linux/kernel/smpboot.c
<<
>>
Prefs
   1/*
   2 * Common SMP CPU bringup/teardown functions
   3 */
   4#include <linux/cpu.h>
   5#include <linux/err.h>
   6#include <linux/smp.h>
   7#include <linux/delay.h>
   8#include <linux/init.h>
   9#include <linux/list.h>
  10#include <linux/slab.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task.h>
  13#include <linux/export.h>
  14#include <linux/percpu.h>
  15#include <linux/kthread.h>
  16#include <linux/smpboot.h>
  17
  18#include "smpboot.h"
  19
  20#ifdef CONFIG_SMP
  21
  22#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
  23/*
  24 * For the hotplug case we keep the task structs around and reuse
  25 * them.
  26 */
  27static DEFINE_PER_CPU(struct task_struct *, idle_threads);
  28
  29struct task_struct *idle_thread_get(unsigned int cpu)
  30{
  31        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  32
  33        if (!tsk)
  34                return ERR_PTR(-ENOMEM);
  35        init_idle(tsk, cpu);
  36        return tsk;
  37}
  38
  39void __init idle_thread_set_boot_cpu(void)
  40{
  41        per_cpu(idle_threads, smp_processor_id()) = current;
  42}
  43
  44/**
  45 * idle_init - Initialize the idle thread for a cpu
  46 * @cpu:        The cpu for which the idle thread should be initialized
  47 *
  48 * Creates the thread if it does not exist.
  49 */
  50static inline void idle_init(unsigned int cpu)
  51{
  52        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  53
  54        if (!tsk) {
  55                tsk = fork_idle(cpu);
  56                if (IS_ERR(tsk))
  57                        pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
  58                else
  59                        per_cpu(idle_threads, cpu) = tsk;
  60        }
  61}
  62
  63/**
  64 * idle_threads_init - Initialize idle threads for all cpus
  65 */
  66void __init idle_threads_init(void)
  67{
  68        unsigned int cpu, boot_cpu;
  69
  70        boot_cpu = smp_processor_id();
  71
  72        for_each_possible_cpu(cpu) {
  73                if (cpu != boot_cpu)
  74                        idle_init(cpu);
  75        }
  76}
  77#endif
  78
  79#endif /* #ifdef CONFIG_SMP */
  80
  81static LIST_HEAD(hotplug_threads);
  82static DEFINE_MUTEX(smpboot_threads_lock);
  83
  84struct smpboot_thread_data {
  85        unsigned int                    cpu;
  86        unsigned int                    status;
  87        struct smp_hotplug_thread       *ht;
  88};
  89
  90enum {
  91        HP_THREAD_NONE = 0,
  92        HP_THREAD_ACTIVE,
  93        HP_THREAD_PARKED,
  94};
  95
  96/**
  97 * smpboot_thread_fn - percpu hotplug thread loop function
  98 * @data:       thread data pointer
  99 *
 100 * Checks for thread stop and park conditions. Calls the necessary
 101 * setup, cleanup, park and unpark functions for the registered
 102 * thread.
 103 *
 104 * Returns 1 when the thread should exit, 0 otherwise.
 105 */
 106static int smpboot_thread_fn(void *data)
 107{
 108        struct smpboot_thread_data *td = data;
 109        struct smp_hotplug_thread *ht = td->ht;
 110
 111        while (1) {
 112                set_current_state(TASK_INTERRUPTIBLE);
 113                preempt_disable();
 114                if (kthread_should_stop()) {
 115                        __set_current_state(TASK_RUNNING);
 116                        preempt_enable();
 117                        /* cleanup must mirror setup */
 118                        if (ht->cleanup && td->status != HP_THREAD_NONE)
 119                                ht->cleanup(td->cpu, cpu_online(td->cpu));
 120                        kfree(td);
 121                        return 0;
 122                }
 123
 124                if (kthread_should_park()) {
 125                        __set_current_state(TASK_RUNNING);
 126                        preempt_enable();
 127                        if (ht->park && td->status == HP_THREAD_ACTIVE) {
 128                                BUG_ON(td->cpu != smp_processor_id());
 129                                ht->park(td->cpu);
 130                                td->status = HP_THREAD_PARKED;
 131                        }
 132                        kthread_parkme();
 133                        /* We might have been woken for stop */
 134                        continue;
 135                }
 136
 137                BUG_ON(td->cpu != smp_processor_id());
 138
 139                /* Check for state change setup */
 140                switch (td->status) {
 141                case HP_THREAD_NONE:
 142                        __set_current_state(TASK_RUNNING);
 143                        preempt_enable();
 144                        if (ht->setup)
 145                                ht->setup(td->cpu);
 146                        td->status = HP_THREAD_ACTIVE;
 147                        continue;
 148
 149                case HP_THREAD_PARKED:
 150                        __set_current_state(TASK_RUNNING);
 151                        preempt_enable();
 152                        if (ht->unpark)
 153                                ht->unpark(td->cpu);
 154                        td->status = HP_THREAD_ACTIVE;
 155                        continue;
 156                }
 157
 158                if (!ht->thread_should_run(td->cpu)) {
 159                        preempt_enable_no_resched();
 160                        schedule();
 161                } else {
 162                        __set_current_state(TASK_RUNNING);
 163                        preempt_enable();
 164                        ht->thread_fn(td->cpu);
 165                }
 166        }
 167}
 168
 169static int
 170__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 171{
 172        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 173        struct smpboot_thread_data *td;
 174
 175        if (tsk)
 176                return 0;
 177
 178        td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 179        if (!td)
 180                return -ENOMEM;
 181        td->cpu = cpu;
 182        td->ht = ht;
 183
 184        tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 185                                    ht->thread_comm);
 186        if (IS_ERR(tsk)) {
 187                kfree(td);
 188                return PTR_ERR(tsk);
 189        }
 190        /*
 191         * Park the thread so that it could start right on the CPU
 192         * when it is available.
 193         */
 194        kthread_park(tsk);
 195        get_task_struct(tsk);
 196        *per_cpu_ptr(ht->store, cpu) = tsk;
 197        if (ht->create) {
 198                /*
 199                 * Make sure that the task has actually scheduled out
 200                 * into park position, before calling the create
 201                 * callback. At least the migration thread callback
 202                 * requires that the task is off the runqueue.
 203                 */
 204                if (!wait_task_inactive(tsk, TASK_PARKED))
 205                        WARN_ON(1);
 206                else
 207                        ht->create(cpu);
 208        }
 209        return 0;
 210}
 211
 212int smpboot_create_threads(unsigned int cpu)
 213{
 214        struct smp_hotplug_thread *cur;
 215        int ret = 0;
 216
 217        mutex_lock(&smpboot_threads_lock);
 218        list_for_each_entry(cur, &hotplug_threads, list) {
 219                ret = __smpboot_create_thread(cur, cpu);
 220                if (ret)
 221                        break;
 222        }
 223        mutex_unlock(&smpboot_threads_lock);
 224        return ret;
 225}
 226
 227static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 228{
 229        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 230
 231        if (!ht->selfparking)
 232                kthread_unpark(tsk);
 233}
 234
 235int smpboot_unpark_threads(unsigned int cpu)
 236{
 237        struct smp_hotplug_thread *cur;
 238
 239        mutex_lock(&smpboot_threads_lock);
 240        list_for_each_entry(cur, &hotplug_threads, list)
 241                if (cpumask_test_cpu(cpu, cur->cpumask))
 242                        smpboot_unpark_thread(cur, cpu);
 243        mutex_unlock(&smpboot_threads_lock);
 244        return 0;
 245}
 246
 247static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 248{
 249        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 250
 251        if (tsk && !ht->selfparking)
 252                kthread_park(tsk);
 253}
 254
 255int smpboot_park_threads(unsigned int cpu)
 256{
 257        struct smp_hotplug_thread *cur;
 258
 259        mutex_lock(&smpboot_threads_lock);
 260        list_for_each_entry_reverse(cur, &hotplug_threads, list)
 261                smpboot_park_thread(cur, cpu);
 262        mutex_unlock(&smpboot_threads_lock);
 263        return 0;
 264}
 265
 266static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 267{
 268        unsigned int cpu;
 269
 270        /* We need to destroy also the parked threads of offline cpus */
 271        for_each_possible_cpu(cpu) {
 272                struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 273
 274                if (tsk) {
 275                        kthread_stop(tsk);
 276                        put_task_struct(tsk);
 277                        *per_cpu_ptr(ht->store, cpu) = NULL;
 278                }
 279        }
 280}
 281
 282/**
 283 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
 284 *                                          to hotplug
 285 * @plug_thread:        Hotplug thread descriptor
 286 * @cpumask:            The cpumask where threads run
 287 *
 288 * Creates and starts the threads on all online cpus.
 289 */
 290int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
 291                                           const struct cpumask *cpumask)
 292{
 293        unsigned int cpu;
 294        int ret = 0;
 295
 296        if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
 297                return -ENOMEM;
 298        cpumask_copy(plug_thread->cpumask, cpumask);
 299
 300        get_online_cpus();
 301        mutex_lock(&smpboot_threads_lock);
 302        for_each_online_cpu(cpu) {
 303                ret = __smpboot_create_thread(plug_thread, cpu);
 304                if (ret) {
 305                        smpboot_destroy_threads(plug_thread);
 306                        free_cpumask_var(plug_thread->cpumask);
 307                        goto out;
 308                }
 309                if (cpumask_test_cpu(cpu, cpumask))
 310                        smpboot_unpark_thread(plug_thread, cpu);
 311        }
 312        list_add(&plug_thread->list, &hotplug_threads);
 313out:
 314        mutex_unlock(&smpboot_threads_lock);
 315        put_online_cpus();
 316        return ret;
 317}
 318EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
 319
 320/**
 321 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 322 * @plug_thread:        Hotplug thread descriptor
 323 *
 324 * Stops all threads on all possible cpus.
 325 */
 326void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 327{
 328        get_online_cpus();
 329        mutex_lock(&smpboot_threads_lock);
 330        list_del(&plug_thread->list);
 331        smpboot_destroy_threads(plug_thread);
 332        mutex_unlock(&smpboot_threads_lock);
 333        put_online_cpus();
 334        free_cpumask_var(plug_thread->cpumask);
 335}
 336EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 337
 338/**
 339 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
 340 * @plug_thread:        Hotplug thread descriptor
 341 * @new:                Revised mask to use
 342 *
 343 * The cpumask field in the smp_hotplug_thread must not be updated directly
 344 * by the client, but only by calling this function.
 345 * This function can only be called on a registered smp_hotplug_thread.
 346 */
 347void smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
 348                                          const struct cpumask *new)
 349{
 350        struct cpumask *old = plug_thread->cpumask;
 351        static struct cpumask tmp;
 352        unsigned int cpu;
 353
 354        lockdep_assert_cpus_held();
 355        mutex_lock(&smpboot_threads_lock);
 356
 357        /* Park threads that were exclusively enabled on the old mask. */
 358        cpumask_andnot(&tmp, old, new);
 359        for_each_cpu_and(cpu, &tmp, cpu_online_mask)
 360                smpboot_park_thread(plug_thread, cpu);
 361
 362        /* Unpark threads that are exclusively enabled on the new mask. */
 363        cpumask_andnot(&tmp, new, old);
 364        for_each_cpu_and(cpu, &tmp, cpu_online_mask)
 365                smpboot_unpark_thread(plug_thread, cpu);
 366
 367        cpumask_copy(old, new);
 368
 369        mutex_unlock(&smpboot_threads_lock);
 370}
 371
 372static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 373
 374/*
 375 * Called to poll specified CPU's state, for example, when waiting for
 376 * a CPU to come online.
 377 */
 378int cpu_report_state(int cpu)
 379{
 380        return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 381}
 382
 383/*
 384 * If CPU has died properly, set its state to CPU_UP_PREPARE and
 385 * return success.  Otherwise, return -EBUSY if the CPU died after
 386 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 387 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 388 * to dying.  In the latter two cases, the CPU might not be set up
 389 * properly, but it is up to the arch-specific code to decide.
 390 * Finally, -EIO indicates an unanticipated problem.
 391 *
 392 * Note that it is permissible to omit this call entirely, as is
 393 * done in architectures that do no CPU-hotplug error checking.
 394 */
 395int cpu_check_up_prepare(int cpu)
 396{
 397        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 398                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 399                return 0;
 400        }
 401
 402        switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 403
 404        case CPU_POST_DEAD:
 405
 406                /* The CPU died properly, so just start it up again. */
 407                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 408                return 0;
 409
 410        case CPU_DEAD_FROZEN:
 411
 412                /*
 413                 * Timeout during CPU death, so let caller know.
 414                 * The outgoing CPU completed its processing, but after
 415                 * cpu_wait_death() timed out and reported the error. The
 416                 * caller is free to proceed, in which case the state
 417                 * will be reset properly by cpu_set_state_online().
 418                 * Proceeding despite this -EBUSY return makes sense
 419                 * for systems where the outgoing CPUs take themselves
 420                 * offline, with no post-death manipulation required from
 421                 * a surviving CPU.
 422                 */
 423                return -EBUSY;
 424
 425        case CPU_BROKEN:
 426
 427                /*
 428                 * The most likely reason we got here is that there was
 429                 * a timeout during CPU death, and the outgoing CPU never
 430                 * did complete its processing.  This could happen on
 431                 * a virtualized system if the outgoing VCPU gets preempted
 432                 * for more than five seconds, and the user attempts to
 433                 * immediately online that same CPU.  Trying again later
 434                 * might return -EBUSY above, hence -EAGAIN.
 435                 */
 436                return -EAGAIN;
 437
 438        default:
 439
 440                /* Should not happen.  Famous last words. */
 441                return -EIO;
 442        }
 443}
 444
 445/*
 446 * Mark the specified CPU online.
 447 *
 448 * Note that it is permissible to omit this call entirely, as is
 449 * done in architectures that do no CPU-hotplug error checking.
 450 */
 451void cpu_set_state_online(int cpu)
 452{
 453        (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 454}
 455
 456#ifdef CONFIG_HOTPLUG_CPU
 457
 458/*
 459 * Wait for the specified CPU to exit the idle loop and die.
 460 */
 461bool cpu_wait_death(unsigned int cpu, int seconds)
 462{
 463        int jf_left = seconds * HZ;
 464        int oldstate;
 465        bool ret = true;
 466        int sleep_jf = 1;
 467
 468        might_sleep();
 469
 470        /* The outgoing CPU will normally get done quite quickly. */
 471        if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 472                goto update_state;
 473        udelay(5);
 474
 475        /* But if the outgoing CPU dawdles, wait increasingly long times. */
 476        while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 477                schedule_timeout_uninterruptible(sleep_jf);
 478                jf_left -= sleep_jf;
 479                if (jf_left <= 0)
 480                        break;
 481                sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 482        }
 483update_state:
 484        oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 485        if (oldstate == CPU_DEAD) {
 486                /* Outgoing CPU died normally, update state. */
 487                smp_mb(); /* atomic_read() before update. */
 488                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 489        } else {
 490                /* Outgoing CPU still hasn't died, set state accordingly. */
 491                if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 492                                   oldstate, CPU_BROKEN) != oldstate)
 493                        goto update_state;
 494                ret = false;
 495        }
 496        return ret;
 497}
 498
 499/*
 500 * Called by the outgoing CPU to report its successful death.  Return
 501 * false if this report follows the surviving CPU's timing out.
 502 *
 503 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 504 * timed out.  This approach allows architectures to omit calls to
 505 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 506 * the next cpu_wait_death()'s polling loop.
 507 */
 508bool cpu_report_death(void)
 509{
 510        int oldstate;
 511        int newstate;
 512        int cpu = smp_processor_id();
 513
 514        do {
 515                oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 516                if (oldstate != CPU_BROKEN)
 517                        newstate = CPU_DEAD;
 518                else
 519                        newstate = CPU_DEAD_FROZEN;
 520        } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 521                                oldstate, newstate) != oldstate);
 522        return newstate == CPU_DEAD;
 523}
 524
 525#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 526