linux/lib/swiotlb.c
<<
>>
Prefs
   1/*
   2 * Dynamic DMA mapping support.
   3 *
   4 * This implementation is a fallback for platforms that do not support
   5 * I/O TLBs (aka DMA address translation hardware).
   6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
   7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
   8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
   9 *      David Mosberger-Tang <davidm@hpl.hp.com>
  10 *
  11 * 03/05/07 davidm      Switch from PCI-DMA to generic device DMA API.
  12 * 00/12/13 davidm      Rename to swiotlb.c and add mark_clean() to avoid
  13 *                      unnecessary i-cache flushing.
  14 * 04/07/.. ak          Better overflow handling. Assorted fixes.
  15 * 05/09/10 linville    Add support for syncing ranges, support syncing for
  16 *                      DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17 * 08/12/11 beckyb      Add highmem support
  18 */
  19
  20#include <linux/cache.h>
  21#include <linux/dma-direct.h>
  22#include <linux/mm.h>
  23#include <linux/export.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/swiotlb.h>
  27#include <linux/pfn.h>
  28#include <linux/types.h>
  29#include <linux/ctype.h>
  30#include <linux/highmem.h>
  31#include <linux/gfp.h>
  32#include <linux/scatterlist.h>
  33#include <linux/mem_encrypt.h>
  34#include <linux/set_memory.h>
  35
  36#include <asm/io.h>
  37#include <asm/dma.h>
  38
  39#include <linux/init.h>
  40#include <linux/bootmem.h>
  41#include <linux/iommu-helper.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/swiotlb.h>
  45
  46#define OFFSET(val,align) ((unsigned long)      \
  47                           ( (val) & ( (align) - 1)))
  48
  49#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  50
  51/*
  52 * Minimum IO TLB size to bother booting with.  Systems with mainly
  53 * 64bit capable cards will only lightly use the swiotlb.  If we can't
  54 * allocate a contiguous 1MB, we're probably in trouble anyway.
  55 */
  56#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  57
  58enum swiotlb_force swiotlb_force;
  59
  60/*
  61 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  62 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  63 * API.
  64 */
  65static phys_addr_t io_tlb_start, io_tlb_end;
  66
  67/*
  68 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  69 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
  70 */
  71static unsigned long io_tlb_nslabs;
  72
  73/*
  74 * When the IOMMU overflows we return a fallback buffer. This sets the size.
  75 */
  76static unsigned long io_tlb_overflow = 32*1024;
  77
  78static phys_addr_t io_tlb_overflow_buffer;
  79
  80/*
  81 * This is a free list describing the number of free entries available from
  82 * each index
  83 */
  84static unsigned int *io_tlb_list;
  85static unsigned int io_tlb_index;
  86
  87/*
  88 * Max segment that we can provide which (if pages are contingous) will
  89 * not be bounced (unless SWIOTLB_FORCE is set).
  90 */
  91unsigned int max_segment;
  92
  93/*
  94 * We need to save away the original address corresponding to a mapped entry
  95 * for the sync operations.
  96 */
  97#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
  98static phys_addr_t *io_tlb_orig_addr;
  99
 100/*
 101 * Protect the above data structures in the map and unmap calls
 102 */
 103static DEFINE_SPINLOCK(io_tlb_lock);
 104
 105static int late_alloc;
 106
 107static int __init
 108setup_io_tlb_npages(char *str)
 109{
 110        if (isdigit(*str)) {
 111                io_tlb_nslabs = simple_strtoul(str, &str, 0);
 112                /* avoid tail segment of size < IO_TLB_SEGSIZE */
 113                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 114        }
 115        if (*str == ',')
 116                ++str;
 117        if (!strcmp(str, "force")) {
 118                swiotlb_force = SWIOTLB_FORCE;
 119        } else if (!strcmp(str, "noforce")) {
 120                swiotlb_force = SWIOTLB_NO_FORCE;
 121                io_tlb_nslabs = 1;
 122        }
 123
 124        return 0;
 125}
 126early_param("swiotlb", setup_io_tlb_npages);
 127/* make io_tlb_overflow tunable too? */
 128
 129unsigned long swiotlb_nr_tbl(void)
 130{
 131        return io_tlb_nslabs;
 132}
 133EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 134
 135unsigned int swiotlb_max_segment(void)
 136{
 137        return max_segment;
 138}
 139EXPORT_SYMBOL_GPL(swiotlb_max_segment);
 140
 141void swiotlb_set_max_segment(unsigned int val)
 142{
 143        if (swiotlb_force == SWIOTLB_FORCE)
 144                max_segment = 1;
 145        else
 146                max_segment = rounddown(val, PAGE_SIZE);
 147}
 148
 149/* default to 64MB */
 150#define IO_TLB_DEFAULT_SIZE (64UL<<20)
 151unsigned long swiotlb_size_or_default(void)
 152{
 153        unsigned long size;
 154
 155        size = io_tlb_nslabs << IO_TLB_SHIFT;
 156
 157        return size ? size : (IO_TLB_DEFAULT_SIZE);
 158}
 159
 160static bool no_iotlb_memory;
 161
 162void swiotlb_print_info(void)
 163{
 164        unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 165        unsigned char *vstart, *vend;
 166
 167        if (no_iotlb_memory) {
 168                pr_warn("software IO TLB: No low mem\n");
 169                return;
 170        }
 171
 172        vstart = phys_to_virt(io_tlb_start);
 173        vend = phys_to_virt(io_tlb_end);
 174
 175        printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
 176               (unsigned long long)io_tlb_start,
 177               (unsigned long long)io_tlb_end,
 178               bytes >> 20, vstart, vend - 1);
 179}
 180
 181/*
 182 * Early SWIOTLB allocation may be too early to allow an architecture to
 183 * perform the desired operations.  This function allows the architecture to
 184 * call SWIOTLB when the operations are possible.  It needs to be called
 185 * before the SWIOTLB memory is used.
 186 */
 187void __init swiotlb_update_mem_attributes(void)
 188{
 189        void *vaddr;
 190        unsigned long bytes;
 191
 192        if (no_iotlb_memory || late_alloc)
 193                return;
 194
 195        vaddr = phys_to_virt(io_tlb_start);
 196        bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
 197        set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
 198        memset(vaddr, 0, bytes);
 199
 200        vaddr = phys_to_virt(io_tlb_overflow_buffer);
 201        bytes = PAGE_ALIGN(io_tlb_overflow);
 202        set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
 203        memset(vaddr, 0, bytes);
 204}
 205
 206int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
 207{
 208        void *v_overflow_buffer;
 209        unsigned long i, bytes;
 210
 211        bytes = nslabs << IO_TLB_SHIFT;
 212
 213        io_tlb_nslabs = nslabs;
 214        io_tlb_start = __pa(tlb);
 215        io_tlb_end = io_tlb_start + bytes;
 216
 217        /*
 218         * Get the overflow emergency buffer
 219         */
 220        v_overflow_buffer = memblock_virt_alloc_low_nopanic(
 221                                                PAGE_ALIGN(io_tlb_overflow),
 222                                                PAGE_SIZE);
 223        if (!v_overflow_buffer)
 224                return -ENOMEM;
 225
 226        io_tlb_overflow_buffer = __pa(v_overflow_buffer);
 227
 228        /*
 229         * Allocate and initialize the free list array.  This array is used
 230         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 231         * between io_tlb_start and io_tlb_end.
 232         */
 233        io_tlb_list = memblock_virt_alloc(
 234                                PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
 235                                PAGE_SIZE);
 236        io_tlb_orig_addr = memblock_virt_alloc(
 237                                PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
 238                                PAGE_SIZE);
 239        for (i = 0; i < io_tlb_nslabs; i++) {
 240                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 241                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 242        }
 243        io_tlb_index = 0;
 244
 245        if (verbose)
 246                swiotlb_print_info();
 247
 248        swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 249        return 0;
 250}
 251
 252/*
 253 * Statically reserve bounce buffer space and initialize bounce buffer data
 254 * structures for the software IO TLB used to implement the DMA API.
 255 */
 256void  __init
 257swiotlb_init(int verbose)
 258{
 259        size_t default_size = IO_TLB_DEFAULT_SIZE;
 260        unsigned char *vstart;
 261        unsigned long bytes;
 262
 263        if (!io_tlb_nslabs) {
 264                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 265                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 266        }
 267
 268        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 269
 270        /* Get IO TLB memory from the low pages */
 271        vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
 272        if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
 273                return;
 274
 275        if (io_tlb_start)
 276                memblock_free_early(io_tlb_start,
 277                                    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 278        pr_warn("Cannot allocate SWIOTLB buffer");
 279        no_iotlb_memory = true;
 280}
 281
 282/*
 283 * Systems with larger DMA zones (those that don't support ISA) can
 284 * initialize the swiotlb later using the slab allocator if needed.
 285 * This should be just like above, but with some error catching.
 286 */
 287int
 288swiotlb_late_init_with_default_size(size_t default_size)
 289{
 290        unsigned long bytes, req_nslabs = io_tlb_nslabs;
 291        unsigned char *vstart = NULL;
 292        unsigned int order;
 293        int rc = 0;
 294
 295        if (!io_tlb_nslabs) {
 296                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 297                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 298        }
 299
 300        /*
 301         * Get IO TLB memory from the low pages
 302         */
 303        order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 304        io_tlb_nslabs = SLABS_PER_PAGE << order;
 305        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 306
 307        while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 308                vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 309                                                  order);
 310                if (vstart)
 311                        break;
 312                order--;
 313        }
 314
 315        if (!vstart) {
 316                io_tlb_nslabs = req_nslabs;
 317                return -ENOMEM;
 318        }
 319        if (order != get_order(bytes)) {
 320                printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 321                       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 322                io_tlb_nslabs = SLABS_PER_PAGE << order;
 323        }
 324        rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
 325        if (rc)
 326                free_pages((unsigned long)vstart, order);
 327
 328        return rc;
 329}
 330
 331int
 332swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
 333{
 334        unsigned long i, bytes;
 335        unsigned char *v_overflow_buffer;
 336
 337        bytes = nslabs << IO_TLB_SHIFT;
 338
 339        io_tlb_nslabs = nslabs;
 340        io_tlb_start = virt_to_phys(tlb);
 341        io_tlb_end = io_tlb_start + bytes;
 342
 343        set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
 344        memset(tlb, 0, bytes);
 345
 346        /*
 347         * Get the overflow emergency buffer
 348         */
 349        v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 350                                                     get_order(io_tlb_overflow));
 351        if (!v_overflow_buffer)
 352                goto cleanup2;
 353
 354        set_memory_decrypted((unsigned long)v_overflow_buffer,
 355                        io_tlb_overflow >> PAGE_SHIFT);
 356        memset(v_overflow_buffer, 0, io_tlb_overflow);
 357        io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
 358
 359        /*
 360         * Allocate and initialize the free list array.  This array is used
 361         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 362         * between io_tlb_start and io_tlb_end.
 363         */
 364        io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 365                                      get_order(io_tlb_nslabs * sizeof(int)));
 366        if (!io_tlb_list)
 367                goto cleanup3;
 368
 369        io_tlb_orig_addr = (phys_addr_t *)
 370                __get_free_pages(GFP_KERNEL,
 371                                 get_order(io_tlb_nslabs *
 372                                           sizeof(phys_addr_t)));
 373        if (!io_tlb_orig_addr)
 374                goto cleanup4;
 375
 376        for (i = 0; i < io_tlb_nslabs; i++) {
 377                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 378                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 379        }
 380        io_tlb_index = 0;
 381
 382        swiotlb_print_info();
 383
 384        late_alloc = 1;
 385
 386        swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 387
 388        return 0;
 389
 390cleanup4:
 391        free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 392                                                         sizeof(int)));
 393        io_tlb_list = NULL;
 394cleanup3:
 395        free_pages((unsigned long)v_overflow_buffer,
 396                   get_order(io_tlb_overflow));
 397        io_tlb_overflow_buffer = 0;
 398cleanup2:
 399        io_tlb_end = 0;
 400        io_tlb_start = 0;
 401        io_tlb_nslabs = 0;
 402        max_segment = 0;
 403        return -ENOMEM;
 404}
 405
 406void __init swiotlb_exit(void)
 407{
 408        if (!io_tlb_orig_addr)
 409                return;
 410
 411        if (late_alloc) {
 412                free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
 413                           get_order(io_tlb_overflow));
 414                free_pages((unsigned long)io_tlb_orig_addr,
 415                           get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 416                free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 417                                                                 sizeof(int)));
 418                free_pages((unsigned long)phys_to_virt(io_tlb_start),
 419                           get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 420        } else {
 421                memblock_free_late(io_tlb_overflow_buffer,
 422                                   PAGE_ALIGN(io_tlb_overflow));
 423                memblock_free_late(__pa(io_tlb_orig_addr),
 424                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 425                memblock_free_late(__pa(io_tlb_list),
 426                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 427                memblock_free_late(io_tlb_start,
 428                                   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 429        }
 430        io_tlb_nslabs = 0;
 431        max_segment = 0;
 432}
 433
 434int is_swiotlb_buffer(phys_addr_t paddr)
 435{
 436        return paddr >= io_tlb_start && paddr < io_tlb_end;
 437}
 438
 439/*
 440 * Bounce: copy the swiotlb buffer back to the original dma location
 441 */
 442static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
 443                           size_t size, enum dma_data_direction dir)
 444{
 445        unsigned long pfn = PFN_DOWN(orig_addr);
 446        unsigned char *vaddr = phys_to_virt(tlb_addr);
 447
 448        if (PageHighMem(pfn_to_page(pfn))) {
 449                /* The buffer does not have a mapping.  Map it in and copy */
 450                unsigned int offset = orig_addr & ~PAGE_MASK;
 451                char *buffer;
 452                unsigned int sz = 0;
 453                unsigned long flags;
 454
 455                while (size) {
 456                        sz = min_t(size_t, PAGE_SIZE - offset, size);
 457
 458                        local_irq_save(flags);
 459                        buffer = kmap_atomic(pfn_to_page(pfn));
 460                        if (dir == DMA_TO_DEVICE)
 461                                memcpy(vaddr, buffer + offset, sz);
 462                        else
 463                                memcpy(buffer + offset, vaddr, sz);
 464                        kunmap_atomic(buffer);
 465                        local_irq_restore(flags);
 466
 467                        size -= sz;
 468                        pfn++;
 469                        vaddr += sz;
 470                        offset = 0;
 471                }
 472        } else if (dir == DMA_TO_DEVICE) {
 473                memcpy(vaddr, phys_to_virt(orig_addr), size);
 474        } else {
 475                memcpy(phys_to_virt(orig_addr), vaddr, size);
 476        }
 477}
 478
 479phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
 480                                   dma_addr_t tbl_dma_addr,
 481                                   phys_addr_t orig_addr, size_t size,
 482                                   enum dma_data_direction dir,
 483                                   unsigned long attrs)
 484{
 485        unsigned long flags;
 486        phys_addr_t tlb_addr;
 487        unsigned int nslots, stride, index, wrap;
 488        int i;
 489        unsigned long mask;
 490        unsigned long offset_slots;
 491        unsigned long max_slots;
 492
 493        if (no_iotlb_memory)
 494                panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 495
 496        if (mem_encrypt_active())
 497                pr_warn_once("%s is active and system is using DMA bounce buffers\n",
 498                             sme_active() ? "SME" : "SEV");
 499
 500        mask = dma_get_seg_boundary(hwdev);
 501
 502        tbl_dma_addr &= mask;
 503
 504        offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 505
 506        /*
 507         * Carefully handle integer overflow which can occur when mask == ~0UL.
 508         */
 509        max_slots = mask + 1
 510                    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 511                    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 512
 513        /*
 514         * For mappings greater than or equal to a page, we limit the stride
 515         * (and hence alignment) to a page size.
 516         */
 517        nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 518        if (size >= PAGE_SIZE)
 519                stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 520        else
 521                stride = 1;
 522
 523        BUG_ON(!nslots);
 524
 525        /*
 526         * Find suitable number of IO TLB entries size that will fit this
 527         * request and allocate a buffer from that IO TLB pool.
 528         */
 529        spin_lock_irqsave(&io_tlb_lock, flags);
 530        index = ALIGN(io_tlb_index, stride);
 531        if (index >= io_tlb_nslabs)
 532                index = 0;
 533        wrap = index;
 534
 535        do {
 536                while (iommu_is_span_boundary(index, nslots, offset_slots,
 537                                              max_slots)) {
 538                        index += stride;
 539                        if (index >= io_tlb_nslabs)
 540                                index = 0;
 541                        if (index == wrap)
 542                                goto not_found;
 543                }
 544
 545                /*
 546                 * If we find a slot that indicates we have 'nslots' number of
 547                 * contiguous buffers, we allocate the buffers from that slot
 548                 * and mark the entries as '0' indicating unavailable.
 549                 */
 550                if (io_tlb_list[index] >= nslots) {
 551                        int count = 0;
 552
 553                        for (i = index; i < (int) (index + nslots); i++)
 554                                io_tlb_list[i] = 0;
 555                        for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 556                                io_tlb_list[i] = ++count;
 557                        tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 558
 559                        /*
 560                         * Update the indices to avoid searching in the next
 561                         * round.
 562                         */
 563                        io_tlb_index = ((index + nslots) < io_tlb_nslabs
 564                                        ? (index + nslots) : 0);
 565
 566                        goto found;
 567                }
 568                index += stride;
 569                if (index >= io_tlb_nslabs)
 570                        index = 0;
 571        } while (index != wrap);
 572
 573not_found:
 574        spin_unlock_irqrestore(&io_tlb_lock, flags);
 575        if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
 576                dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
 577        return SWIOTLB_MAP_ERROR;
 578found:
 579        spin_unlock_irqrestore(&io_tlb_lock, flags);
 580
 581        /*
 582         * Save away the mapping from the original address to the DMA address.
 583         * This is needed when we sync the memory.  Then we sync the buffer if
 584         * needed.
 585         */
 586        for (i = 0; i < nslots; i++)
 587                io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
 588        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 589            (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 590                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
 591
 592        return tlb_addr;
 593}
 594
 595/*
 596 * Allocates bounce buffer and returns its kernel virtual address.
 597 */
 598
 599static phys_addr_t
 600map_single(struct device *hwdev, phys_addr_t phys, size_t size,
 601           enum dma_data_direction dir, unsigned long attrs)
 602{
 603        dma_addr_t start_dma_addr;
 604
 605        if (swiotlb_force == SWIOTLB_NO_FORCE) {
 606                dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
 607                                     &phys);
 608                return SWIOTLB_MAP_ERROR;
 609        }
 610
 611        start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
 612        return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
 613                                      dir, attrs);
 614}
 615
 616/*
 617 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 618 */
 619void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
 620                              size_t size, enum dma_data_direction dir,
 621                              unsigned long attrs)
 622{
 623        unsigned long flags;
 624        int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 625        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 626        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 627
 628        /*
 629         * First, sync the memory before unmapping the entry
 630         */
 631        if (orig_addr != INVALID_PHYS_ADDR &&
 632            !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 633            ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 634                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
 635
 636        /*
 637         * Return the buffer to the free list by setting the corresponding
 638         * entries to indicate the number of contiguous entries available.
 639         * While returning the entries to the free list, we merge the entries
 640         * with slots below and above the pool being returned.
 641         */
 642        spin_lock_irqsave(&io_tlb_lock, flags);
 643        {
 644                count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 645                         io_tlb_list[index + nslots] : 0);
 646                /*
 647                 * Step 1: return the slots to the free list, merging the
 648                 * slots with superceeding slots
 649                 */
 650                for (i = index + nslots - 1; i >= index; i--) {
 651                        io_tlb_list[i] = ++count;
 652                        io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 653                }
 654                /*
 655                 * Step 2: merge the returned slots with the preceding slots,
 656                 * if available (non zero)
 657                 */
 658                for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 659                        io_tlb_list[i] = ++count;
 660        }
 661        spin_unlock_irqrestore(&io_tlb_lock, flags);
 662}
 663
 664void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
 665                             size_t size, enum dma_data_direction dir,
 666                             enum dma_sync_target target)
 667{
 668        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 669        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 670
 671        if (orig_addr == INVALID_PHYS_ADDR)
 672                return;
 673        orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
 674
 675        switch (target) {
 676        case SYNC_FOR_CPU:
 677                if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 678                        swiotlb_bounce(orig_addr, tlb_addr,
 679                                       size, DMA_FROM_DEVICE);
 680                else
 681                        BUG_ON(dir != DMA_TO_DEVICE);
 682                break;
 683        case SYNC_FOR_DEVICE:
 684                if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 685                        swiotlb_bounce(orig_addr, tlb_addr,
 686                                       size, DMA_TO_DEVICE);
 687                else
 688                        BUG_ON(dir != DMA_FROM_DEVICE);
 689                break;
 690        default:
 691                BUG();
 692        }
 693}
 694
 695#ifdef CONFIG_DMA_DIRECT_OPS
 696static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
 697                size_t size)
 698{
 699        u64 mask = DMA_BIT_MASK(32);
 700
 701        if (dev && dev->coherent_dma_mask)
 702                mask = dev->coherent_dma_mask;
 703        return addr + size - 1 <= mask;
 704}
 705
 706static void *
 707swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
 708                unsigned long attrs)
 709{
 710        phys_addr_t phys_addr;
 711
 712        if (swiotlb_force == SWIOTLB_NO_FORCE)
 713                goto out_warn;
 714
 715        phys_addr = swiotlb_tbl_map_single(dev,
 716                        __phys_to_dma(dev, io_tlb_start),
 717                        0, size, DMA_FROM_DEVICE, attrs);
 718        if (phys_addr == SWIOTLB_MAP_ERROR)
 719                goto out_warn;
 720
 721        *dma_handle = __phys_to_dma(dev, phys_addr);
 722        if (!dma_coherent_ok(dev, *dma_handle, size))
 723                goto out_unmap;
 724
 725        memset(phys_to_virt(phys_addr), 0, size);
 726        return phys_to_virt(phys_addr);
 727
 728out_unmap:
 729        dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 730                (unsigned long long)(dev ? dev->coherent_dma_mask : 0),
 731                (unsigned long long)*dma_handle);
 732
 733        /*
 734         * DMA_TO_DEVICE to avoid memcpy in unmap_single.
 735         * DMA_ATTR_SKIP_CPU_SYNC is optional.
 736         */
 737        swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
 738                        DMA_ATTR_SKIP_CPU_SYNC);
 739out_warn:
 740        if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
 741                dev_warn(dev,
 742                        "swiotlb: coherent allocation failed, size=%zu\n",
 743                        size);
 744                dump_stack();
 745        }
 746        return NULL;
 747}
 748
 749static bool swiotlb_free_buffer(struct device *dev, size_t size,
 750                dma_addr_t dma_addr)
 751{
 752        phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
 753
 754        WARN_ON_ONCE(irqs_disabled());
 755
 756        if (!is_swiotlb_buffer(phys_addr))
 757                return false;
 758
 759        /*
 760         * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
 761         * DMA_ATTR_SKIP_CPU_SYNC is optional.
 762         */
 763        swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
 764                                 DMA_ATTR_SKIP_CPU_SYNC);
 765        return true;
 766}
 767#endif
 768
 769static void
 770swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
 771             int do_panic)
 772{
 773        if (swiotlb_force == SWIOTLB_NO_FORCE)
 774                return;
 775
 776        /*
 777         * Ran out of IOMMU space for this operation. This is very bad.
 778         * Unfortunately the drivers cannot handle this operation properly.
 779         * unless they check for dma_mapping_error (most don't)
 780         * When the mapping is small enough return a static buffer to limit
 781         * the damage, or panic when the transfer is too big.
 782         */
 783        dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
 784                            size);
 785
 786        if (size <= io_tlb_overflow || !do_panic)
 787                return;
 788
 789        if (dir == DMA_BIDIRECTIONAL)
 790                panic("DMA: Random memory could be DMA accessed\n");
 791        if (dir == DMA_FROM_DEVICE)
 792                panic("DMA: Random memory could be DMA written\n");
 793        if (dir == DMA_TO_DEVICE)
 794                panic("DMA: Random memory could be DMA read\n");
 795}
 796
 797/*
 798 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 799 * physical address to use is returned.
 800 *
 801 * Once the device is given the dma address, the device owns this memory until
 802 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 803 */
 804dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 805                            unsigned long offset, size_t size,
 806                            enum dma_data_direction dir,
 807                            unsigned long attrs)
 808{
 809        phys_addr_t map, phys = page_to_phys(page) + offset;
 810        dma_addr_t dev_addr = phys_to_dma(dev, phys);
 811
 812        BUG_ON(dir == DMA_NONE);
 813        /*
 814         * If the address happens to be in the device's DMA window,
 815         * we can safely return the device addr and not worry about bounce
 816         * buffering it.
 817         */
 818        if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
 819                return dev_addr;
 820
 821        trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 822
 823        /* Oh well, have to allocate and map a bounce buffer. */
 824        map = map_single(dev, phys, size, dir, attrs);
 825        if (map == SWIOTLB_MAP_ERROR) {
 826                swiotlb_full(dev, size, dir, 1);
 827                return __phys_to_dma(dev, io_tlb_overflow_buffer);
 828        }
 829
 830        dev_addr = __phys_to_dma(dev, map);
 831
 832        /* Ensure that the address returned is DMA'ble */
 833        if (dma_capable(dev, dev_addr, size))
 834                return dev_addr;
 835
 836        attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 837        swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
 838
 839        return __phys_to_dma(dev, io_tlb_overflow_buffer);
 840}
 841
 842/*
 843 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 844 * match what was provided for in a previous swiotlb_map_page call.  All
 845 * other usages are undefined.
 846 *
 847 * After this call, reads by the cpu to the buffer are guaranteed to see
 848 * whatever the device wrote there.
 849 */
 850static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 851                         size_t size, enum dma_data_direction dir,
 852                         unsigned long attrs)
 853{
 854        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 855
 856        BUG_ON(dir == DMA_NONE);
 857
 858        if (is_swiotlb_buffer(paddr)) {
 859                swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 860                return;
 861        }
 862
 863        if (dir != DMA_FROM_DEVICE)
 864                return;
 865
 866        /*
 867         * phys_to_virt doesn't work with hihgmem page but we could
 868         * call dma_mark_clean() with hihgmem page here. However, we
 869         * are fine since dma_mark_clean() is null on POWERPC. We can
 870         * make dma_mark_clean() take a physical address if necessary.
 871         */
 872        dma_mark_clean(phys_to_virt(paddr), size);
 873}
 874
 875void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 876                        size_t size, enum dma_data_direction dir,
 877                        unsigned long attrs)
 878{
 879        unmap_single(hwdev, dev_addr, size, dir, attrs);
 880}
 881
 882/*
 883 * Make physical memory consistent for a single streaming mode DMA translation
 884 * after a transfer.
 885 *
 886 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 887 * using the cpu, yet do not wish to teardown the dma mapping, you must
 888 * call this function before doing so.  At the next point you give the dma
 889 * address back to the card, you must first perform a
 890 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 891 */
 892static void
 893swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 894                    size_t size, enum dma_data_direction dir,
 895                    enum dma_sync_target target)
 896{
 897        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 898
 899        BUG_ON(dir == DMA_NONE);
 900
 901        if (is_swiotlb_buffer(paddr)) {
 902                swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 903                return;
 904        }
 905
 906        if (dir != DMA_FROM_DEVICE)
 907                return;
 908
 909        dma_mark_clean(phys_to_virt(paddr), size);
 910}
 911
 912void
 913swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 914                            size_t size, enum dma_data_direction dir)
 915{
 916        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 917}
 918
 919void
 920swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 921                               size_t size, enum dma_data_direction dir)
 922{
 923        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 924}
 925
 926/*
 927 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 928 * This is the scatter-gather version of the above swiotlb_map_page
 929 * interface.  Here the scatter gather list elements are each tagged with the
 930 * appropriate dma address and length.  They are obtained via
 931 * sg_dma_{address,length}(SG).
 932 *
 933 * NOTE: An implementation may be able to use a smaller number of
 934 *       DMA address/length pairs than there are SG table elements.
 935 *       (for example via virtual mapping capabilities)
 936 *       The routine returns the number of addr/length pairs actually
 937 *       used, at most nents.
 938 *
 939 * Device ownership issues as mentioned above for swiotlb_map_page are the
 940 * same here.
 941 */
 942int
 943swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 944                     enum dma_data_direction dir, unsigned long attrs)
 945{
 946        struct scatterlist *sg;
 947        int i;
 948
 949        BUG_ON(dir == DMA_NONE);
 950
 951        for_each_sg(sgl, sg, nelems, i) {
 952                phys_addr_t paddr = sg_phys(sg);
 953                dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 954
 955                if (swiotlb_force == SWIOTLB_FORCE ||
 956                    !dma_capable(hwdev, dev_addr, sg->length)) {
 957                        phys_addr_t map = map_single(hwdev, sg_phys(sg),
 958                                                     sg->length, dir, attrs);
 959                        if (map == SWIOTLB_MAP_ERROR) {
 960                                /* Don't panic here, we expect map_sg users
 961                                   to do proper error handling. */
 962                                swiotlb_full(hwdev, sg->length, dir, 0);
 963                                attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 964                                swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 965                                                       attrs);
 966                                sg_dma_len(sgl) = 0;
 967                                return 0;
 968                        }
 969                        sg->dma_address = __phys_to_dma(hwdev, map);
 970                } else
 971                        sg->dma_address = dev_addr;
 972                sg_dma_len(sg) = sg->length;
 973        }
 974        return nelems;
 975}
 976
 977/*
 978 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 979 * concerning calls here are the same as for swiotlb_unmap_page() above.
 980 */
 981void
 982swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 983                       int nelems, enum dma_data_direction dir,
 984                       unsigned long attrs)
 985{
 986        struct scatterlist *sg;
 987        int i;
 988
 989        BUG_ON(dir == DMA_NONE);
 990
 991        for_each_sg(sgl, sg, nelems, i)
 992                unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
 993                             attrs);
 994}
 995
 996/*
 997 * Make physical memory consistent for a set of streaming mode DMA translations
 998 * after a transfer.
 999 *
1000 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1001 * and usage.
1002 */
1003static void
1004swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1005                int nelems, enum dma_data_direction dir,
1006                enum dma_sync_target target)
1007{
1008        struct scatterlist *sg;
1009        int i;
1010
1011        for_each_sg(sgl, sg, nelems, i)
1012                swiotlb_sync_single(hwdev, sg->dma_address,
1013                                    sg_dma_len(sg), dir, target);
1014}
1015
1016void
1017swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1018                        int nelems, enum dma_data_direction dir)
1019{
1020        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1021}
1022
1023void
1024swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1025                           int nelems, enum dma_data_direction dir)
1026{
1027        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1028}
1029
1030int
1031swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1032{
1033        return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
1034}
1035
1036/*
1037 * Return whether the given device DMA address mask can be supported
1038 * properly.  For example, if your device can only drive the low 24-bits
1039 * during bus mastering, then you would pass 0x00ffffff as the mask to
1040 * this function.
1041 */
1042int
1043swiotlb_dma_supported(struct device *hwdev, u64 mask)
1044{
1045        return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1046}
1047
1048#ifdef CONFIG_DMA_DIRECT_OPS
1049void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1050                gfp_t gfp, unsigned long attrs)
1051{
1052        void *vaddr;
1053
1054        /* temporary workaround: */
1055        if (gfp & __GFP_NOWARN)
1056                attrs |= DMA_ATTR_NO_WARN;
1057
1058        /*
1059         * Don't print a warning when the first allocation attempt fails.
1060         * swiotlb_alloc_coherent() will print a warning when the DMA memory
1061         * allocation ultimately failed.
1062         */
1063        gfp |= __GFP_NOWARN;
1064
1065        vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
1066        if (!vaddr)
1067                vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
1068        return vaddr;
1069}
1070
1071void swiotlb_free(struct device *dev, size_t size, void *vaddr,
1072                dma_addr_t dma_addr, unsigned long attrs)
1073{
1074        if (!swiotlb_free_buffer(dev, size, dma_addr))
1075                dma_direct_free(dev, size, vaddr, dma_addr, attrs);
1076}
1077
1078const struct dma_map_ops swiotlb_dma_ops = {
1079        .mapping_error          = swiotlb_dma_mapping_error,
1080        .alloc                  = swiotlb_alloc,
1081        .free                   = swiotlb_free,
1082        .sync_single_for_cpu    = swiotlb_sync_single_for_cpu,
1083        .sync_single_for_device = swiotlb_sync_single_for_device,
1084        .sync_sg_for_cpu        = swiotlb_sync_sg_for_cpu,
1085        .sync_sg_for_device     = swiotlb_sync_sg_for_device,
1086        .map_sg                 = swiotlb_map_sg_attrs,
1087        .unmap_sg               = swiotlb_unmap_sg_attrs,
1088        .map_page               = swiotlb_map_page,
1089        .unmap_page             = swiotlb_unmap_page,
1090        .dma_supported          = dma_direct_supported,
1091};
1092#endif /* CONFIG_DMA_DIRECT_OPS */
1093