linux/kernel/signal.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *              Changes to use preallocated sigqueue structures
  10 *              to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/user.h>
  18#include <linux/sched/debug.h>
  19#include <linux/sched/task.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/sched/cputime.h>
  22#include <linux/fs.h>
  23#include <linux/tty.h>
  24#include <linux/binfmts.h>
  25#include <linux/coredump.h>
  26#include <linux/security.h>
  27#include <linux/syscalls.h>
  28#include <linux/ptrace.h>
  29#include <linux/signal.h>
  30#include <linux/signalfd.h>
  31#include <linux/ratelimit.h>
  32#include <linux/tracehook.h>
  33#include <linux/capability.h>
  34#include <linux/freezer.h>
  35#include <linux/pid_namespace.h>
  36#include <linux/nsproxy.h>
  37#include <linux/user_namespace.h>
  38#include <linux/uprobes.h>
  39#include <linux/compat.h>
  40#include <linux/cn_proc.h>
  41#include <linux/compiler.h>
  42#include <linux/posix-timers.h>
  43#include <linux/livepatch.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/signal.h>
  47
  48#include <asm/param.h>
  49#include <linux/uaccess.h>
  50#include <asm/unistd.h>
  51#include <asm/siginfo.h>
  52#include <asm/cacheflush.h>
  53#include "audit.h"      /* audit_signal_info() */
  54
  55/*
  56 * SLAB caches for signal bits.
  57 */
  58
  59static struct kmem_cache *sigqueue_cachep;
  60
  61int print_fatal_signals __read_mostly;
  62
  63static void __user *sig_handler(struct task_struct *t, int sig)
  64{
  65        return t->sighand->action[sig - 1].sa.sa_handler;
  66}
  67
  68static int sig_handler_ignored(void __user *handler, int sig)
  69{
  70        /* Is it explicitly or implicitly ignored? */
  71        return handler == SIG_IGN ||
  72                (handler == SIG_DFL && sig_kernel_ignore(sig));
  73}
  74
  75static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  76{
  77        void __user *handler;
  78
  79        handler = sig_handler(t, sig);
  80
  81        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  82            handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  83                return 1;
  84
  85        return sig_handler_ignored(handler, sig);
  86}
  87
  88static int sig_ignored(struct task_struct *t, int sig, bool force)
  89{
  90        /*
  91         * Blocked signals are never ignored, since the
  92         * signal handler may change by the time it is
  93         * unblocked.
  94         */
  95        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  96                return 0;
  97
  98        /*
  99         * Tracers may want to know about even ignored signal unless it
 100         * is SIGKILL which can't be reported anyway but can be ignored
 101         * by SIGNAL_UNKILLABLE task.
 102         */
 103        if (t->ptrace && sig != SIGKILL)
 104                return 0;
 105
 106        return sig_task_ignored(t, sig, force);
 107}
 108
 109/*
 110 * Re-calculate pending state from the set of locally pending
 111 * signals, globally pending signals, and blocked signals.
 112 */
 113static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 114{
 115        unsigned long ready;
 116        long i;
 117
 118        switch (_NSIG_WORDS) {
 119        default:
 120                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 121                        ready |= signal->sig[i] &~ blocked->sig[i];
 122                break;
 123
 124        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 125                ready |= signal->sig[2] &~ blocked->sig[2];
 126                ready |= signal->sig[1] &~ blocked->sig[1];
 127                ready |= signal->sig[0] &~ blocked->sig[0];
 128                break;
 129
 130        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 131                ready |= signal->sig[0] &~ blocked->sig[0];
 132                break;
 133
 134        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 135        }
 136        return ready != 0;
 137}
 138
 139#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 140
 141static int recalc_sigpending_tsk(struct task_struct *t)
 142{
 143        if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 144            PENDING(&t->pending, &t->blocked) ||
 145            PENDING(&t->signal->shared_pending, &t->blocked)) {
 146                set_tsk_thread_flag(t, TIF_SIGPENDING);
 147                return 1;
 148        }
 149        /*
 150         * We must never clear the flag in another thread, or in current
 151         * when it's possible the current syscall is returning -ERESTART*.
 152         * So we don't clear it here, and only callers who know they should do.
 153         */
 154        return 0;
 155}
 156
 157/*
 158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 159 * This is superfluous when called on current, the wakeup is a harmless no-op.
 160 */
 161void recalc_sigpending_and_wake(struct task_struct *t)
 162{
 163        if (recalc_sigpending_tsk(t))
 164                signal_wake_up(t, 0);
 165}
 166
 167void recalc_sigpending(void)
 168{
 169        if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 170            !klp_patch_pending(current))
 171                clear_thread_flag(TIF_SIGPENDING);
 172
 173}
 174
 175/* Given the mask, find the first available signal that should be serviced. */
 176
 177#define SYNCHRONOUS_MASK \
 178        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 179         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 180
 181int next_signal(struct sigpending *pending, sigset_t *mask)
 182{
 183        unsigned long i, *s, *m, x;
 184        int sig = 0;
 185
 186        s = pending->signal.sig;
 187        m = mask->sig;
 188
 189        /*
 190         * Handle the first word specially: it contains the
 191         * synchronous signals that need to be dequeued first.
 192         */
 193        x = *s &~ *m;
 194        if (x) {
 195                if (x & SYNCHRONOUS_MASK)
 196                        x &= SYNCHRONOUS_MASK;
 197                sig = ffz(~x) + 1;
 198                return sig;
 199        }
 200
 201        switch (_NSIG_WORDS) {
 202        default:
 203                for (i = 1; i < _NSIG_WORDS; ++i) {
 204                        x = *++s &~ *++m;
 205                        if (!x)
 206                                continue;
 207                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 208                        break;
 209                }
 210                break;
 211
 212        case 2:
 213                x = s[1] &~ m[1];
 214                if (!x)
 215                        break;
 216                sig = ffz(~x) + _NSIG_BPW + 1;
 217                break;
 218
 219        case 1:
 220                /* Nothing to do */
 221                break;
 222        }
 223
 224        return sig;
 225}
 226
 227static inline void print_dropped_signal(int sig)
 228{
 229        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 230
 231        if (!print_fatal_signals)
 232                return;
 233
 234        if (!__ratelimit(&ratelimit_state))
 235                return;
 236
 237        pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 238                                current->comm, current->pid, sig);
 239}
 240
 241/**
 242 * task_set_jobctl_pending - set jobctl pending bits
 243 * @task: target task
 244 * @mask: pending bits to set
 245 *
 246 * Clear @mask from @task->jobctl.  @mask must be subset of
 247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 248 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 249 * cleared.  If @task is already being killed or exiting, this function
 250 * becomes noop.
 251 *
 252 * CONTEXT:
 253 * Must be called with @task->sighand->siglock held.
 254 *
 255 * RETURNS:
 256 * %true if @mask is set, %false if made noop because @task was dying.
 257 */
 258bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 259{
 260        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 261                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 262        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 263
 264        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 265                return false;
 266
 267        if (mask & JOBCTL_STOP_SIGMASK)
 268                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 269
 270        task->jobctl |= mask;
 271        return true;
 272}
 273
 274/**
 275 * task_clear_jobctl_trapping - clear jobctl trapping bit
 276 * @task: target task
 277 *
 278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 279 * Clear it and wake up the ptracer.  Note that we don't need any further
 280 * locking.  @task->siglock guarantees that @task->parent points to the
 281 * ptracer.
 282 *
 283 * CONTEXT:
 284 * Must be called with @task->sighand->siglock held.
 285 */
 286void task_clear_jobctl_trapping(struct task_struct *task)
 287{
 288        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 289                task->jobctl &= ~JOBCTL_TRAPPING;
 290                smp_mb();       /* advised by wake_up_bit() */
 291                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 292        }
 293}
 294
 295/**
 296 * task_clear_jobctl_pending - clear jobctl pending bits
 297 * @task: target task
 298 * @mask: pending bits to clear
 299 *
 300 * Clear @mask from @task->jobctl.  @mask must be subset of
 301 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 302 * STOP bits are cleared together.
 303 *
 304 * If clearing of @mask leaves no stop or trap pending, this function calls
 305 * task_clear_jobctl_trapping().
 306 *
 307 * CONTEXT:
 308 * Must be called with @task->sighand->siglock held.
 309 */
 310void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 311{
 312        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 313
 314        if (mask & JOBCTL_STOP_PENDING)
 315                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 316
 317        task->jobctl &= ~mask;
 318
 319        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 320                task_clear_jobctl_trapping(task);
 321}
 322
 323/**
 324 * task_participate_group_stop - participate in a group stop
 325 * @task: task participating in a group stop
 326 *
 327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 328 * Group stop states are cleared and the group stop count is consumed if
 329 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 330 * stop, the appropriate %SIGNAL_* flags are set.
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 *
 335 * RETURNS:
 336 * %true if group stop completion should be notified to the parent, %false
 337 * otherwise.
 338 */
 339static bool task_participate_group_stop(struct task_struct *task)
 340{
 341        struct signal_struct *sig = task->signal;
 342        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 343
 344        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 345
 346        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 347
 348        if (!consume)
 349                return false;
 350
 351        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 352                sig->group_stop_count--;
 353
 354        /*
 355         * Tell the caller to notify completion iff we are entering into a
 356         * fresh group stop.  Read comment in do_signal_stop() for details.
 357         */
 358        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 359                signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 360                return true;
 361        }
 362        return false;
 363}
 364
 365/*
 366 * allocate a new signal queue record
 367 * - this may be called without locks if and only if t == current, otherwise an
 368 *   appropriate lock must be held to stop the target task from exiting
 369 */
 370static struct sigqueue *
 371__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 372{
 373        struct sigqueue *q = NULL;
 374        struct user_struct *user;
 375
 376        /*
 377         * Protect access to @t credentials. This can go away when all
 378         * callers hold rcu read lock.
 379         */
 380        rcu_read_lock();
 381        user = get_uid(__task_cred(t)->user);
 382        atomic_inc(&user->sigpending);
 383        rcu_read_unlock();
 384
 385        if (override_rlimit ||
 386            atomic_read(&user->sigpending) <=
 387                        task_rlimit(t, RLIMIT_SIGPENDING)) {
 388                q = kmem_cache_alloc(sigqueue_cachep, flags);
 389        } else {
 390                print_dropped_signal(sig);
 391        }
 392
 393        if (unlikely(q == NULL)) {
 394                atomic_dec(&user->sigpending);
 395                free_uid(user);
 396        } else {
 397                INIT_LIST_HEAD(&q->list);
 398                q->flags = 0;
 399                q->user = user;
 400        }
 401
 402        return q;
 403}
 404
 405static void __sigqueue_free(struct sigqueue *q)
 406{
 407        if (q->flags & SIGQUEUE_PREALLOC)
 408                return;
 409        atomic_dec(&q->user->sigpending);
 410        free_uid(q->user);
 411        kmem_cache_free(sigqueue_cachep, q);
 412}
 413
 414void flush_sigqueue(struct sigpending *queue)
 415{
 416        struct sigqueue *q;
 417
 418        sigemptyset(&queue->signal);
 419        while (!list_empty(&queue->list)) {
 420                q = list_entry(queue->list.next, struct sigqueue , list);
 421                list_del_init(&q->list);
 422                __sigqueue_free(q);
 423        }
 424}
 425
 426/*
 427 * Flush all pending signals for this kthread.
 428 */
 429void flush_signals(struct task_struct *t)
 430{
 431        unsigned long flags;
 432
 433        spin_lock_irqsave(&t->sighand->siglock, flags);
 434        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 435        flush_sigqueue(&t->pending);
 436        flush_sigqueue(&t->signal->shared_pending);
 437        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 438}
 439
 440#ifdef CONFIG_POSIX_TIMERS
 441static void __flush_itimer_signals(struct sigpending *pending)
 442{
 443        sigset_t signal, retain;
 444        struct sigqueue *q, *n;
 445
 446        signal = pending->signal;
 447        sigemptyset(&retain);
 448
 449        list_for_each_entry_safe(q, n, &pending->list, list) {
 450                int sig = q->info.si_signo;
 451
 452                if (likely(q->info.si_code != SI_TIMER)) {
 453                        sigaddset(&retain, sig);
 454                } else {
 455                        sigdelset(&signal, sig);
 456                        list_del_init(&q->list);
 457                        __sigqueue_free(q);
 458                }
 459        }
 460
 461        sigorsets(&pending->signal, &signal, &retain);
 462}
 463
 464void flush_itimer_signals(void)
 465{
 466        struct task_struct *tsk = current;
 467        unsigned long flags;
 468
 469        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 470        __flush_itimer_signals(&tsk->pending);
 471        __flush_itimer_signals(&tsk->signal->shared_pending);
 472        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 473}
 474#endif
 475
 476void ignore_signals(struct task_struct *t)
 477{
 478        int i;
 479
 480        for (i = 0; i < _NSIG; ++i)
 481                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 482
 483        flush_signals(t);
 484}
 485
 486/*
 487 * Flush all handlers for a task.
 488 */
 489
 490void
 491flush_signal_handlers(struct task_struct *t, int force_default)
 492{
 493        int i;
 494        struct k_sigaction *ka = &t->sighand->action[0];
 495        for (i = _NSIG ; i != 0 ; i--) {
 496                if (force_default || ka->sa.sa_handler != SIG_IGN)
 497                        ka->sa.sa_handler = SIG_DFL;
 498                ka->sa.sa_flags = 0;
 499#ifdef __ARCH_HAS_SA_RESTORER
 500                ka->sa.sa_restorer = NULL;
 501#endif
 502                sigemptyset(&ka->sa.sa_mask);
 503                ka++;
 504        }
 505}
 506
 507int unhandled_signal(struct task_struct *tsk, int sig)
 508{
 509        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 510        if (is_global_init(tsk))
 511                return 1;
 512        if (handler != SIG_IGN && handler != SIG_DFL)
 513                return 0;
 514        /* if ptraced, let the tracer determine */
 515        return !tsk->ptrace;
 516}
 517
 518static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
 519                           bool *resched_timer)
 520{
 521        struct sigqueue *q, *first = NULL;
 522
 523        /*
 524         * Collect the siginfo appropriate to this signal.  Check if
 525         * there is another siginfo for the same signal.
 526        */
 527        list_for_each_entry(q, &list->list, list) {
 528                if (q->info.si_signo == sig) {
 529                        if (first)
 530                                goto still_pending;
 531                        first = q;
 532                }
 533        }
 534
 535        sigdelset(&list->signal, sig);
 536
 537        if (first) {
 538still_pending:
 539                list_del_init(&first->list);
 540                copy_siginfo(info, &first->info);
 541
 542                *resched_timer =
 543                        (first->flags & SIGQUEUE_PREALLOC) &&
 544                        (info->si_code == SI_TIMER) &&
 545                        (info->si_sys_private);
 546
 547                __sigqueue_free(first);
 548        } else {
 549                /*
 550                 * Ok, it wasn't in the queue.  This must be
 551                 * a fast-pathed signal or we must have been
 552                 * out of queue space.  So zero out the info.
 553                 */
 554                clear_siginfo(info);
 555                info->si_signo = sig;
 556                info->si_errno = 0;
 557                info->si_code = SI_USER;
 558                info->si_pid = 0;
 559                info->si_uid = 0;
 560        }
 561}
 562
 563static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 564                        siginfo_t *info, bool *resched_timer)
 565{
 566        int sig = next_signal(pending, mask);
 567
 568        if (sig)
 569                collect_signal(sig, pending, info, resched_timer);
 570        return sig;
 571}
 572
 573/*
 574 * Dequeue a signal and return the element to the caller, which is
 575 * expected to free it.
 576 *
 577 * All callers have to hold the siglock.
 578 */
 579int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 580{
 581        bool resched_timer = false;
 582        int signr;
 583
 584        /* We only dequeue private signals from ourselves, we don't let
 585         * signalfd steal them
 586         */
 587        signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 588        if (!signr) {
 589                signr = __dequeue_signal(&tsk->signal->shared_pending,
 590                                         mask, info, &resched_timer);
 591#ifdef CONFIG_POSIX_TIMERS
 592                /*
 593                 * itimer signal ?
 594                 *
 595                 * itimers are process shared and we restart periodic
 596                 * itimers in the signal delivery path to prevent DoS
 597                 * attacks in the high resolution timer case. This is
 598                 * compliant with the old way of self-restarting
 599                 * itimers, as the SIGALRM is a legacy signal and only
 600                 * queued once. Changing the restart behaviour to
 601                 * restart the timer in the signal dequeue path is
 602                 * reducing the timer noise on heavy loaded !highres
 603                 * systems too.
 604                 */
 605                if (unlikely(signr == SIGALRM)) {
 606                        struct hrtimer *tmr = &tsk->signal->real_timer;
 607
 608                        if (!hrtimer_is_queued(tmr) &&
 609                            tsk->signal->it_real_incr != 0) {
 610                                hrtimer_forward(tmr, tmr->base->get_time(),
 611                                                tsk->signal->it_real_incr);
 612                                hrtimer_restart(tmr);
 613                        }
 614                }
 615#endif
 616        }
 617
 618        recalc_sigpending();
 619        if (!signr)
 620                return 0;
 621
 622        if (unlikely(sig_kernel_stop(signr))) {
 623                /*
 624                 * Set a marker that we have dequeued a stop signal.  Our
 625                 * caller might release the siglock and then the pending
 626                 * stop signal it is about to process is no longer in the
 627                 * pending bitmasks, but must still be cleared by a SIGCONT
 628                 * (and overruled by a SIGKILL).  So those cases clear this
 629                 * shared flag after we've set it.  Note that this flag may
 630                 * remain set after the signal we return is ignored or
 631                 * handled.  That doesn't matter because its only purpose
 632                 * is to alert stop-signal processing code when another
 633                 * processor has come along and cleared the flag.
 634                 */
 635                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 636        }
 637#ifdef CONFIG_POSIX_TIMERS
 638        if (resched_timer) {
 639                /*
 640                 * Release the siglock to ensure proper locking order
 641                 * of timer locks outside of siglocks.  Note, we leave
 642                 * irqs disabled here, since the posix-timers code is
 643                 * about to disable them again anyway.
 644                 */
 645                spin_unlock(&tsk->sighand->siglock);
 646                posixtimer_rearm(info);
 647                spin_lock(&tsk->sighand->siglock);
 648
 649                /* Don't expose the si_sys_private value to userspace */
 650                info->si_sys_private = 0;
 651        }
 652#endif
 653        return signr;
 654}
 655
 656/*
 657 * Tell a process that it has a new active signal..
 658 *
 659 * NOTE! we rely on the previous spin_lock to
 660 * lock interrupts for us! We can only be called with
 661 * "siglock" held, and the local interrupt must
 662 * have been disabled when that got acquired!
 663 *
 664 * No need to set need_resched since signal event passing
 665 * goes through ->blocked
 666 */
 667void signal_wake_up_state(struct task_struct *t, unsigned int state)
 668{
 669        set_tsk_thread_flag(t, TIF_SIGPENDING);
 670        /*
 671         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 672         * case. We don't check t->state here because there is a race with it
 673         * executing another processor and just now entering stopped state.
 674         * By using wake_up_state, we ensure the process will wake up and
 675         * handle its death signal.
 676         */
 677        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 678                kick_process(t);
 679}
 680
 681/*
 682 * Remove signals in mask from the pending set and queue.
 683 * Returns 1 if any signals were found.
 684 *
 685 * All callers must be holding the siglock.
 686 */
 687static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 688{
 689        struct sigqueue *q, *n;
 690        sigset_t m;
 691
 692        sigandsets(&m, mask, &s->signal);
 693        if (sigisemptyset(&m))
 694                return 0;
 695
 696        sigandnsets(&s->signal, &s->signal, mask);
 697        list_for_each_entry_safe(q, n, &s->list, list) {
 698                if (sigismember(mask, q->info.si_signo)) {
 699                        list_del_init(&q->list);
 700                        __sigqueue_free(q);
 701                }
 702        }
 703        return 1;
 704}
 705
 706static inline int is_si_special(const struct siginfo *info)
 707{
 708        return info <= SEND_SIG_FORCED;
 709}
 710
 711static inline bool si_fromuser(const struct siginfo *info)
 712{
 713        return info == SEND_SIG_NOINFO ||
 714                (!is_si_special(info) && SI_FROMUSER(info));
 715}
 716
 717/*
 718 * called with RCU read lock from check_kill_permission()
 719 */
 720static int kill_ok_by_cred(struct task_struct *t)
 721{
 722        const struct cred *cred = current_cred();
 723        const struct cred *tcred = __task_cred(t);
 724
 725        if (uid_eq(cred->euid, tcred->suid) ||
 726            uid_eq(cred->euid, tcred->uid)  ||
 727            uid_eq(cred->uid,  tcred->suid) ||
 728            uid_eq(cred->uid,  tcred->uid))
 729                return 1;
 730
 731        if (ns_capable(tcred->user_ns, CAP_KILL))
 732                return 1;
 733
 734        return 0;
 735}
 736
 737/*
 738 * Bad permissions for sending the signal
 739 * - the caller must hold the RCU read lock
 740 */
 741static int check_kill_permission(int sig, struct siginfo *info,
 742                                 struct task_struct *t)
 743{
 744        struct pid *sid;
 745        int error;
 746
 747        if (!valid_signal(sig))
 748                return -EINVAL;
 749
 750        if (!si_fromuser(info))
 751                return 0;
 752
 753        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 754        if (error)
 755                return error;
 756
 757        if (!same_thread_group(current, t) &&
 758            !kill_ok_by_cred(t)) {
 759                switch (sig) {
 760                case SIGCONT:
 761                        sid = task_session(t);
 762                        /*
 763                         * We don't return the error if sid == NULL. The
 764                         * task was unhashed, the caller must notice this.
 765                         */
 766                        if (!sid || sid == task_session(current))
 767                                break;
 768                default:
 769                        return -EPERM;
 770                }
 771        }
 772
 773        return security_task_kill(t, info, sig, NULL);
 774}
 775
 776/**
 777 * ptrace_trap_notify - schedule trap to notify ptracer
 778 * @t: tracee wanting to notify tracer
 779 *
 780 * This function schedules sticky ptrace trap which is cleared on the next
 781 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 782 * ptracer.
 783 *
 784 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 785 * ptracer is listening for events, tracee is woken up so that it can
 786 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 787 * eventually taken without returning to userland after the existing traps
 788 * are finished by PTRACE_CONT.
 789 *
 790 * CONTEXT:
 791 * Must be called with @task->sighand->siglock held.
 792 */
 793static void ptrace_trap_notify(struct task_struct *t)
 794{
 795        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 796        assert_spin_locked(&t->sighand->siglock);
 797
 798        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 799        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 800}
 801
 802/*
 803 * Handle magic process-wide effects of stop/continue signals. Unlike
 804 * the signal actions, these happen immediately at signal-generation
 805 * time regardless of blocking, ignoring, or handling.  This does the
 806 * actual continuing for SIGCONT, but not the actual stopping for stop
 807 * signals. The process stop is done as a signal action for SIG_DFL.
 808 *
 809 * Returns true if the signal should be actually delivered, otherwise
 810 * it should be dropped.
 811 */
 812static bool prepare_signal(int sig, struct task_struct *p, bool force)
 813{
 814        struct signal_struct *signal = p->signal;
 815        struct task_struct *t;
 816        sigset_t flush;
 817
 818        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 819                if (!(signal->flags & SIGNAL_GROUP_EXIT))
 820                        return sig == SIGKILL;
 821                /*
 822                 * The process is in the middle of dying, nothing to do.
 823                 */
 824        } else if (sig_kernel_stop(sig)) {
 825                /*
 826                 * This is a stop signal.  Remove SIGCONT from all queues.
 827                 */
 828                siginitset(&flush, sigmask(SIGCONT));
 829                flush_sigqueue_mask(&flush, &signal->shared_pending);
 830                for_each_thread(p, t)
 831                        flush_sigqueue_mask(&flush, &t->pending);
 832        } else if (sig == SIGCONT) {
 833                unsigned int why;
 834                /*
 835                 * Remove all stop signals from all queues, wake all threads.
 836                 */
 837                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 838                flush_sigqueue_mask(&flush, &signal->shared_pending);
 839                for_each_thread(p, t) {
 840                        flush_sigqueue_mask(&flush, &t->pending);
 841                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 842                        if (likely(!(t->ptrace & PT_SEIZED)))
 843                                wake_up_state(t, __TASK_STOPPED);
 844                        else
 845                                ptrace_trap_notify(t);
 846                }
 847
 848                /*
 849                 * Notify the parent with CLD_CONTINUED if we were stopped.
 850                 *
 851                 * If we were in the middle of a group stop, we pretend it
 852                 * was already finished, and then continued. Since SIGCHLD
 853                 * doesn't queue we report only CLD_STOPPED, as if the next
 854                 * CLD_CONTINUED was dropped.
 855                 */
 856                why = 0;
 857                if (signal->flags & SIGNAL_STOP_STOPPED)
 858                        why |= SIGNAL_CLD_CONTINUED;
 859                else if (signal->group_stop_count)
 860                        why |= SIGNAL_CLD_STOPPED;
 861
 862                if (why) {
 863                        /*
 864                         * The first thread which returns from do_signal_stop()
 865                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 866                         * notify its parent. See get_signal_to_deliver().
 867                         */
 868                        signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 869                        signal->group_stop_count = 0;
 870                        signal->group_exit_code = 0;
 871                }
 872        }
 873
 874        return !sig_ignored(p, sig, force);
 875}
 876
 877/*
 878 * Test if P wants to take SIG.  After we've checked all threads with this,
 879 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 880 * blocking SIG were ruled out because they are not running and already
 881 * have pending signals.  Such threads will dequeue from the shared queue
 882 * as soon as they're available, so putting the signal on the shared queue
 883 * will be equivalent to sending it to one such thread.
 884 */
 885static inline int wants_signal(int sig, struct task_struct *p)
 886{
 887        if (sigismember(&p->blocked, sig))
 888                return 0;
 889        if (p->flags & PF_EXITING)
 890                return 0;
 891        if (sig == SIGKILL)
 892                return 1;
 893        if (task_is_stopped_or_traced(p))
 894                return 0;
 895        return task_curr(p) || !signal_pending(p);
 896}
 897
 898static void complete_signal(int sig, struct task_struct *p, int group)
 899{
 900        struct signal_struct *signal = p->signal;
 901        struct task_struct *t;
 902
 903        /*
 904         * Now find a thread we can wake up to take the signal off the queue.
 905         *
 906         * If the main thread wants the signal, it gets first crack.
 907         * Probably the least surprising to the average bear.
 908         */
 909        if (wants_signal(sig, p))
 910                t = p;
 911        else if (!group || thread_group_empty(p))
 912                /*
 913                 * There is just one thread and it does not need to be woken.
 914                 * It will dequeue unblocked signals before it runs again.
 915                 */
 916                return;
 917        else {
 918                /*
 919                 * Otherwise try to find a suitable thread.
 920                 */
 921                t = signal->curr_target;
 922                while (!wants_signal(sig, t)) {
 923                        t = next_thread(t);
 924                        if (t == signal->curr_target)
 925                                /*
 926                                 * No thread needs to be woken.
 927                                 * Any eligible threads will see
 928                                 * the signal in the queue soon.
 929                                 */
 930                                return;
 931                }
 932                signal->curr_target = t;
 933        }
 934
 935        /*
 936         * Found a killable thread.  If the signal will be fatal,
 937         * then start taking the whole group down immediately.
 938         */
 939        if (sig_fatal(p, sig) &&
 940            !(signal->flags & SIGNAL_GROUP_EXIT) &&
 941            !sigismember(&t->real_blocked, sig) &&
 942            (sig == SIGKILL || !p->ptrace)) {
 943                /*
 944                 * This signal will be fatal to the whole group.
 945                 */
 946                if (!sig_kernel_coredump(sig)) {
 947                        /*
 948                         * Start a group exit and wake everybody up.
 949                         * This way we don't have other threads
 950                         * running and doing things after a slower
 951                         * thread has the fatal signal pending.
 952                         */
 953                        signal->flags = SIGNAL_GROUP_EXIT;
 954                        signal->group_exit_code = sig;
 955                        signal->group_stop_count = 0;
 956                        t = p;
 957                        do {
 958                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 959                                sigaddset(&t->pending.signal, SIGKILL);
 960                                signal_wake_up(t, 1);
 961                        } while_each_thread(p, t);
 962                        return;
 963                }
 964        }
 965
 966        /*
 967         * The signal is already in the shared-pending queue.
 968         * Tell the chosen thread to wake up and dequeue it.
 969         */
 970        signal_wake_up(t, sig == SIGKILL);
 971        return;
 972}
 973
 974static inline int legacy_queue(struct sigpending *signals, int sig)
 975{
 976        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 977}
 978
 979#ifdef CONFIG_USER_NS
 980static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 981{
 982        if (current_user_ns() == task_cred_xxx(t, user_ns))
 983                return;
 984
 985        if (SI_FROMKERNEL(info))
 986                return;
 987
 988        rcu_read_lock();
 989        info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 990                                        make_kuid(current_user_ns(), info->si_uid));
 991        rcu_read_unlock();
 992}
 993#else
 994static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 995{
 996        return;
 997}
 998#endif
 999
1000static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001                        int group, int from_ancestor_ns)
1002{
1003        struct sigpending *pending;
1004        struct sigqueue *q;
1005        int override_rlimit;
1006        int ret = 0, result;
1007
1008        assert_spin_locked(&t->sighand->siglock);
1009
1010        result = TRACE_SIGNAL_IGNORED;
1011        if (!prepare_signal(sig, t,
1012                        from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013                goto ret;
1014
1015        pending = group ? &t->signal->shared_pending : &t->pending;
1016        /*
1017         * Short-circuit ignored signals and support queuing
1018         * exactly one non-rt signal, so that we can get more
1019         * detailed information about the cause of the signal.
1020         */
1021        result = TRACE_SIGNAL_ALREADY_PENDING;
1022        if (legacy_queue(pending, sig))
1023                goto ret;
1024
1025        result = TRACE_SIGNAL_DELIVERED;
1026        /*
1027         * fast-pathed signals for kernel-internal things like SIGSTOP
1028         * or SIGKILL.
1029         */
1030        if (info == SEND_SIG_FORCED)
1031                goto out_set;
1032
1033        /*
1034         * Real-time signals must be queued if sent by sigqueue, or
1035         * some other real-time mechanism.  It is implementation
1036         * defined whether kill() does so.  We attempt to do so, on
1037         * the principle of least surprise, but since kill is not
1038         * allowed to fail with EAGAIN when low on memory we just
1039         * make sure at least one signal gets delivered and don't
1040         * pass on the info struct.
1041         */
1042        if (sig < SIGRTMIN)
1043                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044        else
1045                override_rlimit = 0;
1046
1047        q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1048        if (q) {
1049                list_add_tail(&q->list, &pending->list);
1050                switch ((unsigned long) info) {
1051                case (unsigned long) SEND_SIG_NOINFO:
1052                        clear_siginfo(&q->info);
1053                        q->info.si_signo = sig;
1054                        q->info.si_errno = 0;
1055                        q->info.si_code = SI_USER;
1056                        q->info.si_pid = task_tgid_nr_ns(current,
1057                                                        task_active_pid_ns(t));
1058                        q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1059                        break;
1060                case (unsigned long) SEND_SIG_PRIV:
1061                        clear_siginfo(&q->info);
1062                        q->info.si_signo = sig;
1063                        q->info.si_errno = 0;
1064                        q->info.si_code = SI_KERNEL;
1065                        q->info.si_pid = 0;
1066                        q->info.si_uid = 0;
1067                        break;
1068                default:
1069                        copy_siginfo(&q->info, info);
1070                        if (from_ancestor_ns)
1071                                q->info.si_pid = 0;
1072                        break;
1073                }
1074
1075                userns_fixup_signal_uid(&q->info, t);
1076
1077        } else if (!is_si_special(info)) {
1078                if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079                        /*
1080                         * Queue overflow, abort.  We may abort if the
1081                         * signal was rt and sent by user using something
1082                         * other than kill().
1083                         */
1084                        result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085                        ret = -EAGAIN;
1086                        goto ret;
1087                } else {
1088                        /*
1089                         * This is a silent loss of information.  We still
1090                         * send the signal, but the *info bits are lost.
1091                         */
1092                        result = TRACE_SIGNAL_LOSE_INFO;
1093                }
1094        }
1095
1096out_set:
1097        signalfd_notify(t, sig);
1098        sigaddset(&pending->signal, sig);
1099        complete_signal(sig, t, group);
1100ret:
1101        trace_signal_generate(sig, info, t, group, result);
1102        return ret;
1103}
1104
1105static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106                        int group)
1107{
1108        int from_ancestor_ns = 0;
1109
1110#ifdef CONFIG_PID_NS
1111        from_ancestor_ns = si_fromuser(info) &&
1112                           !task_pid_nr_ns(current, task_active_pid_ns(t));
1113#endif
1114
1115        return __send_signal(sig, info, t, group, from_ancestor_ns);
1116}
1117
1118static void print_fatal_signal(int signr)
1119{
1120        struct pt_regs *regs = signal_pt_regs();
1121        pr_info("potentially unexpected fatal signal %d.\n", signr);
1122
1123#if defined(__i386__) && !defined(__arch_um__)
1124        pr_info("code at %08lx: ", regs->ip);
1125        {
1126                int i;
1127                for (i = 0; i < 16; i++) {
1128                        unsigned char insn;
1129
1130                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131                                break;
1132                        pr_cont("%02x ", insn);
1133                }
1134        }
1135        pr_cont("\n");
1136#endif
1137        preempt_disable();
1138        show_regs(regs);
1139        preempt_enable();
1140}
1141
1142static int __init setup_print_fatal_signals(char *str)
1143{
1144        get_option (&str, &print_fatal_signals);
1145
1146        return 1;
1147}
1148
1149__setup("print-fatal-signals=", setup_print_fatal_signals);
1150
1151int
1152__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153{
1154        return send_signal(sig, info, p, 1);
1155}
1156
1157static int
1158specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159{
1160        return send_signal(sig, info, t, 0);
1161}
1162
1163int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164                        bool group)
1165{
1166        unsigned long flags;
1167        int ret = -ESRCH;
1168
1169        if (lock_task_sighand(p, &flags)) {
1170                ret = send_signal(sig, info, p, group);
1171                unlock_task_sighand(p, &flags);
1172        }
1173
1174        return ret;
1175}
1176
1177/*
1178 * Force a signal that the process can't ignore: if necessary
1179 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180 *
1181 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182 * since we do not want to have a signal handler that was blocked
1183 * be invoked when user space had explicitly blocked it.
1184 *
1185 * We don't want to have recursive SIGSEGV's etc, for example,
1186 * that is why we also clear SIGNAL_UNKILLABLE.
1187 */
1188int
1189force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1190{
1191        unsigned long int flags;
1192        int ret, blocked, ignored;
1193        struct k_sigaction *action;
1194
1195        spin_lock_irqsave(&t->sighand->siglock, flags);
1196        action = &t->sighand->action[sig-1];
1197        ignored = action->sa.sa_handler == SIG_IGN;
1198        blocked = sigismember(&t->blocked, sig);
1199        if (blocked || ignored) {
1200                action->sa.sa_handler = SIG_DFL;
1201                if (blocked) {
1202                        sigdelset(&t->blocked, sig);
1203                        recalc_sigpending_and_wake(t);
1204                }
1205        }
1206        /*
1207         * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208         * debugging to leave init killable.
1209         */
1210        if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1211                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212        ret = specific_send_sig_info(sig, info, t);
1213        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214
1215        return ret;
1216}
1217
1218/*
1219 * Nuke all other threads in the group.
1220 */
1221int zap_other_threads(struct task_struct *p)
1222{
1223        struct task_struct *t = p;
1224        int count = 0;
1225
1226        p->signal->group_stop_count = 0;
1227
1228        while_each_thread(p, t) {
1229                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230                count++;
1231
1232                /* Don't bother with already dead threads */
1233                if (t->exit_state)
1234                        continue;
1235                sigaddset(&t->pending.signal, SIGKILL);
1236                signal_wake_up(t, 1);
1237        }
1238
1239        return count;
1240}
1241
1242struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243                                           unsigned long *flags)
1244{
1245        struct sighand_struct *sighand;
1246
1247        for (;;) {
1248                /*
1249                 * Disable interrupts early to avoid deadlocks.
1250                 * See rcu_read_unlock() comment header for details.
1251                 */
1252                local_irq_save(*flags);
1253                rcu_read_lock();
1254                sighand = rcu_dereference(tsk->sighand);
1255                if (unlikely(sighand == NULL)) {
1256                        rcu_read_unlock();
1257                        local_irq_restore(*flags);
1258                        break;
1259                }
1260                /*
1261                 * This sighand can be already freed and even reused, but
1262                 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263                 * initializes ->siglock: this slab can't go away, it has
1264                 * the same object type, ->siglock can't be reinitialized.
1265                 *
1266                 * We need to ensure that tsk->sighand is still the same
1267                 * after we take the lock, we can race with de_thread() or
1268                 * __exit_signal(). In the latter case the next iteration
1269                 * must see ->sighand == NULL.
1270                 */
1271                spin_lock(&sighand->siglock);
1272                if (likely(sighand == tsk->sighand)) {
1273                        rcu_read_unlock();
1274                        break;
1275                }
1276                spin_unlock(&sighand->siglock);
1277                rcu_read_unlock();
1278                local_irq_restore(*flags);
1279        }
1280
1281        return sighand;
1282}
1283
1284/*
1285 * send signal info to all the members of a group
1286 */
1287int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1288{
1289        int ret;
1290
1291        rcu_read_lock();
1292        ret = check_kill_permission(sig, info, p);
1293        rcu_read_unlock();
1294
1295        if (!ret && sig)
1296                ret = do_send_sig_info(sig, info, p, true);
1297
1298        return ret;
1299}
1300
1301/*
1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303 * control characters do (^C, ^Z etc)
1304 * - the caller must hold at least a readlock on tasklist_lock
1305 */
1306int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307{
1308        struct task_struct *p = NULL;
1309        int retval, success;
1310
1311        success = 0;
1312        retval = -ESRCH;
1313        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314                int err = group_send_sig_info(sig, info, p);
1315                success |= !err;
1316                retval = err;
1317        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318        return success ? 0 : retval;
1319}
1320
1321int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322{
1323        int error = -ESRCH;
1324        struct task_struct *p;
1325
1326        for (;;) {
1327                rcu_read_lock();
1328                p = pid_task(pid, PIDTYPE_PID);
1329                if (p)
1330                        error = group_send_sig_info(sig, info, p);
1331                rcu_read_unlock();
1332                if (likely(!p || error != -ESRCH))
1333                        return error;
1334
1335                /*
1336                 * The task was unhashed in between, try again.  If it
1337                 * is dead, pid_task() will return NULL, if we race with
1338                 * de_thread() it will find the new leader.
1339                 */
1340        }
1341}
1342
1343static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344{
1345        int error;
1346        rcu_read_lock();
1347        error = kill_pid_info(sig, info, find_vpid(pid));
1348        rcu_read_unlock();
1349        return error;
1350}
1351
1352static int kill_as_cred_perm(const struct cred *cred,
1353                             struct task_struct *target)
1354{
1355        const struct cred *pcred = __task_cred(target);
1356        if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357            !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1358                return 0;
1359        return 1;
1360}
1361
1362/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364                         const struct cred *cred)
1365{
1366        int ret = -EINVAL;
1367        struct task_struct *p;
1368        unsigned long flags;
1369
1370        if (!valid_signal(sig))
1371                return ret;
1372
1373        rcu_read_lock();
1374        p = pid_task(pid, PIDTYPE_PID);
1375        if (!p) {
1376                ret = -ESRCH;
1377                goto out_unlock;
1378        }
1379        if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380                ret = -EPERM;
1381                goto out_unlock;
1382        }
1383        ret = security_task_kill(p, info, sig, cred);
1384        if (ret)
1385                goto out_unlock;
1386
1387        if (sig) {
1388                if (lock_task_sighand(p, &flags)) {
1389                        ret = __send_signal(sig, info, p, 1, 0);
1390                        unlock_task_sighand(p, &flags);
1391                } else
1392                        ret = -ESRCH;
1393        }
1394out_unlock:
1395        rcu_read_unlock();
1396        return ret;
1397}
1398EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399
1400/*
1401 * kill_something_info() interprets pid in interesting ways just like kill(2).
1402 *
1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404 * is probably wrong.  Should make it like BSD or SYSV.
1405 */
1406
1407static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408{
1409        int ret;
1410
1411        if (pid > 0) {
1412                rcu_read_lock();
1413                ret = kill_pid_info(sig, info, find_vpid(pid));
1414                rcu_read_unlock();
1415                return ret;
1416        }
1417
1418        /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1419        if (pid == INT_MIN)
1420                return -ESRCH;
1421
1422        read_lock(&tasklist_lock);
1423        if (pid != -1) {
1424                ret = __kill_pgrp_info(sig, info,
1425                                pid ? find_vpid(-pid) : task_pgrp(current));
1426        } else {
1427                int retval = 0, count = 0;
1428                struct task_struct * p;
1429
1430                for_each_process(p) {
1431                        if (task_pid_vnr(p) > 1 &&
1432                                        !same_thread_group(p, current)) {
1433                                int err = group_send_sig_info(sig, info, p);
1434                                ++count;
1435                                if (err != -EPERM)
1436                                        retval = err;
1437                        }
1438                }
1439                ret = count ? retval : -ESRCH;
1440        }
1441        read_unlock(&tasklist_lock);
1442
1443        return ret;
1444}
1445
1446/*
1447 * These are for backward compatibility with the rest of the kernel source.
1448 */
1449
1450int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451{
1452        /*
1453         * Make sure legacy kernel users don't send in bad values
1454         * (normal paths check this in check_kill_permission).
1455         */
1456        if (!valid_signal(sig))
1457                return -EINVAL;
1458
1459        return do_send_sig_info(sig, info, p, false);
1460}
1461
1462#define __si_special(priv) \
1463        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464
1465int
1466send_sig(int sig, struct task_struct *p, int priv)
1467{
1468        return send_sig_info(sig, __si_special(priv), p);
1469}
1470
1471void
1472force_sig(int sig, struct task_struct *p)
1473{
1474        force_sig_info(sig, SEND_SIG_PRIV, p);
1475}
1476
1477/*
1478 * When things go south during signal handling, we
1479 * will force a SIGSEGV. And if the signal that caused
1480 * the problem was already a SIGSEGV, we'll want to
1481 * make sure we don't even try to deliver the signal..
1482 */
1483int
1484force_sigsegv(int sig, struct task_struct *p)
1485{
1486        if (sig == SIGSEGV) {
1487                unsigned long flags;
1488                spin_lock_irqsave(&p->sighand->siglock, flags);
1489                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491        }
1492        force_sig(SIGSEGV, p);
1493        return 0;
1494}
1495
1496int force_sig_fault(int sig, int code, void __user *addr
1497        ___ARCH_SI_TRAPNO(int trapno)
1498        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499        , struct task_struct *t)
1500{
1501        struct siginfo info;
1502
1503        clear_siginfo(&info);
1504        info.si_signo = sig;
1505        info.si_errno = 0;
1506        info.si_code  = code;
1507        info.si_addr  = addr;
1508#ifdef __ARCH_SI_TRAPNO
1509        info.si_trapno = trapno;
1510#endif
1511#ifdef __ia64__
1512        info.si_imm = imm;
1513        info.si_flags = flags;
1514        info.si_isr = isr;
1515#endif
1516        return force_sig_info(info.si_signo, &info, t);
1517}
1518
1519int send_sig_fault(int sig, int code, void __user *addr
1520        ___ARCH_SI_TRAPNO(int trapno)
1521        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522        , struct task_struct *t)
1523{
1524        struct siginfo info;
1525
1526        clear_siginfo(&info);
1527        info.si_signo = sig;
1528        info.si_errno = 0;
1529        info.si_code  = code;
1530        info.si_addr  = addr;
1531#ifdef __ARCH_SI_TRAPNO
1532        info.si_trapno = trapno;
1533#endif
1534#ifdef __ia64__
1535        info.si_imm = imm;
1536        info.si_flags = flags;
1537        info.si_isr = isr;
1538#endif
1539        return send_sig_info(info.si_signo, &info, t);
1540}
1541
1542#if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1543int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1544{
1545        struct siginfo info;
1546
1547        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1548        clear_siginfo(&info);
1549        info.si_signo = SIGBUS;
1550        info.si_errno = 0;
1551        info.si_code = code;
1552        info.si_addr = addr;
1553        info.si_addr_lsb = lsb;
1554        return force_sig_info(info.si_signo, &info, t);
1555}
1556
1557int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1558{
1559        struct siginfo info;
1560
1561        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1562        clear_siginfo(&info);
1563        info.si_signo = SIGBUS;
1564        info.si_errno = 0;
1565        info.si_code = code;
1566        info.si_addr = addr;
1567        info.si_addr_lsb = lsb;
1568        return send_sig_info(info.si_signo, &info, t);
1569}
1570EXPORT_SYMBOL(send_sig_mceerr);
1571#endif
1572
1573#ifdef SEGV_BNDERR
1574int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1575{
1576        struct siginfo info;
1577
1578        clear_siginfo(&info);
1579        info.si_signo = SIGSEGV;
1580        info.si_errno = 0;
1581        info.si_code  = SEGV_BNDERR;
1582        info.si_addr  = addr;
1583        info.si_lower = lower;
1584        info.si_upper = upper;
1585        return force_sig_info(info.si_signo, &info, current);
1586}
1587#endif
1588
1589#ifdef SEGV_PKUERR
1590int force_sig_pkuerr(void __user *addr, u32 pkey)
1591{
1592        struct siginfo info;
1593
1594        clear_siginfo(&info);
1595        info.si_signo = SIGSEGV;
1596        info.si_errno = 0;
1597        info.si_code  = SEGV_PKUERR;
1598        info.si_addr  = addr;
1599        info.si_pkey  = pkey;
1600        return force_sig_info(info.si_signo, &info, current);
1601}
1602#endif
1603
1604/* For the crazy architectures that include trap information in
1605 * the errno field, instead of an actual errno value.
1606 */
1607int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1608{
1609        struct siginfo info;
1610
1611        clear_siginfo(&info);
1612        info.si_signo = SIGTRAP;
1613        info.si_errno = errno;
1614        info.si_code  = TRAP_HWBKPT;
1615        info.si_addr  = addr;
1616        return force_sig_info(info.si_signo, &info, current);
1617}
1618
1619int kill_pgrp(struct pid *pid, int sig, int priv)
1620{
1621        int ret;
1622
1623        read_lock(&tasklist_lock);
1624        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1625        read_unlock(&tasklist_lock);
1626
1627        return ret;
1628}
1629EXPORT_SYMBOL(kill_pgrp);
1630
1631int kill_pid(struct pid *pid, int sig, int priv)
1632{
1633        return kill_pid_info(sig, __si_special(priv), pid);
1634}
1635EXPORT_SYMBOL(kill_pid);
1636
1637/*
1638 * These functions support sending signals using preallocated sigqueue
1639 * structures.  This is needed "because realtime applications cannot
1640 * afford to lose notifications of asynchronous events, like timer
1641 * expirations or I/O completions".  In the case of POSIX Timers
1642 * we allocate the sigqueue structure from the timer_create.  If this
1643 * allocation fails we are able to report the failure to the application
1644 * with an EAGAIN error.
1645 */
1646struct sigqueue *sigqueue_alloc(void)
1647{
1648        struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1649
1650        if (q)
1651                q->flags |= SIGQUEUE_PREALLOC;
1652
1653        return q;
1654}
1655
1656void sigqueue_free(struct sigqueue *q)
1657{
1658        unsigned long flags;
1659        spinlock_t *lock = &current->sighand->siglock;
1660
1661        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1662        /*
1663         * We must hold ->siglock while testing q->list
1664         * to serialize with collect_signal() or with
1665         * __exit_signal()->flush_sigqueue().
1666         */
1667        spin_lock_irqsave(lock, flags);
1668        q->flags &= ~SIGQUEUE_PREALLOC;
1669        /*
1670         * If it is queued it will be freed when dequeued,
1671         * like the "regular" sigqueue.
1672         */
1673        if (!list_empty(&q->list))
1674                q = NULL;
1675        spin_unlock_irqrestore(lock, flags);
1676
1677        if (q)
1678                __sigqueue_free(q);
1679}
1680
1681int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1682{
1683        int sig = q->info.si_signo;
1684        struct sigpending *pending;
1685        unsigned long flags;
1686        int ret, result;
1687
1688        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689
1690        ret = -1;
1691        if (!likely(lock_task_sighand(t, &flags)))
1692                goto ret;
1693
1694        ret = 1; /* the signal is ignored */
1695        result = TRACE_SIGNAL_IGNORED;
1696        if (!prepare_signal(sig, t, false))
1697                goto out;
1698
1699        ret = 0;
1700        if (unlikely(!list_empty(&q->list))) {
1701                /*
1702                 * If an SI_TIMER entry is already queue just increment
1703                 * the overrun count.
1704                 */
1705                BUG_ON(q->info.si_code != SI_TIMER);
1706                q->info.si_overrun++;
1707                result = TRACE_SIGNAL_ALREADY_PENDING;
1708                goto out;
1709        }
1710        q->info.si_overrun = 0;
1711
1712        signalfd_notify(t, sig);
1713        pending = group ? &t->signal->shared_pending : &t->pending;
1714        list_add_tail(&q->list, &pending->list);
1715        sigaddset(&pending->signal, sig);
1716        complete_signal(sig, t, group);
1717        result = TRACE_SIGNAL_DELIVERED;
1718out:
1719        trace_signal_generate(sig, &q->info, t, group, result);
1720        unlock_task_sighand(t, &flags);
1721ret:
1722        return ret;
1723}
1724
1725/*
1726 * Let a parent know about the death of a child.
1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1728 *
1729 * Returns true if our parent ignored us and so we've switched to
1730 * self-reaping.
1731 */
1732bool do_notify_parent(struct task_struct *tsk, int sig)
1733{
1734        struct siginfo info;
1735        unsigned long flags;
1736        struct sighand_struct *psig;
1737        bool autoreap = false;
1738        u64 utime, stime;
1739
1740        BUG_ON(sig == -1);
1741
1742        /* do_notify_parent_cldstop should have been called instead.  */
1743        BUG_ON(task_is_stopped_or_traced(tsk));
1744
1745        BUG_ON(!tsk->ptrace &&
1746               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1747
1748        if (sig != SIGCHLD) {
1749                /*
1750                 * This is only possible if parent == real_parent.
1751                 * Check if it has changed security domain.
1752                 */
1753                if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1754                        sig = SIGCHLD;
1755        }
1756
1757        clear_siginfo(&info);
1758        info.si_signo = sig;
1759        info.si_errno = 0;
1760        /*
1761         * We are under tasklist_lock here so our parent is tied to
1762         * us and cannot change.
1763         *
1764         * task_active_pid_ns will always return the same pid namespace
1765         * until a task passes through release_task.
1766         *
1767         * write_lock() currently calls preempt_disable() which is the
1768         * same as rcu_read_lock(), but according to Oleg, this is not
1769         * correct to rely on this
1770         */
1771        rcu_read_lock();
1772        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1773        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1774                                       task_uid(tsk));
1775        rcu_read_unlock();
1776
1777        task_cputime(tsk, &utime, &stime);
1778        info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1779        info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1780
1781        info.si_status = tsk->exit_code & 0x7f;
1782        if (tsk->exit_code & 0x80)
1783                info.si_code = CLD_DUMPED;
1784        else if (tsk->exit_code & 0x7f)
1785                info.si_code = CLD_KILLED;
1786        else {
1787                info.si_code = CLD_EXITED;
1788                info.si_status = tsk->exit_code >> 8;
1789        }
1790
1791        psig = tsk->parent->sighand;
1792        spin_lock_irqsave(&psig->siglock, flags);
1793        if (!tsk->ptrace && sig == SIGCHLD &&
1794            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1795             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1796                /*
1797                 * We are exiting and our parent doesn't care.  POSIX.1
1798                 * defines special semantics for setting SIGCHLD to SIG_IGN
1799                 * or setting the SA_NOCLDWAIT flag: we should be reaped
1800                 * automatically and not left for our parent's wait4 call.
1801                 * Rather than having the parent do it as a magic kind of
1802                 * signal handler, we just set this to tell do_exit that we
1803                 * can be cleaned up without becoming a zombie.  Note that
1804                 * we still call __wake_up_parent in this case, because a
1805                 * blocked sys_wait4 might now return -ECHILD.
1806                 *
1807                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1808                 * is implementation-defined: we do (if you don't want
1809                 * it, just use SIG_IGN instead).
1810                 */
1811                autoreap = true;
1812                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1813                        sig = 0;
1814        }
1815        if (valid_signal(sig) && sig)
1816                __group_send_sig_info(sig, &info, tsk->parent);
1817        __wake_up_parent(tsk, tsk->parent);
1818        spin_unlock_irqrestore(&psig->siglock, flags);
1819
1820        return autoreap;
1821}
1822
1823/**
1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1825 * @tsk: task reporting the state change
1826 * @for_ptracer: the notification is for ptracer
1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1828 *
1829 * Notify @tsk's parent that the stopped/continued state has changed.  If
1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1832 *
1833 * CONTEXT:
1834 * Must be called with tasklist_lock at least read locked.
1835 */
1836static void do_notify_parent_cldstop(struct task_struct *tsk,
1837                                     bool for_ptracer, int why)
1838{
1839        struct siginfo info;
1840        unsigned long flags;
1841        struct task_struct *parent;
1842        struct sighand_struct *sighand;
1843        u64 utime, stime;
1844
1845        if (for_ptracer) {
1846                parent = tsk->parent;
1847        } else {
1848                tsk = tsk->group_leader;
1849                parent = tsk->real_parent;
1850        }
1851
1852        clear_siginfo(&info);
1853        info.si_signo = SIGCHLD;
1854        info.si_errno = 0;
1855        /*
1856         * see comment in do_notify_parent() about the following 4 lines
1857         */
1858        rcu_read_lock();
1859        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1860        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1861        rcu_read_unlock();
1862
1863        task_cputime(tsk, &utime, &stime);
1864        info.si_utime = nsec_to_clock_t(utime);
1865        info.si_stime = nsec_to_clock_t(stime);
1866
1867        info.si_code = why;
1868        switch (why) {
1869        case CLD_CONTINUED:
1870                info.si_status = SIGCONT;
1871                break;
1872        case CLD_STOPPED:
1873                info.si_status = tsk->signal->group_exit_code & 0x7f;
1874                break;
1875        case CLD_TRAPPED:
1876                info.si_status = tsk->exit_code & 0x7f;
1877                break;
1878        default:
1879                BUG();
1880        }
1881
1882        sighand = parent->sighand;
1883        spin_lock_irqsave(&sighand->siglock, flags);
1884        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1885            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1886                __group_send_sig_info(SIGCHLD, &info, parent);
1887        /*
1888         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1889         */
1890        __wake_up_parent(tsk, parent);
1891        spin_unlock_irqrestore(&sighand->siglock, flags);
1892}
1893
1894static inline int may_ptrace_stop(void)
1895{
1896        if (!likely(current->ptrace))
1897                return 0;
1898        /*
1899         * Are we in the middle of do_coredump?
1900         * If so and our tracer is also part of the coredump stopping
1901         * is a deadlock situation, and pointless because our tracer
1902         * is dead so don't allow us to stop.
1903         * If SIGKILL was already sent before the caller unlocked
1904         * ->siglock we must see ->core_state != NULL. Otherwise it
1905         * is safe to enter schedule().
1906         *
1907         * This is almost outdated, a task with the pending SIGKILL can't
1908         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1909         * after SIGKILL was already dequeued.
1910         */
1911        if (unlikely(current->mm->core_state) &&
1912            unlikely(current->mm == current->parent->mm))
1913                return 0;
1914
1915        return 1;
1916}
1917
1918/*
1919 * Return non-zero if there is a SIGKILL that should be waking us up.
1920 * Called with the siglock held.
1921 */
1922static int sigkill_pending(struct task_struct *tsk)
1923{
1924        return  sigismember(&tsk->pending.signal, SIGKILL) ||
1925                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1926}
1927
1928/*
1929 * This must be called with current->sighand->siglock held.
1930 *
1931 * This should be the path for all ptrace stops.
1932 * We always set current->last_siginfo while stopped here.
1933 * That makes it a way to test a stopped process for
1934 * being ptrace-stopped vs being job-control-stopped.
1935 *
1936 * If we actually decide not to stop at all because the tracer
1937 * is gone, we keep current->exit_code unless clear_code.
1938 */
1939static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1940        __releases(&current->sighand->siglock)
1941        __acquires(&current->sighand->siglock)
1942{
1943        bool gstop_done = false;
1944
1945        if (arch_ptrace_stop_needed(exit_code, info)) {
1946                /*
1947                 * The arch code has something special to do before a
1948                 * ptrace stop.  This is allowed to block, e.g. for faults
1949                 * on user stack pages.  We can't keep the siglock while
1950                 * calling arch_ptrace_stop, so we must release it now.
1951                 * To preserve proper semantics, we must do this before
1952                 * any signal bookkeeping like checking group_stop_count.
1953                 * Meanwhile, a SIGKILL could come in before we retake the
1954                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1955                 * So after regaining the lock, we must check for SIGKILL.
1956                 */
1957                spin_unlock_irq(&current->sighand->siglock);
1958                arch_ptrace_stop(exit_code, info);
1959                spin_lock_irq(&current->sighand->siglock);
1960                if (sigkill_pending(current))
1961                        return;
1962        }
1963
1964        set_special_state(TASK_TRACED);
1965
1966        /*
1967         * We're committing to trapping.  TRACED should be visible before
1968         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1969         * Also, transition to TRACED and updates to ->jobctl should be
1970         * atomic with respect to siglock and should be done after the arch
1971         * hook as siglock is released and regrabbed across it.
1972         *
1973         *     TRACER                               TRACEE
1974         *
1975         *     ptrace_attach()
1976         * [L]   wait_on_bit(JOBCTL_TRAPPING)   [S] set_special_state(TRACED)
1977         *     do_wait()
1978         *       set_current_state()                smp_wmb();
1979         *       ptrace_do_wait()
1980         *         wait_task_stopped()
1981         *           task_stopped_code()
1982         * [L]         task_is_traced()         [S] task_clear_jobctl_trapping();
1983         */
1984        smp_wmb();
1985
1986        current->last_siginfo = info;
1987        current->exit_code = exit_code;
1988
1989        /*
1990         * If @why is CLD_STOPPED, we're trapping to participate in a group
1991         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1992         * across siglock relocks since INTERRUPT was scheduled, PENDING
1993         * could be clear now.  We act as if SIGCONT is received after
1994         * TASK_TRACED is entered - ignore it.
1995         */
1996        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1997                gstop_done = task_participate_group_stop(current);
1998
1999        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2000        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2001        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2002                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2003
2004        /* entering a trap, clear TRAPPING */
2005        task_clear_jobctl_trapping(current);
2006
2007        spin_unlock_irq(&current->sighand->siglock);
2008        read_lock(&tasklist_lock);
2009        if (may_ptrace_stop()) {
2010                /*
2011                 * Notify parents of the stop.
2012                 *
2013                 * While ptraced, there are two parents - the ptracer and
2014                 * the real_parent of the group_leader.  The ptracer should
2015                 * know about every stop while the real parent is only
2016                 * interested in the completion of group stop.  The states
2017                 * for the two don't interact with each other.  Notify
2018                 * separately unless they're gonna be duplicates.
2019                 */
2020                do_notify_parent_cldstop(current, true, why);
2021                if (gstop_done && ptrace_reparented(current))
2022                        do_notify_parent_cldstop(current, false, why);
2023
2024                /*
2025                 * Don't want to allow preemption here, because
2026                 * sys_ptrace() needs this task to be inactive.
2027                 *
2028                 * XXX: implement read_unlock_no_resched().
2029                 */
2030                preempt_disable();
2031                read_unlock(&tasklist_lock);
2032                preempt_enable_no_resched();
2033                freezable_schedule();
2034        } else {
2035                /*
2036                 * By the time we got the lock, our tracer went away.
2037                 * Don't drop the lock yet, another tracer may come.
2038                 *
2039                 * If @gstop_done, the ptracer went away between group stop
2040                 * completion and here.  During detach, it would have set
2041                 * JOBCTL_STOP_PENDING on us and we'll re-enter
2042                 * TASK_STOPPED in do_signal_stop() on return, so notifying
2043                 * the real parent of the group stop completion is enough.
2044                 */
2045                if (gstop_done)
2046                        do_notify_parent_cldstop(current, false, why);
2047
2048                /* tasklist protects us from ptrace_freeze_traced() */
2049                __set_current_state(TASK_RUNNING);
2050                if (clear_code)
2051                        current->exit_code = 0;
2052                read_unlock(&tasklist_lock);
2053        }
2054
2055        /*
2056         * We are back.  Now reacquire the siglock before touching
2057         * last_siginfo, so that we are sure to have synchronized with
2058         * any signal-sending on another CPU that wants to examine it.
2059         */
2060        spin_lock_irq(&current->sighand->siglock);
2061        current->last_siginfo = NULL;
2062
2063        /* LISTENING can be set only during STOP traps, clear it */
2064        current->jobctl &= ~JOBCTL_LISTENING;
2065
2066        /*
2067         * Queued signals ignored us while we were stopped for tracing.
2068         * So check for any that we should take before resuming user mode.
2069         * This sets TIF_SIGPENDING, but never clears it.
2070         */
2071        recalc_sigpending_tsk(current);
2072}
2073
2074static void ptrace_do_notify(int signr, int exit_code, int why)
2075{
2076        siginfo_t info;
2077
2078        clear_siginfo(&info);
2079        info.si_signo = signr;
2080        info.si_code = exit_code;
2081        info.si_pid = task_pid_vnr(current);
2082        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2083
2084        /* Let the debugger run.  */
2085        ptrace_stop(exit_code, why, 1, &info);
2086}
2087
2088void ptrace_notify(int exit_code)
2089{
2090        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2091        if (unlikely(current->task_works))
2092                task_work_run();
2093
2094        spin_lock_irq(&current->sighand->siglock);
2095        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2096        spin_unlock_irq(&current->sighand->siglock);
2097}
2098
2099/**
2100 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2101 * @signr: signr causing group stop if initiating
2102 *
2103 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2104 * and participate in it.  If already set, participate in the existing
2105 * group stop.  If participated in a group stop (and thus slept), %true is
2106 * returned with siglock released.
2107 *
2108 * If ptraced, this function doesn't handle stop itself.  Instead,
2109 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2110 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2111 * places afterwards.
2112 *
2113 * CONTEXT:
2114 * Must be called with @current->sighand->siglock held, which is released
2115 * on %true return.
2116 *
2117 * RETURNS:
2118 * %false if group stop is already cancelled or ptrace trap is scheduled.
2119 * %true if participated in group stop.
2120 */
2121static bool do_signal_stop(int signr)
2122        __releases(&current->sighand->siglock)
2123{
2124        struct signal_struct *sig = current->signal;
2125
2126        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2127                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2128                struct task_struct *t;
2129
2130                /* signr will be recorded in task->jobctl for retries */
2131                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2132
2133                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2134                    unlikely(signal_group_exit(sig)))
2135                        return false;
2136                /*
2137                 * There is no group stop already in progress.  We must
2138                 * initiate one now.
2139                 *
2140                 * While ptraced, a task may be resumed while group stop is
2141                 * still in effect and then receive a stop signal and
2142                 * initiate another group stop.  This deviates from the
2143                 * usual behavior as two consecutive stop signals can't
2144                 * cause two group stops when !ptraced.  That is why we
2145                 * also check !task_is_stopped(t) below.
2146                 *
2147                 * The condition can be distinguished by testing whether
2148                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2149                 * group_exit_code in such case.
2150                 *
2151                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2152                 * an intervening stop signal is required to cause two
2153                 * continued events regardless of ptrace.
2154                 */
2155                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2156                        sig->group_exit_code = signr;
2157
2158                sig->group_stop_count = 0;
2159
2160                if (task_set_jobctl_pending(current, signr | gstop))
2161                        sig->group_stop_count++;
2162
2163                t = current;
2164                while_each_thread(current, t) {
2165                        /*
2166                         * Setting state to TASK_STOPPED for a group
2167                         * stop is always done with the siglock held,
2168                         * so this check has no races.
2169                         */
2170                        if (!task_is_stopped(t) &&
2171                            task_set_jobctl_pending(t, signr | gstop)) {
2172                                sig->group_stop_count++;
2173                                if (likely(!(t->ptrace & PT_SEIZED)))
2174                                        signal_wake_up(t, 0);
2175                                else
2176                                        ptrace_trap_notify(t);
2177                        }
2178                }
2179        }
2180
2181        if (likely(!current->ptrace)) {
2182                int notify = 0;
2183
2184                /*
2185                 * If there are no other threads in the group, or if there
2186                 * is a group stop in progress and we are the last to stop,
2187                 * report to the parent.
2188                 */
2189                if (task_participate_group_stop(current))
2190                        notify = CLD_STOPPED;
2191
2192                set_special_state(TASK_STOPPED);
2193                spin_unlock_irq(&current->sighand->siglock);
2194
2195                /*
2196                 * Notify the parent of the group stop completion.  Because
2197                 * we're not holding either the siglock or tasklist_lock
2198                 * here, ptracer may attach inbetween; however, this is for
2199                 * group stop and should always be delivered to the real
2200                 * parent of the group leader.  The new ptracer will get
2201                 * its notification when this task transitions into
2202                 * TASK_TRACED.
2203                 */
2204                if (notify) {
2205                        read_lock(&tasklist_lock);
2206                        do_notify_parent_cldstop(current, false, notify);
2207                        read_unlock(&tasklist_lock);
2208                }
2209
2210                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2211                freezable_schedule();
2212                return true;
2213        } else {
2214                /*
2215                 * While ptraced, group stop is handled by STOP trap.
2216                 * Schedule it and let the caller deal with it.
2217                 */
2218                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2219                return false;
2220        }
2221}
2222
2223/**
2224 * do_jobctl_trap - take care of ptrace jobctl traps
2225 *
2226 * When PT_SEIZED, it's used for both group stop and explicit
2227 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2228 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2229 * the stop signal; otherwise, %SIGTRAP.
2230 *
2231 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2232 * number as exit_code and no siginfo.
2233 *
2234 * CONTEXT:
2235 * Must be called with @current->sighand->siglock held, which may be
2236 * released and re-acquired before returning with intervening sleep.
2237 */
2238static void do_jobctl_trap(void)
2239{
2240        struct signal_struct *signal = current->signal;
2241        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2242
2243        if (current->ptrace & PT_SEIZED) {
2244                if (!signal->group_stop_count &&
2245                    !(signal->flags & SIGNAL_STOP_STOPPED))
2246                        signr = SIGTRAP;
2247                WARN_ON_ONCE(!signr);
2248                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2249                                 CLD_STOPPED);
2250        } else {
2251                WARN_ON_ONCE(!signr);
2252                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2253                current->exit_code = 0;
2254        }
2255}
2256
2257static int ptrace_signal(int signr, siginfo_t *info)
2258{
2259        /*
2260         * We do not check sig_kernel_stop(signr) but set this marker
2261         * unconditionally because we do not know whether debugger will
2262         * change signr. This flag has no meaning unless we are going
2263         * to stop after return from ptrace_stop(). In this case it will
2264         * be checked in do_signal_stop(), we should only stop if it was
2265         * not cleared by SIGCONT while we were sleeping. See also the
2266         * comment in dequeue_signal().
2267         */
2268        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2269        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2270
2271        /* We're back.  Did the debugger cancel the sig?  */
2272        signr = current->exit_code;
2273        if (signr == 0)
2274                return signr;
2275
2276        current->exit_code = 0;
2277
2278        /*
2279         * Update the siginfo structure if the signal has
2280         * changed.  If the debugger wanted something
2281         * specific in the siginfo structure then it should
2282         * have updated *info via PTRACE_SETSIGINFO.
2283         */
2284        if (signr != info->si_signo) {
2285                clear_siginfo(info);
2286                info->si_signo = signr;
2287                info->si_errno = 0;
2288                info->si_code = SI_USER;
2289                rcu_read_lock();
2290                info->si_pid = task_pid_vnr(current->parent);
2291                info->si_uid = from_kuid_munged(current_user_ns(),
2292                                                task_uid(current->parent));
2293                rcu_read_unlock();
2294        }
2295
2296        /* If the (new) signal is now blocked, requeue it.  */
2297        if (sigismember(&current->blocked, signr)) {
2298                specific_send_sig_info(signr, info, current);
2299                signr = 0;
2300        }
2301
2302        return signr;
2303}
2304
2305int get_signal(struct ksignal *ksig)
2306{
2307        struct sighand_struct *sighand = current->sighand;
2308        struct signal_struct *signal = current->signal;
2309        int signr;
2310
2311        if (unlikely(current->task_works))
2312                task_work_run();
2313
2314        if (unlikely(uprobe_deny_signal()))
2315                return 0;
2316
2317        /*
2318         * Do this once, we can't return to user-mode if freezing() == T.
2319         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2320         * thus do not need another check after return.
2321         */
2322        try_to_freeze();
2323
2324relock:
2325        spin_lock_irq(&sighand->siglock);
2326        /*
2327         * Every stopped thread goes here after wakeup. Check to see if
2328         * we should notify the parent, prepare_signal(SIGCONT) encodes
2329         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2330         */
2331        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2332                int why;
2333
2334                if (signal->flags & SIGNAL_CLD_CONTINUED)
2335                        why = CLD_CONTINUED;
2336                else
2337                        why = CLD_STOPPED;
2338
2339                signal->flags &= ~SIGNAL_CLD_MASK;
2340
2341                spin_unlock_irq(&sighand->siglock);
2342
2343                /*
2344                 * Notify the parent that we're continuing.  This event is
2345                 * always per-process and doesn't make whole lot of sense
2346                 * for ptracers, who shouldn't consume the state via
2347                 * wait(2) either, but, for backward compatibility, notify
2348                 * the ptracer of the group leader too unless it's gonna be
2349                 * a duplicate.
2350                 */
2351                read_lock(&tasklist_lock);
2352                do_notify_parent_cldstop(current, false, why);
2353
2354                if (ptrace_reparented(current->group_leader))
2355                        do_notify_parent_cldstop(current->group_leader,
2356                                                true, why);
2357                read_unlock(&tasklist_lock);
2358
2359                goto relock;
2360        }
2361
2362        for (;;) {
2363                struct k_sigaction *ka;
2364
2365                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2366                    do_signal_stop(0))
2367                        goto relock;
2368
2369                if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2370                        do_jobctl_trap();
2371                        spin_unlock_irq(&sighand->siglock);
2372                        goto relock;
2373                }
2374
2375                signr = dequeue_signal(current, &current->blocked, &ksig->info);
2376
2377                if (!signr)
2378                        break; /* will return 0 */
2379
2380                if (unlikely(current->ptrace) && signr != SIGKILL) {
2381                        signr = ptrace_signal(signr, &ksig->info);
2382                        if (!signr)
2383                                continue;
2384                }
2385
2386                ka = &sighand->action[signr-1];
2387
2388                /* Trace actually delivered signals. */
2389                trace_signal_deliver(signr, &ksig->info, ka);
2390
2391                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2392                        continue;
2393                if (ka->sa.sa_handler != SIG_DFL) {
2394                        /* Run the handler.  */
2395                        ksig->ka = *ka;
2396
2397                        if (ka->sa.sa_flags & SA_ONESHOT)
2398                                ka->sa.sa_handler = SIG_DFL;
2399
2400                        break; /* will return non-zero "signr" value */
2401                }
2402
2403                /*
2404                 * Now we are doing the default action for this signal.
2405                 */
2406                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2407                        continue;
2408
2409                /*
2410                 * Global init gets no signals it doesn't want.
2411                 * Container-init gets no signals it doesn't want from same
2412                 * container.
2413                 *
2414                 * Note that if global/container-init sees a sig_kernel_only()
2415                 * signal here, the signal must have been generated internally
2416                 * or must have come from an ancestor namespace. In either
2417                 * case, the signal cannot be dropped.
2418                 */
2419                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2420                                !sig_kernel_only(signr))
2421                        continue;
2422
2423                if (sig_kernel_stop(signr)) {
2424                        /*
2425                         * The default action is to stop all threads in
2426                         * the thread group.  The job control signals
2427                         * do nothing in an orphaned pgrp, but SIGSTOP
2428                         * always works.  Note that siglock needs to be
2429                         * dropped during the call to is_orphaned_pgrp()
2430                         * because of lock ordering with tasklist_lock.
2431                         * This allows an intervening SIGCONT to be posted.
2432                         * We need to check for that and bail out if necessary.
2433                         */
2434                        if (signr != SIGSTOP) {
2435                                spin_unlock_irq(&sighand->siglock);
2436
2437                                /* signals can be posted during this window */
2438
2439                                if (is_current_pgrp_orphaned())
2440                                        goto relock;
2441
2442                                spin_lock_irq(&sighand->siglock);
2443                        }
2444
2445                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2446                                /* It released the siglock.  */
2447                                goto relock;
2448                        }
2449
2450                        /*
2451                         * We didn't actually stop, due to a race
2452                         * with SIGCONT or something like that.
2453                         */
2454                        continue;
2455                }
2456
2457                spin_unlock_irq(&sighand->siglock);
2458
2459                /*
2460                 * Anything else is fatal, maybe with a core dump.
2461                 */
2462                current->flags |= PF_SIGNALED;
2463
2464                if (sig_kernel_coredump(signr)) {
2465                        if (print_fatal_signals)
2466                                print_fatal_signal(ksig->info.si_signo);
2467                        proc_coredump_connector(current);
2468                        /*
2469                         * If it was able to dump core, this kills all
2470                         * other threads in the group and synchronizes with
2471                         * their demise.  If we lost the race with another
2472                         * thread getting here, it set group_exit_code
2473                         * first and our do_group_exit call below will use
2474                         * that value and ignore the one we pass it.
2475                         */
2476                        do_coredump(&ksig->info);
2477                }
2478
2479                /*
2480                 * Death signals, no core dump.
2481                 */
2482                do_group_exit(ksig->info.si_signo);
2483                /* NOTREACHED */
2484        }
2485        spin_unlock_irq(&sighand->siglock);
2486
2487        ksig->sig = signr;
2488        return ksig->sig > 0;
2489}
2490
2491/**
2492 * signal_delivered - 
2493 * @ksig:               kernel signal struct
2494 * @stepping:           nonzero if debugger single-step or block-step in use
2495 *
2496 * This function should be called when a signal has successfully been
2497 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2498 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2499 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2500 */
2501static void signal_delivered(struct ksignal *ksig, int stepping)
2502{
2503        sigset_t blocked;
2504
2505        /* A signal was successfully delivered, and the
2506           saved sigmask was stored on the signal frame,
2507           and will be restored by sigreturn.  So we can
2508           simply clear the restore sigmask flag.  */
2509        clear_restore_sigmask();
2510
2511        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2512        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2513                sigaddset(&blocked, ksig->sig);
2514        set_current_blocked(&blocked);
2515        tracehook_signal_handler(stepping);
2516}
2517
2518void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2519{
2520        if (failed)
2521                force_sigsegv(ksig->sig, current);
2522        else
2523                signal_delivered(ksig, stepping);
2524}
2525
2526/*
2527 * It could be that complete_signal() picked us to notify about the
2528 * group-wide signal. Other threads should be notified now to take
2529 * the shared signals in @which since we will not.
2530 */
2531static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2532{
2533        sigset_t retarget;
2534        struct task_struct *t;
2535
2536        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2537        if (sigisemptyset(&retarget))
2538                return;
2539
2540        t = tsk;
2541        while_each_thread(tsk, t) {
2542                if (t->flags & PF_EXITING)
2543                        continue;
2544
2545                if (!has_pending_signals(&retarget, &t->blocked))
2546                        continue;
2547                /* Remove the signals this thread can handle. */
2548                sigandsets(&retarget, &retarget, &t->blocked);
2549
2550                if (!signal_pending(t))
2551                        signal_wake_up(t, 0);
2552
2553                if (sigisemptyset(&retarget))
2554                        break;
2555        }
2556}
2557
2558void exit_signals(struct task_struct *tsk)
2559{
2560        int group_stop = 0;
2561        sigset_t unblocked;
2562
2563        /*
2564         * @tsk is about to have PF_EXITING set - lock out users which
2565         * expect stable threadgroup.
2566         */
2567        cgroup_threadgroup_change_begin(tsk);
2568
2569        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2570                tsk->flags |= PF_EXITING;
2571                cgroup_threadgroup_change_end(tsk);
2572                return;
2573        }
2574
2575        spin_lock_irq(&tsk->sighand->siglock);
2576        /*
2577         * From now this task is not visible for group-wide signals,
2578         * see wants_signal(), do_signal_stop().
2579         */
2580        tsk->flags |= PF_EXITING;
2581
2582        cgroup_threadgroup_change_end(tsk);
2583
2584        if (!signal_pending(tsk))
2585                goto out;
2586
2587        unblocked = tsk->blocked;
2588        signotset(&unblocked);
2589        retarget_shared_pending(tsk, &unblocked);
2590
2591        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2592            task_participate_group_stop(tsk))
2593                group_stop = CLD_STOPPED;
2594out:
2595        spin_unlock_irq(&tsk->sighand->siglock);
2596
2597        /*
2598         * If group stop has completed, deliver the notification.  This
2599         * should always go to the real parent of the group leader.
2600         */
2601        if (unlikely(group_stop)) {
2602                read_lock(&tasklist_lock);
2603                do_notify_parent_cldstop(tsk, false, group_stop);
2604                read_unlock(&tasklist_lock);
2605        }
2606}
2607
2608EXPORT_SYMBOL(recalc_sigpending);
2609EXPORT_SYMBOL_GPL(dequeue_signal);
2610EXPORT_SYMBOL(flush_signals);
2611EXPORT_SYMBOL(force_sig);
2612EXPORT_SYMBOL(send_sig);
2613EXPORT_SYMBOL(send_sig_info);
2614EXPORT_SYMBOL(sigprocmask);
2615
2616/*
2617 * System call entry points.
2618 */
2619
2620/**
2621 *  sys_restart_syscall - restart a system call
2622 */
2623SYSCALL_DEFINE0(restart_syscall)
2624{
2625        struct restart_block *restart = &current->restart_block;
2626        return restart->fn(restart);
2627}
2628
2629long do_no_restart_syscall(struct restart_block *param)
2630{
2631        return -EINTR;
2632}
2633
2634static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2635{
2636        if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2637                sigset_t newblocked;
2638                /* A set of now blocked but previously unblocked signals. */
2639                sigandnsets(&newblocked, newset, &current->blocked);
2640                retarget_shared_pending(tsk, &newblocked);
2641        }
2642        tsk->blocked = *newset;
2643        recalc_sigpending();
2644}
2645
2646/**
2647 * set_current_blocked - change current->blocked mask
2648 * @newset: new mask
2649 *
2650 * It is wrong to change ->blocked directly, this helper should be used
2651 * to ensure the process can't miss a shared signal we are going to block.
2652 */
2653void set_current_blocked(sigset_t *newset)
2654{
2655        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2656        __set_current_blocked(newset);
2657}
2658
2659void __set_current_blocked(const sigset_t *newset)
2660{
2661        struct task_struct *tsk = current;
2662
2663        /*
2664         * In case the signal mask hasn't changed, there is nothing we need
2665         * to do. The current->blocked shouldn't be modified by other task.
2666         */
2667        if (sigequalsets(&tsk->blocked, newset))
2668                return;
2669
2670        spin_lock_irq(&tsk->sighand->siglock);
2671        __set_task_blocked(tsk, newset);
2672        spin_unlock_irq(&tsk->sighand->siglock);
2673}
2674
2675/*
2676 * This is also useful for kernel threads that want to temporarily
2677 * (or permanently) block certain signals.
2678 *
2679 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2680 * interface happily blocks "unblockable" signals like SIGKILL
2681 * and friends.
2682 */
2683int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2684{
2685        struct task_struct *tsk = current;
2686        sigset_t newset;
2687
2688        /* Lockless, only current can change ->blocked, never from irq */
2689        if (oldset)
2690                *oldset = tsk->blocked;
2691
2692        switch (how) {
2693        case SIG_BLOCK:
2694                sigorsets(&newset, &tsk->blocked, set);
2695                break;
2696        case SIG_UNBLOCK:
2697                sigandnsets(&newset, &tsk->blocked, set);
2698                break;
2699        case SIG_SETMASK:
2700                newset = *set;
2701                break;
2702        default:
2703                return -EINVAL;
2704        }
2705
2706        __set_current_blocked(&newset);
2707        return 0;
2708}
2709
2710/**
2711 *  sys_rt_sigprocmask - change the list of currently blocked signals
2712 *  @how: whether to add, remove, or set signals
2713 *  @nset: stores pending signals
2714 *  @oset: previous value of signal mask if non-null
2715 *  @sigsetsize: size of sigset_t type
2716 */
2717SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2718                sigset_t __user *, oset, size_t, sigsetsize)
2719{
2720        sigset_t old_set, new_set;
2721        int error;
2722
2723        /* XXX: Don't preclude handling different sized sigset_t's.  */
2724        if (sigsetsize != sizeof(sigset_t))
2725                return -EINVAL;
2726
2727        old_set = current->blocked;
2728
2729        if (nset) {
2730                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2731                        return -EFAULT;
2732                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2733
2734                error = sigprocmask(how, &new_set, NULL);
2735                if (error)
2736                        return error;
2737        }
2738
2739        if (oset) {
2740                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2741                        return -EFAULT;
2742        }
2743
2744        return 0;
2745}
2746
2747#ifdef CONFIG_COMPAT
2748COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2749                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2750{
2751        sigset_t old_set = current->blocked;
2752
2753        /* XXX: Don't preclude handling different sized sigset_t's.  */
2754        if (sigsetsize != sizeof(sigset_t))
2755                return -EINVAL;
2756
2757        if (nset) {
2758                sigset_t new_set;
2759                int error;
2760                if (get_compat_sigset(&new_set, nset))
2761                        return -EFAULT;
2762                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2763
2764                error = sigprocmask(how, &new_set, NULL);
2765                if (error)
2766                        return error;
2767        }
2768        return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2769}
2770#endif
2771
2772static int do_sigpending(sigset_t *set)
2773{
2774        spin_lock_irq(&current->sighand->siglock);
2775        sigorsets(set, &current->pending.signal,
2776                  &current->signal->shared_pending.signal);
2777        spin_unlock_irq(&current->sighand->siglock);
2778
2779        /* Outside the lock because only this thread touches it.  */
2780        sigandsets(set, &current->blocked, set);
2781        return 0;
2782}
2783
2784/**
2785 *  sys_rt_sigpending - examine a pending signal that has been raised
2786 *                      while blocked
2787 *  @uset: stores pending signals
2788 *  @sigsetsize: size of sigset_t type or larger
2789 */
2790SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2791{
2792        sigset_t set;
2793        int err;
2794
2795        if (sigsetsize > sizeof(*uset))
2796                return -EINVAL;
2797
2798        err = do_sigpending(&set);
2799        if (!err && copy_to_user(uset, &set, sigsetsize))
2800                err = -EFAULT;
2801        return err;
2802}
2803
2804#ifdef CONFIG_COMPAT
2805COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2806                compat_size_t, sigsetsize)
2807{
2808        sigset_t set;
2809        int err;
2810
2811        if (sigsetsize > sizeof(*uset))
2812                return -EINVAL;
2813
2814        err = do_sigpending(&set);
2815        if (!err)
2816                err = put_compat_sigset(uset, &set, sigsetsize);
2817        return err;
2818}
2819#endif
2820
2821enum siginfo_layout siginfo_layout(int sig, int si_code)
2822{
2823        enum siginfo_layout layout = SIL_KILL;
2824        if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2825                static const struct {
2826                        unsigned char limit, layout;
2827                } filter[] = {
2828                        [SIGILL]  = { NSIGILL,  SIL_FAULT },
2829                        [SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2830                        [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2831                        [SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2832                        [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2833#if defined(SIGEMT) && defined(NSIGEMT)
2834                        [SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2835#endif
2836                        [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2837                        [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2838                        [SIGSYS]  = { NSIGSYS,  SIL_SYS },
2839                };
2840                if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2841                        layout = filter[sig].layout;
2842                else if (si_code <= NSIGPOLL)
2843                        layout = SIL_POLL;
2844        } else {
2845                if (si_code == SI_TIMER)
2846                        layout = SIL_TIMER;
2847                else if (si_code == SI_SIGIO)
2848                        layout = SIL_POLL;
2849                else if (si_code < 0)
2850                        layout = SIL_RT;
2851                /* Tests to support buggy kernel ABIs */
2852#ifdef TRAP_FIXME
2853                if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2854                        layout = SIL_FAULT;
2855#endif
2856#ifdef FPE_FIXME
2857                if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2858                        layout = SIL_FAULT;
2859#endif
2860        }
2861        return layout;
2862}
2863
2864int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2865{
2866        int err;
2867
2868        if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2869                return -EFAULT;
2870        if (from->si_code < 0)
2871                return __copy_to_user(to, from, sizeof(siginfo_t))
2872                        ? -EFAULT : 0;
2873        /*
2874         * If you change siginfo_t structure, please be sure
2875         * this code is fixed accordingly.
2876         * Please remember to update the signalfd_copyinfo() function
2877         * inside fs/signalfd.c too, in case siginfo_t changes.
2878         * It should never copy any pad contained in the structure
2879         * to avoid security leaks, but must copy the generic
2880         * 3 ints plus the relevant union member.
2881         */
2882        err = __put_user(from->si_signo, &to->si_signo);
2883        err |= __put_user(from->si_errno, &to->si_errno);
2884        err |= __put_user(from->si_code, &to->si_code);
2885        switch (siginfo_layout(from->si_signo, from->si_code)) {
2886        case SIL_KILL:
2887                err |= __put_user(from->si_pid, &to->si_pid);
2888                err |= __put_user(from->si_uid, &to->si_uid);
2889                break;
2890        case SIL_TIMER:
2891                /* Unreached SI_TIMER is negative */
2892                break;
2893        case SIL_POLL:
2894                err |= __put_user(from->si_band, &to->si_band);
2895                err |= __put_user(from->si_fd, &to->si_fd);
2896                break;
2897        case SIL_FAULT:
2898                err |= __put_user(from->si_addr, &to->si_addr);
2899#ifdef __ARCH_SI_TRAPNO
2900                err |= __put_user(from->si_trapno, &to->si_trapno);
2901#endif
2902#ifdef __ia64__
2903                err |= __put_user(from->si_imm, &to->si_imm);
2904                err |= __put_user(from->si_flags, &to->si_flags);
2905                err |= __put_user(from->si_isr, &to->si_isr);
2906#endif
2907                /*
2908                 * Other callers might not initialize the si_lsb field,
2909                 * so check explicitly for the right codes here.
2910                 */
2911#ifdef BUS_MCEERR_AR
2912                if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2913                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2914#endif
2915#ifdef BUS_MCEERR_AO
2916                if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2917                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2918#endif
2919#ifdef SEGV_BNDERR
2920                if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2921                        err |= __put_user(from->si_lower, &to->si_lower);
2922                        err |= __put_user(from->si_upper, &to->si_upper);
2923                }
2924#endif
2925#ifdef SEGV_PKUERR
2926                if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2927                        err |= __put_user(from->si_pkey, &to->si_pkey);
2928#endif
2929                break;
2930        case SIL_CHLD:
2931                err |= __put_user(from->si_pid, &to->si_pid);
2932                err |= __put_user(from->si_uid, &to->si_uid);
2933                err |= __put_user(from->si_status, &to->si_status);
2934                err |= __put_user(from->si_utime, &to->si_utime);
2935                err |= __put_user(from->si_stime, &to->si_stime);
2936                break;
2937        case SIL_RT:
2938                err |= __put_user(from->si_pid, &to->si_pid);
2939                err |= __put_user(from->si_uid, &to->si_uid);
2940                err |= __put_user(from->si_ptr, &to->si_ptr);
2941                break;
2942        case SIL_SYS:
2943                err |= __put_user(from->si_call_addr, &to->si_call_addr);
2944                err |= __put_user(from->si_syscall, &to->si_syscall);
2945                err |= __put_user(from->si_arch, &to->si_arch);
2946                break;
2947        }
2948        return err;
2949}
2950
2951#ifdef CONFIG_COMPAT
2952int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2953                           const struct siginfo *from)
2954#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2955{
2956        return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2957}
2958int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2959                             const struct siginfo *from, bool x32_ABI)
2960#endif
2961{
2962        struct compat_siginfo new;
2963        memset(&new, 0, sizeof(new));
2964
2965        new.si_signo = from->si_signo;
2966        new.si_errno = from->si_errno;
2967        new.si_code  = from->si_code;
2968        switch(siginfo_layout(from->si_signo, from->si_code)) {
2969        case SIL_KILL:
2970                new.si_pid = from->si_pid;
2971                new.si_uid = from->si_uid;
2972                break;
2973        case SIL_TIMER:
2974                new.si_tid     = from->si_tid;
2975                new.si_overrun = from->si_overrun;
2976                new.si_int     = from->si_int;
2977                break;
2978        case SIL_POLL:
2979                new.si_band = from->si_band;
2980                new.si_fd   = from->si_fd;
2981                break;
2982        case SIL_FAULT:
2983                new.si_addr = ptr_to_compat(from->si_addr);
2984#ifdef __ARCH_SI_TRAPNO
2985                new.si_trapno = from->si_trapno;
2986#endif
2987#ifdef BUS_MCEERR_AR
2988                if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2989                        new.si_addr_lsb = from->si_addr_lsb;
2990#endif
2991#ifdef BUS_MCEERR_AO
2992                if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2993                        new.si_addr_lsb = from->si_addr_lsb;
2994#endif
2995#ifdef SEGV_BNDERR
2996                if ((from->si_signo == SIGSEGV) &&
2997                    (from->si_code == SEGV_BNDERR)) {
2998                        new.si_lower = ptr_to_compat(from->si_lower);
2999                        new.si_upper = ptr_to_compat(from->si_upper);
3000                }
3001#endif
3002#ifdef SEGV_PKUERR
3003                if ((from->si_signo == SIGSEGV) &&
3004                    (from->si_code == SEGV_PKUERR))
3005                        new.si_pkey = from->si_pkey;
3006#endif
3007
3008                break;
3009        case SIL_CHLD:
3010                new.si_pid    = from->si_pid;
3011                new.si_uid    = from->si_uid;
3012                new.si_status = from->si_status;
3013#ifdef CONFIG_X86_X32_ABI
3014                if (x32_ABI) {
3015                        new._sifields._sigchld_x32._utime = from->si_utime;
3016                        new._sifields._sigchld_x32._stime = from->si_stime;
3017                } else
3018#endif
3019                {
3020                        new.si_utime = from->si_utime;
3021                        new.si_stime = from->si_stime;
3022                }
3023                break;
3024        case SIL_RT:
3025                new.si_pid = from->si_pid;
3026                new.si_uid = from->si_uid;
3027                new.si_int = from->si_int;
3028                break;
3029        case SIL_SYS:
3030                new.si_call_addr = ptr_to_compat(from->si_call_addr);
3031                new.si_syscall   = from->si_syscall;
3032                new.si_arch      = from->si_arch;
3033                break;
3034        }
3035
3036        if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3037                return -EFAULT;
3038
3039        return 0;
3040}
3041
3042int copy_siginfo_from_user32(struct siginfo *to,
3043                             const struct compat_siginfo __user *ufrom)
3044{
3045        struct compat_siginfo from;
3046
3047        if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3048                return -EFAULT;
3049
3050        clear_siginfo(to);
3051        to->si_signo = from.si_signo;
3052        to->si_errno = from.si_errno;
3053        to->si_code  = from.si_code;
3054        switch(siginfo_layout(from.si_signo, from.si_code)) {
3055        case SIL_KILL:
3056                to->si_pid = from.si_pid;
3057                to->si_uid = from.si_uid;
3058                break;
3059        case SIL_TIMER:
3060                to->si_tid     = from.si_tid;
3061                to->si_overrun = from.si_overrun;
3062                to->si_int     = from.si_int;
3063                break;
3064        case SIL_POLL:
3065                to->si_band = from.si_band;
3066                to->si_fd   = from.si_fd;
3067                break;
3068        case SIL_FAULT:
3069                to->si_addr = compat_ptr(from.si_addr);
3070#ifdef __ARCH_SI_TRAPNO
3071                to->si_trapno = from.si_trapno;
3072#endif
3073#ifdef BUS_MCEERR_AR
3074                if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3075                        to->si_addr_lsb = from.si_addr_lsb;
3076#endif
3077#ifdef BUS_MCEER_AO
3078                if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3079                        to->si_addr_lsb = from.si_addr_lsb;
3080#endif
3081#ifdef SEGV_BNDERR
3082                if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3083                        to->si_lower = compat_ptr(from.si_lower);
3084                        to->si_upper = compat_ptr(from.si_upper);
3085                }
3086#endif
3087#ifdef SEGV_PKUERR
3088                if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3089                        to->si_pkey = from.si_pkey;
3090#endif
3091                break;
3092        case SIL_CHLD:
3093                to->si_pid    = from.si_pid;
3094                to->si_uid    = from.si_uid;
3095                to->si_status = from.si_status;
3096#ifdef CONFIG_X86_X32_ABI
3097                if (in_x32_syscall()) {
3098                        to->si_utime = from._sifields._sigchld_x32._utime;
3099                        to->si_stime = from._sifields._sigchld_x32._stime;
3100                } else
3101#endif
3102                {
3103                        to->si_utime = from.si_utime;
3104                        to->si_stime = from.si_stime;
3105                }
3106                break;
3107        case SIL_RT:
3108                to->si_pid = from.si_pid;
3109                to->si_uid = from.si_uid;
3110                to->si_int = from.si_int;
3111                break;
3112        case SIL_SYS:
3113                to->si_call_addr = compat_ptr(from.si_call_addr);
3114                to->si_syscall   = from.si_syscall;
3115                to->si_arch      = from.si_arch;
3116                break;
3117        }
3118        return 0;
3119}
3120#endif /* CONFIG_COMPAT */
3121
3122/**
3123 *  do_sigtimedwait - wait for queued signals specified in @which
3124 *  @which: queued signals to wait for
3125 *  @info: if non-null, the signal's siginfo is returned here
3126 *  @ts: upper bound on process time suspension
3127 */
3128static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3129                    const struct timespec *ts)
3130{
3131        ktime_t *to = NULL, timeout = KTIME_MAX;
3132        struct task_struct *tsk = current;
3133        sigset_t mask = *which;
3134        int sig, ret = 0;
3135
3136        if (ts) {
3137                if (!timespec_valid(ts))
3138                        return -EINVAL;
3139                timeout = timespec_to_ktime(*ts);
3140                to = &timeout;
3141        }
3142
3143        /*
3144         * Invert the set of allowed signals to get those we want to block.
3145         */
3146        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3147        signotset(&mask);
3148
3149        spin_lock_irq(&tsk->sighand->siglock);
3150        sig = dequeue_signal(tsk, &mask, info);
3151        if (!sig && timeout) {
3152                /*
3153                 * None ready, temporarily unblock those we're interested
3154                 * while we are sleeping in so that we'll be awakened when
3155                 * they arrive. Unblocking is always fine, we can avoid
3156                 * set_current_blocked().
3157                 */
3158                tsk->real_blocked = tsk->blocked;
3159                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3160                recalc_sigpending();
3161                spin_unlock_irq(&tsk->sighand->siglock);
3162
3163                __set_current_state(TASK_INTERRUPTIBLE);
3164                ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3165                                                         HRTIMER_MODE_REL);
3166                spin_lock_irq(&tsk->sighand->siglock);
3167                __set_task_blocked(tsk, &tsk->real_blocked);
3168                sigemptyset(&tsk->real_blocked);
3169                sig = dequeue_signal(tsk, &mask, info);
3170        }
3171        spin_unlock_irq(&tsk->sighand->siglock);
3172
3173        if (sig)
3174                return sig;
3175        return ret ? -EINTR : -EAGAIN;
3176}
3177
3178/**
3179 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3180 *                      in @uthese
3181 *  @uthese: queued signals to wait for
3182 *  @uinfo: if non-null, the signal's siginfo is returned here
3183 *  @uts: upper bound on process time suspension
3184 *  @sigsetsize: size of sigset_t type
3185 */
3186SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3187                siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3188                size_t, sigsetsize)
3189{
3190        sigset_t these;
3191        struct timespec ts;
3192        siginfo_t info;
3193        int ret;
3194
3195        /* XXX: Don't preclude handling different sized sigset_t's.  */
3196        if (sigsetsize != sizeof(sigset_t))
3197                return -EINVAL;
3198
3199        if (copy_from_user(&these, uthese, sizeof(these)))
3200                return -EFAULT;
3201
3202        if (uts) {
3203                if (copy_from_user(&ts, uts, sizeof(ts)))
3204                        return -EFAULT;
3205        }
3206
3207        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3208
3209        if (ret > 0 && uinfo) {
3210                if (copy_siginfo_to_user(uinfo, &info))
3211                        ret = -EFAULT;
3212        }
3213
3214        return ret;
3215}
3216
3217#ifdef CONFIG_COMPAT
3218COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3219                struct compat_siginfo __user *, uinfo,
3220                struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3221{
3222        sigset_t s;
3223        struct timespec t;
3224        siginfo_t info;
3225        long ret;
3226
3227        if (sigsetsize != sizeof(sigset_t))
3228                return -EINVAL;
3229
3230        if (get_compat_sigset(&s, uthese))
3231                return -EFAULT;
3232
3233        if (uts) {
3234                if (compat_get_timespec(&t, uts))
3235                        return -EFAULT;
3236        }
3237
3238        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3239
3240        if (ret > 0 && uinfo) {
3241                if (copy_siginfo_to_user32(uinfo, &info))
3242                        ret = -EFAULT;
3243        }
3244
3245        return ret;
3246}
3247#endif
3248
3249/**
3250 *  sys_kill - send a signal to a process
3251 *  @pid: the PID of the process
3252 *  @sig: signal to be sent
3253 */
3254SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3255{
3256        struct siginfo info;
3257
3258        clear_siginfo(&info);
3259        info.si_signo = sig;
3260        info.si_errno = 0;
3261        info.si_code = SI_USER;
3262        info.si_pid = task_tgid_vnr(current);
3263        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3264
3265        return kill_something_info(sig, &info, pid);
3266}
3267
3268static int
3269do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3270{
3271        struct task_struct *p;
3272        int error = -ESRCH;
3273
3274        rcu_read_lock();
3275        p = find_task_by_vpid(pid);
3276        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3277                error = check_kill_permission(sig, info, p);
3278                /*
3279                 * The null signal is a permissions and process existence
3280                 * probe.  No signal is actually delivered.
3281                 */
3282                if (!error && sig) {
3283                        error = do_send_sig_info(sig, info, p, false);
3284                        /*
3285                         * If lock_task_sighand() failed we pretend the task
3286                         * dies after receiving the signal. The window is tiny,
3287                         * and the signal is private anyway.
3288                         */
3289                        if (unlikely(error == -ESRCH))
3290                                error = 0;
3291                }
3292        }
3293        rcu_read_unlock();
3294
3295        return error;
3296}
3297
3298static int do_tkill(pid_t tgid, pid_t pid, int sig)
3299{
3300        struct siginfo info;
3301
3302        clear_siginfo(&info);
3303        info.si_signo = sig;
3304        info.si_errno = 0;
3305        info.si_code = SI_TKILL;
3306        info.si_pid = task_tgid_vnr(current);
3307        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3308
3309        return do_send_specific(tgid, pid, sig, &info);
3310}
3311
3312/**
3313 *  sys_tgkill - send signal to one specific thread
3314 *  @tgid: the thread group ID of the thread
3315 *  @pid: the PID of the thread
3316 *  @sig: signal to be sent
3317 *
3318 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3319 *  exists but it's not belonging to the target process anymore. This
3320 *  method solves the problem of threads exiting and PIDs getting reused.
3321 */
3322SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3323{
3324        /* This is only valid for single tasks */
3325        if (pid <= 0 || tgid <= 0)
3326                return -EINVAL;
3327
3328        return do_tkill(tgid, pid, sig);
3329}
3330
3331/**
3332 *  sys_tkill - send signal to one specific task
3333 *  @pid: the PID of the task
3334 *  @sig: signal to be sent
3335 *
3336 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3337 */
3338SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3339{
3340        /* This is only valid for single tasks */
3341        if (pid <= 0)
3342                return -EINVAL;
3343
3344        return do_tkill(0, pid, sig);
3345}
3346
3347static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3348{
3349        /* Not even root can pretend to send signals from the kernel.
3350         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3351         */
3352        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3353            (task_pid_vnr(current) != pid))
3354                return -EPERM;
3355
3356        info->si_signo = sig;
3357
3358        /* POSIX.1b doesn't mention process groups.  */
3359        return kill_proc_info(sig, info, pid);
3360}
3361
3362/**
3363 *  sys_rt_sigqueueinfo - send signal information to a signal
3364 *  @pid: the PID of the thread
3365 *  @sig: signal to be sent
3366 *  @uinfo: signal info to be sent
3367 */
3368SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3369                siginfo_t __user *, uinfo)
3370{
3371        siginfo_t info;
3372        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3373                return -EFAULT;
3374        return do_rt_sigqueueinfo(pid, sig, &info);
3375}
3376
3377#ifdef CONFIG_COMPAT
3378COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3379                        compat_pid_t, pid,
3380                        int, sig,
3381                        struct compat_siginfo __user *, uinfo)
3382{
3383        siginfo_t info;
3384        int ret = copy_siginfo_from_user32(&info, uinfo);
3385        if (unlikely(ret))
3386                return ret;
3387        return do_rt_sigqueueinfo(pid, sig, &info);
3388}
3389#endif
3390
3391static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3392{
3393        /* This is only valid for single tasks */
3394        if (pid <= 0 || tgid <= 0)
3395                return -EINVAL;
3396
3397        /* Not even root can pretend to send signals from the kernel.
3398         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3399         */
3400        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3401            (task_pid_vnr(current) != pid))
3402                return -EPERM;
3403
3404        info->si_signo = sig;
3405
3406        return do_send_specific(tgid, pid, sig, info);
3407}
3408
3409SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3410                siginfo_t __user *, uinfo)
3411{
3412        siginfo_t info;
3413
3414        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3415                return -EFAULT;
3416
3417        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3418}
3419
3420#ifdef CONFIG_COMPAT
3421COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3422                        compat_pid_t, tgid,
3423                        compat_pid_t, pid,
3424                        int, sig,
3425                        struct compat_siginfo __user *, uinfo)
3426{
3427        siginfo_t info;
3428
3429        if (copy_siginfo_from_user32(&info, uinfo))
3430                return -EFAULT;
3431        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3432}
3433#endif
3434
3435/*
3436 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3437 */
3438void kernel_sigaction(int sig, __sighandler_t action)
3439{
3440        spin_lock_irq(&current->sighand->siglock);
3441        current->sighand->action[sig - 1].sa.sa_handler = action;
3442        if (action == SIG_IGN) {
3443                sigset_t mask;
3444
3445                sigemptyset(&mask);
3446                sigaddset(&mask, sig);
3447
3448                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3449                flush_sigqueue_mask(&mask, &current->pending);
3450                recalc_sigpending();
3451        }
3452        spin_unlock_irq(&current->sighand->siglock);
3453}
3454EXPORT_SYMBOL(kernel_sigaction);
3455
3456void __weak sigaction_compat_abi(struct k_sigaction *act,
3457                struct k_sigaction *oact)
3458{
3459}
3460
3461int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3462{
3463        struct task_struct *p = current, *t;
3464        struct k_sigaction *k;
3465        sigset_t mask;
3466
3467        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3468                return -EINVAL;
3469
3470        k = &p->sighand->action[sig-1];
3471
3472        spin_lock_irq(&p->sighand->siglock);
3473        if (oact)
3474                *oact = *k;
3475
3476        sigaction_compat_abi(act, oact);
3477
3478        if (act) {
3479                sigdelsetmask(&act->sa.sa_mask,
3480                              sigmask(SIGKILL) | sigmask(SIGSTOP));
3481                *k = *act;
3482                /*
3483                 * POSIX 3.3.1.3:
3484                 *  "Setting a signal action to SIG_IGN for a signal that is
3485                 *   pending shall cause the pending signal to be discarded,
3486                 *   whether or not it is blocked."
3487                 *
3488                 *  "Setting a signal action to SIG_DFL for a signal that is
3489                 *   pending and whose default action is to ignore the signal
3490                 *   (for example, SIGCHLD), shall cause the pending signal to
3491                 *   be discarded, whether or not it is blocked"
3492                 */
3493                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3494                        sigemptyset(&mask);
3495                        sigaddset(&mask, sig);
3496                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3497                        for_each_thread(p, t)
3498                                flush_sigqueue_mask(&mask, &t->pending);
3499                }
3500        }
3501
3502        spin_unlock_irq(&p->sighand->siglock);
3503        return 0;
3504}
3505
3506static int
3507do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3508{
3509        struct task_struct *t = current;
3510
3511        if (oss) {
3512                memset(oss, 0, sizeof(stack_t));
3513                oss->ss_sp = (void __user *) t->sas_ss_sp;
3514                oss->ss_size = t->sas_ss_size;
3515                oss->ss_flags = sas_ss_flags(sp) |
3516                        (current->sas_ss_flags & SS_FLAG_BITS);
3517        }
3518
3519        if (ss) {
3520                void __user *ss_sp = ss->ss_sp;
3521                size_t ss_size = ss->ss_size;
3522                unsigned ss_flags = ss->ss_flags;
3523                int ss_mode;
3524
3525                if (unlikely(on_sig_stack(sp)))
3526                        return -EPERM;
3527
3528                ss_mode = ss_flags & ~SS_FLAG_BITS;
3529                if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3530                                ss_mode != 0))
3531                        return -EINVAL;
3532
3533                if (ss_mode == SS_DISABLE) {
3534                        ss_size = 0;
3535                        ss_sp = NULL;
3536                } else {
3537                        if (unlikely(ss_size < MINSIGSTKSZ))
3538                                return -ENOMEM;
3539                }
3540
3541                t->sas_ss_sp = (unsigned long) ss_sp;
3542                t->sas_ss_size = ss_size;
3543                t->sas_ss_flags = ss_flags;
3544        }
3545        return 0;
3546}
3547
3548SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3549{
3550        stack_t new, old;
3551        int err;
3552        if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3553                return -EFAULT;
3554        err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3555                              current_user_stack_pointer());
3556        if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3557                err = -EFAULT;
3558        return err;
3559}
3560
3561int restore_altstack(const stack_t __user *uss)
3562{
3563        stack_t new;
3564        if (copy_from_user(&new, uss, sizeof(stack_t)))
3565                return -EFAULT;
3566        (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3567        /* squash all but EFAULT for now */
3568        return 0;
3569}
3570
3571int __save_altstack(stack_t __user *uss, unsigned long sp)
3572{
3573        struct task_struct *t = current;
3574        int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3575                __put_user(t->sas_ss_flags, &uss->ss_flags) |
3576                __put_user(t->sas_ss_size, &uss->ss_size);
3577        if (err)
3578                return err;
3579        if (t->sas_ss_flags & SS_AUTODISARM)
3580                sas_ss_reset(t);
3581        return 0;
3582}
3583
3584#ifdef CONFIG_COMPAT
3585static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3586                                 compat_stack_t __user *uoss_ptr)
3587{
3588        stack_t uss, uoss;
3589        int ret;
3590
3591        if (uss_ptr) {
3592                compat_stack_t uss32;
3593                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3594                        return -EFAULT;
3595                uss.ss_sp = compat_ptr(uss32.ss_sp);
3596                uss.ss_flags = uss32.ss_flags;
3597                uss.ss_size = uss32.ss_size;
3598        }
3599        ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3600                             compat_user_stack_pointer());
3601        if (ret >= 0 && uoss_ptr)  {
3602                compat_stack_t old;
3603                memset(&old, 0, sizeof(old));
3604                old.ss_sp = ptr_to_compat(uoss.ss_sp);
3605                old.ss_flags = uoss.ss_flags;
3606                old.ss_size = uoss.ss_size;
3607                if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3608                        ret = -EFAULT;
3609        }
3610        return ret;
3611}
3612
3613COMPAT_SYSCALL_DEFINE2(sigaltstack,
3614                        const compat_stack_t __user *, uss_ptr,
3615                        compat_stack_t __user *, uoss_ptr)
3616{
3617        return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3618}
3619
3620int compat_restore_altstack(const compat_stack_t __user *uss)
3621{
3622        int err = do_compat_sigaltstack(uss, NULL);
3623        /* squash all but -EFAULT for now */
3624        return err == -EFAULT ? err : 0;
3625}
3626
3627int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3628{
3629        int err;
3630        struct task_struct *t = current;
3631        err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3632                         &uss->ss_sp) |
3633                __put_user(t->sas_ss_flags, &uss->ss_flags) |
3634                __put_user(t->sas_ss_size, &uss->ss_size);
3635        if (err)
3636                return err;
3637        if (t->sas_ss_flags & SS_AUTODISARM)
3638                sas_ss_reset(t);
3639        return 0;
3640}
3641#endif
3642
3643#ifdef __ARCH_WANT_SYS_SIGPENDING
3644
3645/**
3646 *  sys_sigpending - examine pending signals
3647 *  @uset: where mask of pending signal is returned
3648 */
3649SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3650{
3651        sigset_t set;
3652        int err;
3653
3654        if (sizeof(old_sigset_t) > sizeof(*uset))
3655                return -EINVAL;
3656
3657        err = do_sigpending(&set);
3658        if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3659                err = -EFAULT;
3660        return err;
3661}
3662
3663#ifdef CONFIG_COMPAT
3664COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3665{
3666        sigset_t set;
3667        int err = do_sigpending(&set);
3668        if (!err)
3669                err = put_user(set.sig[0], set32);
3670        return err;
3671}
3672#endif
3673
3674#endif
3675
3676#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3677/**
3678 *  sys_sigprocmask - examine and change blocked signals
3679 *  @how: whether to add, remove, or set signals
3680 *  @nset: signals to add or remove (if non-null)
3681 *  @oset: previous value of signal mask if non-null
3682 *
3683 * Some platforms have their own version with special arguments;
3684 * others support only sys_rt_sigprocmask.
3685 */
3686
3687SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3688                old_sigset_t __user *, oset)
3689{
3690        old_sigset_t old_set, new_set;
3691        sigset_t new_blocked;
3692
3693        old_set = current->blocked.sig[0];
3694
3695        if (nset) {
3696                if (copy_from_user(&new_set, nset, sizeof(*nset)))
3697                        return -EFAULT;
3698
3699                new_blocked = current->blocked;
3700
3701                switch (how) {
3702                case SIG_BLOCK:
3703                        sigaddsetmask(&new_blocked, new_set);
3704                        break;
3705                case SIG_UNBLOCK:
3706                        sigdelsetmask(&new_blocked, new_set);
3707                        break;
3708                case SIG_SETMASK:
3709                        new_blocked.sig[0] = new_set;
3710                        break;
3711                default:
3712                        return -EINVAL;
3713                }
3714
3715                set_current_blocked(&new_blocked);
3716        }
3717
3718        if (oset) {
3719                if (copy_to_user(oset, &old_set, sizeof(*oset)))
3720                        return -EFAULT;
3721        }
3722
3723        return 0;
3724}
3725#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3726
3727#ifndef CONFIG_ODD_RT_SIGACTION
3728/**
3729 *  sys_rt_sigaction - alter an action taken by a process
3730 *  @sig: signal to be sent
3731 *  @act: new sigaction
3732 *  @oact: used to save the previous sigaction
3733 *  @sigsetsize: size of sigset_t type
3734 */
3735SYSCALL_DEFINE4(rt_sigaction, int, sig,
3736                const struct sigaction __user *, act,
3737                struct sigaction __user *, oact,
3738                size_t, sigsetsize)
3739{
3740        struct k_sigaction new_sa, old_sa;
3741        int ret = -EINVAL;
3742
3743        /* XXX: Don't preclude handling different sized sigset_t's.  */
3744        if (sigsetsize != sizeof(sigset_t))
3745                goto out;
3746
3747        if (act) {
3748                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3749                        return -EFAULT;
3750        }
3751
3752        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3753
3754        if (!ret && oact) {
3755                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3756                        return -EFAULT;
3757        }
3758out:
3759        return ret;
3760}
3761#ifdef CONFIG_COMPAT
3762COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3763                const struct compat_sigaction __user *, act,
3764                struct compat_sigaction __user *, oact,
3765                compat_size_t, sigsetsize)
3766{
3767        struct k_sigaction new_ka, old_ka;
3768#ifdef __ARCH_HAS_SA_RESTORER
3769        compat_uptr_t restorer;
3770#endif
3771        int ret;
3772
3773        /* XXX: Don't preclude handling different sized sigset_t's.  */
3774        if (sigsetsize != sizeof(compat_sigset_t))
3775                return -EINVAL;
3776
3777        if (act) {
3778                compat_uptr_t handler;
3779                ret = get_user(handler, &act->sa_handler);
3780                new_ka.sa.sa_handler = compat_ptr(handler);
3781#ifdef __ARCH_HAS_SA_RESTORER
3782                ret |= get_user(restorer, &act->sa_restorer);
3783                new_ka.sa.sa_restorer = compat_ptr(restorer);
3784#endif
3785                ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3786                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3787                if (ret)
3788                        return -EFAULT;
3789        }
3790
3791        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3792        if (!ret && oact) {
3793                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3794                               &oact->sa_handler);
3795                ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3796                                         sizeof(oact->sa_mask));
3797                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3798#ifdef __ARCH_HAS_SA_RESTORER
3799                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3800                                &oact->sa_restorer);
3801#endif
3802        }
3803        return ret;
3804}
3805#endif
3806#endif /* !CONFIG_ODD_RT_SIGACTION */
3807
3808#ifdef CONFIG_OLD_SIGACTION
3809SYSCALL_DEFINE3(sigaction, int, sig,
3810                const struct old_sigaction __user *, act,
3811                struct old_sigaction __user *, oact)
3812{
3813        struct k_sigaction new_ka, old_ka;
3814        int ret;
3815
3816        if (act) {
3817                old_sigset_t mask;
3818                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3819                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3820                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3821                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3822                    __get_user(mask, &act->sa_mask))
3823                        return -EFAULT;
3824#ifdef __ARCH_HAS_KA_RESTORER
3825                new_ka.ka_restorer = NULL;
3826#endif
3827                siginitset(&new_ka.sa.sa_mask, mask);
3828        }
3829
3830        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3831
3832        if (!ret && oact) {
3833                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3834                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3835                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3836                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3837                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3838                        return -EFAULT;
3839        }
3840
3841        return ret;
3842}
3843#endif
3844#ifdef CONFIG_COMPAT_OLD_SIGACTION
3845COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3846                const struct compat_old_sigaction __user *, act,
3847                struct compat_old_sigaction __user *, oact)
3848{
3849        struct k_sigaction new_ka, old_ka;
3850        int ret;
3851        compat_old_sigset_t mask;
3852        compat_uptr_t handler, restorer;
3853
3854        if (act) {
3855                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3856                    __get_user(handler, &act->sa_handler) ||
3857                    __get_user(restorer, &act->sa_restorer) ||
3858                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3859                    __get_user(mask, &act->sa_mask))
3860                        return -EFAULT;
3861
3862#ifdef __ARCH_HAS_KA_RESTORER
3863                new_ka.ka_restorer = NULL;
3864#endif
3865                new_ka.sa.sa_handler = compat_ptr(handler);
3866                new_ka.sa.sa_restorer = compat_ptr(restorer);
3867                siginitset(&new_ka.sa.sa_mask, mask);
3868        }
3869
3870        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3871
3872        if (!ret && oact) {
3873                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3874                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3875                               &oact->sa_handler) ||
3876                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3877                               &oact->sa_restorer) ||
3878                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3879                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3880                        return -EFAULT;
3881        }
3882        return ret;
3883}
3884#endif
3885
3886#ifdef CONFIG_SGETMASK_SYSCALL
3887
3888/*
3889 * For backwards compatibility.  Functionality superseded by sigprocmask.
3890 */
3891SYSCALL_DEFINE0(sgetmask)
3892{
3893        /* SMP safe */
3894        return current->blocked.sig[0];
3895}
3896
3897SYSCALL_DEFINE1(ssetmask, int, newmask)
3898{
3899        int old = current->blocked.sig[0];
3900        sigset_t newset;
3901
3902        siginitset(&newset, newmask);
3903        set_current_blocked(&newset);
3904
3905        return old;
3906}
3907#endif /* CONFIG_SGETMASK_SYSCALL */
3908
3909#ifdef __ARCH_WANT_SYS_SIGNAL
3910/*
3911 * For backwards compatibility.  Functionality superseded by sigaction.
3912 */
3913SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3914{
3915        struct k_sigaction new_sa, old_sa;
3916        int ret;
3917
3918        new_sa.sa.sa_handler = handler;
3919        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3920        sigemptyset(&new_sa.sa.sa_mask);
3921
3922        ret = do_sigaction(sig, &new_sa, &old_sa);
3923
3924        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3925}
3926#endif /* __ARCH_WANT_SYS_SIGNAL */
3927
3928#ifdef __ARCH_WANT_SYS_PAUSE
3929
3930SYSCALL_DEFINE0(pause)
3931{
3932        while (!signal_pending(current)) {
3933                __set_current_state(TASK_INTERRUPTIBLE);
3934                schedule();
3935        }
3936        return -ERESTARTNOHAND;
3937}
3938
3939#endif
3940
3941static int sigsuspend(sigset_t *set)
3942{
3943        current->saved_sigmask = current->blocked;
3944        set_current_blocked(set);
3945
3946        while (!signal_pending(current)) {
3947                __set_current_state(TASK_INTERRUPTIBLE);
3948                schedule();
3949        }
3950        set_restore_sigmask();
3951        return -ERESTARTNOHAND;
3952}
3953
3954/**
3955 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3956 *      @unewset value until a signal is received
3957 *  @unewset: new signal mask value
3958 *  @sigsetsize: size of sigset_t type
3959 */
3960SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3961{
3962        sigset_t newset;
3963
3964        /* XXX: Don't preclude handling different sized sigset_t's.  */
3965        if (sigsetsize != sizeof(sigset_t))
3966                return -EINVAL;
3967
3968        if (copy_from_user(&newset, unewset, sizeof(newset)))
3969                return -EFAULT;
3970        return sigsuspend(&newset);
3971}
3972 
3973#ifdef CONFIG_COMPAT
3974COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3975{
3976        sigset_t newset;
3977
3978        /* XXX: Don't preclude handling different sized sigset_t's.  */
3979        if (sigsetsize != sizeof(sigset_t))
3980                return -EINVAL;
3981
3982        if (get_compat_sigset(&newset, unewset))
3983                return -EFAULT;
3984        return sigsuspend(&newset);
3985}
3986#endif
3987
3988#ifdef CONFIG_OLD_SIGSUSPEND
3989SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3990{
3991        sigset_t blocked;
3992        siginitset(&blocked, mask);
3993        return sigsuspend(&blocked);
3994}
3995#endif
3996#ifdef CONFIG_OLD_SIGSUSPEND3
3997SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3998{
3999        sigset_t blocked;
4000        siginitset(&blocked, mask);
4001        return sigsuspend(&blocked);
4002}
4003#endif
4004
4005__weak const char *arch_vma_name(struct vm_area_struct *vma)
4006{
4007        return NULL;
4008}
4009
4010void __init signals_init(void)
4011{
4012        /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4013        BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4014                != offsetof(struct siginfo, _sifields._pad));
4015        BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4016
4017        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4018}
4019
4020#ifdef CONFIG_KGDB_KDB
4021#include <linux/kdb.h>
4022/*
4023 * kdb_send_sig - Allows kdb to send signals without exposing
4024 * signal internals.  This function checks if the required locks are
4025 * available before calling the main signal code, to avoid kdb
4026 * deadlocks.
4027 */
4028void kdb_send_sig(struct task_struct *t, int sig)
4029{
4030        static struct task_struct *kdb_prev_t;
4031        int new_t, ret;
4032        if (!spin_trylock(&t->sighand->siglock)) {
4033                kdb_printf("Can't do kill command now.\n"
4034                           "The sigmask lock is held somewhere else in "
4035                           "kernel, try again later\n");
4036                return;
4037        }
4038        new_t = kdb_prev_t != t;
4039        kdb_prev_t = t;
4040        if (t->state != TASK_RUNNING && new_t) {
4041                spin_unlock(&t->sighand->siglock);
4042                kdb_printf("Process is not RUNNING, sending a signal from "
4043                           "kdb risks deadlock\n"
4044                           "on the run queue locks. "
4045                           "The signal has _not_ been sent.\n"
4046                           "Reissue the kill command if you want to risk "
4047                           "the deadlock.\n");
4048                return;
4049        }
4050        ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4051        spin_unlock(&t->sighand->siglock);
4052        if (ret)
4053                kdb_printf("Fail to deliver Signal %d to process %d.\n",
4054                           sig, t->pid);
4055        else
4056                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4057}
4058#endif  /* CONFIG_KGDB_KDB */
4059