linux/kernel/time/tick-broadcast.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/time/tick-broadcast.c
   3 *
   4 * This file contains functions which emulate a local clock-event
   5 * device via a broadcast event source.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21#include <linux/smp.h>
  22#include <linux/module.h>
  23
  24#include "tick-internal.h"
  25
  26/*
  27 * Broadcast support for broken x86 hardware, where the local apic
  28 * timer stops in C3 state.
  29 */
  30
  31static struct tick_device tick_broadcast_device;
  32static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
  33static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
  34static cpumask_var_t tmpmask __cpumask_var_read_mostly;
  35static int tick_broadcast_forced;
  36
  37static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  38
  39#ifdef CONFIG_TICK_ONESHOT
  40static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
  41static void tick_broadcast_clear_oneshot(int cpu);
  42static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
  43#else
  44static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
  45static inline void tick_broadcast_clear_oneshot(int cpu) { }
  46static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
  47#endif
  48
  49/*
  50 * Debugging: see timer_list.c
  51 */
  52struct tick_device *tick_get_broadcast_device(void)
  53{
  54        return &tick_broadcast_device;
  55}
  56
  57struct cpumask *tick_get_broadcast_mask(void)
  58{
  59        return tick_broadcast_mask;
  60}
  61
  62/*
  63 * Start the device in periodic mode
  64 */
  65static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  66{
  67        if (bc)
  68                tick_setup_periodic(bc, 1);
  69}
  70
  71/*
  72 * Check, if the device can be utilized as broadcast device:
  73 */
  74static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  75                                        struct clock_event_device *newdev)
  76{
  77        if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  78            (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  79            (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  80                return false;
  81
  82        if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  83            !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  84                return false;
  85
  86        return !curdev || newdev->rating > curdev->rating;
  87}
  88
  89/*
  90 * Conditionally install/replace broadcast device
  91 */
  92void tick_install_broadcast_device(struct clock_event_device *dev)
  93{
  94        struct clock_event_device *cur = tick_broadcast_device.evtdev;
  95
  96        if (!tick_check_broadcast_device(cur, dev))
  97                return;
  98
  99        if (!try_module_get(dev->owner))
 100                return;
 101
 102        clockevents_exchange_device(cur, dev);
 103        if (cur)
 104                cur->event_handler = clockevents_handle_noop;
 105        tick_broadcast_device.evtdev = dev;
 106        if (!cpumask_empty(tick_broadcast_mask))
 107                tick_broadcast_start_periodic(dev);
 108        /*
 109         * Inform all cpus about this. We might be in a situation
 110         * where we did not switch to oneshot mode because the per cpu
 111         * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 112         * of a oneshot capable broadcast device. Without that
 113         * notification the systems stays stuck in periodic mode
 114         * forever.
 115         */
 116        if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
 117                tick_clock_notify();
 118}
 119
 120/*
 121 * Check, if the device is the broadcast device
 122 */
 123int tick_is_broadcast_device(struct clock_event_device *dev)
 124{
 125        return (dev && tick_broadcast_device.evtdev == dev);
 126}
 127
 128int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 129{
 130        int ret = -ENODEV;
 131
 132        if (tick_is_broadcast_device(dev)) {
 133                raw_spin_lock(&tick_broadcast_lock);
 134                ret = __clockevents_update_freq(dev, freq);
 135                raw_spin_unlock(&tick_broadcast_lock);
 136        }
 137        return ret;
 138}
 139
 140
 141static void err_broadcast(const struct cpumask *mask)
 142{
 143        pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 144}
 145
 146static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 147{
 148        if (!dev->broadcast)
 149                dev->broadcast = tick_broadcast;
 150        if (!dev->broadcast) {
 151                pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 152                             dev->name);
 153                dev->broadcast = err_broadcast;
 154        }
 155}
 156
 157/*
 158 * Check, if the device is disfunctional and a place holder, which
 159 * needs to be handled by the broadcast device.
 160 */
 161int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 162{
 163        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 164        unsigned long flags;
 165        int ret = 0;
 166
 167        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 168
 169        /*
 170         * Devices might be registered with both periodic and oneshot
 171         * mode disabled. This signals, that the device needs to be
 172         * operated from the broadcast device and is a placeholder for
 173         * the cpu local device.
 174         */
 175        if (!tick_device_is_functional(dev)) {
 176                dev->event_handler = tick_handle_periodic;
 177                tick_device_setup_broadcast_func(dev);
 178                cpumask_set_cpu(cpu, tick_broadcast_mask);
 179                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 180                        tick_broadcast_start_periodic(bc);
 181                else
 182                        tick_broadcast_setup_oneshot(bc);
 183                ret = 1;
 184        } else {
 185                /*
 186                 * Clear the broadcast bit for this cpu if the
 187                 * device is not power state affected.
 188                 */
 189                if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 190                        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 191                else
 192                        tick_device_setup_broadcast_func(dev);
 193
 194                /*
 195                 * Clear the broadcast bit if the CPU is not in
 196                 * periodic broadcast on state.
 197                 */
 198                if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 199                        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 200
 201                switch (tick_broadcast_device.mode) {
 202                case TICKDEV_MODE_ONESHOT:
 203                        /*
 204                         * If the system is in oneshot mode we can
 205                         * unconditionally clear the oneshot mask bit,
 206                         * because the CPU is running and therefore
 207                         * not in an idle state which causes the power
 208                         * state affected device to stop. Let the
 209                         * caller initialize the device.
 210                         */
 211                        tick_broadcast_clear_oneshot(cpu);
 212                        ret = 0;
 213                        break;
 214
 215                case TICKDEV_MODE_PERIODIC:
 216                        /*
 217                         * If the system is in periodic mode, check
 218                         * whether the broadcast device can be
 219                         * switched off now.
 220                         */
 221                        if (cpumask_empty(tick_broadcast_mask) && bc)
 222                                clockevents_shutdown(bc);
 223                        /*
 224                         * If we kept the cpu in the broadcast mask,
 225                         * tell the caller to leave the per cpu device
 226                         * in shutdown state. The periodic interrupt
 227                         * is delivered by the broadcast device, if
 228                         * the broadcast device exists and is not
 229                         * hrtimer based.
 230                         */
 231                        if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 232                                ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 233                        break;
 234                default:
 235                        break;
 236                }
 237        }
 238        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 239        return ret;
 240}
 241
 242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 243int tick_receive_broadcast(void)
 244{
 245        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 246        struct clock_event_device *evt = td->evtdev;
 247
 248        if (!evt)
 249                return -ENODEV;
 250
 251        if (!evt->event_handler)
 252                return -EINVAL;
 253
 254        evt->event_handler(evt);
 255        return 0;
 256}
 257#endif
 258
 259/*
 260 * Broadcast the event to the cpus, which are set in the mask (mangled).
 261 */
 262static bool tick_do_broadcast(struct cpumask *mask)
 263{
 264        int cpu = smp_processor_id();
 265        struct tick_device *td;
 266        bool local = false;
 267
 268        /*
 269         * Check, if the current cpu is in the mask
 270         */
 271        if (cpumask_test_cpu(cpu, mask)) {
 272                struct clock_event_device *bc = tick_broadcast_device.evtdev;
 273
 274                cpumask_clear_cpu(cpu, mask);
 275                /*
 276                 * We only run the local handler, if the broadcast
 277                 * device is not hrtimer based. Otherwise we run into
 278                 * a hrtimer recursion.
 279                 *
 280                 * local timer_interrupt()
 281                 *   local_handler()
 282                 *     expire_hrtimers()
 283                 *       bc_handler()
 284                 *         local_handler()
 285                 *           expire_hrtimers()
 286                 */
 287                local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 288        }
 289
 290        if (!cpumask_empty(mask)) {
 291                /*
 292                 * It might be necessary to actually check whether the devices
 293                 * have different broadcast functions. For now, just use the
 294                 * one of the first device. This works as long as we have this
 295                 * misfeature only on x86 (lapic)
 296                 */
 297                td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 298                td->evtdev->broadcast(mask);
 299        }
 300        return local;
 301}
 302
 303/*
 304 * Periodic broadcast:
 305 * - invoke the broadcast handlers
 306 */
 307static bool tick_do_periodic_broadcast(void)
 308{
 309        cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 310        return tick_do_broadcast(tmpmask);
 311}
 312
 313/*
 314 * Event handler for periodic broadcast ticks
 315 */
 316static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 317{
 318        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 319        bool bc_local;
 320
 321        raw_spin_lock(&tick_broadcast_lock);
 322
 323        /* Handle spurious interrupts gracefully */
 324        if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 325                raw_spin_unlock(&tick_broadcast_lock);
 326                return;
 327        }
 328
 329        bc_local = tick_do_periodic_broadcast();
 330
 331        if (clockevent_state_oneshot(dev)) {
 332                ktime_t next = ktime_add(dev->next_event, tick_period);
 333
 334                clockevents_program_event(dev, next, true);
 335        }
 336        raw_spin_unlock(&tick_broadcast_lock);
 337
 338        /*
 339         * We run the handler of the local cpu after dropping
 340         * tick_broadcast_lock because the handler might deadlock when
 341         * trying to switch to oneshot mode.
 342         */
 343        if (bc_local)
 344                td->evtdev->event_handler(td->evtdev);
 345}
 346
 347/**
 348 * tick_broadcast_control - Enable/disable or force broadcast mode
 349 * @mode:       The selected broadcast mode
 350 *
 351 * Called when the system enters a state where affected tick devices
 352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 353 */
 354void tick_broadcast_control(enum tick_broadcast_mode mode)
 355{
 356        struct clock_event_device *bc, *dev;
 357        struct tick_device *td;
 358        int cpu, bc_stopped;
 359        unsigned long flags;
 360
 361        /* Protects also the local clockevent device. */
 362        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 363        td = this_cpu_ptr(&tick_cpu_device);
 364        dev = td->evtdev;
 365
 366        /*
 367         * Is the device not affected by the powerstate ?
 368         */
 369        if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 370                goto out;
 371
 372        if (!tick_device_is_functional(dev))
 373                goto out;
 374
 375        cpu = smp_processor_id();
 376        bc = tick_broadcast_device.evtdev;
 377        bc_stopped = cpumask_empty(tick_broadcast_mask);
 378
 379        switch (mode) {
 380        case TICK_BROADCAST_FORCE:
 381                tick_broadcast_forced = 1;
 382        case TICK_BROADCAST_ON:
 383                cpumask_set_cpu(cpu, tick_broadcast_on);
 384                if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 385                        /*
 386                         * Only shutdown the cpu local device, if:
 387                         *
 388                         * - the broadcast device exists
 389                         * - the broadcast device is not a hrtimer based one
 390                         * - the broadcast device is in periodic mode to
 391                         *   avoid a hickup during switch to oneshot mode
 392                         */
 393                        if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 394                            tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 395                                clockevents_shutdown(dev);
 396                }
 397                break;
 398
 399        case TICK_BROADCAST_OFF:
 400                if (tick_broadcast_forced)
 401                        break;
 402                cpumask_clear_cpu(cpu, tick_broadcast_on);
 403                if (!tick_device_is_functional(dev))
 404                        break;
 405                if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 406                        if (tick_broadcast_device.mode ==
 407                            TICKDEV_MODE_PERIODIC)
 408                                tick_setup_periodic(dev, 0);
 409                }
 410                break;
 411        }
 412
 413        if (bc) {
 414                if (cpumask_empty(tick_broadcast_mask)) {
 415                        if (!bc_stopped)
 416                                clockevents_shutdown(bc);
 417                } else if (bc_stopped) {
 418                        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 419                                tick_broadcast_start_periodic(bc);
 420                        else
 421                                tick_broadcast_setup_oneshot(bc);
 422                }
 423        }
 424out:
 425        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 426}
 427EXPORT_SYMBOL_GPL(tick_broadcast_control);
 428
 429/*
 430 * Set the periodic handler depending on broadcast on/off
 431 */
 432void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 433{
 434        if (!broadcast)
 435                dev->event_handler = tick_handle_periodic;
 436        else
 437                dev->event_handler = tick_handle_periodic_broadcast;
 438}
 439
 440#ifdef CONFIG_HOTPLUG_CPU
 441/*
 442 * Remove a CPU from broadcasting
 443 */
 444void tick_shutdown_broadcast(unsigned int cpu)
 445{
 446        struct clock_event_device *bc;
 447        unsigned long flags;
 448
 449        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 450
 451        bc = tick_broadcast_device.evtdev;
 452        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 453        cpumask_clear_cpu(cpu, tick_broadcast_on);
 454
 455        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 456                if (bc && cpumask_empty(tick_broadcast_mask))
 457                        clockevents_shutdown(bc);
 458        }
 459
 460        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 461}
 462#endif
 463
 464void tick_suspend_broadcast(void)
 465{
 466        struct clock_event_device *bc;
 467        unsigned long flags;
 468
 469        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 470
 471        bc = tick_broadcast_device.evtdev;
 472        if (bc)
 473                clockevents_shutdown(bc);
 474
 475        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 476}
 477
 478/*
 479 * This is called from tick_resume_local() on a resuming CPU. That's
 480 * called from the core resume function, tick_unfreeze() and the magic XEN
 481 * resume hackery.
 482 *
 483 * In none of these cases the broadcast device mode can change and the
 484 * bit of the resuming CPU in the broadcast mask is safe as well.
 485 */
 486bool tick_resume_check_broadcast(void)
 487{
 488        if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 489                return false;
 490        else
 491                return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 492}
 493
 494void tick_resume_broadcast(void)
 495{
 496        struct clock_event_device *bc;
 497        unsigned long flags;
 498
 499        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 500
 501        bc = tick_broadcast_device.evtdev;
 502
 503        if (bc) {
 504                clockevents_tick_resume(bc);
 505
 506                switch (tick_broadcast_device.mode) {
 507                case TICKDEV_MODE_PERIODIC:
 508                        if (!cpumask_empty(tick_broadcast_mask))
 509                                tick_broadcast_start_periodic(bc);
 510                        break;
 511                case TICKDEV_MODE_ONESHOT:
 512                        if (!cpumask_empty(tick_broadcast_mask))
 513                                tick_resume_broadcast_oneshot(bc);
 514                        break;
 515                }
 516        }
 517        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 518}
 519
 520#ifdef CONFIG_TICK_ONESHOT
 521
 522static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
 523static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
 524static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
 525
 526/*
 527 * Exposed for debugging: see timer_list.c
 528 */
 529struct cpumask *tick_get_broadcast_oneshot_mask(void)
 530{
 531        return tick_broadcast_oneshot_mask;
 532}
 533
 534/*
 535 * Called before going idle with interrupts disabled. Checks whether a
 536 * broadcast event from the other core is about to happen. We detected
 537 * that in tick_broadcast_oneshot_control(). The callsite can use this
 538 * to avoid a deep idle transition as we are about to get the
 539 * broadcast IPI right away.
 540 */
 541int tick_check_broadcast_expired(void)
 542{
 543        return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 544}
 545
 546/*
 547 * Set broadcast interrupt affinity
 548 */
 549static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 550                                        const struct cpumask *cpumask)
 551{
 552        if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 553                return;
 554
 555        if (cpumask_equal(bc->cpumask, cpumask))
 556                return;
 557
 558        bc->cpumask = cpumask;
 559        irq_set_affinity(bc->irq, bc->cpumask);
 560}
 561
 562static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 563                                     ktime_t expires)
 564{
 565        if (!clockevent_state_oneshot(bc))
 566                clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 567
 568        clockevents_program_event(bc, expires, 1);
 569        tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 570}
 571
 572static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 573{
 574        clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 575}
 576
 577/*
 578 * Called from irq_enter() when idle was interrupted to reenable the
 579 * per cpu device.
 580 */
 581void tick_check_oneshot_broadcast_this_cpu(void)
 582{
 583        if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 584                struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 585
 586                /*
 587                 * We might be in the middle of switching over from
 588                 * periodic to oneshot. If the CPU has not yet
 589                 * switched over, leave the device alone.
 590                 */
 591                if (td->mode == TICKDEV_MODE_ONESHOT) {
 592                        clockevents_switch_state(td->evtdev,
 593                                              CLOCK_EVT_STATE_ONESHOT);
 594                }
 595        }
 596}
 597
 598/*
 599 * Handle oneshot mode broadcasting
 600 */
 601static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 602{
 603        struct tick_device *td;
 604        ktime_t now, next_event;
 605        int cpu, next_cpu = 0;
 606        bool bc_local;
 607
 608        raw_spin_lock(&tick_broadcast_lock);
 609        dev->next_event = KTIME_MAX;
 610        next_event = KTIME_MAX;
 611        cpumask_clear(tmpmask);
 612        now = ktime_get();
 613        /* Find all expired events */
 614        for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 615                /*
 616                 * Required for !SMP because for_each_cpu() reports
 617                 * unconditionally CPU0 as set on UP kernels.
 618                 */
 619                if (!IS_ENABLED(CONFIG_SMP) &&
 620                    cpumask_empty(tick_broadcast_oneshot_mask))
 621                        break;
 622
 623                td = &per_cpu(tick_cpu_device, cpu);
 624                if (td->evtdev->next_event <= now) {
 625                        cpumask_set_cpu(cpu, tmpmask);
 626                        /*
 627                         * Mark the remote cpu in the pending mask, so
 628                         * it can avoid reprogramming the cpu local
 629                         * timer in tick_broadcast_oneshot_control().
 630                         */
 631                        cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 632                } else if (td->evtdev->next_event < next_event) {
 633                        next_event = td->evtdev->next_event;
 634                        next_cpu = cpu;
 635                }
 636        }
 637
 638        /*
 639         * Remove the current cpu from the pending mask. The event is
 640         * delivered immediately in tick_do_broadcast() !
 641         */
 642        cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 643
 644        /* Take care of enforced broadcast requests */
 645        cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 646        cpumask_clear(tick_broadcast_force_mask);
 647
 648        /*
 649         * Sanity check. Catch the case where we try to broadcast to
 650         * offline cpus.
 651         */
 652        if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 653                cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 654
 655        /*
 656         * Wakeup the cpus which have an expired event.
 657         */
 658        bc_local = tick_do_broadcast(tmpmask);
 659
 660        /*
 661         * Two reasons for reprogram:
 662         *
 663         * - The global event did not expire any CPU local
 664         * events. This happens in dyntick mode, as the maximum PIT
 665         * delta is quite small.
 666         *
 667         * - There are pending events on sleeping CPUs which were not
 668         * in the event mask
 669         */
 670        if (next_event != KTIME_MAX)
 671                tick_broadcast_set_event(dev, next_cpu, next_event);
 672
 673        raw_spin_unlock(&tick_broadcast_lock);
 674
 675        if (bc_local) {
 676                td = this_cpu_ptr(&tick_cpu_device);
 677                td->evtdev->event_handler(td->evtdev);
 678        }
 679}
 680
 681static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 682{
 683        if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 684                return 0;
 685        if (bc->next_event == KTIME_MAX)
 686                return 0;
 687        return bc->bound_on == cpu ? -EBUSY : 0;
 688}
 689
 690static void broadcast_shutdown_local(struct clock_event_device *bc,
 691                                     struct clock_event_device *dev)
 692{
 693        /*
 694         * For hrtimer based broadcasting we cannot shutdown the cpu
 695         * local device if our own event is the first one to expire or
 696         * if we own the broadcast timer.
 697         */
 698        if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 699                if (broadcast_needs_cpu(bc, smp_processor_id()))
 700                        return;
 701                if (dev->next_event < bc->next_event)
 702                        return;
 703        }
 704        clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 705}
 706
 707int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 708{
 709        struct clock_event_device *bc, *dev;
 710        int cpu, ret = 0;
 711        ktime_t now;
 712
 713        /*
 714         * If there is no broadcast device, tell the caller not to go
 715         * into deep idle.
 716         */
 717        if (!tick_broadcast_device.evtdev)
 718                return -EBUSY;
 719
 720        dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
 721
 722        raw_spin_lock(&tick_broadcast_lock);
 723        bc = tick_broadcast_device.evtdev;
 724        cpu = smp_processor_id();
 725
 726        if (state == TICK_BROADCAST_ENTER) {
 727                /*
 728                 * If the current CPU owns the hrtimer broadcast
 729                 * mechanism, it cannot go deep idle and we do not add
 730                 * the CPU to the broadcast mask. We don't have to go
 731                 * through the EXIT path as the local timer is not
 732                 * shutdown.
 733                 */
 734                ret = broadcast_needs_cpu(bc, cpu);
 735                if (ret)
 736                        goto out;
 737
 738                /*
 739                 * If the broadcast device is in periodic mode, we
 740                 * return.
 741                 */
 742                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 743                        /* If it is a hrtimer based broadcast, return busy */
 744                        if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 745                                ret = -EBUSY;
 746                        goto out;
 747                }
 748
 749                if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 750                        WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 751
 752                        /* Conditionally shut down the local timer. */
 753                        broadcast_shutdown_local(bc, dev);
 754
 755                        /*
 756                         * We only reprogram the broadcast timer if we
 757                         * did not mark ourself in the force mask and
 758                         * if the cpu local event is earlier than the
 759                         * broadcast event. If the current CPU is in
 760                         * the force mask, then we are going to be
 761                         * woken by the IPI right away; we return
 762                         * busy, so the CPU does not try to go deep
 763                         * idle.
 764                         */
 765                        if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 766                                ret = -EBUSY;
 767                        } else if (dev->next_event < bc->next_event) {
 768                                tick_broadcast_set_event(bc, cpu, dev->next_event);
 769                                /*
 770                                 * In case of hrtimer broadcasts the
 771                                 * programming might have moved the
 772                                 * timer to this cpu. If yes, remove
 773                                 * us from the broadcast mask and
 774                                 * return busy.
 775                                 */
 776                                ret = broadcast_needs_cpu(bc, cpu);
 777                                if (ret) {
 778                                        cpumask_clear_cpu(cpu,
 779                                                tick_broadcast_oneshot_mask);
 780                                }
 781                        }
 782                }
 783        } else {
 784                if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 785                        clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 786                        /*
 787                         * The cpu which was handling the broadcast
 788                         * timer marked this cpu in the broadcast
 789                         * pending mask and fired the broadcast
 790                         * IPI. So we are going to handle the expired
 791                         * event anyway via the broadcast IPI
 792                         * handler. No need to reprogram the timer
 793                         * with an already expired event.
 794                         */
 795                        if (cpumask_test_and_clear_cpu(cpu,
 796                                       tick_broadcast_pending_mask))
 797                                goto out;
 798
 799                        /*
 800                         * Bail out if there is no next event.
 801                         */
 802                        if (dev->next_event == KTIME_MAX)
 803                                goto out;
 804                        /*
 805                         * If the pending bit is not set, then we are
 806                         * either the CPU handling the broadcast
 807                         * interrupt or we got woken by something else.
 808                         *
 809                         * We are not longer in the broadcast mask, so
 810                         * if the cpu local expiry time is already
 811                         * reached, we would reprogram the cpu local
 812                         * timer with an already expired event.
 813                         *
 814                         * This can lead to a ping-pong when we return
 815                         * to idle and therefor rearm the broadcast
 816                         * timer before the cpu local timer was able
 817                         * to fire. This happens because the forced
 818                         * reprogramming makes sure that the event
 819                         * will happen in the future and depending on
 820                         * the min_delta setting this might be far
 821                         * enough out that the ping-pong starts.
 822                         *
 823                         * If the cpu local next_event has expired
 824                         * then we know that the broadcast timer
 825                         * next_event has expired as well and
 826                         * broadcast is about to be handled. So we
 827                         * avoid reprogramming and enforce that the
 828                         * broadcast handler, which did not run yet,
 829                         * will invoke the cpu local handler.
 830                         *
 831                         * We cannot call the handler directly from
 832                         * here, because we might be in a NOHZ phase
 833                         * and we did not go through the irq_enter()
 834                         * nohz fixups.
 835                         */
 836                        now = ktime_get();
 837                        if (dev->next_event <= now) {
 838                                cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 839                                goto out;
 840                        }
 841                        /*
 842                         * We got woken by something else. Reprogram
 843                         * the cpu local timer device.
 844                         */
 845                        tick_program_event(dev->next_event, 1);
 846                }
 847        }
 848out:
 849        raw_spin_unlock(&tick_broadcast_lock);
 850        return ret;
 851}
 852
 853/*
 854 * Reset the one shot broadcast for a cpu
 855 *
 856 * Called with tick_broadcast_lock held
 857 */
 858static void tick_broadcast_clear_oneshot(int cpu)
 859{
 860        cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 861        cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 862}
 863
 864static void tick_broadcast_init_next_event(struct cpumask *mask,
 865                                           ktime_t expires)
 866{
 867        struct tick_device *td;
 868        int cpu;
 869
 870        for_each_cpu(cpu, mask) {
 871                td = &per_cpu(tick_cpu_device, cpu);
 872                if (td->evtdev)
 873                        td->evtdev->next_event = expires;
 874        }
 875}
 876
 877/**
 878 * tick_broadcast_setup_oneshot - setup the broadcast device
 879 */
 880static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 881{
 882        int cpu = smp_processor_id();
 883
 884        if (!bc)
 885                return;
 886
 887        /* Set it up only once ! */
 888        if (bc->event_handler != tick_handle_oneshot_broadcast) {
 889                int was_periodic = clockevent_state_periodic(bc);
 890
 891                bc->event_handler = tick_handle_oneshot_broadcast;
 892
 893                /*
 894                 * We must be careful here. There might be other CPUs
 895                 * waiting for periodic broadcast. We need to set the
 896                 * oneshot_mask bits for those and program the
 897                 * broadcast device to fire.
 898                 */
 899                cpumask_copy(tmpmask, tick_broadcast_mask);
 900                cpumask_clear_cpu(cpu, tmpmask);
 901                cpumask_or(tick_broadcast_oneshot_mask,
 902                           tick_broadcast_oneshot_mask, tmpmask);
 903
 904                if (was_periodic && !cpumask_empty(tmpmask)) {
 905                        clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 906                        tick_broadcast_init_next_event(tmpmask,
 907                                                       tick_next_period);
 908                        tick_broadcast_set_event(bc, cpu, tick_next_period);
 909                } else
 910                        bc->next_event = KTIME_MAX;
 911        } else {
 912                /*
 913                 * The first cpu which switches to oneshot mode sets
 914                 * the bit for all other cpus which are in the general
 915                 * (periodic) broadcast mask. So the bit is set and
 916                 * would prevent the first broadcast enter after this
 917                 * to program the bc device.
 918                 */
 919                tick_broadcast_clear_oneshot(cpu);
 920        }
 921}
 922
 923/*
 924 * Select oneshot operating mode for the broadcast device
 925 */
 926void tick_broadcast_switch_to_oneshot(void)
 927{
 928        struct clock_event_device *bc;
 929        unsigned long flags;
 930
 931        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 932
 933        tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 934        bc = tick_broadcast_device.evtdev;
 935        if (bc)
 936                tick_broadcast_setup_oneshot(bc);
 937
 938        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 939}
 940
 941#ifdef CONFIG_HOTPLUG_CPU
 942void hotplug_cpu__broadcast_tick_pull(int deadcpu)
 943{
 944        struct clock_event_device *bc;
 945        unsigned long flags;
 946
 947        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 948        bc = tick_broadcast_device.evtdev;
 949
 950        if (bc && broadcast_needs_cpu(bc, deadcpu)) {
 951                /* This moves the broadcast assignment to this CPU: */
 952                clockevents_program_event(bc, bc->next_event, 1);
 953        }
 954        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 955}
 956
 957/*
 958 * Remove a dead CPU from broadcasting
 959 */
 960void tick_shutdown_broadcast_oneshot(unsigned int cpu)
 961{
 962        unsigned long flags;
 963
 964        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 965
 966        /*
 967         * Clear the broadcast masks for the dead cpu, but do not stop
 968         * the broadcast device!
 969         */
 970        cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 971        cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 972        cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 973
 974        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 975}
 976#endif
 977
 978/*
 979 * Check, whether the broadcast device is in one shot mode
 980 */
 981int tick_broadcast_oneshot_active(void)
 982{
 983        return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
 984}
 985
 986/*
 987 * Check whether the broadcast device supports oneshot.
 988 */
 989bool tick_broadcast_oneshot_available(void)
 990{
 991        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 992
 993        return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
 994}
 995
 996#else
 997int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 998{
 999        struct clock_event_device *bc = tick_broadcast_device.evtdev;
1000
1001        if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1002                return -EBUSY;
1003
1004        return 0;
1005}
1006#endif
1007
1008void __init tick_broadcast_init(void)
1009{
1010        zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1011        zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1012        zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1013#ifdef CONFIG_TICK_ONESHOT
1014        zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1015        zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1016        zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1017#endif
1018}
1019