linux/lib/bitmap.c
<<
>>
Prefs
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/export.h>
   9#include <linux/thread_info.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/kernel.h>
  16#include <linux/string.h>
  17#include <linux/uaccess.h>
  18
  19#include <asm/page.h>
  20
  21/**
  22 * DOC: bitmap introduction
  23 *
  24 * bitmaps provide an array of bits, implemented using an an
  25 * array of unsigned longs.  The number of valid bits in a
  26 * given bitmap does _not_ need to be an exact multiple of
  27 * BITS_PER_LONG.
  28 *
  29 * The possible unused bits in the last, partially used word
  30 * of a bitmap are 'don't care'.  The implementation makes
  31 * no particular effort to keep them zero.  It ensures that
  32 * their value will not affect the results of any operation.
  33 * The bitmap operations that return Boolean (bitmap_empty,
  34 * for example) or scalar (bitmap_weight, for example) results
  35 * carefully filter out these unused bits from impacting their
  36 * results.
  37 *
  38 * These operations actually hold to a slightly stronger rule:
  39 * if you don't input any bitmaps to these ops that have some
  40 * unused bits set, then they won't output any set unused bits
  41 * in output bitmaps.
  42 *
  43 * The byte ordering of bitmaps is more natural on little
  44 * endian architectures.  See the big-endian headers
  45 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  46 * for the best explanations of this ordering.
  47 */
  48
  49int __bitmap_equal(const unsigned long *bitmap1,
  50                const unsigned long *bitmap2, unsigned int bits)
  51{
  52        unsigned int k, lim = bits/BITS_PER_LONG;
  53        for (k = 0; k < lim; ++k)
  54                if (bitmap1[k] != bitmap2[k])
  55                        return 0;
  56
  57        if (bits % BITS_PER_LONG)
  58                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  59                        return 0;
  60
  61        return 1;
  62}
  63EXPORT_SYMBOL(__bitmap_equal);
  64
  65void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  66{
  67        unsigned int k, lim = bits/BITS_PER_LONG;
  68        for (k = 0; k < lim; ++k)
  69                dst[k] = ~src[k];
  70
  71        if (bits % BITS_PER_LONG)
  72                dst[k] = ~src[k];
  73}
  74EXPORT_SYMBOL(__bitmap_complement);
  75
  76/**
  77 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  78 *   @dst : destination bitmap
  79 *   @src : source bitmap
  80 *   @shift : shift by this many bits
  81 *   @nbits : bitmap size, in bits
  82 *
  83 * Shifting right (dividing) means moving bits in the MS -> LS bit
  84 * direction.  Zeros are fed into the vacated MS positions and the
  85 * LS bits shifted off the bottom are lost.
  86 */
  87void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
  88                        unsigned shift, unsigned nbits)
  89{
  90        unsigned k, lim = BITS_TO_LONGS(nbits);
  91        unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  92        unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
  93        for (k = 0; off + k < lim; ++k) {
  94                unsigned long upper, lower;
  95
  96                /*
  97                 * If shift is not word aligned, take lower rem bits of
  98                 * word above and make them the top rem bits of result.
  99                 */
 100                if (!rem || off + k + 1 >= lim)
 101                        upper = 0;
 102                else {
 103                        upper = src[off + k + 1];
 104                        if (off + k + 1 == lim - 1)
 105                                upper &= mask;
 106                        upper <<= (BITS_PER_LONG - rem);
 107                }
 108                lower = src[off + k];
 109                if (off + k == lim - 1)
 110                        lower &= mask;
 111                lower >>= rem;
 112                dst[k] = lower | upper;
 113        }
 114        if (off)
 115                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 116}
 117EXPORT_SYMBOL(__bitmap_shift_right);
 118
 119
 120/**
 121 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 122 *   @dst : destination bitmap
 123 *   @src : source bitmap
 124 *   @shift : shift by this many bits
 125 *   @nbits : bitmap size, in bits
 126 *
 127 * Shifting left (multiplying) means moving bits in the LS -> MS
 128 * direction.  Zeros are fed into the vacated LS bit positions
 129 * and those MS bits shifted off the top are lost.
 130 */
 131
 132void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 133                        unsigned int shift, unsigned int nbits)
 134{
 135        int k;
 136        unsigned int lim = BITS_TO_LONGS(nbits);
 137        unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 138        for (k = lim - off - 1; k >= 0; --k) {
 139                unsigned long upper, lower;
 140
 141                /*
 142                 * If shift is not word aligned, take upper rem bits of
 143                 * word below and make them the bottom rem bits of result.
 144                 */
 145                if (rem && k > 0)
 146                        lower = src[k - 1] >> (BITS_PER_LONG - rem);
 147                else
 148                        lower = 0;
 149                upper = src[k] << rem;
 150                dst[k + off] = lower | upper;
 151        }
 152        if (off)
 153                memset(dst, 0, off*sizeof(unsigned long));
 154}
 155EXPORT_SYMBOL(__bitmap_shift_left);
 156
 157int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 158                                const unsigned long *bitmap2, unsigned int bits)
 159{
 160        unsigned int k;
 161        unsigned int lim = bits/BITS_PER_LONG;
 162        unsigned long result = 0;
 163
 164        for (k = 0; k < lim; k++)
 165                result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 166        if (bits % BITS_PER_LONG)
 167                result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 168                           BITMAP_LAST_WORD_MASK(bits));
 169        return result != 0;
 170}
 171EXPORT_SYMBOL(__bitmap_and);
 172
 173void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 174                                const unsigned long *bitmap2, unsigned int bits)
 175{
 176        unsigned int k;
 177        unsigned int nr = BITS_TO_LONGS(bits);
 178
 179        for (k = 0; k < nr; k++)
 180                dst[k] = bitmap1[k] | bitmap2[k];
 181}
 182EXPORT_SYMBOL(__bitmap_or);
 183
 184void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 185                                const unsigned long *bitmap2, unsigned int bits)
 186{
 187        unsigned int k;
 188        unsigned int nr = BITS_TO_LONGS(bits);
 189
 190        for (k = 0; k < nr; k++)
 191                dst[k] = bitmap1[k] ^ bitmap2[k];
 192}
 193EXPORT_SYMBOL(__bitmap_xor);
 194
 195int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 196                                const unsigned long *bitmap2, unsigned int bits)
 197{
 198        unsigned int k;
 199        unsigned int lim = bits/BITS_PER_LONG;
 200        unsigned long result = 0;
 201
 202        for (k = 0; k < lim; k++)
 203                result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 204        if (bits % BITS_PER_LONG)
 205                result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 206                           BITMAP_LAST_WORD_MASK(bits));
 207        return result != 0;
 208}
 209EXPORT_SYMBOL(__bitmap_andnot);
 210
 211int __bitmap_intersects(const unsigned long *bitmap1,
 212                        const unsigned long *bitmap2, unsigned int bits)
 213{
 214        unsigned int k, lim = bits/BITS_PER_LONG;
 215        for (k = 0; k < lim; ++k)
 216                if (bitmap1[k] & bitmap2[k])
 217                        return 1;
 218
 219        if (bits % BITS_PER_LONG)
 220                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 221                        return 1;
 222        return 0;
 223}
 224EXPORT_SYMBOL(__bitmap_intersects);
 225
 226int __bitmap_subset(const unsigned long *bitmap1,
 227                    const unsigned long *bitmap2, unsigned int bits)
 228{
 229        unsigned int k, lim = bits/BITS_PER_LONG;
 230        for (k = 0; k < lim; ++k)
 231                if (bitmap1[k] & ~bitmap2[k])
 232                        return 0;
 233
 234        if (bits % BITS_PER_LONG)
 235                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 236                        return 0;
 237        return 1;
 238}
 239EXPORT_SYMBOL(__bitmap_subset);
 240
 241int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 242{
 243        unsigned int k, lim = bits/BITS_PER_LONG;
 244        int w = 0;
 245
 246        for (k = 0; k < lim; k++)
 247                w += hweight_long(bitmap[k]);
 248
 249        if (bits % BITS_PER_LONG)
 250                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 251
 252        return w;
 253}
 254EXPORT_SYMBOL(__bitmap_weight);
 255
 256void __bitmap_set(unsigned long *map, unsigned int start, int len)
 257{
 258        unsigned long *p = map + BIT_WORD(start);
 259        const unsigned int size = start + len;
 260        int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 261        unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 262
 263        while (len - bits_to_set >= 0) {
 264                *p |= mask_to_set;
 265                len -= bits_to_set;
 266                bits_to_set = BITS_PER_LONG;
 267                mask_to_set = ~0UL;
 268                p++;
 269        }
 270        if (len) {
 271                mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 272                *p |= mask_to_set;
 273        }
 274}
 275EXPORT_SYMBOL(__bitmap_set);
 276
 277void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 278{
 279        unsigned long *p = map + BIT_WORD(start);
 280        const unsigned int size = start + len;
 281        int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 282        unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 283
 284        while (len - bits_to_clear >= 0) {
 285                *p &= ~mask_to_clear;
 286                len -= bits_to_clear;
 287                bits_to_clear = BITS_PER_LONG;
 288                mask_to_clear = ~0UL;
 289                p++;
 290        }
 291        if (len) {
 292                mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 293                *p &= ~mask_to_clear;
 294        }
 295}
 296EXPORT_SYMBOL(__bitmap_clear);
 297
 298/**
 299 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 300 * @map: The address to base the search on
 301 * @size: The bitmap size in bits
 302 * @start: The bitnumber to start searching at
 303 * @nr: The number of zeroed bits we're looking for
 304 * @align_mask: Alignment mask for zero area
 305 * @align_offset: Alignment offset for zero area.
 306 *
 307 * The @align_mask should be one less than a power of 2; the effect is that
 308 * the bit offset of all zero areas this function finds plus @align_offset
 309 * is multiple of that power of 2.
 310 */
 311unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 312                                             unsigned long size,
 313                                             unsigned long start,
 314                                             unsigned int nr,
 315                                             unsigned long align_mask,
 316                                             unsigned long align_offset)
 317{
 318        unsigned long index, end, i;
 319again:
 320        index = find_next_zero_bit(map, size, start);
 321
 322        /* Align allocation */
 323        index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 324
 325        end = index + nr;
 326        if (end > size)
 327                return end;
 328        i = find_next_bit(map, end, index);
 329        if (i < end) {
 330                start = i + 1;
 331                goto again;
 332        }
 333        return index;
 334}
 335EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 336
 337/*
 338 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 339 * second version by Paul Jackson, third by Joe Korty.
 340 */
 341
 342#define CHUNKSZ                         32
 343#define nbits_to_hold_value(val)        fls(val)
 344#define BASEDEC 10              /* fancier cpuset lists input in decimal */
 345
 346/**
 347 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 348 * @buf: pointer to buffer containing string.
 349 * @buflen: buffer size in bytes.  If string is smaller than this
 350 *    then it must be terminated with a \0.
 351 * @is_user: location of buffer, 0 indicates kernel space
 352 * @maskp: pointer to bitmap array that will contain result.
 353 * @nmaskbits: size of bitmap, in bits.
 354 *
 355 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 356 * bits of the resultant bitmask.  No chunk may specify a value larger
 357 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 358 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 359 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 360 * Leading and trailing whitespace accepted, but not embedded whitespace.
 361 */
 362int __bitmap_parse(const char *buf, unsigned int buflen,
 363                int is_user, unsigned long *maskp,
 364                int nmaskbits)
 365{
 366        int c, old_c, totaldigits, ndigits, nchunks, nbits;
 367        u32 chunk;
 368        const char __user __force *ubuf = (const char __user __force *)buf;
 369
 370        bitmap_zero(maskp, nmaskbits);
 371
 372        nchunks = nbits = totaldigits = c = 0;
 373        do {
 374                chunk = 0;
 375                ndigits = totaldigits;
 376
 377                /* Get the next chunk of the bitmap */
 378                while (buflen) {
 379                        old_c = c;
 380                        if (is_user) {
 381                                if (__get_user(c, ubuf++))
 382                                        return -EFAULT;
 383                        }
 384                        else
 385                                c = *buf++;
 386                        buflen--;
 387                        if (isspace(c))
 388                                continue;
 389
 390                        /*
 391                         * If the last character was a space and the current
 392                         * character isn't '\0', we've got embedded whitespace.
 393                         * This is a no-no, so throw an error.
 394                         */
 395                        if (totaldigits && c && isspace(old_c))
 396                                return -EINVAL;
 397
 398                        /* A '\0' or a ',' signal the end of the chunk */
 399                        if (c == '\0' || c == ',')
 400                                break;
 401
 402                        if (!isxdigit(c))
 403                                return -EINVAL;
 404
 405                        /*
 406                         * Make sure there are at least 4 free bits in 'chunk'.
 407                         * If not, this hexdigit will overflow 'chunk', so
 408                         * throw an error.
 409                         */
 410                        if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 411                                return -EOVERFLOW;
 412
 413                        chunk = (chunk << 4) | hex_to_bin(c);
 414                        totaldigits++;
 415                }
 416                if (ndigits == totaldigits)
 417                        return -EINVAL;
 418                if (nchunks == 0 && chunk == 0)
 419                        continue;
 420
 421                __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 422                *maskp |= chunk;
 423                nchunks++;
 424                nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 425                if (nbits > nmaskbits)
 426                        return -EOVERFLOW;
 427        } while (buflen && c == ',');
 428
 429        return 0;
 430}
 431EXPORT_SYMBOL(__bitmap_parse);
 432
 433/**
 434 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 435 *
 436 * @ubuf: pointer to user buffer containing string.
 437 * @ulen: buffer size in bytes.  If string is smaller than this
 438 *    then it must be terminated with a \0.
 439 * @maskp: pointer to bitmap array that will contain result.
 440 * @nmaskbits: size of bitmap, in bits.
 441 *
 442 * Wrapper for __bitmap_parse(), providing it with user buffer.
 443 *
 444 * We cannot have this as an inline function in bitmap.h because it needs
 445 * linux/uaccess.h to get the access_ok() declaration and this causes
 446 * cyclic dependencies.
 447 */
 448int bitmap_parse_user(const char __user *ubuf,
 449                        unsigned int ulen, unsigned long *maskp,
 450                        int nmaskbits)
 451{
 452        if (!access_ok(VERIFY_READ, ubuf, ulen))
 453                return -EFAULT;
 454        return __bitmap_parse((const char __force *)ubuf,
 455                                ulen, 1, maskp, nmaskbits);
 456
 457}
 458EXPORT_SYMBOL(bitmap_parse_user);
 459
 460/**
 461 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 462 * @list: indicates whether the bitmap must be list
 463 * @buf: page aligned buffer into which string is placed
 464 * @maskp: pointer to bitmap to convert
 465 * @nmaskbits: size of bitmap, in bits
 466 *
 467 * Output format is a comma-separated list of decimal numbers and
 468 * ranges if list is specified or hex digits grouped into comma-separated
 469 * sets of 8 digits/set. Returns the number of characters written to buf.
 470 *
 471 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
 472 * sufficient storage remains at @buf to accommodate the
 473 * bitmap_print_to_pagebuf() output.
 474 */
 475int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 476                            int nmaskbits)
 477{
 478        ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
 479        int n = 0;
 480
 481        if (len > 1)
 482                n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 483                           scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 484        return n;
 485}
 486EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 487
 488/**
 489 * __bitmap_parselist - convert list format ASCII string to bitmap
 490 * @buf: read nul-terminated user string from this buffer
 491 * @buflen: buffer size in bytes.  If string is smaller than this
 492 *    then it must be terminated with a \0.
 493 * @is_user: location of buffer, 0 indicates kernel space
 494 * @maskp: write resulting mask here
 495 * @nmaskbits: number of bits in mask to be written
 496 *
 497 * Input format is a comma-separated list of decimal numbers and
 498 * ranges.  Consecutively set bits are shown as two hyphen-separated
 499 * decimal numbers, the smallest and largest bit numbers set in
 500 * the range.
 501 * Optionally each range can be postfixed to denote that only parts of it
 502 * should be set. The range will divided to groups of specific size.
 503 * From each group will be used only defined amount of bits.
 504 * Syntax: range:used_size/group_size
 505 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 506 *
 507 * Returns: 0 on success, -errno on invalid input strings. Error values:
 508 *
 509 *   - ``-EINVAL``: second number in range smaller than first
 510 *   - ``-EINVAL``: invalid character in string
 511 *   - ``-ERANGE``: bit number specified too large for mask
 512 */
 513static int __bitmap_parselist(const char *buf, unsigned int buflen,
 514                int is_user, unsigned long *maskp,
 515                int nmaskbits)
 516{
 517        unsigned int a, b, old_a, old_b;
 518        unsigned int group_size, used_size, off;
 519        int c, old_c, totaldigits, ndigits;
 520        const char __user __force *ubuf = (const char __user __force *)buf;
 521        int at_start, in_range, in_partial_range;
 522
 523        totaldigits = c = 0;
 524        old_a = old_b = 0;
 525        group_size = used_size = 0;
 526        bitmap_zero(maskp, nmaskbits);
 527        do {
 528                at_start = 1;
 529                in_range = 0;
 530                in_partial_range = 0;
 531                a = b = 0;
 532                ndigits = totaldigits;
 533
 534                /* Get the next cpu# or a range of cpu#'s */
 535                while (buflen) {
 536                        old_c = c;
 537                        if (is_user) {
 538                                if (__get_user(c, ubuf++))
 539                                        return -EFAULT;
 540                        } else
 541                                c = *buf++;
 542                        buflen--;
 543                        if (isspace(c))
 544                                continue;
 545
 546                        /* A '\0' or a ',' signal the end of a cpu# or range */
 547                        if (c == '\0' || c == ',')
 548                                break;
 549                        /*
 550                        * whitespaces between digits are not allowed,
 551                        * but it's ok if whitespaces are on head or tail.
 552                        * when old_c is whilespace,
 553                        * if totaldigits == ndigits, whitespace is on head.
 554                        * if whitespace is on tail, it should not run here.
 555                        * as c was ',' or '\0',
 556                        * the last code line has broken the current loop.
 557                        */
 558                        if ((totaldigits != ndigits) && isspace(old_c))
 559                                return -EINVAL;
 560
 561                        if (c == '/') {
 562                                used_size = a;
 563                                at_start = 1;
 564                                in_range = 0;
 565                                a = b = 0;
 566                                continue;
 567                        }
 568
 569                        if (c == ':') {
 570                                old_a = a;
 571                                old_b = b;
 572                                at_start = 1;
 573                                in_range = 0;
 574                                in_partial_range = 1;
 575                                a = b = 0;
 576                                continue;
 577                        }
 578
 579                        if (c == '-') {
 580                                if (at_start || in_range)
 581                                        return -EINVAL;
 582                                b = 0;
 583                                in_range = 1;
 584                                at_start = 1;
 585                                continue;
 586                        }
 587
 588                        if (!isdigit(c))
 589                                return -EINVAL;
 590
 591                        b = b * 10 + (c - '0');
 592                        if (!in_range)
 593                                a = b;
 594                        at_start = 0;
 595                        totaldigits++;
 596                }
 597                if (ndigits == totaldigits)
 598                        continue;
 599                if (in_partial_range) {
 600                        group_size = a;
 601                        a = old_a;
 602                        b = old_b;
 603                        old_a = old_b = 0;
 604                } else {
 605                        used_size = group_size = b - a + 1;
 606                }
 607                /* if no digit is after '-', it's wrong*/
 608                if (at_start && in_range)
 609                        return -EINVAL;
 610                if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
 611                        return -EINVAL;
 612                if (b >= nmaskbits)
 613                        return -ERANGE;
 614                while (a <= b) {
 615                        off = min(b - a + 1, used_size);
 616                        bitmap_set(maskp, a, off);
 617                        a += group_size;
 618                }
 619        } while (buflen && c == ',');
 620        return 0;
 621}
 622
 623int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 624{
 625        char *nl  = strchrnul(bp, '\n');
 626        int len = nl - bp;
 627
 628        return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
 629}
 630EXPORT_SYMBOL(bitmap_parselist);
 631
 632
 633/**
 634 * bitmap_parselist_user()
 635 *
 636 * @ubuf: pointer to user buffer containing string.
 637 * @ulen: buffer size in bytes.  If string is smaller than this
 638 *    then it must be terminated with a \0.
 639 * @maskp: pointer to bitmap array that will contain result.
 640 * @nmaskbits: size of bitmap, in bits.
 641 *
 642 * Wrapper for bitmap_parselist(), providing it with user buffer.
 643 *
 644 * We cannot have this as an inline function in bitmap.h because it needs
 645 * linux/uaccess.h to get the access_ok() declaration and this causes
 646 * cyclic dependencies.
 647 */
 648int bitmap_parselist_user(const char __user *ubuf,
 649                        unsigned int ulen, unsigned long *maskp,
 650                        int nmaskbits)
 651{
 652        if (!access_ok(VERIFY_READ, ubuf, ulen))
 653                return -EFAULT;
 654        return __bitmap_parselist((const char __force *)ubuf,
 655                                        ulen, 1, maskp, nmaskbits);
 656}
 657EXPORT_SYMBOL(bitmap_parselist_user);
 658
 659
 660/**
 661 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 662 *      @buf: pointer to a bitmap
 663 *      @pos: a bit position in @buf (0 <= @pos < @nbits)
 664 *      @nbits: number of valid bit positions in @buf
 665 *
 666 * Map the bit at position @pos in @buf (of length @nbits) to the
 667 * ordinal of which set bit it is.  If it is not set or if @pos
 668 * is not a valid bit position, map to -1.
 669 *
 670 * If for example, just bits 4 through 7 are set in @buf, then @pos
 671 * values 4 through 7 will get mapped to 0 through 3, respectively,
 672 * and other @pos values will get mapped to -1.  When @pos value 7
 673 * gets mapped to (returns) @ord value 3 in this example, that means
 674 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 675 *
 676 * The bit positions 0 through @bits are valid positions in @buf.
 677 */
 678static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 679{
 680        if (pos >= nbits || !test_bit(pos, buf))
 681                return -1;
 682
 683        return __bitmap_weight(buf, pos);
 684}
 685
 686/**
 687 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 688 *      @buf: pointer to bitmap
 689 *      @ord: ordinal bit position (n-th set bit, n >= 0)
 690 *      @nbits: number of valid bit positions in @buf
 691 *
 692 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 693 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 694 * >= weight(buf), returns @nbits.
 695 *
 696 * If for example, just bits 4 through 7 are set in @buf, then @ord
 697 * values 0 through 3 will get mapped to 4 through 7, respectively,
 698 * and all other @ord values returns @nbits.  When @ord value 3
 699 * gets mapped to (returns) @pos value 7 in this example, that means
 700 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 701 *
 702 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 703 */
 704unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 705{
 706        unsigned int pos;
 707
 708        for (pos = find_first_bit(buf, nbits);
 709             pos < nbits && ord;
 710             pos = find_next_bit(buf, nbits, pos + 1))
 711                ord--;
 712
 713        return pos;
 714}
 715
 716/**
 717 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 718 *      @dst: remapped result
 719 *      @src: subset to be remapped
 720 *      @old: defines domain of map
 721 *      @new: defines range of map
 722 *      @nbits: number of bits in each of these bitmaps
 723 *
 724 * Let @old and @new define a mapping of bit positions, such that
 725 * whatever position is held by the n-th set bit in @old is mapped
 726 * to the n-th set bit in @new.  In the more general case, allowing
 727 * for the possibility that the weight 'w' of @new is less than the
 728 * weight of @old, map the position of the n-th set bit in @old to
 729 * the position of the m-th set bit in @new, where m == n % w.
 730 *
 731 * If either of the @old and @new bitmaps are empty, or if @src and
 732 * @dst point to the same location, then this routine copies @src
 733 * to @dst.
 734 *
 735 * The positions of unset bits in @old are mapped to themselves
 736 * (the identify map).
 737 *
 738 * Apply the above specified mapping to @src, placing the result in
 739 * @dst, clearing any bits previously set in @dst.
 740 *
 741 * For example, lets say that @old has bits 4 through 7 set, and
 742 * @new has bits 12 through 15 set.  This defines the mapping of bit
 743 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 744 * bit positions unchanged.  So if say @src comes into this routine
 745 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 746 * 13 and 15 set.
 747 */
 748void bitmap_remap(unsigned long *dst, const unsigned long *src,
 749                const unsigned long *old, const unsigned long *new,
 750                unsigned int nbits)
 751{
 752        unsigned int oldbit, w;
 753
 754        if (dst == src)         /* following doesn't handle inplace remaps */
 755                return;
 756        bitmap_zero(dst, nbits);
 757
 758        w = bitmap_weight(new, nbits);
 759        for_each_set_bit(oldbit, src, nbits) {
 760                int n = bitmap_pos_to_ord(old, oldbit, nbits);
 761
 762                if (n < 0 || w == 0)
 763                        set_bit(oldbit, dst);   /* identity map */
 764                else
 765                        set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 766        }
 767}
 768EXPORT_SYMBOL(bitmap_remap);
 769
 770/**
 771 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 772 *      @oldbit: bit position to be mapped
 773 *      @old: defines domain of map
 774 *      @new: defines range of map
 775 *      @bits: number of bits in each of these bitmaps
 776 *
 777 * Let @old and @new define a mapping of bit positions, such that
 778 * whatever position is held by the n-th set bit in @old is mapped
 779 * to the n-th set bit in @new.  In the more general case, allowing
 780 * for the possibility that the weight 'w' of @new is less than the
 781 * weight of @old, map the position of the n-th set bit in @old to
 782 * the position of the m-th set bit in @new, where m == n % w.
 783 *
 784 * The positions of unset bits in @old are mapped to themselves
 785 * (the identify map).
 786 *
 787 * Apply the above specified mapping to bit position @oldbit, returning
 788 * the new bit position.
 789 *
 790 * For example, lets say that @old has bits 4 through 7 set, and
 791 * @new has bits 12 through 15 set.  This defines the mapping of bit
 792 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 793 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 794 * returns 13.
 795 */
 796int bitmap_bitremap(int oldbit, const unsigned long *old,
 797                                const unsigned long *new, int bits)
 798{
 799        int w = bitmap_weight(new, bits);
 800        int n = bitmap_pos_to_ord(old, oldbit, bits);
 801        if (n < 0 || w == 0)
 802                return oldbit;
 803        else
 804                return bitmap_ord_to_pos(new, n % w, bits);
 805}
 806EXPORT_SYMBOL(bitmap_bitremap);
 807
 808/**
 809 * bitmap_onto - translate one bitmap relative to another
 810 *      @dst: resulting translated bitmap
 811 *      @orig: original untranslated bitmap
 812 *      @relmap: bitmap relative to which translated
 813 *      @bits: number of bits in each of these bitmaps
 814 *
 815 * Set the n-th bit of @dst iff there exists some m such that the
 816 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 817 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 818 * (If you understood the previous sentence the first time your
 819 * read it, you're overqualified for your current job.)
 820 *
 821 * In other words, @orig is mapped onto (surjectively) @dst,
 822 * using the map { <n, m> | the n-th bit of @relmap is the
 823 * m-th set bit of @relmap }.
 824 *
 825 * Any set bits in @orig above bit number W, where W is the
 826 * weight of (number of set bits in) @relmap are mapped nowhere.
 827 * In particular, if for all bits m set in @orig, m >= W, then
 828 * @dst will end up empty.  In situations where the possibility
 829 * of such an empty result is not desired, one way to avoid it is
 830 * to use the bitmap_fold() operator, below, to first fold the
 831 * @orig bitmap over itself so that all its set bits x are in the
 832 * range 0 <= x < W.  The bitmap_fold() operator does this by
 833 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 834 *
 835 * Example [1] for bitmap_onto():
 836 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 837 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 838 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 839 *
 840 *  When bit 0 is set in @orig, it means turn on the bit in
 841 *  @dst corresponding to whatever is the first bit (if any)
 842 *  that is turned on in @relmap.  Since bit 0 was off in the
 843 *  above example, we leave off that bit (bit 30) in @dst.
 844 *
 845 *  When bit 1 is set in @orig (as in the above example), it
 846 *  means turn on the bit in @dst corresponding to whatever
 847 *  is the second bit that is turned on in @relmap.  The second
 848 *  bit in @relmap that was turned on in the above example was
 849 *  bit 31, so we turned on bit 31 in @dst.
 850 *
 851 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 852 *  because they were the 4th, 6th, 8th and 10th set bits
 853 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 854 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 855 *
 856 *  When bit 11 is set in @orig, it means turn on the bit in
 857 *  @dst corresponding to whatever is the twelfth bit that is
 858 *  turned on in @relmap.  In the above example, there were
 859 *  only ten bits turned on in @relmap (30..39), so that bit
 860 *  11 was set in @orig had no affect on @dst.
 861 *
 862 * Example [2] for bitmap_fold() + bitmap_onto():
 863 *  Let's say @relmap has these ten bits set::
 864 *
 865 *              40 41 42 43 45 48 53 61 74 95
 866 *
 867 *  (for the curious, that's 40 plus the first ten terms of the
 868 *  Fibonacci sequence.)
 869 *
 870 *  Further lets say we use the following code, invoking
 871 *  bitmap_fold() then bitmap_onto, as suggested above to
 872 *  avoid the possibility of an empty @dst result::
 873 *
 874 *      unsigned long *tmp;     // a temporary bitmap's bits
 875 *
 876 *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 877 *      bitmap_onto(dst, tmp, relmap, bits);
 878 *
 879 *  Then this table shows what various values of @dst would be, for
 880 *  various @orig's.  I list the zero-based positions of each set bit.
 881 *  The tmp column shows the intermediate result, as computed by
 882 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 883 *  (the weight of @relmap):
 884 *
 885 *      =============== ============== =================
 886 *      @orig           tmp            @dst
 887 *      0                0             40
 888 *      1                1             41
 889 *      9                9             95
 890 *      10               0             40 [#f1]_
 891 *      1 3 5 7          1 3 5 7       41 43 48 61
 892 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 893 *      0 9 18 27        0 9 8 7       40 61 74 95
 894 *      0 10 20 30       0             40
 895 *      0 11 22 33       0 1 2 3       40 41 42 43
 896 *      0 12 24 36       0 2 4 6       40 42 45 53
 897 *      78 102 211       1 2 8         41 42 74 [#f1]_
 898 *      =============== ============== =================
 899 *
 900 * .. [#f1]
 901 *
 902 *     For these marked lines, if we hadn't first done bitmap_fold()
 903 *     into tmp, then the @dst result would have been empty.
 904 *
 905 * If either of @orig or @relmap is empty (no set bits), then @dst
 906 * will be returned empty.
 907 *
 908 * If (as explained above) the only set bits in @orig are in positions
 909 * m where m >= W, (where W is the weight of @relmap) then @dst will
 910 * once again be returned empty.
 911 *
 912 * All bits in @dst not set by the above rule are cleared.
 913 */
 914void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 915                        const unsigned long *relmap, unsigned int bits)
 916{
 917        unsigned int n, m;      /* same meaning as in above comment */
 918
 919        if (dst == orig)        /* following doesn't handle inplace mappings */
 920                return;
 921        bitmap_zero(dst, bits);
 922
 923        /*
 924         * The following code is a more efficient, but less
 925         * obvious, equivalent to the loop:
 926         *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 927         *              n = bitmap_ord_to_pos(orig, m, bits);
 928         *              if (test_bit(m, orig))
 929         *                      set_bit(n, dst);
 930         *      }
 931         */
 932
 933        m = 0;
 934        for_each_set_bit(n, relmap, bits) {
 935                /* m == bitmap_pos_to_ord(relmap, n, bits) */
 936                if (test_bit(m, orig))
 937                        set_bit(n, dst);
 938                m++;
 939        }
 940}
 941EXPORT_SYMBOL(bitmap_onto);
 942
 943/**
 944 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 945 *      @dst: resulting smaller bitmap
 946 *      @orig: original larger bitmap
 947 *      @sz: specified size
 948 *      @nbits: number of bits in each of these bitmaps
 949 *
 950 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 951 * Clear all other bits in @dst.  See further the comment and
 952 * Example [2] for bitmap_onto() for why and how to use this.
 953 */
 954void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 955                        unsigned int sz, unsigned int nbits)
 956{
 957        unsigned int oldbit;
 958
 959        if (dst == orig)        /* following doesn't handle inplace mappings */
 960                return;
 961        bitmap_zero(dst, nbits);
 962
 963        for_each_set_bit(oldbit, orig, nbits)
 964                set_bit(oldbit % sz, dst);
 965}
 966EXPORT_SYMBOL(bitmap_fold);
 967
 968/*
 969 * Common code for bitmap_*_region() routines.
 970 *      bitmap: array of unsigned longs corresponding to the bitmap
 971 *      pos: the beginning of the region
 972 *      order: region size (log base 2 of number of bits)
 973 *      reg_op: operation(s) to perform on that region of bitmap
 974 *
 975 * Can set, verify and/or release a region of bits in a bitmap,
 976 * depending on which combination of REG_OP_* flag bits is set.
 977 *
 978 * A region of a bitmap is a sequence of bits in the bitmap, of
 979 * some size '1 << order' (a power of two), aligned to that same
 980 * '1 << order' power of two.
 981 *
 982 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 983 * Returns 0 in all other cases and reg_ops.
 984 */
 985
 986enum {
 987        REG_OP_ISFREE,          /* true if region is all zero bits */
 988        REG_OP_ALLOC,           /* set all bits in region */
 989        REG_OP_RELEASE,         /* clear all bits in region */
 990};
 991
 992static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
 993{
 994        int nbits_reg;          /* number of bits in region */
 995        int index;              /* index first long of region in bitmap */
 996        int offset;             /* bit offset region in bitmap[index] */
 997        int nlongs_reg;         /* num longs spanned by region in bitmap */
 998        int nbitsinlong;        /* num bits of region in each spanned long */
 999        unsigned long mask;     /* bitmask for one long of region */
1000        int i;                  /* scans bitmap by longs */
1001        int ret = 0;            /* return value */
1002
1003        /*
1004         * Either nlongs_reg == 1 (for small orders that fit in one long)
1005         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1006         */
1007        nbits_reg = 1 << order;
1008        index = pos / BITS_PER_LONG;
1009        offset = pos - (index * BITS_PER_LONG);
1010        nlongs_reg = BITS_TO_LONGS(nbits_reg);
1011        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1012
1013        /*
1014         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1015         * overflows if nbitsinlong == BITS_PER_LONG.
1016         */
1017        mask = (1UL << (nbitsinlong - 1));
1018        mask += mask - 1;
1019        mask <<= offset;
1020
1021        switch (reg_op) {
1022        case REG_OP_ISFREE:
1023                for (i = 0; i < nlongs_reg; i++) {
1024                        if (bitmap[index + i] & mask)
1025                                goto done;
1026                }
1027                ret = 1;        /* all bits in region free (zero) */
1028                break;
1029
1030        case REG_OP_ALLOC:
1031                for (i = 0; i < nlongs_reg; i++)
1032                        bitmap[index + i] |= mask;
1033                break;
1034
1035        case REG_OP_RELEASE:
1036                for (i = 0; i < nlongs_reg; i++)
1037                        bitmap[index + i] &= ~mask;
1038                break;
1039        }
1040done:
1041        return ret;
1042}
1043
1044/**
1045 * bitmap_find_free_region - find a contiguous aligned mem region
1046 *      @bitmap: array of unsigned longs corresponding to the bitmap
1047 *      @bits: number of bits in the bitmap
1048 *      @order: region size (log base 2 of number of bits) to find
1049 *
1050 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1051 * allocate them (set them to one).  Only consider regions of length
1052 * a power (@order) of two, aligned to that power of two, which
1053 * makes the search algorithm much faster.
1054 *
1055 * Return the bit offset in bitmap of the allocated region,
1056 * or -errno on failure.
1057 */
1058int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1059{
1060        unsigned int pos, end;          /* scans bitmap by regions of size order */
1061
1062        for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1063                if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1064                        continue;
1065                __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1066                return pos;
1067        }
1068        return -ENOMEM;
1069}
1070EXPORT_SYMBOL(bitmap_find_free_region);
1071
1072/**
1073 * bitmap_release_region - release allocated bitmap region
1074 *      @bitmap: array of unsigned longs corresponding to the bitmap
1075 *      @pos: beginning of bit region to release
1076 *      @order: region size (log base 2 of number of bits) to release
1077 *
1078 * This is the complement to __bitmap_find_free_region() and releases
1079 * the found region (by clearing it in the bitmap).
1080 *
1081 * No return value.
1082 */
1083void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1084{
1085        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1086}
1087EXPORT_SYMBOL(bitmap_release_region);
1088
1089/**
1090 * bitmap_allocate_region - allocate bitmap region
1091 *      @bitmap: array of unsigned longs corresponding to the bitmap
1092 *      @pos: beginning of bit region to allocate
1093 *      @order: region size (log base 2 of number of bits) to allocate
1094 *
1095 * Allocate (set bits in) a specified region of a bitmap.
1096 *
1097 * Return 0 on success, or %-EBUSY if specified region wasn't
1098 * free (not all bits were zero).
1099 */
1100int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1101{
1102        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1103                return -EBUSY;
1104        return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1105}
1106EXPORT_SYMBOL(bitmap_allocate_region);
1107
1108/**
1109 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1110 * @dst:   destination buffer
1111 * @src:   bitmap to copy
1112 * @nbits: number of bits in the bitmap
1113 *
1114 * Require nbits % BITS_PER_LONG == 0.
1115 */
1116#ifdef __BIG_ENDIAN
1117void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1118{
1119        unsigned int i;
1120
1121        for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1122                if (BITS_PER_LONG == 64)
1123                        dst[i] = cpu_to_le64(src[i]);
1124                else
1125                        dst[i] = cpu_to_le32(src[i]);
1126        }
1127}
1128EXPORT_SYMBOL(bitmap_copy_le);
1129#endif
1130
1131#if BITS_PER_LONG == 64
1132/**
1133 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1134 *      @bitmap: array of unsigned longs, the destination bitmap
1135 *      @buf: array of u32 (in host byte order), the source bitmap
1136 *      @nbits: number of bits in @bitmap
1137 */
1138void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
1139                                                unsigned int nbits)
1140{
1141        unsigned int i, halfwords;
1142
1143        if (!nbits)
1144                return;
1145
1146        halfwords = DIV_ROUND_UP(nbits, 32);
1147        for (i = 0; i < halfwords; i++) {
1148                bitmap[i/2] = (unsigned long) buf[i];
1149                if (++i < halfwords)
1150                        bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1151        }
1152
1153        /* Clear tail bits in last word beyond nbits. */
1154        if (nbits % BITS_PER_LONG)
1155                bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1156}
1157EXPORT_SYMBOL(bitmap_from_arr32);
1158
1159/**
1160 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1161 *      @buf: array of u32 (in host byte order), the dest bitmap
1162 *      @bitmap: array of unsigned longs, the source bitmap
1163 *      @nbits: number of bits in @bitmap
1164 */
1165void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1166{
1167        unsigned int i, halfwords;
1168
1169        if (!nbits)
1170                return;
1171
1172        halfwords = DIV_ROUND_UP(nbits, 32);
1173        for (i = 0; i < halfwords; i++) {
1174                buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1175                if (++i < halfwords)
1176                        buf[i] = (u32) (bitmap[i/2] >> 32);
1177        }
1178
1179        /* Clear tail bits in last element of array beyond nbits. */
1180        if (nbits % BITS_PER_LONG)
1181                buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1182}
1183EXPORT_SYMBOL(bitmap_to_arr32);
1184
1185#endif
1186