linux/lib/scatterlist.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   3 *
   4 * Scatterlist handling helpers.
   5 *
   6 * This source code is licensed under the GNU General Public License,
   7 * Version 2. See the file COPYING for more details.
   8 */
   9#include <linux/export.h>
  10#include <linux/slab.h>
  11#include <linux/scatterlist.h>
  12#include <linux/highmem.h>
  13#include <linux/kmemleak.h>
  14
  15/**
  16 * sg_next - return the next scatterlist entry in a list
  17 * @sg:         The current sg entry
  18 *
  19 * Description:
  20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  21 *   of a chained scatterlist, it could jump to the start of a new
  22 *   scatterlist array.
  23 *
  24 **/
  25struct scatterlist *sg_next(struct scatterlist *sg)
  26{
  27#ifdef CONFIG_DEBUG_SG
  28        BUG_ON(sg->sg_magic != SG_MAGIC);
  29#endif
  30        if (sg_is_last(sg))
  31                return NULL;
  32
  33        sg++;
  34        if (unlikely(sg_is_chain(sg)))
  35                sg = sg_chain_ptr(sg);
  36
  37        return sg;
  38}
  39EXPORT_SYMBOL(sg_next);
  40
  41/**
  42 * sg_nents - return total count of entries in scatterlist
  43 * @sg:         The scatterlist
  44 *
  45 * Description:
  46 * Allows to know how many entries are in sg, taking into acount
  47 * chaining as well
  48 *
  49 **/
  50int sg_nents(struct scatterlist *sg)
  51{
  52        int nents;
  53        for (nents = 0; sg; sg = sg_next(sg))
  54                nents++;
  55        return nents;
  56}
  57EXPORT_SYMBOL(sg_nents);
  58
  59/**
  60 * sg_nents_for_len - return total count of entries in scatterlist
  61 *                    needed to satisfy the supplied length
  62 * @sg:         The scatterlist
  63 * @len:        The total required length
  64 *
  65 * Description:
  66 * Determines the number of entries in sg that are required to meet
  67 * the supplied length, taking into acount chaining as well
  68 *
  69 * Returns:
  70 *   the number of sg entries needed, negative error on failure
  71 *
  72 **/
  73int sg_nents_for_len(struct scatterlist *sg, u64 len)
  74{
  75        int nents;
  76        u64 total;
  77
  78        if (!len)
  79                return 0;
  80
  81        for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  82                nents++;
  83                total += sg->length;
  84                if (total >= len)
  85                        return nents;
  86        }
  87
  88        return -EINVAL;
  89}
  90EXPORT_SYMBOL(sg_nents_for_len);
  91
  92/**
  93 * sg_last - return the last scatterlist entry in a list
  94 * @sgl:        First entry in the scatterlist
  95 * @nents:      Number of entries in the scatterlist
  96 *
  97 * Description:
  98 *   Should only be used casually, it (currently) scans the entire list
  99 *   to get the last entry.
 100 *
 101 *   Note that the @sgl@ pointer passed in need not be the first one,
 102 *   the important bit is that @nents@ denotes the number of entries that
 103 *   exist from @sgl@.
 104 *
 105 **/
 106struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 107{
 108        struct scatterlist *sg, *ret = NULL;
 109        unsigned int i;
 110
 111        for_each_sg(sgl, sg, nents, i)
 112                ret = sg;
 113
 114#ifdef CONFIG_DEBUG_SG
 115        BUG_ON(sgl[0].sg_magic != SG_MAGIC);
 116        BUG_ON(!sg_is_last(ret));
 117#endif
 118        return ret;
 119}
 120EXPORT_SYMBOL(sg_last);
 121
 122/**
 123 * sg_init_table - Initialize SG table
 124 * @sgl:           The SG table
 125 * @nents:         Number of entries in table
 126 *
 127 * Notes:
 128 *   If this is part of a chained sg table, sg_mark_end() should be
 129 *   used only on the last table part.
 130 *
 131 **/
 132void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 133{
 134        memset(sgl, 0, sizeof(*sgl) * nents);
 135        sg_init_marker(sgl, nents);
 136}
 137EXPORT_SYMBOL(sg_init_table);
 138
 139/**
 140 * sg_init_one - Initialize a single entry sg list
 141 * @sg:          SG entry
 142 * @buf:         Virtual address for IO
 143 * @buflen:      IO length
 144 *
 145 **/
 146void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 147{
 148        sg_init_table(sg, 1);
 149        sg_set_buf(sg, buf, buflen);
 150}
 151EXPORT_SYMBOL(sg_init_one);
 152
 153/*
 154 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 155 * helpers.
 156 */
 157static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 158{
 159        if (nents == SG_MAX_SINGLE_ALLOC) {
 160                /*
 161                 * Kmemleak doesn't track page allocations as they are not
 162                 * commonly used (in a raw form) for kernel data structures.
 163                 * As we chain together a list of pages and then a normal
 164                 * kmalloc (tracked by kmemleak), in order to for that last
 165                 * allocation not to become decoupled (and thus a
 166                 * false-positive) we need to inform kmemleak of all the
 167                 * intermediate allocations.
 168                 */
 169                void *ptr = (void *) __get_free_page(gfp_mask);
 170                kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 171                return ptr;
 172        } else
 173                return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 174}
 175
 176static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 177{
 178        if (nents == SG_MAX_SINGLE_ALLOC) {
 179                kmemleak_free(sg);
 180                free_page((unsigned long) sg);
 181        } else
 182                kfree(sg);
 183}
 184
 185/**
 186 * __sg_free_table - Free a previously mapped sg table
 187 * @table:      The sg table header to use
 188 * @max_ents:   The maximum number of entries per single scatterlist
 189 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
 190 * @free_fn:    Free function
 191 *
 192 *  Description:
 193 *    Free an sg table previously allocated and setup with
 194 *    __sg_alloc_table().  The @max_ents value must be identical to
 195 *    that previously used with __sg_alloc_table().
 196 *
 197 **/
 198void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 199                     bool skip_first_chunk, sg_free_fn *free_fn)
 200{
 201        struct scatterlist *sgl, *next;
 202
 203        if (unlikely(!table->sgl))
 204                return;
 205
 206        sgl = table->sgl;
 207        while (table->orig_nents) {
 208                unsigned int alloc_size = table->orig_nents;
 209                unsigned int sg_size;
 210
 211                /*
 212                 * If we have more than max_ents segments left,
 213                 * then assign 'next' to the sg table after the current one.
 214                 * sg_size is then one less than alloc size, since the last
 215                 * element is the chain pointer.
 216                 */
 217                if (alloc_size > max_ents) {
 218                        next = sg_chain_ptr(&sgl[max_ents - 1]);
 219                        alloc_size = max_ents;
 220                        sg_size = alloc_size - 1;
 221                } else {
 222                        sg_size = alloc_size;
 223                        next = NULL;
 224                }
 225
 226                table->orig_nents -= sg_size;
 227                if (skip_first_chunk)
 228                        skip_first_chunk = false;
 229                else
 230                        free_fn(sgl, alloc_size);
 231                sgl = next;
 232        }
 233
 234        table->sgl = NULL;
 235}
 236EXPORT_SYMBOL(__sg_free_table);
 237
 238/**
 239 * sg_free_table - Free a previously allocated sg table
 240 * @table:      The mapped sg table header
 241 *
 242 **/
 243void sg_free_table(struct sg_table *table)
 244{
 245        __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 246}
 247EXPORT_SYMBOL(sg_free_table);
 248
 249/**
 250 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 251 * @table:      The sg table header to use
 252 * @nents:      Number of entries in sg list
 253 * @max_ents:   The maximum number of entries the allocator returns per call
 254 * @gfp_mask:   GFP allocation mask
 255 * @alloc_fn:   Allocator to use
 256 *
 257 * Description:
 258 *   This function returns a @table @nents long. The allocator is
 259 *   defined to return scatterlist chunks of maximum size @max_ents.
 260 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 261 *   chained in units of @max_ents.
 262 *
 263 * Notes:
 264 *   If this function returns non-0 (eg failure), the caller must call
 265 *   __sg_free_table() to cleanup any leftover allocations.
 266 *
 267 **/
 268int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 269                     unsigned int max_ents, struct scatterlist *first_chunk,
 270                     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
 271{
 272        struct scatterlist *sg, *prv;
 273        unsigned int left;
 274
 275        memset(table, 0, sizeof(*table));
 276
 277        if (nents == 0)
 278                return -EINVAL;
 279#ifndef CONFIG_ARCH_HAS_SG_CHAIN
 280        if (WARN_ON_ONCE(nents > max_ents))
 281                return -EINVAL;
 282#endif
 283
 284        left = nents;
 285        prv = NULL;
 286        do {
 287                unsigned int sg_size, alloc_size = left;
 288
 289                if (alloc_size > max_ents) {
 290                        alloc_size = max_ents;
 291                        sg_size = alloc_size - 1;
 292                } else
 293                        sg_size = alloc_size;
 294
 295                left -= sg_size;
 296
 297                if (first_chunk) {
 298                        sg = first_chunk;
 299                        first_chunk = NULL;
 300                } else {
 301                        sg = alloc_fn(alloc_size, gfp_mask);
 302                }
 303                if (unlikely(!sg)) {
 304                        /*
 305                         * Adjust entry count to reflect that the last
 306                         * entry of the previous table won't be used for
 307                         * linkage.  Without this, sg_kfree() may get
 308                         * confused.
 309                         */
 310                        if (prv)
 311                                table->nents = ++table->orig_nents;
 312
 313                        return -ENOMEM;
 314                }
 315
 316                sg_init_table(sg, alloc_size);
 317                table->nents = table->orig_nents += sg_size;
 318
 319                /*
 320                 * If this is the first mapping, assign the sg table header.
 321                 * If this is not the first mapping, chain previous part.
 322                 */
 323                if (prv)
 324                        sg_chain(prv, max_ents, sg);
 325                else
 326                        table->sgl = sg;
 327
 328                /*
 329                 * If no more entries after this one, mark the end
 330                 */
 331                if (!left)
 332                        sg_mark_end(&sg[sg_size - 1]);
 333
 334                prv = sg;
 335        } while (left);
 336
 337        return 0;
 338}
 339EXPORT_SYMBOL(__sg_alloc_table);
 340
 341/**
 342 * sg_alloc_table - Allocate and initialize an sg table
 343 * @table:      The sg table header to use
 344 * @nents:      Number of entries in sg list
 345 * @gfp_mask:   GFP allocation mask
 346 *
 347 *  Description:
 348 *    Allocate and initialize an sg table. If @nents@ is larger than
 349 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 350 *
 351 **/
 352int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 353{
 354        int ret;
 355
 356        ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 357                               NULL, gfp_mask, sg_kmalloc);
 358        if (unlikely(ret))
 359                __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 360
 361        return ret;
 362}
 363EXPORT_SYMBOL(sg_alloc_table);
 364
 365/**
 366 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
 367 *                               an array of pages
 368 * @sgt:         The sg table header to use
 369 * @pages:       Pointer to an array of page pointers
 370 * @n_pages:     Number of pages in the pages array
 371 * @offset:      Offset from start of the first page to the start of a buffer
 372 * @size:        Number of valid bytes in the buffer (after offset)
 373 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
 374 * @gfp_mask:    GFP allocation mask
 375 *
 376 *  Description:
 377 *    Allocate and initialize an sg table from a list of pages. Contiguous
 378 *    ranges of the pages are squashed into a single scatterlist node up to the
 379 *    maximum size specified in @max_segment. An user may provide an offset at a
 380 *    start and a size of valid data in a buffer specified by the page array.
 381 *    The returned sg table is released by sg_free_table.
 382 *
 383 * Returns:
 384 *   0 on success, negative error on failure
 385 */
 386int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 387                                unsigned int n_pages, unsigned int offset,
 388                                unsigned long size, unsigned int max_segment,
 389                                gfp_t gfp_mask)
 390{
 391        unsigned int chunks, cur_page, seg_len, i;
 392        int ret;
 393        struct scatterlist *s;
 394
 395        if (WARN_ON(!max_segment || offset_in_page(max_segment)))
 396                return -EINVAL;
 397
 398        /* compute number of contiguous chunks */
 399        chunks = 1;
 400        seg_len = 0;
 401        for (i = 1; i < n_pages; i++) {
 402                seg_len += PAGE_SIZE;
 403                if (seg_len >= max_segment ||
 404                    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
 405                        chunks++;
 406                        seg_len = 0;
 407                }
 408        }
 409
 410        ret = sg_alloc_table(sgt, chunks, gfp_mask);
 411        if (unlikely(ret))
 412                return ret;
 413
 414        /* merging chunks and putting them into the scatterlist */
 415        cur_page = 0;
 416        for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
 417                unsigned int j, chunk_size;
 418
 419                /* look for the end of the current chunk */
 420                seg_len = 0;
 421                for (j = cur_page + 1; j < n_pages; j++) {
 422                        seg_len += PAGE_SIZE;
 423                        if (seg_len >= max_segment ||
 424                            page_to_pfn(pages[j]) !=
 425                            page_to_pfn(pages[j - 1]) + 1)
 426                                break;
 427                }
 428
 429                chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 430                sg_set_page(s, pages[cur_page],
 431                            min_t(unsigned long, size, chunk_size), offset);
 432                size -= chunk_size;
 433                offset = 0;
 434                cur_page = j;
 435        }
 436
 437        return 0;
 438}
 439EXPORT_SYMBOL(__sg_alloc_table_from_pages);
 440
 441/**
 442 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 443 *                             an array of pages
 444 * @sgt:         The sg table header to use
 445 * @pages:       Pointer to an array of page pointers
 446 * @n_pages:     Number of pages in the pages array
 447 * @offset:      Offset from start of the first page to the start of a buffer
 448 * @size:        Number of valid bytes in the buffer (after offset)
 449 * @gfp_mask:    GFP allocation mask
 450 *
 451 *  Description:
 452 *    Allocate and initialize an sg table from a list of pages. Contiguous
 453 *    ranges of the pages are squashed into a single scatterlist node. A user
 454 *    may provide an offset at a start and a size of valid data in a buffer
 455 *    specified by the page array. The returned sg table is released by
 456 *    sg_free_table.
 457 *
 458 * Returns:
 459 *   0 on success, negative error on failure
 460 */
 461int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 462                              unsigned int n_pages, unsigned int offset,
 463                              unsigned long size, gfp_t gfp_mask)
 464{
 465        return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
 466                                           SCATTERLIST_MAX_SEGMENT, gfp_mask);
 467}
 468EXPORT_SYMBOL(sg_alloc_table_from_pages);
 469
 470#ifdef CONFIG_SGL_ALLOC
 471
 472/**
 473 * sgl_alloc_order - allocate a scatterlist and its pages
 474 * @length: Length in bytes of the scatterlist. Must be at least one
 475 * @order: Second argument for alloc_pages()
 476 * @chainable: Whether or not to allocate an extra element in the scatterlist
 477 *      for scatterlist chaining purposes
 478 * @gfp: Memory allocation flags
 479 * @nent_p: [out] Number of entries in the scatterlist that have pages
 480 *
 481 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 482 */
 483struct scatterlist *sgl_alloc_order(unsigned long long length,
 484                                    unsigned int order, bool chainable,
 485                                    gfp_t gfp, unsigned int *nent_p)
 486{
 487        struct scatterlist *sgl, *sg;
 488        struct page *page;
 489        unsigned int nent, nalloc;
 490        u32 elem_len;
 491
 492        nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 493        /* Check for integer overflow */
 494        if (length > (nent << (PAGE_SHIFT + order)))
 495                return NULL;
 496        nalloc = nent;
 497        if (chainable) {
 498                /* Check for integer overflow */
 499                if (nalloc + 1 < nalloc)
 500                        return NULL;
 501                nalloc++;
 502        }
 503        sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 504                            (gfp & ~GFP_DMA) | __GFP_ZERO);
 505        if (!sgl)
 506                return NULL;
 507
 508        sg_init_table(sgl, nalloc);
 509        sg = sgl;
 510        while (length) {
 511                elem_len = min_t(u64, length, PAGE_SIZE << order);
 512                page = alloc_pages(gfp, order);
 513                if (!page) {
 514                        sgl_free(sgl);
 515                        return NULL;
 516                }
 517
 518                sg_set_page(sg, page, elem_len, 0);
 519                length -= elem_len;
 520                sg = sg_next(sg);
 521        }
 522        WARN_ONCE(length, "length = %lld\n", length);
 523        if (nent_p)
 524                *nent_p = nent;
 525        return sgl;
 526}
 527EXPORT_SYMBOL(sgl_alloc_order);
 528
 529/**
 530 * sgl_alloc - allocate a scatterlist and its pages
 531 * @length: Length in bytes of the scatterlist
 532 * @gfp: Memory allocation flags
 533 * @nent_p: [out] Number of entries in the scatterlist
 534 *
 535 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 536 */
 537struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 538                              unsigned int *nent_p)
 539{
 540        return sgl_alloc_order(length, 0, false, gfp, nent_p);
 541}
 542EXPORT_SYMBOL(sgl_alloc);
 543
 544/**
 545 * sgl_free_n_order - free a scatterlist and its pages
 546 * @sgl: Scatterlist with one or more elements
 547 * @nents: Maximum number of elements to free
 548 * @order: Second argument for __free_pages()
 549 *
 550 * Notes:
 551 * - If several scatterlists have been chained and each chain element is
 552 *   freed separately then it's essential to set nents correctly to avoid that a
 553 *   page would get freed twice.
 554 * - All pages in a chained scatterlist can be freed at once by setting @nents
 555 *   to a high number.
 556 */
 557void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 558{
 559        struct scatterlist *sg;
 560        struct page *page;
 561        int i;
 562
 563        for_each_sg(sgl, sg, nents, i) {
 564                if (!sg)
 565                        break;
 566                page = sg_page(sg);
 567                if (page)
 568                        __free_pages(page, order);
 569        }
 570        kfree(sgl);
 571}
 572EXPORT_SYMBOL(sgl_free_n_order);
 573
 574/**
 575 * sgl_free_order - free a scatterlist and its pages
 576 * @sgl: Scatterlist with one or more elements
 577 * @order: Second argument for __free_pages()
 578 */
 579void sgl_free_order(struct scatterlist *sgl, int order)
 580{
 581        sgl_free_n_order(sgl, INT_MAX, order);
 582}
 583EXPORT_SYMBOL(sgl_free_order);
 584
 585/**
 586 * sgl_free - free a scatterlist and its pages
 587 * @sgl: Scatterlist with one or more elements
 588 */
 589void sgl_free(struct scatterlist *sgl)
 590{
 591        sgl_free_order(sgl, 0);
 592}
 593EXPORT_SYMBOL(sgl_free);
 594
 595#endif /* CONFIG_SGL_ALLOC */
 596
 597void __sg_page_iter_start(struct sg_page_iter *piter,
 598                          struct scatterlist *sglist, unsigned int nents,
 599                          unsigned long pgoffset)
 600{
 601        piter->__pg_advance = 0;
 602        piter->__nents = nents;
 603
 604        piter->sg = sglist;
 605        piter->sg_pgoffset = pgoffset;
 606}
 607EXPORT_SYMBOL(__sg_page_iter_start);
 608
 609static int sg_page_count(struct scatterlist *sg)
 610{
 611        return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 612}
 613
 614bool __sg_page_iter_next(struct sg_page_iter *piter)
 615{
 616        if (!piter->__nents || !piter->sg)
 617                return false;
 618
 619        piter->sg_pgoffset += piter->__pg_advance;
 620        piter->__pg_advance = 1;
 621
 622        while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 623                piter->sg_pgoffset -= sg_page_count(piter->sg);
 624                piter->sg = sg_next(piter->sg);
 625                if (!--piter->__nents || !piter->sg)
 626                        return false;
 627        }
 628
 629        return true;
 630}
 631EXPORT_SYMBOL(__sg_page_iter_next);
 632
 633/**
 634 * sg_miter_start - start mapping iteration over a sg list
 635 * @miter: sg mapping iter to be started
 636 * @sgl: sg list to iterate over
 637 * @nents: number of sg entries
 638 *
 639 * Description:
 640 *   Starts mapping iterator @miter.
 641 *
 642 * Context:
 643 *   Don't care.
 644 */
 645void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 646                    unsigned int nents, unsigned int flags)
 647{
 648        memset(miter, 0, sizeof(struct sg_mapping_iter));
 649
 650        __sg_page_iter_start(&miter->piter, sgl, nents, 0);
 651        WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 652        miter->__flags = flags;
 653}
 654EXPORT_SYMBOL(sg_miter_start);
 655
 656static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 657{
 658        if (!miter->__remaining) {
 659                struct scatterlist *sg;
 660                unsigned long pgoffset;
 661
 662                if (!__sg_page_iter_next(&miter->piter))
 663                        return false;
 664
 665                sg = miter->piter.sg;
 666                pgoffset = miter->piter.sg_pgoffset;
 667
 668                miter->__offset = pgoffset ? 0 : sg->offset;
 669                miter->__remaining = sg->offset + sg->length -
 670                                (pgoffset << PAGE_SHIFT) - miter->__offset;
 671                miter->__remaining = min_t(unsigned long, miter->__remaining,
 672                                           PAGE_SIZE - miter->__offset);
 673        }
 674
 675        return true;
 676}
 677
 678/**
 679 * sg_miter_skip - reposition mapping iterator
 680 * @miter: sg mapping iter to be skipped
 681 * @offset: number of bytes to plus the current location
 682 *
 683 * Description:
 684 *   Sets the offset of @miter to its current location plus @offset bytes.
 685 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 686 *   stops @miter.
 687 *
 688 * Context:
 689 *   Don't care if @miter is stopped, or not proceeded yet.
 690 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 691 *
 692 * Returns:
 693 *   true if @miter contains the valid mapping.  false if end of sg
 694 *   list is reached.
 695 */
 696bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 697{
 698        sg_miter_stop(miter);
 699
 700        while (offset) {
 701                off_t consumed;
 702
 703                if (!sg_miter_get_next_page(miter))
 704                        return false;
 705
 706                consumed = min_t(off_t, offset, miter->__remaining);
 707                miter->__offset += consumed;
 708                miter->__remaining -= consumed;
 709                offset -= consumed;
 710        }
 711
 712        return true;
 713}
 714EXPORT_SYMBOL(sg_miter_skip);
 715
 716/**
 717 * sg_miter_next - proceed mapping iterator to the next mapping
 718 * @miter: sg mapping iter to proceed
 719 *
 720 * Description:
 721 *   Proceeds @miter to the next mapping.  @miter should have been started
 722 *   using sg_miter_start().  On successful return, @miter->page,
 723 *   @miter->addr and @miter->length point to the current mapping.
 724 *
 725 * Context:
 726 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 727 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
 728 *
 729 * Returns:
 730 *   true if @miter contains the next mapping.  false if end of sg
 731 *   list is reached.
 732 */
 733bool sg_miter_next(struct sg_mapping_iter *miter)
 734{
 735        sg_miter_stop(miter);
 736
 737        /*
 738         * Get to the next page if necessary.
 739         * __remaining, __offset is adjusted by sg_miter_stop
 740         */
 741        if (!sg_miter_get_next_page(miter))
 742                return false;
 743
 744        miter->page = sg_page_iter_page(&miter->piter);
 745        miter->consumed = miter->length = miter->__remaining;
 746
 747        if (miter->__flags & SG_MITER_ATOMIC)
 748                miter->addr = kmap_atomic(miter->page) + miter->__offset;
 749        else
 750                miter->addr = kmap(miter->page) + miter->__offset;
 751
 752        return true;
 753}
 754EXPORT_SYMBOL(sg_miter_next);
 755
 756/**
 757 * sg_miter_stop - stop mapping iteration
 758 * @miter: sg mapping iter to be stopped
 759 *
 760 * Description:
 761 *   Stops mapping iterator @miter.  @miter should have been started
 762 *   using sg_miter_start().  A stopped iteration can be resumed by
 763 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 764 *   need to be released during iteration.
 765 *
 766 * Context:
 767 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 768 *   otherwise.
 769 */
 770void sg_miter_stop(struct sg_mapping_iter *miter)
 771{
 772        WARN_ON(miter->consumed > miter->length);
 773
 774        /* drop resources from the last iteration */
 775        if (miter->addr) {
 776                miter->__offset += miter->consumed;
 777                miter->__remaining -= miter->consumed;
 778
 779                if ((miter->__flags & SG_MITER_TO_SG) &&
 780                    !PageSlab(miter->page))
 781                        flush_kernel_dcache_page(miter->page);
 782
 783                if (miter->__flags & SG_MITER_ATOMIC) {
 784                        WARN_ON_ONCE(preemptible());
 785                        kunmap_atomic(miter->addr);
 786                } else
 787                        kunmap(miter->page);
 788
 789                miter->page = NULL;
 790                miter->addr = NULL;
 791                miter->length = 0;
 792                miter->consumed = 0;
 793        }
 794}
 795EXPORT_SYMBOL(sg_miter_stop);
 796
 797/**
 798 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 799 * @sgl:                 The SG list
 800 * @nents:               Number of SG entries
 801 * @buf:                 Where to copy from
 802 * @buflen:              The number of bytes to copy
 803 * @skip:                Number of bytes to skip before copying
 804 * @to_buffer:           transfer direction (true == from an sg list to a
 805 *                       buffer, false == from a buffer to an sg list
 806 *
 807 * Returns the number of copied bytes.
 808 *
 809 **/
 810size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 811                      size_t buflen, off_t skip, bool to_buffer)
 812{
 813        unsigned int offset = 0;
 814        struct sg_mapping_iter miter;
 815        unsigned int sg_flags = SG_MITER_ATOMIC;
 816
 817        if (to_buffer)
 818                sg_flags |= SG_MITER_FROM_SG;
 819        else
 820                sg_flags |= SG_MITER_TO_SG;
 821
 822        sg_miter_start(&miter, sgl, nents, sg_flags);
 823
 824        if (!sg_miter_skip(&miter, skip))
 825                return false;
 826
 827        while ((offset < buflen) && sg_miter_next(&miter)) {
 828                unsigned int len;
 829
 830                len = min(miter.length, buflen - offset);
 831
 832                if (to_buffer)
 833                        memcpy(buf + offset, miter.addr, len);
 834                else
 835                        memcpy(miter.addr, buf + offset, len);
 836
 837                offset += len;
 838        }
 839
 840        sg_miter_stop(&miter);
 841
 842        return offset;
 843}
 844EXPORT_SYMBOL(sg_copy_buffer);
 845
 846/**
 847 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 848 * @sgl:                 The SG list
 849 * @nents:               Number of SG entries
 850 * @buf:                 Where to copy from
 851 * @buflen:              The number of bytes to copy
 852 *
 853 * Returns the number of copied bytes.
 854 *
 855 **/
 856size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 857                           const void *buf, size_t buflen)
 858{
 859        return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
 860}
 861EXPORT_SYMBOL(sg_copy_from_buffer);
 862
 863/**
 864 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 865 * @sgl:                 The SG list
 866 * @nents:               Number of SG entries
 867 * @buf:                 Where to copy to
 868 * @buflen:              The number of bytes to copy
 869 *
 870 * Returns the number of copied bytes.
 871 *
 872 **/
 873size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 874                         void *buf, size_t buflen)
 875{
 876        return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
 877}
 878EXPORT_SYMBOL(sg_copy_to_buffer);
 879
 880/**
 881 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 882 * @sgl:                 The SG list
 883 * @nents:               Number of SG entries
 884 * @buf:                 Where to copy from
 885 * @buflen:              The number of bytes to copy
 886 * @skip:                Number of bytes to skip before copying
 887 *
 888 * Returns the number of copied bytes.
 889 *
 890 **/
 891size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 892                            const void *buf, size_t buflen, off_t skip)
 893{
 894        return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
 895}
 896EXPORT_SYMBOL(sg_pcopy_from_buffer);
 897
 898/**
 899 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
 900 * @sgl:                 The SG list
 901 * @nents:               Number of SG entries
 902 * @buf:                 Where to copy to
 903 * @buflen:              The number of bytes to copy
 904 * @skip:                Number of bytes to skip before copying
 905 *
 906 * Returns the number of copied bytes.
 907 *
 908 **/
 909size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 910                          void *buf, size_t buflen, off_t skip)
 911{
 912        return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
 913}
 914EXPORT_SYMBOL(sg_pcopy_to_buffer);
 915
 916/**
 917 * sg_zero_buffer - Zero-out a part of a SG list
 918 * @sgl:                 The SG list
 919 * @nents:               Number of SG entries
 920 * @buflen:              The number of bytes to zero out
 921 * @skip:                Number of bytes to skip before zeroing
 922 *
 923 * Returns the number of bytes zeroed.
 924 **/
 925size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
 926                       size_t buflen, off_t skip)
 927{
 928        unsigned int offset = 0;
 929        struct sg_mapping_iter miter;
 930        unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
 931
 932        sg_miter_start(&miter, sgl, nents, sg_flags);
 933
 934        if (!sg_miter_skip(&miter, skip))
 935                return false;
 936
 937        while (offset < buflen && sg_miter_next(&miter)) {
 938                unsigned int len;
 939
 940                len = min(miter.length, buflen - offset);
 941                memset(miter.addr, 0, len);
 942
 943                offset += len;
 944        }
 945
 946        sg_miter_stop(&miter);
 947        return offset;
 948}
 949EXPORT_SYMBOL(sg_zero_buffer);
 950