.h>
  39#include <linux/nmi.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/export.h>
  43#include <linux/completion.h>
  44#include <linux/moduleparam.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <uapi/linux/sched/types.h>
  54#include <linux/prefetch.h>
  55#include <linux/delay.h>
  56#include <linux/stop_machine.h>
  57#include <linux/random.h>
  58#include <linux/trace_events.h>
  59#include <linux/suspend.h>
  60#include <linux/ftrace.h>
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * In order to export the rcu_state name to the tracing tools, it
  74 * needs to be added in the __tracepoint_string section.
  75 * This requires defining a separate variable tp_<sname>_varname
  76 * that points to the string being used, and this will allow
  77 * the tracing userspace tools to be able to decipher the string
  78 * address to the matching string.
  79 */
  80#ifdef CONFIG_TRACING
  81# define DEFINE_RCU_TPS(sname) \
  82static char sname##_varname[] = #sname; \
  83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  84# define RCU_STATE_NAME(sname) sname##_varname
  85#else
  86# define DEFINE_RCU_TPS(sname)
  87# define RCU_STATE_NAME(sname) __stringify(sname)
  88#endif
  89
  90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  91DEFINE_RCU_TPS(sname) \
  92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  93struct rcu_state sname##_state = { \
  94        .level = { &sname##_state.node[0] }, \
  95        .rda = &sname##_data, \
  96        .call = cr, \
  97        .gp_state = RCU_GP_IDLE, \
  98        .gpnum = 0UL - 300UL, \
  99        .completed = 0UL - 300UL, \
 100        .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 101        .name = RCU_STATE_NAME(sname), \
 102        .abbr = sabbr, \
 103        .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 104        .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 105}
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126/* panic() on RCU Stall sysctl. */
 127int sysctl_panic_on_rcu_stall __read_mostly;
 128
 129/*
 130 * The rcu_scheduler_active variable is initialized to the value
 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 132 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 133 * RCU can assume that there is but one task, allowing RCU to (for example)
 134 * optimize synchronize_rcu() to a simple barrier().  When this variable
 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 136 * to detect real grace periods.  This variable is also used to suppress
 137 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 139 * is fully initialized, including all of its kthreads having been spawned.
 140 */
 141int rcu_scheduler_active __read_mostly;
 142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 143
 144/*
 145 * The rcu_scheduler_fully_active variable transitions from zero to one
 146 * during the early_initcall() processing, which is after the scheduler
 147 * is capable of creating new tasks.  So RCU processing (for example,
 148 * creating tasks for RCU priority boosting) must be delayed until after
 149 * rcu_scheduler_fully_active transitions from zero to one.  We also
 150 * currently delay invocation of any RCU callbacks until after this point.
 151 *
 152 * It might later prove better for people registering RCU callbacks during
 153 * early boot to take responsibility for these callbacks, but one step at
 154 * a time.
 155 */
 156static int rcu_scheduler_fully_active __read_mostly;
 157
 158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 161static void invoke_rcu_core(void);
 162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 163static void rcu_report_exp_rdp(struct rcu_state *rsp,
 164                               struct rcu_data *rdp, bool wake);
 165static void sync_sched_exp_online_cleanup(int cpu);
 166
 167/* rcuc/rcub kthread realtime priority */
 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 169module_param(kthread_prio, int, 0644);
 170
 171/* Delay in jiffies for grace-period initialization delays, debug only. */
 172
 173static int gp_preinit_delay;
 174module_param(gp_preinit_delay, int, 0444);
 175static int gp_init_delay;
 176module_param(gp_init_delay, int, 0444);
 177static int gp_cleanup_delay;
 178module_param(gp_cleanup_delay, int, 0444);
 179
 180/*
 181 * Number of grace periods between delays, normalized by the duration of
 182 * the delay.  The longer the delay, the more the grace periods between
 183 * each delay.  The reason for this normalization is that it means that,
 184 * for non-zero delays, the overall slowdown of grace periods is constant
 185 * regardless of the duration of the delay.  This arrangement balances
 186 * the need for long delays to increase some race probabilities with the
 187 * need for fast grace periods to increase other race probabilities.
 188 */
 189#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 190
 191/*
 192 * Track the rcutorture test sequence number and the update version
 193 * number within a given test.  The rcutorture_testseq is incremented
 194 * on every rcutorture module load and unload, so has an odd value
 195 * when a test is running.  The rcutorture_vernum is set to zero
 196 * when rcutorture starts and is incremented on each rcutorture update.
 197 * These variables enable correlating rcutorture output with the
 198 * RCU tracing information.
 199 */
 200unsigned long rcutorture_testseq;
 201unsigned long rcutorture_vernum;
 202
 203/*
 204 * Compute the mask of online CPUs for the specified rcu_node structure.
 205 * This will not be stable unless the rcu_node structure's ->lock is
 206 * held, but the bit corresponding to the current CPU will be stable
 207 * in most contexts.
 208 */
 209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 210{
 211        return READ_ONCE(rnp->qsmaskinitnext);
 212}
 213
 214/*
 215 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 216 * permit this function to be invoked without holding the root rcu_node
 217 * structure's ->lock, but of course results can be subject to change.
 218 */
 219static int rcu_gp_in_progress(struct rcu_state *rsp)
 220{
 221        return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 222}
 223
 224/*
 225 * Note a quiescent state.  Because we do not need to know
 226 * how many quiescent states passed, just if there was at least
 227 * one since the start of the grace period, this just sets a flag.
 228 * The caller must have disabled preemption.
 229 */
 230void rcu_sched_qs(void)
 231{
 232        RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
 233        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 234                return;
 235        trace_rcu_grace_period(TPS("rcu_sched"),
 236                               __this_cpu_read(rcu_sched_data.gpnum),
 237                               TPS("cpuqs"));
 238        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 239        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 240                return;
 241        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 242        rcu_report_exp_rdp(&rcu_sched_state,
 243                           this_cpu_ptr(&rcu_sched_data), true);
 244}
 245
 246void rcu_bh_qs(void)
 247{
 248        RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
 249        if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 250                trace_rcu_grace_period(TPS("rcu_bh"),
 251                                       __this_cpu_read(rcu_bh_data.gpnum),
 252                                       TPS("cpuqs"));
 253                __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 254        }
 255}
 256
 257/*
 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 259 * control.  Initially this is for TLB flushing.
 260 */
 261#define RCU_DYNTICK_CTRL_MASK 0x1
 262#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 263#ifndef rcu_eqs_special_exit
 264#define rcu_eqs_special_exit() do { } while (0)
 265#endif
 266
 267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 268        .dynticks_nesting = 1,
 269        .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
 270        .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 271};
 272
 273/*
 274 * Record entry into an extended quiescent state.  This is only to be
 275 * called when not already in an extended quiescent state.
 276 */
 277static void rcu_dynticks_eqs_enter(void)
 278{
 279        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 280        int seq;
 281
 282        /*
 283         * CPUs seeing atomic_add_return() must see prior RCU read-side
 284         * critical sections, and we also must force ordering with the
 285         * next idle sojourn.
 286         */
 287        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 288        /* Better be in an extended quiescent state! */
 289        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 290                     (seq & RCU_DYNTICK_CTRL_CTR));
 291        /* Better not have special action (TLB flush) pending! */
 292        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 293                     (seq & RCU_DYNTICK_CTRL_MASK));
 294}
 295
 296/*
 297 * Record exit from an extended quiescent state.  This is only to be
 298 * called from an extended quiescent state.
 299 */
 300static void rcu_dynticks_eqs_exit(void)
 301{
 302        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 303        int seq;
 304
 305        /*
 306         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 307         * and we also must force ordering with the next RCU read-side
 308         * critical section.
 309         */
 310        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 311        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 312                     !(seq & RCU_DYNTICK_CTRL_CTR));
 313        if (seq & RCU_DYNTICK_CTRL_MASK) {
 314                atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 315                smp_mb__after_atomic(); /* _exit after clearing mask. */
 316                /* Prefer duplicate flushes to losing a flush. */
 317                rcu_eqs_special_exit();
 318        }
 319}
 320
 321/*
 322 * Reset the current CPU's ->dynticks counter to indicate that the
 323 * newly onlined CPU is no longer in an extended quiescent state.
 324 * This will either leave the counter unchanged, or increment it
 325 * to the next non-quiescent value.
 326 *
 327 * The non-atomic test/increment sequence works because the upper bits
 328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 329 * or when the corresponding CPU is offline.
 330 */
 331static void rcu_dynticks_eqs_online(void)
 332{
 333        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 334
 335        if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 336                return;
 337        atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 338}
 339
 340/*
 341 * Is the current CPU in an extended quiescent state?
 342 *
 343 * No ordering, as we are sampling CPU-local information.
 344 */
 345bool rcu_dynticks_curr_cpu_in_eqs(void)
 346{
 347        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 348
 349        return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 350}
 351
 352/*
 353 * Snapshot the ->dynticks counter with full ordering so as to allow
 354 * stable comparison of this counter with past and future snapshots.
 355 */
 356int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 357{
 358        int snap = atomic_add_return(0, &rdtp->dynticks);
 359
 360        return snap & ~RCU_DYNTICK_CTRL_MASK;
 361}
 362
 363/*
 364 * Return true if the snapshot returned from rcu_dynticks_snap()
 365 * indicates that RCU is in an extended quiescent state.
 366 */
 367static bool rcu_dynticks_in_eqs(int snap)
 368{
 369        return !(snap & RCU_DYNTICK_CTRL_CTR);
 370}
 371
 372/*
 373 * Return true if the CPU corresponding to the specified rcu_dynticks
 374 * structure has spent some time in an extended quiescent state since
 375 * rcu_dynticks_snap() returned the specified snapshot.
 376 */
 377static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 378{
 379        return snap != rcu_dynticks_snap(rdtp);
 380}
 381
 382/*
 383 * Do a double-increment of the ->dynticks counter to emulate a
 384 * momentary idle-CPU quiescent state.
 385 */
 386static void rcu_dynticks_momentary_idle(void)
 387{
 388        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 389        int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 390                                        &rdtp->dynticks);
 391
 392        /* It is illegal to call this from idle state. */
 393        WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 394}
 395
 396/*
 397 * Set the special (bottom) bit of the specified CPU so that it
 398 * will take special action (such as flushing its TLB) on the
 399 * next exit from an extended quiescent state.  Returns true if
 400 * the bit was successfully set, or false if the CPU was not in
 401 * an extended quiescent state.
 402 */
 403bool rcu_eqs_special_set(int cpu)
 404{
 405        int old;
 406        int new;
 407        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 408
 409        do {
 410                old = atomic_read(&rdtp->dynticks);
 411                if (old & RCU_DYNTICK_CTRL_CTR)
 412                        return false;
 413                new = old | RCU_DYNTICK_CTRL_MASK;
 414        } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 415        return true;
 416}
 417
 418/*
 419 * Let the RCU core know that this CPU has gone through the scheduler,
 420 * which is a quiescent state.  This is called when the need for a
 421 * quiescent state is urgent, so we burn an atomic operation and full
 422 * memory barriers to let the RCU core know about it, regardless of what
 423 * this CPU might (or might not) do in the near future.
 424 *
 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 426 *
 427 * The caller must have disabled interrupts.
 428 */
 429static void rcu_momentary_dyntick_idle(void)
 430{
 431        raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 432        rcu_dynticks_momentary_idle();
 433}
 434
 435/*
 436 * Note a context switch.  This is a quiescent state for RCU-sched,
 437 * and requires special handling for preemptible RCU.
 438 * The caller must have disabled interrupts.
 439 */
 440void rcu_note_context_switch(bool preempt)
 441{
 442        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 443        trace_rcu_utilization(TPS("Start context switch"));
 444        rcu_sched_qs();
 445        rcu_preempt_note_context_switch(preempt);
 446        /* Load rcu_urgent_qs before other flags. */
 447        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 448                goto out;
 449        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 450        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 451                rcu_momentary_dyntick_idle();
 452        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 453        if (!preempt)
 454                rcu_note_voluntary_context_switch_lite(current);
 455out:
 456        trace_rcu_utilization(TPS("End context switch"));
 457        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 458}
 459EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 460
 461/*
 462 * Register a quiescent state for all RCU flavors.  If there is an
 463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 464 * dyntick-idle quiescent state visible to other CPUs (but only for those
 465 * RCU flavors in desperate need of a quiescent state, which will normally
 466 * be none of them).  Either way, do a lightweight quiescent state for
 467 * all RCU flavors.
 468 *
 469 * The barrier() calls are redundant in the common case when this is
 470 * called externally, but just in case this is called from within this
 471 * file.
 472 *
 473 */
 474void rcu_all_qs(void)
 475{
 476        unsigned long flags;
 477
 478        if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 479                return;
 480        preempt_disable();
 481        /* Load rcu_urgent_qs before other flags. */
 482        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 483                preempt_enable();
 484                return;
 485        }
 486        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 487        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 488        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 489                local_irq_save(flags);
 490                rcu_momentary_dyntick_idle();
 491                local_irq_restore(flags);
 492        }
 493        if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 494                rcu_sched_qs();
 495        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 496        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 497        preempt_enable();
 498}
 499EXPORT_SYMBOL_GPL(rcu_all_qs);
 500
 501#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
 502static long blimit = DEFAULT_RCU_BLIMIT;
 503#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 504static long qhimark = DEFAULT_RCU_QHIMARK;
 505#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 506static long qlowmark = DEFAULT_RCU_QLOMARK;
 507
 508module_param(blimit, long, 0444);
 509module_param(qhimark, long, 0444);
 510module_param(qlowmark, long, 0444);
 511
 512static ulong jiffies_till_first_fqs = ULONG_MAX;
 513static ulong jiffies_till_next_fqs = ULONG_MAX;
 514static bool rcu_kick_kthreads;
 515
 516module_param(jiffies_till_first_fqs, ulong, 0644);
 517module_param(jiffies_till_next_fqs, ulong, 0644);
 518module_param(rcu_kick_kthreads, bool, 0644);
 519
 520/*
 521 * How long the grace period must be before we start recruiting
 522 * quiescent-state help from rcu_note_context_switch().
 523 */
 524static ulong jiffies_till_sched_qs = HZ / 10;
 525module_param(jiffies_till_sched_qs, ulong, 0444);
 526
 527static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 528                                  struct rcu_data *rdp);
 529static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
 530static void force_quiescent_state(struct rcu_state *rsp);
 531static int rcu_pending(void);
 532
 533/*
 534 * Return the number of RCU batches started thus far for debug & stats.
 535 */
 536unsigned long rcu_batches_started(void)
 537{
 538        return rcu_state_p->gpnum;
 539}
 540EXPORT_SYMBOL_GPL(rcu_batches_started);
 541
 542/*
 543 * Return the number of RCU-sched batches started thus far for debug & stats.
 544 */
 545unsigned long rcu_batches_started_sched(void)
 546{
 547        return rcu_sched_state.gpnum;
 548}
 549EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 550
 551/*
 552 * Return the number of RCU BH batches started thus far for debug & stats.
 553 */
 554unsigned long rcu_batches_started_bh(void)
 555{
 556        return rcu_bh_state.gpnum;
 557}
 558EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 559
 560/*
 561 * Return the number of RCU batches completed thus far for debug & stats.
 562 */
 563unsigned long rcu_batches_completed(void)
 564{
 565        return rcu_state_p->completed;
 566}
 567EXPORT_SYMBOL_GPL(rcu_batches_completed);
 568
 569/*
 570 * Return the number of RCU-sched batches completed thus far for debug & stats.
 571 */
 572unsigned long rcu_batches_completed_sched(void)
 573{
 574        return rcu_sched_state.completed;
 575}
 576EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 577
 578/*
 579 * Return the number of RCU BH batches completed thus far for debug & stats.
 580 */
 581unsigned long rcu_batches_completed_bh(void)
 582{
 583        return rcu_bh_state.completed;
 584}
 585EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 586
 587/*
 588 * Return the number of RCU expedited batches completed thus far for
 589 * debug & stats.  Odd numbers mean that a batch is in progress, even
 590 * numbers mean idle.  The value returned will thus be roughly double
 591 * the cumulative batches since boot.
 592 */
 593unsigned long rcu_exp_batches_completed(void)
 594{
 595        return rcu_state_p->expedited_sequence;
 596}
 597EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 598
 599/*
 600 * Return the number of RCU-sched expedited batches completed thus far
 601 * for debug & stats.  Similar to rcu_exp_batches_completed().
 602 */
 603unsigned long rcu_exp_batches_completed_sched(void)
 604{
 605        return rcu_sched_state.expedited_sequence;
 606}
 607EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 608
 609/*
 610 * Force a quiescent state.
 611 */
 612void rcu_force_quiescent_state(void)
 613{
 614        force_quiescent_state(rcu_state_p);
 615}
 616EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 617
 618/*
 619 * Force a quiescent state for RCU BH.
 620 */
 621void rcu_bh_force_quiescent_state(void)
 622{
 623        force_quiescent_state(&rcu_bh_state);
 624}
 625EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 626
 627/*
 628 * Force a quiescent state for RCU-sched.
 629 */
 630void rcu_sched_force_quiescent_state(void)
 631{
 632        force_quiescent_state(&rcu_sched_state);
 633}
 634EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 635
 636/*
 637 * Show the state of the grace-period kthreads.
 638 */
 639void show_rcu_gp_kthreads(void)
 640{
 641        struct rcu_state *rsp;
 642
 643        for_each_rcu_flavor(rsp) {
 644                pr_info("%s: wait state: %d ->state: %#lx\n",
 645                        rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 646                /* sched_show_task(rsp->gp_kthread); */
 647        }
 648}
 649EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 650
 651/*
 652 * Record the number of times rcutorture tests have been initiated and
 653 * terminated.  This information allows the debugfs tracing stats to be
 654 * correlated to the rcutorture messages, even when the rcutorture module
 655 * is being repeatedly loaded and unloaded.  In other words, we cannot
 656 * store this state in rcutorture itself.
 657 */
 658void rcutorture_record_test_transition(void)
 659{
 660        rcutorture_testseq++;
 661        rcutorture_vernum = 0;
 662}
 663EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 664
 665/*
 666 * Send along grace-period-related data for rcutorture diagnostics.
 667 */
 668void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 669                            unsigned long *gpnum, unsigned long *completed)
 670{
 671        struct rcu_state *rsp = NULL;
 672
 673        switch (test_type) {
 674        case RCU_FLAVOR:
 675                rsp = rcu_state_p;
 676                break;
 677        case RCU_BH_FLAVOR:
 678                rsp = &rcu_bh_state;
 679                break;
 680        case RCU_SCHED_FLAVOR:
 681                rsp = &rcu_sched_state;
 682                break;
 683        default:
 684                break;
 685        }
 686        if (rsp == NULL)
 687                return;
 688        *flags = READ_ONCE(rsp->gp_flags);
 689        *gpnum = READ_ONCE(rsp->gpnum);
 690        *completed = READ_ONCE(rsp->completed);
 691}
 692EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 693
 694/*
 695 * Record the number of writer passes through the current rcutorture test.
 696 * This is also used to correlate debugfs tracing stats with the rcutorture
 697 * messages.
 698 */
 699void rcutorture_record_progress(unsigned long vernum)
 700{
 701        rcutorture_vernum++;
 702}
 703EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 704
 705/*
 706 * Return the root node of the specified rcu_state structure.
 707 */
 708static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 709{
 710        return &rsp->node[0];
 711}
 712
 713/*
 714 * Is there any need for future grace periods?
 715 * Interrupts must be disabled.  If the caller does not hold the root
 716 * rnp_node structure's ->lock, the results are advisory only.
 717 */
 718static int rcu_future_needs_gp(struct rcu_state *rsp)
 719{
 720        struct rcu_node *rnp = rcu_get_root(rsp);
 721        int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 722        int *fp = &rnp->need_future_gp[idx];
 723
 724        lockdep_assert_irqs_disabled();
 725        return READ_ONCE(*fp);
 726}
 727
 728/*
 729 * Does the current CPU require a not-yet-started grace period?
 730 * The caller must have disabled interrupts to prevent races with
 731 * normal callback registry.
 732 */
 733static bool
 734cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 735{
 736        lockdep_assert_irqs_disabled();
 737        if (rcu_gp_in_progress(rsp))
 738                return false;  /* No, a grace period is already in progress. */
 739        if (rcu_future_needs_gp(rsp))
 740                return true;  /* Yes, a no-CBs CPU needs one. */
 741        if (!rcu_segcblist_is_enabled(&rdp->cblist))
 742                return false;  /* No, this is a no-CBs (or offline) CPU. */
 743        if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 744                return true;  /* Yes, CPU has newly registered callbacks. */
 745        if (rcu_segcblist_future_gp_needed(&rdp->cblist,
 746                                           READ_ONCE(rsp->completed)))
 747                return true;  /* Yes, CBs for future grace period. */
 748        return false; /* No grace period needed. */
 749}
 750
 751/*
 752 * Enter an RCU extended quiescent state, which can be either the
 753 * idle loop or adaptive-tickless usermode execution.
 754 *
 755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 756 * the possibility of usermode upcalls having messed up our count
 757 * of interrupt nesting level during the prior busy period.
 758 */
 759static void rcu_eqs_enter(bool user)
 760{
 761        struct rcu_state *rsp;
 762        struct rcu_data *rdp;
 763        struct rcu_dynticks *rdtp;
 764
 765        rdtp = this_cpu_ptr(&rcu_dynticks);
 766        WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
 767        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 768                     rdtp->dynticks_nesting == 0);
 769        if (rdtp->dynticks_nesting != 1) {
 770                rdtp->dynticks_nesting--;
 771                return;
 772        }
 773
 774        lockdep_assert_irqs_disabled();
 775        trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
 776        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 777        for_each_rcu_flavor(rsp) {
 778                rdp = this_cpu_ptr(rsp->rda);
 779                do_nocb_deferred_wakeup(rdp);
 780        }
 781        rcu_prepare_for_idle();
 782        WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 783        rcu_dynticks_eqs_enter();
 784        rcu_dynticks_task_enter();
 785}
 786
 787/**
 788 * rcu_idle_enter - inform RCU that current CPU is entering idle
 789 *
 790 * Enter idle mode, in other words, -leave- the mode in which RCU
 791 * read-side critical sections can occur.  (Though RCU read-side
 792 * critical sections can occur in irq handlers in idle, a possibility
 793 * handled by irq_enter() and irq_exit().)
 794 *
 795 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 796 * CONFIG_RCU_EQS_DEBUG=y.
 797 */
 798void rcu_idle_enter(void)
 799{
 800        lockdep_assert_irqs_disabled();
 801        rcu_eqs_enter(false);
 802}
 803
 804#ifdef CONFIG_NO_HZ_FULL
 805/**
 806 * rcu_user_enter - inform RCU that we are resuming userspace.
 807 *
 808 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 809 * is permitted between this call and rcu_user_exit(). This way the
 810 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 811 * when the CPU runs in userspace.
 812 *
 813 * If you add or remove a call to rcu_user_enter(), be sure to test with
 814 * CONFIG_RCU_EQS_DEBUG=y.
 815 */
 816void rcu_user_enter(void)
 817{
 818        lockdep_assert_irqs_disabled();
 819        rcu_eqs_enter(true);
 820}
 821#endif /* CONFIG_NO_HZ_FULL */
 822
 823/**
 824 * rcu_nmi_exit - inform RCU of exit from NMI context
 825 *
 826 * If we are returning from the outermost NMI handler that interrupted an
 827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 828 * to let the RCU grace-period handling know that the CPU is back to
 829 * being RCU-idle.
 830 *
 831 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 832 * with CONFIG_RCU_EQS_DEBUG=y.
 833 */
 834void rcu_nmi_exit(void)
 835{
 836        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 837
 838        /*
 839         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 840         * (We are exiting an NMI handler, so RCU better be paying attention
 841         * to us!)
 842         */
 843        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
 844        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 845
 846        /*
 847         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 848         * leave it in non-RCU-idle state.
 849         */
 850        if (rdtp->dynticks_nmi_nesting != 1) {
 851                trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
 852                WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
 853                           rdtp->dynticks_nmi_nesting - 2);
 854                return;
 855        }
 856
 857        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 858        trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
 859        WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 860        rcu_dynticks_eqs_enter();
 861}
 862
 863/**
 864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 865 *
 866 * Exit from an interrupt handler, which might possibly result in entering
 867 * idle mode, in other words, leaving the mode in which read-side critical
 868 * sections can occur.  The caller must have disabled interrupts.
 869 *
 870 * This code assumes that the idle loop never does anything that might
 871 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 872 * architecture's idle loop violates this assumption, RCU will give you what
 873 * you deserve, good and hard.  But very infrequently and irreproducibly.
 874 *
 875 * Use things like work queues to work around this limitation.
 876 *
 877 * You have been warned.
 878 *
 879 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 880 * CONFIG_RCU_EQS_DEBUG=y.
 881 */
 882void rcu_irq_exit(void)
 883{
 884        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 885
 886        lockdep_assert_irqs_disabled();
 887        if (rdtp->dynticks_nmi_nesting == 1)
 888                rcu_prepare_for_idle();
 889        rcu_nmi_exit();
 890        if (rdtp->dynticks_nmi_nesting == 0)
 891                rcu_dynticks_task_enter();
 892}
 893
 894/*
 895 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 896 *
 897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 898 * with CONFIG_RCU_EQS_DEBUG=y.
 899 */
 900void rcu_irq_exit_irqson(void)
 901{
 902        unsigned long flags;
 903
 904        local_irq_save(flags);
 905        rcu_irq_exit();
 906        local_irq_restore(flags);
 907}
 908
 909/*
 910 * Exit an RCU extended quiescent state, which can be either the
 911 * idle loop or adaptive-tickless usermode execution.
 912 *
 913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 914 * allow for the possibility of usermode upcalls messing up our count of
 915 * interrupt nesting level during the busy period that is just now starting.
 916 */
 917static void rcu_eqs_exit(bool user)
 918{
 919        struct rcu_dynticks *rdtp;
 920        long oldval;
 921
 922        lockdep_assert_irqs_disabled();
 923        rdtp = this_cpu_ptr(&rcu_dynticks);
 924        oldval = rdtp->dynticks_nesting;
 925        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 926        if (oldval) {
 927                rdtp->dynticks_nesting++;
 928                return;
 929        }
 930        rcu_dynticks_task_exit();
 931        rcu_dynticks_eqs_exit();
 932        rcu_cleanup_after_idle();
 933        trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
 934        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 935        WRITE_ONCE(rdtp->dynticks_nesting, 1);
 936        WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 937}
 938
 939/**
 940 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 941 *
 942 * Exit idle mode, in other words, -enter- the mode in which RCU
 943 * read-side critical sections can occur.
 944 *
 945 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 946 * CONFIG_RCU_EQS_DEBUG=y.
 947 */
 948void rcu_idle_exit(void)
 949{
 950        unsigned long flags;
 951
 952        local_irq_save(flags);
 953        rcu_eqs_exit(false);
 954        local_irq_restore(flags);
 955}
 956
 957#ifdef CONFIG_NO_HZ_FULL
 958/**
 959 * rcu_user_exit - inform RCU that we are exiting userspace.
 960 *
 961 * Exit RCU idle mode while entering the kernel because it can
 962 * run a RCU read side critical section anytime.
 963 *
 964 * If you add or remove a call to rcu_user_exit(), be sure to test with
 965 * CONFIG_RCU_EQS_DEBUG=y.
 966 */
 967void rcu_user_exit(void)
 968{
 969        rcu_eqs_exit(1);
 970}
 971#endif /* CONFIG_NO_HZ_FULL */
 972
 973/**
 974 * rcu_nmi_enter - inform RCU of entry to NMI context
 975 *
 976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 978 * that the CPU is active.  This implementation permits nested NMIs, as
 979 * long as the nesting level does not overflow an int.  (You will probably
 980 * run out of stack space first.)
 981 *
 982 * If you add or remove a call to rcu_nmi_enter(), be sure to test
 983 * with CONFIG_RCU_EQS_DEBUG=y.
 984 */
 985void rcu_nmi_enter(void)
 986{
 987        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 988        long incby = 2;
 989
 990        /* Complain about underflow. */
 991        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 992
 993        /*
 994         * If idle from RCU viewpoint, atomically increment ->dynticks
 995         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 996         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 997         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 998         * to be in the outermost NMI handler that interrupted an RCU-idle
 999         * period (observation due to Andy Lutomirski).
1000         */
1001        if (rcu_dynticks_curr_cpu_in_eqs()) {
1002                rcu_dynticks_eqs_exit();
1003                incby = 1;
1004        }
1005        trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1006                          rdtp->dynticks_nmi_nesting,
1007                          rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
1008        WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1009                   rdtp->dynticks_nmi_nesting + incby);
1010        barrier();
1011}
1012
1013/**
1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1015 *
1016 * Enter an interrupt handler, which might possibly result in exiting
1017 * idle mode, in other words, entering the mode in which read-side critical
1018 * sections can occur.  The caller must have disabled interrupts.
1019 *
1020 * Note that the Linux kernel is fully capable of entering an interrupt
1021 * handler that it never exits, for example when doing upcalls to user mode!
1022 * This code assumes that the idle loop never does upcalls to user mode.
1023 * If your architecture's idle loop does do upcalls to user mode (or does
1024 * anything else that results in unbalanced calls to the irq_enter() and
1025 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026 * But very infrequently and irreproducibly.
1027 *
1028 * Use things like work queues to work around this limitation.
1029 *
1030 * You have been warned.
1031 *
1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033 * CONFIG_RCU_EQS_DEBUG=y.
1034 */
1035void rcu_irq_enter(void)
1036{
1037        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1038
1039        lockdep_assert_irqs_disabled();
1040        if (rdtp->dynticks_nmi_nesting == 0)
1041                rcu_dynticks_task_exit();
1042        rcu_nmi_enter();
1043        if (rdtp->dynticks_nmi_nesting == 1)
1044                rcu_cleanup_after_idle();
1045}
1046
1047/*
1048 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1049 *
1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051 * with CONFIG_RCU_EQS_DEBUG=y.
1052 */
1053void rcu_irq_enter_irqson(void)
1054{
1055        unsigned long flags;
1056
1057        local_irq_save(flags);
1058        rcu_irq_enter();
1059        local_irq_restore(flags);
1060}
1061
1062/**
1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1064 *
1065 * Return true if RCU is watching the running CPU, which means that this
1066 * CPU can safely enter RCU read-side critical sections.  In other words,
1067 * if the current CPU is in its idle loop and is neither in an interrupt
1068 * or NMI handler, return true.
1069 */
1070bool notrace rcu_is_watching(void)
1071{
1072        bool ret;
1073
1074        preempt_disable_notrace();
1075        ret = !rcu_dynticks_curr_cpu_in_eqs();
1076        preempt_enable_notrace();
1077        return ret;
1078}
1079EXPORT_SYMBOL_GPL(rcu_is_watching);
1080
1081/*
1082 * If a holdout task is actually running, request an urgent quiescent
1083 * state from its CPU.  This is unsynchronized, so migrations can cause
1084 * the request to go to the wrong CPU.  Which is OK, all that will happen
1085 * is that the CPU's next context switch will be a bit slower and next
1086 * time around this task will generate another request.
1087 */
1088void rcu_request_urgent_qs_task(struct task_struct *t)
1089{
1090        int cpu;
1091
1092        barrier();
1093        cpu = task_cpu(t);
1094        if (!task_curr(t))
1095                return; /* This task is not running on that CPU. */
1096        smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1097}
1098
1099#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1100
1101/*
1102 * Is the current CPU online?  Disable preemption to avoid false positives
1103 * that could otherwise happen due to the current CPU number being sampled,
1104 * this task being preempted, its old CPU being taken offline, resuming
1105 * on some other CPU, then determining that its old CPU is now offline.
1106 * It is OK to use RCU on an offline processor during initial boot, hence
1107 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1110 * offline to continue to use RCU for one jiffy after marking itself
1111 * offline in the cpu_online_mask.  This leniency is necessary given the
1112 * non-atomic nature of the online and offline processing, for example,
1113 * the fact that a CPU enters the scheduler after completing the teardown
1114 * of the CPU.
1115 *
1116 * This is also why RCU internally marks CPUs online during in the
1117 * preparation phase and offline after the CPU has been taken down.
1118 *
1119 * Disable checking if in an NMI handler because we cannot safely report
1120 * errors from NMI handlers anyway.
1121 */
1122bool rcu_lockdep_current_cpu_online(void)
1123{
1124        struct rcu_data *rdp;
1125        struct rcu_node *rnp;
1126        bool ret;
1127
1128        if (in_nmi())
1129                return true;
1130        preempt_disable();
1131        rdp = this_cpu_ptr(&rcu_sched_data);
1132        rnp = rdp->mynode;
1133        ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1134              !rcu_scheduler_fully_active;
1135        preempt_enable();
1136        return ret;
1137}
1138EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1139
1140#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1141
1142/**
1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1144 *
1145 * If the current CPU is idle or running at a first-level (not nested)
1146 * interrupt from idle, return true.  The caller must have at least
1147 * disabled preemption.
1148 */
1149static int rcu_is_cpu_rrupt_from_idle(void)
1150{
1151        return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1152               __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1153}
1154
1155/*
1156 * We are reporting a quiescent state on behalf of some other CPU, so
1157 * it is our responsibility to check for and handle potential overflow
1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159 * After all, the CPU might be in deep idle state, and thus executing no
1160 * code whatsoever.
1161 */
1162static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1163{
1164        raw_lockdep_assert_held_rcu_node(rnp);
1165        if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1166                WRITE_ONCE(rdp->gpwrap, true);
1167        if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1168                rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1169}
1170
1171/*
1172 * Snapshot the specified CPU's dynticks counter so that we can later
1173 * credit them with an implicit quiescent state.  Return 1 if this CPU
1174 * is in dynticks idle mode, which is an extended quiescent state.
1175 */
1176static int dyntick_save_progress_counter(struct rcu_data *rdp)
1177{
1178        rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1179        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1180                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1181                rcu_gpnum_ovf(rdp->mynode, rdp);
1182                return 1;
1183        }
1184        return 0;
1185}
1186
1187/*
1188 * Handler for the irq_work request posted when a grace period has
1189 * gone on for too long, but not yet long enough for an RCU CPU
1190 * stall warning.  Set state appropriately, but just complain if
1191 * there is unexpected state on entry.
1192 */
1193static void rcu_iw_handler(struct irq_work *iwp)
1194{
1195        struct rcu_data *rdp;
1196        struct rcu_node *rnp;
1197
1198        rdp = container_of(iwp, struct rcu_data, rcu_iw);
1199        rnp = rdp->mynode;
1200        raw_spin_lock_rcu_node(rnp);
1201        if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1202                rdp->rcu_iw_gpnum = rnp->gpnum;
1203                rdp->rcu_iw_pending = false;
1204        }
1205        raw_spin_unlock_rcu_node(rnp);
1206}
1207
1208/*
1209 * Return true if the specified CPU has passed through a quiescent
1210 * state by virtue of being in or having passed through an dynticks
1211 * idle state since the last call to dyntick_save_progress_counter()
1212 * for this same CPU, or by virtue of having been offline.
1213 */
1214static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1215{
1216        unsigned long jtsq;
1217        bool *rnhqp;
1218        bool *ruqp;
1219        struct rcu_node *rnp = rdp->mynode;
1220
1221        /*
1222         * If the CPU passed through or entered a dynticks idle phase with
1223         * no active irq/NMI handlers, then we can safely pretend that the CPU
1224         * already acknowledged the request to pass through a quiescent
1225         * state.  Either way, that CPU cannot possibly be in an RCU
1226         * read-side critical section that started before the beginning
1227         * of the current RCU grace period.
1228         */
1229        if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1230                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1231                rdp->dynticks_fqs++;
1232                rcu_gpnum_ovf(rnp, rdp);
1233                return 1;
1234        }
1235
1236        /*
1237         * Has this CPU encountered a cond_resched_rcu_qs() since the
1238         * beginning of the grace period?  For this to be the case,
1239         * the CPU has to have noticed the current grace period.  This
1240         * might not be the case for nohz_full CPUs looping in the kernel.
1241         */
1242        jtsq = jiffies_till_sched_qs;
1243        ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1244        if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1245            READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1246            READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1247                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1248                rcu_gpnum_ovf(rnp, rdp);
1249                return 1;
1250        } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1251                /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252                smp_store_release(ruqp, true);
1253        }
1254
1255        /* Check for the CPU being offline. */
1256        if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1257                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1258                rdp->offline_fqs++;
1259                rcu_gpnum_ovf(rnp, rdp);
1260                return 1;
1261        }
1262
1263        /*
1264         * A CPU running for an extended time within the kernel can
1265         * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1266         * even context-switching back and forth between a pair of
1267         * in-kernel CPU-bound tasks cannot advance grace periods.
1268         * So if the grace period is old enough, make the CPU pay attention.
1269         * Note that the unsynchronized assignments to the per-CPU
1270         * rcu_need_heavy_qs variable are safe.  Yes, setting of
1271         * bits can be lost, but they will be set again on the next
1272         * force-quiescent-state pass.  So lost bit sets do not result
1273         * in incorrect behavior, merely in a grace period lasting
1274         * a few jiffies longer than it might otherwise.  Because
1275         * there are at most four threads involved, and because the
1276         * updates are only once every few jiffies, the probability of
1277         * lossage (and thus of slight grace-period extension) is
1278         * quite low.
1279         */
1280        rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1281        if (!READ_ONCE(*rnhqp) &&
1282            (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1283             time_after(jiffies, rdp->rsp->jiffies_resched))) {
1284                WRITE_ONCE(*rnhqp, true);
1285                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286                smp_store_release(ruqp, true);
1287                rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1288        }
1289
1290        /*
1291         * If more than halfway to RCU CPU stall-warning time, do a
1292         * resched_cpu() to try to loosen things up a bit.  Also check to
1293         * see if the CPU is getting hammered with interrupts, but only
1294         * once per grace period, just to keep the IPIs down to a dull roar.
1295         */
1296        if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1297                resched_cpu(rdp->cpu);
1298                if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1299                    !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1300                    (rnp->ffmask & rdp->grpmask)) {
1301                        init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1302                        rdp->rcu_iw_pending = true;
1303                        rdp->rcu_iw_gpnum = rnp->gpnum;
1304                        irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1305                }
1306        }
1307
1308        return 0;
1309}
1310
1311static void record_gp_stall_check_time(struct rcu_state *rsp)
1312{
1313        unsigned long j = jiffies;
1314        unsigned long j1;
1315
1316        rsp->gp_start = j;
1317        smp_wmb(); /* Record start time before stall time. */
1318        j1 = rcu_jiffies_till_stall_check();
1319        WRITE_ONCE(rsp->jiffies_stall, j + j1);
1320        rsp->jiffies_resched = j + j1 / 2;
1321        rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1322}
1323
1324/*
1325 * Convert a ->gp_state value to a character string.
1326 */
1327static const char *gp_state_getname(short gs)
1328{
1329        if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1330                return "???";
1331        return gp_state_names[gs];
1332}
1333
1334/*
1335 * Complain about starvation of grace-period kthread.
1336 */
1337static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1338{
1339        unsigned long gpa;
1340        unsigned long j;
1341
1342        j = jiffies;
1343        gpa = READ_ONCE(rsp->gp_activity);
1344        if (j - gpa > 2 * HZ) {
1345                pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1346                       rsp->name, j - gpa,
1347                       rsp->gpnum, rsp->completed,
1348                       rsp->gp_flags,
1349                       gp_state_getname(rsp->gp_state), rsp->gp_state,
1350                       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1351                       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1352                if (rsp->gp_kthread) {
1353                        pr_err("RCU grace-period kthread stack dump:\n");
1354                        sched_show_task(rsp->gp_kthread);
1355                        wake_up_process(rsp->gp_kthread);
1356                }
1357        }
1358}
1359
1360/*
1361 * Dump stacks of all tasks running on stalled CPUs.  First try using
1362 * NMIs, but fall back to manual remote stack tracing on architectures
1363 * that don't support NMI-based stack dumps.  The NMI-triggered stack
1364 * traces are more accurate because they are printed by the target CPU.
1365 */
1366static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1367{
1368        int cpu;
1369        unsigned long flags;
1370        struct rcu_node *rnp;
1371
1372        rcu_for_each_leaf_node(rsp, rnp) {
1373                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1374                for_each_leaf_node_possible_cpu(rnp, cpu)
1375                        if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1376                                if (!trigger_single_cpu_backtrace(cpu))
1377                                        dump_cpu_task(cpu);
1378                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1379        }
1380}
1381
1382/*
1383 * If too much time has passed in the current grace period, and if
1384 * so configured, go kick the relevant kthreads.
1385 */
1386static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1387{
1388        unsigned long j;
1389
1390        if (!rcu_kick_kthreads)
1391                return;
1392        j = READ_ONCE(rsp->jiffies_kick_kthreads);
1393        if (time_after(jiffies, j) && rsp->gp_kthread &&
1394            (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1395                WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1396                rcu_ftrace_dump(DUMP_ALL);
1397                wake_up_process(rsp->gp_kthread);
1398                WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1399        }
1400}
1401
1402static inline void panic_on_rcu_stall(void)
1403{
1404        if (sysctl_panic_on_rcu_stall)
1405                panic("RCU Stall\n");
1406}
1407
1408static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1409{
1410        int cpu;
1411        long delta;
1412        unsigned long flags;
1413        unsigned long gpa;
1414        unsigned long j;
1415        int ndetected = 0;
1416        struct rcu_node *rnp = rcu_get_root(rsp);
1417        long totqlen = 0;
1418
1419        /* Kick and suppress, if so configured. */
1420        rcu_stall_kick_kthreads(rsp);
1421        if (rcu_cpu_stall_suppress)
1422                return;
1423
1424        /* Only let one CPU complain about others per time interval. */
1425
1426        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1427        delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1428        if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1429                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1430                return;
1431        }
1432        WRITE_ONCE(rsp->jiffies_stall,
1433                   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1434        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1435
1436        /*
1437         * OK, time to rat on our buddy...
1438         * See Documentation/RCU/stallwarn.txt for info on how to debug
1439         * RCU CPU stall warnings.
1440         */
1441        pr_err("INFO: %s detected stalls on CPUs/tasks:",
1442               rsp->name);
1443        print_cpu_stall_info_begin();
1444        rcu_for_each_leaf_node(rsp, rnp) {
1445                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1446                ndetected += rcu_print_task_stall(rnp);
1447                if (rnp->qsmask != 0) {
1448                        for_each_leaf_node_possible_cpu(rnp, cpu)
1449                                if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1450                                        print_cpu_stall_info(rsp, cpu);
1451                                        ndetected++;
1452                                }
1453                }
1454                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455        }
1456
1457        print_cpu_stall_info_end();
1458        for_each_possible_cpu(cpu)
1459                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1460                                                            cpu)->cblist);
1461        pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1462               smp_processor_id(), (long)(jiffies - rsp->gp_start),
1463               (long)rsp->gpnum, (long)rsp->completed, totqlen);
1464        if (ndetected) {
1465                rcu_dump_cpu_stacks(rsp);
1466
1467                /* Complain about tasks blocking the grace period. */
1468                rcu_print_detail_task_stall(rsp);
1469        } else {
1470                if (READ_ONCE(rsp->gpnum) != gpnum ||
1471                    READ_ONCE(rsp->completed) == gpnum) {
1472                        pr_err("INFO: Stall ended before state dump start\n");
1473                } else {
1474                        j = jiffies;
1475                        gpa = READ_ONCE(rsp->gp_activity);
1476                        pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1477                               rsp->name, j - gpa, j, gpa,
1478                               jiffies_till_next_fqs,
1479                               rcu_get_root(rsp)->qsmask);
1480                        /* In this case, the current CPU might be at fault. */
1481                        sched_show_task(current);
1482                }
1483        }
1484
1485        rcu_check_gp_kthread_starvation(rsp);
1486
1487        panic_on_rcu_stall();
1488
1489        force_quiescent_state(rsp);  /* Kick them all. */
1490}
1491
1492static void print_cpu_stall(struct rcu_state *rsp)
1493{
1494        int cpu;
1495        unsigned long flags;
1496        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1497        struct rcu_node *rnp = rcu_get_root(rsp);
1498        long totqlen = 0;
1499
1500        /* Kick and suppress, if so configured. */
1501        rcu_stall_kick_kthreads(rsp);
1502        if (rcu_cpu_stall_suppress)
1503                return;
1504
1505        /*
1506         * OK, time to rat on ourselves...
1507         * See Documentation/RCU/stallwarn.txt for info on how to debug
1508         * RCU CPU stall warnings.
1509         */
1510        pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1511        print_cpu_stall_info_begin();
1512        raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1513        print_cpu_stall_info(rsp, smp_processor_id());
1514        raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1515        print_cpu_stall_info_end();
1516        for_each_possible_cpu(cpu)
1517                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1518                                                            cpu)->cblist);
1519        pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1520                jiffies - rsp->gp_start,
1521                (long)rsp->gpnum, (long)rsp->completed, totqlen);
1522
1523        rcu_check_gp_kthread_starvation(rsp);
1524
1525        rcu_dump_cpu_stacks(rsp);
1526
1527        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1528        if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1529                WRITE_ONCE(rsp->jiffies_stall,
1530                           jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1531        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1532
1533        panic_on_rcu_stall();
1534
1535        /*
1536         * Attempt to revive the RCU machinery by forcing a context switch.
1537         *
1538         * A context switch would normally allow the RCU state machine to make
1539         * progress and it could be we're stuck in kernel space without context
1540         * switches for an entirely unreasonable amount of time.
1541         */
1542        resched_cpu(smp_processor_id());
1543}
1544
1545static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1546{
1547        unsigned long completed;
1548        unsigned long gpnum;
1549        unsigned long gps;
1550        unsigned long j;
1551        unsigned long js;
1552        struct rcu_node *rnp;
1553
1554        if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1555            !rcu_gp_in_progress(rsp))
1556                return;
1557        rcu_stall_kick_kthreads(rsp);
1558        j = jiffies;
1559
1560        /*
1561         * Lots of memory barriers to reject false positives.
1562         *
1563         * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1564         * then rsp->gp_start, and finally rsp->completed.  These values
1565         * are updated in the opposite order with memory barriers (or
1566         * equivalent) during grace-period initialization and cleanup.
1567         * Now, a false positive can occur if we get an new value of
1568         * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1569         * the memory barriers, the only way that this can happen is if one
1570         * grace period ends and another starts between these two fetches.
1571         * Detect this by comparing rsp->completed with the previous fetch
1572         * from rsp->gpnum.
1573         *
1574         * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1575         * and rsp->gp_start suffice to forestall false positives.
1576         */
1577        gpnum = READ_ONCE(rsp->gpnum);
1578        smp_rmb(); /* Pick up ->gpnum first... */
1579        js = READ_ONCE(rsp->jiffies_stall);
1580        smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1581        gps = READ_ONCE(rsp->gp_start);
1582        smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1583        completed = READ_ONCE(rsp->completed);
1584        if (ULONG_CMP_GE(completed, gpnum) ||
1585            ULONG_CMP_LT(j, js) ||
1586            ULONG_CMP_GE(gps, js))
1587                return; /* No stall or GP completed since entering function. */
1588        rnp = rdp->mynode;
1589        if (rcu_gp_in_progress(rsp) &&
1590            (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1591
1592                /* We haven't checked in, so go dump stack. */
1593                print_cpu_stall(rsp);
1594
1595        } else if (rcu_gp_in_progress(rsp) &&
1596                   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1597
1598                /* They had a few time units to dump stack, so complain. */
1599                print_other_cpu_stall(rsp, gpnum);
1600        }
1601}
1602
1603/**
1604 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1605 *
1606 * Set the stall-warning timeout way off into the future, thus preventing
1607 * any RCU CPU stall-warning messages from appearing in the current set of
1608 * RCU grace periods.
1609 *
1610 * The caller must disable hard irqs.
1611 */
1612void rcu_cpu_stall_reset(void)
1613{
1614        struct rcu_state *rsp;
1615
1616        for_each_rcu_flavor(rsp)
1617                WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1618}
1619
1620/*
1621 * Determine the value that ->completed will have at the end of the
1622 * next subsequent grace period.  This is used to tag callbacks so that
1623 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1624 * been dyntick-idle for an extended period with callbacks under the
1625 * influence of RCU_FAST_NO_HZ.
1626 *
1627 * The caller must hold rnp->lock with interrupts disabled.
1628 */
1629static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1630                                       struct rcu_node *rnp)
1631{
1632        raw_lockdep_assert_held_rcu_node(rnp);
1633
1634        /*
1635         * If RCU is idle, we just wait for the next grace period.
1636         * But we can only be sure that RCU is idle if we are looking
1637         * at the root rcu_node structure -- otherwise, a new grace
1638         * period might have started, but just not yet gotten around
1639         * to initializing the current non-root rcu_node structure.
1640         */
1641        if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1642                return rnp->completed + 1;
1643
1644        /*
1645         * Otherwise, wait for a possible partial grace period and
1646         * then the subsequent full grace period.
1647         */
1648        return rnp->completed + 2;
1649}
1650
1651/*
1652 * Trace-event helper function for rcu_start_future_gp() and
1653 * rcu_nocb_wait_gp().
1654 */
1655static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1656                                unsigned long c, const char *s)
1657{
1658        trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1659                                      rnp->completed, c, rnp->level,
1660                                      rnp->grplo, rnp->grphi, s);
1661}
1662
1663/*
1664 * Start some future grace period, as needed to handle newly arrived
1665 * callbacks.  The required future grace periods are recorded in each
1666 * rcu_node structure's ->need_future_gp field.  Returns true if there
1667 * is reason to awaken the grace-period kthread.
1668 *
1669 * The caller must hold the specified rcu_node structure's ->lock.
1670 */
1671static bool __maybe_unused
1672rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673                    unsigned long *c_out)
1674{
1675        unsigned long c;
1676        bool ret = false;
1677        struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1678
1679        raw_lockdep_assert_held_rcu_node(rnp);
1680
1681        /*
1682         * Pick up grace-period number for new callbacks.  If this
1683         * grace period is already marked as needed, return to the caller.
1684         */
1685        c = rcu_cbs_completed(rdp->rsp, rnp);
1686        trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1687        if (rnp->need_future_gp[c & 0x1]) {
1688                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1689                goto out;
1690        }
1691
1692        /*
1693         * If either this rcu_node structure or the root rcu_node structure
1694         * believe that a grace period is in progress, then we must wait
1695         * for the one following, which is in "c".  Because our request
1696         * will be noticed at the end of the current grace period, we don't
1697         * need to explicitly start one.  We only do the lockless check
1698         * of rnp_root's fields if the current rcu_node structure thinks
1699         * there is no grace period in flight, and because we hold rnp->lock,
1700         * the only possible change is when rnp_root's two fields are
1701         * equal, in which case rnp_root->gpnum might be concurrently
1702         * incremented.  But that is OK, as it will just result in our
1703         * doing some extra useless work.
1704         */
1705        if (rnp->gpnum != rnp->completed ||
1706            READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1707                rnp->need_future_gp[c & 0x1]++;
1708                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1709                goto out;
1710        }
1711
1712        /*
1713         * There might be no grace period in progress.  If we don't already
1714         * hold it, acquire the root rcu_node structure's lock in order to
1715         * start one (if needed).
1716         */
1717        if (rnp != rnp_root)
1718                raw_spin_lock_rcu_node(rnp_root);
1719
1720        /*
1721         * Get a new grace-period number.  If there really is no grace
1722         * period in progress, it will be smaller than the one we obtained
1723         * earlier.  Adjust callbacks as needed.
1724         */
1725        c = rcu_cbs_completed(rdp->rsp, rnp_root);
1726        if (!rcu_is_nocb_cpu(rdp->cpu))
1727                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1728
1729        /*
1730         * If the needed for the required grace period is already
1731         * recorded, trace and leave.
1732         */
1733        if (rnp_root->need_future_gp[c & 0x1]) {
1734                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1735                goto unlock_out;
1736        }
1737
1738        /* Record the need for the future grace period. */
1739        rnp_root->need_future_gp[c & 0x1]++;
1740
1741        /* If a grace period is not already in progress, start one. */
1742        if (rnp_root->gpnum != rnp_root->completed) {
1743                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1744        } else {
1745                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1746                ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1747        }
1748unlock_out:
1749        if (rnp != rnp_root)
1750                raw_spin_unlock_rcu_node(rnp_root);
1751out:
1752        if (c_out != NULL)
1753                *c_out = c;
1754        return ret;
1755}
1756
1757/*
1758 * Clean up any old requests for the just-ended grace period.  Also return
1759 * whether any additional grace periods have been requested.
1760 */
1761static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1762{
1763        int c = rnp->completed;
1764        int needmore;
1765        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1766
1767        rnp->need_future_gp[c & 0x1] = 0;
1768        needmore = rnp->need_future_gp[(c + 1) & 0x1];
1769        trace_rcu_future_gp(rnp, rdp, c,
1770                            needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1771        return needmore;
1772}
1773
1774/*
1775 * Awaken the grace-period kthread for the specified flavor of RCU.
1776 * Don't do a self-awaken, and don't bother awakening when there is
1777 * nothing for the grace-period kthread to do (as in several CPUs
1778 * raced to awaken, and we lost), and finally don't try to awaken
1779 * a kthread that has not yet been created.
1780 */
1781static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1782{
1783        if (current == rsp->gp_kthread ||
1784            !READ_ONCE(rsp->gp_flags) ||
1785            !rsp->gp_kthread)
1786                return;
1787        swake_up(&rsp->gp_wq);
1788}
1789
1790/*
1791 * If there is room, assign a ->completed number to any callbacks on
1792 * this CPU that have not already been assigned.  Also accelerate any
1793 * callbacks that were previously assigned a ->completed number that has
1794 * since proven to be too conservative, which can happen if callbacks get
1795 * assigned a ->completed number while RCU is idle, but with reference to
1796 * a non-root rcu_node structure.  This function is idempotent, so it does
1797 * not hurt to call it repeatedly.  Returns an flag saying that we should
1798 * awaken the RCU grace-period kthread.
1799 *
1800 * The caller must hold rnp->lock with interrupts disabled.
1801 */
1802static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1803                               struct rcu_data *rdp)
1804{
1805        bool ret = false;
1806
1807        raw_lockdep_assert_held_rcu_node(rnp);
1808
1809        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1810        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1811                return false;
1812
1813        /*
1814         * Callbacks are often registered with incomplete grace-period
1815         * information.  Something about the fact that getting exact
1816         * information requires acquiring a global lock...  RCU therefore
1817         * makes a conservative estimate of the grace period number at which
1818         * a given callback will become ready to invoke.        The following
1819         * code checks this estimate and improves it when possible, thus
1820         * accelerating callback invocation to an earlier grace-period
1821         * number.
1822         */
1823        if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1824                ret = rcu_start_future_gp(rnp, rdp, NULL);
1825
1826        /* Trace depending on how much we were able to accelerate. */
1827        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1828                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1829        else
1830                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1831        return ret;
1832}
1833
1834/*
1835 * Move any callbacks whose grace period has completed to the
1836 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1837 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1838 * sublist.  This function is idempotent, so it does not hurt to
1839 * invoke it repeatedly.  As long as it is not invoked -too- often...
1840 * Returns true if the RCU grace-period kthread needs to be awakened.
1841 *
1842 * The caller must hold rnp->lock with interrupts disabled.
1843 */
1844static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1845                            struct rcu_data *rdp)
1846{
1847        raw_lockdep_assert_held_rcu_node(rnp);
1848
1849        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1850        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1851                return false;
1852
1853        /*
1854         * Find all callbacks whose ->completed numbers indicate that they
1855         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1856         */
1857        rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1858
1859        /* Classify any remaining callbacks. */
1860        return rcu_accelerate_cbs(rsp, rnp, rdp);
1861}
1862
1863/*
1864 * Update CPU-local rcu_data state to record the beginnings and ends of
1865 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1866 * structure corresponding to the current CPU, and must have irqs disabled.
1867 * Returns true if the grace-period kthread needs to be awakened.
1868 */
1869static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1870                              struct rcu_data *rdp)
1871{
1872        bool ret;
1873        bool need_gp;
1874
1875        raw_lockdep_assert_held_rcu_node(rnp);
1876
1877        /* Handle the ends of any preceding grace periods first. */
1878        if (rdp->completed == rnp->completed &&
1879            !unlikely(READ_ONCE(rdp->gpwrap))) {
1880
1881                /* No grace period end, so just accelerate recent callbacks. */
1882                ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1883
1884        } else {
1885
1886                /* Advance callbacks. */
1887                ret = rcu_advance_cbs(rsp, rnp, rdp);
1888
1889                /* Remember that we saw this grace-period completion. */
1890                rdp->completed = rnp->completed;
1891                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1892        }
1893
1894        if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1895                /*
1896                 * If the current grace period is waiting for this CPU,
1897                 * set up to detect a quiescent state, otherwise don't
1898                 * go looking for one.
1899                 */
1900                rdp->gpnum = rnp->gpnum;
1901                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1902                need_gp = !!(rnp->qsmask & rdp->grpmask);
1903                rdp->cpu_no_qs.b.norm = need_gp;
1904                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1905                rdp->core_needs_qs = need_gp;
1906                zero_cpu_stall_ticks(rdp);
1907                WRITE_ONCE(rdp->gpwrap, false);
1908                rcu_gpnum_ovf(rnp, rdp);
1909        }
1910        return ret;
1911}
1912
1913static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1914{
1915        unsigned long flags;
1916        bool needwake;
1917        struct rcu_node *rnp;
1918
1919        local_irq_save(flags);
1920        rnp = rdp->mynode;
1921        if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1922             rdp->completed == READ_ONCE(rnp->completed) &&
1923             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1924            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1925                local_irq_restore(flags);
1926                return;
1927        }
1928        needwake = __note_gp_changes(rsp, rnp, rdp);
1929        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1930        if (needwake)
1931                rcu_gp_kthread_wake(rsp);
1932}
1933
1934static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1935{
1936        if (delay > 0 &&
1937            !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1938                schedule_timeout_uninterruptible(delay);
1939}
1940
1941/*
1942 * Initialize a new grace period.  Return false if no grace period required.
1943 */
1944static bool rcu_gp_init(struct rcu_state *rsp)
1945{
1946        unsigned long oldmask;
1947        struct rcu_data *rdp;
1948        struct rcu_node *rnp = rcu_get_root(rsp);
1949
1950        WRITE_ONCE(rsp->gp_activity, jiffies);
1951        raw_spin_lock_irq_rcu_node(rnp);
1952        if (!READ_ONCE(rsp->gp_flags)) {
1953                /* Spurious wakeup, tell caller to go back to sleep.  */
1954                raw_spin_unlock_irq_rcu_node(rnp);
1955                return false;
1956        }
1957        WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1958
1959        if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1960                /*
1961                 * Grace period already in progress, don't start another.
1962                 * Not supposed to be able to happen.
1963                 */
1964                raw_spin_unlock_irq_rcu_node(rnp);
1965                return false;
1966        }
1967
1968        /* Advance to a new grace period and initialize state. */
1969        record_gp_stall_check_time(rsp);
1970        /* Record GP times before starting GP, hence smp_store_release(). */
1971        smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1972        trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1973        raw_spin_unlock_irq_rcu_node(rnp);
1974
1975        /*
1976         * Apply per-leaf buffered online and offline operations to the
1977         * rcu_node tree.  Note that this new grace period need not wait
1978         * for subsequent online CPUs, and that quiescent-state forcing
1979         * will handle subsequent offline CPUs.
1980         */
1981        rcu_for_each_leaf_node(rsp, rnp) {
1982                rcu_gp_slow(rsp, gp_preinit_delay);
1983                raw_spin_lock_irq_rcu_node(rnp);
1984                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1985                    !rnp->wait_blkd_tasks) {
1986                        /* Nothing to do on this leaf rcu_node structure. */
1987                        raw_spin_unlock_irq_rcu_node(rnp);
1988                        continue;
1989                }
1990
1991                /* Record old state, apply changes to ->qsmaskinit field. */
1992                oldmask = rnp->qsmaskinit;
1993                rnp->qsmaskinit = rnp->qsmaskinitnext;
1994
1995                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1996                if (!oldmask != !rnp->qsmaskinit) {
1997                        if (!oldmask) /* First online CPU for this rcu_node. */
1998                                rcu_init_new_rnp(rnp);
1999                        else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2000                                rnp->wait_blkd_tasks = true;
2001                        else /* Last offline CPU and can propagate. */
2002                                rcu_cleanup_dead_rnp(rnp);
2003                }
2004
2005                /*
2006                 * If all waited-on tasks from prior grace period are
2007                 * done, and if all this rcu_node structure's CPUs are
2008                 * still offline, propagate up the rcu_node tree and
2009                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2010                 * rcu_node structure's CPUs has since come back online,
2011                 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2012                 * checks for this, so just call it unconditionally).
2013                 */
2014                if (rnp->wait_blkd_tasks &&
2015                    (!rcu_preempt_has_tasks(rnp) ||
2016                     rnp->qsmaskinit)) {
2017                        rnp->wait_blkd_tasks = false;
2018                        rcu_cleanup_dead_rnp(rnp);
2019                }
2020
2021                raw_spin_unlock_irq_rcu_node(rnp);
2022        }
2023
2024        /*
2025         * Set the quiescent-state-needed bits in all the rcu_node
2026         * structures for all currently online CPUs in breadth-first order,
2027         * starting from the root rcu_node structure, relying on the layout
2028         * of the tree within the rsp->node[] array.  Note that other CPUs
2029         * will access only the leaves of the hierarchy, thus seeing that no
2030         * grace period is in progress, at least until the corresponding
2031         * leaf node has been initialized.
2032         *
2033         * The grace period cannot complete until the initialization
2034         * process finishes, because this kthread handles both.
2035         */
2036        rcu_for_each_node_breadth_first(rsp, rnp) {
2037                rcu_gp_slow(rsp, gp_init_delay);
2038                raw_spin_lock_irq_rcu_node(rnp);
2039                rdp = this_cpu_ptr(rsp->rda);
2040                rcu_preempt_check_blocked_tasks(rnp);
2041                rnp->qsmask = rnp->qsmaskinit;
2042                WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2043                if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2044                        WRITE_ONCE(rnp->completed, rsp->completed);
2045                if (rnp == rdp->mynode)
2046                        (void)__note_gp_changes(rsp, rnp, rdp);
2047                rcu_preempt_boost_start_gp(rnp);
2048                trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2049                                            rnp->level, rnp->grplo,
2050                                            rnp->grphi, rnp->qsmask);
2051                raw_spin_unlock_irq_rcu_node(rnp);
2052                cond_resched_rcu_qs();
2053                WRITE_ONCE(rsp->gp_activity, jiffies);
2054        }
2055
2056        return true;
2057}
2058
2059/*
2060 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2061 * time.
2062 */
2063static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2064{
2065        struct rcu_node *rnp = rcu_get_root(rsp);
2066
2067        /* Someone like call_rcu() requested a force-quiescent-state scan. */
2068        *gfp = READ_ONCE(rsp->gp_flags);
2069        if (*gfp & RCU_GP_FLAG_FQS)
2070                return true;
2071
2072        /* The current grace period has completed. */
2073        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2074                return true;
2075
2076        return false;
2077}
2078
2079/*
2080 * Do one round of quiescent-state forcing.
2081 */
2082static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2083{
2084        struct rcu_node *rnp = rcu_get_root(rsp);
2085
2086        WRITE_ONCE(rsp->gp_activity, jiffies);
2087        rsp->n_force_qs++;
2088        if (first_time) {
2089                /* Collect dyntick-idle snapshots. */
2090                force_qs_rnp(rsp, dyntick_save_progress_counter);
2091        } else {
2092                /* Handle dyntick-idle and offline CPUs. */
2093                force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2094        }
2095        /* Clear flag to prevent immediate re-entry. */
2096        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2097                raw_spin_lock_irq_rcu_node(rnp);
2098                WRITE_ONCE(rsp->gp_flags,
2099                           READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2100                raw_spin_unlock_irq_rcu_node(rnp);
2101        }
2102}
2103
2104/*
2105 * Clean up after the old grace period.
2106 */
2107static void rcu_gp_cleanup(struct rcu_state *rsp)
2108{
2109        unsigned long gp_duration;
2110        bool needgp = false;
2111        int nocb = 0;
2112        struct rcu_data *rdp;
2113        struct rcu_node *rnp = rcu_get_root(rsp);
2114        struct swait_queue_head *sq;
2115
2116        WRITE_ONCE(rsp->gp_activity, jiffies);
2117        raw_spin_lock_irq_rcu_node(rnp);
2118        gp_duration = jiffies - rsp->gp_start;
2119        if (gp_duration > rsp->gp_max)
2120                rsp->gp_max = gp_duration;
2121
2122        /*
2123         * We know the grace period is complete, but to everyone else
2124         * it appears to still be ongoing.  But it is also the case
2125         * that to everyone else it looks like there is nothing that
2126         * they can do to advance the grace period.  It is therefore
2127         * safe for us to drop the lock in order to mark the grace
2128         * period as completed in all of the rcu_node structures.
2129         */
2130        raw_spin_unlock_irq_rcu_node(rnp);
2131
2132        /*
2133         * Propagate new ->completed value to rcu_node structures so
2134         * that other CPUs don't have to wait until the start of the next
2135         * grace period to process their callbacks.  This also avoids
2136         * some nasty RCU grace-period initialization races by forcing
2137         * the end of the current grace period to be completely recorded in
2138         * all of the rcu_node structures before the beginning of the next
2139         * grace period is recorded in any of the rcu_node structures.
2140         */
2141        rcu_for_each_node_breadth_first(rsp, rnp) {
2142                raw_spin_lock_irq_rcu_node(rnp);
2143                WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2144                WARN_ON_ONCE(rnp->qsmask);
2145                WRITE_ONCE(rnp->completed, rsp->gpnum);
2146                rdp = this_cpu_ptr(rsp->rda);
2147                if (rnp == rdp->mynode)
2148                        needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2149                /* smp_mb() provided by prior unlock-lock pair. */
2150                nocb += rcu_future_gp_cleanup(rsp, rnp);
2151                sq = rcu_nocb_gp_get(rnp);
2152                raw_spin_unlock_irq_rcu_node(rnp);
2153                rcu_nocb_gp_cleanup(sq);
2154                cond_resched_rcu_qs();
2155                WRITE_ONCE(rsp->gp_activity, jiffies);
2156                rcu_gp_slow(rsp, gp_cleanup_delay);
2157        }
2158        rnp = rcu_get_root(rsp);
2159        raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2160        rcu_nocb_gp_set(rnp, nocb);
2161
2162        /* Declare grace period done. */
2163        WRITE_ONCE(rsp->completed, rsp->gpnum);
2164        trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2165        rsp->gp_state = RCU_GP_IDLE;
2166        rdp = this_cpu_ptr(rsp->rda);
2167        /* Advance CBs to reduce false positives below. */
2168        needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2169        if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2170                WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2171                trace_rcu_grace_period(rsp->name,
2172                                       READ_ONCE(rsp->gpnum),
2173                                       TPS("newreq"));
2174        }
2175        raw_spin_unlock_irq_rcu_node(rnp);
2176}
2177
2178/*
2179 * Body of kthread that handles grace periods.
2180 */
2181static int __noreturn rcu_gp_kthread(void *arg)
2182{
2183        bool first_gp_fqs;
2184        int gf;
2185        unsigned long j;
2186        int ret;
2187        struct rcu_state *rsp = arg;
2188        struct rcu_node *rnp = rcu_get_root(rsp);
2189
2190        rcu_bind_gp_kthread();
2191        for (;;) {
2192
2193                /* Handle grace-period start. */
2194                for (;;) {
2195                        trace_rcu_grace_period(rsp->name,
2196                                               READ_ONCE(rsp->gpnum),
2197                                               TPS("reqwait"));
2198                        rsp->gp_state = RCU_GP_WAIT_GPS;
2199                        swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2200                                                     RCU_GP_FLAG_INIT);
2201                        rsp->gp_state = RCU_GP_DONE_GPS;
2202                        /* Locking provides needed memory barrier. */
2203                        if (rcu_gp_init(rsp))
2204                                break;
2205                        cond_resched_rcu_qs();
2206                        WRITE_ONCE(rsp->gp_activity, jiffies);
2207                        WARN_ON(signal_pending(current));
2208                        trace_rcu_grace_period(rsp->name,
2209                                               READ_ONCE(rsp->gpnum),
2210                                               TPS("reqwaitsig"));
2211                }
2212
2213                /* Handle quiescent-state forcing. */
2214                first_gp_fqs = true;
2215                j = jiffies_till_first_fqs;
2216                if (j > HZ) {
2217                        j = HZ;
2218                        jiffies_till_first_fqs = HZ;
2219                }
2220                ret = 0;
2221                for (;;) {
2222                        if (!ret) {
2223                                rsp->jiffies_force_qs = jiffies + j;
2224                                WRITE_ONCE(rsp->jiffies_kick_kthreads,
2225                                           jiffies + 3 * j);
2226                        }
2227                        trace_rcu_grace_period(rsp->name,
2228                                               READ_ONCE(rsp->gpnum),
2229                                               TPS("fqswait"));
2230                        rsp->gp_state = RCU_GP_WAIT_FQS;
2231                        ret = swait_event_idle_timeout(rsp->gp_wq,
2232                                        rcu_gp_fqs_check_wake(rsp, &gf), j);
2233                        rsp->gp_state = RCU_GP_DOING_FQS;
2234                        /* Locking provides needed memory barriers. */
2235                        /* If grace period done, leave loop. */
2236                        if (!READ_ONCE(rnp->qsmask) &&
2237                            !rcu_preempt_blocked_readers_cgp(rnp))
2238                                break;
2239                        /* If time for quiescent-state forcing, do it. */
2240                        if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2241                            (gf & RCU_GP_FLAG_FQS)) {
2242                                trace_rcu_grace_period(rsp->name,
2243                                                       READ_ONCE(rsp->gpnum),
2244                                                       TPS("fqsstart"));
2245                                rcu_gp_fqs(rsp, first_gp_fqs);
2246                                first_gp_fqs = false;
2247                                trace_rcu_grace_period(rsp->name,
2248                                                       READ_ONCE(rsp->gpnum),
2249                                                       TPS("fqsend"));
2250                                cond_resched_rcu_qs();
2251                                WRITE_ONCE(rsp->gp_activity, jiffies);
2252                                ret = 0; /* Force full wait till next FQS. */
2253                                j = jiffies_till_next_fqs;
2254                                if (j > HZ) {
2255                                        j = HZ;
2256                                        jiffies_till_next_fqs = HZ;
2257                                } else if (j < 1) {
2258                                        j = 1;
2259                                        jiffies_till_next_fqs = 1;
2260                                }
2261                        } else {
2262                                /* Deal with stray signal. */
2263                                cond_resched_rcu_qs();
2264                                WRITE_ONCE(rsp->gp_activity, jiffies);
2265                                WARN_ON(signal_pending(current));
2266                                trace_rcu_grace_period(rsp->name,
2267                                                       READ_ONCE(rsp->gpnum),
2268                                                       TPS("fqswaitsig"));
2269                                ret = 1; /* Keep old FQS timing. */
2270                                j = jiffies;
2271                                if (time_after(jiffies, rsp->jiffies_force_qs))
2272                                        j = 1;
2273                                else
2274                                        j = rsp->jiffies_force_qs - j;
2275                        }
2276                }
2277
2278                /* Handle grace-period end. */
2279                rsp->gp_state = RCU_GP_CLEANUP;
2280                rcu_gp_cleanup(rsp);
2281                rsp->gp_state = RCU_GP_CLEANED;
2282        }
2283}
2284
2285/*
2286 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2287 * in preparation for detecting the next grace period.  The caller must hold
2288 * the root node's ->lock and hard irqs must be disabled.
2289 *
2290 * Note that it is legal for a dying CPU (which is marked as offline) to
2291 * invoke this function.  This can happen when the dying CPU reports its
2292 * quiescent state.
2293 *
2294 * Returns true if the grace-period kthread must be awakened.
2295 */
2296static bool
2297rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2298                      struct rcu_data *rdp)
2299{
2300        raw_lockdep_assert_held_rcu_node(rnp);
2301        if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2302                /*
2303                 * Either we have not yet spawned the grace-period
2304                 * task, this CPU does not need another grace period,
2305                 * or a grace period is already in progress.
2306                 * Either way, don't start a new grace period.
2307                 */
2308                return false;
2309        }
2310        WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2311        trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2312                               TPS("newreq"));
2313
2314        /*
2315         * We can't do wakeups while holding the rnp->lock, as that
2316         * could cause possible deadlocks with the rq->lock. Defer
2317         * the wakeup to our caller.
2318         */
2319        return true;
2320}
2321
2322/*
2323 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2324 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2325 * is invoked indirectly from rcu_advance_cbs(), which would result in
2326 * endless recursion -- or would do so if it wasn't for the self-deadlock
2327 * that is encountered beforehand.
2328 *
2329 * Returns true if the grace-period kthread needs to be awakened.
2330 */
2331static bool rcu_start_gp(struct rcu_state *rsp)
2332{
2333        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2334        struct rcu_node *rnp = rcu_get_root(rsp);
2335        bool ret = false;
2336
2337        /*
2338         * If there is no grace period in progress right now, any
2339         * callbacks we have up to this point will be satisfied by the
2340         * next grace period.  Also, advancing the callbacks reduces the
2341         * probability of false positives from cpu_needs_another_gp()
2342         * resulting in pointless grace periods.  So, advance callbacks
2343         * then start the grace period!
2344         */
2345        ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2346        ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2347        return ret;
2348}
2349
2350/*
2351 * Report a full set of quiescent states to the specified rcu_state data
2352 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2353 * kthread if another grace period is required.  Whether we wake
2354 * the grace-period kthread or it awakens itself for the next round
2355 * of quiescent-state forcing, that kthread will clean up after the
2356 * just-completed grace period.  Note that the caller must hold rnp->lock,
2357 * which is released before return.
2358 */
2359static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2360        __releases(rcu_get_root(rsp)->lock)
2361{
2362        raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2363        WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2364        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2365        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2366        rcu_gp_kthread_wake(rsp);
2367}
2368
2369/*
2370 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2371 * Allows quiescent states for a group of CPUs to be reported at one go
2372 * to the specified rcu_node structure, though all the CPUs in the group
2373 * must be represented by the same rcu_node structure (which need not be a
2374 * leaf rcu_node structure, though it often will be).  The gps parameter
2375 * is the grace-period snapshot, which means that the quiescent states
2376 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2377 * must be held upon entry, and it is released before return.
2378 */
2379static void
2380rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2381                  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2382        __releases(rnp->lock)
2383{
2384        unsigned long oldmask = 0;
2385        struct rcu_node *rnp_c;
2386
2387        raw_lockdep_assert_held_rcu_node(rnp);
2388
2389        /* Walk up the rcu_node hierarchy. */
2390        for (;;) {
2391                if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2392
2393                        /*
2394                         * Our bit has already been cleared, or the
2395                         * relevant grace period is already over, so done.
2396                         */
2397                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2398                        return;
2399                }
2400                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2401                WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2402                             rcu_preempt_blocked_readers_cgp(rnp));
2403                rnp->qsmask &= ~mask;
2404                trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2405                                                 mask, rnp->qsmask, rnp->level,
2406                                                 rnp->grplo, rnp->grphi,
2407                                                 !!rnp->gp_tasks);
2408                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2409
2410                        /* Other bits still set at this level, so done. */
2411                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2412                        return;
2413                }
2414                mask = rnp->grpmask;
2415                if (rnp->parent == NULL) {
2416
2417                        /* No more levels.  Exit loop holding root lock. */
2418
2419                        break;
2420                }
2421                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2422                rnp_c = rnp;
2423                rnp = rnp->parent;
2424                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2425                oldmask = rnp_c->qsmask;
2426        }
2427
2428        /*
2429         * Get here if we are the last CPU to pass through a quiescent
2430         * state for this grace period.  Invoke rcu_report_qs_rsp()
2431         * to clean up and start the next grace period if one is needed.
2432         */
2433        rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2434}
2435
2436/*
2437 * Record a quiescent state for all tasks that were previously queued
2438 * on the specified rcu_node structure and that were blocking the current
2439 * RCU grace period.  The caller must hold the specified rnp->lock with
2440 * irqs disabled, and this lock is released upon return, but irqs remain
2441 * disabled.
2442 */
2443static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2444                                      struct rcu_node *rnp, unsigned long flags)
2445        __releases(rnp->lock)
2446{
2447        unsigned long gps;
2448        unsigned long mask;
2449        struct rcu_node *rnp_p;
2450
2451        raw_lockdep_assert_held_rcu_node(rnp);
2452        if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2453            rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2454                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2455                return;  /* Still need more quiescent states! */
2456        }
2457
2458        rnp_p = rnp->parent;
2459        if (rnp_p == NULL) {
2460                /*
2461                 * Only one rcu_node structure in the tree, so don't
2462                 * try to report up to its nonexistent parent!
2463                 */
2464                rcu_report_qs_rsp(rsp, flags);
2465                return;
2466        }
2467
2468        /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2469        gps = rnp->gpnum;
2470        mask = rnp->grpmask;
2471        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
2472        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
2473        rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2474}
2475
2476/*
2477 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2478 * structure.  This must be called from the specified CPU.
2479 */
2480static void
2481rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2482{
2483        unsigned long flags;
2484        unsigned long mask;
2485        bool needwake;
2486        struct rcu_node *rnp;
2487
2488        rnp = rdp->mynode;
2489        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2490        if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2491            rnp->completed == rnp->gpnum || rdp->gpwrap) {
2492
2493                /*
2494                 * The grace period in which this quiescent state was
2495                 * recorded has ended, so don't report it upwards.
2496                 * We will instead need a new quiescent state that lies
2497                 * within the current grace period.
2498                 */
2499                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
2500                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2501                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2502                return;
2503        }
2504        mask = rdp->grpmask;
2505        if ((rnp->qsmask & mask) == 0) {
2506                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2507        } else {
2508                rdp->core_needs_qs = false;
2509
2510                /*
2511                 * This GP can't end until cpu checks in, so all of our
2512                 * callbacks can be processed during the next GP.
2513                 */
2514                needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2515
2516                rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2517                /* ^^^ Released rnp->lock */
2518                if (needwake)
2519                        rcu_gp_kthread_wake(rsp);
2520        }
2521}
2522
2523/*
2524 * Check to see if there is a new grace period of which this CPU
2525 * is not yet aware, and if so, set up local rcu_data state for it.
2526 * Otherwise, see if this CPU has just passed through its first
2527 * quiescent state for this grace period, and record that fact if so.
2528 */
2529static void
2530rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2531{
2532        /* Check for grace-period ends and beginnings. */
2533        note_gp_changes(rsp, rdp);
2534
2535        /*
2536         * Does this CPU still need to do its part for current grace period?
2537         * If no, return and let the other CPUs do their part as well.
2538         */
2539        if (!rdp->core_needs_qs)
2540                return;
2541
2542        /*
2543         * Was there a quiescent state since the beginning of the grace
2544         * period? If no, then exit and wait for the next call.
2545         */
2546        if (rdp->cpu_no_qs.b.norm)
2547                return;
2548
2549        /*
2550         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2551         * judge of that).
2552         */
2553        rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2554}
2555
2556/*
2557 * Trace the fact that this CPU is going offline.
2558 */
2559static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2560{
2561        RCU_TRACE(unsigned long mask;)
2562        RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2563        RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2564
2565        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2566                return;
2567
2568        RCU_TRACE(mask = rdp->grpmask;)
2569        trace_rcu_grace_period(rsp->name,
2570                               rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2571                               TPS("cpuofl"));
2572}
2573
2574/*
2575 * All CPUs for the specified rcu_node structure have gone offline,
2576 * and all tasks that were preempted within an RCU read-side critical
2577 * section while running on one of those CPUs have since exited their RCU
2578 * read-side critical section.  Some other CPU is reporting this fact with
2579 * the specified rcu_node structure's ->lock held and interrupts disabled.
2580 * This function therefore goes up the tree of rcu_node structures,
2581 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2582 * the leaf rcu_node structure's ->qsmaskinit field has already been
2583 * updated
2584 *
2585 * This function does check that the specified rcu_node structure has
2586 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2587 * prematurely.  That said, invoking it after the fact will cost you
2588 * a needless lock acquisition.  So once it has done its work, don't
2589 * invoke it again.
2590 */
2591static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2592{
2593        long mask;
2594        struct rcu_node *rnp = rnp_leaf;
2595
2596        raw_lockdep_assert_held_rcu_node(rnp);
2597        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2598            rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2599                return;
2600        for (;;) {
2601                mask = rnp->grpmask;
2602                rnp = rnp->parent;
2603                if (!rnp)
2604                        break;
2605                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2606                rnp->qsmaskinit &= ~mask;
2607                rnp->qsmask &= ~mask;
2608                if (rnp->qsmaskinit) {
2609                        raw_spin_unlock_rcu_node(rnp);
2610                        /* irqs remain disabled. */
2611                        return;
2612                }
2613                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2614        }
2615}
2616
2617/*
2618 * The CPU has been completely removed, and some other CPU is reporting
2619 * this fact from process context.  Do the remainder of the cleanup.
2620 * There can only be one CPU hotplug operation at a time, so no need for
2621 * explicit locking.
2622 */
2623static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2624{
2625        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2626        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2627
2628        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2629                return;
2630
2631        /* Adjust any no-longer-needed kthreads. */
2632        rcu_boost_kthread_setaffinity(rnp, -1);
2633}
2634
2635/*
2636 * Invoke any RCU callbacks that have made it to the end of their grace
2637 * period.  Thottle as specified by rdp->blimit.
2638 */
2639static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2640{
2641        unsigned long flags;
2642        struct rcu_head *rhp;
2643        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2644        long bl, count;
2645
2646        /* If no callbacks are ready, just return. */
2647        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2648                trace_rcu_batch_start(rsp->name,
2649                                      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2650                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2651                trace_rcu_batch_end(rsp->name, 0,
2652                                    !rcu_segcblist_empty(&rdp->cblist),
2653                                    need_resched(), is_idle_task(current),
2654                                    rcu_is_callbacks_kthread());
2655                return;
2656        }
2657
2658        /*
2659         * Extract the list of ready callbacks, disabling to prevent
2660         * races with call_rcu() from interrupt handlers.  Leave the
2661         * callback counts, as rcu_barrier() needs to be conservative.
2662         */
2663        local_irq_save(flags);
2664        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2665        bl = rdp->blimit;
2666        trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2667                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2668        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2669        local_irq_restore(flags);
2670
2671        /* Invoke callbacks. */
2672        rhp = rcu_cblist_dequeue(&rcl);
2673        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2674                debug_rcu_head_unqueue(rhp);
2675                if (__rcu_reclaim(rsp->name, rhp))
2676                        rcu_cblist_dequeued_lazy(&rcl);
2677                /*
2678                 * Stop only if limit reached and CPU has something to do.
2679                 * Note: The rcl structure counts down from zero.
2680                 */
2681                if (-rcl.len >= bl &&
2682                    (need_resched() ||
2683                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2684                        break;
2685        }
2686
2687        local_irq_save(flags);
2688        count = -rcl.len;
2689        trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2690                            is_idle_task(current), rcu_is_callbacks_kthread());
2691
2692        /* Update counts and requeue any remaining callbacks. */
2693        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2694        smp_mb(); /* List handling before counting for rcu_barrier(). */
2695        rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2696
2697        /* Reinstate batch limit if we have worked down the excess. */
2698        count = rcu_segcblist_n_cbs(&rdp->cblist);
2699        if (rdp->blimit == LONG_MAX && count <= qlowmark)
2700                rdp->blimit = blimit;
2701
2702        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2703        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2704                rdp->qlen_last_fqs_check = 0;
2705                rdp->n_force_qs_snap = rsp->n_force_qs;
2706        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2707                rdp->qlen_last_fqs_check = count;
2708
2709        /*
2710         * The following usually indicates a double call_rcu().  To track
2711         * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2712         */
2713        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2714
2715        local_irq_restore(flags);
2716
2717        /* Re-invoke RCU core processing if there are callbacks remaining. */
2718        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2719                invoke_rcu_core();
2720}
2721
2722/*
2723 * Check to see if this CPU is in a non-context-switch quiescent state
2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725 * Also schedule RCU core processing.
2726 *
2727 * This function must be called from hardirq context.  It is normally
2728 * invoked from the scheduling-clock interrupt.
2729 */
2730void rcu_check_callbacks(int user)
2731{
2732        trace_rcu_utilization(TPS("Start scheduler-tick"));
2733        increment_cpu_stall_ticks();
2734        if (user || rcu_is_cpu_rrupt_from_idle()) {
2735
2736                /*
2737                 * Get here if this CPU took its interrupt from user
2738                 * mode or from the idle loop, and if this is not a
2739                 * nested interrupt.  In this case, the CPU is in
2740                 * a quiescent state, so note it.
2741                 *
2742                 * No memory barrier is required here because both
2743                 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744                 * variables that other CPUs neither access nor modify,
2745                 * at least not while the corresponding CPU is online.
2746                 */
2747
2748                rcu_sched_qs();
2749                rcu_bh_qs();
2750
2751        } else if (!in_softirq()) {
2752
2753                /*
2754                 * Get here if this CPU did not take its interrupt from
2755                 * softirq, in other words, if it is not interrupting
2756                 * a rcu_bh read-side critical section.  This is an _bh
2757                 * critical section, so note it.
2758                 */
2759
2760                rcu_bh_qs();
2761        }
2762        rcu_preempt_check_callbacks();
2763        if (rcu_pending())
2764                invoke_rcu_core();
2765        if (user)
2766                rcu_note_voluntary_context_switch(current);
2767        trace_rcu_utilization(TPS("End scheduler-tick"));
2768}
2769
2770/*
2771 * Scan the leaf rcu_node structures, processing dyntick state for any that
2772 * have not yet encountered a quiescent state, using the function specified.
2773 * Also initiate boosting for any threads blocked on the root rcu_node.
2774 *
2775 * The caller must have suppressed start of new grace periods.
2776 */
2777static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2778{
2779        int cpu;
2780        unsigned long flags;
2781        unsigned long mask;
2782        struct rcu_node *rnp;
2783
2784        rcu_for_each_leaf_node(rsp, rnp) {
2785                cond_resched_rcu_qs();
2786                mask = 0;
2787                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2788                if (rnp->qsmask == 0) {
2789                        if (rcu_state_p == &rcu_sched_state ||
2790                            rsp != rcu_state_p ||
2791                            rcu_preempt_blocked_readers_cgp(rnp)) {
2792                                /*
2793                                 * No point in scanning bits because they
2794                                 * are all zero.  But we might need to
2795                                 * priority-boost blocked readers.
2796                                 */
2797                                rcu_initiate_boost(rnp, flags);
2798                                /* rcu_initiate_boost() releases rnp->lock */
2799                                continue;
2800                        }
2801                        if (rnp->parent &&
2802                            (rnp->parent->qsmask & rnp->grpmask)) {
2803                                /*
2804                                 * Race between grace-period
2805                                 * initialization and task exiting RCU
2806                                 * read-side critical section: Report.
2807                                 */
2808                                rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2809                                /* rcu_report_unblock_qs_rnp() rlses ->lock */
2810                                continue;
2811                        }
2812                }
2813                for_each_leaf_node_possible_cpu(rnp, cpu) {
2814                        unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2815                        if ((rnp->qsmask & bit) != 0) {
2816                                if (f(per_cpu_ptr(rsp->rda, cpu)))
2817                                        mask |= bit;
2818                        }
2819                }
2820                if (mask != 0) {
2821                        /* Idle/offline CPUs, report (releases rnp->lock. */
2822                        rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2823                } else {
2824                        /* Nothing to do here, so just drop the lock. */
2825                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2826                }
2827        }
2828}
2829
2830/*
2831 * Force quiescent states on reluctant CPUs, and also detect which
2832 * CPUs are in dyntick-idle mode.
2833 */
2834static void force_quiescent_state(struct rcu_state *rsp)
2835{
2836        unsigned long flags;
2837        bool ret;
2838        struct rcu_node *rnp;
2839        struct rcu_node *rnp_old = NULL;
2840
2841        /* Funnel through hierarchy to reduce memory contention. */
2842        rnp = __this_cpu_read(rsp->rda->mynode);
2843        for (; rnp != NULL; rnp = rnp->parent) {
2844                ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2845                      !raw_spin_trylock(&rnp->fqslock);
2846                if (rnp_old != NULL)
2847                        raw_spin_unlock(&rnp_old->fqslock);
2848                if (ret)
2849                        return;
2850                rnp_old = rnp;
2851        }
2852        /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2853
2854        /* Reached the root of the rcu_node tree, acquire lock. */
2855        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2856        raw_spin_unlock(&rnp_old->fqslock);
2857        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2858                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2859                return;  /* Someone beat us to it. */
2860        }
2861        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2862        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2863        rcu_gp_kthread_wake(rsp);
2864}
2865
2866/*
2867 * This does the RCU core processing work for the specified rcu_state
2868 * and rcu_data structures.  This may be called only from the CPU to
2869 * whom the rdp belongs.
2870 */
2871static void
2872__rcu_process_callbacks(struct rcu_state *rsp)
2873{
2874        unsigned long flags;
2875        bool needwake;
2876        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2877
2878        WARN_ON_ONCE(!rdp->beenonline);
2879
2880        /* Update RCU state based on any recent quiescent states. */
2881        rcu_check_quiescent_state(rsp, rdp);
2882
2883        /* Does this CPU require a not-yet-started grace period? */
2884        local_irq_save(flags);
2885        if (cpu_needs_another_gp(rsp, rdp)) {
2886                raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2887                needwake = rcu_start_gp(rsp);
2888                raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2889                if (needwake)
2890                        rcu_gp_kthread_wake(rsp);
2891        } else {
2892                local_irq_restore(flags);
2893        }
2894
2895        /* If there are callbacks ready, invoke them. */
2896        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2897                invoke_rcu_callbacks(rsp, rdp);
2898
2899        /* Do any needed deferred wakeups of rcuo kthreads. */
2900        do_nocb_deferred_wakeup(rdp);
2901}
2902
2903/*
2904 * Do RCU core processing for the current CPU.
2905 */
2906static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2907{
2908        struct rcu_state *rsp;
2909
2910        if (cpu_is_offline(smp_processor_id()))
2911                return;
2912        trace_rcu_utilization(TPS("Start RCU core"));
2913        for_each_rcu_flavor(rsp)
2914                __rcu_process_callbacks(rsp);
2915        trace_rcu_utilization(TPS("End RCU core"));
2916}
2917
2918/*
2919 * Schedule RCU callback invocation.  If the specified type of RCU
2920 * does not support RCU priority boosting, just do a direct call,
2921 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2922 * are running on the current CPU with softirqs disabled, the
2923 * rcu_cpu_kthread_task cannot disappear out from under us.
2924 */
2925static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2926{
2927        if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2928                return;
2929        if (likely(!rsp->boost)) {
2930                rcu_do_batch(rsp, rdp);
2931                return;
2932        }
2933        invoke_rcu_callbacks_kthread();
2934}
2935
2936static void invoke_rcu_core(void)
2937{
2938        if (cpu_online(smp_processor_id()))
2939                raise_softirq(RCU_SOFTIRQ);
2940}
2941
2942/*
2943 * Handle any core-RCU processing required by a call_rcu() invocation.
2944 */
2945static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2946                            struct rcu_head *head, unsigned long flags)
2947{
2948        bool needwake;
2949
2950        /*
2951         * If called from an extended quiescent state, invoke the RCU
2952         * core in order to force a re-evaluation of RCU's idleness.
2953         */
2954        if (!rcu_is_watching())
2955                invoke_rcu_core();
2956
2957        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2958        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2959                return;
2960
2961        /*
2962         * Force the grace period if too many callbacks or too long waiting.
2963         * Enforce hysteresis, and don't invoke force_quiescent_state()
2964         * if some other CPU has recently done so.  Also, don't bother
2965         * invoking force_quiescent_state() if the newly enqueued callback
2966         * is the only one waiting for a grace period to complete.
2967         */
2968        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2969                     rdp->qlen_last_fqs_check + qhimark)) {
2970
2971                /* Are we ignoring a completed grace period? */
2972                note_gp_changes(rsp, rdp);
2973
2974                /* Start a new grace period if one not already started. */
2975                if (!rcu_gp_in_progress(rsp)) {
2976                        struct rcu_node *rnp_root = rcu_get_root(rsp);
2977
2978                        raw_spin_lock_rcu_node(rnp_root);
2979                        needwake = rcu_start_gp(rsp);
2980                        raw_spin_unlock_rcu_node(rnp_root);
2981                        if (needwake)
2982                                rcu_gp_kthread_wake(rsp);
2983                } else {
2984                        /* Give the grace period a kick. */
2985                        rdp->blimit = LONG_MAX;
2986                        if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2987                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2988                                force_quiescent_state(rsp);
2989                        rdp->n_force_qs_snap = rsp->n_force_qs;
2990                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2991                }
2992        }
2993}
2994
2995/*
2996 * RCU callback function to leak a callback.
2997 */
2998static void rcu_leak_callback(struct rcu_head *rhp)
2999{
3000}
3001
3002/*
3003 * Helper function for call_rcu() and friends.  The cpu argument will
3004 * normally be -1, indicating "currently running CPU".  It may specify
3005 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3006 * is expected to specify a CPU.
3007 */
3008static void
3009__call_rcu(struct rcu_head *head, rcu_callback_t func,
3010           struct rcu_state *rsp, int cpu, bool lazy)
3011{
3012        unsigned long flags;
3013        struct rcu_data *rdp;
3014
3015        /* Misaligned rcu_head! */
3016        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3017
3018        if (debug_rcu_head_queue(head)) {
3019                /*
3020                 * Probable double call_rcu(), so leak the callback.
3021                 * Use rcu:rcu_callback trace event to find the previous
3022                 * time callback was passed to __call_rcu().
3023                 */
3024                WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3025                          head, head->func);
3026                WRITE_ONCE(head->func, rcu_leak_callback);
3027                return;
3028        }
3029        head->func = func;
3030        head->next = NULL;
3031        local_irq_save(flags);
3032        rdp = this_cpu_ptr(rsp->rda);
3033
3034        /* Add the callback to our list. */
3035        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3036                int offline;
3037
3038                if (cpu != -1)
3039                        rdp = per_cpu_ptr(rsp->rda, cpu);
3040                if (likely(rdp->mynode)) {
3041                        /* Post-boot, so this should be for a no-CBs CPU. */
3042                        offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3043                        WARN_ON_ONCE(offline);
3044                        /* Offline CPU, _call_rcu() illegal, leak callback.  */
3045                        local_irq_restore(flags);
3046                        return;
3047                }
3048                /*
3049                 * Very early boot, before rcu_init().  Initialize if needed
3050                 * and then drop through to queue the callback.
3051                 */
3052                BUG_ON(cpu != -1);
3053                WARN_ON_ONCE(!rcu_is_watching());
3054                if (rcu_segcblist_empty(&rdp->cblist))
3055                        rcu_segcblist_init(&rdp->cblist);
3056        }
3057        rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3058        if (!lazy)
3059                rcu_idle_count_callbacks_posted();
3060
3061        if (__is_kfree_rcu_offset((unsigned long)func))
3062                trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3063                                         rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3064                                         rcu_segcblist_n_cbs(&rdp->cblist));
3065        else
3066                trace_rcu_callback(rsp->name, head,
3067                                   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3068                                   rcu_segcblist_n_cbs(&rdp->cblist));
3069
3070        /* Go handle any RCU core processing required. */
3071        __call_rcu_core(rsp, rdp, head, flags);
3072        local_irq_restore(flags);
3073}
3074
3075/**
3076 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3077 * @head: structure to be used for queueing the RCU updates.
3078 * @func: actual callback function to be invoked after the grace period
3079 *
3080 * The callback function will be invoked some time after a full grace
3081 * period elapses, in other words after all currently executing RCU
3082 * read-side critical sections have completed. call_rcu_sched() assumes
3083 * that the read-side critical sections end on enabling of preemption
3084 * or on voluntary preemption.
3085 * RCU read-side critical sections are delimited by:
3086 *
3087 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3088 * - anything that disables preemption.
3089 *
3090 *  These may be nested.
3091 *
3092 * See the description of call_rcu() for more detailed information on
3093 * memory ordering guarantees.
3094 */
3095void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3096{
3097        __call_rcu(head, func, &rcu_sched_state, -1, 0);
3098}
3099EXPORT_SYMBOL_GPL(call_rcu_sched);
3100
3101/**
3102 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3103 * @head: structure to be used for queueing the RCU updates.
3104 * @func: actual callback function to be invoked after the grace period
3105 *
3106 * The callback function will be invoked some time after a full grace
3107 * period elapses, in other words after all currently executing RCU
3108 * read-side critical sections have completed. call_rcu_bh() assumes
3109 * that the read-side critical sections end on completion of a softirq
3110 * handler. This means that read-side critical sections in process
3111 * context must not be interrupted by softirqs. This interface is to be
3112 * used when most of the read-side critical sections are in softirq context.
3113 * RCU read-side critical sections are delimited by:
3114 *
3115 * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3116 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3117 *
3118 * These may be nested.
3119 *
3120 * See the description of call_rcu() for more detailed information on
3121 * memory ordering guarantees.
3122 */
3123void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3124{
3125        __call_rcu(head, func, &rcu_bh_state, -1, 0);
3126}
3127EXPORT_SYMBOL_GPL(call_rcu_bh);
3128
3129/*
3130 * Queue an RCU callback for lazy invocation after a grace period.
3131 * This will likely be later named something like "call_rcu_lazy()",
3132 * but this change will require some way of tagging the lazy RCU
3133 * callbacks in the list of pending callbacks. Until then, this
3134 * function may only be called from __kfree_rcu().
3135 */
3136void kfree_call_rcu(struct rcu_head *head,
3137                    rcu_callback_t func)
3138{
3139        __call_rcu(head, func, rcu_state_p, -1, 1);
3140}
3141EXPORT_SYMBOL_GPL(kfree_call_rcu);
3142
3143/*
3144 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3145 * any blocking grace-period wait automatically implies a grace period
3146 * if there is only one CPU online at any point time during execution
3147 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3148 * occasionally incorrectly indicate that there are multiple CPUs online
3149 * when there was in fact only one the whole time, as this just adds
3150 * some overhead: RCU still operates correctly.
3151 */
3152static inline int rcu_blocking_is_gp(void)
3153{
3154        int ret;
3155
3156        might_sleep();  /* Check for RCU read-side critical section. */
3157        preempt_disable();
3158        ret = num_online_cpus() <= 1;
3159        preempt_enable();
3160        return ret;
3161}
3162
3163/**
3164 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3165 *
3166 * Control will return to the caller some time after a full rcu-sched
3167 * grace period has elapsed, in other words after all currently executing
3168 * rcu-sched read-side critical sections have completed.   These read-side
3169 * critical sections are delimited by rcu_read_lock_sched() and
3170 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3171 * local_irq_disable(), and so on may be used in place of
3172 * rcu_read_lock_sched().
3173 *
3174 * This means that all preempt_disable code sequences, including NMI and
3175 * non-threaded hardware-interrupt handlers, in progress on entry will
3176 * have completed before this primitive returns.  However, this does not
3177 * guarantee that softirq handlers will have completed, since in some
3178 * kernels, these handlers can run in process context, and can block.
3179 *
3180 * Note that this guarantee implies further memory-ordering guarantees.
3181 * On systems with more than one CPU, when synchronize_sched() returns,
3182 * each CPU is guaranteed to have executed a full memory barrier since the
3183 * end of its last RCU-sched read-side critical section whose beginning
3184 * preceded the call to synchronize_sched().  In addition, each CPU having
3185 * an RCU read-side critical section that extends beyond the return from
3186 * synchronize_sched() is guaranteed to have executed a full memory barrier
3187 * after the beginning of synchronize_sched() and before the beginning of
3188 * that RCU read-side critical section.  Note that these guarantees include
3189 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3190 * that are executing in the kernel.
3191 *
3192 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3193 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3194 * to have executed a full memory barrier during the execution of
3195 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3196 * again only if the system has more than one CPU).
3197 */
3198void synchronize_sched(void)
3199{
3200        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3201                         lock_is_held(&rcu_lock_map) ||
3202                         lock_is_held(&rcu_sched_lock_map),
3203                         "Illegal synchronize_sched() in RCU-sched read-side critical section");
3204        if (rcu_blocking_is_gp())
3205                return;
3206        if (rcu_gp_is_expedited())
3207                synchronize_sched_expedited();
3208        else
3209                wait_rcu_gp(call_rcu_sched);
3210}
3211EXPORT_SYMBOL_GPL(synchronize_sched);
3212
3213/**
3214 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3215 *
3216 * Control will return to the caller some time after a full rcu_bh grace
3217 * period has elapsed, in other words after all currently executing rcu_bh
3218 * read-side critical sections have completed.  RCU read-side critical
3219 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3220 * and may be nested.
3221 *
3222 * See the description of synchronize_sched() for more detailed information
3223 * on memory ordering guarantees.
3224 */
3225void synchronize_rcu_bh(void)
3226{
3227        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3228                         lock_is_held(&rcu_lock_map) ||
3229                         lock_is_held(&rcu_sched_lock_map),
3230                         "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3231        if (rcu_blocking_is_gp())
3232                return;
3233        if (rcu_gp_is_expedited())
3234                synchronize_rcu_bh_expedited();
3235        else
3236                wait_rcu_gp(call_rcu_bh);
3237}
3238EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3239
3240/**
3241 * get_state_synchronize_rcu - Snapshot current RCU state
3242 *
3243 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3244 * to determine whether or not a full grace period has elapsed in the
3245 * meantime.
3246 */
3247unsigned long get_state_synchronize_rcu(void)
3248{
3249        /*
3250         * Any prior manipulation of RCU-protected data must happen
3251         * before the load from ->gpnum.
3252         */
3253        smp_mb();  /* ^^^ */
3254
3255        /*
3256         * Make sure this load happens before the purportedly
3257         * time-consuming work between get_state_synchronize_rcu()
3258         * and cond_synchronize_rcu().
3259         */
3260        return smp_load_acquire(&rcu_state_p->gpnum);
3261}
3262EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3263
3264/**
3265 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3266 *
3267 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3268 *
3269 * If a full RCU grace period has elapsed since the earlier call to
3270 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3271 * synchronize_rcu() to wait for a full grace period.
3272 *
3273 * Yes, this function does not take counter wrap into account.  But
3274 * counter wrap is harmless.  If the counter wraps, we have waited for
3275 * more than 2 billion grace periods (and way more on a 64-bit system!),
3276 * so waiting for one additional grace period should be just fine.
3277 */
3278void cond_synchronize_rcu(unsigned long oldstate)
3279{
3280        unsigned long newstate;
3281
3282        /*
3283         * Ensure that this load happens before any RCU-destructive
3284         * actions the caller might carry out after we return.
3285         */
3286        newstate = smp_load_acquire(&rcu_state_p->completed);
3287        if (ULONG_CMP_GE(oldstate, newstate))
3288                synchronize_rcu();
3289}
3290EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3291
3292/**
3293 * get_state_synchronize_sched - Snapshot current RCU-sched state
3294 *
3295 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3296 * to determine whether or not a full grace period has elapsed in the
3297 * meantime.
3298 */
3299unsigned long get_state_synchronize_sched(void)
3300{
3301        /*
3302         * Any prior manipulation of RCU-protected data must happen
3303         * before the load from ->gpnum.
3304         */
3305        smp_mb();  /* ^^^ */
3306
3307        /*
3308         * Make sure this load happens before the purportedly
3309         * time-consuming work between get_state_synchronize_sched()
3310         * and cond_synchronize_sched().
3311         */
3312        return smp_load_acquire(&rcu_sched_state.gpnum);
3313}
3314EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3315
3316/**
3317 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3318 *
3319 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3320 *
3321 * If a full RCU-sched grace period has elapsed since the earlier call to
3322 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3323 * synchronize_sched() to wait for a full grace period.
3324 *
3325 * Yes, this function does not take counter wrap into account.  But
3326 * counter wrap is harmless.  If the counter wraps, we have waited for
3327 * more than 2 billion grace periods (and way more on a 64-bit system!),
3328 * so waiting for one additional grace period should be just fine.
3329 */
3330void cond_synchronize_sched(unsigned long oldstate)
3331{
3332        unsigned long newstate;
3333
3334        /*
3335         * Ensure that this load happens before any RCU-destructive
3336         * actions the caller might carry out after we return.
3337         */
3338        newstate = smp_load_acquire(&rcu_sched_state.completed);
3339        if (ULONG_CMP_GE(oldstate, newstate))
3340                synchronize_sched();
3341}
3342EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3343
3344/*
3345 * Check to see if there is any immediate RCU-related work to be done
3346 * by the current CPU, for the specified type of RCU, returning 1 if so.
3347 * The checks are in order of increasing expense: checks that can be
3348 * carried out against CPU-local state are performed first.  However,
3349 * we must check for CPU stalls first, else we might not get a chance.
3350 */
3351static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3352{
3353        struct rcu_node *rnp = rdp->mynode;
3354
3355        /* Check for CPU stalls, if enabled. */
3356        check_cpu_stall(rsp, rdp);
3357
3358        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3359        if (rcu_nohz_full_cpu(rsp))
3360                return 0;
3361
3362        /* Is the RCU core waiting for a quiescent state from this CPU? */
3363        if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3364                return 1;
3365
3366        /* Does this CPU have callbacks ready to invoke? */
3367        if (rcu_segcblist_ready_cbs(&rdp->cblist))
3368                return 1;
3369
3370        /* Has RCU gone idle with this CPU needing another grace period? */
3371        if (cpu_needs_another_gp(rsp, rdp))
3372                return 1;
3373
3374        /* Has another RCU grace period completed?  */
3375        if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */
3376                return 1;
3377
3378        /* Has a new RCU grace period started? */
3379        if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3380            unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3381                return 1;
3382
3383        /* Does this CPU need a deferred NOCB wakeup? */
3384        if (rcu_nocb_need_deferred_wakeup(rdp))
3385                return 1;
3386
3387        /* nothing to do */
3388        return 0;
3389}
3390
3391/*
3392 * Check to see if there is any immediate RCU-related work to be done
3393 * by the current CPU, returning 1 if so.  This function is part of the
3394 * RCU implementation; it is -not- an exported member of the RCU API.
3395 */
3396static int rcu_pending(void)
3397{
3398        struct rcu_state *rsp;
3399
3400        for_each_rcu_flavor(rsp)
3401                if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3402                        return 1;
3403        return 0;
3404}
3405
3406/*
3407 * Return true if the specified CPU has any callback.  If all_lazy is
3408 * non-NULL, store an indication of whether all callbacks are lazy.
3409 * (If there are no callbacks, all of them are deemed to be lazy.)
3410 */
3411static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3412{
3413        bool al = true;
3414        bool hc = false;
3415        struct rcu_data *rdp;
3416        struct rcu_state *rsp;
3417
3418        for_each_rcu_flavor(rsp) {
3419                rdp = this_cpu_ptr(rsp->rda);
3420                if (rcu_segcblist_empty(&rdp->cblist))
3421                        continue;
3422                hc = true;
3423                if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3424                        al = false;
3425                        break;
3426                }
3427        }
3428        if (all_lazy)
3429                *all_lazy = al;
3430        return hc;
3431}
3432
3433/*
3434 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3435 * the compiler is expected to optimize this away.
3436 */
3437static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3438                               int cpu, unsigned long done)
3439{
3440        trace_rcu_barrier(rsp->name, s, cpu,
3441                          atomic_read(&rsp->barrier_cpu_count), done);
3442}
3443
3444/*
3445 * RCU callback function for _rcu_barrier().  If we are last, wake
3446 * up the task executing _rcu_barrier().
3447 */
3448static void rcu_barrier_callback(struct rcu_head *rhp)
3449{
3450        struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3451        struct rcu_state *rsp = rdp->rsp;
3452
3453        if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3454                _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3455                                   rsp->barrier_sequence);
3456                complete(&rsp->barrier_completion);
3457        } else {
3458                _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3459        }
3460}
3461
3462/*
3463 * Called with preemption disabled, and from cross-cpu IRQ context.
3464 */
3465static void rcu_barrier_func(void *type)
3466{
3467        struct rcu_state *rsp = type;
3468        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3469
3470        _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3471        rdp->barrier_head.func = rcu_barrier_callback;
3472        debug_rcu_head_queue(&rdp->barrier_head);
3473        if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3474                atomic_inc(&rsp->barrier_cpu_count);
3475        } else {
3476                debug_rcu_head_unqueue(&rdp->barrier_head);
3477                _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3478                                   rsp->barrier_sequence);
3479        }
3480}
3481
3482/*
3483 * Orchestrate the specified type of RCU barrier, waiting for all
3484 * RCU callbacks of the specified type to complete.
3485 */
3486static void _rcu_barrier(struct rcu_state *rsp)
3487{
3488        int cpu;
3489        struct rcu_data *rdp;
3490        unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3491
3492        _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3493
3494        /* Take mutex to serialize concurrent rcu_barrier() requests. */
3495        mutex_lock(&rsp->barrier_mutex);
3496
3497        /* Did someone else do our work for us? */
3498        if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3499                _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3500                                   rsp->barrier_sequence);
3501                smp_mb(); /* caller's subsequent code after above check. */
3502                mutex_unlock(&rsp->barrier_mutex);
3503                return;
3504        }
3505
3506        /* Mark the start of the barrier operation. */
3507        rcu_seq_start(&rsp->barrier_sequence);
3508        _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3509
3510        /*
3511         * Initialize the count to one rather than to zero in order to
3512         * avoid a too-soon return to zero in case of a short grace period
3513         * (or preemption of this task).  Exclude CPU-hotplug operations
3514         * to ensure that no offline CPU has callbacks queued.
3515         */
3516        init_completion(&rsp->barrier_completion);
3517        atomic_set(&rsp->barrier_cpu_count, 1);
3518        get_online_cpus();
3519
3520        /*
3521         * Force each CPU with callbacks to register a new callback.
3522         * When that callback is invoked, we will know that all of the
3523         * corresponding CPU's preceding callbacks have been invoked.
3524         */
3525        for_each_possible_cpu(cpu) {
3526                if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3527                        continue;
3528                rdp = per_cpu_ptr(rsp->rda, cpu);
3529                if (rcu_is_nocb_cpu(cpu)) {
3530                        if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3531                                _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3532                                                   rsp->barrier_sequence);
3533                        } else {
3534                                _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3535                                                   rsp->barrier_sequence);
3536                                smp_mb__before_atomic();
3537                                atomic_inc(&rsp->barrier_cpu_count);
3538                                __call_rcu(&rdp->barrier_head,
3539                                           rcu_barrier_callback, rsp, cpu, 0);
3540                        }
3541                } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3542                        _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3543                                           rsp->barrier_sequence);
3544                        smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3545                } else {
3546                        _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3547                                           rsp->barrier_sequence);
3548                }
3549        }
3550        put_online_cpus();
3551
3552        /*
3553         * Now that we have an rcu_barrier_callback() callback on each
3554         * CPU, and thus each counted, remove the initial count.
3555         */
3556        if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3557                complete(&rsp->barrier_completion);
3558
3559        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3560        wait_for_completion(&rsp->barrier_completion);
3561
3562        /* Mark the end of the barrier operation. */
3563        _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3564        rcu_seq_end(&rsp->barrier_sequence);
3565
3566        /* Other rcu_barrier() invocations can now safely proceed. */
3567        mutex_unlock(&rsp->barrier_mutex);
3568}
3569
3570/**
3571 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3572 */
3573void rcu_barrier_bh(void)
3574{
3575        _rcu_barrier(&rcu_bh_state);
3576}
3577EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3578
3579/**
3580 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3581 */
3582void rcu_barrier_sched(void)
3583{
3584        _rcu_barrier(&rcu_sched_state);
3585}
3586EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3587
3588/*
3589 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3590 * first CPU in a given leaf rcu_node structure coming online.  The caller
3591 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3592 * disabled.
3593 */
3594static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3595{
3596        long mask;
3597        struct rcu_node *rnp = rnp_leaf;
3598
3599        raw_lockdep_assert_held_rcu_node(rnp);
3600        for (;;) {
3601                mask = rnp->grpmask;
3602                rnp = rnp->parent;
3603                if (rnp == NULL)
3604                        return;
3605                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3606                rnp->qsmaskinit |= mask;
3607                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3608        }
3609}
3610
3611/*
3612 * Do boot-time initialization of a CPU's per-CPU RCU data.
3613 */
3614static void __init
3615rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3616{
3617        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3618
3619        /* Set up local state, ensuring consistent view of global state. */
3620        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3621        rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3622        WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3623        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3624        rdp->cpu = cpu;
3625        rdp->rsp = rsp;
3626        rcu_boot_init_nocb_percpu_data(rdp);
3627}
3628
3629/*
3630 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3631 * offline event can be happening at a given time.  Note also that we
3632 * can accept some slop in the rsp->completed access due to the fact
3633 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3634 */
3635static void
3636rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3637{
3638        unsigned long flags;
3639        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3640        struct rcu_node *rnp = rcu_get_root(rsp);
3641
3642        /* Set up local state, ensuring consistent view of global state. */
3643        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3644        rdp->qlen_last_fqs_check = 0;
3645        rdp->n_force_qs_snap = rsp->n_force_qs;
3646        rdp->blimit = blimit;
3647        if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3648            !init_nocb_callback_list(rdp))
3649                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3650        rdp->dynticks->dynticks_nesting = 1;    /* CPU not up, no tearing. */
3651        rcu_dynticks_eqs_online();
3652        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
3653
3654        /*
3655         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3656         * propagation up the rcu_node tree will happen at the beginning
3657         * of the next grace period.
3658         */
3659        rnp = rdp->mynode;
3660        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
3661        rdp->beenonline = true;  /* We have now been online. */
3662        rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3663        rdp->completed = rnp->completed;
3664        rdp->cpu_no_qs.b.norm = true;
3665        rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3666        rdp->core_needs_qs = false;
3667        rdp->rcu_iw_pending = false;
3668        rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3669        trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3670        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3671}
3672
3673/*
3674 * Invoked early in the CPU-online process, when pretty much all
3675 * services are available.  The incoming CPU is not present.
3676 */
3677int rcutree_prepare_cpu(unsigned int cpu)
3678{
3679        struct rcu_state *rsp;
3680
3681        for_each_rcu_flavor(rsp)
3682                rcu_init_percpu_data(cpu, rsp);
3683
3684        rcu_prepare_kthreads(cpu);
3685        rcu_spawn_all_nocb_kthreads(cpu);
3686
3687        return 0;
3688}
3689
3690/*
3691 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3692 */
3693static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3694{
3695        struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3696
3697        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3698}
3699
3700/*
3701 * Near the end of the CPU-online process.  Pretty much all services
3702 * enabled, and the CPU is now very much alive.
3703 */
3704int rcutree_online_cpu(unsigned int cpu)
3705{
3706        unsigned long flags;
3707        struct rcu_data *rdp;
3708        struct rcu_node *rnp;
3709        struct rcu_state *rsp;
3710
3711        for_each_rcu_flavor(rsp) {
3712                rdp = per_cpu_ptr(rsp->rda, cpu);
3713                rnp = rdp->mynode;
3714                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3715                rnp->ffmask |= rdp->grpmask;
3716                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3717        }
3718        if (IS_ENABLED(CONFIG_TREE_SRCU))
3719                srcu_online_cpu(cpu);
3720        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3721                return 0; /* Too early in boot for scheduler work. */
3722        sync_sched_exp_online_cleanup(cpu);
3723        rcutree_affinity_setting(cpu, -1);
3724        return 0;
3725}
3726
3727/*
3728 * Near the beginning of the process.  The CPU is still very much alive
3729 * with pretty much all services enabled.
3730 */
3731int rcutree_offline_cpu(unsigned int cpu)
3732{
3733        unsigned long flags;
3734        struct rcu_data *rdp;
3735        struct rcu_node *rnp;
3736        struct rcu_state *rsp;
3737
3738        for_each_rcu_flavor(rsp) {
3739                rdp = per_cpu_ptr(rsp->rda, cpu);
3740                rnp = rdp->mynode;
3741                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3742                rnp->ffmask &= ~rdp->grpmask;
3743                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3744        }
3745
3746        rcutree_affinity_setting(cpu, cpu);
3747        if (IS_ENABLED(CONFIG_TREE_SRCU))
3748                srcu_offline_cpu(cpu);
3749        return 0;
3750}
3751
3752/*
3753 * Near the end of the offline process.  We do only tracing here.
3754 */
3755int rcutree_dying_cpu(unsigned int cpu)
3756{
3757        struct rcu_state *rsp;
3758
3759        for_each_rcu_flavor(rsp)
3760                rcu_cleanup_dying_cpu(rsp);
3761        return 0;
3762}
3763
3764/*
3765 * The outgoing CPU is gone and we are running elsewhere.
3766 */
3767int rcutree_dead_cpu(unsigned int cpu)
3768{
3769        struct rcu_state *rsp;
3770
3771        for_each_rcu_flavor(rsp) {
3772                rcu_cleanup_dead_cpu(cpu, rsp);
3773                do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3774        }
3775        return 0;
3776}
3777
3778/*
3779 * Mark the specified CPU as being online so that subsequent grace periods
3780 * (both expedited and normal) will wait on it.  Note that this means that
3781 * incoming CPUs are not allowed to use RCU read-side critical sections
3782 * until this function is called.  Failing to observe this restriction
3783 * will result in lockdep splats.
3784 *
3785 * Note that this function is special in that it is invoked directly
3786 * from the incoming CPU rather than from the cpuhp_step mechanism.
3787 * This is because this function must be invoked at a precise location.
3788 */
3789void rcu_cpu_starting(unsigned int cpu)
3790{
3791        unsigned long flags;
3792        unsigned long mask;
3793        int nbits;
3794        unsigned long oldmask;
3795        struct rcu_data *rdp;
3796        struct rcu_node *rnp;
3797        struct rcu_state *rsp;
3798
3799        for_each_rcu_flavor(rsp) {
3800                rdp = per_cpu_ptr(rsp->rda, cpu);
3801                rnp = rdp->mynode;
3802                mask = rdp->grpmask;
3803                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3804                rnp->qsmaskinitnext |= mask;
3805                oldmask = rnp->expmaskinitnext;
3806                rnp->expmaskinitnext |= mask;
3807                oldmask ^= rnp->expmaskinitnext;
3808                nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3809                /* Allow lockless access for expedited grace periods. */
3810                smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3811                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3812        }
3813        smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3814}
3815
3816#ifdef CONFIG_HOTPLUG_CPU
3817/*
3818 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3819 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3820 * bit masks.
3821 */
3822static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3823{
3824        unsigned long flags;
3825        unsigned long mask;
3826        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3827        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3828
3829        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3830        mask = rdp->grpmask;
3831        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3832        rnp->qsmaskinitnext &= ~mask;
3833        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3834}
3835
3836/*
3837 * The outgoing function has no further need of RCU, so remove it from
3838 * the list of CPUs that RCU must track.
3839 *
3840 * Note that this function is special in that it is invoked directly
3841 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3842 * This is because this function must be invoked at a precise location.
3843 */
3844void rcu_report_dead(unsigned int cpu)
3845{
3846        struct rcu_state *rsp;
3847
3848        /* QS for any half-done expedited RCU-sched GP. */
3849        preempt_disable();
3850        rcu_report_exp_rdp(&rcu_sched_state,
3851                           this_cpu_ptr(rcu_sched_state.rda), true);
3852        preempt_enable();
3853        for_each_rcu_flavor(rsp)
3854                rcu_cleanup_dying_idle_cpu(cpu, rsp);
3855}
3856
3857/* Migrate the dead CPU's callbacks to the current CPU. */
3858static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3859{
3860        unsigned long flags;
3861        struct rcu_data *my_rdp;
3862        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3863        struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3864
3865        if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3866                return;  /* No callbacks to migrate. */
3867
3868        local_irq_save(flags);
3869        my_rdp = this_cpu_ptr(rsp->rda);
3870        if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3871                local_irq_restore(flags);
3872                return;
3873        }
3874        raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3875        rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3876        rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3877        rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3878        WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3879                     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3880        raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3881        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3882                  !rcu_segcblist_empty(&rdp->cblist),
3883                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3884                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3885                  rcu_segcblist_first_cb(&rdp->cblist));
3886}
3887
3888/*
3889 * The outgoing CPU has just passed through the dying-idle state,
3890 * and we are being invoked from the CPU that was IPIed to continue the
3891 * offline operation.  We need to migrate the outgoing CPU's callbacks.
3892 */
3893void rcutree_migrate_callbacks(int cpu)
3894{
3895        struct rcu_state *rsp;
3896
3897        for_each_rcu_flavor(rsp)
3898                rcu_migrate_callbacks(cpu, rsp);
3899}
3900#endif
3901
3902/*
3903 * On non-huge systems, use expedited RCU grace periods to make suspend
3904 * and hibernation run faster.
3905 */
3906static int rcu_pm_notify(struct notifier_block *self,
3907                         unsigned long action, void *hcpu)
3908{
3909        switch (action) {
3910        case PM_HIBERNATION_PREPARE:
3911        case PM_SUSPEND_PREPARE:
3912                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3913                        rcu_expedite_gp();
3914                break;
3915        case PM_POST_HIBERNATION:
3916        case PM_POST_SUSPEND:
3917                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3918                        rcu_unexpedite_gp();
3919                break;
3920        default:
3921                break;
3922        }
3923        return NOTIFY_OK;
3924}
3925
3926/*
3927 * Spawn the kthreads that handle each RCU flavor's grace periods.
3928 */
3929static int __init rcu_spawn_gp_kthread(void)
3930{
3931        unsigned long flags;
3932        int kthread_prio_in = kthread_prio;
3933        struct rcu_node *rnp;
3934        struct rcu_state *rsp;
3935        struct sched_param sp;
3936        struct task_struct *t;
3937
3938        /* Force priority into range. */
3939        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3940                kthread_prio = 1;
3941        else if (kthread_prio < 0)
3942                kthread_prio = 0;
3943        else if (kthread_prio > 99)
3944                kthread_prio = 99;
3945        if (kthread_prio != kthread_prio_in)
3946                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3947                         kthread_prio, kthread_prio_in);
3948
3949        rcu_scheduler_fully_active = 1;
3950        for_each_rcu_flavor(rsp) {
3951                t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3952                BUG_ON(IS_ERR(t));
3953                rnp = rcu_get_root(rsp);
3954                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3955                rsp->gp_kthread = t;
3956                if (kthread_prio) {
3957                        sp.sched_priority = kthread_prio;
3958                        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3959                }
3960                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3961                wake_up_process(t);
3962        }
3963        rcu_spawn_nocb_kthreads();
3964        rcu_spawn_boost_kthreads();
3965        return 0;
3966}
3967early_initcall(rcu_spawn_gp_kthread);
3968
3969/*
3970 * This function is invoked towards the end of the scheduler's
3971 * initialization process.  Before this is called, the idle task might
3972 * contain synchronous grace-period primitives (during which time, this idle
3973 * task is booting the system, and such primitives are no-ops).  After this
3974 * function is called, any synchronous grace-period primitives are run as
3975 * expedited, with the requesting task driving the grace period forward.
3976 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3977 * runtime RCU functionality.
3978 */
3979void rcu_scheduler_starting(void)
3980{
3981        WARN_ON(num_online_cpus() != 1);
3982        WARN_ON(nr_context_switches() > 0);
3983        rcu_test_sync_prims();
3984        rcu_scheduler_active = RCU_SCHEDULER_INIT;
3985        rcu_test_sync_prims();
3986}
3987
3988/*
3989 * Helper function for rcu_init() that initializes one rcu_state structure.
3990 */
3991static void __init rcu_init_one(struct rcu_state *rsp)
3992{
3993        static const char * const buf[] = RCU_NODE_NAME_INIT;
3994        static const char * const fqs[] = RCU_FQS_NAME_INIT;
3995        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3996        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3997
3998        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
3999        int cpustride = 1;
4000        int i;
4001        int j;
4002        struct rcu_node *rnp;
4003
4004        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4005
4006        /* Silence gcc 4.8 false positive about array index out of range. */
4007        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4008                panic("rcu_init_one: rcu_num_lvls out of range");
4009
4010        /* Initialize the level-tracking arrays. */
4011
4012        for (i = 1; i < rcu_num_lvls; i++)
4013                rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4014        rcu_init_levelspread(levelspread, num_rcu_lvl);
4015
4016        /* Initialize the elements themselves, starting from the leaves. */
4017
4018        for (i = rcu_num_lvls - 1; i >= 0; i--) {
4019                cpustride *= levelspread[i];
4020                rnp = rsp->level[i];
4021                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4022                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4023                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4024                                                   &rcu_node_class[i], buf[i]);
4025                        raw_spin_lock_init(&rnp->fqslock);
4026                        lockdep_set_class_and_name(&rnp->fqslock,
4027                                                   &rcu_fqs_class[i], fqs[i]);
4028                        rnp->gpnum = rsp->gpnum;
4029                        rnp->completed = rsp->completed;
4030                        rnp->qsmask = 0;
4031                        rnp->qsmaskinit = 0;
4032                        rnp->grplo = j * cpustride;
4033                        rnp->grphi = (j + 1) * cpustride - 1;
4034                        if (rnp->grphi >= nr_cpu_ids)
4035                                rnp->grphi = nr_cpu_ids - 1;
4036                        if (i == 0) {
4037                                rnp->grpnum = 0;
4038                                rnp->grpmask = 0;
4039                                rnp->parent = NULL;
4040                        } else {
4041                                rnp->grpnum = j % levelspread[i - 1];
4042                                rnp->grpmask = 1UL << rnp->grpnum;
4043                                rnp->parent = rsp->level[i - 1] +
4044                                              j / levelspread[i - 1];
4045                        }
4046                        rnp->level = i;
4047                        INIT_LIST_HEAD(&rnp->blkd_tasks);
4048                        rcu_init_one_nocb(rnp);
4049                        init_waitqueue_head(&rnp->exp_wq[0]);
4050                        init_waitqueue_head(&rnp->exp_wq[1]);
4051                        init_waitqueue_head(&rnp->exp_wq[2]);
4052                        init_waitqueue_head(&rnp->exp_wq[3]);
4053                        spin_lock_init(&rnp->exp_lock);
4054                }
4055        }
4056
4057        init_swait_queue_head(&rsp->gp_wq);
4058        init_swait_queue_head(&rsp->expedited_wq);
4059        rnp = rsp->level[rcu_num_lvls - 1];
4060        for_each_possible_cpu(i) {
4061                while (i > rnp->grphi)
4062                        rnp++;
4063                per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4064                rcu_boot_init_percpu_data(i, rsp);
4065        }
4066        list_add(&rsp->flavors, &rcu_struct_flavors);
4067}
4068
4069/*
4070 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4071 * replace the definitions in tree.h because those are needed to size
4072 * the ->node array in the rcu_state structure.
4073 */
4074static void __init rcu_init_geometry(void)
4075{
4076        ulong d;
4077        int i;
4078        int rcu_capacity[RCU_NUM_LVLS];
4079
4080        /*
4081         * Initialize any unspecified boot parameters.
4082         * The default values of jiffies_till_first_fqs and
4083         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4084         * value, which is a function of HZ, then adding one for each
4085         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4086         */
4087        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4088        if (jiffies_till_first_fqs == ULONG_MAX)
4089                jiffies_till_first_fqs = d;
4090        if (jiffies_till_next_fqs == ULONG_MAX)
4091                jiffies_till_next_fqs = d;
4092
4093        /* If the compile-time values are accurate, just leave. */
4094        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4095            nr_cpu_ids == NR_CPUS)
4096                return;
4097        pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4098                rcu_fanout_leaf, nr_cpu_ids);
4099
4100        /*
4101         * The boot-time rcu_fanout_leaf parameter must be at least two
4102         * and cannot exceed the number of bits in the rcu_node masks.
4103         * Complain and fall back to the compile-time values if this
4104         * limit is exceeded.
4105         */
4106        if (rcu_fanout_leaf < 2 ||
4107            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4108                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4109                WARN_ON(1);
4110                return;
4111        }
4112
4113        /*
4114         * Compute number of nodes that can be handled an rcu_node tree
4115         * with the given number of levels.
4116         */
4117        rcu_capacity[0] = rcu_fanout_leaf;
4118        for (i = 1; i < RCU_NUM_LVLS; i++)
4119                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4120
4121        /*
4122         * The tree must be able to accommodate the configured number of CPUs.
4123         * If this limit is exceeded, fall back to the compile-time values.
4124         */
4125        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4126                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4127                WARN_ON(1);
4128                return;
4129        }
4130
4131        /* Calculate the number of levels in the tree. */
4132        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4133        }
4134        rcu_num_lvls = i + 1;
4135
4136        /* Calculate the number of rcu_nodes at each level of the tree. */
4137        for (i = 0; i < rcu_num_lvls; i++) {
4138                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4139                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4140        }
4141
4142        /* Calculate the total number of rcu_node structures. */
4143        rcu_num_nodes = 0;
4144        for (i = 0; i < rcu_num_lvls; i++)
4145                rcu_num_nodes += num_rcu_lvl[i];
4146}
4147
4148/*
4149 * Dump out the structure of the rcu_node combining tree associated
4150 * with the rcu_state structure referenced by rsp.
4151 */
4152static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4153{
4154        int level = 0;
4155        struct rcu_node *rnp;
4156
4157        pr_info("rcu_node tree layout dump\n");
4158        pr_info(" ");
4159        rcu_for_each_node_breadth_first(rsp, rnp) {
4160                if (rnp->level != level) {
4161                        pr_cont("\n");
4162                        pr_info(" ");
4163                        level = rnp->level;
4164                }
4165                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4166        }
4167        pr_cont("\n");
4168}
4169
4170struct workqueue_struct *rcu_gp_wq;
4171
4172void __init rcu_init(void)
4173{
4174        int cpu;
4175
4176        rcu_early_boot_tests();
4177
4178        rcu_bootup_announce();
4179        rcu_init_geometry();
4180        rcu_init_one(&rcu_bh_state);
4181        rcu_init_one(&rcu_sched_state);
4182        if (dump_tree)
4183                rcu_dump_rcu_node_tree(&rcu_sched_state);
4184        __rcu_init_preempt();
4185        open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4186
4187        /*
4188         * We don't need protection against CPU-hotplug here because
4189         * this is called early in boot, before either interrupts
4190         * or the scheduler are operational.
4191         */
4192        pm_notifier(rcu_pm_notify, 0);
4193        for_each_online_cpu(cpu) {
4194                rcutree_prepare_cpu(cpu);
4195                rcu_cpu_starting(cpu);
4196                rcutree_online_cpu(cpu);
4197        }
4198
4199        /* Create workqueue for expedited GPs and for Tree SRCU. */
4200        rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4201        WARN_ON(!rcu_gp_wq);
4202}
4203
4204#include "tree_exp.h"
4205#include "tree_plugin.h"
4206