linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/interrupt.h>
  41#include <linux/tick.h>
  42#include <linux/seq_file.h>
  43#include <linux/err.h>
  44#include <linux/debugobjects.h>
  45#include <linux/sched/signal.h>
  46#include <linux/sched/sysctl.h>
  47#include <linux/sched/rt.h>
  48#include <linux/sched/deadline.h>
  49#include <linux/sched/nohz.h>
  50#include <linux/sched/debug.h>
  51#include <linux/timer.h>
  52#include <linux/freezer.h>
  53#include <linux/compat.h>
  54
  55#include <linux/uaccess.h>
  56
  57#include <trace/events/timer.h>
  58
  59#include "tick-internal.h"
  60
  61/*
  62 * Masks for selecting the soft and hard context timers from
  63 * cpu_base->active
  64 */
  65#define MASK_SHIFT              (HRTIMER_BASE_MONOTONIC_SOFT)
  66#define HRTIMER_ACTIVE_HARD     ((1U << MASK_SHIFT) - 1)
  67#define HRTIMER_ACTIVE_SOFT     (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  68#define HRTIMER_ACTIVE_ALL      (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  69
  70/*
  71 * The timer bases:
  72 *
  73 * There are more clockids than hrtimer bases. Thus, we index
  74 * into the timer bases by the hrtimer_base_type enum. When trying
  75 * to reach a base using a clockid, hrtimer_clockid_to_base()
  76 * is used to convert from clockid to the proper hrtimer_base_type.
  77 */
  78DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  79{
  80        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  81        .clock_base =
  82        {
  83                {
  84                        .index = HRTIMER_BASE_MONOTONIC,
  85                        .clockid = CLOCK_MONOTONIC,
  86                        .get_time = &ktime_get,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_REALTIME,
  90                        .clockid = CLOCK_REALTIME,
  91                        .get_time = &ktime_get_real,
  92                },
  93                {
  94                        .index = HRTIMER_BASE_BOOTTIME,
  95                        .clockid = CLOCK_BOOTTIME,
  96                        .get_time = &ktime_get_boottime,
  97                },
  98                {
  99                        .index = HRTIMER_BASE_TAI,
 100                        .clockid = CLOCK_TAI,
 101                        .get_time = &ktime_get_clocktai,
 102                },
 103                {
 104                        .index = HRTIMER_BASE_MONOTONIC_SOFT,
 105                        .clockid = CLOCK_MONOTONIC,
 106                        .get_time = &ktime_get,
 107                },
 108                {
 109                        .index = HRTIMER_BASE_REALTIME_SOFT,
 110                        .clockid = CLOCK_REALTIME,
 111                        .get_time = &ktime_get_real,
 112                },
 113                {
 114                        .index = HRTIMER_BASE_BOOTTIME_SOFT,
 115                        .clockid = CLOCK_BOOTTIME,
 116                        .get_time = &ktime_get_boottime,
 117                },
 118                {
 119                        .index = HRTIMER_BASE_TAI_SOFT,
 120                        .clockid = CLOCK_TAI,
 121                        .get_time = &ktime_get_clocktai,
 122                },
 123        }
 124};
 125
 126static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 127        /* Make sure we catch unsupported clockids */
 128        [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
 129
 130        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 131        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 132        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 133        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 134};
 135
 136/*
 137 * Functions and macros which are different for UP/SMP systems are kept in a
 138 * single place
 139 */
 140#ifdef CONFIG_SMP
 141
 142/*
 143 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 144 * such that hrtimer_callback_running() can unconditionally dereference
 145 * timer->base->cpu_base
 146 */
 147static struct hrtimer_cpu_base migration_cpu_base = {
 148        .clock_base = { { .cpu_base = &migration_cpu_base, }, },
 149};
 150
 151#define migration_base  migration_cpu_base.clock_base[0]
 152
 153/*
 154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 155 * means that all timers which are tied to this base via timer->base are
 156 * locked, and the base itself is locked too.
 157 *
 158 * So __run_timers/migrate_timers can safely modify all timers which could
 159 * be found on the lists/queues.
 160 *
 161 * When the timer's base is locked, and the timer removed from list, it is
 162 * possible to set timer->base = &migration_base and drop the lock: the timer
 163 * remains locked.
 164 */
 165static
 166struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 167                                             unsigned long *flags)
 168{
 169        struct hrtimer_clock_base *base;
 170
 171        for (;;) {
 172                base = timer->base;
 173                if (likely(base != &migration_base)) {
 174                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 175                        if (likely(base == timer->base))
 176                                return base;
 177                        /* The timer has migrated to another CPU: */
 178                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 179                }
 180                cpu_relax();
 181        }
 182}
 183
 184/*
 185 * We do not migrate the timer when it is expiring before the next
 186 * event on the target cpu. When high resolution is enabled, we cannot
 187 * reprogram the target cpu hardware and we would cause it to fire
 188 * late. To keep it simple, we handle the high resolution enabled and
 189 * disabled case similar.
 190 *
 191 * Called with cpu_base->lock of target cpu held.
 192 */
 193static int
 194hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 195{
 196        ktime_t expires;
 197
 198        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 199        return expires < new_base->cpu_base->expires_next;
 200}
 201
 202static inline
 203struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 204                                         int pinned)
 205{
 206#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 207        if (static_branch_likely(&timers_migration_enabled) && !pinned)
 208                return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 209#endif
 210        return base;
 211}
 212
 213/*
 214 * We switch the timer base to a power-optimized selected CPU target,
 215 * if:
 216 *      - NO_HZ_COMMON is enabled
 217 *      - timer migration is enabled
 218 *      - the timer callback is not running
 219 *      - the timer is not the first expiring timer on the new target
 220 *
 221 * If one of the above requirements is not fulfilled we move the timer
 222 * to the current CPU or leave it on the previously assigned CPU if
 223 * the timer callback is currently running.
 224 */
 225static inline struct hrtimer_clock_base *
 226switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 227                    int pinned)
 228{
 229        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 230        struct hrtimer_clock_base *new_base;
 231        int basenum = base->index;
 232
 233        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 234        new_cpu_base = get_target_base(this_cpu_base, pinned);
 235again:
 236        new_base = &new_cpu_base->clock_base[basenum];
 237
 238        if (base != new_base) {
 239                /*
 240                 * We are trying to move timer to new_base.
 241                 * However we can't change timer's base while it is running,
 242                 * so we keep it on the same CPU. No hassle vs. reprogramming
 243                 * the event source in the high resolution case. The softirq
 244                 * code will take care of this when the timer function has
 245                 * completed. There is no conflict as we hold the lock until
 246                 * the timer is enqueued.
 247                 */
 248                if (unlikely(hrtimer_callback_running(timer)))
 249                        return base;
 250
 251                /* See the comment in lock_hrtimer_base() */
 252                timer->base = &migration_base;
 253                raw_spin_unlock(&base->cpu_base->lock);
 254                raw_spin_lock(&new_base->cpu_base->lock);
 255
 256                if (new_cpu_base != this_cpu_base &&
 257                    hrtimer_check_target(timer, new_base)) {
 258                        raw_spin_unlock(&new_base->cpu_base->lock);
 259                        raw_spin_lock(&base->cpu_base->lock);
 260                        new_cpu_base = this_cpu_base;
 261                        timer->base = base;
 262                        goto again;
 263                }
 264                timer->base = new_base;
 265        } else {
 266                if (new_cpu_base != this_cpu_base &&
 267                    hrtimer_check_target(timer, new_base)) {
 268                        new_cpu_base = this_cpu_base;
 269                        goto again;
 270                }
 271        }
 272        return new_base;
 273}
 274
 275#else /* CONFIG_SMP */
 276
 277static inline struct hrtimer_clock_base *
 278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 279{
 280        struct hrtimer_clock_base *base = timer->base;
 281
 282        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 283
 284        return base;
 285}
 286
 287# define switch_hrtimer_base(t, b, p)   (b)
 288
 289#endif  /* !CONFIG_SMP */
 290
 291/*
 292 * Functions for the union type storage format of ktime_t which are
 293 * too large for inlining:
 294 */
 295#if BITS_PER_LONG < 64
 296/*
 297 * Divide a ktime value by a nanosecond value
 298 */
 299s64 __ktime_divns(const ktime_t kt, s64 div)
 300{
 301        int sft = 0;
 302        s64 dclc;
 303        u64 tmp;
 304
 305        dclc = ktime_to_ns(kt);
 306        tmp = dclc < 0 ? -dclc : dclc;
 307
 308        /* Make sure the divisor is less than 2^32: */
 309        while (div >> 32) {
 310                sft++;
 311                div >>= 1;
 312        }
 313        tmp >>= sft;
 314        do_div(tmp, (unsigned long) div);
 315        return dclc < 0 ? -tmp : tmp;
 316}
 317EXPORT_SYMBOL_GPL(__ktime_divns);
 318#endif /* BITS_PER_LONG >= 64 */
 319
 320/*
 321 * Add two ktime values and do a safety check for overflow:
 322 */
 323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 324{
 325        ktime_t res = ktime_add_unsafe(lhs, rhs);
 326
 327        /*
 328         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 329         * return to user space in a timespec:
 330         */
 331        if (res < 0 || res < lhs || res < rhs)
 332                res = ktime_set(KTIME_SEC_MAX, 0);
 333
 334        return res;
 335}
 336
 337EXPORT_SYMBOL_GPL(ktime_add_safe);
 338
 339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 340
 341static struct debug_obj_descr hrtimer_debug_descr;
 342
 343static void *hrtimer_debug_hint(void *addr)
 344{
 345        return ((struct hrtimer *) addr)->function;
 346}
 347
 348/*
 349 * fixup_init is called when:
 350 * - an active object is initialized
 351 */
 352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 353{
 354        struct hrtimer *timer = addr;
 355
 356        switch (state) {
 357        case ODEBUG_STATE_ACTIVE:
 358                hrtimer_cancel(timer);
 359                debug_object_init(timer, &hrtimer_debug_descr);
 360                return true;
 361        default:
 362                return false;
 363        }
 364}
 365
 366/*
 367 * fixup_activate is called when:
 368 * - an active object is activated
 369 * - an unknown non-static object is activated
 370 */
 371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 372{
 373        switch (state) {
 374        case ODEBUG_STATE_ACTIVE:
 375                WARN_ON(1);
 376
 377        default:
 378                return false;
 379        }
 380}
 381
 382/*
 383 * fixup_free is called when:
 384 * - an active object is freed
 385 */
 386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 387{
 388        struct hrtimer *timer = addr;
 389
 390        switch (state) {
 391        case ODEBUG_STATE_ACTIVE:
 392                hrtimer_cancel(timer);
 393                debug_object_free(timer, &hrtimer_debug_descr);
 394                return true;
 395        default:
 396                return false;
 397        }
 398}
 399
 400static struct debug_obj_descr hrtimer_debug_descr = {
 401        .name           = "hrtimer",
 402        .debug_hint     = hrtimer_debug_hint,
 403        .fixup_init     = hrtimer_fixup_init,
 404        .fixup_activate = hrtimer_fixup_activate,
 405        .fixup_free     = hrtimer_fixup_free,
 406};
 407
 408static inline void debug_hrtimer_init(struct hrtimer *timer)
 409{
 410        debug_object_init(timer, &hrtimer_debug_descr);
 411}
 412
 413static inline void debug_hrtimer_activate(struct hrtimer *timer,
 414                                          enum hrtimer_mode mode)
 415{
 416        debug_object_activate(timer, &hrtimer_debug_descr);
 417}
 418
 419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 420{
 421        debug_object_deactivate(timer, &hrtimer_debug_descr);
 422}
 423
 424static inline void debug_hrtimer_free(struct hrtimer *timer)
 425{
 426        debug_object_free(timer, &hrtimer_debug_descr);
 427}
 428
 429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 430                           enum hrtimer_mode mode);
 431
 432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 433                           enum hrtimer_mode mode)
 434{
 435        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 436        __hrtimer_init(timer, clock_id, mode);
 437}
 438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 439
 440void destroy_hrtimer_on_stack(struct hrtimer *timer)
 441{
 442        debug_object_free(timer, &hrtimer_debug_descr);
 443}
 444EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 445
 446#else
 447
 448static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 449static inline void debug_hrtimer_activate(struct hrtimer *timer,
 450                                          enum hrtimer_mode mode) { }
 451static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 452#endif
 453
 454static inline void
 455debug_init(struct hrtimer *timer, clockid_t clockid,
 456           enum hrtimer_mode mode)
 457{
 458        debug_hrtimer_init(timer);
 459        trace_hrtimer_init(timer, clockid, mode);
 460}
 461
 462static inline void debug_activate(struct hrtimer *timer,
 463                                  enum hrtimer_mode mode)
 464{
 465        debug_hrtimer_activate(timer, mode);
 466        trace_hrtimer_start(timer, mode);
 467}
 468
 469static inline void debug_deactivate(struct hrtimer *timer)
 470{
 471        debug_hrtimer_deactivate(timer);
 472        trace_hrtimer_cancel(timer);
 473}
 474
 475static struct hrtimer_clock_base *
 476__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 477{
 478        unsigned int idx;
 479
 480        if (!*active)
 481                return NULL;
 482
 483        idx = __ffs(*active);
 484        *active &= ~(1U << idx);
 485
 486        return &cpu_base->clock_base[idx];
 487}
 488
 489#define for_each_active_base(base, cpu_base, active)    \
 490        while ((base = __next_base((cpu_base), &(active))))
 491
 492static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 493                                         const struct hrtimer *exclude,
 494                                         unsigned int active,
 495                                         ktime_t expires_next)
 496{
 497        struct hrtimer_clock_base *base;
 498        ktime_t expires;
 499
 500        for_each_active_base(base, cpu_base, active) {
 501                struct timerqueue_node *next;
 502                struct hrtimer *timer;
 503
 504                next = timerqueue_getnext(&base->active);
 505                timer = container_of(next, struct hrtimer, node);
 506                if (timer == exclude) {
 507                        /* Get to the next timer in the queue. */
 508                        next = timerqueue_iterate_next(next);
 509                        if (!next)
 510                                continue;
 511
 512                        timer = container_of(next, struct hrtimer, node);
 513                }
 514                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 515                if (expires < expires_next) {
 516                        expires_next = expires;
 517
 518                        /* Skip cpu_base update if a timer is being excluded. */
 519                        if (exclude)
 520                                continue;
 521
 522                        if (timer->is_soft)
 523                                cpu_base->softirq_next_timer = timer;
 524                        else
 525                                cpu_base->next_timer = timer;
 526                }
 527        }
 528        /*
 529         * clock_was_set() might have changed base->offset of any of
 530         * the clock bases so the result might be negative. Fix it up
 531         * to prevent a false positive in clockevents_program_event().
 532         */
 533        if (expires_next < 0)
 534                expires_next = 0;
 535        return expires_next;
 536}
 537
 538/*
 539 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 540 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 541 *
 542 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 543 * those timers will get run whenever the softirq gets handled, at the end of
 544 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 545 *
 546 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 547 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 548 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 549 *
 550 * @active_mask must be one of:
 551 *  - HRTIMER_ACTIVE_ALL,
 552 *  - HRTIMER_ACTIVE_SOFT, or
 553 *  - HRTIMER_ACTIVE_HARD.
 554 */
 555static ktime_t
 556__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 557{
 558        unsigned int active;
 559        struct hrtimer *next_timer = NULL;
 560        ktime_t expires_next = KTIME_MAX;
 561
 562        if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 563                active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 564                cpu_base->softirq_next_timer = NULL;
 565                expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 566                                                         active, KTIME_MAX);
 567
 568                next_timer = cpu_base->softirq_next_timer;
 569        }
 570
 571        if (active_mask & HRTIMER_ACTIVE_HARD) {
 572                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 573                cpu_base->next_timer = next_timer;
 574                expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 575                                                         expires_next);
 576        }
 577
 578        return expires_next;
 579}
 580
 581static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 582{
 583        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 584        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 585        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 586
 587        ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 588                                            offs_real, offs_boot, offs_tai);
 589
 590        base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 591        base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 592        base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 593
 594        return now;
 595}
 596
 597/*
 598 * Is the high resolution mode active ?
 599 */
 600static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 601{
 602        return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 603                cpu_base->hres_active : 0;
 604}
 605
 606static inline int hrtimer_hres_active(void)
 607{
 608        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 609}
 610
 611/*
 612 * Reprogram the event source with checking both queues for the
 613 * next event
 614 * Called with interrupts disabled and base->lock held
 615 */
 616static void
 617hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 618{
 619        ktime_t expires_next;
 620
 621        /*
 622         * Find the current next expiration time.
 623         */
 624        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
 625
 626        if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
 627                /*
 628                 * When the softirq is activated, hrtimer has to be
 629                 * programmed with the first hard hrtimer because soft
 630                 * timer interrupt could occur too late.
 631                 */
 632                if (cpu_base->softirq_activated)
 633                        expires_next = __hrtimer_get_next_event(cpu_base,
 634                                                                HRTIMER_ACTIVE_HARD);
 635                else
 636                        cpu_base->softirq_expires_next = expires_next;
 637        }
 638
 639        if (skip_equal && expires_next == cpu_base->expires_next)
 640                return;
 641
 642        cpu_base->expires_next = expires_next;
 643
 644        /*
 645         * If hres is not active, hardware does not have to be
 646         * reprogrammed yet.
 647         *
 648         * If a hang was detected in the last timer interrupt then we
 649         * leave the hang delay active in the hardware. We want the
 650         * system to make progress. That also prevents the following
 651         * scenario:
 652         * T1 expires 50ms from now
 653         * T2 expires 5s from now
 654         *
 655         * T1 is removed, so this code is called and would reprogram
 656         * the hardware to 5s from now. Any hrtimer_start after that
 657         * will not reprogram the hardware due to hang_detected being
 658         * set. So we'd effectivly block all timers until the T2 event
 659         * fires.
 660         */
 661        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 662                return;
 663
 664        tick_program_event(cpu_base->expires_next, 1);
 665}
 666
 667/* High resolution timer related functions */
 668#ifdef CONFIG_HIGH_RES_TIMERS
 669
 670/*
 671 * High resolution timer enabled ?
 672 */
 673static bool hrtimer_hres_enabled __read_mostly  = true;
 674unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 675EXPORT_SYMBOL_GPL(hrtimer_resolution);
 676
 677/*
 678 * Enable / Disable high resolution mode
 679 */
 680static int __init setup_hrtimer_hres(char *str)
 681{
 682        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 683}
 684
 685__setup("highres=", setup_hrtimer_hres);
 686
 687/*
 688 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 689 */
 690static inline int hrtimer_is_hres_enabled(void)
 691{
 692        return hrtimer_hres_enabled;
 693}
 694
 695/*
 696 * Retrigger next event is called after clock was set
 697 *
 698 * Called with interrupts disabled via on_each_cpu()
 699 */
 700static void retrigger_next_event(void *arg)
 701{
 702        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 703
 704        if (!__hrtimer_hres_active(base))
 705                return;
 706
 707        raw_spin_lock(&base->lock);
 708        hrtimer_update_base(base);
 709        hrtimer_force_reprogram(base, 0);
 710        raw_spin_unlock(&base->lock);
 711}
 712
 713/*
 714 * Switch to high resolution mode
 715 */
 716static void hrtimer_switch_to_hres(void)
 717{
 718        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 719
 720        if (tick_init_highres()) {
 721                printk(KERN_WARNING "Could not switch to high resolution "
 722                                    "mode on CPU %d\n", base->cpu);
 723                return;
 724        }
 725        base->hres_active = 1;
 726        hrtimer_resolution = HIGH_RES_NSEC;
 727
 728        tick_setup_sched_timer();
 729        /* "Retrigger" the interrupt to get things going */
 730        retrigger_next_event(NULL);
 731}
 732
 733static void clock_was_set_work(struct work_struct *work)
 734{
 735        clock_was_set();
 736}
 737
 738static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 739
 740/*
 741 * Called from timekeeping and resume code to reprogram the hrtimer
 742 * interrupt device on all cpus.
 743 */
 744void clock_was_set_delayed(void)
 745{
 746        schedule_work(&hrtimer_work);
 747}
 748
 749#else
 750
 751static inline int hrtimer_is_hres_enabled(void) { return 0; }
 752static inline void hrtimer_switch_to_hres(void) { }
 753static inline void retrigger_next_event(void *arg) { }
 754
 755#endif /* CONFIG_HIGH_RES_TIMERS */
 756
 757/*
 758 * When a timer is enqueued and expires earlier than the already enqueued
 759 * timers, we have to check, whether it expires earlier than the timer for
 760 * which the clock event device was armed.
 761 *
 762 * Called with interrupts disabled and base->cpu_base.lock held
 763 */
 764static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 765{
 766        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 767        struct hrtimer_clock_base *base = timer->base;
 768        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 769
 770        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 771
 772        /*
 773         * CLOCK_REALTIME timer might be requested with an absolute
 774         * expiry time which is less than base->offset. Set it to 0.
 775         */
 776        if (expires < 0)
 777                expires = 0;
 778
 779        if (timer->is_soft) {
 780                /*
 781                 * soft hrtimer could be started on a remote CPU. In this
 782                 * case softirq_expires_next needs to be updated on the
 783                 * remote CPU. The soft hrtimer will not expire before the
 784                 * first hard hrtimer on the remote CPU -
 785                 * hrtimer_check_target() prevents this case.
 786                 */
 787                struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 788
 789                if (timer_cpu_base->softirq_activated)
 790                        return;
 791
 792                if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 793                        return;
 794
 795                timer_cpu_base->softirq_next_timer = timer;
 796                timer_cpu_base->softirq_expires_next = expires;
 797
 798                if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 799                    !reprogram)
 800                        return;
 801        }
 802
 803        /*
 804         * If the timer is not on the current cpu, we cannot reprogram
 805         * the other cpus clock event device.
 806         */
 807        if (base->cpu_base != cpu_base)
 808                return;
 809
 810        /*
 811         * If the hrtimer interrupt is running, then it will
 812         * reevaluate the clock bases and reprogram the clock event
 813         * device. The callbacks are always executed in hard interrupt
 814         * context so we don't need an extra check for a running
 815         * callback.
 816         */
 817        if (cpu_base->in_hrtirq)
 818                return;
 819
 820        if (expires >= cpu_base->expires_next)
 821                return;
 822
 823        /* Update the pointer to the next expiring timer */
 824        cpu_base->next_timer = timer;
 825        cpu_base->expires_next = expires;
 826
 827        /*
 828         * If hres is not active, hardware does not have to be
 829         * programmed yet.
 830         *
 831         * If a hang was detected in the last timer interrupt then we
 832         * do not schedule a timer which is earlier than the expiry
 833         * which we enforced in the hang detection. We want the system
 834         * to make progress.
 835         */
 836        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 837                return;
 838
 839        /*
 840         * Program the timer hardware. We enforce the expiry for
 841         * events which are already in the past.
 842         */
 843        tick_program_event(expires, 1);
 844}
 845
 846/*
 847 * Clock realtime was set
 848 *
 849 * Change the offset of the realtime clock vs. the monotonic
 850 * clock.
 851 *
 852 * We might have to reprogram the high resolution timer interrupt. On
 853 * SMP we call the architecture specific code to retrigger _all_ high
 854 * resolution timer interrupts. On UP we just disable interrupts and
 855 * call the high resolution interrupt code.
 856 */
 857void clock_was_set(void)
 858{
 859#ifdef CONFIG_HIGH_RES_TIMERS
 860        /* Retrigger the CPU local events everywhere */
 861        on_each_cpu(retrigger_next_event, NULL, 1);
 862#endif
 863        timerfd_clock_was_set();
 864}
 865
 866/*
 867 * During resume we might have to reprogram the high resolution timer
 868 * interrupt on all online CPUs.  However, all other CPUs will be
 869 * stopped with IRQs interrupts disabled so the clock_was_set() call
 870 * must be deferred.
 871 */
 872void hrtimers_resume(void)
 873{
 874        lockdep_assert_irqs_disabled();
 875        /* Retrigger on the local CPU */
 876        retrigger_next_event(NULL);
 877        /* And schedule a retrigger for all others */
 878        clock_was_set_delayed();
 879}
 880
 881/*
 882 * Counterpart to lock_hrtimer_base above:
 883 */
 884static inline
 885void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 886{
 887        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 888}
 889
 890/**
 891 * hrtimer_forward - forward the timer expiry
 892 * @timer:      hrtimer to forward
 893 * @now:        forward past this time
 894 * @interval:   the interval to forward
 895 *
 896 * Forward the timer expiry so it will expire in the future.
 897 * Returns the number of overruns.
 898 *
 899 * Can be safely called from the callback function of @timer. If
 900 * called from other contexts @timer must neither be enqueued nor
 901 * running the callback and the caller needs to take care of
 902 * serialization.
 903 *
 904 * Note: This only updates the timer expiry value and does not requeue
 905 * the timer.
 906 */
 907u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 908{
 909        u64 orun = 1;
 910        ktime_t delta;
 911
 912        delta = ktime_sub(now, hrtimer_get_expires(timer));
 913
 914        if (delta < 0)
 915                return 0;
 916
 917        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 918                return 0;
 919
 920        if (interval < hrtimer_resolution)
 921                interval = hrtimer_resolution;
 922
 923        if (unlikely(delta >= interval)) {
 924                s64 incr = ktime_to_ns(interval);
 925
 926                orun = ktime_divns(delta, incr);
 927                hrtimer_add_expires_ns(timer, incr * orun);
 928                if (hrtimer_get_expires_tv64(timer) > now)
 929                        return orun;
 930                /*
 931                 * This (and the ktime_add() below) is the
 932                 * correction for exact:
 933                 */
 934                orun++;
 935        }
 936        hrtimer_add_expires(timer, interval);
 937
 938        return orun;
 939}
 940EXPORT_SYMBOL_GPL(hrtimer_forward);
 941
 942/*
 943 * enqueue_hrtimer - internal function to (re)start a timer
 944 *
 945 * The timer is inserted in expiry order. Insertion into the
 946 * red black tree is O(log(n)). Must hold the base lock.
 947 *
 948 * Returns 1 when the new timer is the leftmost timer in the tree.
 949 */
 950static int enqueue_hrtimer(struct hrtimer *timer,
 951                           struct hrtimer_clock_base *base,
 952                           enum hrtimer_mode mode)
 953{
 954        debug_activate(timer, mode);
 955
 956        base->cpu_base->active_bases |= 1 << base->index;
 957
 958        timer->state = HRTIMER_STATE_ENQUEUED;
 959
 960        return timerqueue_add(&base->active, &timer->node);
 961}
 962
 963/*
 964 * __remove_hrtimer - internal function to remove a timer
 965 *
 966 * Caller must hold the base lock.
 967 *
 968 * High resolution timer mode reprograms the clock event device when the
 969 * timer is the one which expires next. The caller can disable this by setting
 970 * reprogram to zero. This is useful, when the context does a reprogramming
 971 * anyway (e.g. timer interrupt)
 972 */
 973static void __remove_hrtimer(struct hrtimer *timer,
 974                             struct hrtimer_clock_base *base,
 975                             u8 newstate, int reprogram)
 976{
 977        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 978        u8 state = timer->state;
 979
 980        timer->state = newstate;
 981        if (!(state & HRTIMER_STATE_ENQUEUED))
 982                return;
 983
 984        if (!timerqueue_del(&base->active, &timer->node))
 985                cpu_base->active_bases &= ~(1 << base->index);
 986
 987        /*
 988         * Note: If reprogram is false we do not update
 989         * cpu_base->next_timer. This happens when we remove the first
 990         * timer on a remote cpu. No harm as we never dereference
 991         * cpu_base->next_timer. So the worst thing what can happen is
 992         * an superflous call to hrtimer_force_reprogram() on the
 993         * remote cpu later on if the same timer gets enqueued again.
 994         */
 995        if (reprogram && timer == cpu_base->next_timer)
 996                hrtimer_force_reprogram(cpu_base, 1);
 997}
 998
 999/*
1000 * remove hrtimer, called with base lock held
1001 */
1002static inline int
1003remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1004{
1005        if (hrtimer_is_queued(timer)) {
1006                u8 state = timer->state;
1007                int reprogram;
1008
1009                /*
1010                 * Remove the timer and force reprogramming when high
1011                 * resolution mode is active and the timer is on the current
1012                 * CPU. If we remove a timer on another CPU, reprogramming is
1013                 * skipped. The interrupt event on this CPU is fired and
1014                 * reprogramming happens in the interrupt handler. This is a
1015                 * rare case and less expensive than a smp call.
1016                 */
1017                debug_deactivate(timer);
1018                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1019
1020                if (!restart)
1021                        state = HRTIMER_STATE_INACTIVE;
1022
1023                __remove_hrtimer(timer, base, state, reprogram);
1024                return 1;
1025        }
1026        return 0;
1027}
1028
1029static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1030                                            const enum hrtimer_mode mode)
1031{
1032#ifdef CONFIG_TIME_LOW_RES
1033        /*
1034         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1035         * granular time values. For relative timers we add hrtimer_resolution
1036         * (i.e. one jiffie) to prevent short timeouts.
1037         */
1038        timer->is_rel = mode & HRTIMER_MODE_REL;
1039        if (timer->is_rel)
1040                tim = ktime_add_safe(tim, hrtimer_resolution);
1041#endif
1042        return tim;
1043}
1044
1045static void
1046hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1047{
1048        ktime_t expires;
1049
1050        /*
1051         * Find the next SOFT expiration.
1052         */
1053        expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1054
1055        /*
1056         * reprogramming needs to be triggered, even if the next soft
1057         * hrtimer expires at the same time than the next hard
1058         * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1059         */
1060        if (expires == KTIME_MAX)
1061                return;
1062
1063        /*
1064         * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1065         * cpu_base->*expires_next is only set by hrtimer_reprogram()
1066         */
1067        hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1068}
1069
1070static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1071                                    u64 delta_ns, const enum hrtimer_mode mode,
1072                                    struct hrtimer_clock_base *base)
1073{
1074        struct hrtimer_clock_base *new_base;
1075
1076        /* Remove an active timer from the queue: */
1077        remove_hrtimer(timer, base, true);
1078
1079        if (mode & HRTIMER_MODE_REL)
1080                tim = ktime_add_safe(tim, base->get_time());
1081
1082        tim = hrtimer_update_lowres(timer, tim, mode);
1083
1084        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1085
1086        /* Switch the timer base, if necessary: */
1087        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1088
1089        return enqueue_hrtimer(timer, new_base, mode);
1090}
1091
1092/**
1093 * hrtimer_start_range_ns - (re)start an hrtimer
1094 * @timer:      the timer to be added
1095 * @tim:        expiry time
1096 * @delta_ns:   "slack" range for the timer
1097 * @mode:       timer mode: absolute (HRTIMER_MODE_ABS) or
1098 *              relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1099 *              softirq based mode is considered for debug purpose only!
1100 */
1101void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1102                            u64 delta_ns, const enum hrtimer_mode mode)
1103{
1104        struct hrtimer_clock_base *base;
1105        unsigned long flags;
1106
1107        /*
1108         * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1109         * match.
1110         */
1111        WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1112
1113        base = lock_hrtimer_base(timer, &flags);
1114
1115        if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1116                hrtimer_reprogram(timer, true);
1117
1118        unlock_hrtimer_base(timer, &flags);
1119}
1120EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1121
1122/**
1123 * hrtimer_try_to_cancel - try to deactivate a timer
1124 * @timer:      hrtimer to stop
1125 *
1126 * Returns:
1127 *  0 when the timer was not active
1128 *  1 when the timer was active
1129 * -1 when the timer is currently executing the callback function and
1130 *    cannot be stopped
1131 */
1132int hrtimer_try_to_cancel(struct hrtimer *timer)
1133{
1134        struct hrtimer_clock_base *base;
1135        unsigned long flags;
1136        int ret = -1;
1137
1138        /*
1139         * Check lockless first. If the timer is not active (neither
1140         * enqueued nor running the callback, nothing to do here.  The
1141         * base lock does not serialize against a concurrent enqueue,
1142         * so we can avoid taking it.
1143         */
1144        if (!hrtimer_active(timer))
1145                return 0;
1146
1147        base = lock_hrtimer_base(timer, &flags);
1148
1149        if (!hrtimer_callback_running(timer))
1150                ret = remove_hrtimer(timer, base, false);
1151
1152        unlock_hrtimer_base(timer, &flags);
1153
1154        return ret;
1155
1156}
1157EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1158
1159/**
1160 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1161 * @timer:      the timer to be cancelled
1162 *
1163 * Returns:
1164 *  0 when the timer was not active
1165 *  1 when the timer was active
1166 */
1167int hrtimer_cancel(struct hrtimer *timer)
1168{
1169        for (;;) {
1170                int ret = hrtimer_try_to_cancel(timer);
1171
1172                if (ret >= 0)
1173                        return ret;
1174                cpu_relax();
1175        }
1176}
1177EXPORT_SYMBOL_GPL(hrtimer_cancel);
1178
1179/**
1180 * hrtimer_get_remaining - get remaining time for the timer
1181 * @timer:      the timer to read
1182 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1183 */
1184ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1185{
1186        unsigned long flags;
1187        ktime_t rem;
1188
1189        lock_hrtimer_base(timer, &flags);
1190        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1191                rem = hrtimer_expires_remaining_adjusted(timer);
1192        else
1193                rem = hrtimer_expires_remaining(timer);
1194        unlock_hrtimer_base(timer, &flags);
1195
1196        return rem;
1197}
1198EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1199
1200#ifdef CONFIG_NO_HZ_COMMON
1201/**
1202 * hrtimer_get_next_event - get the time until next expiry event
1203 *
1204 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1205 */
1206u64 hrtimer_get_next_event(void)
1207{
1208        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1209        u64 expires = KTIME_MAX;
1210        unsigned long flags;
1211
1212        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1213
1214        if (!__hrtimer_hres_active(cpu_base))
1215                expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1216
1217        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1218
1219        return expires;
1220}
1221
1222/**
1223 * hrtimer_next_event_without - time until next expiry event w/o one timer
1224 * @exclude:    timer to exclude
1225 *
1226 * Returns the next expiry time over all timers except for the @exclude one or
1227 * KTIME_MAX if none of them is pending.
1228 */
1229u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1230{
1231        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1232        u64 expires = KTIME_MAX;
1233        unsigned long flags;
1234
1235        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1236
1237        if (__hrtimer_hres_active(cpu_base)) {
1238                unsigned int active;
1239
1240                if (!cpu_base->softirq_activated) {
1241                        active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1242                        expires = __hrtimer_next_event_base(cpu_base, exclude,
1243                                                            active, KTIME_MAX);
1244                }
1245                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1246                expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1247                                                    expires);
1248        }
1249
1250        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1251
1252        return expires;
1253}
1254#endif
1255
1256static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1257{
1258        if (likely(clock_id < MAX_CLOCKS)) {
1259                int base = hrtimer_clock_to_base_table[clock_id];
1260
1261                if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1262                        return base;
1263        }
1264        WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1265        return HRTIMER_BASE_MONOTONIC;
1266}
1267
1268static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1269                           enum hrtimer_mode mode)
1270{
1271        bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1272        int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1273        struct hrtimer_cpu_base *cpu_base;
1274
1275        memset(timer, 0, sizeof(struct hrtimer));
1276
1277        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1278
1279        /*
1280         * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1281         * clock modifications, so they needs to become CLOCK_MONOTONIC to
1282         * ensure POSIX compliance.
1283         */
1284        if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1285                clock_id = CLOCK_MONOTONIC;
1286
1287        base += hrtimer_clockid_to_base(clock_id);
1288        timer->is_soft = softtimer;
1289        timer->base = &cpu_base->clock_base[base];
1290        timerqueue_init(&timer->node);
1291}
1292
1293/**
1294 * hrtimer_init - initialize a timer to the given clock
1295 * @timer:      the timer to be initialized
1296 * @clock_id:   the clock to be used
1297 * @mode:       The modes which are relevant for intitialization:
1298 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1299 *              HRTIMER_MODE_REL_SOFT
1300 *
1301 *              The PINNED variants of the above can be handed in,
1302 *              but the PINNED bit is ignored as pinning happens
1303 *              when the hrtimer is started
1304 */
1305void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1306                  enum hrtimer_mode mode)
1307{
1308        debug_init(timer, clock_id, mode);
1309        __hrtimer_init(timer, clock_id, mode);
1310}
1311EXPORT_SYMBOL_GPL(hrtimer_init);
1312
1313/*
1314 * A timer is active, when it is enqueued into the rbtree or the
1315 * callback function is running or it's in the state of being migrated
1316 * to another cpu.
1317 *
1318 * It is important for this function to not return a false negative.
1319 */
1320bool hrtimer_active(const struct hrtimer *timer)
1321{
1322        struct hrtimer_clock_base *base;
1323        unsigned int seq;
1324
1325        do {
1326                base = READ_ONCE(timer->base);
1327                seq = raw_read_seqcount_begin(&base->seq);
1328
1329                if (timer->state != HRTIMER_STATE_INACTIVE ||
1330                    base->running == timer)
1331                        return true;
1332
1333        } while (read_seqcount_retry(&base->seq, seq) ||
1334                 base != READ_ONCE(timer->base));
1335
1336        return false;
1337}
1338EXPORT_SYMBOL_GPL(hrtimer_active);
1339
1340/*
1341 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1342 * distinct sections:
1343 *
1344 *  - queued:   the timer is queued
1345 *  - callback: the timer is being ran
1346 *  - post:     the timer is inactive or (re)queued
1347 *
1348 * On the read side we ensure we observe timer->state and cpu_base->running
1349 * from the same section, if anything changed while we looked at it, we retry.
1350 * This includes timer->base changing because sequence numbers alone are
1351 * insufficient for that.
1352 *
1353 * The sequence numbers are required because otherwise we could still observe
1354 * a false negative if the read side got smeared over multiple consequtive
1355 * __run_hrtimer() invocations.
1356 */
1357
1358static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1359                          struct hrtimer_clock_base *base,
1360                          struct hrtimer *timer, ktime_t *now,
1361                          unsigned long flags)
1362{
1363        enum hrtimer_restart (*fn)(struct hrtimer *);
1364        int restart;
1365
1366        lockdep_assert_held(&cpu_base->lock);
1367
1368        debug_deactivate(timer);
1369        base->running = timer;
1370
1371        /*
1372         * Separate the ->running assignment from the ->state assignment.
1373         *
1374         * As with a regular write barrier, this ensures the read side in
1375         * hrtimer_active() cannot observe base->running == NULL &&
1376         * timer->state == INACTIVE.
1377         */
1378        raw_write_seqcount_barrier(&base->seq);
1379
1380        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1381        fn = timer->function;
1382
1383        /*
1384         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1385         * timer is restarted with a period then it becomes an absolute
1386         * timer. If its not restarted it does not matter.
1387         */
1388        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1389                timer->is_rel = false;
1390
1391        /*
1392         * The timer is marked as running in the CPU base, so it is
1393         * protected against migration to a different CPU even if the lock
1394         * is dropped.
1395         */
1396        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1397        trace_hrtimer_expire_entry(timer, now);
1398        restart = fn(timer);
1399        trace_hrtimer_expire_exit(timer);
1400        raw_spin_lock_irq(&cpu_base->lock);
1401
1402        /*
1403         * Note: We clear the running state after enqueue_hrtimer and
1404         * we do not reprogram the event hardware. Happens either in
1405         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1406         *
1407         * Note: Because we dropped the cpu_base->lock above,
1408         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1409         * for us already.
1410         */
1411        if (restart != HRTIMER_NORESTART &&
1412            !(timer->state & HRTIMER_STATE_ENQUEUED))
1413                enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1414
1415        /*
1416         * Separate the ->running assignment from the ->state assignment.
1417         *
1418         * As with a regular write barrier, this ensures the read side in
1419         * hrtimer_active() cannot observe base->running.timer == NULL &&
1420         * timer->state == INACTIVE.
1421         */
1422        raw_write_seqcount_barrier(&base->seq);
1423
1424        WARN_ON_ONCE(base->running != timer);
1425        base->running = NULL;
1426}
1427
1428static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1429                                 unsigned long flags, unsigned int active_mask)
1430{
1431        struct hrtimer_clock_base *base;
1432        unsigned int active = cpu_base->active_bases & active_mask;
1433
1434        for_each_active_base(base, cpu_base, active) {
1435                struct timerqueue_node *node;
1436                ktime_t basenow;
1437
1438                basenow = ktime_add(now, base->offset);
1439
1440                while ((node = timerqueue_getnext(&base->active))) {
1441                        struct hrtimer *timer;
1442
1443                        timer = container_of(node, struct hrtimer, node);
1444
1445                        /*
1446                         * The immediate goal for using the softexpires is
1447                         * minimizing wakeups, not running timers at the
1448                         * earliest interrupt after their soft expiration.
1449                         * This allows us to avoid using a Priority Search
1450                         * Tree, which can answer a stabbing querry for
1451                         * overlapping intervals and instead use the simple
1452                         * BST we already have.
1453                         * We don't add extra wakeups by delaying timers that
1454                         * are right-of a not yet expired timer, because that
1455                         * timer will have to trigger a wakeup anyway.
1456                         */
1457                        if (basenow < hrtimer_get_softexpires_tv64(timer))
1458                                break;
1459
1460                        __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1461                }
1462        }
1463}
1464
1465static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1466{
1467        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1468        unsigned long flags;
1469        ktime_t now;
1470
1471        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1472
1473        now = hrtimer_update_base(cpu_base);
1474        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1475
1476        cpu_base->softirq_activated = 0;
1477        hrtimer_update_softirq_timer(cpu_base, true);
1478
1479        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1480}
1481
1482#ifdef CONFIG_HIGH_RES_TIMERS
1483
1484/*
1485 * High resolution timer interrupt
1486 * Called with interrupts disabled
1487 */
1488void hrtimer_interrupt(struct clock_event_device *dev)
1489{
1490        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1491        ktime_t expires_next, now, entry_time, delta;
1492        unsigned long flags;
1493        int retries = 0;
1494
1495        BUG_ON(!cpu_base->hres_active);
1496        cpu_base->nr_events++;
1497        dev->next_event = KTIME_MAX;
1498
1499        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1500        entry_time = now = hrtimer_update_base(cpu_base);
1501retry:
1502        cpu_base->in_hrtirq = 1;
1503        /*
1504         * We set expires_next to KTIME_MAX here with cpu_base->lock
1505         * held to prevent that a timer is enqueued in our queue via
1506         * the migration code. This does not affect enqueueing of
1507         * timers which run their callback and need to be requeued on
1508         * this CPU.
1509         */
1510        cpu_base->expires_next = KTIME_MAX;
1511
1512        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1513                cpu_base->softirq_expires_next = KTIME_MAX;
1514                cpu_base->softirq_activated = 1;
1515                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1516        }
1517
1518        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1519
1520        /* Reevaluate the clock bases for the next expiry */
1521        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1522        /*
1523         * Store the new expiry value so the migration code can verify
1524         * against it.
1525         */
1526        cpu_base->expires_next = expires_next;
1527        cpu_base->in_hrtirq = 0;
1528        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1529
1530        /* Reprogramming necessary ? */
1531        if (!tick_program_event(expires_next, 0)) {
1532                cpu_base->hang_detected = 0;
1533                return;
1534        }
1535
1536        /*
1537         * The next timer was already expired due to:
1538         * - tracing
1539         * - long lasting callbacks
1540         * - being scheduled away when running in a VM
1541         *
1542         * We need to prevent that we loop forever in the hrtimer
1543         * interrupt routine. We give it 3 attempts to avoid
1544         * overreacting on some spurious event.
1545         *
1546         * Acquire base lock for updating the offsets and retrieving
1547         * the current time.
1548         */
1549        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1550        now = hrtimer_update_base(cpu_base);
1551        cpu_base->nr_retries++;
1552        if (++retries < 3)
1553                goto retry;
1554        /*
1555         * Give the system a chance to do something else than looping
1556         * here. We stored the entry time, so we know exactly how long
1557         * we spent here. We schedule the next event this amount of
1558         * time away.
1559         */
1560        cpu_base->nr_hangs++;
1561        cpu_base->hang_detected = 1;
1562        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1563
1564        delta = ktime_sub(now, entry_time);
1565        if ((unsigned int)delta > cpu_base->max_hang_time)
1566                cpu_base->max_hang_time = (unsigned int) delta;
1567        /*
1568         * Limit it to a sensible value as we enforce a longer
1569         * delay. Give the CPU at least 100ms to catch up.
1570         */
1571        if (delta > 100 * NSEC_PER_MSEC)
1572                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1573        else
1574                expires_next = ktime_add(now, delta);
1575        tick_program_event(expires_next, 1);
1576        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1577                    ktime_to_ns(delta));
1578}
1579
1580/* called with interrupts disabled */
1581static inline void __hrtimer_peek_ahead_timers(void)
1582{
1583        struct tick_device *td;
1584
1585        if (!hrtimer_hres_active())
1586                return;
1587
1588        td = this_cpu_ptr(&tick_cpu_device);
1589        if (td && td->evtdev)
1590                hrtimer_interrupt(td->evtdev);
1591}
1592
1593#else /* CONFIG_HIGH_RES_TIMERS */
1594
1595static inline void __hrtimer_peek_ahead_timers(void) { }
1596
1597#endif  /* !CONFIG_HIGH_RES_TIMERS */
1598
1599/*
1600 * Called from run_local_timers in hardirq context every jiffy
1601 */
1602void hrtimer_run_queues(void)
1603{
1604        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1605        unsigned long flags;
1606        ktime_t now;
1607
1608        if (__hrtimer_hres_active(cpu_base))
1609                return;
1610
1611        /*
1612         * This _is_ ugly: We have to check periodically, whether we
1613         * can switch to highres and / or nohz mode. The clocksource
1614         * switch happens with xtime_lock held. Notification from
1615         * there only sets the check bit in the tick_oneshot code,
1616         * otherwise we might deadlock vs. xtime_lock.
1617         */
1618        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1619                hrtimer_switch_to_hres();
1620                return;
1621        }
1622
1623        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1624        now = hrtimer_update_base(cpu_base);
1625
1626        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1627                cpu_base->softirq_expires_next = KTIME_MAX;
1628                cpu_base->softirq_activated = 1;
1629                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1630        }
1631
1632        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1633        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1634}
1635
1636/*
1637 * Sleep related functions:
1638 */
1639static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1640{
1641        struct hrtimer_sleeper *t =
1642                container_of(timer, struct hrtimer_sleeper, timer);
1643        struct task_struct *task = t->task;
1644
1645        t->task = NULL;
1646        if (task)
1647                wake_up_process(task);
1648
1649        return HRTIMER_NORESTART;
1650}
1651
1652void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1653{
1654        sl->timer.function = hrtimer_wakeup;
1655        sl->task = task;
1656}
1657EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1658
1659int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1660{
1661        switch(restart->nanosleep.type) {
1662#ifdef CONFIG_COMPAT
1663        case TT_COMPAT:
1664                if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1665                        return -EFAULT;
1666                break;
1667#endif
1668        case TT_NATIVE:
1669                if (put_timespec64(ts, restart->nanosleep.rmtp))
1670                        return -EFAULT;
1671                break;
1672        default:
1673                BUG();
1674        }
1675        return -ERESTART_RESTARTBLOCK;
1676}
1677
1678static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1679{
1680        struct restart_block *restart;
1681
1682        hrtimer_init_sleeper(t, current);
1683
1684        do {
1685                set_current_state(TASK_INTERRUPTIBLE);
1686                hrtimer_start_expires(&t->timer, mode);
1687
1688                if (likely(t->task))
1689                        freezable_schedule();
1690
1691                hrtimer_cancel(&t->timer);
1692                mode = HRTIMER_MODE_ABS;
1693
1694        } while (t->task && !signal_pending(current));
1695
1696        __set_current_state(TASK_RUNNING);
1697
1698        if (!t->task)
1699                return 0;
1700
1701        restart = &current->restart_block;
1702        if (restart->nanosleep.type != TT_NONE) {
1703                ktime_t rem = hrtimer_expires_remaining(&t->timer);
1704                struct timespec64 rmt;
1705
1706                if (rem <= 0)
1707                        return 0;
1708                rmt = ktime_to_timespec64(rem);
1709
1710                return nanosleep_copyout(restart, &rmt);
1711        }
1712        return -ERESTART_RESTARTBLOCK;
1713}
1714
1715static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1716{
1717        struct hrtimer_sleeper t;
1718        int ret;
1719
1720        hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1721                                HRTIMER_MODE_ABS);
1722        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1723
1724        ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1725        destroy_hrtimer_on_stack(&t.timer);
1726        return ret;
1727}
1728
1729long hrtimer_nanosleep(const struct timespec64 *rqtp,
1730                       const enum hrtimer_mode mode, const clockid_t clockid)
1731{
1732        struct restart_block *restart;
1733        struct hrtimer_sleeper t;
1734        int ret = 0;
1735        u64 slack;
1736
1737        slack = current->timer_slack_ns;
1738        if (dl_task(current) || rt_task(current))
1739                slack = 0;
1740
1741        hrtimer_init_on_stack(&t.timer, clockid, mode);
1742        hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1743        ret = do_nanosleep(&t, mode);
1744        if (ret != -ERESTART_RESTARTBLOCK)
1745                goto out;
1746
1747        /* Absolute timers do not update the rmtp value and restart: */
1748        if (mode == HRTIMER_MODE_ABS) {
1749                ret = -ERESTARTNOHAND;
1750                goto out;
1751        }
1752
1753        restart = &current->restart_block;
1754        restart->fn = hrtimer_nanosleep_restart;
1755        restart->nanosleep.clockid = t.timer.base->clockid;
1756        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1757out:
1758        destroy_hrtimer_on_stack(&t.timer);
1759        return ret;
1760}
1761
1762SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1763                struct timespec __user *, rmtp)
1764{
1765        struct timespec64 tu;
1766
1767        if (get_timespec64(&tu, rqtp))
1768                return -EFAULT;
1769
1770        if (!timespec64_valid(&tu))
1771                return -EINVAL;
1772
1773        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1774        current->restart_block.nanosleep.rmtp = rmtp;
1775        return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1776}
1777
1778#ifdef CONFIG_COMPAT
1779
1780COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1781                       struct compat_timespec __user *, rmtp)
1782{
1783        struct timespec64 tu;
1784
1785        if (compat_get_timespec64(&tu, rqtp))
1786                return -EFAULT;
1787
1788        if (!timespec64_valid(&tu))
1789                return -EINVAL;
1790
1791        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1792        current->restart_block.nanosleep.compat_rmtp = rmtp;
1793        return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1794}
1795#endif
1796
1797/*
1798 * Functions related to boot-time initialization:
1799 */
1800int hrtimers_prepare_cpu(unsigned int cpu)
1801{
1802        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1803        int i;
1804
1805        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1806                cpu_base->clock_base[i].cpu_base = cpu_base;
1807                timerqueue_init_head(&cpu_base->clock_base[i].active);
1808        }
1809
1810        cpu_base->cpu = cpu;
1811        cpu_base->active_bases = 0;
1812        cpu_base->hres_active = 0;
1813        cpu_base->hang_detected = 0;
1814        cpu_base->next_timer = NULL;
1815        cpu_base->softirq_next_timer = NULL;
1816        cpu_base->expires_next = KTIME_MAX;
1817        cpu_base->softirq_expires_next = KTIME_MAX;
1818        return 0;
1819}
1820
1821#ifdef CONFIG_HOTPLUG_CPU
1822
1823static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1824                                struct hrtimer_clock_base *new_base)
1825{
1826        struct hrtimer *timer;
1827        struct timerqueue_node *node;
1828
1829        while ((node = timerqueue_getnext(&old_base->active))) {
1830                timer = container_of(node, struct hrtimer, node);
1831                BUG_ON(hrtimer_callback_running(timer));
1832                debug_deactivate(timer);
1833
1834                /*
1835                 * Mark it as ENQUEUED not INACTIVE otherwise the
1836                 * timer could be seen as !active and just vanish away
1837                 * under us on another CPU
1838                 */
1839                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1840                timer->base = new_base;
1841                /*
1842                 * Enqueue the timers on the new cpu. This does not
1843                 * reprogram the event device in case the timer
1844                 * expires before the earliest on this CPU, but we run
1845                 * hrtimer_interrupt after we migrated everything to
1846                 * sort out already expired timers and reprogram the
1847                 * event device.
1848                 */
1849                enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1850        }
1851}
1852
1853int hrtimers_dead_cpu(unsigned int scpu)
1854{
1855        struct hrtimer_cpu_base *old_base, *new_base;
1856        int i;
1857
1858        BUG_ON(cpu_online(scpu));
1859        tick_cancel_sched_timer(scpu);
1860
1861        /*
1862         * this BH disable ensures that raise_softirq_irqoff() does
1863         * not wakeup ksoftirqd (and acquire the pi-lock) while
1864         * holding the cpu_base lock
1865         */
1866        local_bh_disable();
1867        local_irq_disable();
1868        old_base = &per_cpu(hrtimer_bases, scpu);
1869        new_base = this_cpu_ptr(&hrtimer_bases);
1870        /*
1871         * The caller is globally serialized and nobody else
1872         * takes two locks at once, deadlock is not possible.
1873         */
1874        raw_spin_lock(&new_base->lock);
1875        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1876
1877        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1878                migrate_hrtimer_list(&old_base->clock_base[i],
1879                                     &new_base->clock_base[i]);
1880        }
1881
1882        /*
1883         * The migration might have changed the first expiring softirq
1884         * timer on this CPU. Update it.
1885         */
1886        hrtimer_update_softirq_timer(new_base, false);
1887
1888        raw_spin_unlock(&old_base->lock);
1889        raw_spin_unlock(&new_base->lock);
1890
1891        /* Check, if we got expired work to do */
1892        __hrtimer_peek_ahead_timers();
1893        local_irq_enable();
1894        local_bh_enable();
1895        return 0;
1896}
1897
1898#endif /* CONFIG_HOTPLUG_CPU */
1899
1900void __init hrtimers_init(void)
1901{
1902        hrtimers_prepare_cpu(smp_processor_id());
1903        open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1904}
1905
1906/**
1907 * schedule_hrtimeout_range_clock - sleep until timeout
1908 * @expires:    timeout value (ktime_t)
1909 * @delta:      slack in expires timeout (ktime_t)
1910 * @mode:       timer mode
1911 * @clock_id:   timer clock to be used
1912 */
1913int __sched
1914schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1915                               const enum hrtimer_mode mode, clockid_t clock_id)
1916{
1917        struct hrtimer_sleeper t;
1918
1919        /*
1920         * Optimize when a zero timeout value is given. It does not
1921         * matter whether this is an absolute or a relative time.
1922         */
1923        if (expires && *expires == 0) {
1924                __set_current_state(TASK_RUNNING);
1925                return 0;
1926        }
1927
1928        /*
1929         * A NULL parameter means "infinite"
1930         */
1931        if (!expires) {
1932                schedule();
1933                return -EINTR;
1934        }
1935
1936        hrtimer_init_on_stack(&t.timer, clock_id, mode);
1937        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1938
1939        hrtimer_init_sleeper(&t, current);
1940
1941        hrtimer_start_expires(&t.timer, mode);
1942
1943        if (likely(t.task))
1944                schedule();
1945
1946        hrtimer_cancel(&t.timer);
1947        destroy_hrtimer_on_stack(&t.timer);
1948
1949        __set_current_state(TASK_RUNNING);
1950
1951        return !t.task ? 0 : -EINTR;
1952}
1953
1954/**
1955 * schedule_hrtimeout_range - sleep until timeout
1956 * @expires:    timeout value (ktime_t)
1957 * @delta:      slack in expires timeout (ktime_t)
1958 * @mode:       timer mode
1959 *
1960 * Make the current task sleep until the given expiry time has
1961 * elapsed. The routine will return immediately unless
1962 * the current task state has been set (see set_current_state()).
1963 *
1964 * The @delta argument gives the kernel the freedom to schedule the
1965 * actual wakeup to a time that is both power and performance friendly.
1966 * The kernel give the normal best effort behavior for "@expires+@delta",
1967 * but may decide to fire the timer earlier, but no earlier than @expires.
1968 *
1969 * You can set the task state as follows -
1970 *
1971 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1972 * pass before the routine returns unless the current task is explicitly
1973 * woken up, (e.g. by wake_up_process()).
1974 *
1975 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1976 * delivered to the current task or the current task is explicitly woken
1977 * up.
1978 *
1979 * The current task state is guaranteed to be TASK_RUNNING when this
1980 * routine returns.
1981 *
1982 * Returns 0 when the timer has expired. If the task was woken before the
1983 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1984 * by an explicit wakeup, it returns -EINTR.
1985 */
1986int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1987                                     const enum hrtimer_mode mode)
1988{
1989        return schedule_hrtimeout_range_clock(expires, delta, mode,
1990                                              CLOCK_MONOTONIC);
1991}
1992EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1993
1994/**
1995 * schedule_hrtimeout - sleep until timeout
1996 * @expires:    timeout value (ktime_t)
1997 * @mode:       timer mode
1998 *
1999 * Make the current task sleep until the given expiry time has
2000 * elapsed. The routine will return immediately unless
2001 * the current task state has been set (see set_current_state()).
2002 *
2003 * You can set the task state as follows -
2004 *
2005 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2006 * pass before the routine returns unless the current task is explicitly
2007 * woken up, (e.g. by wake_up_process()).
2008 *
2009 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2010 * delivered to the current task or the current task is explicitly woken
2011 * up.
2012 *
2013 * The current task state is guaranteed to be TASK_RUNNING when this
2014 * routine returns.
2015 *
2016 * Returns 0 when the timer has expired. If the task was woken before the
2017 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2018 * by an explicit wakeup, it returns -EINTR.
2019 */
2020int __sched schedule_hrtimeout(ktime_t *expires,
2021                               const enum hrtimer_mode mode)
2022{
2023        return schedule_hrtimeout_range(expires, 0, mode);
2024}
2025EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2026