linux/kernel/stop_machine.c
<<
>>
Prefs
   1/*
   2 * kernel/stop_machine.c
   3 *
   4 * Copyright (C) 2008, 2005     IBM Corporation.
   5 * Copyright (C) 2008, 2005     Rusty Russell rusty@rustcorp.com.au
   6 * Copyright (C) 2010           SUSE Linux Products GmbH
   7 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
   8 *
   9 * This file is released under the GPLv2 and any later version.
  10 */
  11#include <linux/completion.h>
  12#include <linux/cpu.h>
  13#include <linux/init.h>
  14#include <linux/kthread.h>
  15#include <linux/export.h>
  16#include <linux/percpu.h>
  17#include <linux/sched.h>
  18#include <linux/stop_machine.h>
  19#include <linux/interrupt.h>
  20#include <linux/kallsyms.h>
  21#include <linux/smpboot.h>
  22#include <linux/atomic.h>
  23#include <linux/nmi.h>
  24#include <linux/sched/wake_q.h>
  25
  26/*
  27 * Structure to determine completion condition and record errors.  May
  28 * be shared by works on different cpus.
  29 */
  30struct cpu_stop_done {
  31        atomic_t                nr_todo;        /* nr left to execute */
  32        int                     ret;            /* collected return value */
  33        struct completion       completion;     /* fired if nr_todo reaches 0 */
  34};
  35
  36/* the actual stopper, one per every possible cpu, enabled on online cpus */
  37struct cpu_stopper {
  38        struct task_struct      *thread;
  39
  40        spinlock_t              lock;
  41        bool                    enabled;        /* is this stopper enabled? */
  42        struct list_head        works;          /* list of pending works */
  43
  44        struct cpu_stop_work    stop_work;      /* for stop_cpus */
  45};
  46
  47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
  48static bool stop_machine_initialized = false;
  49
  50/* static data for stop_cpus */
  51static DEFINE_MUTEX(stop_cpus_mutex);
  52static bool stop_cpus_in_progress;
  53
  54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
  55{
  56        memset(done, 0, sizeof(*done));
  57        atomic_set(&done->nr_todo, nr_todo);
  58        init_completion(&done->completion);
  59}
  60
  61/* signal completion unless @done is NULL */
  62static void cpu_stop_signal_done(struct cpu_stop_done *done)
  63{
  64        if (atomic_dec_and_test(&done->nr_todo))
  65                complete(&done->completion);
  66}
  67
  68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
  69                                        struct cpu_stop_work *work,
  70                                        struct wake_q_head *wakeq)
  71{
  72        list_add_tail(&work->list, &stopper->works);
  73        wake_q_add(wakeq, stopper->thread);
  74}
  75
  76/* queue @work to @stopper.  if offline, @work is completed immediately */
  77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
  78{
  79        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  80        DEFINE_WAKE_Q(wakeq);
  81        unsigned long flags;
  82        bool enabled;
  83
  84        spin_lock_irqsave(&stopper->lock, flags);
  85        enabled = stopper->enabled;
  86        if (enabled)
  87                __cpu_stop_queue_work(stopper, work, &wakeq);
  88        else if (work->done)
  89                cpu_stop_signal_done(work->done);
  90        spin_unlock_irqrestore(&stopper->lock, flags);
  91
  92        wake_up_q(&wakeq);
  93
  94        return enabled;
  95}
  96
  97/**
  98 * stop_one_cpu - stop a cpu
  99 * @cpu: cpu to stop
 100 * @fn: function to execute
 101 * @arg: argument to @fn
 102 *
 103 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 104 * the highest priority preempting any task on the cpu and
 105 * monopolizing it.  This function returns after the execution is
 106 * complete.
 107 *
 108 * This function doesn't guarantee @cpu stays online till @fn
 109 * completes.  If @cpu goes down in the middle, execution may happen
 110 * partially or fully on different cpus.  @fn should either be ready
 111 * for that or the caller should ensure that @cpu stays online until
 112 * this function completes.
 113 *
 114 * CONTEXT:
 115 * Might sleep.
 116 *
 117 * RETURNS:
 118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
 119 * otherwise, the return value of @fn.
 120 */
 121int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
 122{
 123        struct cpu_stop_done done;
 124        struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
 125
 126        cpu_stop_init_done(&done, 1);
 127        if (!cpu_stop_queue_work(cpu, &work))
 128                return -ENOENT;
 129        /*
 130         * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
 131         * cycle by doing a preemption:
 132         */
 133        cond_resched();
 134        wait_for_completion(&done.completion);
 135        return done.ret;
 136}
 137
 138/* This controls the threads on each CPU. */
 139enum multi_stop_state {
 140        /* Dummy starting state for thread. */
 141        MULTI_STOP_NONE,
 142        /* Awaiting everyone to be scheduled. */
 143        MULTI_STOP_PREPARE,
 144        /* Disable interrupts. */
 145        MULTI_STOP_DISABLE_IRQ,
 146        /* Run the function */
 147        MULTI_STOP_RUN,
 148        /* Exit */
 149        MULTI_STOP_EXIT,
 150};
 151
 152struct multi_stop_data {
 153        cpu_stop_fn_t           fn;
 154        void                    *data;
 155        /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
 156        unsigned int            num_threads;
 157        const struct cpumask    *active_cpus;
 158
 159        enum multi_stop_state   state;
 160        atomic_t                thread_ack;
 161};
 162
 163static void set_state(struct multi_stop_data *msdata,
 164                      enum multi_stop_state newstate)
 165{
 166        /* Reset ack counter. */
 167        atomic_set(&msdata->thread_ack, msdata->num_threads);
 168        smp_wmb();
 169        msdata->state = newstate;
 170}
 171
 172/* Last one to ack a state moves to the next state. */
 173static void ack_state(struct multi_stop_data *msdata)
 174{
 175        if (atomic_dec_and_test(&msdata->thread_ack))
 176                set_state(msdata, msdata->state + 1);
 177}
 178
 179/* This is the cpu_stop function which stops the CPU. */
 180static int multi_cpu_stop(void *data)
 181{
 182        struct multi_stop_data *msdata = data;
 183        enum multi_stop_state curstate = MULTI_STOP_NONE;
 184        int cpu = smp_processor_id(), err = 0;
 185        unsigned long flags;
 186        bool is_active;
 187
 188        /*
 189         * When called from stop_machine_from_inactive_cpu(), irq might
 190         * already be disabled.  Save the state and restore it on exit.
 191         */
 192        local_save_flags(flags);
 193
 194        if (!msdata->active_cpus)
 195                is_active = cpu == cpumask_first(cpu_online_mask);
 196        else
 197                is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
 198
 199        /* Simple state machine */
 200        do {
 201                /* Chill out and ensure we re-read multi_stop_state. */
 202                cpu_relax_yield();
 203                if (msdata->state != curstate) {
 204                        curstate = msdata->state;
 205                        switch (curstate) {
 206                        case MULTI_STOP_DISABLE_IRQ:
 207                                local_irq_disable();
 208                                hard_irq_disable();
 209                                break;
 210                        case MULTI_STOP_RUN:
 211                                if (is_active)
 212                                        err = msdata->fn(msdata->data);
 213                                break;
 214                        default:
 215                                break;
 216                        }
 217                        ack_state(msdata);
 218                } else if (curstate > MULTI_STOP_PREPARE) {
 219                        /*
 220                         * At this stage all other CPUs we depend on must spin
 221                         * in the same loop. Any reason for hard-lockup should
 222                         * be detected and reported on their side.
 223                         */
 224                        touch_nmi_watchdog();
 225                }
 226        } while (curstate != MULTI_STOP_EXIT);
 227
 228        local_irq_restore(flags);
 229        return err;
 230}
 231
 232static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
 233                                    int cpu2, struct cpu_stop_work *work2)
 234{
 235        struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
 236        struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
 237        DEFINE_WAKE_Q(wakeq);
 238        int err;
 239retry:
 240        spin_lock_irq(&stopper1->lock);
 241        spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
 242
 243        err = -ENOENT;
 244        if (!stopper1->enabled || !stopper2->enabled)
 245                goto unlock;
 246        /*
 247         * Ensure that if we race with __stop_cpus() the stoppers won't get
 248         * queued up in reverse order leading to system deadlock.
 249         *
 250         * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
 251         * queued a work on cpu1 but not on cpu2, we hold both locks.
 252         *
 253         * It can be falsely true but it is safe to spin until it is cleared,
 254         * queue_stop_cpus_work() does everything under preempt_disable().
 255         */
 256        err = -EDEADLK;
 257        if (unlikely(stop_cpus_in_progress))
 258                        goto unlock;
 259
 260        err = 0;
 261        __cpu_stop_queue_work(stopper1, work1, &wakeq);
 262        __cpu_stop_queue_work(stopper2, work2, &wakeq);
 263unlock:
 264        spin_unlock(&stopper2->lock);
 265        spin_unlock_irq(&stopper1->lock);
 266
 267        if (unlikely(err == -EDEADLK)) {
 268                while (stop_cpus_in_progress)
 269                        cpu_relax();
 270                goto retry;
 271        }
 272
 273        wake_up_q(&wakeq);
 274
 275        return err;
 276}
 277/**
 278 * stop_two_cpus - stops two cpus
 279 * @cpu1: the cpu to stop
 280 * @cpu2: the other cpu to stop
 281 * @fn: function to execute
 282 * @arg: argument to @fn
 283 *
 284 * Stops both the current and specified CPU and runs @fn on one of them.
 285 *
 286 * returns when both are completed.
 287 */
 288int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
 289{
 290        struct cpu_stop_done done;
 291        struct cpu_stop_work work1, work2;
 292        struct multi_stop_data msdata;
 293
 294        msdata = (struct multi_stop_data){
 295                .fn = fn,
 296                .data = arg,
 297                .num_threads = 2,
 298                .active_cpus = cpumask_of(cpu1),
 299        };
 300
 301        work1 = work2 = (struct cpu_stop_work){
 302                .fn = multi_cpu_stop,
 303                .arg = &msdata,
 304                .done = &done
 305        };
 306
 307        cpu_stop_init_done(&done, 2);
 308        set_state(&msdata, MULTI_STOP_PREPARE);
 309
 310        if (cpu1 > cpu2)
 311                swap(cpu1, cpu2);
 312        if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
 313                return -ENOENT;
 314
 315        wait_for_completion(&done.completion);
 316        return done.ret;
 317}
 318
 319/**
 320 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
 321 * @cpu: cpu to stop
 322 * @fn: function to execute
 323 * @arg: argument to @fn
 324 * @work_buf: pointer to cpu_stop_work structure
 325 *
 326 * Similar to stop_one_cpu() but doesn't wait for completion.  The
 327 * caller is responsible for ensuring @work_buf is currently unused
 328 * and will remain untouched until stopper starts executing @fn.
 329 *
 330 * CONTEXT:
 331 * Don't care.
 332 *
 333 * RETURNS:
 334 * true if cpu_stop_work was queued successfully and @fn will be called,
 335 * false otherwise.
 336 */
 337bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
 338                        struct cpu_stop_work *work_buf)
 339{
 340        *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
 341        return cpu_stop_queue_work(cpu, work_buf);
 342}
 343
 344static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 345                                 cpu_stop_fn_t fn, void *arg,
 346                                 struct cpu_stop_done *done)
 347{
 348        struct cpu_stop_work *work;
 349        unsigned int cpu;
 350        bool queued = false;
 351
 352        /*
 353         * Disable preemption while queueing to avoid getting
 354         * preempted by a stopper which might wait for other stoppers
 355         * to enter @fn which can lead to deadlock.
 356         */
 357        preempt_disable();
 358        stop_cpus_in_progress = true;
 359        for_each_cpu(cpu, cpumask) {
 360                work = &per_cpu(cpu_stopper.stop_work, cpu);
 361                work->fn = fn;
 362                work->arg = arg;
 363                work->done = done;
 364                if (cpu_stop_queue_work(cpu, work))
 365                        queued = true;
 366        }
 367        stop_cpus_in_progress = false;
 368        preempt_enable();
 369
 370        return queued;
 371}
 372
 373static int __stop_cpus(const struct cpumask *cpumask,
 374                       cpu_stop_fn_t fn, void *arg)
 375{
 376        struct cpu_stop_done done;
 377
 378        cpu_stop_init_done(&done, cpumask_weight(cpumask));
 379        if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
 380                return -ENOENT;
 381        wait_for_completion(&done.completion);
 382        return done.ret;
 383}
 384
 385/**
 386 * stop_cpus - stop multiple cpus
 387 * @cpumask: cpus to stop
 388 * @fn: function to execute
 389 * @arg: argument to @fn
 390 *
 391 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
 392 * @fn is run in a process context with the highest priority
 393 * preempting any task on the cpu and monopolizing it.  This function
 394 * returns after all executions are complete.
 395 *
 396 * This function doesn't guarantee the cpus in @cpumask stay online
 397 * till @fn completes.  If some cpus go down in the middle, execution
 398 * on the cpu may happen partially or fully on different cpus.  @fn
 399 * should either be ready for that or the caller should ensure that
 400 * the cpus stay online until this function completes.
 401 *
 402 * All stop_cpus() calls are serialized making it safe for @fn to wait
 403 * for all cpus to start executing it.
 404 *
 405 * CONTEXT:
 406 * Might sleep.
 407 *
 408 * RETURNS:
 409 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
 410 * @cpumask were offline; otherwise, 0 if all executions of @fn
 411 * returned 0, any non zero return value if any returned non zero.
 412 */
 413int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 414{
 415        int ret;
 416
 417        /* static works are used, process one request at a time */
 418        mutex_lock(&stop_cpus_mutex);
 419        ret = __stop_cpus(cpumask, fn, arg);
 420        mutex_unlock(&stop_cpus_mutex);
 421        return ret;
 422}
 423
 424/**
 425 * try_stop_cpus - try to stop multiple cpus
 426 * @cpumask: cpus to stop
 427 * @fn: function to execute
 428 * @arg: argument to @fn
 429 *
 430 * Identical to stop_cpus() except that it fails with -EAGAIN if
 431 * someone else is already using the facility.
 432 *
 433 * CONTEXT:
 434 * Might sleep.
 435 *
 436 * RETURNS:
 437 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
 438 * @fn(@arg) was not executed at all because all cpus in @cpumask were
 439 * offline; otherwise, 0 if all executions of @fn returned 0, any non
 440 * zero return value if any returned non zero.
 441 */
 442int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 443{
 444        int ret;
 445
 446        /* static works are used, process one request at a time */
 447        if (!mutex_trylock(&stop_cpus_mutex))
 448                return -EAGAIN;
 449        ret = __stop_cpus(cpumask, fn, arg);
 450        mutex_unlock(&stop_cpus_mutex);
 451        return ret;
 452}
 453
 454static int cpu_stop_should_run(unsigned int cpu)
 455{
 456        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 457        unsigned long flags;
 458        int run;
 459
 460        spin_lock_irqsave(&stopper->lock, flags);
 461        run = !list_empty(&stopper->works);
 462        spin_unlock_irqrestore(&stopper->lock, flags);
 463        return run;
 464}
 465
 466static void cpu_stopper_thread(unsigned int cpu)
 467{
 468        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 469        struct cpu_stop_work *work;
 470
 471repeat:
 472        work = NULL;
 473        spin_lock_irq(&stopper->lock);
 474        if (!list_empty(&stopper->works)) {
 475                work = list_first_entry(&stopper->works,
 476                                        struct cpu_stop_work, list);
 477                list_del_init(&work->list);
 478        }
 479        spin_unlock_irq(&stopper->lock);
 480
 481        if (work) {
 482                cpu_stop_fn_t fn = work->fn;
 483                void *arg = work->arg;
 484                struct cpu_stop_done *done = work->done;
 485                int ret;
 486
 487                /* cpu stop callbacks must not sleep, make in_atomic() == T */
 488                preempt_count_inc();
 489                ret = fn(arg);
 490                if (done) {
 491                        if (ret)
 492                                done->ret = ret;
 493                        cpu_stop_signal_done(done);
 494                }
 495                preempt_count_dec();
 496                WARN_ONCE(preempt_count(),
 497                          "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
 498                goto repeat;
 499        }
 500}
 501
 502void stop_machine_park(int cpu)
 503{
 504        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 505        /*
 506         * Lockless. cpu_stopper_thread() will take stopper->lock and flush
 507         * the pending works before it parks, until then it is fine to queue
 508         * the new works.
 509         */
 510        stopper->enabled = false;
 511        kthread_park(stopper->thread);
 512}
 513
 514extern void sched_set_stop_task(int cpu, struct task_struct *stop);
 515
 516static void cpu_stop_create(unsigned int cpu)
 517{
 518        sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
 519}
 520
 521static void cpu_stop_park(unsigned int cpu)
 522{
 523        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 524
 525        WARN_ON(!list_empty(&stopper->works));
 526}
 527
 528void stop_machine_unpark(int cpu)
 529{
 530        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 531
 532        stopper->enabled = true;
 533        kthread_unpark(stopper->thread);
 534}
 535
 536static struct smp_hotplug_thread cpu_stop_threads = {
 537        .store                  = &cpu_stopper.thread,
 538        .thread_should_run      = cpu_stop_should_run,
 539        .thread_fn              = cpu_stopper_thread,
 540        .thread_comm            = "migration/%u",
 541        .create                 = cpu_stop_create,
 542        .park                   = cpu_stop_park,
 543        .selfparking            = true,
 544};
 545
 546static int __init cpu_stop_init(void)
 547{
 548        unsigned int cpu;
 549
 550        for_each_possible_cpu(cpu) {
 551                struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 552
 553                spin_lock_init(&stopper->lock);
 554                INIT_LIST_HEAD(&stopper->works);
 555        }
 556
 557        BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 558        stop_machine_unpark(raw_smp_processor_id());
 559        stop_machine_initialized = true;
 560        return 0;
 561}
 562early_initcall(cpu_stop_init);
 563
 564int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
 565                            const struct cpumask *cpus)
 566{
 567        struct multi_stop_data msdata = {
 568                .fn = fn,
 569                .data = data,
 570                .num_threads = num_online_cpus(),
 571                .active_cpus = cpus,
 572        };
 573
 574        lockdep_assert_cpus_held();
 575
 576        if (!stop_machine_initialized) {
 577                /*
 578                 * Handle the case where stop_machine() is called
 579                 * early in boot before stop_machine() has been
 580                 * initialized.
 581                 */
 582                unsigned long flags;
 583                int ret;
 584
 585                WARN_ON_ONCE(msdata.num_threads != 1);
 586
 587                local_irq_save(flags);
 588                hard_irq_disable();
 589                ret = (*fn)(data);
 590                local_irq_restore(flags);
 591
 592                return ret;
 593        }
 594
 595        /* Set the initial state and stop all online cpus. */
 596        set_state(&msdata, MULTI_STOP_PREPARE);
 597        return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
 598}
 599
 600int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 601{
 602        int ret;
 603
 604        /* No CPUs can come up or down during this. */
 605        cpus_read_lock();
 606        ret = stop_machine_cpuslocked(fn, data, cpus);
 607        cpus_read_unlock();
 608        return ret;
 609}
 610EXPORT_SYMBOL_GPL(stop_machine);
 611
 612/**
 613 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
 614 * @fn: the function to run
 615 * @data: the data ptr for the @fn()
 616 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
 617 *
 618 * This is identical to stop_machine() but can be called from a CPU which
 619 * is not active.  The local CPU is in the process of hotplug (so no other
 620 * CPU hotplug can start) and not marked active and doesn't have enough
 621 * context to sleep.
 622 *
 623 * This function provides stop_machine() functionality for such state by
 624 * using busy-wait for synchronization and executing @fn directly for local
 625 * CPU.
 626 *
 627 * CONTEXT:
 628 * Local CPU is inactive.  Temporarily stops all active CPUs.
 629 *
 630 * RETURNS:
 631 * 0 if all executions of @fn returned 0, any non zero return value if any
 632 * returned non zero.
 633 */
 634int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
 635                                  const struct cpumask *cpus)
 636{
 637        struct multi_stop_data msdata = { .fn = fn, .data = data,
 638                                            .active_cpus = cpus };
 639        struct cpu_stop_done done;
 640        int ret;
 641
 642        /* Local CPU must be inactive and CPU hotplug in progress. */
 643        BUG_ON(cpu_active(raw_smp_processor_id()));
 644        msdata.num_threads = num_active_cpus() + 1;     /* +1 for local */
 645
 646        /* No proper task established and can't sleep - busy wait for lock. */
 647        while (!mutex_trylock(&stop_cpus_mutex))
 648                cpu_relax();
 649
 650        /* Schedule work on other CPUs and execute directly for local CPU */
 651        set_state(&msdata, MULTI_STOP_PREPARE);
 652        cpu_stop_init_done(&done, num_active_cpus());
 653        queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
 654                             &done);
 655        ret = multi_cpu_stop(&msdata);
 656
 657        /* Busy wait for completion. */
 658        while (!completion_done(&done.completion))
 659                cpu_relax();
 660
 661        mutex_unlock(&stop_cpus_mutex);
 662        return ret ?: done.ret;
 663}
 664