linux/kernel/sched/rt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6#include "sched.h"
   7
   8int sched_rr_timeslice = RR_TIMESLICE;
   9int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  16{
  17        struct rt_bandwidth *rt_b =
  18                container_of(timer, struct rt_bandwidth, rt_period_timer);
  19        int idle = 0;
  20        int overrun;
  21
  22        raw_spin_lock(&rt_b->rt_runtime_lock);
  23        for (;;) {
  24                overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  25                if (!overrun)
  26                        break;
  27
  28                raw_spin_unlock(&rt_b->rt_runtime_lock);
  29                idle = do_sched_rt_period_timer(rt_b, overrun);
  30                raw_spin_lock(&rt_b->rt_runtime_lock);
  31        }
  32        if (idle)
  33                rt_b->rt_period_active = 0;
  34        raw_spin_unlock(&rt_b->rt_runtime_lock);
  35
  36        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  37}
  38
  39void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  40{
  41        rt_b->rt_period = ns_to_ktime(period);
  42        rt_b->rt_runtime = runtime;
  43
  44        raw_spin_lock_init(&rt_b->rt_runtime_lock);
  45
  46        hrtimer_init(&rt_b->rt_period_timer,
  47                        CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  48        rt_b->rt_period_timer.function = sched_rt_period_timer;
  49}
  50
  51static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  52{
  53        if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  54                return;
  55
  56        raw_spin_lock(&rt_b->rt_runtime_lock);
  57        if (!rt_b->rt_period_active) {
  58                rt_b->rt_period_active = 1;
  59                /*
  60                 * SCHED_DEADLINE updates the bandwidth, as a run away
  61                 * RT task with a DL task could hog a CPU. But DL does
  62                 * not reset the period. If a deadline task was running
  63                 * without an RT task running, it can cause RT tasks to
  64                 * throttle when they start up. Kick the timer right away
  65                 * to update the period.
  66                 */
  67                hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  68                hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
  69        }
  70        raw_spin_unlock(&rt_b->rt_runtime_lock);
  71}
  72
  73void init_rt_rq(struct rt_rq *rt_rq)
  74{
  75        struct rt_prio_array *array;
  76        int i;
  77
  78        array = &rt_rq->active;
  79        for (i = 0; i < MAX_RT_PRIO; i++) {
  80                INIT_LIST_HEAD(array->queue + i);
  81                __clear_bit(i, array->bitmap);
  82        }
  83        /* delimiter for bitsearch: */
  84        __set_bit(MAX_RT_PRIO, array->bitmap);
  85
  86#if defined CONFIG_SMP
  87        rt_rq->highest_prio.curr = MAX_RT_PRIO;
  88        rt_rq->highest_prio.next = MAX_RT_PRIO;
  89        rt_rq->rt_nr_migratory = 0;
  90        rt_rq->overloaded = 0;
  91        plist_head_init(&rt_rq->pushable_tasks);
  92#endif /* CONFIG_SMP */
  93        /* We start is dequeued state, because no RT tasks are queued */
  94        rt_rq->rt_queued = 0;
  95
  96        rt_rq->rt_time = 0;
  97        rt_rq->rt_throttled = 0;
  98        rt_rq->rt_runtime = 0;
  99        raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 100}
 101
 102#ifdef CONFIG_RT_GROUP_SCHED
 103static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 104{
 105        hrtimer_cancel(&rt_b->rt_period_timer);
 106}
 107
 108#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 109
 110static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 111{
 112#ifdef CONFIG_SCHED_DEBUG
 113        WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 114#endif
 115        return container_of(rt_se, struct task_struct, rt);
 116}
 117
 118static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 119{
 120        return rt_rq->rq;
 121}
 122
 123static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 124{
 125        return rt_se->rt_rq;
 126}
 127
 128static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 129{
 130        struct rt_rq *rt_rq = rt_se->rt_rq;
 131
 132        return rt_rq->rq;
 133}
 134
 135void free_rt_sched_group(struct task_group *tg)
 136{
 137        int i;
 138
 139        if (tg->rt_se)
 140                destroy_rt_bandwidth(&tg->rt_bandwidth);
 141
 142        for_each_possible_cpu(i) {
 143                if (tg->rt_rq)
 144                        kfree(tg->rt_rq[i]);
 145                if (tg->rt_se)
 146                        kfree(tg->rt_se[i]);
 147        }
 148
 149        kfree(tg->rt_rq);
 150        kfree(tg->rt_se);
 151}
 152
 153void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 154                struct sched_rt_entity *rt_se, int cpu,
 155                struct sched_rt_entity *parent)
 156{
 157        struct rq *rq = cpu_rq(cpu);
 158
 159        rt_rq->highest_prio.curr = MAX_RT_PRIO;
 160        rt_rq->rt_nr_boosted = 0;
 161        rt_rq->rq = rq;
 162        rt_rq->tg = tg;
 163
 164        tg->rt_rq[cpu] = rt_rq;
 165        tg->rt_se[cpu] = rt_se;
 166
 167        if (!rt_se)
 168                return;
 169
 170        if (!parent)
 171                rt_se->rt_rq = &rq->rt;
 172        else
 173                rt_se->rt_rq = parent->my_q;
 174
 175        rt_se->my_q = rt_rq;
 176        rt_se->parent = parent;
 177        INIT_LIST_HEAD(&rt_se->run_list);
 178}
 179
 180int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 181{
 182        struct rt_rq *rt_rq;
 183        struct sched_rt_entity *rt_se;
 184        int i;
 185
 186        tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 187        if (!tg->rt_rq)
 188                goto err;
 189        tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 190        if (!tg->rt_se)
 191                goto err;
 192
 193        init_rt_bandwidth(&tg->rt_bandwidth,
 194                        ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 195
 196        for_each_possible_cpu(i) {
 197                rt_rq = kzalloc_node(sizeof(struct rt_rq),
 198                                     GFP_KERNEL, cpu_to_node(i));
 199                if (!rt_rq)
 200                        goto err;
 201
 202                rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 203                                     GFP_KERNEL, cpu_to_node(i));
 204                if (!rt_se)
 205                        goto err_free_rq;
 206
 207                init_rt_rq(rt_rq);
 208                rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 209                init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 210        }
 211
 212        return 1;
 213
 214err_free_rq:
 215        kfree(rt_rq);
 216err:
 217        return 0;
 218}
 219
 220#else /* CONFIG_RT_GROUP_SCHED */
 221
 222#define rt_entity_is_task(rt_se) (1)
 223
 224static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 225{
 226        return container_of(rt_se, struct task_struct, rt);
 227}
 228
 229static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 230{
 231        return container_of(rt_rq, struct rq, rt);
 232}
 233
 234static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 235{
 236        struct task_struct *p = rt_task_of(rt_se);
 237
 238        return task_rq(p);
 239}
 240
 241static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 242{
 243        struct rq *rq = rq_of_rt_se(rt_se);
 244
 245        return &rq->rt;
 246}
 247
 248void free_rt_sched_group(struct task_group *tg) { }
 249
 250int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 251{
 252        return 1;
 253}
 254#endif /* CONFIG_RT_GROUP_SCHED */
 255
 256#ifdef CONFIG_SMP
 257
 258static void pull_rt_task(struct rq *this_rq);
 259
 260static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 261{
 262        /* Try to pull RT tasks here if we lower this rq's prio */
 263        return rq->rt.highest_prio.curr > prev->prio;
 264}
 265
 266static inline int rt_overloaded(struct rq *rq)
 267{
 268        return atomic_read(&rq->rd->rto_count);
 269}
 270
 271static inline void rt_set_overload(struct rq *rq)
 272{
 273        if (!rq->online)
 274                return;
 275
 276        cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 277        /*
 278         * Make sure the mask is visible before we set
 279         * the overload count. That is checked to determine
 280         * if we should look at the mask. It would be a shame
 281         * if we looked at the mask, but the mask was not
 282         * updated yet.
 283         *
 284         * Matched by the barrier in pull_rt_task().
 285         */
 286        smp_wmb();
 287        atomic_inc(&rq->rd->rto_count);
 288}
 289
 290static inline void rt_clear_overload(struct rq *rq)
 291{
 292        if (!rq->online)
 293                return;
 294
 295        /* the order here really doesn't matter */
 296        atomic_dec(&rq->rd->rto_count);
 297        cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 298}
 299
 300static void update_rt_migration(struct rt_rq *rt_rq)
 301{
 302        if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 303                if (!rt_rq->overloaded) {
 304                        rt_set_overload(rq_of_rt_rq(rt_rq));
 305                        rt_rq->overloaded = 1;
 306                }
 307        } else if (rt_rq->overloaded) {
 308                rt_clear_overload(rq_of_rt_rq(rt_rq));
 309                rt_rq->overloaded = 0;
 310        }
 311}
 312
 313static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 314{
 315        struct task_struct *p;
 316
 317        if (!rt_entity_is_task(rt_se))
 318                return;
 319
 320        p = rt_task_of(rt_se);
 321        rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 322
 323        rt_rq->rt_nr_total++;
 324        if (p->nr_cpus_allowed > 1)
 325                rt_rq->rt_nr_migratory++;
 326
 327        update_rt_migration(rt_rq);
 328}
 329
 330static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 331{
 332        struct task_struct *p;
 333
 334        if (!rt_entity_is_task(rt_se))
 335                return;
 336
 337        p = rt_task_of(rt_se);
 338        rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 339
 340        rt_rq->rt_nr_total--;
 341        if (p->nr_cpus_allowed > 1)
 342                rt_rq->rt_nr_migratory--;
 343
 344        update_rt_migration(rt_rq);
 345}
 346
 347static inline int has_pushable_tasks(struct rq *rq)
 348{
 349        return !plist_head_empty(&rq->rt.pushable_tasks);
 350}
 351
 352static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 353static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 354
 355static void push_rt_tasks(struct rq *);
 356static void pull_rt_task(struct rq *);
 357
 358static inline void rt_queue_push_tasks(struct rq *rq)
 359{
 360        if (!has_pushable_tasks(rq))
 361                return;
 362
 363        queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 364}
 365
 366static inline void rt_queue_pull_task(struct rq *rq)
 367{
 368        queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 369}
 370
 371static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 372{
 373        plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 374        plist_node_init(&p->pushable_tasks, p->prio);
 375        plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 376
 377        /* Update the highest prio pushable task */
 378        if (p->prio < rq->rt.highest_prio.next)
 379                rq->rt.highest_prio.next = p->prio;
 380}
 381
 382static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 383{
 384        plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 385
 386        /* Update the new highest prio pushable task */
 387        if (has_pushable_tasks(rq)) {
 388                p = plist_first_entry(&rq->rt.pushable_tasks,
 389                                      struct task_struct, pushable_tasks);
 390                rq->rt.highest_prio.next = p->prio;
 391        } else
 392                rq->rt.highest_prio.next = MAX_RT_PRIO;
 393}
 394
 395#else
 396
 397static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 398{
 399}
 400
 401static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 402{
 403}
 404
 405static inline
 406void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 407{
 408}
 409
 410static inline
 411void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 412{
 413}
 414
 415static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 416{
 417        return false;
 418}
 419
 420static inline void pull_rt_task(struct rq *this_rq)
 421{
 422}
 423
 424static inline void rt_queue_push_tasks(struct rq *rq)
 425{
 426}
 427#endif /* CONFIG_SMP */
 428
 429static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 430static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 431
 432static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 433{
 434        return rt_se->on_rq;
 435}
 436
 437#ifdef CONFIG_RT_GROUP_SCHED
 438
 439static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 440{
 441        if (!rt_rq->tg)
 442                return RUNTIME_INF;
 443
 444        return rt_rq->rt_runtime;
 445}
 446
 447static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 448{
 449        return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 450}
 451
 452typedef struct task_group *rt_rq_iter_t;
 453
 454static inline struct task_group *next_task_group(struct task_group *tg)
 455{
 456        do {
 457                tg = list_entry_rcu(tg->list.next,
 458                        typeof(struct task_group), list);
 459        } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 460
 461        if (&tg->list == &task_groups)
 462                tg = NULL;
 463
 464        return tg;
 465}
 466
 467#define for_each_rt_rq(rt_rq, iter, rq)                                 \
 468        for (iter = container_of(&task_groups, typeof(*iter), list);    \
 469                (iter = next_task_group(iter)) &&                       \
 470                (rt_rq = iter->rt_rq[cpu_of(rq)]);)
 471
 472#define for_each_sched_rt_entity(rt_se) \
 473        for (; rt_se; rt_se = rt_se->parent)
 474
 475static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 476{
 477        return rt_se->my_q;
 478}
 479
 480static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 481static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 482
 483static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 484{
 485        struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 486        struct rq *rq = rq_of_rt_rq(rt_rq);
 487        struct sched_rt_entity *rt_se;
 488
 489        int cpu = cpu_of(rq);
 490
 491        rt_se = rt_rq->tg->rt_se[cpu];
 492
 493        if (rt_rq->rt_nr_running) {
 494                if (!rt_se)
 495                        enqueue_top_rt_rq(rt_rq);
 496                else if (!on_rt_rq(rt_se))
 497                        enqueue_rt_entity(rt_se, 0);
 498
 499                if (rt_rq->highest_prio.curr < curr->prio)
 500                        resched_curr(rq);
 501        }
 502}
 503
 504static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 505{
 506        struct sched_rt_entity *rt_se;
 507        int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 508
 509        rt_se = rt_rq->tg->rt_se[cpu];
 510
 511        if (!rt_se)
 512                dequeue_top_rt_rq(rt_rq);
 513        else if (on_rt_rq(rt_se))
 514                dequeue_rt_entity(rt_se, 0);
 515}
 516
 517static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 518{
 519        return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 520}
 521
 522static int rt_se_boosted(struct sched_rt_entity *rt_se)
 523{
 524        struct rt_rq *rt_rq = group_rt_rq(rt_se);
 525        struct task_struct *p;
 526
 527        if (rt_rq)
 528                return !!rt_rq->rt_nr_boosted;
 529
 530        p = rt_task_of(rt_se);
 531        return p->prio != p->normal_prio;
 532}
 533
 534#ifdef CONFIG_SMP
 535static inline const struct cpumask *sched_rt_period_mask(void)
 536{
 537        return this_rq()->rd->span;
 538}
 539#else
 540static inline const struct cpumask *sched_rt_period_mask(void)
 541{
 542        return cpu_online_mask;
 543}
 544#endif
 545
 546static inline
 547struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 548{
 549        return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 550}
 551
 552static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 553{
 554        return &rt_rq->tg->rt_bandwidth;
 555}
 556
 557#else /* !CONFIG_RT_GROUP_SCHED */
 558
 559static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 560{
 561        return rt_rq->rt_runtime;
 562}
 563
 564static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 565{
 566        return ktime_to_ns(def_rt_bandwidth.rt_period);
 567}
 568
 569typedef struct rt_rq *rt_rq_iter_t;
 570
 571#define for_each_rt_rq(rt_rq, iter, rq) \
 572        for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 573
 574#define for_each_sched_rt_entity(rt_se) \
 575        for (; rt_se; rt_se = NULL)
 576
 577static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 578{
 579        return NULL;
 580}
 581
 582static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 583{
 584        struct rq *rq = rq_of_rt_rq(rt_rq);
 585
 586        if (!rt_rq->rt_nr_running)
 587                return;
 588
 589        enqueue_top_rt_rq(rt_rq);
 590        resched_curr(rq);
 591}
 592
 593static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 594{
 595        dequeue_top_rt_rq(rt_rq);
 596}
 597
 598static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 599{
 600        return rt_rq->rt_throttled;
 601}
 602
 603static inline const struct cpumask *sched_rt_period_mask(void)
 604{
 605        return cpu_online_mask;
 606}
 607
 608static inline
 609struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 610{
 611        return &cpu_rq(cpu)->rt;
 612}
 613
 614static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 615{
 616        return &def_rt_bandwidth;
 617}
 618
 619#endif /* CONFIG_RT_GROUP_SCHED */
 620
 621bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 622{
 623        struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 624
 625        return (hrtimer_active(&rt_b->rt_period_timer) ||
 626                rt_rq->rt_time < rt_b->rt_runtime);
 627}
 628
 629#ifdef CONFIG_SMP
 630/*
 631 * We ran out of runtime, see if we can borrow some from our neighbours.
 632 */
 633static void do_balance_runtime(struct rt_rq *rt_rq)
 634{
 635        struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 636        struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 637        int i, weight;
 638        u64 rt_period;
 639
 640        weight = cpumask_weight(rd->span);
 641
 642        raw_spin_lock(&rt_b->rt_runtime_lock);
 643        rt_period = ktime_to_ns(rt_b->rt_period);
 644        for_each_cpu(i, rd->span) {
 645                struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 646                s64 diff;
 647
 648                if (iter == rt_rq)
 649                        continue;
 650
 651                raw_spin_lock(&iter->rt_runtime_lock);
 652                /*
 653                 * Either all rqs have inf runtime and there's nothing to steal
 654                 * or __disable_runtime() below sets a specific rq to inf to
 655                 * indicate its been disabled and disalow stealing.
 656                 */
 657                if (iter->rt_runtime == RUNTIME_INF)
 658                        goto next;
 659
 660                /*
 661                 * From runqueues with spare time, take 1/n part of their
 662                 * spare time, but no more than our period.
 663                 */
 664                diff = iter->rt_runtime - iter->rt_time;
 665                if (diff > 0) {
 666                        diff = div_u64((u64)diff, weight);
 667                        if (rt_rq->rt_runtime + diff > rt_period)
 668                                diff = rt_period - rt_rq->rt_runtime;
 669                        iter->rt_runtime -= diff;
 670                        rt_rq->rt_runtime += diff;
 671                        if (rt_rq->rt_runtime == rt_period) {
 672                                raw_spin_unlock(&iter->rt_runtime_lock);
 673                                break;
 674                        }
 675                }
 676next:
 677                raw_spin_unlock(&iter->rt_runtime_lock);
 678        }
 679        raw_spin_unlock(&rt_b->rt_runtime_lock);
 680}
 681
 682/*
 683 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 684 */
 685static void __disable_runtime(struct rq *rq)
 686{
 687        struct root_domain *rd = rq->rd;
 688        rt_rq_iter_t iter;
 689        struct rt_rq *rt_rq;
 690
 691        if (unlikely(!scheduler_running))
 692                return;
 693
 694        for_each_rt_rq(rt_rq, iter, rq) {
 695                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 696                s64 want;
 697                int i;
 698
 699                raw_spin_lock(&rt_b->rt_runtime_lock);
 700                raw_spin_lock(&rt_rq->rt_runtime_lock);
 701                /*
 702                 * Either we're all inf and nobody needs to borrow, or we're
 703                 * already disabled and thus have nothing to do, or we have
 704                 * exactly the right amount of runtime to take out.
 705                 */
 706                if (rt_rq->rt_runtime == RUNTIME_INF ||
 707                                rt_rq->rt_runtime == rt_b->rt_runtime)
 708                        goto balanced;
 709                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 710
 711                /*
 712                 * Calculate the difference between what we started out with
 713                 * and what we current have, that's the amount of runtime
 714                 * we lend and now have to reclaim.
 715                 */
 716                want = rt_b->rt_runtime - rt_rq->rt_runtime;
 717
 718                /*
 719                 * Greedy reclaim, take back as much as we can.
 720                 */
 721                for_each_cpu(i, rd->span) {
 722                        struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 723                        s64 diff;
 724
 725                        /*
 726                         * Can't reclaim from ourselves or disabled runqueues.
 727                         */
 728                        if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 729                                continue;
 730
 731                        raw_spin_lock(&iter->rt_runtime_lock);
 732                        if (want > 0) {
 733                                diff = min_t(s64, iter->rt_runtime, want);
 734                                iter->rt_runtime -= diff;
 735                                want -= diff;
 736                        } else {
 737                                iter->rt_runtime -= want;
 738                                want -= want;
 739                        }
 740                        raw_spin_unlock(&iter->rt_runtime_lock);
 741
 742                        if (!want)
 743                                break;
 744                }
 745
 746                raw_spin_lock(&rt_rq->rt_runtime_lock);
 747                /*
 748                 * We cannot be left wanting - that would mean some runtime
 749                 * leaked out of the system.
 750                 */
 751                BUG_ON(want);
 752balanced:
 753                /*
 754                 * Disable all the borrow logic by pretending we have inf
 755                 * runtime - in which case borrowing doesn't make sense.
 756                 */
 757                rt_rq->rt_runtime = RUNTIME_INF;
 758                rt_rq->rt_throttled = 0;
 759                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 760                raw_spin_unlock(&rt_b->rt_runtime_lock);
 761
 762                /* Make rt_rq available for pick_next_task() */
 763                sched_rt_rq_enqueue(rt_rq);
 764        }
 765}
 766
 767static void __enable_runtime(struct rq *rq)
 768{
 769        rt_rq_iter_t iter;
 770        struct rt_rq *rt_rq;
 771
 772        if (unlikely(!scheduler_running))
 773                return;
 774
 775        /*
 776         * Reset each runqueue's bandwidth settings
 777         */
 778        for_each_rt_rq(rt_rq, iter, rq) {
 779                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 780
 781                raw_spin_lock(&rt_b->rt_runtime_lock);
 782                raw_spin_lock(&rt_rq->rt_runtime_lock);
 783                rt_rq->rt_runtime = rt_b->rt_runtime;
 784                rt_rq->rt_time = 0;
 785                rt_rq->rt_throttled = 0;
 786                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 787                raw_spin_unlock(&rt_b->rt_runtime_lock);
 788        }
 789}
 790
 791static void balance_runtime(struct rt_rq *rt_rq)
 792{
 793        if (!sched_feat(RT_RUNTIME_SHARE))
 794                return;
 795
 796        if (rt_rq->rt_time > rt_rq->rt_runtime) {
 797                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 798                do_balance_runtime(rt_rq);
 799                raw_spin_lock(&rt_rq->rt_runtime_lock);
 800        }
 801}
 802#else /* !CONFIG_SMP */
 803static inline void balance_runtime(struct rt_rq *rt_rq) {}
 804#endif /* CONFIG_SMP */
 805
 806static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 807{
 808        int i, idle = 1, throttled = 0;
 809        const struct cpumask *span;
 810
 811        span = sched_rt_period_mask();
 812#ifdef CONFIG_RT_GROUP_SCHED
 813        /*
 814         * FIXME: isolated CPUs should really leave the root task group,
 815         * whether they are isolcpus or were isolated via cpusets, lest
 816         * the timer run on a CPU which does not service all runqueues,
 817         * potentially leaving other CPUs indefinitely throttled.  If
 818         * isolation is really required, the user will turn the throttle
 819         * off to kill the perturbations it causes anyway.  Meanwhile,
 820         * this maintains functionality for boot and/or troubleshooting.
 821         */
 822        if (rt_b == &root_task_group.rt_bandwidth)
 823                span = cpu_online_mask;
 824#endif
 825        for_each_cpu(i, span) {
 826                int enqueue = 0;
 827                struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 828                struct rq *rq = rq_of_rt_rq(rt_rq);
 829                int skip;
 830
 831                /*
 832                 * When span == cpu_online_mask, taking each rq->lock
 833                 * can be time-consuming. Try to avoid it when possible.
 834                 */
 835                raw_spin_lock(&rt_rq->rt_runtime_lock);
 836                skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 837                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 838                if (skip)
 839                        continue;
 840
 841                raw_spin_lock(&rq->lock);
 842                update_rq_clock(rq);
 843
 844                if (rt_rq->rt_time) {
 845                        u64 runtime;
 846
 847                        raw_spin_lock(&rt_rq->rt_runtime_lock);
 848                        if (rt_rq->rt_throttled)
 849                                balance_runtime(rt_rq);
 850                        runtime = rt_rq->rt_runtime;
 851                        rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 852                        if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 853                                rt_rq->rt_throttled = 0;
 854                                enqueue = 1;
 855
 856                                /*
 857                                 * When we're idle and a woken (rt) task is
 858                                 * throttled check_preempt_curr() will set
 859                                 * skip_update and the time between the wakeup
 860                                 * and this unthrottle will get accounted as
 861                                 * 'runtime'.
 862                                 */
 863                                if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 864                                        rq_clock_cancel_skipupdate(rq);
 865                        }
 866                        if (rt_rq->rt_time || rt_rq->rt_nr_running)
 867                                idle = 0;
 868                        raw_spin_unlock(&rt_rq->rt_runtime_lock);
 869                } else if (rt_rq->rt_nr_running) {
 870                        idle = 0;
 871                        if (!rt_rq_throttled(rt_rq))
 872                                enqueue = 1;
 873                }
 874                if (rt_rq->rt_throttled)
 875                        throttled = 1;
 876
 877                if (enqueue)
 878                        sched_rt_rq_enqueue(rt_rq);
 879                raw_spin_unlock(&rq->lock);
 880        }
 881
 882        if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 883                return 1;
 884
 885        return idle;
 886}
 887
 888static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 889{
 890#ifdef CONFIG_RT_GROUP_SCHED
 891        struct rt_rq *rt_rq = group_rt_rq(rt_se);
 892
 893        if (rt_rq)
 894                return rt_rq->highest_prio.curr;
 895#endif
 896
 897        return rt_task_of(rt_se)->prio;
 898}
 899
 900static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 901{
 902        u64 runtime = sched_rt_runtime(rt_rq);
 903
 904        if (rt_rq->rt_throttled)
 905                return rt_rq_throttled(rt_rq);
 906
 907        if (runtime >= sched_rt_period(rt_rq))
 908                return 0;
 909
 910        balance_runtime(rt_rq);
 911        runtime = sched_rt_runtime(rt_rq);
 912        if (runtime == RUNTIME_INF)
 913                return 0;
 914
 915        if (rt_rq->rt_time > runtime) {
 916                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 917
 918                /*
 919                 * Don't actually throttle groups that have no runtime assigned
 920                 * but accrue some time due to boosting.
 921                 */
 922                if (likely(rt_b->rt_runtime)) {
 923                        rt_rq->rt_throttled = 1;
 924                        printk_deferred_once("sched: RT throttling activated\n");
 925                } else {
 926                        /*
 927                         * In case we did anyway, make it go away,
 928                         * replenishment is a joke, since it will replenish us
 929                         * with exactly 0 ns.
 930                         */
 931                        rt_rq->rt_time = 0;
 932                }
 933
 934                if (rt_rq_throttled(rt_rq)) {
 935                        sched_rt_rq_dequeue(rt_rq);
 936                        return 1;
 937                }
 938        }
 939
 940        return 0;
 941}
 942
 943/*
 944 * Update the current task's runtime statistics. Skip current tasks that
 945 * are not in our scheduling class.
 946 */
 947static void update_curr_rt(struct rq *rq)
 948{
 949        struct task_struct *curr = rq->curr;
 950        struct sched_rt_entity *rt_se = &curr->rt;
 951        u64 delta_exec;
 952        u64 now;
 953
 954        if (curr->sched_class != &rt_sched_class)
 955                return;
 956
 957        now = rq_clock_task(rq);
 958        delta_exec = now - curr->se.exec_start;
 959        if (unlikely((s64)delta_exec <= 0))
 960                return;
 961
 962        schedstat_set(curr->se.statistics.exec_max,
 963                      max(curr->se.statistics.exec_max, delta_exec));
 964
 965        curr->se.sum_exec_runtime += delta_exec;
 966        account_group_exec_runtime(curr, delta_exec);
 967
 968        curr->se.exec_start = now;
 969        cgroup_account_cputime(curr, delta_exec);
 970
 971        sched_rt_avg_update(rq, delta_exec);
 972
 973        if (!rt_bandwidth_enabled())
 974                return;
 975
 976        for_each_sched_rt_entity(rt_se) {
 977                struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 978
 979                if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 980                        raw_spin_lock(&rt_rq->rt_runtime_lock);
 981                        rt_rq->rt_time += delta_exec;
 982                        if (sched_rt_runtime_exceeded(rt_rq))
 983                                resched_curr(rq);
 984                        raw_spin_unlock(&rt_rq->rt_runtime_lock);
 985                }
 986        }
 987}
 988
 989static void
 990dequeue_top_rt_rq(struct rt_rq *rt_rq)
 991{
 992        struct rq *rq = rq_of_rt_rq(rt_rq);
 993
 994        BUG_ON(&rq->rt != rt_rq);
 995
 996        if (!rt_rq->rt_queued)
 997                return;
 998
 999        BUG_ON(!rq->nr_running);
1000
1001        sub_nr_running(rq, rt_rq->rt_nr_running);
1002        rt_rq->rt_queued = 0;
1003
1004        /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1005        cpufreq_update_util(rq, 0);
1006}
1007
1008static void
1009enqueue_top_rt_rq(struct rt_rq *rt_rq)
1010{
1011        struct rq *rq = rq_of_rt_rq(rt_rq);
1012
1013        BUG_ON(&rq->rt != rt_rq);
1014
1015        if (rt_rq->rt_queued)
1016                return;
1017        if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1018                return;
1019
1020        add_nr_running(rq, rt_rq->rt_nr_running);
1021        rt_rq->rt_queued = 1;
1022
1023        /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1024        cpufreq_update_util(rq, 0);
1025}
1026
1027#if defined CONFIG_SMP
1028
1029static void
1030inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1031{
1032        struct rq *rq = rq_of_rt_rq(rt_rq);
1033
1034#ifdef CONFIG_RT_GROUP_SCHED
1035        /*
1036         * Change rq's cpupri only if rt_rq is the top queue.
1037         */
1038        if (&rq->rt != rt_rq)
1039                return;
1040#endif
1041        if (rq->online && prio < prev_prio)
1042                cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1043}
1044
1045static void
1046dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1047{
1048        struct rq *rq = rq_of_rt_rq(rt_rq);
1049
1050#ifdef CONFIG_RT_GROUP_SCHED
1051        /*
1052         * Change rq's cpupri only if rt_rq is the top queue.
1053         */
1054        if (&rq->rt != rt_rq)
1055                return;
1056#endif
1057        if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1058                cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1059}
1060
1061#else /* CONFIG_SMP */
1062
1063static inline
1064void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1065static inline
1066void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1067
1068#endif /* CONFIG_SMP */
1069
1070#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1071static void
1072inc_rt_prio(struct rt_rq *rt_rq, int prio)
1073{
1074        int prev_prio = rt_rq->highest_prio.curr;
1075
1076        if (prio < prev_prio)
1077                rt_rq->highest_prio.curr = prio;
1078
1079        inc_rt_prio_smp(rt_rq, prio, prev_prio);
1080}
1081
1082static void
1083dec_rt_prio(struct rt_rq *rt_rq, int prio)
1084{
1085        int prev_prio = rt_rq->highest_prio.curr;
1086
1087        if (rt_rq->rt_nr_running) {
1088
1089                WARN_ON(prio < prev_prio);
1090
1091                /*
1092                 * This may have been our highest task, and therefore
1093                 * we may have some recomputation to do
1094                 */
1095                if (prio == prev_prio) {
1096                        struct rt_prio_array *array = &rt_rq->active;
1097
1098                        rt_rq->highest_prio.curr =
1099                                sched_find_first_bit(array->bitmap);
1100                }
1101
1102        } else
1103                rt_rq->highest_prio.curr = MAX_RT_PRIO;
1104
1105        dec_rt_prio_smp(rt_rq, prio, prev_prio);
1106}
1107
1108#else
1109
1110static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1111static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1112
1113#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1114
1115#ifdef CONFIG_RT_GROUP_SCHED
1116
1117static void
1118inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1119{
1120        if (rt_se_boosted(rt_se))
1121                rt_rq->rt_nr_boosted++;
1122
1123        if (rt_rq->tg)
1124                start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1125}
1126
1127static void
1128dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1129{
1130        if (rt_se_boosted(rt_se))
1131                rt_rq->rt_nr_boosted--;
1132
1133        WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1134}
1135
1136#else /* CONFIG_RT_GROUP_SCHED */
1137
1138static void
1139inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1140{
1141        start_rt_bandwidth(&def_rt_bandwidth);
1142}
1143
1144static inline
1145void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1146
1147#endif /* CONFIG_RT_GROUP_SCHED */
1148
1149static inline
1150unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1151{
1152        struct rt_rq *group_rq = group_rt_rq(rt_se);
1153
1154        if (group_rq)
1155                return group_rq->rt_nr_running;
1156        else
1157                return 1;
1158}
1159
1160static inline
1161unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1162{
1163        struct rt_rq *group_rq = group_rt_rq(rt_se);
1164        struct task_struct *tsk;
1165
1166        if (group_rq)
1167                return group_rq->rr_nr_running;
1168
1169        tsk = rt_task_of(rt_se);
1170
1171        return (tsk->policy == SCHED_RR) ? 1 : 0;
1172}
1173
1174static inline
1175void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176{
1177        int prio = rt_se_prio(rt_se);
1178
1179        WARN_ON(!rt_prio(prio));
1180        rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1181        rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1182
1183        inc_rt_prio(rt_rq, prio);
1184        inc_rt_migration(rt_se, rt_rq);
1185        inc_rt_group(rt_se, rt_rq);
1186}
1187
1188static inline
1189void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1190{
1191        WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1192        WARN_ON(!rt_rq->rt_nr_running);
1193        rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1194        rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1195
1196        dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1197        dec_rt_migration(rt_se, rt_rq);
1198        dec_rt_group(rt_se, rt_rq);
1199}
1200
1201/*
1202 * Change rt_se->run_list location unless SAVE && !MOVE
1203 *
1204 * assumes ENQUEUE/DEQUEUE flags match
1205 */
1206static inline bool move_entity(unsigned int flags)
1207{
1208        if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1209                return false;
1210
1211        return true;
1212}
1213
1214static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1215{
1216        list_del_init(&rt_se->run_list);
1217
1218        if (list_empty(array->queue + rt_se_prio(rt_se)))
1219                __clear_bit(rt_se_prio(rt_se), array->bitmap);
1220
1221        rt_se->on_list = 0;
1222}
1223
1224static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1225{
1226        struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1227        struct rt_prio_array *array = &rt_rq->active;
1228        struct rt_rq *group_rq = group_rt_rq(rt_se);
1229        struct list_head *queue = array->queue + rt_se_prio(rt_se);
1230
1231        /*
1232         * Don't enqueue the group if its throttled, or when empty.
1233         * The latter is a consequence of the former when a child group
1234         * get throttled and the current group doesn't have any other
1235         * active members.
1236         */
1237        if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1238                if (rt_se->on_list)
1239                        __delist_rt_entity(rt_se, array);
1240                return;
1241        }
1242
1243        if (move_entity(flags)) {
1244                WARN_ON_ONCE(rt_se->on_list);
1245                if (flags & ENQUEUE_HEAD)
1246                        list_add(&rt_se->run_list, queue);
1247                else
1248                        list_add_tail(&rt_se->run_list, queue);
1249
1250                __set_bit(rt_se_prio(rt_se), array->bitmap);
1251                rt_se->on_list = 1;
1252        }
1253        rt_se->on_rq = 1;
1254
1255        inc_rt_tasks(rt_se, rt_rq);
1256}
1257
1258static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1259{
1260        struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1261        struct rt_prio_array *array = &rt_rq->active;
1262
1263        if (move_entity(flags)) {
1264                WARN_ON_ONCE(!rt_se->on_list);
1265                __delist_rt_entity(rt_se, array);
1266        }
1267        rt_se->on_rq = 0;
1268
1269        dec_rt_tasks(rt_se, rt_rq);
1270}
1271
1272/*
1273 * Because the prio of an upper entry depends on the lower
1274 * entries, we must remove entries top - down.
1275 */
1276static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1277{
1278        struct sched_rt_entity *back = NULL;
1279
1280        for_each_sched_rt_entity(rt_se) {
1281                rt_se->back = back;
1282                back = rt_se;
1283        }
1284
1285        dequeue_top_rt_rq(rt_rq_of_se(back));
1286
1287        for (rt_se = back; rt_se; rt_se = rt_se->back) {
1288                if (on_rt_rq(rt_se))
1289                        __dequeue_rt_entity(rt_se, flags);
1290        }
1291}
1292
1293static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1294{
1295        struct rq *rq = rq_of_rt_se(rt_se);
1296
1297        dequeue_rt_stack(rt_se, flags);
1298        for_each_sched_rt_entity(rt_se)
1299                __enqueue_rt_entity(rt_se, flags);
1300        enqueue_top_rt_rq(&rq->rt);
1301}
1302
1303static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1304{
1305        struct rq *rq = rq_of_rt_se(rt_se);
1306
1307        dequeue_rt_stack(rt_se, flags);
1308
1309        for_each_sched_rt_entity(rt_se) {
1310                struct rt_rq *rt_rq = group_rt_rq(rt_se);
1311
1312                if (rt_rq && rt_rq->rt_nr_running)
1313                        __enqueue_rt_entity(rt_se, flags);
1314        }
1315        enqueue_top_rt_rq(&rq->rt);
1316}
1317
1318/*
1319 * Adding/removing a task to/from a priority array:
1320 */
1321static void
1322enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1323{
1324        struct sched_rt_entity *rt_se = &p->rt;
1325
1326        if (flags & ENQUEUE_WAKEUP)
1327                rt_se->timeout = 0;
1328
1329        enqueue_rt_entity(rt_se, flags);
1330
1331        if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1332                enqueue_pushable_task(rq, p);
1333}
1334
1335static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1336{
1337        struct sched_rt_entity *rt_se = &p->rt;
1338
1339        update_curr_rt(rq);
1340        dequeue_rt_entity(rt_se, flags);
1341
1342        dequeue_pushable_task(rq, p);
1343}
1344
1345/*
1346 * Put task to the head or the end of the run list without the overhead of
1347 * dequeue followed by enqueue.
1348 */
1349static void
1350requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1351{
1352        if (on_rt_rq(rt_se)) {
1353                struct rt_prio_array *array = &rt_rq->active;
1354                struct list_head *queue = array->queue + rt_se_prio(rt_se);
1355
1356                if (head)
1357                        list_move(&rt_se->run_list, queue);
1358                else
1359                        list_move_tail(&rt_se->run_list, queue);
1360        }
1361}
1362
1363static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1364{
1365        struct sched_rt_entity *rt_se = &p->rt;
1366        struct rt_rq *rt_rq;
1367
1368        for_each_sched_rt_entity(rt_se) {
1369                rt_rq = rt_rq_of_se(rt_se);
1370                requeue_rt_entity(rt_rq, rt_se, head);
1371        }
1372}
1373
1374static void yield_task_rt(struct rq *rq)
1375{
1376        requeue_task_rt(rq, rq->curr, 0);
1377}
1378
1379#ifdef CONFIG_SMP
1380static int find_lowest_rq(struct task_struct *task);
1381
1382static int
1383select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1384{
1385        struct task_struct *curr;
1386        struct rq *rq;
1387
1388        /* For anything but wake ups, just return the task_cpu */
1389        if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1390                goto out;
1391
1392        rq = cpu_rq(cpu);
1393
1394        rcu_read_lock();
1395        curr = READ_ONCE(rq->curr); /* unlocked access */
1396
1397        /*
1398         * If the current task on @p's runqueue is an RT task, then
1399         * try to see if we can wake this RT task up on another
1400         * runqueue. Otherwise simply start this RT task
1401         * on its current runqueue.
1402         *
1403         * We want to avoid overloading runqueues. If the woken
1404         * task is a higher priority, then it will stay on this CPU
1405         * and the lower prio task should be moved to another CPU.
1406         * Even though this will probably make the lower prio task
1407         * lose its cache, we do not want to bounce a higher task
1408         * around just because it gave up its CPU, perhaps for a
1409         * lock?
1410         *
1411         * For equal prio tasks, we just let the scheduler sort it out.
1412         *
1413         * Otherwise, just let it ride on the affined RQ and the
1414         * post-schedule router will push the preempted task away
1415         *
1416         * This test is optimistic, if we get it wrong the load-balancer
1417         * will have to sort it out.
1418         */
1419        if (curr && unlikely(rt_task(curr)) &&
1420            (curr->nr_cpus_allowed < 2 ||
1421             curr->prio <= p->prio)) {
1422                int target = find_lowest_rq(p);
1423
1424                /*
1425                 * Don't bother moving it if the destination CPU is
1426                 * not running a lower priority task.
1427                 */
1428                if (target != -1 &&
1429                    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1430                        cpu = target;
1431        }
1432        rcu_read_unlock();
1433
1434out:
1435        return cpu;
1436}
1437
1438static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1439{
1440        /*
1441         * Current can't be migrated, useless to reschedule,
1442         * let's hope p can move out.
1443         */
1444        if (rq->curr->nr_cpus_allowed == 1 ||
1445            !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1446                return;
1447
1448        /*
1449         * p is migratable, so let's not schedule it and
1450         * see if it is pushed or pulled somewhere else.
1451         */
1452        if (p->nr_cpus_allowed != 1
1453            && cpupri_find(&rq->rd->cpupri, p, NULL))
1454                return;
1455
1456        /*
1457         * There appear to be other CPUs that can accept
1458         * the current task but none can run 'p', so lets reschedule
1459         * to try and push the current task away:
1460         */
1461        requeue_task_rt(rq, p, 1);
1462        resched_curr(rq);
1463}
1464
1465#endif /* CONFIG_SMP */
1466
1467/*
1468 * Preempt the current task with a newly woken task if needed:
1469 */
1470static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1471{
1472        if (p->prio < rq->curr->prio) {
1473                resched_curr(rq);
1474                return;
1475        }
1476
1477#ifdef CONFIG_SMP
1478        /*
1479         * If:
1480         *
1481         * - the newly woken task is of equal priority to the current task
1482         * - the newly woken task is non-migratable while current is migratable
1483         * - current will be preempted on the next reschedule
1484         *
1485         * we should check to see if current can readily move to a different
1486         * cpu.  If so, we will reschedule to allow the push logic to try
1487         * to move current somewhere else, making room for our non-migratable
1488         * task.
1489         */
1490        if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1491                check_preempt_equal_prio(rq, p);
1492#endif
1493}
1494
1495static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1496                                                   struct rt_rq *rt_rq)
1497{
1498        struct rt_prio_array *array = &rt_rq->active;
1499        struct sched_rt_entity *next = NULL;
1500        struct list_head *queue;
1501        int idx;
1502
1503        idx = sched_find_first_bit(array->bitmap);
1504        BUG_ON(idx >= MAX_RT_PRIO);
1505
1506        queue = array->queue + idx;
1507        next = list_entry(queue->next, struct sched_rt_entity, run_list);
1508
1509        return next;
1510}
1511
1512static struct task_struct *_pick_next_task_rt(struct rq *rq)
1513{
1514        struct sched_rt_entity *rt_se;
1515        struct task_struct *p;
1516        struct rt_rq *rt_rq  = &rq->rt;
1517
1518        do {
1519                rt_se = pick_next_rt_entity(rq, rt_rq);
1520                BUG_ON(!rt_se);
1521                rt_rq = group_rt_rq(rt_se);
1522        } while (rt_rq);
1523
1524        p = rt_task_of(rt_se);
1525        p->se.exec_start = rq_clock_task(rq);
1526
1527        return p;
1528}
1529
1530static struct task_struct *
1531pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1532{
1533        struct task_struct *p;
1534        struct rt_rq *rt_rq = &rq->rt;
1535
1536        if (need_pull_rt_task(rq, prev)) {
1537                /*
1538                 * This is OK, because current is on_cpu, which avoids it being
1539                 * picked for load-balance and preemption/IRQs are still
1540                 * disabled avoiding further scheduler activity on it and we're
1541                 * being very careful to re-start the picking loop.
1542                 */
1543                rq_unpin_lock(rq, rf);
1544                pull_rt_task(rq);
1545                rq_repin_lock(rq, rf);
1546                /*
1547                 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1548                 * means a dl or stop task can slip in, in which case we need
1549                 * to re-start task selection.
1550                 */
1551                if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1552                             rq->dl.dl_nr_running))
1553                        return RETRY_TASK;
1554        }
1555
1556        /*
1557         * We may dequeue prev's rt_rq in put_prev_task().
1558         * So, we update time before rt_nr_running check.
1559         */
1560        if (prev->sched_class == &rt_sched_class)
1561                update_curr_rt(rq);
1562
1563        if (!rt_rq->rt_queued)
1564                return NULL;
1565
1566        put_prev_task(rq, prev);
1567
1568        p = _pick_next_task_rt(rq);
1569
1570        /* The running task is never eligible for pushing */
1571        dequeue_pushable_task(rq, p);
1572
1573        rt_queue_push_tasks(rq);
1574
1575        return p;
1576}
1577
1578static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1579{
1580        update_curr_rt(rq);
1581
1582        /*
1583         * The previous task needs to be made eligible for pushing
1584         * if it is still active
1585         */
1586        if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1587                enqueue_pushable_task(rq, p);
1588}
1589
1590#ifdef CONFIG_SMP
1591
1592/* Only try algorithms three times */
1593#define RT_MAX_TRIES 3
1594
1595static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1596{
1597        if (!task_running(rq, p) &&
1598            cpumask_test_cpu(cpu, &p->cpus_allowed))
1599                return 1;
1600
1601        return 0;
1602}
1603
1604/*
1605 * Return the highest pushable rq's task, which is suitable to be executed
1606 * on the CPU, NULL otherwise
1607 */
1608static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1609{
1610        struct plist_head *head = &rq->rt.pushable_tasks;
1611        struct task_struct *p;
1612
1613        if (!has_pushable_tasks(rq))
1614                return NULL;
1615
1616        plist_for_each_entry(p, head, pushable_tasks) {
1617                if (pick_rt_task(rq, p, cpu))
1618                        return p;
1619        }
1620
1621        return NULL;
1622}
1623
1624static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1625
1626static int find_lowest_rq(struct task_struct *task)
1627{
1628        struct sched_domain *sd;
1629        struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1630        int this_cpu = smp_processor_id();
1631        int cpu      = task_cpu(task);
1632
1633        /* Make sure the mask is initialized first */
1634        if (unlikely(!lowest_mask))
1635                return -1;
1636
1637        if (task->nr_cpus_allowed == 1)
1638                return -1; /* No other targets possible */
1639
1640        if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1641                return -1; /* No targets found */
1642
1643        /*
1644         * At this point we have built a mask of CPUs representing the
1645         * lowest priority tasks in the system.  Now we want to elect
1646         * the best one based on our affinity and topology.
1647         *
1648         * We prioritize the last CPU that the task executed on since
1649         * it is most likely cache-hot in that location.
1650         */
1651        if (cpumask_test_cpu(cpu, lowest_mask))
1652                return cpu;
1653
1654        /*
1655         * Otherwise, we consult the sched_domains span maps to figure
1656         * out which CPU is logically closest to our hot cache data.
1657         */
1658        if (!cpumask_test_cpu(this_cpu, lowest_mask))
1659                this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1660
1661        rcu_read_lock();
1662        for_each_domain(cpu, sd) {
1663                if (sd->flags & SD_WAKE_AFFINE) {
1664                        int best_cpu;
1665
1666                        /*
1667                         * "this_cpu" is cheaper to preempt than a
1668                         * remote processor.
1669                         */
1670                        if (this_cpu != -1 &&
1671                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1672                                rcu_read_unlock();
1673                                return this_cpu;
1674                        }
1675
1676                        best_cpu = cpumask_first_and(lowest_mask,
1677                                                     sched_domain_span(sd));
1678                        if (best_cpu < nr_cpu_ids) {
1679                                rcu_read_unlock();
1680                                return best_cpu;
1681                        }
1682                }
1683        }
1684        rcu_read_unlock();
1685
1686        /*
1687         * And finally, if there were no matches within the domains
1688         * just give the caller *something* to work with from the compatible
1689         * locations.
1690         */
1691        if (this_cpu != -1)
1692                return this_cpu;
1693
1694        cpu = cpumask_any(lowest_mask);
1695        if (cpu < nr_cpu_ids)
1696                return cpu;
1697
1698        return -1;
1699}
1700
1701/* Will lock the rq it finds */
1702static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1703{
1704        struct rq *lowest_rq = NULL;
1705        int tries;
1706        int cpu;
1707
1708        for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1709                cpu = find_lowest_rq(task);
1710
1711                if ((cpu == -1) || (cpu == rq->cpu))
1712                        break;
1713
1714                lowest_rq = cpu_rq(cpu);
1715
1716                if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1717                        /*
1718                         * Target rq has tasks of equal or higher priority,
1719                         * retrying does not release any lock and is unlikely
1720                         * to yield a different result.
1721                         */
1722                        lowest_rq = NULL;
1723                        break;
1724                }
1725
1726                /* if the prio of this runqueue changed, try again */
1727                if (double_lock_balance(rq, lowest_rq)) {
1728                        /*
1729                         * We had to unlock the run queue. In
1730                         * the mean time, task could have
1731                         * migrated already or had its affinity changed.
1732                         * Also make sure that it wasn't scheduled on its rq.
1733                         */
1734                        if (unlikely(task_rq(task) != rq ||
1735                                     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1736                                     task_running(rq, task) ||
1737                                     !rt_task(task) ||
1738                                     !task_on_rq_queued(task))) {
1739
1740                                double_unlock_balance(rq, lowest_rq);
1741                                lowest_rq = NULL;
1742                                break;
1743                        }
1744                }
1745
1746                /* If this rq is still suitable use it. */
1747                if (lowest_rq->rt.highest_prio.curr > task->prio)
1748                        break;
1749
1750                /* try again */
1751                double_unlock_balance(rq, lowest_rq);
1752                lowest_rq = NULL;
1753        }
1754
1755        return lowest_rq;
1756}
1757
1758static struct task_struct *pick_next_pushable_task(struct rq *rq)
1759{
1760        struct task_struct *p;
1761
1762        if (!has_pushable_tasks(rq))
1763                return NULL;
1764
1765        p = plist_first_entry(&rq->rt.pushable_tasks,
1766                              struct task_struct, pushable_tasks);
1767
1768        BUG_ON(rq->cpu != task_cpu(p));
1769        BUG_ON(task_current(rq, p));
1770        BUG_ON(p->nr_cpus_allowed <= 1);
1771
1772        BUG_ON(!task_on_rq_queued(p));
1773        BUG_ON(!rt_task(p));
1774
1775        return p;
1776}
1777
1778/*
1779 * If the current CPU has more than one RT task, see if the non
1780 * running task can migrate over to a CPU that is running a task
1781 * of lesser priority.
1782 */
1783static int push_rt_task(struct rq *rq)
1784{
1785        struct task_struct *next_task;
1786        struct rq *lowest_rq;
1787        int ret = 0;
1788
1789        if (!rq->rt.overloaded)
1790                return 0;
1791
1792        next_task = pick_next_pushable_task(rq);
1793        if (!next_task)
1794                return 0;
1795
1796retry:
1797        if (unlikely(next_task == rq->curr)) {
1798                WARN_ON(1);
1799                return 0;
1800        }
1801
1802        /*
1803         * It's possible that the next_task slipped in of
1804         * higher priority than current. If that's the case
1805         * just reschedule current.
1806         */
1807        if (unlikely(next_task->prio < rq->curr->prio)) {
1808                resched_curr(rq);
1809                return 0;
1810        }
1811
1812        /* We might release rq lock */
1813        get_task_struct(next_task);
1814
1815        /* find_lock_lowest_rq locks the rq if found */
1816        lowest_rq = find_lock_lowest_rq(next_task, rq);
1817        if (!lowest_rq) {
1818                struct task_struct *task;
1819                /*
1820                 * find_lock_lowest_rq releases rq->lock
1821                 * so it is possible that next_task has migrated.
1822                 *
1823                 * We need to make sure that the task is still on the same
1824                 * run-queue and is also still the next task eligible for
1825                 * pushing.
1826                 */
1827                task = pick_next_pushable_task(rq);
1828                if (task == next_task) {
1829                        /*
1830                         * The task hasn't migrated, and is still the next
1831                         * eligible task, but we failed to find a run-queue
1832                         * to push it to.  Do not retry in this case, since
1833                         * other CPUs will pull from us when ready.
1834                         */
1835                        goto out;
1836                }
1837
1838                if (!task)
1839                        /* No more tasks, just exit */
1840                        goto out;
1841
1842                /*
1843                 * Something has shifted, try again.
1844                 */
1845                put_task_struct(next_task);
1846                next_task = task;
1847                goto retry;
1848        }
1849
1850        deactivate_task(rq, next_task, 0);
1851        set_task_cpu(next_task, lowest_rq->cpu);
1852        activate_task(lowest_rq, next_task, 0);
1853        ret = 1;
1854
1855        resched_curr(lowest_rq);
1856
1857        double_unlock_balance(rq, lowest_rq);
1858
1859out:
1860        put_task_struct(next_task);
1861
1862        return ret;
1863}
1864
1865static void push_rt_tasks(struct rq *rq)
1866{
1867        /* push_rt_task will return true if it moved an RT */
1868        while (push_rt_task(rq))
1869                ;
1870}
1871
1872#ifdef HAVE_RT_PUSH_IPI
1873
1874/*
1875 * When a high priority task schedules out from a CPU and a lower priority
1876 * task is scheduled in, a check is made to see if there's any RT tasks
1877 * on other CPUs that are waiting to run because a higher priority RT task
1878 * is currently running on its CPU. In this case, the CPU with multiple RT
1879 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1880 * up that may be able to run one of its non-running queued RT tasks.
1881 *
1882 * All CPUs with overloaded RT tasks need to be notified as there is currently
1883 * no way to know which of these CPUs have the highest priority task waiting
1884 * to run. Instead of trying to take a spinlock on each of these CPUs,
1885 * which has shown to cause large latency when done on machines with many
1886 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1887 * RT tasks waiting to run.
1888 *
1889 * Just sending an IPI to each of the CPUs is also an issue, as on large
1890 * count CPU machines, this can cause an IPI storm on a CPU, especially
1891 * if its the only CPU with multiple RT tasks queued, and a large number
1892 * of CPUs scheduling a lower priority task at the same time.
1893 *
1894 * Each root domain has its own irq work function that can iterate over
1895 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1896 * tassk must be checked if there's one or many CPUs that are lowering
1897 * their priority, there's a single irq work iterator that will try to
1898 * push off RT tasks that are waiting to run.
1899 *
1900 * When a CPU schedules a lower priority task, it will kick off the
1901 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1902 * As it only takes the first CPU that schedules a lower priority task
1903 * to start the process, the rto_start variable is incremented and if
1904 * the atomic result is one, then that CPU will try to take the rto_lock.
1905 * This prevents high contention on the lock as the process handles all
1906 * CPUs scheduling lower priority tasks.
1907 *
1908 * All CPUs that are scheduling a lower priority task will increment the
1909 * rt_loop_next variable. This will make sure that the irq work iterator
1910 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1911 * priority task, even if the iterator is in the middle of a scan. Incrementing
1912 * the rt_loop_next will cause the iterator to perform another scan.
1913 *
1914 */
1915static int rto_next_cpu(struct root_domain *rd)
1916{
1917        int next;
1918        int cpu;
1919
1920        /*
1921         * When starting the IPI RT pushing, the rto_cpu is set to -1,
1922         * rt_next_cpu() will simply return the first CPU found in
1923         * the rto_mask.
1924         *
1925         * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1926         * will return the next CPU found in the rto_mask.
1927         *
1928         * If there are no more CPUs left in the rto_mask, then a check is made
1929         * against rto_loop and rto_loop_next. rto_loop is only updated with
1930         * the rto_lock held, but any CPU may increment the rto_loop_next
1931         * without any locking.
1932         */
1933        for (;;) {
1934
1935                /* When rto_cpu is -1 this acts like cpumask_first() */
1936                cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1937
1938                rd->rto_cpu = cpu;
1939
1940                if (cpu < nr_cpu_ids)
1941                        return cpu;
1942
1943                rd->rto_cpu = -1;
1944
1945                /*
1946                 * ACQUIRE ensures we see the @rto_mask changes
1947                 * made prior to the @next value observed.
1948                 *
1949                 * Matches WMB in rt_set_overload().
1950                 */
1951                next = atomic_read_acquire(&rd->rto_loop_next);
1952
1953                if (rd->rto_loop == next)
1954                        break;
1955
1956                rd->rto_loop = next;
1957        }
1958
1959        return -1;
1960}
1961
1962static inline bool rto_start_trylock(atomic_t *v)
1963{
1964        return !atomic_cmpxchg_acquire(v, 0, 1);
1965}
1966
1967static inline void rto_start_unlock(atomic_t *v)
1968{
1969        atomic_set_release(v, 0);
1970}
1971
1972static void tell_cpu_to_push(struct rq *rq)
1973{
1974        int cpu = -1;
1975
1976        /* Keep the loop going if the IPI is currently active */
1977        atomic_inc(&rq->rd->rto_loop_next);
1978
1979        /* Only one CPU can initiate a loop at a time */
1980        if (!rto_start_trylock(&rq->rd->rto_loop_start))
1981                return;
1982
1983        raw_spin_lock(&rq->rd->rto_lock);
1984
1985        /*
1986         * The rto_cpu is updated under the lock, if it has a valid CPU
1987         * then the IPI is still running and will continue due to the
1988         * update to loop_next, and nothing needs to be done here.
1989         * Otherwise it is finishing up and an ipi needs to be sent.
1990         */
1991        if (rq->rd->rto_cpu < 0)
1992                cpu = rto_next_cpu(rq->rd);
1993
1994        raw_spin_unlock(&rq->rd->rto_lock);
1995
1996        rto_start_unlock(&rq->rd->rto_loop_start);
1997
1998        if (cpu >= 0) {
1999                /* Make sure the rd does not get freed while pushing */
2000                sched_get_rd(rq->rd);
2001                irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2002        }
2003}
2004
2005/* Called from hardirq context */
2006void rto_push_irq_work_func(struct irq_work *work)
2007{
2008        struct root_domain *rd =
2009                container_of(work, struct root_domain, rto_push_work);
2010        struct rq *rq;
2011        int cpu;
2012
2013        rq = this_rq();
2014
2015        /*
2016         * We do not need to grab the lock to check for has_pushable_tasks.
2017         * When it gets updated, a check is made if a push is possible.
2018         */
2019        if (has_pushable_tasks(rq)) {
2020                raw_spin_lock(&rq->lock);
2021                push_rt_tasks(rq);
2022                raw_spin_unlock(&rq->lock);
2023        }
2024
2025        raw_spin_lock(&rd->rto_lock);
2026
2027        /* Pass the IPI to the next rt overloaded queue */
2028        cpu = rto_next_cpu(rd);
2029
2030        raw_spin_unlock(&rd->rto_lock);
2031
2032        if (cpu < 0) {
2033                sched_put_rd(rd);
2034                return;
2035        }
2036
2037        /* Try the next RT overloaded CPU */
2038        irq_work_queue_on(&rd->rto_push_work, cpu);
2039}
2040#endif /* HAVE_RT_PUSH_IPI */
2041
2042static void pull_rt_task(struct rq *this_rq)
2043{
2044        int this_cpu = this_rq->cpu, cpu;
2045        bool resched = false;
2046        struct task_struct *p;
2047        struct rq *src_rq;
2048        int rt_overload_count = rt_overloaded(this_rq);
2049
2050        if (likely(!rt_overload_count))
2051                return;
2052
2053        /*
2054         * Match the barrier from rt_set_overloaded; this guarantees that if we
2055         * see overloaded we must also see the rto_mask bit.
2056         */
2057        smp_rmb();
2058
2059        /* If we are the only overloaded CPU do nothing */
2060        if (rt_overload_count == 1 &&
2061            cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2062                return;
2063
2064#ifdef HAVE_RT_PUSH_IPI
2065        if (sched_feat(RT_PUSH_IPI)) {
2066                tell_cpu_to_push(this_rq);
2067                return;
2068        }
2069#endif
2070
2071        for_each_cpu(cpu, this_rq->rd->rto_mask) {
2072                if (this_cpu == cpu)
2073                        continue;
2074
2075                src_rq = cpu_rq(cpu);
2076
2077                /*
2078                 * Don't bother taking the src_rq->lock if the next highest
2079                 * task is known to be lower-priority than our current task.
2080                 * This may look racy, but if this value is about to go
2081                 * logically higher, the src_rq will push this task away.
2082                 * And if its going logically lower, we do not care
2083                 */
2084                if (src_rq->rt.highest_prio.next >=
2085                    this_rq->rt.highest_prio.curr)
2086                        continue;
2087
2088                /*
2089                 * We can potentially drop this_rq's lock in
2090                 * double_lock_balance, and another CPU could
2091                 * alter this_rq
2092                 */
2093                double_lock_balance(this_rq, src_rq);
2094
2095                /*
2096                 * We can pull only a task, which is pushable
2097                 * on its rq, and no others.
2098                 */
2099                p = pick_highest_pushable_task(src_rq, this_cpu);
2100
2101                /*
2102                 * Do we have an RT task that preempts
2103                 * the to-be-scheduled task?
2104                 */
2105                if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2106                        WARN_ON(p == src_rq->curr);
2107                        WARN_ON(!task_on_rq_queued(p));
2108
2109                        /*
2110                         * There's a chance that p is higher in priority
2111                         * than what's currently running on its CPU.
2112                         * This is just that p is wakeing up and hasn't
2113                         * had a chance to schedule. We only pull
2114                         * p if it is lower in priority than the
2115                         * current task on the run queue
2116                         */
2117                        if (p->prio < src_rq->curr->prio)
2118                                goto skip;
2119
2120                        resched = true;
2121
2122                        deactivate_task(src_rq, p, 0);
2123                        set_task_cpu(p, this_cpu);
2124                        activate_task(this_rq, p, 0);
2125                        /*
2126                         * We continue with the search, just in
2127                         * case there's an even higher prio task
2128                         * in another runqueue. (low likelihood
2129                         * but possible)
2130                         */
2131                }
2132skip:
2133                double_unlock_balance(this_rq, src_rq);
2134        }
2135
2136        if (resched)
2137                resched_curr(this_rq);
2138}
2139
2140/*
2141 * If we are not running and we are not going to reschedule soon, we should
2142 * try to push tasks away now
2143 */
2144static void task_woken_rt(struct rq *rq, struct task_struct *p)
2145{
2146        if (!task_running(rq, p) &&
2147            !test_tsk_need_resched(rq->curr) &&
2148            p->nr_cpus_allowed > 1 &&
2149            (dl_task(rq->curr) || rt_task(rq->curr)) &&
2150            (rq->curr->nr_cpus_allowed < 2 ||
2151             rq->curr->prio <= p->prio))
2152                push_rt_tasks(rq);
2153}
2154
2155/* Assumes rq->lock is held */
2156static void rq_online_rt(struct rq *rq)
2157{
2158        if (rq->rt.overloaded)
2159                rt_set_overload(rq);
2160
2161        __enable_runtime(rq);
2162
2163        cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2164}
2165
2166/* Assumes rq->lock is held */
2167static void rq_offline_rt(struct rq *rq)
2168{
2169        if (rq->rt.overloaded)
2170                rt_clear_overload(rq);
2171
2172        __disable_runtime(rq);
2173
2174        cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2175}
2176
2177/*
2178 * When switch from the rt queue, we bring ourselves to a position
2179 * that we might want to pull RT tasks from other runqueues.
2180 */
2181static void switched_from_rt(struct rq *rq, struct task_struct *p)
2182{
2183        /*
2184         * If there are other RT tasks then we will reschedule
2185         * and the scheduling of the other RT tasks will handle
2186         * the balancing. But if we are the last RT task
2187         * we may need to handle the pulling of RT tasks
2188         * now.
2189         */
2190        if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2191                return;
2192
2193        rt_queue_pull_task(rq);
2194}
2195
2196void __init init_sched_rt_class(void)
2197{
2198        unsigned int i;
2199
2200        for_each_possible_cpu(i) {
2201                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2202                                        GFP_KERNEL, cpu_to_node(i));
2203        }
2204}
2205#endif /* CONFIG_SMP */
2206
2207/*
2208 * When switching a task to RT, we may overload the runqueue
2209 * with RT tasks. In this case we try to push them off to
2210 * other runqueues.
2211 */
2212static void switched_to_rt(struct rq *rq, struct task_struct *p)
2213{
2214        /*
2215         * If we are already running, then there's nothing
2216         * that needs to be done. But if we are not running
2217         * we may need to preempt the current running task.
2218         * If that current running task is also an RT task
2219         * then see if we can move to another run queue.
2220         */
2221        if (task_on_rq_queued(p) && rq->curr != p) {
2222#ifdef CONFIG_SMP
2223                if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2224                        rt_queue_push_tasks(rq);
2225#endif /* CONFIG_SMP */
2226                if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2227                        resched_curr(rq);
2228        }
2229}
2230
2231/*
2232 * Priority of the task has changed. This may cause
2233 * us to initiate a push or pull.
2234 */
2235static void
2236prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2237{
2238        if (!task_on_rq_queued(p))
2239                return;
2240
2241        if (rq->curr == p) {
2242#ifdef CONFIG_SMP
2243                /*
2244                 * If our priority decreases while running, we
2245                 * may need to pull tasks to this runqueue.
2246                 */
2247                if (oldprio < p->prio)
2248                        rt_queue_pull_task(rq);
2249
2250                /*
2251                 * If there's a higher priority task waiting to run
2252                 * then reschedule.
2253                 */
2254                if (p->prio > rq->rt.highest_prio.curr)
2255                        resched_curr(rq);
2256#else
2257                /* For UP simply resched on drop of prio */
2258                if (oldprio < p->prio)
2259                        resched_curr(rq);
2260#endif /* CONFIG_SMP */
2261        } else {
2262                /*
2263                 * This task is not running, but if it is
2264                 * greater than the current running task
2265                 * then reschedule.
2266                 */
2267                if (p->prio < rq->curr->prio)
2268                        resched_curr(rq);
2269        }
2270}
2271
2272#ifdef CONFIG_POSIX_TIMERS
2273static void watchdog(struct rq *rq, struct task_struct *p)
2274{
2275        unsigned long soft, hard;
2276
2277        /* max may change after cur was read, this will be fixed next tick */
2278        soft = task_rlimit(p, RLIMIT_RTTIME);
2279        hard = task_rlimit_max(p, RLIMIT_RTTIME);
2280
2281        if (soft != RLIM_INFINITY) {
2282                unsigned long next;
2283
2284                if (p->rt.watchdog_stamp != jiffies) {
2285                        p->rt.timeout++;
2286                        p->rt.watchdog_stamp = jiffies;
2287                }
2288
2289                next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2290                if (p->rt.timeout > next)
2291                        p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2292        }
2293}
2294#else
2295static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2296#endif
2297
2298/*
2299 * scheduler tick hitting a task of our scheduling class.
2300 *
2301 * NOTE: This function can be called remotely by the tick offload that
2302 * goes along full dynticks. Therefore no local assumption can be made
2303 * and everything must be accessed through the @rq and @curr passed in
2304 * parameters.
2305 */
2306static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2307{
2308        struct sched_rt_entity *rt_se = &p->rt;
2309
2310        update_curr_rt(rq);
2311
2312        watchdog(rq, p);
2313
2314        /*
2315         * RR tasks need a special form of timeslice management.
2316         * FIFO tasks have no timeslices.
2317         */
2318        if (p->policy != SCHED_RR)
2319                return;
2320
2321        if (--p->rt.time_slice)
2322                return;
2323
2324        p->rt.time_slice = sched_rr_timeslice;
2325
2326        /*
2327         * Requeue to the end of queue if we (and all of our ancestors) are not
2328         * the only element on the queue
2329         */
2330        for_each_sched_rt_entity(rt_se) {
2331                if (rt_se->run_list.prev != rt_se->run_list.next) {
2332                        requeue_task_rt(rq, p, 0);
2333                        resched_curr(rq);
2334                        return;
2335                }
2336        }
2337}
2338
2339static void set_curr_task_rt(struct rq *rq)
2340{
2341        struct task_struct *p = rq->curr;
2342
2343        p->se.exec_start = rq_clock_task(rq);
2344
2345        /* The running task is never eligible for pushing */
2346        dequeue_pushable_task(rq, p);
2347}
2348
2349static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2350{
2351        /*
2352         * Time slice is 0 for SCHED_FIFO tasks
2353         */
2354        if (task->policy == SCHED_RR)
2355                return sched_rr_timeslice;
2356        else
2357                return 0;
2358}
2359
2360const struct sched_class rt_sched_class = {
2361        .next                   = &fair_sched_class,
2362        .enqueue_task           = enqueue_task_rt,
2363        .dequeue_task           = dequeue_task_rt,
2364        .yield_task             = yield_task_rt,
2365
2366        .check_preempt_curr     = check_preempt_curr_rt,
2367
2368        .pick_next_task         = pick_next_task_rt,
2369        .put_prev_task          = put_prev_task_rt,
2370
2371#ifdef CONFIG_SMP
2372        .select_task_rq         = select_task_rq_rt,
2373
2374        .set_cpus_allowed       = set_cpus_allowed_common,
2375        .rq_online              = rq_online_rt,
2376        .rq_offline             = rq_offline_rt,
2377        .task_woken             = task_woken_rt,
2378        .switched_from          = switched_from_rt,
2379#endif
2380
2381        .set_curr_task          = set_curr_task_rt,
2382        .task_tick              = task_tick_rt,
2383
2384        .get_rr_interval        = get_rr_interval_rt,
2385
2386        .prio_changed           = prio_changed_rt,
2387        .switched_to            = switched_to_rt,
2388
2389        .update_curr            = update_curr_rt,
2390};
2391
2392#ifdef CONFIG_RT_GROUP_SCHED
2393/*
2394 * Ensure that the real time constraints are schedulable.
2395 */
2396static DEFINE_MUTEX(rt_constraints_mutex);
2397
2398/* Must be called with tasklist_lock held */
2399static inline int tg_has_rt_tasks(struct task_group *tg)
2400{
2401        struct task_struct *g, *p;
2402
2403        /*
2404         * Autogroups do not have RT tasks; see autogroup_create().
2405         */
2406        if (task_group_is_autogroup(tg))
2407                return 0;
2408
2409        for_each_process_thread(g, p) {
2410                if (rt_task(p) && task_group(p) == tg)
2411                        return 1;
2412        }
2413
2414        return 0;
2415}
2416
2417struct rt_schedulable_data {
2418        struct task_group *tg;
2419        u64 rt_period;
2420        u64 rt_runtime;
2421};
2422
2423static int tg_rt_schedulable(struct task_group *tg, void *data)
2424{
2425        struct rt_schedulable_data *d = data;
2426        struct task_group *child;
2427        unsigned long total, sum = 0;
2428        u64 period, runtime;
2429
2430        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2431        runtime = tg->rt_bandwidth.rt_runtime;
2432
2433        if (tg == d->tg) {
2434                period = d->rt_period;
2435                runtime = d->rt_runtime;
2436        }
2437
2438        /*
2439         * Cannot have more runtime than the period.
2440         */
2441        if (runtime > period && runtime != RUNTIME_INF)
2442                return -EINVAL;
2443
2444        /*
2445         * Ensure we don't starve existing RT tasks.
2446         */
2447        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2448                return -EBUSY;
2449
2450        total = to_ratio(period, runtime);
2451
2452        /*
2453         * Nobody can have more than the global setting allows.
2454         */
2455        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2456                return -EINVAL;
2457
2458        /*
2459         * The sum of our children's runtime should not exceed our own.
2460         */
2461        list_for_each_entry_rcu(child, &tg->children, siblings) {
2462                period = ktime_to_ns(child->rt_bandwidth.rt_period);
2463                runtime = child->rt_bandwidth.rt_runtime;
2464
2465                if (child == d->tg) {
2466                        period = d->rt_period;
2467                        runtime = d->rt_runtime;
2468                }
2469
2470                sum += to_ratio(period, runtime);
2471        }
2472
2473        if (sum > total)
2474                return -EINVAL;
2475
2476        return 0;
2477}
2478
2479static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2480{
2481        int ret;
2482
2483        struct rt_schedulable_data data = {
2484                .tg = tg,
2485                .rt_period = period,
2486                .rt_runtime = runtime,
2487        };
2488
2489        rcu_read_lock();
2490        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2491        rcu_read_unlock();
2492
2493        return ret;
2494}
2495
2496static int tg_set_rt_bandwidth(struct task_group *tg,
2497                u64 rt_period, u64 rt_runtime)
2498{
2499        int i, err = 0;
2500
2501        /*
2502         * Disallowing the root group RT runtime is BAD, it would disallow the
2503         * kernel creating (and or operating) RT threads.
2504         */
2505        if (tg == &root_task_group && rt_runtime == 0)
2506                return -EINVAL;
2507
2508        /* No period doesn't make any sense. */
2509        if (rt_period == 0)
2510                return -EINVAL;
2511
2512        mutex_lock(&rt_constraints_mutex);
2513        read_lock(&tasklist_lock);
2514        err = __rt_schedulable(tg, rt_period, rt_runtime);
2515        if (err)
2516                goto unlock;
2517
2518        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2519        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2520        tg->rt_bandwidth.rt_runtime = rt_runtime;
2521
2522        for_each_possible_cpu(i) {
2523                struct rt_rq *rt_rq = tg->rt_rq[i];
2524
2525                raw_spin_lock(&rt_rq->rt_runtime_lock);
2526                rt_rq->rt_runtime = rt_runtime;
2527                raw_spin_unlock(&rt_rq->rt_runtime_lock);
2528        }
2529        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2530unlock:
2531        read_unlock(&tasklist_lock);
2532        mutex_unlock(&rt_constraints_mutex);
2533
2534        return err;
2535}
2536
2537int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2538{
2539        u64 rt_runtime, rt_period;
2540
2541        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2542        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2543        if (rt_runtime_us < 0)
2544                rt_runtime = RUNTIME_INF;
2545
2546        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2547}
2548
2549long sched_group_rt_runtime(struct task_group *tg)
2550{
2551        u64 rt_runtime_us;
2552
2553        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2554                return -1;
2555
2556        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2557        do_div(rt_runtime_us, NSEC_PER_USEC);
2558        return rt_runtime_us;
2559}
2560
2561int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2562{
2563        u64 rt_runtime, rt_period;
2564
2565        rt_period = rt_period_us * NSEC_PER_USEC;
2566        rt_runtime = tg->rt_bandwidth.rt_runtime;
2567
2568        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2569}
2570
2571long sched_group_rt_period(struct task_group *tg)
2572{
2573        u64 rt_period_us;
2574
2575        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2576        do_div(rt_period_us, NSEC_PER_USEC);
2577        return rt_period_us;
2578}
2579
2580static int sched_rt_global_constraints(void)
2581{
2582        int ret = 0;
2583
2584        mutex_lock(&rt_constraints_mutex);
2585        read_lock(&tasklist_lock);
2586        ret = __rt_schedulable(NULL, 0, 0);
2587        read_unlock(&tasklist_lock);
2588        mutex_unlock(&rt_constraints_mutex);
2589
2590        return ret;
2591}
2592
2593int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2594{
2595        /* Don't accept realtime tasks when there is no way for them to run */
2596        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2597                return 0;
2598
2599        return 1;
2600}
2601
2602#else /* !CONFIG_RT_GROUP_SCHED */
2603static int sched_rt_global_constraints(void)
2604{
2605        unsigned long flags;
2606        int i;
2607
2608        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2609        for_each_possible_cpu(i) {
2610                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2611
2612                raw_spin_lock(&rt_rq->rt_runtime_lock);
2613                rt_rq->rt_runtime = global_rt_runtime();
2614                raw_spin_unlock(&rt_rq->rt_runtime_lock);
2615        }
2616        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2617
2618        return 0;
2619}
2620#endif /* CONFIG_RT_GROUP_SCHED */
2621
2622static int sched_rt_global_validate(void)
2623{
2624        if (sysctl_sched_rt_period <= 0)
2625                return -EINVAL;
2626
2627        if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2628                (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2629                return -EINVAL;
2630
2631        return 0;
2632}
2633
2634static void sched_rt_do_global(void)
2635{
2636        def_rt_bandwidth.rt_runtime = global_rt_runtime();
2637        def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2638}
2639
2640int sched_rt_handler(struct ctl_table *table, int write,
2641                void __user *buffer, size_t *lenp,
2642                loff_t *ppos)
2643{
2644        int old_period, old_runtime;
2645        static DEFINE_MUTEX(mutex);
2646        int ret;
2647
2648        mutex_lock(&mutex);
2649        old_period = sysctl_sched_rt_period;
2650        old_runtime = sysctl_sched_rt_runtime;
2651
2652        ret = proc_dointvec(table, write, buffer, lenp, ppos);
2653
2654        if (!ret && write) {
2655                ret = sched_rt_global_validate();
2656                if (ret)
2657                        goto undo;
2658
2659                ret = sched_dl_global_validate();
2660                if (ret)
2661                        goto undo;
2662
2663                ret = sched_rt_global_constraints();
2664                if (ret)
2665                        goto undo;
2666
2667                sched_rt_do_global();
2668                sched_dl_do_global();
2669        }
2670        if (0) {
2671undo:
2672                sysctl_sched_rt_period = old_period;
2673                sysctl_sched_rt_runtime = old_runtime;
2674        }
2675        mutex_unlock(&mutex);
2676
2677        return ret;
2678}
2679
2680int sched_rr_handler(struct ctl_table *table, int write,
2681                void __user *buffer, size_t *lenp,
2682                loff_t *ppos)
2683{
2684        int ret;
2685        static DEFINE_MUTEX(mutex);
2686
2687        mutex_lock(&mutex);
2688        ret = proc_dointvec(table, write, buffer, lenp, ppos);
2689        /*
2690         * Make sure that internally we keep jiffies.
2691         * Also, writing zero resets the timeslice to default:
2692         */
2693        if (!ret && write) {
2694                sched_rr_timeslice =
2695                        sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2696                        msecs_to_jiffies(sysctl_sched_rr_timeslice);
2697        }
2698        mutex_unlock(&mutex);
2699
2700        return ret;
2701}
2702
2703#ifdef CONFIG_SCHED_DEBUG
2704void print_rt_stats(struct seq_file *m, int cpu)
2705{
2706        rt_rq_iter_t iter;
2707        struct rt_rq *rt_rq;
2708
2709        rcu_read_lock();
2710        for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2711                print_rt_rq(m, cpu, rt_rq);
2712        rcu_read_unlock();
2713}
2714#endif /* CONFIG_SCHED_DEBUG */
2715