linux/kernel/sched/clock.c
<<
>>
Prefs
   1/*
   2 * sched_clock() for unstable CPU clocks
   3 *
   4 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
   5 *
   6 *  Updates and enhancements:
   7 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
   8 *
   9 * Based on code by:
  10 *   Ingo Molnar <mingo@redhat.com>
  11 *   Guillaume Chazarain <guichaz@gmail.com>
  12 *
  13 *
  14 * What this file implements:
  15 *
  16 * cpu_clock(i) provides a fast (execution time) high resolution
  17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19 *
  20 * ######################### BIG FAT WARNING ##########################
  21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22 * # go backwards !!                                                  #
  23 * ####################################################################
  24 *
  25 * There is no strict promise about the base, although it tends to start
  26 * at 0 on boot (but people really shouldn't rely on that).
  27 *
  28 * cpu_clock(i)       -- can be used from any context, including NMI.
  29 * local_clock()      -- is cpu_clock() on the current CPU.
  30 *
  31 * sched_clock_cpu(i)
  32 *
  33 * How it is implemented:
  34 *
  35 * The implementation either uses sched_clock() when
  36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37 * sched_clock() is assumed to provide these properties (mostly it means
  38 * the architecture provides a globally synchronized highres time source).
  39 *
  40 * Otherwise it tries to create a semi stable clock from a mixture of other
  41 * clocks, including:
  42 *
  43 *  - GTOD (clock monotomic)
  44 *  - sched_clock()
  45 *  - explicit idle events
  46 *
  47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48 * deltas are filtered to provide monotonicity and keeping it within an
  49 * expected window.
  50 *
  51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52 * that is otherwise invisible (TSC gets stopped).
  53 *
  54 */
  55#include "sched.h"
  56
  57/*
  58 * Scheduler clock - returns current time in nanosec units.
  59 * This is default implementation.
  60 * Architectures and sub-architectures can override this.
  61 */
  62unsigned long long __weak sched_clock(void)
  63{
  64        return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  65                                        * (NSEC_PER_SEC / HZ);
  66}
  67EXPORT_SYMBOL_GPL(sched_clock);
  68
  69__read_mostly int sched_clock_running;
  70
  71void sched_clock_init(void)
  72{
  73        sched_clock_running = 1;
  74}
  75
  76#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  77/*
  78 * We must start with !__sched_clock_stable because the unstable -> stable
  79 * transition is accurate, while the stable -> unstable transition is not.
  80 *
  81 * Similarly we start with __sched_clock_stable_early, thereby assuming we
  82 * will become stable, such that there's only a single 1 -> 0 transition.
  83 */
  84static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
  85static int __sched_clock_stable_early = 1;
  86
  87/*
  88 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
  89 */
  90__read_mostly u64 __sched_clock_offset;
  91static __read_mostly u64 __gtod_offset;
  92
  93struct sched_clock_data {
  94        u64                     tick_raw;
  95        u64                     tick_gtod;
  96        u64                     clock;
  97};
  98
  99static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
 100
 101static inline struct sched_clock_data *this_scd(void)
 102{
 103        return this_cpu_ptr(&sched_clock_data);
 104}
 105
 106static inline struct sched_clock_data *cpu_sdc(int cpu)
 107{
 108        return &per_cpu(sched_clock_data, cpu);
 109}
 110
 111int sched_clock_stable(void)
 112{
 113        return static_branch_likely(&__sched_clock_stable);
 114}
 115
 116static void __scd_stamp(struct sched_clock_data *scd)
 117{
 118        scd->tick_gtod = ktime_get_ns();
 119        scd->tick_raw = sched_clock();
 120}
 121
 122static void __set_sched_clock_stable(void)
 123{
 124        struct sched_clock_data *scd;
 125
 126        /*
 127         * Since we're still unstable and the tick is already running, we have
 128         * to disable IRQs in order to get a consistent scd->tick* reading.
 129         */
 130        local_irq_disable();
 131        scd = this_scd();
 132        /*
 133         * Attempt to make the (initial) unstable->stable transition continuous.
 134         */
 135        __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
 136        local_irq_enable();
 137
 138        printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
 139                        scd->tick_gtod, __gtod_offset,
 140                        scd->tick_raw,  __sched_clock_offset);
 141
 142        static_branch_enable(&__sched_clock_stable);
 143        tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
 144}
 145
 146/*
 147 * If we ever get here, we're screwed, because we found out -- typically after
 148 * the fact -- that TSC wasn't good. This means all our clocksources (including
 149 * ktime) could have reported wrong values.
 150 *
 151 * What we do here is an attempt to fix up and continue sort of where we left
 152 * off in a coherent manner.
 153 *
 154 * The only way to fully avoid random clock jumps is to boot with:
 155 * "tsc=unstable".
 156 */
 157static void __sched_clock_work(struct work_struct *work)
 158{
 159        struct sched_clock_data *scd;
 160        int cpu;
 161
 162        /* take a current timestamp and set 'now' */
 163        preempt_disable();
 164        scd = this_scd();
 165        __scd_stamp(scd);
 166        scd->clock = scd->tick_gtod + __gtod_offset;
 167        preempt_enable();
 168
 169        /* clone to all CPUs */
 170        for_each_possible_cpu(cpu)
 171                per_cpu(sched_clock_data, cpu) = *scd;
 172
 173        printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
 174        printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
 175                        scd->tick_gtod, __gtod_offset,
 176                        scd->tick_raw,  __sched_clock_offset);
 177
 178        static_branch_disable(&__sched_clock_stable);
 179}
 180
 181static DECLARE_WORK(sched_clock_work, __sched_clock_work);
 182
 183static void __clear_sched_clock_stable(void)
 184{
 185        if (!sched_clock_stable())
 186                return;
 187
 188        tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
 189        schedule_work(&sched_clock_work);
 190}
 191
 192void clear_sched_clock_stable(void)
 193{
 194        __sched_clock_stable_early = 0;
 195
 196        smp_mb(); /* matches sched_clock_init_late() */
 197
 198        if (sched_clock_running == 2)
 199                __clear_sched_clock_stable();
 200}
 201
 202/*
 203 * We run this as late_initcall() such that it runs after all built-in drivers,
 204 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
 205 */
 206static int __init sched_clock_init_late(void)
 207{
 208        sched_clock_running = 2;
 209        /*
 210         * Ensure that it is impossible to not do a static_key update.
 211         *
 212         * Either {set,clear}_sched_clock_stable() must see sched_clock_running
 213         * and do the update, or we must see their __sched_clock_stable_early
 214         * and do the update, or both.
 215         */
 216        smp_mb(); /* matches {set,clear}_sched_clock_stable() */
 217
 218        if (__sched_clock_stable_early)
 219                __set_sched_clock_stable();
 220
 221        return 0;
 222}
 223late_initcall(sched_clock_init_late);
 224
 225/*
 226 * min, max except they take wrapping into account
 227 */
 228
 229static inline u64 wrap_min(u64 x, u64 y)
 230{
 231        return (s64)(x - y) < 0 ? x : y;
 232}
 233
 234static inline u64 wrap_max(u64 x, u64 y)
 235{
 236        return (s64)(x - y) > 0 ? x : y;
 237}
 238
 239/*
 240 * update the percpu scd from the raw @now value
 241 *
 242 *  - filter out backward motion
 243 *  - use the GTOD tick value to create a window to filter crazy TSC values
 244 */
 245static u64 sched_clock_local(struct sched_clock_data *scd)
 246{
 247        u64 now, clock, old_clock, min_clock, max_clock, gtod;
 248        s64 delta;
 249
 250again:
 251        now = sched_clock();
 252        delta = now - scd->tick_raw;
 253        if (unlikely(delta < 0))
 254                delta = 0;
 255
 256        old_clock = scd->clock;
 257
 258        /*
 259         * scd->clock = clamp(scd->tick_gtod + delta,
 260         *                    max(scd->tick_gtod, scd->clock),
 261         *                    scd->tick_gtod + TICK_NSEC);
 262         */
 263
 264        gtod = scd->tick_gtod + __gtod_offset;
 265        clock = gtod + delta;
 266        min_clock = wrap_max(gtod, old_clock);
 267        max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
 268
 269        clock = wrap_max(clock, min_clock);
 270        clock = wrap_min(clock, max_clock);
 271
 272        if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
 273                goto again;
 274
 275        return clock;
 276}
 277
 278static u64 sched_clock_remote(struct sched_clock_data *scd)
 279{
 280        struct sched_clock_data *my_scd = this_scd();
 281        u64 this_clock, remote_clock;
 282        u64 *ptr, old_val, val;
 283
 284#if BITS_PER_LONG != 64
 285again:
 286        /*
 287         * Careful here: The local and the remote clock values need to
 288         * be read out atomic as we need to compare the values and
 289         * then update either the local or the remote side. So the
 290         * cmpxchg64 below only protects one readout.
 291         *
 292         * We must reread via sched_clock_local() in the retry case on
 293         * 32-bit kernels as an NMI could use sched_clock_local() via the
 294         * tracer and hit between the readout of
 295         * the low 32-bit and the high 32-bit portion.
 296         */
 297        this_clock = sched_clock_local(my_scd);
 298        /*
 299         * We must enforce atomic readout on 32-bit, otherwise the
 300         * update on the remote CPU can hit inbetween the readout of
 301         * the low 32-bit and the high 32-bit portion.
 302         */
 303        remote_clock = cmpxchg64(&scd->clock, 0, 0);
 304#else
 305        /*
 306         * On 64-bit kernels the read of [my]scd->clock is atomic versus the
 307         * update, so we can avoid the above 32-bit dance.
 308         */
 309        sched_clock_local(my_scd);
 310again:
 311        this_clock = my_scd->clock;
 312        remote_clock = scd->clock;
 313#endif
 314
 315        /*
 316         * Use the opportunity that we have both locks
 317         * taken to couple the two clocks: we take the
 318         * larger time as the latest time for both
 319         * runqueues. (this creates monotonic movement)
 320         */
 321        if (likely((s64)(remote_clock - this_clock) < 0)) {
 322                ptr = &scd->clock;
 323                old_val = remote_clock;
 324                val = this_clock;
 325        } else {
 326                /*
 327                 * Should be rare, but possible:
 328                 */
 329                ptr = &my_scd->clock;
 330                old_val = this_clock;
 331                val = remote_clock;
 332        }
 333
 334        if (cmpxchg64(ptr, old_val, val) != old_val)
 335                goto again;
 336
 337        return val;
 338}
 339
 340/*
 341 * Similar to cpu_clock(), but requires local IRQs to be disabled.
 342 *
 343 * See cpu_clock().
 344 */
 345u64 sched_clock_cpu(int cpu)
 346{
 347        struct sched_clock_data *scd;
 348        u64 clock;
 349
 350        if (sched_clock_stable())
 351                return sched_clock() + __sched_clock_offset;
 352
 353        if (unlikely(!sched_clock_running))
 354                return 0ull;
 355
 356        preempt_disable_notrace();
 357        scd = cpu_sdc(cpu);
 358
 359        if (cpu != smp_processor_id())
 360                clock = sched_clock_remote(scd);
 361        else
 362                clock = sched_clock_local(scd);
 363        preempt_enable_notrace();
 364
 365        return clock;
 366}
 367EXPORT_SYMBOL_GPL(sched_clock_cpu);
 368
 369void sched_clock_tick(void)
 370{
 371        struct sched_clock_data *scd;
 372
 373        if (sched_clock_stable())
 374                return;
 375
 376        if (unlikely(!sched_clock_running))
 377                return;
 378
 379        lockdep_assert_irqs_disabled();
 380
 381        scd = this_scd();
 382        __scd_stamp(scd);
 383        sched_clock_local(scd);
 384}
 385
 386void sched_clock_tick_stable(void)
 387{
 388        u64 gtod, clock;
 389
 390        if (!sched_clock_stable())
 391                return;
 392
 393        /*
 394         * Called under watchdog_lock.
 395         *
 396         * The watchdog just found this TSC to (still) be stable, so now is a
 397         * good moment to update our __gtod_offset. Because once we find the
 398         * TSC to be unstable, any computation will be computing crap.
 399         */
 400        local_irq_disable();
 401        gtod = ktime_get_ns();
 402        clock = sched_clock();
 403        __gtod_offset = (clock + __sched_clock_offset) - gtod;
 404        local_irq_enable();
 405}
 406
 407/*
 408 * We are going deep-idle (irqs are disabled):
 409 */
 410void sched_clock_idle_sleep_event(void)
 411{
 412        sched_clock_cpu(smp_processor_id());
 413}
 414EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 415
 416/*
 417 * We just idled; resync with ktime.
 418 */
 419void sched_clock_idle_wakeup_event(void)
 420{
 421        unsigned long flags;
 422
 423        if (sched_clock_stable())
 424                return;
 425
 426        if (unlikely(timekeeping_suspended))
 427                return;
 428
 429        local_irq_save(flags);
 430        sched_clock_tick();
 431        local_irq_restore(flags);
 432}
 433EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 434
 435#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 436
 437u64 sched_clock_cpu(int cpu)
 438{
 439        if (unlikely(!sched_clock_running))
 440                return 0;
 441
 442        return sched_clock();
 443}
 444
 445#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 446
 447/*
 448 * Running clock - returns the time that has elapsed while a guest has been
 449 * running.
 450 * On a guest this value should be local_clock minus the time the guest was
 451 * suspended by the hypervisor (for any reason).
 452 * On bare metal this function should return the same as local_clock.
 453 * Architectures and sub-architectures can override this.
 454 */
 455u64 __weak running_clock(void)
 456{
 457        return local_clock();
 458}
 459