linux/lib/radix-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bitmap.h>
  26#include <linux/bitops.h>
  27#include <linux/bug.h>
  28#include <linux/cpu.h>
  29#include <linux/errno.h>
  30#include <linux/export.h>
  31#include <linux/idr.h>
  32#include <linux/init.h>
  33#include <linux/kernel.h>
  34#include <linux/kmemleak.h>
  35#include <linux/percpu.h>
  36#include <linux/preempt.h>              /* in_interrupt() */
  37#include <linux/radix-tree.h>
  38#include <linux/rcupdate.h>
  39#include <linux/slab.h>
  40#include <linux/string.h>
  41
  42
  43/* Number of nodes in fully populated tree of given height */
  44static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  45
  46/*
  47 * Radix tree node cache.
  48 */
  49static struct kmem_cache *radix_tree_node_cachep;
  50
  51/*
  52 * The radix tree is variable-height, so an insert operation not only has
  53 * to build the branch to its corresponding item, it also has to build the
  54 * branch to existing items if the size has to be increased (by
  55 * radix_tree_extend).
  56 *
  57 * The worst case is a zero height tree with just a single item at index 0,
  58 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  59 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  60 * Hence:
  61 */
  62#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  63
  64/*
  65 * The IDR does not have to be as high as the radix tree since it uses
  66 * signed integers, not unsigned longs.
  67 */
  68#define IDR_INDEX_BITS          (8 /* CHAR_BIT */ * sizeof(int) - 1)
  69#define IDR_MAX_PATH            (DIV_ROUND_UP(IDR_INDEX_BITS, \
  70                                                RADIX_TREE_MAP_SHIFT))
  71#define IDR_PRELOAD_SIZE        (IDR_MAX_PATH * 2 - 1)
  72
  73/*
  74 * The IDA is even shorter since it uses a bitmap at the last level.
  75 */
  76#define IDA_INDEX_BITS          (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  77#define IDA_MAX_PATH            (DIV_ROUND_UP(IDA_INDEX_BITS, \
  78                                                RADIX_TREE_MAP_SHIFT))
  79#define IDA_PRELOAD_SIZE        (IDA_MAX_PATH * 2 - 1)
  80
  81/*
  82 * Per-cpu pool of preloaded nodes
  83 */
  84struct radix_tree_preload {
  85        unsigned nr;
  86        /* nodes->parent points to next preallocated node */
  87        struct radix_tree_node *nodes;
  88};
  89static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  90
  91static inline struct radix_tree_node *entry_to_node(void *ptr)
  92{
  93        return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  94}
  95
  96static inline void *node_to_entry(void *ptr)
  97{
  98        return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  99}
 100
 101#define RADIX_TREE_RETRY        node_to_entry(NULL)
 102
 103#ifdef CONFIG_RADIX_TREE_MULTIORDER
 104/* Sibling slots point directly to another slot in the same node */
 105static inline
 106bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 107{
 108        void __rcu **ptr = node;
 109        return (parent->slots <= ptr) &&
 110                        (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
 111}
 112#else
 113static inline
 114bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 115{
 116        return false;
 117}
 118#endif
 119
 120static inline unsigned long
 121get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
 122{
 123        return slot - parent->slots;
 124}
 125
 126static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
 127                        struct radix_tree_node **nodep, unsigned long index)
 128{
 129        unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 130        void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
 131
 132#ifdef CONFIG_RADIX_TREE_MULTIORDER
 133        if (radix_tree_is_internal_node(entry)) {
 134                if (is_sibling_entry(parent, entry)) {
 135                        void __rcu **sibentry;
 136                        sibentry = (void __rcu **) entry_to_node(entry);
 137                        offset = get_slot_offset(parent, sibentry);
 138                        entry = rcu_dereference_raw(*sibentry);
 139                }
 140        }
 141#endif
 142
 143        *nodep = (void *)entry;
 144        return offset;
 145}
 146
 147static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
 148{
 149        return root->gfp_mask & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
 150}
 151
 152static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 153                int offset)
 154{
 155        __set_bit(offset, node->tags[tag]);
 156}
 157
 158static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 159                int offset)
 160{
 161        __clear_bit(offset, node->tags[tag]);
 162}
 163
 164static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 165                int offset)
 166{
 167        return test_bit(offset, node->tags[tag]);
 168}
 169
 170static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 171{
 172        root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 173}
 174
 175static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 176{
 177        root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 178}
 179
 180static inline void root_tag_clear_all(struct radix_tree_root *root)
 181{
 182        root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
 183}
 184
 185static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 186{
 187        return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
 188}
 189
 190static inline unsigned root_tags_get(const struct radix_tree_root *root)
 191{
 192        return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
 193}
 194
 195static inline bool is_idr(const struct radix_tree_root *root)
 196{
 197        return !!(root->gfp_mask & ROOT_IS_IDR);
 198}
 199
 200/*
 201 * Returns 1 if any slot in the node has this tag set.
 202 * Otherwise returns 0.
 203 */
 204static inline int any_tag_set(const struct radix_tree_node *node,
 205                                                        unsigned int tag)
 206{
 207        unsigned idx;
 208        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 209                if (node->tags[tag][idx])
 210                        return 1;
 211        }
 212        return 0;
 213}
 214
 215static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 216{
 217        bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 218}
 219
 220/**
 221 * radix_tree_find_next_bit - find the next set bit in a memory region
 222 *
 223 * @addr: The address to base the search on
 224 * @size: The bitmap size in bits
 225 * @offset: The bitnumber to start searching at
 226 *
 227 * Unrollable variant of find_next_bit() for constant size arrays.
 228 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 229 * Returns next bit offset, or size if nothing found.
 230 */
 231static __always_inline unsigned long
 232radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 233                         unsigned long offset)
 234{
 235        const unsigned long *addr = node->tags[tag];
 236
 237        if (offset < RADIX_TREE_MAP_SIZE) {
 238                unsigned long tmp;
 239
 240                addr += offset / BITS_PER_LONG;
 241                tmp = *addr >> (offset % BITS_PER_LONG);
 242                if (tmp)
 243                        return __ffs(tmp) + offset;
 244                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 245                while (offset < RADIX_TREE_MAP_SIZE) {
 246                        tmp = *++addr;
 247                        if (tmp)
 248                                return __ffs(tmp) + offset;
 249                        offset += BITS_PER_LONG;
 250                }
 251        }
 252        return RADIX_TREE_MAP_SIZE;
 253}
 254
 255static unsigned int iter_offset(const struct radix_tree_iter *iter)
 256{
 257        return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 258}
 259
 260/*
 261 * The maximum index which can be stored in a radix tree
 262 */
 263static inline unsigned long shift_maxindex(unsigned int shift)
 264{
 265        return (RADIX_TREE_MAP_SIZE << shift) - 1;
 266}
 267
 268static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 269{
 270        return shift_maxindex(node->shift);
 271}
 272
 273static unsigned long next_index(unsigned long index,
 274                                const struct radix_tree_node *node,
 275                                unsigned long offset)
 276{
 277        return (index & ~node_maxindex(node)) + (offset << node->shift);
 278}
 279
 280#ifndef __KERNEL__
 281static void dump_node(struct radix_tree_node *node, unsigned long index)
 282{
 283        unsigned long i;
 284
 285        pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 286                node, node->offset, index, index | node_maxindex(node),
 287                node->parent,
 288                node->tags[0][0], node->tags[1][0], node->tags[2][0],
 289                node->shift, node->count, node->exceptional);
 290
 291        for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 292                unsigned long first = index | (i << node->shift);
 293                unsigned long last = first | ((1UL << node->shift) - 1);
 294                void *entry = node->slots[i];
 295                if (!entry)
 296                        continue;
 297                if (entry == RADIX_TREE_RETRY) {
 298                        pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 299                                        i, first, last, node);
 300                } else if (!radix_tree_is_internal_node(entry)) {
 301                        pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 302                                        entry, i, first, last, node);
 303                } else if (is_sibling_entry(node, entry)) {
 304                        pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 305                                        entry, i, first, last, node,
 306                                        *(void **)entry_to_node(entry));
 307                } else {
 308                        dump_node(entry_to_node(entry), first);
 309                }
 310        }
 311}
 312
 313/* For debug */
 314static void radix_tree_dump(struct radix_tree_root *root)
 315{
 316        pr_debug("radix root: %p rnode %p tags %x\n",
 317                        root, root->rnode,
 318                        root->gfp_mask >> ROOT_TAG_SHIFT);
 319        if (!radix_tree_is_internal_node(root->rnode))
 320                return;
 321        dump_node(entry_to_node(root->rnode), 0);
 322}
 323
 324static void dump_ida_node(void *entry, unsigned long index)
 325{
 326        unsigned long i;
 327
 328        if (!entry)
 329                return;
 330
 331        if (radix_tree_is_internal_node(entry)) {
 332                struct radix_tree_node *node = entry_to_node(entry);
 333
 334                pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
 335                        node, node->offset, index * IDA_BITMAP_BITS,
 336                        ((index | node_maxindex(node)) + 1) *
 337                                IDA_BITMAP_BITS - 1,
 338                        node->parent, node->tags[0][0], node->shift,
 339                        node->count);
 340                for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
 341                        dump_ida_node(node->slots[i],
 342                                        index | (i << node->shift));
 343        } else if (radix_tree_exceptional_entry(entry)) {
 344                pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
 345                                entry, (int)(index & RADIX_TREE_MAP_MASK),
 346                                index * IDA_BITMAP_BITS,
 347                                index * IDA_BITMAP_BITS + BITS_PER_LONG -
 348                                        RADIX_TREE_EXCEPTIONAL_SHIFT,
 349                                (unsigned long)entry >>
 350                                        RADIX_TREE_EXCEPTIONAL_SHIFT);
 351        } else {
 352                struct ida_bitmap *bitmap = entry;
 353
 354                pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
 355                                (int)(index & RADIX_TREE_MAP_MASK),
 356                                index * IDA_BITMAP_BITS,
 357                                (index + 1) * IDA_BITMAP_BITS - 1);
 358                for (i = 0; i < IDA_BITMAP_LONGS; i++)
 359                        pr_cont(" %lx", bitmap->bitmap[i]);
 360                pr_cont("\n");
 361        }
 362}
 363
 364static void ida_dump(struct ida *ida)
 365{
 366        struct radix_tree_root *root = &ida->ida_rt;
 367        pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
 368                                root->gfp_mask >> ROOT_TAG_SHIFT);
 369        dump_ida_node(root->rnode, 0);
 370}
 371#endif
 372
 373/*
 374 * This assumes that the caller has performed appropriate preallocation, and
 375 * that the caller has pinned this thread of control to the current CPU.
 376 */
 377static struct radix_tree_node *
 378radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 379                        struct radix_tree_root *root,
 380                        unsigned int shift, unsigned int offset,
 381                        unsigned int count, unsigned int exceptional)
 382{
 383        struct radix_tree_node *ret = NULL;
 384
 385        /*
 386         * Preload code isn't irq safe and it doesn't make sense to use
 387         * preloading during an interrupt anyway as all the allocations have
 388         * to be atomic. So just do normal allocation when in interrupt.
 389         */
 390        if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 391                struct radix_tree_preload *rtp;
 392
 393                /*
 394                 * Even if the caller has preloaded, try to allocate from the
 395                 * cache first for the new node to get accounted to the memory
 396                 * cgroup.
 397                 */
 398                ret = kmem_cache_alloc(radix_tree_node_cachep,
 399                                       gfp_mask | __GFP_NOWARN);
 400                if (ret)
 401                        goto out;
 402
 403                /*
 404                 * Provided the caller has preloaded here, we will always
 405                 * succeed in getting a node here (and never reach
 406                 * kmem_cache_alloc)
 407                 */
 408                rtp = this_cpu_ptr(&radix_tree_preloads);
 409                if (rtp->nr) {
 410                        ret = rtp->nodes;
 411                        rtp->nodes = ret->parent;
 412                        rtp->nr--;
 413                }
 414                /*
 415                 * Update the allocation stack trace as this is more useful
 416                 * for debugging.
 417                 */
 418                kmemleak_update_trace(ret);
 419                goto out;
 420        }
 421        ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 422out:
 423        BUG_ON(radix_tree_is_internal_node(ret));
 424        if (ret) {
 425                ret->shift = shift;
 426                ret->offset = offset;
 427                ret->count = count;
 428                ret->exceptional = exceptional;
 429                ret->parent = parent;
 430                ret->root = root;
 431        }
 432        return ret;
 433}
 434
 435static void radix_tree_node_rcu_free(struct rcu_head *head)
 436{
 437        struct radix_tree_node *node =
 438                        container_of(head, struct radix_tree_node, rcu_head);
 439
 440        /*
 441         * Must only free zeroed nodes into the slab.  We can be left with
 442         * non-NULL entries by radix_tree_free_nodes, so clear the entries
 443         * and tags here.
 444         */
 445        memset(node->slots, 0, sizeof(node->slots));
 446        memset(node->tags, 0, sizeof(node->tags));
 447        INIT_LIST_HEAD(&node->private_list);
 448
 449        kmem_cache_free(radix_tree_node_cachep, node);
 450}
 451
 452static inline void
 453radix_tree_node_free(struct radix_tree_node *node)
 454{
 455        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 456}
 457
 458/*
 459 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 460 * ensure that the addition of a single element in the tree cannot fail.  On
 461 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 462 * with preemption not disabled.
 463 *
 464 * To make use of this facility, the radix tree must be initialised without
 465 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 466 */
 467static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 468{
 469        struct radix_tree_preload *rtp;
 470        struct radix_tree_node *node;
 471        int ret = -ENOMEM;
 472
 473        /*
 474         * Nodes preloaded by one cgroup can be be used by another cgroup, so
 475         * they should never be accounted to any particular memory cgroup.
 476         */
 477        gfp_mask &= ~__GFP_ACCOUNT;
 478
 479        preempt_disable();
 480        rtp = this_cpu_ptr(&radix_tree_preloads);
 481        while (rtp->nr < nr) {
 482                preempt_enable();
 483                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 484                if (node == NULL)
 485                        goto out;
 486                preempt_disable();
 487                rtp = this_cpu_ptr(&radix_tree_preloads);
 488                if (rtp->nr < nr) {
 489                        node->parent = rtp->nodes;
 490                        rtp->nodes = node;
 491                        rtp->nr++;
 492                } else {
 493                        kmem_cache_free(radix_tree_node_cachep, node);
 494                }
 495        }
 496        ret = 0;
 497out:
 498        return ret;
 499}
 500
 501/*
 502 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 503 * ensure that the addition of a single element in the tree cannot fail.  On
 504 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 505 * with preemption not disabled.
 506 *
 507 * To make use of this facility, the radix tree must be initialised without
 508 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 509 */
 510int radix_tree_preload(gfp_t gfp_mask)
 511{
 512        /* Warn on non-sensical use... */
 513        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 514        return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 515}
 516EXPORT_SYMBOL(radix_tree_preload);
 517
 518/*
 519 * The same as above function, except we don't guarantee preloading happens.
 520 * We do it, if we decide it helps. On success, return zero with preemption
 521 * disabled. On error, return -ENOMEM with preemption not disabled.
 522 */
 523int radix_tree_maybe_preload(gfp_t gfp_mask)
 524{
 525        if (gfpflags_allow_blocking(gfp_mask))
 526                return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 527        /* Preloading doesn't help anything with this gfp mask, skip it */
 528        preempt_disable();
 529        return 0;
 530}
 531EXPORT_SYMBOL(radix_tree_maybe_preload);
 532
 533#ifdef CONFIG_RADIX_TREE_MULTIORDER
 534/*
 535 * Preload with enough objects to ensure that we can split a single entry
 536 * of order @old_order into many entries of size @new_order
 537 */
 538int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 539                                                        gfp_t gfp_mask)
 540{
 541        unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 542        unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 543                                (new_order / RADIX_TREE_MAP_SHIFT);
 544        unsigned nr = 0;
 545
 546        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 547        BUG_ON(new_order >= old_order);
 548
 549        while (layers--)
 550                nr = nr * RADIX_TREE_MAP_SIZE + 1;
 551        return __radix_tree_preload(gfp_mask, top * nr);
 552}
 553#endif
 554
 555/*
 556 * The same as function above, but preload number of nodes required to insert
 557 * (1 << order) continuous naturally-aligned elements.
 558 */
 559int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 560{
 561        unsigned long nr_subtrees;
 562        int nr_nodes, subtree_height;
 563
 564        /* Preloading doesn't help anything with this gfp mask, skip it */
 565        if (!gfpflags_allow_blocking(gfp_mask)) {
 566                preempt_disable();
 567                return 0;
 568        }
 569
 570        /*
 571         * Calculate number and height of fully populated subtrees it takes to
 572         * store (1 << order) elements.
 573         */
 574        nr_subtrees = 1 << order;
 575        for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 576                        subtree_height++)
 577                nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 578
 579        /*
 580         * The worst case is zero height tree with a single item at index 0 and
 581         * then inserting items starting at ULONG_MAX - (1 << order).
 582         *
 583         * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 584         * 0-index item.
 585         */
 586        nr_nodes = RADIX_TREE_MAX_PATH;
 587
 588        /* Plus branch to fully populated subtrees. */
 589        nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 590
 591        /* Root node is shared. */
 592        nr_nodes--;
 593
 594        /* Plus nodes required to build subtrees. */
 595        nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 596
 597        return __radix_tree_preload(gfp_mask, nr_nodes);
 598}
 599
 600static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 601                struct radix_tree_node **nodep, unsigned long *maxindex)
 602{
 603        struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 604
 605        *nodep = node;
 606
 607        if (likely(radix_tree_is_internal_node(node))) {
 608                node = entry_to_node(node);
 609                *maxindex = node_maxindex(node);
 610                return node->shift + RADIX_TREE_MAP_SHIFT;
 611        }
 612
 613        *maxindex = 0;
 614        return 0;
 615}
 616
 617/*
 618 *      Extend a radix tree so it can store key @index.
 619 */
 620static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 621                                unsigned long index, unsigned int shift)
 622{
 623        void *entry;
 624        unsigned int maxshift;
 625        int tag;
 626
 627        /* Figure out what the shift should be.  */
 628        maxshift = shift;
 629        while (index > shift_maxindex(maxshift))
 630                maxshift += RADIX_TREE_MAP_SHIFT;
 631
 632        entry = rcu_dereference_raw(root->rnode);
 633        if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 634                goto out;
 635
 636        do {
 637                struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 638                                                        root, shift, 0, 1, 0);
 639                if (!node)
 640                        return -ENOMEM;
 641
 642                if (is_idr(root)) {
 643                        all_tag_set(node, IDR_FREE);
 644                        if (!root_tag_get(root, IDR_FREE)) {
 645                                tag_clear(node, IDR_FREE, 0);
 646                                root_tag_set(root, IDR_FREE);
 647                        }
 648                } else {
 649                        /* Propagate the aggregated tag info to the new child */
 650                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 651                                if (root_tag_get(root, tag))
 652                                        tag_set(node, tag, 0);
 653                        }
 654                }
 655
 656                BUG_ON(shift > BITS_PER_LONG);
 657                if (radix_tree_is_internal_node(entry)) {
 658                        entry_to_node(entry)->parent = node;
 659                } else if (radix_tree_exceptional_entry(entry)) {
 660                        /* Moving an exceptional root->rnode to a node */
 661                        node->exceptional = 1;
 662                }
 663                /*
 664                 * entry was already in the radix tree, so we do not need
 665                 * rcu_assign_pointer here
 666                 */
 667                node->slots[0] = (void __rcu *)entry;
 668                entry = node_to_entry(node);
 669                rcu_assign_pointer(root->rnode, entry);
 670                shift += RADIX_TREE_MAP_SHIFT;
 671        } while (shift <= maxshift);
 672out:
 673        return maxshift + RADIX_TREE_MAP_SHIFT;
 674}
 675
 676/**
 677 *      radix_tree_shrink    -    shrink radix tree to minimum height
 678 *      @root           radix tree root
 679 */
 680static inline bool radix_tree_shrink(struct radix_tree_root *root,
 681                                     radix_tree_update_node_t update_node)
 682{
 683        bool shrunk = false;
 684
 685        for (;;) {
 686                struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 687                struct radix_tree_node *child;
 688
 689                if (!radix_tree_is_internal_node(node))
 690                        break;
 691                node = entry_to_node(node);
 692
 693                /*
 694                 * The candidate node has more than one child, or its child
 695                 * is not at the leftmost slot, or the child is a multiorder
 696                 * entry, we cannot shrink.
 697                 */
 698                if (node->count != 1)
 699                        break;
 700                child = rcu_dereference_raw(node->slots[0]);
 701                if (!child)
 702                        break;
 703                if (!radix_tree_is_internal_node(child) && node->shift)
 704                        break;
 705
 706                if (radix_tree_is_internal_node(child))
 707                        entry_to_node(child)->parent = NULL;
 708
 709                /*
 710                 * We don't need rcu_assign_pointer(), since we are simply
 711                 * moving the node from one part of the tree to another: if it
 712                 * was safe to dereference the old pointer to it
 713                 * (node->slots[0]), it will be safe to dereference the new
 714                 * one (root->rnode) as far as dependent read barriers go.
 715                 */
 716                root->rnode = (void __rcu *)child;
 717                if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 718                        root_tag_clear(root, IDR_FREE);
 719
 720                /*
 721                 * We have a dilemma here. The node's slot[0] must not be
 722                 * NULLed in case there are concurrent lookups expecting to
 723                 * find the item. However if this was a bottom-level node,
 724                 * then it may be subject to the slot pointer being visible
 725                 * to callers dereferencing it. If item corresponding to
 726                 * slot[0] is subsequently deleted, these callers would expect
 727                 * their slot to become empty sooner or later.
 728                 *
 729                 * For example, lockless pagecache will look up a slot, deref
 730                 * the page pointer, and if the page has 0 refcount it means it
 731                 * was concurrently deleted from pagecache so try the deref
 732                 * again. Fortunately there is already a requirement for logic
 733                 * to retry the entire slot lookup -- the indirect pointer
 734                 * problem (replacing direct root node with an indirect pointer
 735                 * also results in a stale slot). So tag the slot as indirect
 736                 * to force callers to retry.
 737                 */
 738                node->count = 0;
 739                if (!radix_tree_is_internal_node(child)) {
 740                        node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 741                        if (update_node)
 742                                update_node(node);
 743                }
 744
 745                WARN_ON_ONCE(!list_empty(&node->private_list));
 746                radix_tree_node_free(node);
 747                shrunk = true;
 748        }
 749
 750        return shrunk;
 751}
 752
 753static bool delete_node(struct radix_tree_root *root,
 754                        struct radix_tree_node *node,
 755                        radix_tree_update_node_t update_node)
 756{
 757        bool deleted = false;
 758
 759        do {
 760                struct radix_tree_node *parent;
 761
 762                if (node->count) {
 763                        if (node_to_entry(node) ==
 764                                        rcu_dereference_raw(root->rnode))
 765                                deleted |= radix_tree_shrink(root,
 766                                                                update_node);
 767                        return deleted;
 768                }
 769
 770                parent = node->parent;
 771                if (parent) {
 772                        parent->slots[node->offset] = NULL;
 773                        parent->count--;
 774                } else {
 775                        /*
 776                         * Shouldn't the tags already have all been cleared
 777                         * by the caller?
 778                         */
 779                        if (!is_idr(root))
 780                                root_tag_clear_all(root);
 781                        root->rnode = NULL;
 782                }
 783
 784                WARN_ON_ONCE(!list_empty(&node->private_list));
 785                radix_tree_node_free(node);
 786                deleted = true;
 787
 788                node = parent;
 789        } while (node);
 790
 791        return deleted;
 792}
 793
 794/**
 795 *      __radix_tree_create     -       create a slot in a radix tree
 796 *      @root:          radix tree root
 797 *      @index:         index key
 798 *      @order:         index occupies 2^order aligned slots
 799 *      @nodep:         returns node
 800 *      @slotp:         returns slot
 801 *
 802 *      Create, if necessary, and return the node and slot for an item
 803 *      at position @index in the radix tree @root.
 804 *
 805 *      Until there is more than one item in the tree, no nodes are
 806 *      allocated and @root->rnode is used as a direct slot instead of
 807 *      pointing to a node, in which case *@nodep will be NULL.
 808 *
 809 *      Returns -ENOMEM, or 0 for success.
 810 */
 811int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 812                        unsigned order, struct radix_tree_node **nodep,
 813                        void __rcu ***slotp)
 814{
 815        struct radix_tree_node *node = NULL, *child;
 816        void __rcu **slot = (void __rcu **)&root->rnode;
 817        unsigned long maxindex;
 818        unsigned int shift, offset = 0;
 819        unsigned long max = index | ((1UL << order) - 1);
 820        gfp_t gfp = root_gfp_mask(root);
 821
 822        shift = radix_tree_load_root(root, &child, &maxindex);
 823
 824        /* Make sure the tree is high enough.  */
 825        if (order > 0 && max == ((1UL << order) - 1))
 826                max++;
 827        if (max > maxindex) {
 828                int error = radix_tree_extend(root, gfp, max, shift);
 829                if (error < 0)
 830                        return error;
 831                shift = error;
 832                child = rcu_dereference_raw(root->rnode);
 833        }
 834
 835        while (shift > order) {
 836                shift -= RADIX_TREE_MAP_SHIFT;
 837                if (child == NULL) {
 838                        /* Have to add a child node.  */
 839                        child = radix_tree_node_alloc(gfp, node, root, shift,
 840                                                        offset, 0, 0);
 841                        if (!child)
 842                                return -ENOMEM;
 843                        rcu_assign_pointer(*slot, node_to_entry(child));
 844                        if (node)
 845                                node->count++;
 846                } else if (!radix_tree_is_internal_node(child))
 847                        break;
 848
 849                /* Go a level down */
 850                node = entry_to_node(child);
 851                offset = radix_tree_descend(node, &child, index);
 852                slot = &node->slots[offset];
 853        }
 854
 855        if (nodep)
 856                *nodep = node;
 857        if (slotp)
 858                *slotp = slot;
 859        return 0;
 860}
 861
 862/*
 863 * Free any nodes below this node.  The tree is presumed to not need
 864 * shrinking, and any user data in the tree is presumed to not need a
 865 * destructor called on it.  If we need to add a destructor, we can
 866 * add that functionality later.  Note that we may not clear tags or
 867 * slots from the tree as an RCU walker may still have a pointer into
 868 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 869 * but we'll still have to clear those in rcu_free.
 870 */
 871static void radix_tree_free_nodes(struct radix_tree_node *node)
 872{
 873        unsigned offset = 0;
 874        struct radix_tree_node *child = entry_to_node(node);
 875
 876        for (;;) {
 877                void *entry = rcu_dereference_raw(child->slots[offset]);
 878                if (radix_tree_is_internal_node(entry) &&
 879                                        !is_sibling_entry(child, entry)) {
 880                        child = entry_to_node(entry);
 881                        offset = 0;
 882                        continue;
 883                }
 884                offset++;
 885                while (offset == RADIX_TREE_MAP_SIZE) {
 886                        struct radix_tree_node *old = child;
 887                        offset = child->offset + 1;
 888                        child = child->parent;
 889                        WARN_ON_ONCE(!list_empty(&old->private_list));
 890                        radix_tree_node_free(old);
 891                        if (old == entry_to_node(node))
 892                                return;
 893                }
 894        }
 895}
 896
 897#ifdef CONFIG_RADIX_TREE_MULTIORDER
 898static inline int insert_entries(struct radix_tree_node *node,
 899                void __rcu **slot, void *item, unsigned order, bool replace)
 900{
 901        struct radix_tree_node *child;
 902        unsigned i, n, tag, offset, tags = 0;
 903
 904        if (node) {
 905                if (order > node->shift)
 906                        n = 1 << (order - node->shift);
 907                else
 908                        n = 1;
 909                offset = get_slot_offset(node, slot);
 910        } else {
 911                n = 1;
 912                offset = 0;
 913        }
 914
 915        if (n > 1) {
 916                offset = offset & ~(n - 1);
 917                slot = &node->slots[offset];
 918        }
 919        child = node_to_entry(slot);
 920
 921        for (i = 0; i < n; i++) {
 922                if (slot[i]) {
 923                        if (replace) {
 924                                node->count--;
 925                                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 926                                        if (tag_get(node, tag, offset + i))
 927                                                tags |= 1 << tag;
 928                        } else
 929                                return -EEXIST;
 930                }
 931        }
 932
 933        for (i = 0; i < n; i++) {
 934                struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
 935                if (i) {
 936                        rcu_assign_pointer(slot[i], child);
 937                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 938                                if (tags & (1 << tag))
 939                                        tag_clear(node, tag, offset + i);
 940                } else {
 941                        rcu_assign_pointer(slot[i], item);
 942                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 943                                if (tags & (1 << tag))
 944                                        tag_set(node, tag, offset);
 945                }
 946                if (radix_tree_is_internal_node(old) &&
 947                                        !is_sibling_entry(node, old) &&
 948                                        (old != RADIX_TREE_RETRY))
 949                        radix_tree_free_nodes(old);
 950                if (radix_tree_exceptional_entry(old))
 951                        node->exceptional--;
 952        }
 953        if (node) {
 954                node->count += n;
 955                if (radix_tree_exceptional_entry(item))
 956                        node->exceptional += n;
 957        }
 958        return n;
 959}
 960#else
 961static inline int insert_entries(struct radix_tree_node *node,
 962                void __rcu **slot, void *item, unsigned order, bool replace)
 963{
 964        if (*slot)
 965                return -EEXIST;
 966        rcu_assign_pointer(*slot, item);
 967        if (node) {
 968                node->count++;
 969                if (radix_tree_exceptional_entry(item))
 970                        node->exceptional++;
 971        }
 972        return 1;
 973}
 974#endif
 975
 976/**
 977 *      __radix_tree_insert    -    insert into a radix tree
 978 *      @root:          radix tree root
 979 *      @index:         index key
 980 *      @order:         key covers the 2^order indices around index
 981 *      @item:          item to insert
 982 *
 983 *      Insert an item into the radix tree at position @index.
 984 */
 985int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 986                        unsigned order, void *item)
 987{
 988        struct radix_tree_node *node;
 989        void __rcu **slot;
 990        int error;
 991
 992        BUG_ON(radix_tree_is_internal_node(item));
 993
 994        error = __radix_tree_create(root, index, order, &node, &slot);
 995        if (error)
 996                return error;
 997
 998        error = insert_entries(node, slot, item, order, false);
 999        if (error < 0)
1000                return error;
1001
1002        if (node) {
1003                unsigned offset = get_slot_offset(node, slot);
1004                BUG_ON(tag_get(node, 0, offset));
1005                BUG_ON(tag_get(node, 1, offset));
1006                BUG_ON(tag_get(node, 2, offset));
1007        } else {
1008                BUG_ON(root_tags_get(root));
1009        }
1010
1011        return 0;
1012}
1013EXPORT_SYMBOL(__radix_tree_insert);
1014
1015/**
1016 *      __radix_tree_lookup     -       lookup an item in a radix tree
1017 *      @root:          radix tree root
1018 *      @index:         index key
1019 *      @nodep:         returns node
1020 *      @slotp:         returns slot
1021 *
1022 *      Lookup and return the item at position @index in the radix
1023 *      tree @root.
1024 *
1025 *      Until there is more than one item in the tree, no nodes are
1026 *      allocated and @root->rnode is used as a direct slot instead of
1027 *      pointing to a node, in which case *@nodep will be NULL.
1028 */
1029void *__radix_tree_lookup(const struct radix_tree_root *root,
1030                          unsigned long index, struct radix_tree_node **nodep,
1031                          void __rcu ***slotp)
1032{
1033        struct radix_tree_node *node, *parent;
1034        unsigned long maxindex;
1035        void __rcu **slot;
1036
1037 restart:
1038        parent = NULL;
1039        slot = (void __rcu **)&root->rnode;
1040        radix_tree_load_root(root, &node, &maxindex);
1041        if (index > maxindex)
1042                return NULL;
1043
1044        while (radix_tree_is_internal_node(node)) {
1045                unsigned offset;
1046
1047                if (node == RADIX_TREE_RETRY)
1048                        goto restart;
1049                parent = entry_to_node(node);
1050                offset = radix_tree_descend(parent, &node, index);
1051                slot = parent->slots + offset;
1052        }
1053
1054        if (nodep)
1055                *nodep = parent;
1056        if (slotp)
1057                *slotp = slot;
1058        return node;
1059}
1060
1061/**
1062 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
1063 *      @root:          radix tree root
1064 *      @index:         index key
1065 *
1066 *      Returns:  the slot corresponding to the position @index in the
1067 *      radix tree @root. This is useful for update-if-exists operations.
1068 *
1069 *      This function can be called under rcu_read_lock iff the slot is not
1070 *      modified by radix_tree_replace_slot, otherwise it must be called
1071 *      exclusive from other writers. Any dereference of the slot must be done
1072 *      using radix_tree_deref_slot.
1073 */
1074void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1075                                unsigned long index)
1076{
1077        void __rcu **slot;
1078
1079        if (!__radix_tree_lookup(root, index, NULL, &slot))
1080                return NULL;
1081        return slot;
1082}
1083EXPORT_SYMBOL(radix_tree_lookup_slot);
1084
1085/**
1086 *      radix_tree_lookup    -    perform lookup operation on a radix tree
1087 *      @root:          radix tree root
1088 *      @index:         index key
1089 *
1090 *      Lookup the item at the position @index in the radix tree @root.
1091 *
1092 *      This function can be called under rcu_read_lock, however the caller
1093 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1094 *      them safely). No RCU barriers are required to access or modify the
1095 *      returned item, however.
1096 */
1097void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1098{
1099        return __radix_tree_lookup(root, index, NULL, NULL);
1100}
1101EXPORT_SYMBOL(radix_tree_lookup);
1102
1103static inline void replace_sibling_entries(struct radix_tree_node *node,
1104                                void __rcu **slot, int count, int exceptional)
1105{
1106#ifdef CONFIG_RADIX_TREE_MULTIORDER
1107        void *ptr = node_to_entry(slot);
1108        unsigned offset = get_slot_offset(node, slot) + 1;
1109
1110        while (offset < RADIX_TREE_MAP_SIZE) {
1111                if (rcu_dereference_raw(node->slots[offset]) != ptr)
1112                        break;
1113                if (count < 0) {
1114                        node->slots[offset] = NULL;
1115                        node->count--;
1116                }
1117                node->exceptional += exceptional;
1118                offset++;
1119        }
1120#endif
1121}
1122
1123static void replace_slot(void __rcu **slot, void *item,
1124                struct radix_tree_node *node, int count, int exceptional)
1125{
1126        if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1127                return;
1128
1129        if (node && (count || exceptional)) {
1130                node->count += count;
1131                node->exceptional += exceptional;
1132                replace_sibling_entries(node, slot, count, exceptional);
1133        }
1134
1135        rcu_assign_pointer(*slot, item);
1136}
1137
1138static bool node_tag_get(const struct radix_tree_root *root,
1139                                const struct radix_tree_node *node,
1140                                unsigned int tag, unsigned int offset)
1141{
1142        if (node)
1143                return tag_get(node, tag, offset);
1144        return root_tag_get(root, tag);
1145}
1146
1147/*
1148 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1149 * free, don't adjust the count, even if it's transitioning between NULL and
1150 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
1151 * have empty bits, but it only stores NULL in slots when they're being
1152 * deleted.
1153 */
1154static int calculate_count(struct radix_tree_root *root,
1155                                struct radix_tree_node *node, void __rcu **slot,
1156                                void *item, void *old)
1157{
1158        if (is_idr(root)) {
1159                unsigned offset = get_slot_offset(node, slot);
1160                bool free = node_tag_get(root, node, IDR_FREE, offset);
1161                if (!free)
1162                        return 0;
1163                if (!old)
1164                        return 1;
1165        }
1166        return !!item - !!old;
1167}
1168
1169/**
1170 * __radix_tree_replace         - replace item in a slot
1171 * @root:               radix tree root
1172 * @node:               pointer to tree node
1173 * @slot:               pointer to slot in @node
1174 * @item:               new item to store in the slot.
1175 * @update_node:        callback for changing leaf nodes
1176 *
1177 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1178 * across slot lookup and replacement.
1179 */
1180void __radix_tree_replace(struct radix_tree_root *root,
1181                          struct radix_tree_node *node,
1182                          void __rcu **slot, void *item,
1183                          radix_tree_update_node_t update_node)
1184{
1185        void *old = rcu_dereference_raw(*slot);
1186        int exceptional = !!radix_tree_exceptional_entry(item) -
1187                                !!radix_tree_exceptional_entry(old);
1188        int count = calculate_count(root, node, slot, item, old);
1189
1190        /*
1191         * This function supports replacing exceptional entries and
1192         * deleting entries, but that needs accounting against the
1193         * node unless the slot is root->rnode.
1194         */
1195        WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1196                        (count || exceptional));
1197        replace_slot(slot, item, node, count, exceptional);
1198
1199        if (!node)
1200                return;
1201
1202        if (update_node)
1203                update_node(node);
1204
1205        delete_node(root, node, update_node);
1206}
1207
1208/**
1209 * radix_tree_replace_slot      - replace item in a slot
1210 * @root:       radix tree root
1211 * @slot:       pointer to slot
1212 * @item:       new item to store in the slot.
1213 *
1214 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1215 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1216 * across slot lookup and replacement.
1217 *
1218 * NOTE: This cannot be used to switch between non-entries (empty slots),
1219 * regular entries, and exceptional entries, as that requires accounting
1220 * inside the radix tree node. When switching from one type of entry or
1221 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1222 * radix_tree_iter_replace().
1223 */
1224void radix_tree_replace_slot(struct radix_tree_root *root,
1225                             void __rcu **slot, void *item)
1226{
1227        __radix_tree_replace(root, NULL, slot, item, NULL);
1228}
1229EXPORT_SYMBOL(radix_tree_replace_slot);
1230
1231/**
1232 * radix_tree_iter_replace - replace item in a slot
1233 * @root:       radix tree root
1234 * @slot:       pointer to slot
1235 * @item:       new item to store in the slot.
1236 *
1237 * For use with radix_tree_split() and radix_tree_for_each_slot().
1238 * Caller must hold tree write locked across split and replacement.
1239 */
1240void radix_tree_iter_replace(struct radix_tree_root *root,
1241                                const struct radix_tree_iter *iter,
1242                                void __rcu **slot, void *item)
1243{
1244        __radix_tree_replace(root, iter->node, slot, item, NULL);
1245}
1246
1247#ifdef CONFIG_RADIX_TREE_MULTIORDER
1248/**
1249 * radix_tree_join - replace multiple entries with one multiorder entry
1250 * @root: radix tree root
1251 * @index: an index inside the new entry
1252 * @order: order of the new entry
1253 * @item: new entry
1254 *
1255 * Call this function to replace several entries with one larger entry.
1256 * The existing entries are presumed to not need freeing as a result of
1257 * this call.
1258 *
1259 * The replacement entry will have all the tags set on it that were set
1260 * on any of the entries it is replacing.
1261 */
1262int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1263                        unsigned order, void *item)
1264{
1265        struct radix_tree_node *node;
1266        void __rcu **slot;
1267        int error;
1268
1269        BUG_ON(radix_tree_is_internal_node(item));
1270
1271        error = __radix_tree_create(root, index, order, &node, &slot);
1272        if (!error)
1273                error = insert_entries(node, slot, item, order, true);
1274        if (error > 0)
1275                error = 0;
1276
1277        return error;
1278}
1279
1280/**
1281 * radix_tree_split - Split an entry into smaller entries
1282 * @root: radix tree root
1283 * @index: An index within the large entry
1284 * @order: Order of new entries
1285 *
1286 * Call this function as the first step in replacing a multiorder entry
1287 * with several entries of lower order.  After this function returns,
1288 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1289 * and call radix_tree_iter_replace() to set up each new entry.
1290 *
1291 * The tags from this entry are replicated to all the new entries.
1292 *
1293 * The radix tree should be locked against modification during the entire
1294 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1295 * should prompt RCU walkers to restart the lookup from the root.
1296 */
1297int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1298                                unsigned order)
1299{
1300        struct radix_tree_node *parent, *node, *child;
1301        void __rcu **slot;
1302        unsigned int offset, end;
1303        unsigned n, tag, tags = 0;
1304        gfp_t gfp = root_gfp_mask(root);
1305
1306        if (!__radix_tree_lookup(root, index, &parent, &slot))
1307                return -ENOENT;
1308        if (!parent)
1309                return -ENOENT;
1310
1311        offset = get_slot_offset(parent, slot);
1312
1313        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1314                if (tag_get(parent, tag, offset))
1315                        tags |= 1 << tag;
1316
1317        for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1318                if (!is_sibling_entry(parent,
1319                                rcu_dereference_raw(parent->slots[end])))
1320                        break;
1321                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1322                        if (tags & (1 << tag))
1323                                tag_set(parent, tag, end);
1324                /* rcu_assign_pointer ensures tags are set before RETRY */
1325                rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1326        }
1327        rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1328        parent->exceptional -= (end - offset);
1329
1330        if (order == parent->shift)
1331                return 0;
1332        if (order > parent->shift) {
1333                while (offset < end)
1334                        offset += insert_entries(parent, &parent->slots[offset],
1335                                        RADIX_TREE_RETRY, order, true);
1336                return 0;
1337        }
1338
1339        node = parent;
1340
1341        for (;;) {
1342                if (node->shift > order) {
1343                        child = radix_tree_node_alloc(gfp, node, root,
1344                                        node->shift - RADIX_TREE_MAP_SHIFT,
1345                                        offset, 0, 0);
1346                        if (!child)
1347                                goto nomem;
1348                        if (node != parent) {
1349                                node->count++;
1350                                rcu_assign_pointer(node->slots[offset],
1351                                                        node_to_entry(child));
1352                                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1353                                        if (tags & (1 << tag))
1354                                                tag_set(node, tag, offset);
1355                        }
1356
1357                        node = child;
1358                        offset = 0;
1359                        continue;
1360                }
1361
1362                n = insert_entries(node, &node->slots[offset],
1363                                        RADIX_TREE_RETRY, order, false);
1364                BUG_ON(n > RADIX_TREE_MAP_SIZE);
1365
1366                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1367                        if (tags & (1 << tag))
1368                                tag_set(node, tag, offset);
1369                offset += n;
1370
1371                while (offset == RADIX_TREE_MAP_SIZE) {
1372                        if (node == parent)
1373                                break;
1374                        offset = node->offset;
1375                        child = node;
1376                        node = node->parent;
1377                        rcu_assign_pointer(node->slots[offset],
1378                                                node_to_entry(child));
1379                        offset++;
1380                }
1381                if ((node == parent) && (offset == end))
1382                        return 0;
1383        }
1384
1385 nomem:
1386        /* Shouldn't happen; did user forget to preload? */
1387        /* TODO: free all the allocated nodes */
1388        WARN_ON(1);
1389        return -ENOMEM;
1390}
1391#endif
1392
1393static void node_tag_set(struct radix_tree_root *root,
1394                                struct radix_tree_node *node,
1395                                unsigned int tag, unsigned int offset)
1396{
1397        while (node) {
1398                if (tag_get(node, tag, offset))
1399                        return;
1400                tag_set(node, tag, offset);
1401                offset = node->offset;
1402                node = node->parent;
1403        }
1404
1405        if (!root_tag_get(root, tag))
1406                root_tag_set(root, tag);
1407}
1408
1409/**
1410 *      radix_tree_tag_set - set a tag on a radix tree node
1411 *      @root:          radix tree root
1412 *      @index:         index key
1413 *      @tag:           tag index
1414 *
1415 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1416 *      corresponding to @index in the radix tree.  From
1417 *      the root all the way down to the leaf node.
1418 *
1419 *      Returns the address of the tagged item.  Setting a tag on a not-present
1420 *      item is a bug.
1421 */
1422void *radix_tree_tag_set(struct radix_tree_root *root,
1423                        unsigned long index, unsigned int tag)
1424{
1425        struct radix_tree_node *node, *parent;
1426        unsigned long maxindex;
1427
1428        radix_tree_load_root(root, &node, &maxindex);
1429        BUG_ON(index > maxindex);
1430
1431        while (radix_tree_is_internal_node(node)) {
1432                unsigned offset;
1433
1434                parent = entry_to_node(node);
1435                offset = radix_tree_descend(parent, &node, index);
1436                BUG_ON(!node);
1437
1438                if (!tag_get(parent, tag, offset))
1439                        tag_set(parent, tag, offset);
1440        }
1441
1442        /* set the root's tag bit */
1443        if (!root_tag_get(root, tag))
1444                root_tag_set(root, tag);
1445
1446        return node;
1447}
1448EXPORT_SYMBOL(radix_tree_tag_set);
1449
1450/**
1451 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1452 * @root:       radix tree root
1453 * @iter:       iterator state
1454 * @tag:        tag to set
1455 */
1456void radix_tree_iter_tag_set(struct radix_tree_root *root,
1457                        const struct radix_tree_iter *iter, unsigned int tag)
1458{
1459        node_tag_set(root, iter->node, tag, iter_offset(iter));
1460}
1461
1462static void node_tag_clear(struct radix_tree_root *root,
1463                                struct radix_tree_node *node,
1464                                unsigned int tag, unsigned int offset)
1465{
1466        while (node) {
1467                if (!tag_get(node, tag, offset))
1468                        return;
1469                tag_clear(node, tag, offset);
1470                if (any_tag_set(node, tag))
1471                        return;
1472
1473                offset = node->offset;
1474                node = node->parent;
1475        }
1476
1477        /* clear the root's tag bit */
1478        if (root_tag_get(root, tag))
1479                root_tag_clear(root, tag);
1480}
1481
1482/**
1483 *      radix_tree_tag_clear - clear a tag on a radix tree node
1484 *      @root:          radix tree root
1485 *      @index:         index key
1486 *      @tag:           tag index
1487 *
1488 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1489 *      corresponding to @index in the radix tree.  If this causes
1490 *      the leaf node to have no tags set then clear the tag in the
1491 *      next-to-leaf node, etc.
1492 *
1493 *      Returns the address of the tagged item on success, else NULL.  ie:
1494 *      has the same return value and semantics as radix_tree_lookup().
1495 */
1496void *radix_tree_tag_clear(struct radix_tree_root *root,
1497                        unsigned long index, unsigned int tag)
1498{
1499        struct radix_tree_node *node, *parent;
1500        unsigned long maxindex;
1501        int uninitialized_var(offset);
1502
1503        radix_tree_load_root(root, &node, &maxindex);
1504        if (index > maxindex)
1505                return NULL;
1506
1507        parent = NULL;
1508
1509        while (radix_tree_is_internal_node(node)) {
1510                parent = entry_to_node(node);
1511                offset = radix_tree_descend(parent, &node, index);
1512        }
1513
1514        if (node)
1515                node_tag_clear(root, parent, tag, offset);
1516
1517        return node;
1518}
1519EXPORT_SYMBOL(radix_tree_tag_clear);
1520
1521/**
1522  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1523  * @root: radix tree root
1524  * @iter: iterator state
1525  * @tag: tag to clear
1526  */
1527void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1528                        const struct radix_tree_iter *iter, unsigned int tag)
1529{
1530        node_tag_clear(root, iter->node, tag, iter_offset(iter));
1531}
1532
1533/**
1534 * radix_tree_tag_get - get a tag on a radix tree node
1535 * @root:               radix tree root
1536 * @index:              index key
1537 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
1538 *
1539 * Return values:
1540 *
1541 *  0: tag not present or not set
1542 *  1: tag set
1543 *
1544 * Note that the return value of this function may not be relied on, even if
1545 * the RCU lock is held, unless tag modification and node deletion are excluded
1546 * from concurrency.
1547 */
1548int radix_tree_tag_get(const struct radix_tree_root *root,
1549                        unsigned long index, unsigned int tag)
1550{
1551        struct radix_tree_node *node, *parent;
1552        unsigned long maxindex;
1553
1554        if (!root_tag_get(root, tag))
1555                return 0;
1556
1557        radix_tree_load_root(root, &node, &maxindex);
1558        if (index > maxindex)
1559                return 0;
1560
1561        while (radix_tree_is_internal_node(node)) {
1562                unsigned offset;
1563
1564                parent = entry_to_node(node);
1565                offset = radix_tree_descend(parent, &node, index);
1566
1567                if (!tag_get(parent, tag, offset))
1568                        return 0;
1569                if (node == RADIX_TREE_RETRY)
1570                        break;
1571        }
1572
1573        return 1;
1574}
1575EXPORT_SYMBOL(radix_tree_tag_get);
1576
1577static inline void __set_iter_shift(struct radix_tree_iter *iter,
1578                                        unsigned int shift)
1579{
1580#ifdef CONFIG_RADIX_TREE_MULTIORDER
1581        iter->shift = shift;
1582#endif
1583}
1584
1585/* Construct iter->tags bit-mask from node->tags[tag] array */
1586static void set_iter_tags(struct radix_tree_iter *iter,
1587                                struct radix_tree_node *node, unsigned offset,
1588                                unsigned tag)
1589{
1590        unsigned tag_long = offset / BITS_PER_LONG;
1591        unsigned tag_bit  = offset % BITS_PER_LONG;
1592
1593        if (!node) {
1594                iter->tags = 1;
1595                return;
1596        }
1597
1598        iter->tags = node->tags[tag][tag_long] >> tag_bit;
1599
1600        /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1601        if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1602                /* Pick tags from next element */
1603                if (tag_bit)
1604                        iter->tags |= node->tags[tag][tag_long + 1] <<
1605                                                (BITS_PER_LONG - tag_bit);
1606                /* Clip chunk size, here only BITS_PER_LONG tags */
1607                iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1608        }
1609}
1610
1611#ifdef CONFIG_RADIX_TREE_MULTIORDER
1612static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1613                        void __rcu **slot, struct radix_tree_iter *iter)
1614{
1615        while (iter->index < iter->next_index) {
1616                *nodep = rcu_dereference_raw(*slot);
1617                if (*nodep && !is_sibling_entry(iter->node, *nodep))
1618                        return slot;
1619                slot++;
1620                iter->index = __radix_tree_iter_add(iter, 1);
1621                iter->tags >>= 1;
1622        }
1623
1624        *nodep = NULL;
1625        return NULL;
1626}
1627
1628void __rcu **__radix_tree_next_slot(void __rcu **slot,
1629                                struct radix_tree_iter *iter, unsigned flags)
1630{
1631        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1632        struct radix_tree_node *node;
1633
1634        slot = skip_siblings(&node, slot, iter);
1635
1636        while (radix_tree_is_internal_node(node)) {
1637                unsigned offset;
1638                unsigned long next_index;
1639
1640                if (node == RADIX_TREE_RETRY)
1641                        return slot;
1642                node = entry_to_node(node);
1643                iter->node = node;
1644                iter->shift = node->shift;
1645
1646                if (flags & RADIX_TREE_ITER_TAGGED) {
1647                        offset = radix_tree_find_next_bit(node, tag, 0);
1648                        if (offset == RADIX_TREE_MAP_SIZE)
1649                                return NULL;
1650                        slot = &node->slots[offset];
1651                        iter->index = __radix_tree_iter_add(iter, offset);
1652                        set_iter_tags(iter, node, offset, tag);
1653                        node = rcu_dereference_raw(*slot);
1654                } else {
1655                        offset = 0;
1656                        slot = &node->slots[0];
1657                        for (;;) {
1658                                node = rcu_dereference_raw(*slot);
1659                                if (node)
1660                                        break;
1661                                slot++;
1662                                offset++;
1663                                if (offset == RADIX_TREE_MAP_SIZE)
1664                                        return NULL;
1665                        }
1666                        iter->index = __radix_tree_iter_add(iter, offset);
1667                }
1668                if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1669                        goto none;
1670                next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1671                if (next_index < iter->next_index)
1672                        iter->next_index = next_index;
1673        }
1674
1675        return slot;
1676 none:
1677        iter->next_index = 0;
1678        return NULL;
1679}
1680EXPORT_SYMBOL(__radix_tree_next_slot);
1681#else
1682static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1683                        void __rcu **slot, struct radix_tree_iter *iter)
1684{
1685        return slot;
1686}
1687#endif
1688
1689void __rcu **radix_tree_iter_resume(void __rcu **slot,
1690                                        struct radix_tree_iter *iter)
1691{
1692        struct radix_tree_node *node;
1693
1694        slot++;
1695        iter->index = __radix_tree_iter_add(iter, 1);
1696        skip_siblings(&node, slot, iter);
1697        iter->next_index = iter->index;
1698        iter->tags = 0;
1699        return NULL;
1700}
1701EXPORT_SYMBOL(radix_tree_iter_resume);
1702
1703/**
1704 * radix_tree_next_chunk - find next chunk of slots for iteration
1705 *
1706 * @root:       radix tree root
1707 * @iter:       iterator state
1708 * @flags:      RADIX_TREE_ITER_* flags and tag index
1709 * Returns:     pointer to chunk first slot, or NULL if iteration is over
1710 */
1711void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1712                             struct radix_tree_iter *iter, unsigned flags)
1713{
1714        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1715        struct radix_tree_node *node, *child;
1716        unsigned long index, offset, maxindex;
1717
1718        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1719                return NULL;
1720
1721        /*
1722         * Catch next_index overflow after ~0UL. iter->index never overflows
1723         * during iterating; it can be zero only at the beginning.
1724         * And we cannot overflow iter->next_index in a single step,
1725         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1726         *
1727         * This condition also used by radix_tree_next_slot() to stop
1728         * contiguous iterating, and forbid switching to the next chunk.
1729         */
1730        index = iter->next_index;
1731        if (!index && iter->index)
1732                return NULL;
1733
1734 restart:
1735        radix_tree_load_root(root, &child, &maxindex);
1736        if (index > maxindex)
1737                return NULL;
1738        if (!child)
1739                return NULL;
1740
1741        if (!radix_tree_is_internal_node(child)) {
1742                /* Single-slot tree */
1743                iter->index = index;
1744                iter->next_index = maxindex + 1;
1745                iter->tags = 1;
1746                iter->node = NULL;
1747                __set_iter_shift(iter, 0);
1748                return (void __rcu **)&root->rnode;
1749        }
1750
1751        do {
1752                node = entry_to_node(child);
1753                offset = radix_tree_descend(node, &child, index);
1754
1755                if ((flags & RADIX_TREE_ITER_TAGGED) ?
1756                                !tag_get(node, tag, offset) : !child) {
1757                        /* Hole detected */
1758                        if (flags & RADIX_TREE_ITER_CONTIG)
1759                                return NULL;
1760
1761                        if (flags & RADIX_TREE_ITER_TAGGED)
1762                                offset = radix_tree_find_next_bit(node, tag,
1763                                                offset + 1);
1764                        else
1765                                while (++offset < RADIX_TREE_MAP_SIZE) {
1766                                        void *slot = rcu_dereference_raw(
1767                                                        node->slots[offset]);
1768                                        if (is_sibling_entry(node, slot))
1769                                                continue;
1770                                        if (slot)
1771                                                break;
1772                                }
1773                        index &= ~node_maxindex(node);
1774                        index += offset << node->shift;
1775                        /* Overflow after ~0UL */
1776                        if (!index)
1777                                return NULL;
1778                        if (offset == RADIX_TREE_MAP_SIZE)
1779                                goto restart;
1780                        child = rcu_dereference_raw(node->slots[offset]);
1781                }
1782
1783                if (!child)
1784                        goto restart;
1785                if (child == RADIX_TREE_RETRY)
1786                        break;
1787        } while (radix_tree_is_internal_node(child));
1788
1789        /* Update the iterator state */
1790        iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1791        iter->next_index = (index | node_maxindex(node)) + 1;
1792        iter->node = node;
1793        __set_iter_shift(iter, node->shift);
1794
1795        if (flags & RADIX_TREE_ITER_TAGGED)
1796                set_iter_tags(iter, node, offset, tag);
1797
1798        return node->slots + offset;
1799}
1800EXPORT_SYMBOL(radix_tree_next_chunk);
1801
1802/**
1803 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1804 *      @root:          radix tree root
1805 *      @results:       where the results of the lookup are placed
1806 *      @first_index:   start the lookup from this key
1807 *      @max_items:     place up to this many items at *results
1808 *
1809 *      Performs an index-ascending scan of the tree for present items.  Places
1810 *      them at *@results and returns the number of items which were placed at
1811 *      *@results.
1812 *
1813 *      The implementation is naive.
1814 *
1815 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1816 *      rcu_read_lock. In this case, rather than the returned results being
1817 *      an atomic snapshot of the tree at a single point in time, the
1818 *      semantics of an RCU protected gang lookup are as though multiple
1819 *      radix_tree_lookups have been issued in individual locks, and results
1820 *      stored in 'results'.
1821 */
1822unsigned int
1823radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1824                        unsigned long first_index, unsigned int max_items)
1825{
1826        struct radix_tree_iter iter;
1827        void __rcu **slot;
1828        unsigned int ret = 0;
1829
1830        if (unlikely(!max_items))
1831                return 0;
1832
1833        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1834                results[ret] = rcu_dereference_raw(*slot);
1835                if (!results[ret])
1836                        continue;
1837                if (radix_tree_is_internal_node(results[ret])) {
1838                        slot = radix_tree_iter_retry(&iter);
1839                        continue;
1840                }
1841                if (++ret == max_items)
1842                        break;
1843        }
1844
1845        return ret;
1846}
1847EXPORT_SYMBOL(radix_tree_gang_lookup);
1848
1849/**
1850 *      radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1851 *      @root:          radix tree root
1852 *      @results:       where the results of the lookup are placed
1853 *      @indices:       where their indices should be placed (but usually NULL)
1854 *      @first_index:   start the lookup from this key
1855 *      @max_items:     place up to this many items at *results
1856 *
1857 *      Performs an index-ascending scan of the tree for present items.  Places
1858 *      their slots at *@results and returns the number of items which were
1859 *      placed at *@results.
1860 *
1861 *      The implementation is naive.
1862 *
1863 *      Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1864 *      be dereferenced with radix_tree_deref_slot, and if using only RCU
1865 *      protection, radix_tree_deref_slot may fail requiring a retry.
1866 */
1867unsigned int
1868radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1869                        void __rcu ***results, unsigned long *indices,
1870                        unsigned long first_index, unsigned int max_items)
1871{
1872        struct radix_tree_iter iter;
1873        void __rcu **slot;
1874        unsigned int ret = 0;
1875
1876        if (unlikely(!max_items))
1877                return 0;
1878
1879        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1880                results[ret] = slot;
1881                if (indices)
1882                        indices[ret] = iter.index;
1883                if (++ret == max_items)
1884                        break;
1885        }
1886
1887        return ret;
1888}
1889EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1890
1891/**
1892 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1893 *                                   based on a tag
1894 *      @root:          radix tree root
1895 *      @results:       where the results of the lookup are placed
1896 *      @first_index:   start the lookup from this key
1897 *      @max_items:     place up to this many items at *results
1898 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1899 *
1900 *      Performs an index-ascending scan of the tree for present items which
1901 *      have the tag indexed by @tag set.  Places the items at *@results and
1902 *      returns the number of items which were placed at *@results.
1903 */
1904unsigned int
1905radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1906                unsigned long first_index, unsigned int max_items,
1907                unsigned int tag)
1908{
1909        struct radix_tree_iter iter;
1910        void __rcu **slot;
1911        unsigned int ret = 0;
1912
1913        if (unlikely(!max_items))
1914                return 0;
1915
1916        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1917                results[ret] = rcu_dereference_raw(*slot);
1918                if (!results[ret])
1919                        continue;
1920                if (radix_tree_is_internal_node(results[ret])) {
1921                        slot = radix_tree_iter_retry(&iter);
1922                        continue;
1923                }
1924                if (++ret == max_items)
1925                        break;
1926        }
1927
1928        return ret;
1929}
1930EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1931
1932/**
1933 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1934 *                                        radix tree based on a tag
1935 *      @root:          radix tree root
1936 *      @results:       where the results of the lookup are placed
1937 *      @first_index:   start the lookup from this key
1938 *      @max_items:     place up to this many items at *results
1939 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1940 *
1941 *      Performs an index-ascending scan of the tree for present items which
1942 *      have the tag indexed by @tag set.  Places the slots at *@results and
1943 *      returns the number of slots which were placed at *@results.
1944 */
1945unsigned int
1946radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1947                void __rcu ***results, unsigned long first_index,
1948                unsigned int max_items, unsigned int tag)
1949{
1950        struct radix_tree_iter iter;
1951        void __rcu **slot;
1952        unsigned int ret = 0;
1953
1954        if (unlikely(!max_items))
1955                return 0;
1956
1957        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1958                results[ret] = slot;
1959                if (++ret == max_items)
1960                        break;
1961        }
1962
1963        return ret;
1964}
1965EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1966
1967/**
1968 *      __radix_tree_delete_node    -    try to free node after clearing a slot
1969 *      @root:          radix tree root
1970 *      @node:          node containing @index
1971 *      @update_node:   callback for changing leaf nodes
1972 *
1973 *      After clearing the slot at @index in @node from radix tree
1974 *      rooted at @root, call this function to attempt freeing the
1975 *      node and shrinking the tree.
1976 */
1977void __radix_tree_delete_node(struct radix_tree_root *root,
1978                              struct radix_tree_node *node,
1979                              radix_tree_update_node_t update_node)
1980{
1981        delete_node(root, node, update_node);
1982}
1983
1984static bool __radix_tree_delete(struct radix_tree_root *root,
1985                                struct radix_tree_node *node, void __rcu **slot)
1986{
1987        void *old = rcu_dereference_raw(*slot);
1988        int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1989        unsigned offset = get_slot_offset(node, slot);
1990        int tag;
1991
1992        if (is_idr(root))
1993                node_tag_set(root, node, IDR_FREE, offset);
1994        else
1995                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1996                        node_tag_clear(root, node, tag, offset);
1997
1998        replace_slot(slot, NULL, node, -1, exceptional);
1999        return node && delete_node(root, node, NULL);
2000}
2001
2002/**
2003 * radix_tree_iter_delete - delete the entry at this iterator position
2004 * @root: radix tree root
2005 * @iter: iterator state
2006 * @slot: pointer to slot
2007 *
2008 * Delete the entry at the position currently pointed to by the iterator.
2009 * This may result in the current node being freed; if it is, the iterator
2010 * is advanced so that it will not reference the freed memory.  This
2011 * function may be called without any locking if there are no other threads
2012 * which can access this tree.
2013 */
2014void radix_tree_iter_delete(struct radix_tree_root *root,
2015                                struct radix_tree_iter *iter, void __rcu **slot)
2016{
2017        if (__radix_tree_delete(root, iter->node, slot))
2018                iter->index = iter->next_index;
2019}
2020EXPORT_SYMBOL(radix_tree_iter_delete);
2021
2022/**
2023 * radix_tree_delete_item - delete an item from a radix tree
2024 * @root: radix tree root
2025 * @index: index key
2026 * @item: expected item
2027 *
2028 * Remove @item at @index from the radix tree rooted at @root.
2029 *
2030 * Return: the deleted entry, or %NULL if it was not present
2031 * or the entry at the given @index was not @item.
2032 */
2033void *radix_tree_delete_item(struct radix_tree_root *root,
2034                             unsigned long index, void *item)
2035{
2036        struct radix_tree_node *node = NULL;
2037        void __rcu **slot = NULL;
2038        void *entry;
2039
2040        entry = __radix_tree_lookup(root, index, &node, &slot);
2041        if (!slot)
2042                return NULL;
2043        if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2044                                                get_slot_offset(node, slot))))
2045                return NULL;
2046
2047        if (item && entry != item)
2048                return NULL;
2049
2050        __radix_tree_delete(root, node, slot);
2051
2052        return entry;
2053}
2054EXPORT_SYMBOL(radix_tree_delete_item);
2055
2056/**
2057 * radix_tree_delete - delete an entry from a radix tree
2058 * @root: radix tree root
2059 * @index: index key
2060 *
2061 * Remove the entry at @index from the radix tree rooted at @root.
2062 *
2063 * Return: The deleted entry, or %NULL if it was not present.
2064 */
2065void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2066{
2067        return radix_tree_delete_item(root, index, NULL);
2068}
2069EXPORT_SYMBOL(radix_tree_delete);
2070
2071void radix_tree_clear_tags(struct radix_tree_root *root,
2072                           struct radix_tree_node *node,
2073                           void __rcu **slot)
2074{
2075        if (node) {
2076                unsigned int tag, offset = get_slot_offset(node, slot);
2077                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2078                        node_tag_clear(root, node, tag, offset);
2079        } else {
2080                root_tag_clear_all(root);
2081        }
2082}
2083
2084/**
2085 *      radix_tree_tagged - test whether any items in the tree are tagged
2086 *      @root:          radix tree root
2087 *      @tag:           tag to test
2088 */
2089int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2090{
2091        return root_tag_get(root, tag);
2092}
2093EXPORT_SYMBOL(radix_tree_tagged);
2094
2095/**
2096 * idr_preload - preload for idr_alloc()
2097 * @gfp_mask: allocation mask to use for preloading
2098 *
2099 * Preallocate memory to use for the next call to idr_alloc().  This function
2100 * returns with preemption disabled.  It will be enabled by idr_preload_end().
2101 */
2102void idr_preload(gfp_t gfp_mask)
2103{
2104        if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
2105                preempt_disable();
2106}
2107EXPORT_SYMBOL(idr_preload);
2108
2109/**
2110 * ida_pre_get - reserve resources for ida allocation
2111 * @ida: ida handle
2112 * @gfp: memory allocation flags
2113 *
2114 * This function should be called before calling ida_get_new_above().  If it
2115 * is unable to allocate memory, it will return %0.  On success, it returns %1.
2116 */
2117int ida_pre_get(struct ida *ida, gfp_t gfp)
2118{
2119        /*
2120         * The IDA API has no preload_end() equivalent.  Instead,
2121         * ida_get_new() can return -EAGAIN, prompting the caller
2122         * to return to the ida_pre_get() step.
2123         */
2124        if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
2125                preempt_enable();
2126
2127        if (!this_cpu_read(ida_bitmap)) {
2128                struct ida_bitmap *bitmap = kzalloc(sizeof(*bitmap), gfp);
2129                if (!bitmap)
2130                        return 0;
2131                if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2132                        kfree(bitmap);
2133        }
2134
2135        return 1;
2136}
2137EXPORT_SYMBOL(ida_pre_get);
2138
2139void __rcu **idr_get_free(struct radix_tree_root *root,
2140                              struct radix_tree_iter *iter, gfp_t gfp,
2141                              unsigned long max)
2142{
2143        struct radix_tree_node *node = NULL, *child;
2144        void __rcu **slot = (void __rcu **)&root->rnode;
2145        unsigned long maxindex, start = iter->next_index;
2146        unsigned int shift, offset = 0;
2147
2148 grow:
2149        shift = radix_tree_load_root(root, &child, &maxindex);
2150        if (!radix_tree_tagged(root, IDR_FREE))
2151                start = max(start, maxindex + 1);
2152        if (start > max)
2153                return ERR_PTR(-ENOSPC);
2154
2155        if (start > maxindex) {
2156                int error = radix_tree_extend(root, gfp, start, shift);
2157                if (error < 0)
2158                        return ERR_PTR(error);
2159                shift = error;
2160                child = rcu_dereference_raw(root->rnode);
2161        }
2162
2163        while (shift) {
2164                shift -= RADIX_TREE_MAP_SHIFT;
2165                if (child == NULL) {
2166                        /* Have to add a child node.  */
2167                        child = radix_tree_node_alloc(gfp, node, root, shift,
2168                                                        offset, 0, 0);
2169                        if (!child)
2170                                return ERR_PTR(-ENOMEM);
2171                        all_tag_set(child, IDR_FREE);
2172                        rcu_assign_pointer(*slot, node_to_entry(child));
2173                        if (node)
2174                                node->count++;
2175                } else if (!radix_tree_is_internal_node(child))
2176                        break;
2177
2178                node = entry_to_node(child);
2179                offset = radix_tree_descend(node, &child, start);
2180                if (!tag_get(node, IDR_FREE, offset)) {
2181                        offset = radix_tree_find_next_bit(node, IDR_FREE,
2182                                                        offset + 1);
2183                        start = next_index(start, node, offset);
2184                        if (start > max)
2185                                return ERR_PTR(-ENOSPC);
2186                        while (offset == RADIX_TREE_MAP_SIZE) {
2187                                offset = node->offset + 1;
2188                                node = node->parent;
2189                                if (!node)
2190                                        goto grow;
2191                                shift = node->shift;
2192                        }
2193                        child = rcu_dereference_raw(node->slots[offset]);
2194                }
2195                slot = &node->slots[offset];
2196        }
2197
2198        iter->index = start;
2199        if (node)
2200                iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2201        else
2202                iter->next_index = 1;
2203        iter->node = node;
2204        __set_iter_shift(iter, shift);
2205        set_iter_tags(iter, node, offset, IDR_FREE);
2206
2207        return slot;
2208}
2209
2210/**
2211 * idr_destroy - release all internal memory from an IDR
2212 * @idr: idr handle
2213 *
2214 * After this function is called, the IDR is empty, and may be reused or
2215 * the data structure containing it may be freed.
2216 *
2217 * A typical clean-up sequence for objects stored in an idr tree will use
2218 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2219 * free the memory used to keep track of those objects.
2220 */
2221void idr_destroy(struct idr *idr)
2222{
2223        struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2224        if (radix_tree_is_internal_node(node))
2225                radix_tree_free_nodes(node);
2226        idr->idr_rt.rnode = NULL;
2227        root_tag_set(&idr->idr_rt, IDR_FREE);
2228}
2229EXPORT_SYMBOL(idr_destroy);
2230
2231static void
2232radix_tree_node_ctor(void *arg)
2233{
2234        struct radix_tree_node *node = arg;
2235
2236        memset(node, 0, sizeof(*node));
2237        INIT_LIST_HEAD(&node->private_list);
2238}
2239
2240static __init unsigned long __maxindex(unsigned int height)
2241{
2242        unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2243        int shift = RADIX_TREE_INDEX_BITS - width;
2244
2245        if (shift < 0)
2246                return ~0UL;
2247        if (shift >= BITS_PER_LONG)
2248                return 0UL;
2249        return ~0UL >> shift;
2250}
2251
2252static __init void radix_tree_init_maxnodes(void)
2253{
2254        unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2255        unsigned int i, j;
2256
2257        for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2258                height_to_maxindex[i] = __maxindex(i);
2259        for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2260                for (j = i; j > 0; j--)
2261                        height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2262        }
2263}
2264
2265static int radix_tree_cpu_dead(unsigned int cpu)
2266{
2267        struct radix_tree_preload *rtp;
2268        struct radix_tree_node *node;
2269
2270        /* Free per-cpu pool of preloaded nodes */
2271        rtp = &per_cpu(radix_tree_preloads, cpu);
2272        while (rtp->nr) {
2273                node = rtp->nodes;
2274                rtp->nodes = node->parent;
2275                kmem_cache_free(radix_tree_node_cachep, node);
2276                rtp->nr--;
2277        }
2278        kfree(per_cpu(ida_bitmap, cpu));
2279        per_cpu(ida_bitmap, cpu) = NULL;
2280        return 0;
2281}
2282
2283void __init radix_tree_init(void)
2284{
2285        int ret;
2286
2287        BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
2288        BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
2289        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2290                        sizeof(struct radix_tree_node), 0,
2291                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2292                        radix_tree_node_ctor);
2293        radix_tree_init_maxnodes();
2294        ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2295                                        NULL, radix_tree_cpu_dead);
2296        WARN_ON(ret < 0);
2297}
2298