linux/kernel/workqueue.c
<<
>>
Prefs
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002           Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010           SUSE Linux Products GmbH
  15 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/core-api/workqueue.rst for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/debug_locks.h>
  42#include <linux/lockdep.h>
  43#include <linux/idr.h>
  44#include <linux/jhash.h>
  45#include <linux/hashtable.h>
  46#include <linux/rculist.h>
  47#include <linux/nodemask.h>
  48#include <linux/moduleparam.h>
  49#include <linux/uaccess.h>
  50#include <linux/sched/isolation.h>
  51#include <linux/nmi.h>
  52
  53#include "workqueue_internal.h"
  54
  55enum {
  56        /*
  57         * worker_pool flags
  58         *
  59         * A bound pool is either associated or disassociated with its CPU.
  60         * While associated (!DISASSOCIATED), all workers are bound to the
  61         * CPU and none has %WORKER_UNBOUND set and concurrency management
  62         * is in effect.
  63         *
  64         * While DISASSOCIATED, the cpu may be offline and all workers have
  65         * %WORKER_UNBOUND set and concurrency management disabled, and may
  66         * be executing on any CPU.  The pool behaves as an unbound one.
  67         *
  68         * Note that DISASSOCIATED should be flipped only while holding
  69         * attach_mutex to avoid changing binding state while
  70         * worker_attach_to_pool() is in progress.
  71         */
  72        POOL_MANAGER_ACTIVE     = 1 << 0,       /* being managed */
  73        POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
  74
  75        /* worker flags */
  76        WORKER_DIE              = 1 << 1,       /* die die die */
  77        WORKER_IDLE             = 1 << 2,       /* is idle */
  78        WORKER_PREP             = 1 << 3,       /* preparing to run works */
  79        WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
  80        WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
  81        WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
  82
  83        WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
  84                                  WORKER_UNBOUND | WORKER_REBOUND,
  85
  86        NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
  87
  88        UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
  89        BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
  90
  91        MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
  92        IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
  93
  94        MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  95                                                /* call for help after 10ms
  96                                                   (min two ticks) */
  97        MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
  98        CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
  99
 100        /*
 101         * Rescue workers are used only on emergencies and shared by
 102         * all cpus.  Give MIN_NICE.
 103         */
 104        RESCUER_NICE_LEVEL      = MIN_NICE,
 105        HIGHPRI_NICE_LEVEL      = MIN_NICE,
 106
 107        WQ_NAME_LEN             = 24,
 108};
 109
 110/*
 111 * Structure fields follow one of the following exclusion rules.
 112 *
 113 * I: Modifiable by initialization/destruction paths and read-only for
 114 *    everyone else.
 115 *
 116 * P: Preemption protected.  Disabling preemption is enough and should
 117 *    only be modified and accessed from the local cpu.
 118 *
 119 * L: pool->lock protected.  Access with pool->lock held.
 120 *
 121 * X: During normal operation, modification requires pool->lock and should
 122 *    be done only from local cpu.  Either disabling preemption on local
 123 *    cpu or grabbing pool->lock is enough for read access.  If
 124 *    POOL_DISASSOCIATED is set, it's identical to L.
 125 *
 126 * A: pool->attach_mutex protected.
 127 *
 128 * PL: wq_pool_mutex protected.
 129 *
 130 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 131 *
 132 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 133 *
 134 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 135 *      sched-RCU for reads.
 136 *
 137 * WQ: wq->mutex protected.
 138 *
 139 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 140 *
 141 * MD: wq_mayday_lock protected.
 142 */
 143
 144/* struct worker is defined in workqueue_internal.h */
 145
 146struct worker_pool {
 147        spinlock_t              lock;           /* the pool lock */
 148        int                     cpu;            /* I: the associated cpu */
 149        int                     node;           /* I: the associated node ID */
 150        int                     id;             /* I: pool ID */
 151        unsigned int            flags;          /* X: flags */
 152
 153        unsigned long           watchdog_ts;    /* L: watchdog timestamp */
 154
 155        struct list_head        worklist;       /* L: list of pending works */
 156
 157        int                     nr_workers;     /* L: total number of workers */
 158        int                     nr_idle;        /* L: currently idle workers */
 159
 160        struct list_head        idle_list;      /* X: list of idle workers */
 161        struct timer_list       idle_timer;     /* L: worker idle timeout */
 162        struct timer_list       mayday_timer;   /* L: SOS timer for workers */
 163
 164        /* a workers is either on busy_hash or idle_list, or the manager */
 165        DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 166                                                /* L: hash of busy workers */
 167
 168        struct worker           *manager;       /* L: purely informational */
 169        struct mutex            attach_mutex;   /* attach/detach exclusion */
 170        struct list_head        workers;        /* A: attached workers */
 171        struct completion       *detach_completion; /* all workers detached */
 172
 173        struct ida              worker_ida;     /* worker IDs for task name */
 174
 175        struct workqueue_attrs  *attrs;         /* I: worker attributes */
 176        struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
 177        int                     refcnt;         /* PL: refcnt for unbound pools */
 178
 179        /*
 180         * The current concurrency level.  As it's likely to be accessed
 181         * from other CPUs during try_to_wake_up(), put it in a separate
 182         * cacheline.
 183         */
 184        atomic_t                nr_running ____cacheline_aligned_in_smp;
 185
 186        /*
 187         * Destruction of pool is sched-RCU protected to allow dereferences
 188         * from get_work_pool().
 189         */
 190        struct rcu_head         rcu;
 191} ____cacheline_aligned_in_smp;
 192
 193/*
 194 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 195 * of work_struct->data are used for flags and the remaining high bits
 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 197 * number of flag bits.
 198 */
 199struct pool_workqueue {
 200        struct worker_pool      *pool;          /* I: the associated pool */
 201        struct workqueue_struct *wq;            /* I: the owning workqueue */
 202        int                     work_color;     /* L: current color */
 203        int                     flush_color;    /* L: flushing color */
 204        int                     refcnt;         /* L: reference count */
 205        int                     nr_in_flight[WORK_NR_COLORS];
 206                                                /* L: nr of in_flight works */
 207        int                     nr_active;      /* L: nr of active works */
 208        int                     max_active;     /* L: max active works */
 209        struct list_head        delayed_works;  /* L: delayed works */
 210        struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
 211        struct list_head        mayday_node;    /* MD: node on wq->maydays */
 212
 213        /*
 214         * Release of unbound pwq is punted to system_wq.  See put_pwq()
 215         * and pwq_unbound_release_workfn() for details.  pool_workqueue
 216         * itself is also sched-RCU protected so that the first pwq can be
 217         * determined without grabbing wq->mutex.
 218         */
 219        struct work_struct      unbound_release_work;
 220        struct rcu_head         rcu;
 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 222
 223/*
 224 * Structure used to wait for workqueue flush.
 225 */
 226struct wq_flusher {
 227        struct list_head        list;           /* WQ: list of flushers */
 228        int                     flush_color;    /* WQ: flush color waiting for */
 229        struct completion       done;           /* flush completion */
 230};
 231
 232struct wq_device;
 233
 234/*
 235 * The externally visible workqueue.  It relays the issued work items to
 236 * the appropriate worker_pool through its pool_workqueues.
 237 */
 238struct workqueue_struct {
 239        struct list_head        pwqs;           /* WR: all pwqs of this wq */
 240        struct list_head        list;           /* PR: list of all workqueues */
 241
 242        struct mutex            mutex;          /* protects this wq */
 243        int                     work_color;     /* WQ: current work color */
 244        int                     flush_color;    /* WQ: current flush color */
 245        atomic_t                nr_pwqs_to_flush; /* flush in progress */
 246        struct wq_flusher       *first_flusher; /* WQ: first flusher */
 247        struct list_head        flusher_queue;  /* WQ: flush waiters */
 248        struct list_head        flusher_overflow; /* WQ: flush overflow list */
 249
 250        struct list_head        maydays;        /* MD: pwqs requesting rescue */
 251        struct worker           *rescuer;       /* I: rescue worker */
 252
 253        int                     nr_drainers;    /* WQ: drain in progress */
 254        int                     saved_max_active; /* WQ: saved pwq max_active */
 255
 256        struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
 257        struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
 258
 259#ifdef CONFIG_SYSFS
 260        struct wq_device        *wq_dev;        /* I: for sysfs interface */
 261#endif
 262#ifdef CONFIG_LOCKDEP
 263        struct lockdep_map      lockdep_map;
 264#endif
 265        char                    name[WQ_NAME_LEN]; /* I: workqueue name */
 266
 267        /*
 268         * Destruction of workqueue_struct is sched-RCU protected to allow
 269         * walking the workqueues list without grabbing wq_pool_mutex.
 270         * This is used to dump all workqueues from sysrq.
 271         */
 272        struct rcu_head         rcu;
 273
 274        /* hot fields used during command issue, aligned to cacheline */
 275        unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
 276        struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 277        struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 278};
 279
 280static struct kmem_cache *pwq_cache;
 281
 282static cpumask_var_t *wq_numa_possible_cpumask;
 283                                        /* possible CPUs of each node */
 284
 285static bool wq_disable_numa;
 286module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 287
 288/* see the comment above the definition of WQ_POWER_EFFICIENT */
 289static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 290module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 291
 292static bool wq_online;                  /* can kworkers be created yet? */
 293
 294static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
 295
 296/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 297static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 298
 299static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
 300static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
 301static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
 302
 303static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
 304static bool workqueue_freezing;         /* PL: have wqs started freezing? */
 305
 306/* PL: allowable cpus for unbound wqs and work items */
 307static cpumask_var_t wq_unbound_cpumask;
 308
 309/* CPU where unbound work was last round robin scheduled from this CPU */
 310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 311
 312/*
 313 * Local execution of unbound work items is no longer guaranteed.  The
 314 * following always forces round-robin CPU selection on unbound work items
 315 * to uncover usages which depend on it.
 316 */
 317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 318static bool wq_debug_force_rr_cpu = true;
 319#else
 320static bool wq_debug_force_rr_cpu = false;
 321#endif
 322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 323
 324/* the per-cpu worker pools */
 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 326
 327static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
 328
 329/* PL: hash of all unbound pools keyed by pool->attrs */
 330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 331
 332/* I: attributes used when instantiating standard unbound pools on demand */
 333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 334
 335/* I: attributes used when instantiating ordered pools on demand */
 336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338struct workqueue_struct *system_wq __read_mostly;
 339EXPORT_SYMBOL(system_wq);
 340struct workqueue_struct *system_highpri_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_highpri_wq);
 342struct workqueue_struct *system_long_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_long_wq);
 344struct workqueue_struct *system_unbound_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_unbound_wq);
 346struct workqueue_struct *system_freezable_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_freezable_wq);
 348struct workqueue_struct *system_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 352
 353static int worker_thread(void *__worker);
 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 355
 356#define CREATE_TRACE_POINTS
 357#include <trace/events/workqueue.h>
 358
 359#define assert_rcu_or_pool_mutex()                                      \
 360        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 361                         !lockdep_is_held(&wq_pool_mutex),              \
 362                         "sched RCU or wq_pool_mutex should be held")
 363
 364#define assert_rcu_or_wq_mutex(wq)                                      \
 365        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 366                         !lockdep_is_held(&wq->mutex),                  \
 367                         "sched RCU or wq->mutex should be held")
 368
 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
 370        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 371                         !lockdep_is_held(&wq->mutex) &&                \
 372                         !lockdep_is_held(&wq_pool_mutex),              \
 373                         "sched RCU, wq->mutex or wq_pool_mutex should be held")
 374
 375#define for_each_cpu_worker_pool(pool, cpu)                             \
 376        for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
 377             (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 378             (pool)++)
 379
 380/**
 381 * for_each_pool - iterate through all worker_pools in the system
 382 * @pool: iteration cursor
 383 * @pi: integer used for iteration
 384 *
 385 * This must be called either with wq_pool_mutex held or sched RCU read
 386 * locked.  If the pool needs to be used beyond the locking in effect, the
 387 * caller is responsible for guaranteeing that the pool stays online.
 388 *
 389 * The if/else clause exists only for the lockdep assertion and can be
 390 * ignored.
 391 */
 392#define for_each_pool(pool, pi)                                         \
 393        idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
 394                if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
 395                else
 396
 397/**
 398 * for_each_pool_worker - iterate through all workers of a worker_pool
 399 * @worker: iteration cursor
 400 * @pool: worker_pool to iterate workers of
 401 *
 402 * This must be called with @pool->attach_mutex.
 403 *
 404 * The if/else clause exists only for the lockdep assertion and can be
 405 * ignored.
 406 */
 407#define for_each_pool_worker(worker, pool)                              \
 408        list_for_each_entry((worker), &(pool)->workers, node)           \
 409                if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 410                else
 411
 412/**
 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 414 * @pwq: iteration cursor
 415 * @wq: the target workqueue
 416 *
 417 * This must be called either with wq->mutex held or sched RCU read locked.
 418 * If the pwq needs to be used beyond the locking in effect, the caller is
 419 * responsible for guaranteeing that the pwq stays online.
 420 *
 421 * The if/else clause exists only for the lockdep assertion and can be
 422 * ignored.
 423 */
 424#define for_each_pwq(pwq, wq)                                           \
 425        list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)          \
 426                if (({ assert_rcu_or_wq_mutex(wq); false; })) { }       \
 427                else
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435        return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 439{
 440        struct work_struct *work = addr;
 441
 442        return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451        struct work_struct *work = addr;
 452
 453        switch (state) {
 454        case ODEBUG_STATE_ACTIVE:
 455                cancel_work_sync(work);
 456                debug_object_init(work, &work_debug_descr);
 457                return true;
 458        default:
 459                return false;
 460        }
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469        struct work_struct *work = addr;
 470
 471        switch (state) {
 472        case ODEBUG_STATE_ACTIVE:
 473                cancel_work_sync(work);
 474                debug_object_free(work, &work_debug_descr);
 475                return true;
 476        default:
 477                return false;
 478        }
 479}
 480
 481static struct debug_obj_descr work_debug_descr = {
 482        .name           = "work_struct",
 483        .debug_hint     = work_debug_hint,
 484        .is_static_object = work_is_static_object,
 485        .fixup_init     = work_fixup_init,
 486        .fixup_free     = work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491        debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496        debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501        if (onstack)
 502                debug_object_init_on_stack(work, &work_debug_descr);
 503        else
 504                debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510        debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516        destroy_timer_on_stack(&work->timer);
 517        debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535        int ret;
 536
 537        lockdep_assert_held(&wq_pool_mutex);
 538
 539        ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540                        GFP_KERNEL);
 541        if (ret >= 0) {
 542                pool->id = ret;
 543                return 0;
 544        }
 545        return ret;
 546}
 547
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561                                                  int node)
 562{
 563        assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565        /*
 566         * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567         * delayed item is pending.  The plan is to keep CPU -> NODE
 568         * mapping valid and stable across CPU on/offlines.  Once that
 569         * happens, this workaround can be removed.
 570         */
 571        if (unlikely(node == NUMA_NO_NODE))
 572                return wq->dfl_pwq;
 573
 574        return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579        return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584        return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585                ((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590        return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614                                 unsigned long flags)
 615{
 616        WARN_ON_ONCE(!work_pending(work));
 617        atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621                         unsigned long extra_flags)
 622{
 623        set_work_data(work, (unsigned long)pwq,
 624                      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628                                           int pool_id)
 629{
 630        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631                      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635                                            int pool_id)
 636{
 637        /*
 638         * The following wmb is paired with the implied mb in
 639         * test_and_set_bit(PENDING) and ensures all updates to @work made
 640         * here are visible to and precede any updates by the next PENDING
 641         * owner.
 642         */
 643        smp_wmb();
 644        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 645        /*
 646         * The following mb guarantees that previous clear of a PENDING bit
 647         * will not be reordered with any speculative LOADS or STORES from
 648         * work->current_func, which is executed afterwards.  This possible
 649         * reordering can lead to a missed execution on attempt to qeueue
 650         * the same @work.  E.g. consider this case:
 651         *
 652         *   CPU#0                         CPU#1
 653         *   ----------------------------  --------------------------------
 654         *
 655         * 1  STORE event_indicated
 656         * 2  queue_work_on() {
 657         * 3    test_and_set_bit(PENDING)
 658         * 4 }                             set_..._and_clear_pending() {
 659         * 5                                 set_work_data() # clear bit
 660         * 6                                 smp_mb()
 661         * 7                               work->current_func() {
 662         * 8                                  LOAD event_indicated
 663         *                                 }
 664         *
 665         * Without an explicit full barrier speculative LOAD on line 8 can
 666         * be executed before CPU#0 does STORE on line 1.  If that happens,
 667         * CPU#0 observes the PENDING bit is still set and new execution of
 668         * a @work is not queued in a hope, that CPU#1 will eventually
 669         * finish the queued @work.  Meanwhile CPU#1 does not see
 670         * event_indicated is set, because speculative LOAD was executed
 671         * before actual STORE.
 672         */
 673        smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678        smp_wmb();      /* see set_work_pool_and_clear_pending() */
 679        set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684        unsigned long data = atomic_long_read(&work->data);
 685
 686        if (data & WORK_STRUCT_PWQ)
 687                return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688        else
 689                return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under sched-RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or with preemption disabled.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709        unsigned long data = atomic_long_read(&work->data);
 710        int pool_id;
 711
 712        assert_rcu_or_pool_mutex();
 713
 714        if (data & WORK_STRUCT_PWQ)
 715                return ((struct pool_workqueue *)
 716                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718        pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719        if (pool_id == WORK_OFFQ_POOL_NONE)
 720                return NULL;
 721
 722        return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734        unsigned long data = atomic_long_read(&work->data);
 735
 736        if (data & WORK_STRUCT_PWQ)
 737                return ((struct pool_workqueue *)
 738                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740        return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745        unsigned long pool_id = get_work_pool_id(work);
 746
 747        pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748        set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753        unsigned long data = atomic_long_read(&work->data);
 754
 755        return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766        return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779        return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785        return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791        return !list_empty(&pool->worklist) &&
 792                atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798        return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804        bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 805        int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806        int nr_busy = pool->nr_workers - nr_idle;
 807
 808        return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818        if (unlikely(list_empty(&pool->idle_list)))
 819                return NULL;
 820
 821        return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835        struct worker *worker = first_idle_worker(pool);
 836
 837        if (likely(worker))
 838                wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_waking_up - a worker is waking up
 843 * @task: task waking up
 844 * @cpu: CPU @task is waking up to
 845 *
 846 * This function is called during try_to_wake_up() when a worker is
 847 * being awoken.
 848 *
 849 * CONTEXT:
 850 * spin_lock_irq(rq->lock)
 851 */
 852void wq_worker_waking_up(struct task_struct *task, int cpu)
 853{
 854        struct worker *worker = kthread_data(task);
 855
 856        if (!(worker->flags & WORKER_NOT_RUNNING)) {
 857                WARN_ON_ONCE(worker->pool->cpu != cpu);
 858                atomic_inc(&worker->pool->nr_running);
 859        }
 860}
 861
 862/**
 863 * wq_worker_sleeping - a worker is going to sleep
 864 * @task: task going to sleep
 865 *
 866 * This function is called during schedule() when a busy worker is
 867 * going to sleep.  Worker on the same cpu can be woken up by
 868 * returning pointer to its task.
 869 *
 870 * CONTEXT:
 871 * spin_lock_irq(rq->lock)
 872 *
 873 * Return:
 874 * Worker task on @cpu to wake up, %NULL if none.
 875 */
 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
 877{
 878        struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 879        struct worker_pool *pool;
 880
 881        /*
 882         * Rescuers, which may not have all the fields set up like normal
 883         * workers, also reach here, let's not access anything before
 884         * checking NOT_RUNNING.
 885         */
 886        if (worker->flags & WORKER_NOT_RUNNING)
 887                return NULL;
 888
 889        pool = worker->pool;
 890
 891        /* this can only happen on the local cpu */
 892        if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 893                return NULL;
 894
 895        /*
 896         * The counterpart of the following dec_and_test, implied mb,
 897         * worklist not empty test sequence is in insert_work().
 898         * Please read comment there.
 899         *
 900         * NOT_RUNNING is clear.  This means that we're bound to and
 901         * running on the local cpu w/ rq lock held and preemption
 902         * disabled, which in turn means that none else could be
 903         * manipulating idle_list, so dereferencing idle_list without pool
 904         * lock is safe.
 905         */
 906        if (atomic_dec_and_test(&pool->nr_running) &&
 907            !list_empty(&pool->worklist))
 908                to_wakeup = first_idle_worker(pool);
 909        return to_wakeup ? to_wakeup->task : NULL;
 910}
 911
 912/**
 913 * worker_set_flags - set worker flags and adjust nr_running accordingly
 914 * @worker: self
 915 * @flags: flags to set
 916 *
 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
 918 *
 919 * CONTEXT:
 920 * spin_lock_irq(pool->lock)
 921 */
 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 923{
 924        struct worker_pool *pool = worker->pool;
 925
 926        WARN_ON_ONCE(worker->task != current);
 927
 928        /* If transitioning into NOT_RUNNING, adjust nr_running. */
 929        if ((flags & WORKER_NOT_RUNNING) &&
 930            !(worker->flags & WORKER_NOT_RUNNING)) {
 931                atomic_dec(&pool->nr_running);
 932        }
 933
 934        worker->flags |= flags;
 935}
 936
 937/**
 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 939 * @worker: self
 940 * @flags: flags to clear
 941 *
 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 943 *
 944 * CONTEXT:
 945 * spin_lock_irq(pool->lock)
 946 */
 947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 948{
 949        struct worker_pool *pool = worker->pool;
 950        unsigned int oflags = worker->flags;
 951
 952        WARN_ON_ONCE(worker->task != current);
 953
 954        worker->flags &= ~flags;
 955
 956        /*
 957         * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 958         * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 959         * of multiple flags, not a single flag.
 960         */
 961        if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 962                if (!(worker->flags & WORKER_NOT_RUNNING))
 963                        atomic_inc(&pool->nr_running);
 964}
 965
 966/**
 967 * find_worker_executing_work - find worker which is executing a work
 968 * @pool: pool of interest
 969 * @work: work to find worker for
 970 *
 971 * Find a worker which is executing @work on @pool by searching
 972 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 973 * to match, its current execution should match the address of @work and
 974 * its work function.  This is to avoid unwanted dependency between
 975 * unrelated work executions through a work item being recycled while still
 976 * being executed.
 977 *
 978 * This is a bit tricky.  A work item may be freed once its execution
 979 * starts and nothing prevents the freed area from being recycled for
 980 * another work item.  If the same work item address ends up being reused
 981 * before the original execution finishes, workqueue will identify the
 982 * recycled work item as currently executing and make it wait until the
 983 * current execution finishes, introducing an unwanted dependency.
 984 *
 985 * This function checks the work item address and work function to avoid
 986 * false positives.  Note that this isn't complete as one may construct a
 987 * work function which can introduce dependency onto itself through a
 988 * recycled work item.  Well, if somebody wants to shoot oneself in the
 989 * foot that badly, there's only so much we can do, and if such deadlock
 990 * actually occurs, it should be easy to locate the culprit work function.
 991 *
 992 * CONTEXT:
 993 * spin_lock_irq(pool->lock).
 994 *
 995 * Return:
 996 * Pointer to worker which is executing @work if found, %NULL
 997 * otherwise.
 998 */
 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000                                                 struct work_struct *work)
1001{
1002        struct worker *worker;
1003
1004        hash_for_each_possible(pool->busy_hash, worker, hentry,
1005                               (unsigned long)work)
1006                if (worker->current_work == work &&
1007                    worker->current_func == work->func)
1008                        return worker;
1009
1010        return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head.  Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work.  This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031                              struct work_struct **nextp)
1032{
1033        struct work_struct *n;
1034
1035        /*
1036         * Linked worklist will always end before the end of the list,
1037         * use NULL for list head.
1038         */
1039        list_for_each_entry_safe_from(work, n, NULL, entry) {
1040                list_move_tail(&work->entry, head);
1041                if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042                        break;
1043        }
1044
1045        /*
1046         * If we're already inside safe list traversal and have moved
1047         * multiple works to the scheduled queue, the next position
1048         * needs to be updated.
1049         */
1050        if (nextp)
1051                *nextp = n;
1052}
1053
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq.  The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063        lockdep_assert_held(&pwq->pool->lock);
1064        WARN_ON_ONCE(pwq->refcnt <= 0);
1065        pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073 * destruction.  The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077        lockdep_assert_held(&pwq->pool->lock);
1078        if (likely(--pwq->refcnt))
1079                return;
1080        if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081                return;
1082        /*
1083         * @pwq can't be released under pool->lock, bounce to
1084         * pwq_unbound_release_workfn().  This never recurses on the same
1085         * pool->lock as this path is taken only for unbound workqueues and
1086         * the release work item is scheduled on a per-cpu workqueue.  To
1087         * avoid lockdep warning, unbound pool->locks are given lockdep
1088         * subclass of 1 in get_unbound_pool().
1089         */
1090        schedule_work(&pwq->unbound_release_work);
1091}
1092
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking.  This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101        if (pwq) {
1102                /*
1103                 * As both pwqs and pools are sched-RCU protected, the
1104                 * following lock operations are safe.
1105                 */
1106                spin_lock_irq(&pwq->pool->lock);
1107                put_pwq(pwq);
1108                spin_unlock_irq(&pwq->pool->lock);
1109        }
1110}
1111
1112static void pwq_activate_delayed_work(struct work_struct *work)
1113{
1114        struct pool_workqueue *pwq = get_work_pwq(work);
1115
1116        trace_workqueue_activate_work(work);
1117        if (list_empty(&pwq->pool->worklist))
1118                pwq->pool->watchdog_ts = jiffies;
1119        move_linked_works(work, &pwq->pool->worklist, NULL);
1120        __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121        pwq->nr_active++;
1122}
1123
1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125{
1126        struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127                                                    struct work_struct, entry);
1128
1129        pwq_activate_delayed_work(work);
1130}
1131
1132/**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144{
1145        /* uncolored work items don't participate in flushing or nr_active */
1146        if (color == WORK_NO_COLOR)
1147                goto out_put;
1148
1149        pwq->nr_in_flight[color]--;
1150
1151        pwq->nr_active--;
1152        if (!list_empty(&pwq->delayed_works)) {
1153                /* one down, submit a delayed one */
1154                if (pwq->nr_active < pwq->max_active)
1155                        pwq_activate_first_delayed(pwq);
1156        }
1157
1158        /* is flush in progress and are we at the flushing tip? */
1159        if (likely(pwq->flush_color != color))
1160                goto out_put;
1161
1162        /* are there still in-flight works? */
1163        if (pwq->nr_in_flight[color])
1164                goto out_put;
1165
1166        /* this pwq is done, clear flush_color */
1167        pwq->flush_color = -1;
1168
1169        /*
1170         * If this was the last pwq, wake up the first flusher.  It
1171         * will handle the rest.
1172         */
1173        if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174                complete(&pwq->wq->first_flusher->done);
1175out_put:
1176        put_pwq(pwq);
1177}
1178
1179/**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work.  This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
1189 *  1           if @work was pending and we successfully stole PENDING
1190 *  0           if @work was idle and we claimed PENDING
1191 *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 *  -ENOENT     if someone else is canceling @work, this state may persist
1193 *              for arbitrarily long
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry.  This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207                               unsigned long *flags)
1208{
1209        struct worker_pool *pool;
1210        struct pool_workqueue *pwq;
1211
1212        local_irq_save(*flags);
1213
1214        /* try to steal the timer if it exists */
1215        if (is_dwork) {
1216                struct delayed_work *dwork = to_delayed_work(work);
1217
1218                /*
1219                 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220                 * guaranteed that the timer is not queued anywhere and not
1221                 * running on the local CPU.
1222                 */
1223                if (likely(del_timer(&dwork->timer)))
1224                        return 1;
1225        }
1226
1227        /* try to claim PENDING the normal way */
1228        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229                return 0;
1230
1231        /*
1232         * The queueing is in progress, or it is already queued. Try to
1233         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234         */
1235        pool = get_work_pool(work);
1236        if (!pool)
1237                goto fail;
1238
1239        spin_lock(&pool->lock);
1240        /*
1241         * work->data is guaranteed to point to pwq only while the work
1242         * item is queued on pwq->wq, and both updating work->data to point
1243         * to pwq on queueing and to pool on dequeueing are done under
1244         * pwq->pool->lock.  This in turn guarantees that, if work->data
1245         * points to pwq which is associated with a locked pool, the work
1246         * item is currently queued on that pool.
1247         */
1248        pwq = get_work_pwq(work);
1249        if (pwq && pwq->pool == pool) {
1250                debug_work_deactivate(work);
1251
1252                /*
1253                 * A delayed work item cannot be grabbed directly because
1254                 * it might have linked NO_COLOR work items which, if left
1255                 * on the delayed_list, will confuse pwq->nr_active
1256                 * management later on and cause stall.  Make sure the work
1257                 * item is activated before grabbing.
1258                 */
1259                if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260                        pwq_activate_delayed_work(work);
1261
1262                list_del_init(&work->entry);
1263                pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265                /* work->data points to pwq iff queued, point to pool */
1266                set_work_pool_and_keep_pending(work, pool->id);
1267
1268                spin_unlock(&pool->lock);
1269                return 1;
1270        }
1271        spin_unlock(&pool->lock);
1272fail:
1273        local_irq_restore(*flags);
1274        if (work_is_canceling(work))
1275                return -ENOENT;
1276        cpu_relax();
1277        return -EAGAIN;
1278}
1279
1280/**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294                        struct list_head *head, unsigned int extra_flags)
1295{
1296        struct worker_pool *pool = pwq->pool;
1297
1298        /* we own @work, set data and link */
1299        set_work_pwq(work, pwq, extra_flags);
1300        list_add_tail(&work->entry, head);
1301        get_pwq(pwq);
1302
1303        /*
1304         * Ensure either wq_worker_sleeping() sees the above
1305         * list_add_tail() or we see zero nr_running to avoid workers lying
1306         * around lazily while there are works to be processed.
1307         */
1308        smp_mb();
1309
1310        if (__need_more_worker(pool))
1311                wake_up_worker(pool);
1312}
1313
1314/*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
1320        struct worker *worker;
1321
1322        worker = current_wq_worker();
1323        /*
1324         * Return %true iff I'm a worker execuing a work item on @wq.  If
1325         * I'm @worker, it's safe to dereference it without locking.
1326         */
1327        return worker && worker->current_pwq->wq == wq;
1328}
1329
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
1337        static bool printed_dbg_warning;
1338        int new_cpu;
1339
1340        if (likely(!wq_debug_force_rr_cpu)) {
1341                if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342                        return cpu;
1343        } else if (!printed_dbg_warning) {
1344                pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345                printed_dbg_warning = true;
1346        }
1347
1348        if (cpumask_empty(wq_unbound_cpumask))
1349                return cpu;
1350
1351        new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352        new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353        if (unlikely(new_cpu >= nr_cpu_ids)) {
1354                new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355                if (unlikely(new_cpu >= nr_cpu_ids))
1356                        return cpu;
1357        }
1358        __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360        return new_cpu;
1361}
1362
1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1364                         struct work_struct *work)
1365{
1366        struct pool_workqueue *pwq;
1367        struct worker_pool *last_pool;
1368        struct list_head *worklist;
1369        unsigned int work_flags;
1370        unsigned int req_cpu = cpu;
1371
1372        /*
1373         * While a work item is PENDING && off queue, a task trying to
1374         * steal the PENDING will busy-loop waiting for it to either get
1375         * queued or lose PENDING.  Grabbing PENDING and queueing should
1376         * happen with IRQ disabled.
1377         */
1378        lockdep_assert_irqs_disabled();
1379
1380        debug_work_activate(work);
1381
1382        /* if draining, only works from the same workqueue are allowed */
1383        if (unlikely(wq->flags & __WQ_DRAINING) &&
1384            WARN_ON_ONCE(!is_chained_work(wq)))
1385                return;
1386retry:
1387        if (req_cpu == WORK_CPU_UNBOUND)
1388                cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390        /* pwq which will be used unless @work is executing elsewhere */
1391        if (!(wq->flags & WQ_UNBOUND))
1392                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393        else
1394                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395
1396        /*
1397         * If @work was previously on a different pool, it might still be
1398         * running there, in which case the work needs to be queued on that
1399         * pool to guarantee non-reentrancy.
1400         */
1401        last_pool = get_work_pool(work);
1402        if (last_pool && last_pool != pwq->pool) {
1403                struct worker *worker;
1404
1405                spin_lock(&last_pool->lock);
1406
1407                worker = find_worker_executing_work(last_pool, work);
1408
1409                if (worker && worker->current_pwq->wq == wq) {
1410                        pwq = worker->current_pwq;
1411                } else {
1412                        /* meh... not running there, queue here */
1413                        spin_unlock(&last_pool->lock);
1414                        spin_lock(&pwq->pool->lock);
1415                }
1416        } else {
1417                spin_lock(&pwq->pool->lock);
1418        }
1419
1420        /*
1421         * pwq is determined and locked.  For unbound pools, we could have
1422         * raced with pwq release and it could already be dead.  If its
1423         * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424         * without another pwq replacing it in the numa_pwq_tbl or while
1425         * work items are executing on it, so the retrying is guaranteed to
1426         * make forward-progress.
1427         */
1428        if (unlikely(!pwq->refcnt)) {
1429                if (wq->flags & WQ_UNBOUND) {
1430                        spin_unlock(&pwq->pool->lock);
1431                        cpu_relax();
1432                        goto retry;
1433                }
1434                /* oops */
1435                WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436                          wq->name, cpu);
1437        }
1438
1439        /* pwq determined, queue */
1440        trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442        if (WARN_ON(!list_empty(&work->entry))) {
1443                spin_unlock(&pwq->pool->lock);
1444                return;
1445        }
1446
1447        pwq->nr_in_flight[pwq->work_color]++;
1448        work_flags = work_color_to_flags(pwq->work_color);
1449
1450        if (likely(pwq->nr_active < pwq->max_active)) {
1451                trace_workqueue_activate_work(work);
1452                pwq->nr_active++;
1453                worklist = &pwq->pool->worklist;
1454                if (list_empty(worklist))
1455                        pwq->pool->watchdog_ts = jiffies;
1456        } else {
1457                work_flags |= WORK_STRUCT_DELAYED;
1458                worklist = &pwq->delayed_works;
1459        }
1460
1461        insert_work(pwq, work, worklist, work_flags);
1462
1463        spin_unlock(&pwq->pool->lock);
1464}
1465
1466/**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478                   struct work_struct *work)
1479{
1480        bool ret = false;
1481        unsigned long flags;
1482
1483        local_irq_save(flags);
1484
1485        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486                __queue_work(cpu, wq, work);
1487                ret = true;
1488        }
1489
1490        local_irq_restore(flags);
1491        return ret;
1492}
1493EXPORT_SYMBOL(queue_work_on);
1494
1495void delayed_work_timer_fn(struct timer_list *t)
1496{
1497        struct delayed_work *dwork = from_timer(dwork, t, timer);
1498
1499        /* should have been called from irqsafe timer with irq already off */
1500        __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501}
1502EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505                                struct delayed_work *dwork, unsigned long delay)
1506{
1507        struct timer_list *timer = &dwork->timer;
1508        struct work_struct *work = &dwork->work;
1509
1510        WARN_ON_ONCE(!wq);
1511        WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1512        WARN_ON_ONCE(timer_pending(timer));
1513        WARN_ON_ONCE(!list_empty(&work->entry));
1514
1515        /*
1516         * If @delay is 0, queue @dwork->work immediately.  This is for
1517         * both optimization and correctness.  The earliest @timer can
1518         * expire is on the closest next tick and delayed_work users depend
1519         * on that there's no such delay when @delay is 0.
1520         */
1521        if (!delay) {
1522                __queue_work(cpu, wq, &dwork->work);
1523                return;
1524        }
1525
1526        dwork->wq = wq;
1527        dwork->cpu = cpu;
1528        timer->expires = jiffies + delay;
1529
1530        if (unlikely(cpu != WORK_CPU_UNBOUND))
1531                add_timer_on(timer, cpu);
1532        else
1533                add_timer(timer);
1534}
1535
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1542 *
1543 * Return: %false if @work was already on a queue, %true otherwise.  If
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
1546 */
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548                           struct delayed_work *dwork, unsigned long delay)
1549{
1550        struct work_struct *work = &dwork->work;
1551        bool ret = false;
1552        unsigned long flags;
1553
1554        /* read the comment in __queue_work() */
1555        local_irq_save(flags);
1556
1557        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558                __queue_delayed_work(cpu, wq, dwork, delay);
1559                ret = true;
1560        }
1561
1562        local_irq_restore(flags);
1563        return ret;
1564}
1565EXPORT_SYMBOL(queue_delayed_work_on);
1566
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay.  If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 * pending and its timer was modified.
1581 *
1582 * This function is safe to call from any context including IRQ handler.
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586                         struct delayed_work *dwork, unsigned long delay)
1587{
1588        unsigned long flags;
1589        int ret;
1590
1591        do {
1592                ret = try_to_grab_pending(&dwork->work, true, &flags);
1593        } while (unlikely(ret == -EAGAIN));
1594
1595        if (likely(ret >= 0)) {
1596                __queue_delayed_work(cpu, wq, dwork, delay);
1597                local_irq_restore(flags);
1598        }
1599
1600        /* -ENOENT from try_to_grab_pending() becomes %true */
1601        return ret;
1602}
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
1605static void rcu_work_rcufn(struct rcu_head *rcu)
1606{
1607        struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608
1609        /* read the comment in __queue_work() */
1610        local_irq_disable();
1611        __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612        local_irq_enable();
1613}
1614
1615/**
1616 * queue_rcu_work - queue work after a RCU grace period
1617 * @wq: workqueue to use
1618 * @rwork: work to queue
1619 *
1620 * Return: %false if @rwork was already pending, %true otherwise.  Note
1621 * that a full RCU grace period is guaranteed only after a %true return.
1622 * While @rwork is guarnateed to be executed after a %false return, the
1623 * execution may happen before a full RCU grace period has passed.
1624 */
1625bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626{
1627        struct work_struct *work = &rwork->work;
1628
1629        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630                rwork->wq = wq;
1631                call_rcu(&rwork->rcu, rcu_work_rcufn);
1632                return true;
1633        }
1634
1635        return false;
1636}
1637EXPORT_SYMBOL(queue_rcu_work);
1638
1639/**
1640 * worker_enter_idle - enter idle state
1641 * @worker: worker which is entering idle state
1642 *
1643 * @worker is entering idle state.  Update stats and idle timer if
1644 * necessary.
1645 *
1646 * LOCKING:
1647 * spin_lock_irq(pool->lock).
1648 */
1649static void worker_enter_idle(struct worker *worker)
1650{
1651        struct worker_pool *pool = worker->pool;
1652
1653        if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654            WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655                         (worker->hentry.next || worker->hentry.pprev)))
1656                return;
1657
1658        /* can't use worker_set_flags(), also called from create_worker() */
1659        worker->flags |= WORKER_IDLE;
1660        pool->nr_idle++;
1661        worker->last_active = jiffies;
1662
1663        /* idle_list is LIFO */
1664        list_add(&worker->entry, &pool->idle_list);
1665
1666        if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667                mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1668
1669        /*
1670         * Sanity check nr_running.  Because unbind_workers() releases
1671         * pool->lock between setting %WORKER_UNBOUND and zapping
1672         * nr_running, the warning may trigger spuriously.  Check iff
1673         * unbind is not in progress.
1674         */
1675        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1676                     pool->nr_workers == pool->nr_idle &&
1677                     atomic_read(&pool->nr_running));
1678}
1679
1680/**
1681 * worker_leave_idle - leave idle state
1682 * @worker: worker which is leaving idle state
1683 *
1684 * @worker is leaving idle state.  Update stats.
1685 *
1686 * LOCKING:
1687 * spin_lock_irq(pool->lock).
1688 */
1689static void worker_leave_idle(struct worker *worker)
1690{
1691        struct worker_pool *pool = worker->pool;
1692
1693        if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694                return;
1695        worker_clr_flags(worker, WORKER_IDLE);
1696        pool->nr_idle--;
1697        list_del_init(&worker->entry);
1698}
1699
1700static struct worker *alloc_worker(int node)
1701{
1702        struct worker *worker;
1703
1704        worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1705        if (worker) {
1706                INIT_LIST_HEAD(&worker->entry);
1707                INIT_LIST_HEAD(&worker->scheduled);
1708                INIT_LIST_HEAD(&worker->node);
1709                /* on creation a worker is in !idle && prep state */
1710                worker->flags = WORKER_PREP;
1711        }
1712        return worker;
1713}
1714
1715/**
1716 * worker_attach_to_pool() - attach a worker to a pool
1717 * @worker: worker to be attached
1718 * @pool: the target pool
1719 *
1720 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1721 * cpu-binding of @worker are kept coordinated with the pool across
1722 * cpu-[un]hotplugs.
1723 */
1724static void worker_attach_to_pool(struct worker *worker,
1725                                   struct worker_pool *pool)
1726{
1727        mutex_lock(&pool->attach_mutex);
1728
1729        /*
1730         * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731         * online CPUs.  It'll be re-applied when any of the CPUs come up.
1732         */
1733        set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734
1735        /*
1736         * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1737         * stable across this function.  See the comments above the
1738         * flag definition for details.
1739         */
1740        if (pool->flags & POOL_DISASSOCIATED)
1741                worker->flags |= WORKER_UNBOUND;
1742
1743        list_add_tail(&worker->node, &pool->workers);
1744
1745        mutex_unlock(&pool->attach_mutex);
1746}
1747
1748/**
1749 * worker_detach_from_pool() - detach a worker from its pool
1750 * @worker: worker which is attached to its pool
1751 * @pool: the pool @worker is attached to
1752 *
1753 * Undo the attaching which had been done in worker_attach_to_pool().  The
1754 * caller worker shouldn't access to the pool after detached except it has
1755 * other reference to the pool.
1756 */
1757static void worker_detach_from_pool(struct worker *worker,
1758                                    struct worker_pool *pool)
1759{
1760        struct completion *detach_completion = NULL;
1761
1762        mutex_lock(&pool->attach_mutex);
1763        list_del(&worker->node);
1764        if (list_empty(&pool->workers))
1765                detach_completion = pool->detach_completion;
1766        mutex_unlock(&pool->attach_mutex);
1767
1768        /* clear leftover flags without pool->lock after it is detached */
1769        worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1770
1771        if (detach_completion)
1772                complete(detach_completion);
1773}
1774
1775/**
1776 * create_worker - create a new workqueue worker
1777 * @pool: pool the new worker will belong to
1778 *
1779 * Create and start a new worker which is attached to @pool.
1780 *
1781 * CONTEXT:
1782 * Might sleep.  Does GFP_KERNEL allocations.
1783 *
1784 * Return:
1785 * Pointer to the newly created worker.
1786 */
1787static struct worker *create_worker(struct worker_pool *pool)
1788{
1789        struct worker *worker = NULL;
1790        int id = -1;
1791        char id_buf[16];
1792
1793        /* ID is needed to determine kthread name */
1794        id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1795        if (id < 0)
1796                goto fail;
1797
1798        worker = alloc_worker(pool->node);
1799        if (!worker)
1800                goto fail;
1801
1802        worker->pool = pool;
1803        worker->id = id;
1804
1805        if (pool->cpu >= 0)
1806                snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1807                         pool->attrs->nice < 0  ? "H" : "");
1808        else
1809                snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1810
1811        worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1812                                              "kworker/%s", id_buf);
1813        if (IS_ERR(worker->task))
1814                goto fail;
1815
1816        set_user_nice(worker->task, pool->attrs->nice);
1817        kthread_bind_mask(worker->task, pool->attrs->cpumask);
1818
1819        /* successful, attach the worker to the pool */
1820        worker_attach_to_pool(worker, pool);
1821
1822        /* start the newly created worker */
1823        spin_lock_irq(&pool->lock);
1824        worker->pool->nr_workers++;
1825        worker_enter_idle(worker);
1826        wake_up_process(worker->task);
1827        spin_unlock_irq(&pool->lock);
1828
1829        return worker;
1830
1831fail:
1832        if (id >= 0)
1833                ida_simple_remove(&pool->worker_ida, id);
1834        kfree(worker);
1835        return NULL;
1836}
1837
1838/**
1839 * destroy_worker - destroy a workqueue worker
1840 * @worker: worker to be destroyed
1841 *
1842 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1843 * be idle.
1844 *
1845 * CONTEXT:
1846 * spin_lock_irq(pool->lock).
1847 */
1848static void destroy_worker(struct worker *worker)
1849{
1850        struct worker_pool *pool = worker->pool;
1851
1852        lockdep_assert_held(&pool->lock);
1853
1854        /* sanity check frenzy */
1855        if (WARN_ON(worker->current_work) ||
1856            WARN_ON(!list_empty(&worker->scheduled)) ||
1857            WARN_ON(!(worker->flags & WORKER_IDLE)))
1858                return;
1859
1860        pool->nr_workers--;
1861        pool->nr_idle--;
1862
1863        list_del_init(&worker->entry);
1864        worker->flags |= WORKER_DIE;
1865        wake_up_process(worker->task);
1866}
1867
1868static void idle_worker_timeout(struct timer_list *t)
1869{
1870        struct worker_pool *pool = from_timer(pool, t, idle_timer);
1871
1872        spin_lock_irq(&pool->lock);
1873
1874        while (too_many_workers(pool)) {
1875                struct worker *worker;
1876                unsigned long expires;
1877
1878                /* idle_list is kept in LIFO order, check the last one */
1879                worker = list_entry(pool->idle_list.prev, struct worker, entry);
1880                expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1881
1882                if (time_before(jiffies, expires)) {
1883                        mod_timer(&pool->idle_timer, expires);
1884                        break;
1885                }
1886
1887                destroy_worker(worker);
1888        }
1889
1890        spin_unlock_irq(&pool->lock);
1891}
1892
1893static void send_mayday(struct work_struct *work)
1894{
1895        struct pool_workqueue *pwq = get_work_pwq(work);
1896        struct workqueue_struct *wq = pwq->wq;
1897
1898        lockdep_assert_held(&wq_mayday_lock);
1899
1900        if (!wq->rescuer)
1901                return;
1902
1903        /* mayday mayday mayday */
1904        if (list_empty(&pwq->mayday_node)) {
1905                /*
1906                 * If @pwq is for an unbound wq, its base ref may be put at
1907                 * any time due to an attribute change.  Pin @pwq until the
1908                 * rescuer is done with it.
1909                 */
1910                get_pwq(pwq);
1911                list_add_tail(&pwq->mayday_node, &wq->maydays);
1912                wake_up_process(wq->rescuer->task);
1913        }
1914}
1915
1916static void pool_mayday_timeout(struct timer_list *t)
1917{
1918        struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1919        struct work_struct *work;
1920
1921        spin_lock_irq(&pool->lock);
1922        spin_lock(&wq_mayday_lock);             /* for wq->maydays */
1923
1924        if (need_to_create_worker(pool)) {
1925                /*
1926                 * We've been trying to create a new worker but
1927                 * haven't been successful.  We might be hitting an
1928                 * allocation deadlock.  Send distress signals to
1929                 * rescuers.
1930                 */
1931                list_for_each_entry(work, &pool->worklist, entry)
1932                        send_mayday(work);
1933        }
1934
1935        spin_unlock(&wq_mayday_lock);
1936        spin_unlock_irq(&pool->lock);
1937
1938        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1939}
1940
1941/**
1942 * maybe_create_worker - create a new worker if necessary
1943 * @pool: pool to create a new worker for
1944 *
1945 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1946 * have at least one idle worker on return from this function.  If
1947 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1948 * sent to all rescuers with works scheduled on @pool to resolve
1949 * possible allocation deadlock.
1950 *
1951 * On return, need_to_create_worker() is guaranteed to be %false and
1952 * may_start_working() %true.
1953 *
1954 * LOCKING:
1955 * spin_lock_irq(pool->lock) which may be released and regrabbed
1956 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1957 * manager.
1958 */
1959static void maybe_create_worker(struct worker_pool *pool)
1960__releases(&pool->lock)
1961__acquires(&pool->lock)
1962{
1963restart:
1964        spin_unlock_irq(&pool->lock);
1965
1966        /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968
1969        while (true) {
1970                if (create_worker(pool) || !need_to_create_worker(pool))
1971                        break;
1972
1973                schedule_timeout_interruptible(CREATE_COOLDOWN);
1974
1975                if (!need_to_create_worker(pool))
1976                        break;
1977        }
1978
1979        del_timer_sync(&pool->mayday_timer);
1980        spin_lock_irq(&pool->lock);
1981        /*
1982         * This is necessary even after a new worker was just successfully
1983         * created as @pool->lock was dropped and the new worker might have
1984         * already become busy.
1985         */
1986        if (need_to_create_worker(pool))
1987                goto restart;
1988}
1989
1990/**
1991 * manage_workers - manage worker pool
1992 * @worker: self
1993 *
1994 * Assume the manager role and manage the worker pool @worker belongs
1995 * to.  At any given time, there can be only zero or one manager per
1996 * pool.  The exclusion is handled automatically by this function.
1997 *
1998 * The caller can safely start processing works on false return.  On
1999 * true return, it's guaranteed that need_to_create_worker() is false
2000 * and may_start_working() is true.
2001 *
2002 * CONTEXT:
2003 * spin_lock_irq(pool->lock) which may be released and regrabbed
2004 * multiple times.  Does GFP_KERNEL allocations.
2005 *
2006 * Return:
2007 * %false if the pool doesn't need management and the caller can safely
2008 * start processing works, %true if management function was performed and
2009 * the conditions that the caller verified before calling the function may
2010 * no longer be true.
2011 */
2012static bool manage_workers(struct worker *worker)
2013{
2014        struct worker_pool *pool = worker->pool;
2015
2016        if (pool->flags & POOL_MANAGER_ACTIVE)
2017                return false;
2018
2019        pool->flags |= POOL_MANAGER_ACTIVE;
2020        pool->manager = worker;
2021
2022        maybe_create_worker(pool);
2023
2024        pool->manager = NULL;
2025        pool->flags &= ~POOL_MANAGER_ACTIVE;
2026        wake_up(&wq_manager_wait);
2027        return true;
2028}
2029
2030/**
2031 * process_one_work - process single work
2032 * @worker: self
2033 * @work: work to process
2034 *
2035 * Process @work.  This function contains all the logics necessary to
2036 * process a single work including synchronization against and
2037 * interaction with other workers on the same cpu, queueing and
2038 * flushing.  As long as context requirement is met, any worker can
2039 * call this function to process a work.
2040 *
2041 * CONTEXT:
2042 * spin_lock_irq(pool->lock) which is released and regrabbed.
2043 */
2044static void process_one_work(struct worker *worker, struct work_struct *work)
2045__releases(&pool->lock)
2046__acquires(&pool->lock)
2047{
2048        struct pool_workqueue *pwq = get_work_pwq(work);
2049        struct worker_pool *pool = worker->pool;
2050        bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2051        int work_color;
2052        struct worker *collision;
2053#ifdef CONFIG_LOCKDEP
2054        /*
2055         * It is permissible to free the struct work_struct from
2056         * inside the function that is called from it, this we need to
2057         * take into account for lockdep too.  To avoid bogus "held
2058         * lock freed" warnings as well as problems when looking into
2059         * work->lockdep_map, make a copy and use that here.
2060         */
2061        struct lockdep_map lockdep_map;
2062
2063        lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2064#endif
2065        /* ensure we're on the correct CPU */
2066        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2067                     raw_smp_processor_id() != pool->cpu);
2068
2069        /*
2070         * A single work shouldn't be executed concurrently by
2071         * multiple workers on a single cpu.  Check whether anyone is
2072         * already processing the work.  If so, defer the work to the
2073         * currently executing one.
2074         */
2075        collision = find_worker_executing_work(pool, work);
2076        if (unlikely(collision)) {
2077                move_linked_works(work, &collision->scheduled, NULL);
2078                return;
2079        }
2080
2081        /* claim and dequeue */
2082        debug_work_deactivate(work);
2083        hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2084        worker->current_work = work;
2085        worker->current_func = work->func;
2086        worker->current_pwq = pwq;
2087        work_color = get_work_color(work);
2088
2089        list_del_init(&work->entry);
2090
2091        /*
2092         * CPU intensive works don't participate in concurrency management.
2093         * They're the scheduler's responsibility.  This takes @worker out
2094         * of concurrency management and the next code block will chain
2095         * execution of the pending work items.
2096         */
2097        if (unlikely(cpu_intensive))
2098                worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2099
2100        /*
2101         * Wake up another worker if necessary.  The condition is always
2102         * false for normal per-cpu workers since nr_running would always
2103         * be >= 1 at this point.  This is used to chain execution of the
2104         * pending work items for WORKER_NOT_RUNNING workers such as the
2105         * UNBOUND and CPU_INTENSIVE ones.
2106         */
2107        if (need_more_worker(pool))
2108                wake_up_worker(pool);
2109
2110        /*
2111         * Record the last pool and clear PENDING which should be the last
2112         * update to @work.  Also, do this inside @pool->lock so that
2113         * PENDING and queued state changes happen together while IRQ is
2114         * disabled.
2115         */
2116        set_work_pool_and_clear_pending(work, pool->id);
2117
2118        spin_unlock_irq(&pool->lock);
2119
2120        lock_map_acquire(&pwq->wq->lockdep_map);
2121        lock_map_acquire(&lockdep_map);
2122        /*
2123         * Strictly speaking we should mark the invariant state without holding
2124         * any locks, that is, before these two lock_map_acquire()'s.
2125         *
2126         * However, that would result in:
2127         *
2128         *   A(W1)
2129         *   WFC(C)
2130         *              A(W1)
2131         *              C(C)
2132         *
2133         * Which would create W1->C->W1 dependencies, even though there is no
2134         * actual deadlock possible. There are two solutions, using a
2135         * read-recursive acquire on the work(queue) 'locks', but this will then
2136         * hit the lockdep limitation on recursive locks, or simply discard
2137         * these locks.
2138         *
2139         * AFAICT there is no possible deadlock scenario between the
2140         * flush_work() and complete() primitives (except for single-threaded
2141         * workqueues), so hiding them isn't a problem.
2142         */
2143        lockdep_invariant_state(true);
2144        trace_workqueue_execute_start(work);
2145        worker->current_func(work);
2146        /*
2147         * While we must be careful to not use "work" after this, the trace
2148         * point will only record its address.
2149         */
2150        trace_workqueue_execute_end(work);
2151        lock_map_release(&lockdep_map);
2152        lock_map_release(&pwq->wq->lockdep_map);
2153
2154        if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2155                pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2156                       "     last function: %pf\n",
2157                       current->comm, preempt_count(), task_pid_nr(current),
2158                       worker->current_func);
2159                debug_show_held_locks(current);
2160                dump_stack();
2161        }
2162
2163        /*
2164         * The following prevents a kworker from hogging CPU on !PREEMPT
2165         * kernels, where a requeueing work item waiting for something to
2166         * happen could deadlock with stop_machine as such work item could
2167         * indefinitely requeue itself while all other CPUs are trapped in
2168         * stop_machine. At the same time, report a quiescent RCU state so
2169         * the same condition doesn't freeze RCU.
2170         */
2171        cond_resched();
2172
2173        spin_lock_irq(&pool->lock);
2174
2175        /* clear cpu intensive status */
2176        if (unlikely(cpu_intensive))
2177                worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2178
2179        /* we're done with it, release */
2180        hash_del(&worker->hentry);
2181        worker->current_work = NULL;
2182        worker->current_func = NULL;
2183        worker->current_pwq = NULL;
2184        worker->desc_valid = false;
2185        pwq_dec_nr_in_flight(pwq, work_color);
2186}
2187
2188/**
2189 * process_scheduled_works - process scheduled works
2190 * @worker: self
2191 *
2192 * Process all scheduled works.  Please note that the scheduled list
2193 * may change while processing a work, so this function repeatedly
2194 * fetches a work from the top and executes it.
2195 *
2196 * CONTEXT:
2197 * spin_lock_irq(pool->lock) which may be released and regrabbed
2198 * multiple times.
2199 */
2200static void process_scheduled_works(struct worker *worker)
2201{
2202        while (!list_empty(&worker->scheduled)) {
2203                struct work_struct *work = list_first_entry(&worker->scheduled,
2204                                                struct work_struct, entry);
2205                process_one_work(worker, work);
2206        }
2207}
2208
2209/**
2210 * worker_thread - the worker thread function
2211 * @__worker: self
2212 *
2213 * The worker thread function.  All workers belong to a worker_pool -
2214 * either a per-cpu one or dynamic unbound one.  These workers process all
2215 * work items regardless of their specific target workqueue.  The only
2216 * exception is work items which belong to workqueues with a rescuer which
2217 * will be explained in rescuer_thread().
2218 *
2219 * Return: 0
2220 */
2221static int worker_thread(void *__worker)
2222{
2223        struct worker *worker = __worker;
2224        struct worker_pool *pool = worker->pool;
2225
2226        /* tell the scheduler that this is a workqueue worker */
2227        worker->task->flags |= PF_WQ_WORKER;
2228woke_up:
2229        spin_lock_irq(&pool->lock);
2230
2231        /* am I supposed to die? */
2232        if (unlikely(worker->flags & WORKER_DIE)) {
2233                spin_unlock_irq(&pool->lock);
2234                WARN_ON_ONCE(!list_empty(&worker->entry));
2235                worker->task->flags &= ~PF_WQ_WORKER;
2236
2237                set_task_comm(worker->task, "kworker/dying");
2238                ida_simple_remove(&pool->worker_ida, worker->id);
2239                worker_detach_from_pool(worker, pool);
2240                kfree(worker);
2241                return 0;
2242        }
2243
2244        worker_leave_idle(worker);
2245recheck:
2246        /* no more worker necessary? */
2247        if (!need_more_worker(pool))
2248                goto sleep;
2249
2250        /* do we need to manage? */
2251        if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2252                goto recheck;
2253
2254        /*
2255         * ->scheduled list can only be filled while a worker is
2256         * preparing to process a work or actually processing it.
2257         * Make sure nobody diddled with it while I was sleeping.
2258         */
2259        WARN_ON_ONCE(!list_empty(&worker->scheduled));
2260
2261        /*
2262         * Finish PREP stage.  We're guaranteed to have at least one idle
2263         * worker or that someone else has already assumed the manager
2264         * role.  This is where @worker starts participating in concurrency
2265         * management if applicable and concurrency management is restored
2266         * after being rebound.  See rebind_workers() for details.
2267         */
2268        worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2269
2270        do {
2271                struct work_struct *work =
2272                        list_first_entry(&pool->worklist,
2273                                         struct work_struct, entry);
2274
2275                pool->watchdog_ts = jiffies;
2276
2277                if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2278                        /* optimization path, not strictly necessary */
2279                        process_one_work(worker, work);
2280                        if (unlikely(!list_empty(&worker->scheduled)))
2281                                process_scheduled_works(worker);
2282                } else {
2283                        move_linked_works(work, &worker->scheduled, NULL);
2284                        process_scheduled_works(worker);
2285                }
2286        } while (keep_working(pool));
2287
2288        worker_set_flags(worker, WORKER_PREP);
2289sleep:
2290        /*
2291         * pool->lock is held and there's no work to process and no need to
2292         * manage, sleep.  Workers are woken up only while holding
2293         * pool->lock or from local cpu, so setting the current state
2294         * before releasing pool->lock is enough to prevent losing any
2295         * event.
2296         */
2297        worker_enter_idle(worker);
2298        __set_current_state(TASK_IDLE);
2299        spin_unlock_irq(&pool->lock);
2300        schedule();
2301        goto woke_up;
2302}
2303
2304/**
2305 * rescuer_thread - the rescuer thread function
2306 * @__rescuer: self
2307 *
2308 * Workqueue rescuer thread function.  There's one rescuer for each
2309 * workqueue which has WQ_MEM_RECLAIM set.
2310 *
2311 * Regular work processing on a pool may block trying to create a new
2312 * worker which uses GFP_KERNEL allocation which has slight chance of
2313 * developing into deadlock if some works currently on the same queue
2314 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2315 * the problem rescuer solves.
2316 *
2317 * When such condition is possible, the pool summons rescuers of all
2318 * workqueues which have works queued on the pool and let them process
2319 * those works so that forward progress can be guaranteed.
2320 *
2321 * This should happen rarely.
2322 *
2323 * Return: 0
2324 */
2325static int rescuer_thread(void *__rescuer)
2326{
2327        struct worker *rescuer = __rescuer;
2328        struct workqueue_struct *wq = rescuer->rescue_wq;
2329        struct list_head *scheduled = &rescuer->scheduled;
2330        bool should_stop;
2331
2332        set_user_nice(current, RESCUER_NICE_LEVEL);
2333
2334        /*
2335         * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2336         * doesn't participate in concurrency management.
2337         */
2338        rescuer->task->flags |= PF_WQ_WORKER;
2339repeat:
2340        set_current_state(TASK_IDLE);
2341
2342        /*
2343         * By the time the rescuer is requested to stop, the workqueue
2344         * shouldn't have any work pending, but @wq->maydays may still have
2345         * pwq(s) queued.  This can happen by non-rescuer workers consuming
2346         * all the work items before the rescuer got to them.  Go through
2347         * @wq->maydays processing before acting on should_stop so that the
2348         * list is always empty on exit.
2349         */
2350        should_stop = kthread_should_stop();
2351
2352        /* see whether any pwq is asking for help */
2353        spin_lock_irq(&wq_mayday_lock);
2354
2355        while (!list_empty(&wq->maydays)) {
2356                struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2357                                        struct pool_workqueue, mayday_node);
2358                struct worker_pool *pool = pwq->pool;
2359                struct work_struct *work, *n;
2360                bool first = true;
2361
2362                __set_current_state(TASK_RUNNING);
2363                list_del_init(&pwq->mayday_node);
2364
2365                spin_unlock_irq(&wq_mayday_lock);
2366
2367                worker_attach_to_pool(rescuer, pool);
2368
2369                spin_lock_irq(&pool->lock);
2370                rescuer->pool = pool;
2371
2372                /*
2373                 * Slurp in all works issued via this workqueue and
2374                 * process'em.
2375                 */
2376                WARN_ON_ONCE(!list_empty(scheduled));
2377                list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2378                        if (get_work_pwq(work) == pwq) {
2379                                if (first)
2380                                        pool->watchdog_ts = jiffies;
2381                                move_linked_works(work, scheduled, &n);
2382                        }
2383                        first = false;
2384                }
2385
2386                if (!list_empty(scheduled)) {
2387                        process_scheduled_works(rescuer);
2388
2389                        /*
2390                         * The above execution of rescued work items could
2391                         * have created more to rescue through
2392                         * pwq_activate_first_delayed() or chained
2393                         * queueing.  Let's put @pwq back on mayday list so
2394                         * that such back-to-back work items, which may be
2395                         * being used to relieve memory pressure, don't
2396                         * incur MAYDAY_INTERVAL delay inbetween.
2397                         */
2398                        if (need_to_create_worker(pool)) {
2399                                spin_lock(&wq_mayday_lock);
2400                                get_pwq(pwq);
2401                                list_move_tail(&pwq->mayday_node, &wq->maydays);
2402                                spin_unlock(&wq_mayday_lock);
2403                        }
2404                }
2405
2406                /*
2407                 * Put the reference grabbed by send_mayday().  @pool won't
2408                 * go away while we're still attached to it.
2409                 */
2410                put_pwq(pwq);
2411
2412                /*
2413                 * Leave this pool.  If need_more_worker() is %true, notify a
2414                 * regular worker; otherwise, we end up with 0 concurrency
2415                 * and stalling the execution.
2416                 */
2417                if (need_more_worker(pool))
2418                        wake_up_worker(pool);
2419
2420                rescuer->pool = NULL;
2421                spin_unlock_irq(&pool->lock);
2422
2423                worker_detach_from_pool(rescuer, pool);
2424
2425                spin_lock_irq(&wq_mayday_lock);
2426        }
2427
2428        spin_unlock_irq(&wq_mayday_lock);
2429
2430        if (should_stop) {
2431                __set_current_state(TASK_RUNNING);
2432                rescuer->task->flags &= ~PF_WQ_WORKER;
2433                return 0;
2434        }
2435
2436        /* rescuers should never participate in concurrency management */
2437        WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2438        schedule();
2439        goto repeat;
2440}
2441
2442/**
2443 * check_flush_dependency - check for flush dependency sanity
2444 * @target_wq: workqueue being flushed
2445 * @target_work: work item being flushed (NULL for workqueue flushes)
2446 *
2447 * %current is trying to flush the whole @target_wq or @target_work on it.
2448 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2449 * reclaiming memory or running on a workqueue which doesn't have
2450 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2451 * a deadlock.
2452 */
2453static void check_flush_dependency(struct workqueue_struct *target_wq,
2454                                   struct work_struct *target_work)
2455{
2456        work_func_t target_func = target_work ? target_work->func : NULL;
2457        struct worker *worker;
2458
2459        if (target_wq->flags & WQ_MEM_RECLAIM)
2460                return;
2461
2462        worker = current_wq_worker();
2463
2464        WARN_ONCE(current->flags & PF_MEMALLOC,
2465                  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2466                  current->pid, current->comm, target_wq->name, target_func);
2467        WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2468                              (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2469                  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2470                  worker->current_pwq->wq->name, worker->current_func,
2471                  target_wq->name, target_func);
2472}
2473
2474struct wq_barrier {
2475        struct work_struct      work;
2476        struct completion       done;
2477        struct task_struct      *task;  /* purely informational */
2478};
2479
2480static void wq_barrier_func(struct work_struct *work)
2481{
2482        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2483        complete(&barr->done);
2484}
2485
2486/**
2487 * insert_wq_barrier - insert a barrier work
2488 * @pwq: pwq to insert barrier into
2489 * @barr: wq_barrier to insert
2490 * @target: target work to attach @barr to
2491 * @worker: worker currently executing @target, NULL if @target is not executing
2492 *
2493 * @barr is linked to @target such that @barr is completed only after
2494 * @target finishes execution.  Please note that the ordering
2495 * guarantee is observed only with respect to @target and on the local
2496 * cpu.
2497 *
2498 * Currently, a queued barrier can't be canceled.  This is because
2499 * try_to_grab_pending() can't determine whether the work to be
2500 * grabbed is at the head of the queue and thus can't clear LINKED
2501 * flag of the previous work while there must be a valid next work
2502 * after a work with LINKED flag set.
2503 *
2504 * Note that when @worker is non-NULL, @target may be modified
2505 * underneath us, so we can't reliably determine pwq from @target.
2506 *
2507 * CONTEXT:
2508 * spin_lock_irq(pool->lock).
2509 */
2510static void insert_wq_barrier(struct pool_workqueue *pwq,
2511                              struct wq_barrier *barr,
2512                              struct work_struct *target, struct worker *worker)
2513{
2514        struct list_head *head;
2515        unsigned int linked = 0;
2516
2517        /*
2518         * debugobject calls are safe here even with pool->lock locked
2519         * as we know for sure that this will not trigger any of the
2520         * checks and call back into the fixup functions where we
2521         * might deadlock.
2522         */
2523        INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2524        __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2525
2526        init_completion_map(&barr->done, &target->lockdep_map);
2527
2528        barr->task = current;
2529
2530        /*
2531         * If @target is currently being executed, schedule the
2532         * barrier to the worker; otherwise, put it after @target.
2533         */
2534        if (worker)
2535                head = worker->scheduled.next;
2536        else {
2537                unsigned long *bits = work_data_bits(target);
2538
2539                head = target->entry.next;
2540                /* there can already be other linked works, inherit and set */
2541                linked = *bits & WORK_STRUCT_LINKED;
2542                __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2543        }
2544
2545        debug_work_activate(&barr->work);
2546        insert_work(pwq, &barr->work, head,
2547                    work_color_to_flags(WORK_NO_COLOR) | linked);
2548}
2549
2550/**
2551 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2552 * @wq: workqueue being flushed
2553 * @flush_color: new flush color, < 0 for no-op
2554 * @work_color: new work color, < 0 for no-op
2555 *
2556 * Prepare pwqs for workqueue flushing.
2557 *
2558 * If @flush_color is non-negative, flush_color on all pwqs should be
2559 * -1.  If no pwq has in-flight commands at the specified color, all
2560 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2561 * has in flight commands, its pwq->flush_color is set to
2562 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2563 * wakeup logic is armed and %true is returned.
2564 *
2565 * The caller should have initialized @wq->first_flusher prior to
2566 * calling this function with non-negative @flush_color.  If
2567 * @flush_color is negative, no flush color update is done and %false
2568 * is returned.
2569 *
2570 * If @work_color is non-negative, all pwqs should have the same
2571 * work_color which is previous to @work_color and all will be
2572 * advanced to @work_color.
2573 *
2574 * CONTEXT:
2575 * mutex_lock(wq->mutex).
2576 *
2577 * Return:
2578 * %true if @flush_color >= 0 and there's something to flush.  %false
2579 * otherwise.
2580 */
2581static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2582                                      int flush_color, int work_color)
2583{
2584        bool wait = false;
2585        struct pool_workqueue *pwq;
2586
2587        if (flush_color >= 0) {
2588                WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2589                atomic_set(&wq->nr_pwqs_to_flush, 1);
2590        }
2591
2592        for_each_pwq(pwq, wq) {
2593                struct worker_pool *pool = pwq->pool;
2594
2595                spin_lock_irq(&pool->lock);
2596
2597                if (flush_color >= 0) {
2598                        WARN_ON_ONCE(pwq->flush_color != -1);
2599
2600                        if (pwq->nr_in_flight[flush_color]) {
2601                                pwq->flush_color = flush_color;
2602                                atomic_inc(&wq->nr_pwqs_to_flush);
2603                                wait = true;
2604                        }
2605                }
2606
2607                if (work_color >= 0) {
2608                        WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2609                        pwq->work_color = work_color;
2610                }
2611
2612                spin_unlock_irq(&pool->lock);
2613        }
2614
2615        if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2616                complete(&wq->first_flusher->done);
2617
2618        return wait;
2619}
2620
2621/**
2622 * flush_workqueue - ensure that any scheduled work has run to completion.
2623 * @wq: workqueue to flush
2624 *
2625 * This function sleeps until all work items which were queued on entry
2626 * have finished execution, but it is not livelocked by new incoming ones.
2627 */
2628void flush_workqueue(struct workqueue_struct *wq)
2629{
2630        struct wq_flusher this_flusher = {
2631                .list = LIST_HEAD_INIT(this_flusher.list),
2632                .flush_color = -1,
2633                .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2634        };
2635        int next_color;
2636
2637        if (WARN_ON(!wq_online))
2638                return;
2639
2640        mutex_lock(&wq->mutex);
2641
2642        /*
2643         * Start-to-wait phase
2644         */
2645        next_color = work_next_color(wq->work_color);
2646
2647        if (next_color != wq->flush_color) {
2648                /*
2649                 * Color space is not full.  The current work_color
2650                 * becomes our flush_color and work_color is advanced
2651                 * by one.
2652                 */
2653                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2654                this_flusher.flush_color = wq->work_color;
2655                wq->work_color = next_color;
2656
2657                if (!wq->first_flusher) {
2658                        /* no flush in progress, become the first flusher */
2659                        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2660
2661                        wq->first_flusher = &this_flusher;
2662
2663                        if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2664                                                       wq->work_color)) {
2665                                /* nothing to flush, done */
2666                                wq->flush_color = next_color;
2667                                wq->first_flusher = NULL;
2668                                goto out_unlock;
2669                        }
2670                } else {
2671                        /* wait in queue */
2672                        WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2673                        list_add_tail(&this_flusher.list, &wq->flusher_queue);
2674                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2675                }
2676        } else {
2677                /*
2678                 * Oops, color space is full, wait on overflow queue.
2679                 * The next flush completion will assign us
2680                 * flush_color and transfer to flusher_queue.
2681                 */
2682                list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2683        }
2684
2685        check_flush_dependency(wq, NULL);
2686
2687        mutex_unlock(&wq->mutex);
2688
2689        wait_for_completion(&this_flusher.done);
2690
2691        /*
2692         * Wake-up-and-cascade phase
2693         *
2694         * First flushers are responsible for cascading flushes and
2695         * handling overflow.  Non-first flushers can simply return.
2696         */
2697        if (wq->first_flusher != &this_flusher)
2698                return;
2699
2700        mutex_lock(&wq->mutex);
2701
2702        /* we might have raced, check again with mutex held */
2703        if (wq->first_flusher != &this_flusher)
2704                goto out_unlock;
2705
2706        wq->first_flusher = NULL;
2707
2708        WARN_ON_ONCE(!list_empty(&this_flusher.list));
2709        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2710
2711        while (true) {
2712                struct wq_flusher *next, *tmp;
2713
2714                /* complete all the flushers sharing the current flush color */
2715                list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2716                        if (next->flush_color != wq->flush_color)
2717                                break;
2718                        list_del_init(&next->list);
2719                        complete(&next->done);
2720                }
2721
2722                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2723                             wq->flush_color != work_next_color(wq->work_color));
2724
2725                /* this flush_color is finished, advance by one */
2726                wq->flush_color = work_next_color(wq->flush_color);
2727
2728                /* one color has been freed, handle overflow queue */
2729                if (!list_empty(&wq->flusher_overflow)) {
2730                        /*
2731                         * Assign the same color to all overflowed
2732                         * flushers, advance work_color and append to
2733                         * flusher_queue.  This is the start-to-wait
2734                         * phase for these overflowed flushers.
2735                         */
2736                        list_for_each_entry(tmp, &wq->flusher_overflow, list)
2737                                tmp->flush_color = wq->work_color;
2738
2739                        wq->work_color = work_next_color(wq->work_color);
2740
2741                        list_splice_tail_init(&wq->flusher_overflow,
2742                                              &wq->flusher_queue);
2743                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2744                }
2745
2746                if (list_empty(&wq->flusher_queue)) {
2747                        WARN_ON_ONCE(wq->flush_color != wq->work_color);
2748                        break;
2749                }
2750
2751                /*
2752                 * Need to flush more colors.  Make the next flusher
2753                 * the new first flusher and arm pwqs.
2754                 */
2755                WARN_ON_ONCE(wq->flush_color == wq->work_color);
2756                WARN_ON_ONCE(wq->flush_color != next->flush_color);
2757
2758                list_del_init(&next->list);
2759                wq->first_flusher = next;
2760
2761                if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2762                        break;
2763
2764                /*
2765                 * Meh... this color is already done, clear first
2766                 * flusher and repeat cascading.
2767                 */
2768                wq->first_flusher = NULL;
2769        }
2770
2771out_unlock:
2772        mutex_unlock(&wq->mutex);
2773}
2774EXPORT_SYMBOL(flush_workqueue);
2775
2776/**
2777 * drain_workqueue - drain a workqueue
2778 * @wq: workqueue to drain
2779 *
2780 * Wait until the workqueue becomes empty.  While draining is in progress,
2781 * only chain queueing is allowed.  IOW, only currently pending or running
2782 * work items on @wq can queue further work items on it.  @wq is flushed
2783 * repeatedly until it becomes empty.  The number of flushing is determined
2784 * by the depth of chaining and should be relatively short.  Whine if it
2785 * takes too long.
2786 */
2787void drain_workqueue(struct workqueue_struct *wq)
2788{
2789        unsigned int flush_cnt = 0;
2790        struct pool_workqueue *pwq;
2791
2792        /*
2793         * __queue_work() needs to test whether there are drainers, is much
2794         * hotter than drain_workqueue() and already looks at @wq->flags.
2795         * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2796         */
2797        mutex_lock(&wq->mutex);
2798        if (!wq->nr_drainers++)
2799                wq->flags |= __WQ_DRAINING;
2800        mutex_unlock(&wq->mutex);
2801reflush:
2802        flush_workqueue(wq);
2803
2804        mutex_lock(&wq->mutex);
2805
2806        for_each_pwq(pwq, wq) {
2807                bool drained;
2808
2809                spin_lock_irq(&pwq->pool->lock);
2810                drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2811                spin_unlock_irq(&pwq->pool->lock);
2812
2813                if (drained)
2814                        continue;
2815
2816                if (++flush_cnt == 10 ||
2817                    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2818                        pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2819                                wq->name, flush_cnt);
2820
2821                mutex_unlock(&wq->mutex);
2822                goto reflush;
2823        }
2824
2825        if (!--wq->nr_drainers)
2826                wq->flags &= ~__WQ_DRAINING;
2827        mutex_unlock(&wq->mutex);
2828}
2829EXPORT_SYMBOL_GPL(drain_workqueue);
2830
2831static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2832{
2833        struct worker *worker = NULL;
2834        struct worker_pool *pool;
2835        struct pool_workqueue *pwq;
2836
2837        might_sleep();
2838
2839        local_irq_disable();
2840        pool = get_work_pool(work);
2841        if (!pool) {
2842                local_irq_enable();
2843                return false;
2844        }
2845
2846        spin_lock(&pool->lock);
2847        /* see the comment in try_to_grab_pending() with the same code */
2848        pwq = get_work_pwq(work);
2849        if (pwq) {
2850                if (unlikely(pwq->pool != pool))
2851                        goto already_gone;
2852        } else {
2853                worker = find_worker_executing_work(pool, work);
2854                if (!worker)
2855                        goto already_gone;
2856                pwq = worker->current_pwq;
2857        }
2858
2859        check_flush_dependency(pwq->wq, work);
2860
2861        insert_wq_barrier(pwq, barr, work, worker);
2862        spin_unlock_irq(&pool->lock);
2863
2864        /*
2865         * Force a lock recursion deadlock when using flush_work() inside a
2866         * single-threaded or rescuer equipped workqueue.
2867         *
2868         * For single threaded workqueues the deadlock happens when the work
2869         * is after the work issuing the flush_work(). For rescuer equipped
2870         * workqueues the deadlock happens when the rescuer stalls, blocking
2871         * forward progress.
2872         */
2873        if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2874                lock_map_acquire(&pwq->wq->lockdep_map);
2875                lock_map_release(&pwq->wq->lockdep_map);
2876        }
2877
2878        return true;
2879already_gone:
2880        spin_unlock_irq(&pool->lock);
2881        return false;
2882}
2883
2884/**
2885 * flush_work - wait for a work to finish executing the last queueing instance
2886 * @work: the work to flush
2887 *
2888 * Wait until @work has finished execution.  @work is guaranteed to be idle
2889 * on return if it hasn't been requeued since flush started.
2890 *
2891 * Return:
2892 * %true if flush_work() waited for the work to finish execution,
2893 * %false if it was already idle.
2894 */
2895bool flush_work(struct work_struct *work)
2896{
2897        struct wq_barrier barr;
2898
2899        if (WARN_ON(!wq_online))
2900                return false;
2901
2902        if (start_flush_work(work, &barr)) {
2903                wait_for_completion(&barr.done);
2904                destroy_work_on_stack(&barr.work);
2905                return true;
2906        } else {
2907                return false;
2908        }
2909}
2910EXPORT_SYMBOL_GPL(flush_work);
2911
2912struct cwt_wait {
2913        wait_queue_entry_t              wait;
2914        struct work_struct      *work;
2915};
2916
2917static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2918{
2919        struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2920
2921        if (cwait->work != key)
2922                return 0;
2923        return autoremove_wake_function(wait, mode, sync, key);
2924}
2925
2926static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2927{
2928        static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2929        unsigned long flags;
2930        int ret;
2931
2932        do {
2933                ret = try_to_grab_pending(work, is_dwork, &flags);
2934                /*
2935                 * If someone else is already canceling, wait for it to
2936                 * finish.  flush_work() doesn't work for PREEMPT_NONE
2937                 * because we may get scheduled between @work's completion
2938                 * and the other canceling task resuming and clearing
2939                 * CANCELING - flush_work() will return false immediately
2940                 * as @work is no longer busy, try_to_grab_pending() will
2941                 * return -ENOENT as @work is still being canceled and the
2942                 * other canceling task won't be able to clear CANCELING as
2943                 * we're hogging the CPU.
2944                 *
2945                 * Let's wait for completion using a waitqueue.  As this
2946                 * may lead to the thundering herd problem, use a custom
2947                 * wake function which matches @work along with exclusive
2948                 * wait and wakeup.
2949                 */
2950                if (unlikely(ret == -ENOENT)) {
2951                        struct cwt_wait cwait;
2952
2953                        init_wait(&cwait.wait);
2954                        cwait.wait.func = cwt_wakefn;
2955                        cwait.work = work;
2956
2957                        prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2958                                                  TASK_UNINTERRUPTIBLE);
2959                        if (work_is_canceling(work))
2960                                schedule();
2961                        finish_wait(&cancel_waitq, &cwait.wait);
2962                }
2963        } while (unlikely(ret < 0));
2964
2965        /* tell other tasks trying to grab @work to back off */
2966        mark_work_canceling(work);
2967        local_irq_restore(flags);
2968
2969        /*
2970         * This allows canceling during early boot.  We know that @work
2971         * isn't executing.
2972         */
2973        if (wq_online)
2974                flush_work(work);
2975
2976        clear_work_data(work);
2977
2978        /*
2979         * Paired with prepare_to_wait() above so that either
2980         * waitqueue_active() is visible here or !work_is_canceling() is
2981         * visible there.
2982         */
2983        smp_mb();
2984        if (waitqueue_active(&cancel_waitq))
2985                __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2986
2987        return ret;
2988}
2989
2990/**
2991 * cancel_work_sync - cancel a work and wait for it to finish
2992 * @work: the work to cancel
2993 *
2994 * Cancel @work and wait for its execution to finish.  This function
2995 * can be used even if the work re-queues itself or migrates to
2996 * another workqueue.  On return from this function, @work is
2997 * guaranteed to be not pending or executing on any CPU.
2998 *
2999 * cancel_work_sync(&delayed_work->work) must not be used for
3000 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3001 *
3002 * The caller must ensure that the workqueue on which @work was last
3003 * queued can't be destroyed before this function returns.
3004 *
3005 * Return:
3006 * %true if @work was pending, %false otherwise.
3007 */
3008bool cancel_work_sync(struct work_struct *work)
3009{
3010        return __cancel_work_timer(work, false);
3011}
3012EXPORT_SYMBOL_GPL(cancel_work_sync);
3013
3014/**
3015 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3016 * @dwork: the delayed work to flush
3017 *
3018 * Delayed timer is cancelled and the pending work is queued for
3019 * immediate execution.  Like flush_work(), this function only
3020 * considers the last queueing instance of @dwork.
3021 *
3022 * Return:
3023 * %true if flush_work() waited for the work to finish execution,
3024 * %false if it was already idle.
3025 */
3026bool flush_delayed_work(struct delayed_work *dwork)
3027{
3028        local_irq_disable();
3029        if (del_timer_sync(&dwork->timer))
3030                __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3031        local_irq_enable();
3032        return flush_work(&dwork->work);
3033}
3034EXPORT_SYMBOL(flush_delayed_work);
3035
3036/**
3037 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3038 * @rwork: the rcu work to flush
3039 *
3040 * Return:
3041 * %true if flush_rcu_work() waited for the work to finish execution,
3042 * %false if it was already idle.
3043 */
3044bool flush_rcu_work(struct rcu_work *rwork)
3045{
3046        if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3047                rcu_barrier();
3048                flush_work(&rwork->work);
3049                return true;
3050        } else {
3051                return flush_work(&rwork->work);
3052        }
3053}
3054EXPORT_SYMBOL(flush_rcu_work);
3055
3056static bool __cancel_work(struct work_struct *work, bool is_dwork)
3057{
3058        unsigned long flags;
3059        int ret;
3060
3061        do {
3062                ret = try_to_grab_pending(work, is_dwork, &flags);
3063        } while (unlikely(ret == -EAGAIN));
3064
3065        if (unlikely(ret < 0))
3066                return false;
3067
3068        set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3069        local_irq_restore(flags);
3070        return ret;
3071}
3072
3073/**
3074 * cancel_delayed_work - cancel a delayed work
3075 * @dwork: delayed_work to cancel
3076 *
3077 * Kill off a pending delayed_work.
3078 *
3079 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3080 * pending.
3081 *
3082 * Note:
3083 * The work callback function may still be running on return, unless
3084 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3085 * use cancel_delayed_work_sync() to wait on it.
3086 *
3087 * This function is safe to call from any context including IRQ handler.
3088 */
3089bool cancel_delayed_work(struct delayed_work *dwork)
3090{
3091        return __cancel_work(&dwork->work, true);
3092}
3093EXPORT_SYMBOL(cancel_delayed_work);
3094
3095/**
3096 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3097 * @dwork: the delayed work cancel
3098 *
3099 * This is cancel_work_sync() for delayed works.
3100 *
3101 * Return:
3102 * %true if @dwork was pending, %false otherwise.
3103 */
3104bool cancel_delayed_work_sync(struct delayed_work *dwork)
3105{
3106        return __cancel_work_timer(&dwork->work, true);
3107}
3108EXPORT_SYMBOL(cancel_delayed_work_sync);
3109
3110/**
3111 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3112 * @func: the function to call
3113 *
3114 * schedule_on_each_cpu() executes @func on each online CPU using the
3115 * system workqueue and blocks until all CPUs have completed.
3116 * schedule_on_each_cpu() is very slow.
3117 *
3118 * Return:
3119 * 0 on success, -errno on failure.
3120 */
3121int schedule_on_each_cpu(work_func_t func)
3122{
3123        int cpu;
3124        struct work_struct __percpu *works;
3125
3126        works = alloc_percpu(struct work_struct);
3127        if (!works)
3128                return -ENOMEM;
3129
3130        get_online_cpus();
3131
3132        for_each_online_cpu(cpu) {
3133                struct work_struct *work = per_cpu_ptr(works, cpu);
3134
3135                INIT_WORK(work, func);
3136                schedule_work_on(cpu, work);
3137        }
3138
3139        for_each_online_cpu(cpu)
3140                flush_work(per_cpu_ptr(works, cpu));
3141
3142        put_online_cpus();
3143        free_percpu(works);
3144        return 0;
3145}
3146
3147/**
3148 * execute_in_process_context - reliably execute the routine with user context
3149 * @fn:         the function to execute
3150 * @ew:         guaranteed storage for the execute work structure (must
3151 *              be available when the work executes)
3152 *
3153 * Executes the function immediately if process context is available,
3154 * otherwise schedules the function for delayed execution.
3155 *
3156 * Return:      0 - function was executed
3157 *              1 - function was scheduled for execution
3158 */
3159int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3160{
3161        if (!in_interrupt()) {
3162                fn(&ew->work);
3163                return 0;
3164        }
3165
3166        INIT_WORK(&ew->work, fn);
3167        schedule_work(&ew->work);
3168
3169        return 1;
3170}
3171EXPORT_SYMBOL_GPL(execute_in_process_context);
3172
3173/**
3174 * free_workqueue_attrs - free a workqueue_attrs
3175 * @attrs: workqueue_attrs to free
3176 *
3177 * Undo alloc_workqueue_attrs().
3178 */
3179void free_workqueue_attrs(struct workqueue_attrs *attrs)
3180{
3181        if (attrs) {
3182                free_cpumask_var(attrs->cpumask);
3183                kfree(attrs);
3184        }
3185}
3186
3187/**
3188 * alloc_workqueue_attrs - allocate a workqueue_attrs
3189 * @gfp_mask: allocation mask to use
3190 *
3191 * Allocate a new workqueue_attrs, initialize with default settings and
3192 * return it.
3193 *
3194 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3195 */
3196struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3197{
3198        struct workqueue_attrs *attrs;
3199
3200        attrs = kzalloc(sizeof(*attrs), gfp_mask);
3201        if (!attrs)
3202                goto fail;
3203        if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3204                goto fail;
3205
3206        cpumask_copy(attrs->cpumask, cpu_possible_mask);
3207        return attrs;
3208fail:
3209        free_workqueue_attrs(attrs);
3210        return NULL;
3211}
3212
3213static void copy_workqueue_attrs(struct workqueue_attrs *to,
3214                                 const struct workqueue_attrs *from)
3215{
3216        to->nice = from->nice;
3217        cpumask_copy(to->cpumask, from->cpumask);
3218        /*
3219         * Unlike hash and equality test, this function doesn't ignore
3220         * ->no_numa as it is used for both pool and wq attrs.  Instead,
3221         * get_unbound_pool() explicitly clears ->no_numa after copying.
3222         */
3223        to->no_numa = from->no_numa;
3224}
3225
3226/* hash value of the content of @attr */
3227static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3228{
3229        u32 hash = 0;
3230
3231        hash = jhash_1word(attrs->nice, hash);
3232        hash = jhash(cpumask_bits(attrs->cpumask),
3233                     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3234        return hash;
3235}
3236
3237/* content equality test */
3238static bool wqattrs_equal(const struct workqueue_attrs *a,
3239                          const struct workqueue_attrs *b)
3240{
3241        if (a->nice != b->nice)
3242                return false;
3243        if (!cpumask_equal(a->cpumask, b->cpumask))
3244                return false;
3245        return true;
3246}
3247
3248/**
3249 * init_worker_pool - initialize a newly zalloc'd worker_pool
3250 * @pool: worker_pool to initialize
3251 *
3252 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3253 *
3254 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3255 * inside @pool proper are initialized and put_unbound_pool() can be called
3256 * on @pool safely to release it.
3257 */
3258static int init_worker_pool(struct worker_pool *pool)
3259{
3260        spin_lock_init(&pool->lock);
3261        pool->id = -1;
3262        pool->cpu = -1;
3263        pool->node = NUMA_NO_NODE;
3264        pool->flags |= POOL_DISASSOCIATED;
3265        pool->watchdog_ts = jiffies;
3266        INIT_LIST_HEAD(&pool->worklist);
3267        INIT_LIST_HEAD(&pool->idle_list);
3268        hash_init(pool->busy_hash);
3269
3270        timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3271
3272        timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3273
3274        mutex_init(&pool->attach_mutex);
3275        INIT_LIST_HEAD(&pool->workers);
3276
3277        ida_init(&pool->worker_ida);
3278        INIT_HLIST_NODE(&pool->hash_node);
3279        pool->refcnt = 1;
3280
3281        /* shouldn't fail above this point */
3282        pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3283        if (!pool->attrs)
3284                return -ENOMEM;
3285        return 0;
3286}
3287
3288static void rcu_free_wq(struct rcu_head *rcu)
3289{
3290        struct workqueue_struct *wq =
3291                container_of(rcu, struct workqueue_struct, rcu);
3292
3293        if (!(wq->flags & WQ_UNBOUND))
3294                free_percpu(wq->cpu_pwqs);
3295        else
3296                free_workqueue_attrs(wq->unbound_attrs);
3297
3298        kfree(wq->rescuer);
3299        kfree(wq);
3300}
3301
3302static void rcu_free_pool(struct rcu_head *rcu)
3303{
3304        struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3305
3306        ida_destroy(&pool->worker_ida);
3307        free_workqueue_attrs(pool->attrs);
3308        kfree(pool);
3309}
3310
3311/**
3312 * put_unbound_pool - put a worker_pool
3313 * @pool: worker_pool to put
3314 *
3315 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3316 * safe manner.  get_unbound_pool() calls this function on its failure path
3317 * and this function should be able to release pools which went through,
3318 * successfully or not, init_worker_pool().
3319 *
3320 * Should be called with wq_pool_mutex held.
3321 */
3322static void put_unbound_pool(struct worker_pool *pool)
3323{
3324        DECLARE_COMPLETION_ONSTACK(detach_completion);
3325        struct worker *worker;
3326
3327        lockdep_assert_held(&wq_pool_mutex);
3328
3329        if (--pool->refcnt)
3330                return;
3331
3332        /* sanity checks */
3333        if (WARN_ON(!(pool->cpu < 0)) ||
3334            WARN_ON(!list_empty(&pool->worklist)))
3335                return;
3336
3337        /* release id and unhash */
3338        if (pool->id >= 0)
3339                idr_remove(&worker_pool_idr, pool->id);
3340        hash_del(&pool->hash_node);
3341
3342        /*
3343         * Become the manager and destroy all workers.  This prevents
3344         * @pool's workers from blocking on attach_mutex.  We're the last
3345         * manager and @pool gets freed with the flag set.
3346         */
3347        spin_lock_irq(&pool->lock);
3348        wait_event_lock_irq(wq_manager_wait,
3349                            !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3350        pool->flags |= POOL_MANAGER_ACTIVE;
3351
3352        while ((worker = first_idle_worker(pool)))
3353                destroy_worker(worker);
3354        WARN_ON(pool->nr_workers || pool->nr_idle);
3355        spin_unlock_irq(&pool->lock);
3356
3357        mutex_lock(&pool->attach_mutex);
3358        if (!list_empty(&pool->workers))
3359                pool->detach_completion = &detach_completion;
3360        mutex_unlock(&pool->attach_mutex);
3361
3362        if (pool->detach_completion)
3363                wait_for_completion(pool->detach_completion);
3364
3365        /* shut down the timers */
3366        del_timer_sync(&pool->idle_timer);
3367        del_timer_sync(&pool->mayday_timer);
3368
3369        /* sched-RCU protected to allow dereferences from get_work_pool() */
3370        call_rcu_sched(&pool->rcu, rcu_free_pool);
3371}
3372
3373/**
3374 * get_unbound_pool - get a worker_pool with the specified attributes
3375 * @attrs: the attributes of the worker_pool to get
3376 *
3377 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3378 * reference count and return it.  If there already is a matching
3379 * worker_pool, it will be used; otherwise, this function attempts to
3380 * create a new one.
3381 *
3382 * Should be called with wq_pool_mutex held.
3383 *
3384 * Return: On success, a worker_pool with the same attributes as @attrs.
3385 * On failure, %NULL.
3386 */
3387static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3388{
3389        u32 hash = wqattrs_hash(attrs);
3390        struct worker_pool *pool;
3391        int node;
3392        int target_node = NUMA_NO_NODE;
3393
3394        lockdep_assert_held(&wq_pool_mutex);
3395
3396        /* do we already have a matching pool? */
3397        hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3398                if (wqattrs_equal(pool->attrs, attrs)) {
3399                        pool->refcnt++;
3400                        return pool;
3401                }
3402        }
3403
3404        /* if cpumask is contained inside a NUMA node, we belong to that node */
3405        if (wq_numa_enabled) {
3406                for_each_node(node) {
3407                        if (cpumask_subset(attrs->cpumask,
3408                                           wq_numa_possible_cpumask[node])) {
3409                                target_node = node;
3410                                break;
3411                        }
3412                }
3413        }
3414
3415        /* nope, create a new one */
3416        pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3417        if (!pool || init_worker_pool(pool) < 0)
3418                goto fail;
3419
3420        lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3421        copy_workqueue_attrs(pool->attrs, attrs);
3422        pool->node = target_node;
3423
3424        /*
3425         * no_numa isn't a worker_pool attribute, always clear it.  See
3426         * 'struct workqueue_attrs' comments for detail.
3427         */
3428        pool->attrs->no_numa = false;
3429
3430        if (worker_pool_assign_id(pool) < 0)
3431                goto fail;
3432
3433        /* create and start the initial worker */
3434        if (wq_online && !create_worker(pool))
3435                goto fail;
3436
3437        /* install */
3438        hash_add(unbound_pool_hash, &pool->hash_node, hash);
3439
3440        return pool;
3441fail:
3442        if (pool)
3443                put_unbound_pool(pool);
3444        return NULL;
3445}
3446
3447static void rcu_free_pwq(struct rcu_head *rcu)
3448{
3449        kmem_cache_free(pwq_cache,
3450                        container_of(rcu, struct pool_workqueue, rcu));
3451}
3452
3453/*
3454 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3455 * and needs to be destroyed.
3456 */
3457static void pwq_unbound_release_workfn(struct work_struct *work)
3458{
3459        struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3460                                                  unbound_release_work);
3461        struct workqueue_struct *wq = pwq->wq;
3462        struct worker_pool *pool = pwq->pool;
3463        bool is_last;
3464
3465        if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3466                return;
3467
3468        mutex_lock(&wq->mutex);
3469        list_del_rcu(&pwq->pwqs_node);
3470        is_last = list_empty(&wq->pwqs);
3471        mutex_unlock(&wq->mutex);
3472
3473        mutex_lock(&wq_pool_mutex);
3474        put_unbound_pool(pool);
3475        mutex_unlock(&wq_pool_mutex);
3476
3477        call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3478
3479        /*
3480         * If we're the last pwq going away, @wq is already dead and no one
3481         * is gonna access it anymore.  Schedule RCU free.
3482         */
3483        if (is_last)
3484                call_rcu_sched(&wq->rcu, rcu_free_wq);
3485}
3486
3487/**
3488 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3489 * @pwq: target pool_workqueue
3490 *
3491 * If @pwq isn't freezing, set @pwq->max_active to the associated
3492 * workqueue's saved_max_active and activate delayed work items
3493 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3494 */
3495static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3496{
3497        struct workqueue_struct *wq = pwq->wq;
3498        bool freezable = wq->flags & WQ_FREEZABLE;
3499        unsigned long flags;
3500
3501        /* for @wq->saved_max_active */
3502        lockdep_assert_held(&wq->mutex);
3503
3504        /* fast exit for non-freezable wqs */
3505        if (!freezable && pwq->max_active == wq->saved_max_active)
3506                return;
3507
3508        /* this function can be called during early boot w/ irq disabled */
3509        spin_lock_irqsave(&pwq->pool->lock, flags);
3510
3511        /*
3512         * During [un]freezing, the caller is responsible for ensuring that
3513         * this function is called at least once after @workqueue_freezing
3514         * is updated and visible.
3515         */
3516        if (!freezable || !workqueue_freezing) {
3517                pwq->max_active = wq->saved_max_active;
3518
3519                while (!list_empty(&pwq->delayed_works) &&
3520                       pwq->nr_active < pwq->max_active)
3521                        pwq_activate_first_delayed(pwq);
3522
3523                /*
3524                 * Need to kick a worker after thawed or an unbound wq's
3525                 * max_active is bumped.  It's a slow path.  Do it always.
3526                 */
3527                wake_up_worker(pwq->pool);
3528        } else {
3529                pwq->max_active = 0;
3530        }
3531
3532        spin_unlock_irqrestore(&pwq->pool->lock, flags);
3533}
3534
3535/* initialize newly alloced @pwq which is associated with @wq and @pool */
3536static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3537                     struct worker_pool *pool)
3538{
3539        BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3540
3541        memset(pwq, 0, sizeof(*pwq));
3542
3543        pwq->pool = pool;
3544        pwq->wq = wq;
3545        pwq->flush_color = -1;
3546        pwq->refcnt = 1;
3547        INIT_LIST_HEAD(&pwq->delayed_works);
3548        INIT_LIST_HEAD(&pwq->pwqs_node);
3549        INIT_LIST_HEAD(&pwq->mayday_node);
3550        INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3551}
3552
3553/* sync @pwq with the current state of its associated wq and link it */
3554static void link_pwq(struct pool_workqueue *pwq)
3555{
3556        struct workqueue_struct *wq = pwq->wq;
3557
3558        lockdep_assert_held(&wq->mutex);
3559
3560        /* may be called multiple times, ignore if already linked */
3561        if (!list_empty(&pwq->pwqs_node))
3562                return;
3563
3564        /* set the matching work_color */
3565        pwq->work_color = wq->work_color;
3566
3567        /* sync max_active to the current setting */
3568        pwq_adjust_max_active(pwq);
3569
3570        /* link in @pwq */
3571        list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3572}
3573
3574/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3575static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3576                                        const struct workqueue_attrs *attrs)
3577{
3578        struct worker_pool *pool;
3579        struct pool_workqueue *pwq;
3580
3581        lockdep_assert_held(&wq_pool_mutex);
3582
3583        pool = get_unbound_pool(attrs);
3584        if (!pool)
3585                return NULL;
3586
3587        pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3588        if (!pwq) {
3589                put_unbound_pool(pool);
3590                return NULL;
3591        }
3592
3593        init_pwq(pwq, wq, pool);
3594        return pwq;
3595}
3596
3597/**
3598 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3599 * @attrs: the wq_attrs of the default pwq of the target workqueue
3600 * @node: the target NUMA node
3601 * @cpu_going_down: if >= 0, the CPU to consider as offline
3602 * @cpumask: outarg, the resulting cpumask
3603 *
3604 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3605 * @cpu_going_down is >= 0, that cpu is considered offline during
3606 * calculation.  The result is stored in @cpumask.
3607 *
3608 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3609 * enabled and @node has online CPUs requested by @attrs, the returned
3610 * cpumask is the intersection of the possible CPUs of @node and
3611 * @attrs->cpumask.
3612 *
3613 * The caller is responsible for ensuring that the cpumask of @node stays
3614 * stable.
3615 *
3616 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3617 * %false if equal.
3618 */
3619static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3620                                 int cpu_going_down, cpumask_t *cpumask)
3621{
3622        if (!wq_numa_enabled || attrs->no_numa)
3623                goto use_dfl;
3624
3625        /* does @node have any online CPUs @attrs wants? */
3626        cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3627        if (cpu_going_down >= 0)
3628                cpumask_clear_cpu(cpu_going_down, cpumask);
3629
3630        if (cpumask_empty(cpumask))
3631                goto use_dfl;
3632
3633        /* yeap, return possible CPUs in @node that @attrs wants */
3634        cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3635
3636        if (cpumask_empty(cpumask)) {
3637                pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3638                                "possible intersect\n");
3639                return false;
3640        }
3641
3642        return !cpumask_equal(cpumask, attrs->cpumask);
3643
3644use_dfl:
3645        cpumask_copy(cpumask, attrs->cpumask);
3646        return false;
3647}
3648
3649/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3650static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3651                                                   int node,
3652                                                   struct pool_workqueue *pwq)
3653{
3654        struct pool_workqueue *old_pwq;
3655
3656        lockdep_assert_held(&wq_pool_mutex);
3657        lockdep_assert_held(&wq->mutex);
3658
3659        /* link_pwq() can handle duplicate calls */
3660        link_pwq(pwq);
3661
3662        old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3663        rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3664        return old_pwq;
3665}
3666
3667/* context to store the prepared attrs & pwqs before applying */
3668struct apply_wqattrs_ctx {
3669        struct workqueue_struct *wq;            /* target workqueue */
3670        struct workqueue_attrs  *attrs;         /* attrs to apply */
3671        struct list_head        list;           /* queued for batching commit */
3672        struct pool_workqueue   *dfl_pwq;
3673        struct pool_workqueue   *pwq_tbl[];
3674};
3675
3676/* free the resources after success or abort */
3677static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3678{
3679        if (ctx) {
3680                int node;
3681
3682                for_each_node(node)
3683                        put_pwq_unlocked(ctx->pwq_tbl[node]);
3684                put_pwq_unlocked(ctx->dfl_pwq);
3685
3686                free_workqueue_attrs(ctx->attrs);
3687
3688                kfree(ctx);
3689        }
3690}
3691
3692/* allocate the attrs and pwqs for later installation */
3693static struct apply_wqattrs_ctx *
3694apply_wqattrs_prepare(struct workqueue_struct *wq,
3695                      const struct workqueue_attrs *attrs)
3696{
3697        struct apply_wqattrs_ctx *ctx;
3698        struct workqueue_attrs *new_attrs, *tmp_attrs;
3699        int node;
3700
3701        lockdep_assert_held(&wq_pool_mutex);
3702
3703        ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3704                      GFP_KERNEL);
3705
3706        new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3707        tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3708        if (!ctx || !new_attrs || !tmp_attrs)
3709                goto out_free;
3710
3711        /*
3712         * Calculate the attrs of the default pwq.
3713         * If the user configured cpumask doesn't overlap with the
3714         * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3715         */
3716        copy_workqueue_attrs(new_attrs, attrs);
3717        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3718        if (unlikely(cpumask_empty(new_attrs->cpumask)))
3719                cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3720
3721        /*
3722         * We may create multiple pwqs with differing cpumasks.  Make a
3723         * copy of @new_attrs which will be modified and used to obtain
3724         * pools.
3725         */
3726        copy_workqueue_attrs(tmp_attrs, new_attrs);
3727
3728        /*
3729         * If something goes wrong during CPU up/down, we'll fall back to
3730         * the default pwq covering whole @attrs->cpumask.  Always create
3731         * it even if we don't use it immediately.
3732         */
3733        ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3734        if (!ctx->dfl_pwq)
3735                goto out_free;
3736
3737        for_each_node(node) {
3738                if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3739                        ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3740                        if (!ctx->pwq_tbl[node])
3741                                goto out_free;
3742                } else {
3743                        ctx->dfl_pwq->refcnt++;
3744                        ctx->pwq_tbl[node] = ctx->dfl_pwq;
3745                }
3746        }
3747
3748        /* save the user configured attrs and sanitize it. */
3749        copy_workqueue_attrs(new_attrs, attrs);
3750        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3751        ctx->attrs = new_attrs;
3752
3753        ctx->wq = wq;
3754        free_workqueue_attrs(tmp_attrs);
3755        return ctx;
3756
3757out_free:
3758        free_workqueue_attrs(tmp_attrs);
3759        free_workqueue_attrs(new_attrs);
3760        apply_wqattrs_cleanup(ctx);
3761        return NULL;
3762}
3763
3764/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3765static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3766{
3767        int node;
3768
3769        /* all pwqs have been created successfully, let's install'em */
3770        mutex_lock(&ctx->wq->mutex);
3771
3772        copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3773
3774        /* save the previous pwq and install the new one */
3775        for_each_node(node)
3776                ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3777                                                          ctx->pwq_tbl[node]);
3778
3779        /* @dfl_pwq might not have been used, ensure it's linked */
3780        link_pwq(ctx->dfl_pwq);
3781        swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3782
3783        mutex_unlock(&ctx->wq->mutex);
3784}
3785
3786static void apply_wqattrs_lock(void)
3787{
3788        /* CPUs should stay stable across pwq creations and installations */
3789        get_online_cpus();
3790        mutex_lock(&wq_pool_mutex);
3791}
3792
3793static void apply_wqattrs_unlock(void)
3794{
3795        mutex_unlock(&wq_pool_mutex);
3796        put_online_cpus();
3797}
3798
3799static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3800                                        const struct workqueue_attrs *attrs)
3801{
3802        struct apply_wqattrs_ctx *ctx;
3803
3804        /* only unbound workqueues can change attributes */
3805        if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3806                return -EINVAL;
3807
3808        /* creating multiple pwqs breaks ordering guarantee */
3809        if (!list_empty(&wq->pwqs)) {
3810                if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3811                        return -EINVAL;
3812
3813                wq->flags &= ~__WQ_ORDERED;
3814        }
3815
3816        ctx = apply_wqattrs_prepare(wq, attrs);
3817        if (!ctx)
3818                return -ENOMEM;
3819
3820        /* the ctx has been prepared successfully, let's commit it */
3821        apply_wqattrs_commit(ctx);
3822        apply_wqattrs_cleanup(ctx);
3823
3824        return 0;
3825}
3826
3827/**
3828 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3829 * @wq: the target workqueue
3830 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3831 *
3832 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3833 * machines, this function maps a separate pwq to each NUMA node with
3834 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3835 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3836 * items finish.  Note that a work item which repeatedly requeues itself
3837 * back-to-back will stay on its current pwq.
3838 *
3839 * Performs GFP_KERNEL allocations.
3840 *
3841 * Return: 0 on success and -errno on failure.
3842 */
3843int apply_workqueue_attrs(struct workqueue_struct *wq,
3844                          const struct workqueue_attrs *attrs)
3845{
3846        int ret;
3847
3848        apply_wqattrs_lock();
3849        ret = apply_workqueue_attrs_locked(wq, attrs);
3850        apply_wqattrs_unlock();
3851
3852        return ret;
3853}
3854EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3855
3856/**
3857 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3858 * @wq: the target workqueue
3859 * @cpu: the CPU coming up or going down
3860 * @online: whether @cpu is coming up or going down
3861 *
3862 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3863 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3864 * @wq accordingly.
3865 *
3866 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3867 * falls back to @wq->dfl_pwq which may not be optimal but is always
3868 * correct.
3869 *
3870 * Note that when the last allowed CPU of a NUMA node goes offline for a
3871 * workqueue with a cpumask spanning multiple nodes, the workers which were
3872 * already executing the work items for the workqueue will lose their CPU
3873 * affinity and may execute on any CPU.  This is similar to how per-cpu
3874 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3875 * affinity, it's the user's responsibility to flush the work item from
3876 * CPU_DOWN_PREPARE.
3877 */
3878static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3879                                   bool online)
3880{
3881        int node = cpu_to_node(cpu);
3882        int cpu_off = online ? -1 : cpu;
3883        struct pool_workqueue *old_pwq = NULL, *pwq;
3884        struct workqueue_attrs *target_attrs;
3885        cpumask_t *cpumask;
3886
3887        lockdep_assert_held(&wq_pool_mutex);
3888
3889        if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3890            wq->unbound_attrs->no_numa)
3891                return;
3892
3893        /*
3894         * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3895         * Let's use a preallocated one.  The following buf is protected by
3896         * CPU hotplug exclusion.
3897         */
3898        target_attrs = wq_update_unbound_numa_attrs_buf;
3899        cpumask = target_attrs->cpumask;
3900
3901        copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3902        pwq = unbound_pwq_by_node(wq, node);
3903
3904        /*
3905         * Let's determine what needs to be done.  If the target cpumask is
3906         * different from the default pwq's, we need to compare it to @pwq's
3907         * and create a new one if they don't match.  If the target cpumask
3908         * equals the default pwq's, the default pwq should be used.
3909         */
3910        if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3911                if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3912                        return;
3913        } else {
3914                goto use_dfl_pwq;
3915        }
3916
3917        /* create a new pwq */
3918        pwq = alloc_unbound_pwq(wq, target_attrs);
3919        if (!pwq) {
3920                pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3921                        wq->name);
3922                goto use_dfl_pwq;
3923        }
3924
3925        /* Install the new pwq. */
3926        mutex_lock(&wq->mutex);
3927        old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3928        goto out_unlock;
3929
3930use_dfl_pwq:
3931        mutex_lock(&wq->mutex);
3932        spin_lock_irq(&wq->dfl_pwq->pool->lock);
3933        get_pwq(wq->dfl_pwq);
3934        spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3935        old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3936out_unlock:
3937        mutex_unlock(&wq->mutex);
3938        put_pwq_unlocked(old_pwq);
3939}
3940
3941static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3942{
3943        bool highpri = wq->flags & WQ_HIGHPRI;
3944        int cpu, ret;
3945
3946        if (!(wq->flags & WQ_UNBOUND)) {
3947                wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3948                if (!wq->cpu_pwqs)
3949                        return -ENOMEM;
3950
3951                for_each_possible_cpu(cpu) {
3952                        struct pool_workqueue *pwq =
3953                                per_cpu_ptr(wq->cpu_pwqs, cpu);
3954                        struct worker_pool *cpu_pools =
3955                                per_cpu(cpu_worker_pools, cpu);
3956
3957                        init_pwq(pwq, wq, &cpu_pools[highpri]);
3958
3959                        mutex_lock(&wq->mutex);
3960                        link_pwq(pwq);
3961                        mutex_unlock(&wq->mutex);
3962                }
3963                return 0;
3964        } else if (wq->flags & __WQ_ORDERED) {
3965                ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3966                /* there should only be single pwq for ordering guarantee */
3967                WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3968                              wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3969                     "ordering guarantee broken for workqueue %s\n", wq->name);
3970                return ret;
3971        } else {
3972                return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3973        }
3974}
3975
3976static int wq_clamp_max_active(int max_active, unsigned int flags,
3977                               const char *name)
3978{
3979        int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3980
3981        if (max_active < 1 || max_active > lim)
3982                pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3983                        max_active, name, 1, lim);
3984
3985        return clamp_val(max_active, 1, lim);
3986}
3987
3988/*
3989 * Workqueues which may be used during memory reclaim should have a rescuer
3990 * to guarantee forward progress.
3991 */
3992static int init_rescuer(struct workqueue_struct *wq)
3993{
3994        struct worker *rescuer;
3995        int ret;
3996
3997        if (!(wq->flags & WQ_MEM_RECLAIM))
3998                return 0;
3999
4000        rescuer = alloc_worker(NUMA_NO_NODE);
4001        if (!rescuer)
4002                return -ENOMEM;
4003
4004        rescuer->rescue_wq = wq;
4005        rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4006        ret = PTR_ERR_OR_ZERO(rescuer->task);
4007        if (ret) {
4008                kfree(rescuer);
4009                return ret;
4010        }
4011
4012        wq->rescuer = rescuer;
4013        kthread_bind_mask(rescuer->task, cpu_possible_mask);
4014        wake_up_process(rescuer->task);
4015
4016        return 0;
4017}
4018
4019struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4020                                               unsigned int flags,
4021                                               int max_active,
4022                                               struct lock_class_key *key,
4023                                               const char *lock_name, ...)
4024{
4025        size_t tbl_size = 0;
4026        va_list args;
4027        struct workqueue_struct *wq;
4028        struct pool_workqueue *pwq;
4029
4030        /*
4031         * Unbound && max_active == 1 used to imply ordered, which is no
4032         * longer the case on NUMA machines due to per-node pools.  While
4033         * alloc_ordered_workqueue() is the right way to create an ordered
4034         * workqueue, keep the previous behavior to avoid subtle breakages
4035         * on NUMA.
4036         */
4037        if ((flags & WQ_UNBOUND) && max_active == 1)
4038                flags |= __WQ_ORDERED;
4039
4040        /* see the comment above the definition of WQ_POWER_EFFICIENT */
4041        if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4042                flags |= WQ_UNBOUND;
4043
4044        /* allocate wq and format name */
4045        if (flags & WQ_UNBOUND)
4046                tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4047
4048        wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4049        if (!wq)
4050                return NULL;
4051
4052        if (flags & WQ_UNBOUND) {
4053                wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4054                if (!wq->unbound_attrs)
4055                        goto err_free_wq;
4056        }
4057
4058        va_start(args, lock_name);
4059        vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4060        va_end(args);
4061
4062        max_active = max_active ?: WQ_DFL_ACTIVE;
4063        max_active = wq_clamp_max_active(max_active, flags, wq->name);
4064
4065        /* init wq */
4066        wq->flags = flags;
4067        wq->saved_max_active = max_active;
4068        mutex_init(&wq->mutex);
4069        atomic_set(&wq->nr_pwqs_to_flush, 0);
4070        INIT_LIST_HEAD(&wq->pwqs);
4071        INIT_LIST_HEAD(&wq->flusher_queue);
4072        INIT_LIST_HEAD(&wq->flusher_overflow);
4073        INIT_LIST_HEAD(&wq->maydays);
4074
4075        lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4076        INIT_LIST_HEAD(&wq->list);
4077
4078        if (alloc_and_link_pwqs(wq) < 0)
4079                goto err_free_wq;
4080
4081        if (wq_online && init_rescuer(wq) < 0)
4082                goto err_destroy;
4083
4084        if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4085                goto err_destroy;
4086
4087        /*
4088         * wq_pool_mutex protects global freeze state and workqueues list.
4089         * Grab it, adjust max_active and add the new @wq to workqueues
4090         * list.
4091         */
4092        mutex_lock(&wq_pool_mutex);
4093
4094        mutex_lock(&wq->mutex);
4095        for_each_pwq(pwq, wq)
4096                pwq_adjust_max_active(pwq);
4097        mutex_unlock(&wq->mutex);
4098
4099        list_add_tail_rcu(&wq->list, &workqueues);
4100
4101        mutex_unlock(&wq_pool_mutex);
4102
4103        return wq;
4104
4105err_free_wq:
4106        free_workqueue_attrs(wq->unbound_attrs);
4107        kfree(wq);
4108        return NULL;
4109err_destroy:
4110        destroy_workqueue(wq);
4111        return NULL;
4112}
4113EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4114
4115/**
4116 * destroy_workqueue - safely terminate a workqueue
4117 * @wq: target workqueue
4118 *
4119 * Safely destroy a workqueue. All work currently pending will be done first.
4120 */
4121void destroy_workqueue(struct workqueue_struct *wq)
4122{
4123        struct pool_workqueue *pwq;
4124        int node;
4125
4126        /* drain it before proceeding with destruction */
4127        drain_workqueue(wq);
4128
4129        /* sanity checks */
4130        mutex_lock(&wq->mutex);
4131        for_each_pwq(pwq, wq) {
4132                int i;
4133
4134                for (i = 0; i < WORK_NR_COLORS; i++) {
4135                        if (WARN_ON(pwq->nr_in_flight[i])) {
4136                                mutex_unlock(&wq->mutex);
4137                                show_workqueue_state();
4138                                return;
4139                        }
4140                }
4141
4142                if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4143                    WARN_ON(pwq->nr_active) ||
4144                    WARN_ON(!list_empty(&pwq->delayed_works))) {
4145                        mutex_unlock(&wq->mutex);
4146                        show_workqueue_state();
4147                        return;
4148                }
4149        }
4150        mutex_unlock(&wq->mutex);
4151
4152        /*
4153         * wq list is used to freeze wq, remove from list after
4154         * flushing is complete in case freeze races us.
4155         */
4156        mutex_lock(&wq_pool_mutex);
4157        list_del_rcu(&wq->list);
4158        mutex_unlock(&wq_pool_mutex);
4159
4160        workqueue_sysfs_unregister(wq);
4161
4162        if (wq->rescuer)
4163                kthread_stop(wq->rescuer->task);
4164
4165        if (!(wq->flags & WQ_UNBOUND)) {
4166                /*
4167                 * The base ref is never dropped on per-cpu pwqs.  Directly
4168                 * schedule RCU free.
4169                 */
4170                call_rcu_sched(&wq->rcu, rcu_free_wq);
4171        } else {
4172                /*
4173                 * We're the sole accessor of @wq at this point.  Directly
4174                 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4175                 * @wq will be freed when the last pwq is released.
4176                 */
4177                for_each_node(node) {
4178                        pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4179                        RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4180                        put_pwq_unlocked(pwq);
4181                }
4182
4183                /*
4184                 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4185                 * put.  Don't access it afterwards.
4186                 */
4187                pwq = wq->dfl_pwq;
4188                wq->dfl_pwq = NULL;
4189                put_pwq_unlocked(pwq);
4190        }
4191}
4192EXPORT_SYMBOL_GPL(destroy_workqueue);
4193
4194/**
4195 * workqueue_set_max_active - adjust max_active of a workqueue
4196 * @wq: target workqueue
4197 * @max_active: new max_active value.
4198 *
4199 * Set max_active of @wq to @max_active.
4200 *
4201 * CONTEXT:
4202 * Don't call from IRQ context.
4203 */
4204void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4205{
4206        struct pool_workqueue *pwq;
4207
4208        /* disallow meddling with max_active for ordered workqueues */
4209        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4210                return;
4211
4212        max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4213
4214        mutex_lock(&wq->mutex);
4215
4216        wq->flags &= ~__WQ_ORDERED;
4217        wq->saved_max_active = max_active;
4218
4219        for_each_pwq(pwq, wq)
4220                pwq_adjust_max_active(pwq);
4221
4222        mutex_unlock(&wq->mutex);
4223}
4224EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4225
4226/**
4227 * current_work - retrieve %current task's work struct
4228 *
4229 * Determine if %current task is a workqueue worker and what it's working on.
4230 * Useful to find out the context that the %current task is running in.
4231 *
4232 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4233 */
4234struct work_struct *current_work(void)
4235{
4236        struct worker *worker = current_wq_worker();
4237
4238        return worker ? worker->current_work : NULL;
4239}
4240EXPORT_SYMBOL(current_work);
4241
4242/**
4243 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4244 *
4245 * Determine whether %current is a workqueue rescuer.  Can be used from
4246 * work functions to determine whether it's being run off the rescuer task.
4247 *
4248 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4249 */
4250bool current_is_workqueue_rescuer(void)
4251{
4252        struct worker *worker = current_wq_worker();
4253
4254        return worker && worker->rescue_wq;
4255}
4256
4257/**
4258 * workqueue_congested - test whether a workqueue is congested
4259 * @cpu: CPU in question
4260 * @wq: target workqueue
4261 *
4262 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4263 * no synchronization around this function and the test result is
4264 * unreliable and only useful as advisory hints or for debugging.
4265 *
4266 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4267 * Note that both per-cpu and unbound workqueues may be associated with
4268 * multiple pool_workqueues which have separate congested states.  A
4269 * workqueue being congested on one CPU doesn't mean the workqueue is also
4270 * contested on other CPUs / NUMA nodes.
4271 *
4272 * Return:
4273 * %true if congested, %false otherwise.
4274 */
4275bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4276{
4277        struct pool_workqueue *pwq;
4278        bool ret;
4279
4280        rcu_read_lock_sched();
4281
4282        if (cpu == WORK_CPU_UNBOUND)
4283                cpu = smp_processor_id();
4284
4285        if (!(wq->flags & WQ_UNBOUND))
4286                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4287        else
4288                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4289
4290        ret = !list_empty(&pwq->delayed_works);
4291        rcu_read_unlock_sched();
4292
4293        return ret;
4294}
4295EXPORT_SYMBOL_GPL(workqueue_congested);
4296
4297/**
4298 * work_busy - test whether a work is currently pending or running
4299 * @work: the work to be tested
4300 *
4301 * Test whether @work is currently pending or running.  There is no
4302 * synchronization around this function and the test result is
4303 * unreliable and only useful as advisory hints or for debugging.
4304 *
4305 * Return:
4306 * OR'd bitmask of WORK_BUSY_* bits.
4307 */
4308unsigned int work_busy(struct work_struct *work)
4309{
4310        struct worker_pool *pool;
4311        unsigned long flags;
4312        unsigned int ret = 0;
4313
4314        if (work_pending(work))
4315                ret |= WORK_BUSY_PENDING;
4316
4317        local_irq_save(flags);
4318        pool = get_work_pool(work);
4319        if (pool) {
4320                spin_lock(&pool->lock);
4321                if (find_worker_executing_work(pool, work))
4322                        ret |= WORK_BUSY_RUNNING;
4323                spin_unlock(&pool->lock);
4324        }
4325        local_irq_restore(flags);
4326
4327        return ret;
4328}
4329EXPORT_SYMBOL_GPL(work_busy);
4330
4331/**
4332 * set_worker_desc - set description for the current work item
4333 * @fmt: printf-style format string
4334 * @...: arguments for the format string
4335 *
4336 * This function can be called by a running work function to describe what
4337 * the work item is about.  If the worker task gets dumped, this
4338 * information will be printed out together to help debugging.  The
4339 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4340 */
4341void set_worker_desc(const char *fmt, ...)
4342{
4343        struct worker *worker = current_wq_worker();
4344        va_list args;
4345
4346        if (worker) {
4347                va_start(args, fmt);
4348                vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4349                va_end(args);
4350                worker->desc_valid = true;
4351        }
4352}
4353
4354/**
4355 * print_worker_info - print out worker information and description
4356 * @log_lvl: the log level to use when printing
4357 * @task: target task
4358 *
4359 * If @task is a worker and currently executing a work item, print out the
4360 * name of the workqueue being serviced and worker description set with
4361 * set_worker_desc() by the currently executing work item.
4362 *
4363 * This function can be safely called on any task as long as the
4364 * task_struct itself is accessible.  While safe, this function isn't
4365 * synchronized and may print out mixups or garbages of limited length.
4366 */
4367void print_worker_info(const char *log_lvl, struct task_struct *task)
4368{
4369        work_func_t *fn = NULL;
4370        char name[WQ_NAME_LEN] = { };
4371        char desc[WORKER_DESC_LEN] = { };
4372        struct pool_workqueue *pwq = NULL;
4373        struct workqueue_struct *wq = NULL;
4374        bool desc_valid = false;
4375        struct worker *worker;
4376
4377        if (!(task->flags & PF_WQ_WORKER))
4378                return;
4379
4380        /*
4381         * This function is called without any synchronization and @task
4382         * could be in any state.  Be careful with dereferences.
4383         */
4384        worker = kthread_probe_data(task);
4385
4386        /*
4387         * Carefully copy the associated workqueue's workfn and name.  Keep
4388         * the original last '\0' in case the original contains garbage.
4389         */
4390        probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4391        probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4392        probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4393        probe_kernel_read(name, wq->name, sizeof(name) - 1);
4394
4395        /* copy worker description */
4396        probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4397        if (desc_valid)
4398                probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4399
4400        if (fn || name[0] || desc[0]) {
4401                printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4402                if (desc[0])
4403                        pr_cont(" (%s)", desc);
4404                pr_cont("\n");
4405        }
4406}
4407
4408static void pr_cont_pool_info(struct worker_pool *pool)
4409{
4410        pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4411        if (pool->node != NUMA_NO_NODE)
4412                pr_cont(" node=%d", pool->node);
4413        pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4414}
4415
4416static void pr_cont_work(bool comma, struct work_struct *work)
4417{
4418        if (work->func == wq_barrier_func) {
4419                struct wq_barrier *barr;
4420
4421                barr = container_of(work, struct wq_barrier, work);
4422
4423                pr_cont("%s BAR(%d)", comma ? "," : "",
4424                        task_pid_nr(barr->task));
4425        } else {
4426                pr_cont("%s %pf", comma ? "," : "", work->func);
4427        }
4428}
4429
4430static void show_pwq(struct pool_workqueue *pwq)
4431{
4432        struct worker_pool *pool = pwq->pool;
4433        struct work_struct *work;
4434        struct worker *worker;
4435        bool has_in_flight = false, has_pending = false;
4436        int bkt;
4437
4438        pr_info("  pwq %d:", pool->id);
4439        pr_cont_pool_info(pool);
4440
4441        pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4442                !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4443
4444        hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4445                if (worker->current_pwq == pwq) {
4446                        has_in_flight = true;
4447                        break;
4448                }
4449        }
4450        if (has_in_flight) {
4451                bool comma = false;
4452
4453                pr_info("    in-flight:");
4454                hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4455                        if (worker->current_pwq != pwq)
4456                                continue;
4457
4458                        pr_cont("%s %d%s:%pf", comma ? "," : "",
4459                                task_pid_nr(worker->task),
4460                                worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4461                                worker->current_func);
4462                        list_for_each_entry(work, &worker->scheduled, entry)
4463                                pr_cont_work(false, work);
4464                        comma = true;
4465                }
4466                pr_cont("\n");
4467        }
4468
4469        list_for_each_entry(work, &pool->worklist, entry) {
4470                if (get_work_pwq(work) == pwq) {
4471                        has_pending = true;
4472                        break;
4473                }
4474        }
4475        if (has_pending) {
4476                bool comma = false;
4477
4478                pr_info("    pending:");
4479                list_for_each_entry(work, &pool->worklist, entry) {
4480                        if (get_work_pwq(work) != pwq)
4481                                continue;
4482
4483                        pr_cont_work(comma, work);
4484                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4485                }
4486                pr_cont("\n");
4487        }
4488
4489        if (!list_empty(&pwq->delayed_works)) {
4490                bool comma = false;
4491
4492                pr_info("    delayed:");
4493                list_for_each_entry(work, &pwq->delayed_works, entry) {
4494                        pr_cont_work(comma, work);
4495                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4496                }
4497                pr_cont("\n");
4498        }
4499}
4500
4501/**
4502 * show_workqueue_state - dump workqueue state
4503 *
4504 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4505 * all busy workqueues and pools.
4506 */
4507void show_workqueue_state(void)
4508{
4509        struct workqueue_struct *wq;
4510        struct worker_pool *pool;
4511        unsigned long flags;
4512        int pi;
4513
4514        rcu_read_lock_sched();
4515
4516        pr_info("Showing busy workqueues and worker pools:\n");
4517
4518        list_for_each_entry_rcu(wq, &workqueues, list) {
4519                struct pool_workqueue *pwq;
4520                bool idle = true;
4521
4522                for_each_pwq(pwq, wq) {
4523                        if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4524                                idle = false;
4525                                break;
4526                        }
4527                }
4528                if (idle)
4529                        continue;
4530
4531                pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4532
4533                for_each_pwq(pwq, wq) {
4534                        spin_lock_irqsave(&pwq->pool->lock, flags);
4535                        if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4536                                show_pwq(pwq);
4537                        spin_unlock_irqrestore(&pwq->pool->lock, flags);
4538                        /*
4539                         * We could be printing a lot from atomic context, e.g.
4540                         * sysrq-t -> show_workqueue_state(). Avoid triggering
4541                         * hard lockup.
4542                         */
4543                        touch_nmi_watchdog();
4544                }
4545        }
4546
4547        for_each_pool(pool, pi) {
4548                struct worker *worker;
4549                bool first = true;
4550
4551                spin_lock_irqsave(&pool->lock, flags);
4552                if (pool->nr_workers == pool->nr_idle)
4553                        goto next_pool;
4554
4555                pr_info("pool %d:", pool->id);
4556                pr_cont_pool_info(pool);
4557                pr_cont(" hung=%us workers=%d",
4558                        jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4559                        pool->nr_workers);
4560                if (pool->manager)
4561                        pr_cont(" manager: %d",
4562                                task_pid_nr(pool->manager->task));
4563                list_for_each_entry(worker, &pool->idle_list, entry) {
4564                        pr_cont(" %s%d", first ? "idle: " : "",
4565                                task_pid_nr(worker->task));
4566                        first = false;
4567                }
4568                pr_cont("\n");
4569        next_pool:
4570                spin_unlock_irqrestore(&pool->lock, flags);
4571                /*
4572                 * We could be printing a lot from atomic context, e.g.
4573                 * sysrq-t -> show_workqueue_state(). Avoid triggering
4574                 * hard lockup.
4575                 */
4576                touch_nmi_watchdog();
4577        }
4578
4579        rcu_read_unlock_sched();
4580}
4581
4582/*
4583 * CPU hotplug.
4584 *
4585 * There are two challenges in supporting CPU hotplug.  Firstly, there
4586 * are a lot of assumptions on strong associations among work, pwq and
4587 * pool which make migrating pending and scheduled works very
4588 * difficult to implement without impacting hot paths.  Secondly,
4589 * worker pools serve mix of short, long and very long running works making
4590 * blocked draining impractical.
4591 *
4592 * This is solved by allowing the pools to be disassociated from the CPU
4593 * running as an unbound one and allowing it to be reattached later if the
4594 * cpu comes back online.
4595 */
4596
4597static void unbind_workers(int cpu)
4598{
4599        struct worker_pool *pool;
4600        struct worker *worker;
4601
4602        for_each_cpu_worker_pool(pool, cpu) {
4603                mutex_lock(&pool->attach_mutex);
4604                spin_lock_irq(&pool->lock);
4605
4606                /*
4607                 * We've blocked all attach/detach operations. Make all workers
4608                 * unbound and set DISASSOCIATED.  Before this, all workers
4609                 * except for the ones which are still executing works from
4610                 * before the last CPU down must be on the cpu.  After
4611                 * this, they may become diasporas.
4612                 */
4613                for_each_pool_worker(worker, pool)
4614                        worker->flags |= WORKER_UNBOUND;
4615
4616                pool->flags |= POOL_DISASSOCIATED;
4617
4618                spin_unlock_irq(&pool->lock);
4619                mutex_unlock(&pool->attach_mutex);
4620
4621                /*
4622                 * Call schedule() so that we cross rq->lock and thus can
4623                 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4624                 * This is necessary as scheduler callbacks may be invoked
4625                 * from other cpus.
4626                 */
4627                schedule();
4628
4629                /*
4630                 * Sched callbacks are disabled now.  Zap nr_running.
4631                 * After this, nr_running stays zero and need_more_worker()
4632                 * and keep_working() are always true as long as the
4633                 * worklist is not empty.  This pool now behaves as an
4634                 * unbound (in terms of concurrency management) pool which
4635                 * are served by workers tied to the pool.
4636                 */
4637                atomic_set(&pool->nr_running, 0);
4638
4639                /*
4640                 * With concurrency management just turned off, a busy
4641                 * worker blocking could lead to lengthy stalls.  Kick off
4642                 * unbound chain execution of currently pending work items.
4643                 */
4644                spin_lock_irq(&pool->lock);
4645                wake_up_worker(pool);
4646                spin_unlock_irq(&pool->lock);
4647        }
4648}
4649
4650/**
4651 * rebind_workers - rebind all workers of a pool to the associated CPU
4652 * @pool: pool of interest
4653 *
4654 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4655 */
4656static void rebind_workers(struct worker_pool *pool)
4657{
4658        struct worker *worker;
4659
4660        lockdep_assert_held(&pool->attach_mutex);
4661
4662        /*
4663         * Restore CPU affinity of all workers.  As all idle workers should
4664         * be on the run-queue of the associated CPU before any local
4665         * wake-ups for concurrency management happen, restore CPU affinity
4666         * of all workers first and then clear UNBOUND.  As we're called
4667         * from CPU_ONLINE, the following shouldn't fail.
4668         */
4669        for_each_pool_worker(worker, pool)
4670                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4671                                                  pool->attrs->cpumask) < 0);
4672
4673        spin_lock_irq(&pool->lock);
4674
4675        pool->flags &= ~POOL_DISASSOCIATED;
4676
4677        for_each_pool_worker(worker, pool) {
4678                unsigned int worker_flags = worker->flags;
4679
4680                /*
4681                 * A bound idle worker should actually be on the runqueue
4682                 * of the associated CPU for local wake-ups targeting it to
4683                 * work.  Kick all idle workers so that they migrate to the
4684                 * associated CPU.  Doing this in the same loop as
4685                 * replacing UNBOUND with REBOUND is safe as no worker will
4686                 * be bound before @pool->lock is released.
4687                 */
4688                if (worker_flags & WORKER_IDLE)
4689                        wake_up_process(worker->task);
4690
4691                /*
4692                 * We want to clear UNBOUND but can't directly call
4693                 * worker_clr_flags() or adjust nr_running.  Atomically
4694                 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4695                 * @worker will clear REBOUND using worker_clr_flags() when
4696                 * it initiates the next execution cycle thus restoring
4697                 * concurrency management.  Note that when or whether
4698                 * @worker clears REBOUND doesn't affect correctness.
4699                 *
4700                 * WRITE_ONCE() is necessary because @worker->flags may be
4701                 * tested without holding any lock in
4702                 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4703                 * fail incorrectly leading to premature concurrency
4704                 * management operations.
4705                 */
4706                WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4707                worker_flags |= WORKER_REBOUND;
4708                worker_flags &= ~WORKER_UNBOUND;
4709                WRITE_ONCE(worker->flags, worker_flags);
4710        }
4711
4712        spin_unlock_irq(&pool->lock);
4713}
4714
4715/**
4716 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4717 * @pool: unbound pool of interest
4718 * @cpu: the CPU which is coming up
4719 *
4720 * An unbound pool may end up with a cpumask which doesn't have any online
4721 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4722 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4723 * online CPU before, cpus_allowed of all its workers should be restored.
4724 */
4725static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4726{
4727        static cpumask_t cpumask;
4728        struct worker *worker;
4729
4730        lockdep_assert_held(&pool->attach_mutex);
4731
4732        /* is @cpu allowed for @pool? */
4733        if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4734                return;
4735
4736        cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4737
4738        /* as we're called from CPU_ONLINE, the following shouldn't fail */
4739        for_each_pool_worker(worker, pool)
4740                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4741}
4742
4743int workqueue_prepare_cpu(unsigned int cpu)
4744{
4745        struct worker_pool *pool;
4746
4747        for_each_cpu_worker_pool(pool, cpu) {
4748                if (pool->nr_workers)
4749                        continue;
4750                if (!create_worker(pool))
4751                        return -ENOMEM;
4752        }
4753        return 0;
4754}
4755
4756int workqueue_online_cpu(unsigned int cpu)
4757{
4758        struct worker_pool *pool;
4759        struct workqueue_struct *wq;
4760        int pi;
4761
4762        mutex_lock(&wq_pool_mutex);
4763
4764        for_each_pool(pool, pi) {
4765                mutex_lock(&pool->attach_mutex);
4766
4767                if (pool->cpu == cpu)
4768                        rebind_workers(pool);
4769                else if (pool->cpu < 0)
4770                        restore_unbound_workers_cpumask(pool, cpu);
4771
4772                mutex_unlock(&pool->attach_mutex);
4773        }
4774
4775        /* update NUMA affinity of unbound workqueues */
4776        list_for_each_entry(wq, &workqueues, list)
4777                wq_update_unbound_numa(wq, cpu, true);
4778
4779        mutex_unlock(&wq_pool_mutex);
4780        return 0;
4781}
4782
4783int workqueue_offline_cpu(unsigned int cpu)
4784{
4785        struct workqueue_struct *wq;
4786
4787        /* unbinding per-cpu workers should happen on the local CPU */
4788        if (WARN_ON(cpu != smp_processor_id()))
4789                return -1;
4790
4791        unbind_workers(cpu);
4792
4793        /* update NUMA affinity of unbound workqueues */
4794        mutex_lock(&wq_pool_mutex);
4795        list_for_each_entry(wq, &workqueues, list)
4796                wq_update_unbound_numa(wq, cpu, false);
4797        mutex_unlock(&wq_pool_mutex);
4798
4799        return 0;
4800}
4801
4802#ifdef CONFIG_SMP
4803
4804struct work_for_cpu {
4805        struct work_struct work;
4806        long (*fn)(void *);
4807        void *arg;
4808        long ret;
4809};
4810
4811static void work_for_cpu_fn(struct work_struct *work)
4812{
4813        struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4814
4815        wfc->ret = wfc->fn(wfc->arg);
4816}
4817
4818/**
4819 * work_on_cpu - run a function in thread context on a particular cpu
4820 * @cpu: the cpu to run on
4821 * @fn: the function to run
4822 * @arg: the function arg
4823 *
4824 * It is up to the caller to ensure that the cpu doesn't go offline.
4825 * The caller must not hold any locks which would prevent @fn from completing.
4826 *
4827 * Return: The value @fn returns.
4828 */
4829long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4830{
4831        struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4832
4833        INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4834        schedule_work_on(cpu, &wfc.work);
4835        flush_work(&wfc.work);
4836        destroy_work_on_stack(&wfc.work);
4837        return wfc.ret;
4838}
4839EXPORT_SYMBOL_GPL(work_on_cpu);
4840
4841/**
4842 * work_on_cpu_safe - run a function in thread context on a particular cpu
4843 * @cpu: the cpu to run on
4844 * @fn:  the function to run
4845 * @arg: the function argument
4846 *
4847 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4848 * any locks which would prevent @fn from completing.
4849 *
4850 * Return: The value @fn returns.
4851 */
4852long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4853{
4854        long ret = -ENODEV;
4855
4856        get_online_cpus();
4857        if (cpu_online(cpu))
4858                ret = work_on_cpu(cpu, fn, arg);
4859        put_online_cpus();
4860        return ret;
4861}
4862EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4863#endif /* CONFIG_SMP */
4864
4865#ifdef CONFIG_FREEZER
4866
4867/**
4868 * freeze_workqueues_begin - begin freezing workqueues
4869 *
4870 * Start freezing workqueues.  After this function returns, all freezable
4871 * workqueues will queue new works to their delayed_works list instead of
4872 * pool->worklist.
4873 *
4874 * CONTEXT:
4875 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4876 */
4877void freeze_workqueues_begin(void)
4878{
4879        struct workqueue_struct *wq;
4880        struct pool_workqueue *pwq;
4881
4882        mutex_lock(&wq_pool_mutex);
4883
4884        WARN_ON_ONCE(workqueue_freezing);
4885        workqueue_freezing = true;
4886
4887        list_for_each_entry(wq, &workqueues, list) {
4888                mutex_lock(&wq->mutex);
4889                for_each_pwq(pwq, wq)
4890                        pwq_adjust_max_active(pwq);
4891                mutex_unlock(&wq->mutex);
4892        }
4893
4894        mutex_unlock(&wq_pool_mutex);
4895}
4896
4897/**
4898 * freeze_workqueues_busy - are freezable workqueues still busy?
4899 *
4900 * Check whether freezing is complete.  This function must be called
4901 * between freeze_workqueues_begin() and thaw_workqueues().
4902 *
4903 * CONTEXT:
4904 * Grabs and releases wq_pool_mutex.
4905 *
4906 * Return:
4907 * %true if some freezable workqueues are still busy.  %false if freezing
4908 * is complete.
4909 */
4910bool freeze_workqueues_busy(void)
4911{
4912        bool busy = false;
4913        struct workqueue_struct *wq;
4914        struct pool_workqueue *pwq;
4915
4916        mutex_lock(&wq_pool_mutex);
4917
4918        WARN_ON_ONCE(!workqueue_freezing);
4919
4920        list_for_each_entry(wq, &workqueues, list) {
4921                if (!(wq->flags & WQ_FREEZABLE))
4922                        continue;
4923                /*
4924                 * nr_active is monotonically decreasing.  It's safe
4925                 * to peek without lock.
4926                 */
4927                rcu_read_lock_sched();
4928                for_each_pwq(pwq, wq) {
4929                        WARN_ON_ONCE(pwq->nr_active < 0);
4930                        if (pwq->nr_active) {
4931                                busy = true;
4932                                rcu_read_unlock_sched();
4933                                goto out_unlock;
4934                        }
4935                }
4936                rcu_read_unlock_sched();
4937        }
4938out_unlock:
4939        mutex_unlock(&wq_pool_mutex);
4940        return busy;
4941}
4942
4943/**
4944 * thaw_workqueues - thaw workqueues
4945 *
4946 * Thaw workqueues.  Normal queueing is restored and all collected
4947 * frozen works are transferred to their respective pool worklists.
4948 *
4949 * CONTEXT:
4950 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4951 */
4952void thaw_workqueues(void)
4953{
4954        struct workqueue_struct *wq;
4955        struct pool_workqueue *pwq;
4956
4957        mutex_lock(&wq_pool_mutex);
4958
4959        if (!workqueue_freezing)
4960                goto out_unlock;
4961
4962        workqueue_freezing = false;
4963
4964        /* restore max_active and repopulate worklist */
4965        list_for_each_entry(wq, &workqueues, list) {
4966                mutex_lock(&wq->mutex);
4967                for_each_pwq(pwq, wq)
4968                        pwq_adjust_max_active(pwq);
4969                mutex_unlock(&wq->mutex);
4970        }
4971
4972out_unlock:
4973        mutex_unlock(&wq_pool_mutex);
4974}
4975#endif /* CONFIG_FREEZER */
4976
4977static int workqueue_apply_unbound_cpumask(void)
4978{
4979        LIST_HEAD(ctxs);
4980        int ret = 0;
4981        struct workqueue_struct *wq;
4982        struct apply_wqattrs_ctx *ctx, *n;
4983
4984        lockdep_assert_held(&wq_pool_mutex);
4985
4986        list_for_each_entry(wq, &workqueues, list) {
4987                if (!(wq->flags & WQ_UNBOUND))
4988                        continue;
4989                /* creating multiple pwqs breaks ordering guarantee */
4990                if (wq->flags & __WQ_ORDERED)
4991                        continue;
4992
4993                ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4994                if (!ctx) {
4995                        ret = -ENOMEM;
4996                        break;
4997                }
4998
4999                list_add_tail(&ctx->list, &ctxs);
5000        }
5001
5002        list_for_each_entry_safe(ctx, n, &ctxs, list) {
5003                if (!ret)
5004                        apply_wqattrs_commit(ctx);
5005                apply_wqattrs_cleanup(ctx);
5006        }
5007
5008        return ret;
5009}
5010
5011/**
5012 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5013 *  @cpumask: the cpumask to set
5014 *
5015 *  The low-level workqueues cpumask is a global cpumask that limits
5016 *  the affinity of all unbound workqueues.  This function check the @cpumask
5017 *  and apply it to all unbound workqueues and updates all pwqs of them.
5018 *
5019 *  Retun:      0       - Success
5020 *              -EINVAL - Invalid @cpumask
5021 *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
5022 */
5023int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5024{
5025        int ret = -EINVAL;
5026        cpumask_var_t saved_cpumask;
5027
5028        if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5029                return -ENOMEM;
5030
5031        /*
5032         * Not excluding isolated cpus on purpose.
5033         * If the user wishes to include them, we allow that.
5034         */
5035        cpumask_and(cpumask, cpumask, cpu_possible_mask);
5036        if (!cpumask_empty(cpumask)) {
5037                apply_wqattrs_lock();
5038
5039                /* save the old wq_unbound_cpumask. */
5040                cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5041
5042                /* update wq_unbound_cpumask at first and apply it to wqs. */
5043                cpumask_copy(wq_unbound_cpumask, cpumask);
5044                ret = workqueue_apply_unbound_cpumask();
5045
5046                /* restore the wq_unbound_cpumask when failed. */
5047                if (ret < 0)
5048                        cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5049
5050                apply_wqattrs_unlock();
5051        }
5052
5053        free_cpumask_var(saved_cpumask);
5054        return ret;
5055}
5056
5057#ifdef CONFIG_SYSFS
5058/*
5059 * Workqueues with WQ_SYSFS flag set is visible to userland via
5060 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5061 * following attributes.
5062 *
5063 *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
5064 *  max_active  RW int  : maximum number of in-flight work items
5065 *
5066 * Unbound workqueues have the following extra attributes.
5067 *
5068 *  pool_ids    RO int  : the associated pool IDs for each node
5069 *  nice        RW int  : nice value of the workers
5070 *  cpumask     RW mask : bitmask of allowed CPUs for the workers
5071 *  numa        RW bool : whether enable NUMA affinity
5072 */
5073struct wq_device {
5074        struct workqueue_struct         *wq;
5075        struct device                   dev;
5076};
5077
5078static struct workqueue_struct *dev_to_wq(struct device *dev)
5079{
5080        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5081
5082        return wq_dev->wq;
5083}
5084
5085static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5086                            char *buf)
5087{
5088        struct workqueue_struct *wq = dev_to_wq(dev);
5089
5090        return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5091}
5092static DEVICE_ATTR_RO(per_cpu);
5093
5094static ssize_t max_active_show(struct device *dev,
5095                               struct device_attribute *attr, char *buf)
5096{
5097        struct workqueue_struct *wq = dev_to_wq(dev);
5098
5099        return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5100}
5101
5102static ssize_t max_active_store(struct device *dev,
5103                                struct device_attribute *attr, const char *buf,
5104                                size_t count)
5105{
5106        struct workqueue_struct *wq = dev_to_wq(dev);
5107        int val;
5108
5109        if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5110                return -EINVAL;
5111
5112        workqueue_set_max_active(wq, val);
5113        return count;
5114}
5115static DEVICE_ATTR_RW(max_active);
5116
5117static struct attribute *wq_sysfs_attrs[] = {
5118        &dev_attr_per_cpu.attr,
5119        &dev_attr_max_active.attr,
5120        NULL,
5121};
5122ATTRIBUTE_GROUPS(wq_sysfs);
5123
5124static ssize_t wq_pool_ids_show(struct device *dev,
5125                                struct device_attribute *attr, char *buf)
5126{
5127        struct workqueue_struct *wq = dev_to_wq(dev);
5128        const char *delim = "";
5129        int node, written = 0;
5130
5131        rcu_read_lock_sched();
5132        for_each_node(node) {
5133                written += scnprintf(buf + written, PAGE_SIZE - written,
5134                                     "%s%d:%d", delim, node,
5135                                     unbound_pwq_by_node(wq, node)->pool->id);
5136                delim = " ";
5137        }
5138        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5139        rcu_read_unlock_sched();
5140
5141        return written;
5142}
5143
5144static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5145                            char *buf)
5146{
5147        struct workqueue_struct *wq = dev_to_wq(dev);
5148        int written;
5149
5150        mutex_lock(&wq->mutex);
5151        written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5152        mutex_unlock(&wq->mutex);
5153
5154        return written;
5155}
5156
5157/* prepare workqueue_attrs for sysfs store operations */
5158static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5159{
5160        struct workqueue_attrs *attrs;
5161
5162        lockdep_assert_held(&wq_pool_mutex);
5163
5164        attrs = alloc_workqueue_attrs(GFP_KERNEL);
5165        if (!attrs)
5166                return NULL;
5167
5168        copy_workqueue_attrs(attrs, wq->unbound_attrs);
5169        return attrs;
5170}
5171
5172static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5173                             const char *buf, size_t count)
5174{
5175        struct workqueue_struct *wq = dev_to_wq(dev);
5176        struct workqueue_attrs *attrs;
5177        int ret = -ENOMEM;
5178
5179        apply_wqattrs_lock();
5180
5181        attrs = wq_sysfs_prep_attrs(wq);
5182        if (!attrs)
5183                goto out_unlock;
5184
5185        if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5186            attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5187                ret = apply_workqueue_attrs_locked(wq, attrs);
5188        else
5189                ret = -EINVAL;
5190
5191out_unlock:
5192        apply_wqattrs_unlock();
5193        free_workqueue_attrs(attrs);
5194        return ret ?: count;
5195}
5196
5197static ssize_t wq_cpumask_show(struct device *dev,
5198                               struct device_attribute *attr, char *buf)
5199{
5200        struct workqueue_struct *wq = dev_to_wq(dev);
5201        int written;
5202
5203        mutex_lock(&wq->mutex);
5204        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5205                            cpumask_pr_args(wq->unbound_attrs->cpumask));
5206        mutex_unlock(&wq->mutex);
5207        return written;
5208}
5209
5210static ssize_t wq_cpumask_store(struct device *dev,
5211                                struct device_attribute *attr,
5212                                const char *buf, size_t count)
5213{
5214        struct workqueue_struct *wq = dev_to_wq(dev);
5215        struct workqueue_attrs *attrs;
5216        int ret = -ENOMEM;
5217
5218        apply_wqattrs_lock();
5219
5220        attrs = wq_sysfs_prep_attrs(wq);
5221        if (!attrs)
5222                goto out_unlock;
5223
5224        ret = cpumask_parse(buf, attrs->cpumask);
5225        if (!ret)
5226                ret = apply_workqueue_attrs_locked(wq, attrs);
5227
5228out_unlock:
5229        apply_wqattrs_unlock();
5230        free_workqueue_attrs(attrs);
5231        return ret ?: count;
5232}
5233
5234static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5235                            char *buf)
5236{
5237        struct workqueue_struct *wq = dev_to_wq(dev);
5238        int written;
5239
5240        mutex_lock(&wq->mutex);
5241        written = scnprintf(buf, PAGE_SIZE, "%d\n",
5242                            !wq->unbound_attrs->no_numa);
5243        mutex_unlock(&wq->mutex);
5244
5245        return written;
5246}
5247
5248static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5249                             const char *buf, size_t count)
5250{
5251        struct workqueue_struct *wq = dev_to_wq(dev);
5252        struct workqueue_attrs *attrs;
5253        int v, ret = -ENOMEM;
5254
5255        apply_wqattrs_lock();
5256
5257        attrs = wq_sysfs_prep_attrs(wq);
5258        if (!attrs)
5259                goto out_unlock;
5260
5261        ret = -EINVAL;
5262        if (sscanf(buf, "%d", &v) == 1) {
5263                attrs->no_numa = !v;
5264                ret = apply_workqueue_attrs_locked(wq, attrs);
5265        }
5266
5267out_unlock:
5268        apply_wqattrs_unlock();
5269        free_workqueue_attrs(attrs);
5270        return ret ?: count;
5271}
5272
5273static struct device_attribute wq_sysfs_unbound_attrs[] = {
5274        __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5275        __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5276        __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5277        __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5278        __ATTR_NULL,
5279};
5280
5281static struct bus_type wq_subsys = {
5282        .name                           = "workqueue",
5283        .dev_groups                     = wq_sysfs_groups,
5284};
5285
5286static ssize_t wq_unbound_cpumask_show(struct device *dev,
5287                struct device_attribute *attr, char *buf)
5288{
5289        int written;
5290
5291        mutex_lock(&wq_pool_mutex);
5292        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5293                            cpumask_pr_args(wq_unbound_cpumask));
5294        mutex_unlock(&wq_pool_mutex);
5295
5296        return written;
5297}
5298
5299static ssize_t wq_unbound_cpumask_store(struct device *dev,
5300                struct device_attribute *attr, const char *buf, size_t count)
5301{
5302        cpumask_var_t cpumask;
5303        int ret;
5304
5305        if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5306                return -ENOMEM;
5307
5308        ret = cpumask_parse(buf, cpumask);
5309        if (!ret)
5310                ret = workqueue_set_unbound_cpumask(cpumask);
5311
5312        free_cpumask_var(cpumask);
5313        return ret ? ret : count;
5314}
5315
5316static struct device_attribute wq_sysfs_cpumask_attr =
5317        __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5318               wq_unbound_cpumask_store);
5319
5320static int __init wq_sysfs_init(void)
5321{
5322        int err;
5323
5324        err = subsys_virtual_register(&wq_subsys, NULL);
5325        if (err)
5326                return err;
5327
5328        return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5329}
5330core_initcall(wq_sysfs_init);
5331
5332static void wq_device_release(struct device *dev)
5333{
5334        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5335
5336        kfree(wq_dev);
5337}
5338
5339/**
5340 * workqueue_sysfs_register - make a workqueue visible in sysfs
5341 * @wq: the workqueue to register
5342 *
5343 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5345 * which is the preferred method.
5346 *
5347 * Workqueue user should use this function directly iff it wants to apply
5348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5349 * apply_workqueue_attrs() may race against userland updating the
5350 * attributes.
5351 *
5352 * Return: 0 on success, -errno on failure.
5353 */
5354int workqueue_sysfs_register(struct workqueue_struct *wq)
5355{
5356        struct wq_device *wq_dev;
5357        int ret;
5358
5359        /*
5360         * Adjusting max_active or creating new pwqs by applying
5361         * attributes breaks ordering guarantee.  Disallow exposing ordered
5362         * workqueues.
5363         */
5364        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5365                return -EINVAL;
5366
5367        wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5368        if (!wq_dev)
5369                return -ENOMEM;
5370
5371        wq_dev->wq = wq;
5372        wq_dev->dev.bus = &wq_subsys;
5373        wq_dev->dev.release = wq_device_release;
5374        dev_set_name(&wq_dev->dev, "%s", wq->name);
5375
5376        /*
5377         * unbound_attrs are created separately.  Suppress uevent until
5378         * everything is ready.
5379         */
5380        dev_set_uevent_suppress(&wq_dev->dev, true);
5381
5382        ret = device_register(&wq_dev->dev);
5383        if (ret) {
5384                put_device(&wq_dev->dev);
5385                wq->wq_dev = NULL;
5386                return ret;
5387        }
5388
5389        if (wq->flags & WQ_UNBOUND) {
5390                struct device_attribute *attr;
5391
5392                for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5393                        ret = device_create_file(&wq_dev->dev, attr);
5394                        if (ret) {
5395                                device_unregister(&wq_dev->dev);
5396                                wq->wq_dev = NULL;
5397                                return ret;
5398                        }
5399                }
5400        }
5401
5402        dev_set_uevent_suppress(&wq_dev->dev, false);
5403        kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5404        return 0;
5405}
5406
5407/**
5408 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5409 * @wq: the workqueue to unregister
5410 *
5411 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5412 */
5413static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5414{
5415        struct wq_device *wq_dev = wq->wq_dev;
5416
5417        if (!wq->wq_dev)
5418                return;
5419
5420        wq->wq_dev = NULL;
5421        device_unregister(&wq_dev->dev);
5422}
5423#else   /* CONFIG_SYSFS */
5424static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
5425#endif  /* CONFIG_SYSFS */
5426
5427/*
5428 * Workqueue watchdog.
5429 *
5430 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5431 * flush dependency, a concurrency managed work item which stays RUNNING
5432 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5433 * usual warning mechanisms don't trigger and internal workqueue state is
5434 * largely opaque.
5435 *
5436 * Workqueue watchdog monitors all worker pools periodically and dumps
5437 * state if some pools failed to make forward progress for a while where
5438 * forward progress is defined as the first item on ->worklist changing.
5439 *
5440 * This mechanism is controlled through the kernel parameter
5441 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5442 * corresponding sysfs parameter file.
5443 */
5444#ifdef CONFIG_WQ_WATCHDOG
5445
5446static unsigned long wq_watchdog_thresh = 30;
5447static struct timer_list wq_watchdog_timer;
5448
5449static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5450static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5451
5452static void wq_watchdog_reset_touched(void)
5453{
5454        int cpu;
5455
5456        wq_watchdog_touched = jiffies;
5457        for_each_possible_cpu(cpu)
5458                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5459}
5460
5461static void wq_watchdog_timer_fn(struct timer_list *unused)
5462{
5463        unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5464        bool lockup_detected = false;
5465        struct worker_pool *pool;
5466        int pi;
5467
5468        if (!thresh)
5469                return;
5470
5471        rcu_read_lock();
5472
5473        for_each_pool(pool, pi) {
5474                unsigned long pool_ts, touched, ts;
5475
5476                if (list_empty(&pool->worklist))
5477                        continue;
5478
5479                /* get the latest of pool and touched timestamps */
5480                pool_ts = READ_ONCE(pool->watchdog_ts);
5481                touched = READ_ONCE(wq_watchdog_touched);
5482
5483                if (time_after(pool_ts, touched))
5484                        ts = pool_ts;
5485                else
5486                        ts = touched;
5487
5488                if (pool->cpu >= 0) {
5489                        unsigned long cpu_touched =
5490                                READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5491                                                  pool->cpu));
5492                        if (time_after(cpu_touched, ts))
5493                                ts = cpu_touched;
5494                }
5495
5496                /* did we stall? */
5497                if (time_after(jiffies, ts + thresh)) {
5498                        lockup_detected = true;
5499                        pr_emerg("BUG: workqueue lockup - pool");
5500                        pr_cont_pool_info(pool);
5501                        pr_cont(" stuck for %us!\n",
5502                                jiffies_to_msecs(jiffies - pool_ts) / 1000);
5503                }
5504        }
5505
5506        rcu_read_unlock();
5507
5508        if (lockup_detected)
5509                show_workqueue_state();
5510
5511        wq_watchdog_reset_touched();
5512        mod_timer(&wq_watchdog_timer, jiffies + thresh);
5513}
5514
5515void wq_watchdog_touch(int cpu)
5516{
5517        if (cpu >= 0)
5518                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5519        else
5520                wq_watchdog_touched = jiffies;
5521}
5522
5523static void wq_watchdog_set_thresh(unsigned long thresh)
5524{
5525        wq_watchdog_thresh = 0;
5526        del_timer_sync(&wq_watchdog_timer);
5527
5528        if (thresh) {
5529                wq_watchdog_thresh = thresh;
5530                wq_watchdog_reset_touched();
5531                mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5532        }
5533}
5534
5535static int wq_watchdog_param_set_thresh(const char *val,
5536                                        const struct kernel_param *kp)
5537{
5538        unsigned long thresh;
5539        int ret;
5540
5541        ret = kstrtoul(val, 0, &thresh);
5542        if (ret)
5543                return ret;
5544
5545        if (system_wq)
5546                wq_watchdog_set_thresh(thresh);
5547        else
5548                wq_watchdog_thresh = thresh;
5549
5550        return 0;
5551}
5552
5553static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5554        .set    = wq_watchdog_param_set_thresh,
5555        .get    = param_get_ulong,
5556};
5557
5558module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5559                0644);
5560
5561static void wq_watchdog_init(void)
5562{
5563        timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5564        wq_watchdog_set_thresh(wq_watchdog_thresh);
5565}
5566
5567#else   /* CONFIG_WQ_WATCHDOG */
5568
5569static inline void wq_watchdog_init(void) { }
5570
5571#endif  /* CONFIG_WQ_WATCHDOG */
5572
5573static void __init wq_numa_init(void)
5574{
5575        cpumask_var_t *tbl;
5576        int node, cpu;
5577
5578        if (num_possible_nodes() <= 1)
5579                return;
5580
5581        if (wq_disable_numa) {
5582                pr_info("workqueue: NUMA affinity support disabled\n");
5583                return;
5584        }
5585
5586        wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5587        BUG_ON(!wq_update_unbound_numa_attrs_buf);
5588
5589        /*
5590         * We want masks of possible CPUs of each node which isn't readily
5591         * available.  Build one from cpu_to_node() which should have been
5592         * fully initialized by now.
5593         */
5594        tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5595        BUG_ON(!tbl);
5596
5597        for_each_node(node)
5598                BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5599                                node_online(node) ? node : NUMA_NO_NODE));
5600
5601        for_each_possible_cpu(cpu) {
5602                node = cpu_to_node(cpu);
5603                if (WARN_ON(node == NUMA_NO_NODE)) {
5604                        pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5605                        /* happens iff arch is bonkers, let's just proceed */
5606                        return;
5607                }
5608                cpumask_set_cpu(cpu, tbl[node]);
5609        }
5610
5611        wq_numa_possible_cpumask = tbl;
5612        wq_numa_enabled = true;
5613}
5614
5615/**
5616 * workqueue_init_early - early init for workqueue subsystem
5617 *
5618 * This is the first half of two-staged workqueue subsystem initialization
5619 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5620 * idr are up.  It sets up all the data structures and system workqueues
5621 * and allows early boot code to create workqueues and queue/cancel work
5622 * items.  Actual work item execution starts only after kthreads can be
5623 * created and scheduled right before early initcalls.
5624 */
5625int __init workqueue_init_early(void)
5626{
5627        int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5628        int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5629        int i, cpu;
5630
5631        WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5632
5633        BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5634        cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5635
5636        pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5637
5638        /* initialize CPU pools */
5639        for_each_possible_cpu(cpu) {
5640                struct worker_pool *pool;
5641
5642                i = 0;
5643                for_each_cpu_worker_pool(pool, cpu) {
5644                        BUG_ON(init_worker_pool(pool));
5645                        pool->cpu = cpu;
5646                        cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5647                        pool->attrs->nice = std_nice[i++];
5648                        pool->node = cpu_to_node(cpu);
5649
5650                        /* alloc pool ID */
5651                        mutex_lock(&wq_pool_mutex);
5652                        BUG_ON(worker_pool_assign_id(pool));
5653                        mutex_unlock(&wq_pool_mutex);
5654                }
5655        }
5656
5657        /* create default unbound and ordered wq attrs */
5658        for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5659                struct workqueue_attrs *attrs;
5660
5661                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5662                attrs->nice = std_nice[i];
5663                unbound_std_wq_attrs[i] = attrs;
5664
5665                /*
5666                 * An ordered wq should have only one pwq as ordering is
5667                 * guaranteed by max_active which is enforced by pwqs.
5668                 * Turn off NUMA so that dfl_pwq is used for all nodes.
5669                 */
5670                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5671                attrs->nice = std_nice[i];
5672                attrs->no_numa = true;
5673                ordered_wq_attrs[i] = attrs;
5674        }
5675
5676        system_wq = alloc_workqueue("events", 0, 0);
5677        system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5678        system_long_wq = alloc_workqueue("events_long", 0, 0);
5679        system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5680                                            WQ_UNBOUND_MAX_ACTIVE);
5681        system_freezable_wq = alloc_workqueue("events_freezable",
5682                                              WQ_FREEZABLE, 0);
5683        system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5684                                              WQ_POWER_EFFICIENT, 0);
5685        system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5686                                              WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5687                                              0);
5688        BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5689               !system_unbound_wq || !system_freezable_wq ||
5690               !system_power_efficient_wq ||
5691               !system_freezable_power_efficient_wq);
5692
5693        return 0;
5694}
5695
5696/**
5697 * workqueue_init - bring workqueue subsystem fully online
5698 *
5699 * This is the latter half of two-staged workqueue subsystem initialization
5700 * and invoked as soon as kthreads can be created and scheduled.
5701 * Workqueues have been created and work items queued on them, but there
5702 * are no kworkers executing the work items yet.  Populate the worker pools
5703 * with the initial workers and enable future kworker creations.
5704 */
5705int __init workqueue_init(void)
5706{
5707        struct workqueue_struct *wq;
5708        struct worker_pool *pool;
5709        int cpu, bkt;
5710
5711        /*
5712         * It'd be simpler to initialize NUMA in workqueue_init_early() but
5713         * CPU to node mapping may not be available that early on some
5714         * archs such as power and arm64.  As per-cpu pools created
5715         * previously could be missing node hint and unbound pools NUMA
5716         * affinity, fix them up.
5717         *
5718         * Also, while iterating workqueues, create rescuers if requested.
5719         */
5720        wq_numa_init();
5721
5722        mutex_lock(&wq_pool_mutex);
5723
5724        for_each_possible_cpu(cpu) {
5725                for_each_cpu_worker_pool(pool, cpu) {
5726                        pool->node = cpu_to_node(cpu);
5727                }
5728        }
5729
5730        list_for_each_entry(wq, &workqueues, list) {
5731                wq_update_unbound_numa(wq, smp_processor_id(), true);
5732                WARN(init_rescuer(wq),
5733                     "workqueue: failed to create early rescuer for %s",
5734                     wq->name);
5735        }
5736
5737        mutex_unlock(&wq_pool_mutex);
5738
5739        /* create the initial workers */
5740        for_each_online_cpu(cpu) {
5741                for_each_cpu_worker_pool(pool, cpu) {
5742                        pool->flags &= ~POOL_DISASSOCIATED;
5743                        BUG_ON(!create_worker(pool));
5744                }
5745        }
5746
5747        hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5748                BUG_ON(!create_worker(pool));
5749
5750        wq_online = true;
5751        wq_watchdog_init();
5752
5753        return 0;
5754}
5755