linux/mm/gup.c
<<
>>
Prefs
   1#include <linux/kernel.h>
   2#include <linux/errno.h>
   3#include <linux/err.h>
   4#include <linux/spinlock.h>
   5
   6#include <linux/mm.h>
   7#include <linux/memremap.h>
   8#include <linux/pagemap.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/swapops.h>
  12
  13#include <linux/sched/signal.h>
  14#include <linux/rwsem.h>
  15#include <linux/hugetlb.h>
  16
  17#include <asm/mmu_context.h>
  18#include <asm/pgtable.h>
  19#include <asm/tlbflush.h>
  20
  21#include "internal.h"
  22
  23static struct page *no_page_table(struct vm_area_struct *vma,
  24                unsigned int flags)
  25{
  26        /*
  27         * When core dumping an enormous anonymous area that nobody
  28         * has touched so far, we don't want to allocate unnecessary pages or
  29         * page tables.  Return error instead of NULL to skip handle_mm_fault,
  30         * then get_dump_page() will return NULL to leave a hole in the dump.
  31         * But we can only make this optimization where a hole would surely
  32         * be zero-filled if handle_mm_fault() actually did handle it.
  33         */
  34        if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
  35                return ERR_PTR(-EFAULT);
  36        return NULL;
  37}
  38
  39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
  40                pte_t *pte, unsigned int flags)
  41{
  42        /* No page to get reference */
  43        if (flags & FOLL_GET)
  44                return -EFAULT;
  45
  46        if (flags & FOLL_TOUCH) {
  47                pte_t entry = *pte;
  48
  49                if (flags & FOLL_WRITE)
  50                        entry = pte_mkdirty(entry);
  51                entry = pte_mkyoung(entry);
  52
  53                if (!pte_same(*pte, entry)) {
  54                        set_pte_at(vma->vm_mm, address, pte, entry);
  55                        update_mmu_cache(vma, address, pte);
  56                }
  57        }
  58
  59        /* Proper page table entry exists, but no corresponding struct page */
  60        return -EEXIST;
  61}
  62
  63/*
  64 * FOLL_FORCE can write to even unwritable pte's, but only
  65 * after we've gone through a COW cycle and they are dirty.
  66 */
  67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
  68{
  69        return pte_write(pte) ||
  70                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
  71}
  72
  73static struct page *follow_page_pte(struct vm_area_struct *vma,
  74                unsigned long address, pmd_t *pmd, unsigned int flags)
  75{
  76        struct mm_struct *mm = vma->vm_mm;
  77        struct dev_pagemap *pgmap = NULL;
  78        struct page *page;
  79        spinlock_t *ptl;
  80        pte_t *ptep, pte;
  81
  82retry:
  83        if (unlikely(pmd_bad(*pmd)))
  84                return no_page_table(vma, flags);
  85
  86        ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  87        pte = *ptep;
  88        if (!pte_present(pte)) {
  89                swp_entry_t entry;
  90                /*
  91                 * KSM's break_ksm() relies upon recognizing a ksm page
  92                 * even while it is being migrated, so for that case we
  93                 * need migration_entry_wait().
  94                 */
  95                if (likely(!(flags & FOLL_MIGRATION)))
  96                        goto no_page;
  97                if (pte_none(pte))
  98                        goto no_page;
  99                entry = pte_to_swp_entry(pte);
 100                if (!is_migration_entry(entry))
 101                        goto no_page;
 102                pte_unmap_unlock(ptep, ptl);
 103                migration_entry_wait(mm, pmd, address);
 104                goto retry;
 105        }
 106        if ((flags & FOLL_NUMA) && pte_protnone(pte))
 107                goto no_page;
 108        if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
 109                pte_unmap_unlock(ptep, ptl);
 110                return NULL;
 111        }
 112
 113        page = vm_normal_page(vma, address, pte);
 114        if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
 115                /*
 116                 * Only return device mapping pages in the FOLL_GET case since
 117                 * they are only valid while holding the pgmap reference.
 118                 */
 119                pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
 120                if (pgmap)
 121                        page = pte_page(pte);
 122                else
 123                        goto no_page;
 124        } else if (unlikely(!page)) {
 125                if (flags & FOLL_DUMP) {
 126                        /* Avoid special (like zero) pages in core dumps */
 127                        page = ERR_PTR(-EFAULT);
 128                        goto out;
 129                }
 130
 131                if (is_zero_pfn(pte_pfn(pte))) {
 132                        page = pte_page(pte);
 133                } else {
 134                        int ret;
 135
 136                        ret = follow_pfn_pte(vma, address, ptep, flags);
 137                        page = ERR_PTR(ret);
 138                        goto out;
 139                }
 140        }
 141
 142        if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 143                int ret;
 144                get_page(page);
 145                pte_unmap_unlock(ptep, ptl);
 146                lock_page(page);
 147                ret = split_huge_page(page);
 148                unlock_page(page);
 149                put_page(page);
 150                if (ret)
 151                        return ERR_PTR(ret);
 152                goto retry;
 153        }
 154
 155        if (flags & FOLL_GET) {
 156                get_page(page);
 157
 158                /* drop the pgmap reference now that we hold the page */
 159                if (pgmap) {
 160                        put_dev_pagemap(pgmap);
 161                        pgmap = NULL;
 162                }
 163        }
 164        if (flags & FOLL_TOUCH) {
 165                if ((flags & FOLL_WRITE) &&
 166                    !pte_dirty(pte) && !PageDirty(page))
 167                        set_page_dirty(page);
 168                /*
 169                 * pte_mkyoung() would be more correct here, but atomic care
 170                 * is needed to avoid losing the dirty bit: it is easier to use
 171                 * mark_page_accessed().
 172                 */
 173                mark_page_accessed(page);
 174        }
 175        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 176                /* Do not mlock pte-mapped THP */
 177                if (PageTransCompound(page))
 178                        goto out;
 179
 180                /*
 181                 * The preliminary mapping check is mainly to avoid the
 182                 * pointless overhead of lock_page on the ZERO_PAGE
 183                 * which might bounce very badly if there is contention.
 184                 *
 185                 * If the page is already locked, we don't need to
 186                 * handle it now - vmscan will handle it later if and
 187                 * when it attempts to reclaim the page.
 188                 */
 189                if (page->mapping && trylock_page(page)) {
 190                        lru_add_drain();  /* push cached pages to LRU */
 191                        /*
 192                         * Because we lock page here, and migration is
 193                         * blocked by the pte's page reference, and we
 194                         * know the page is still mapped, we don't even
 195                         * need to check for file-cache page truncation.
 196                         */
 197                        mlock_vma_page(page);
 198                        unlock_page(page);
 199                }
 200        }
 201out:
 202        pte_unmap_unlock(ptep, ptl);
 203        return page;
 204no_page:
 205        pte_unmap_unlock(ptep, ptl);
 206        if (!pte_none(pte))
 207                return NULL;
 208        return no_page_table(vma, flags);
 209}
 210
 211static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 212                                    unsigned long address, pud_t *pudp,
 213                                    unsigned int flags, unsigned int *page_mask)
 214{
 215        pmd_t *pmd;
 216        spinlock_t *ptl;
 217        struct page *page;
 218        struct mm_struct *mm = vma->vm_mm;
 219
 220        pmd = pmd_offset(pudp, address);
 221        if (pmd_none(*pmd))
 222                return no_page_table(vma, flags);
 223        if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
 224                page = follow_huge_pmd(mm, address, pmd, flags);
 225                if (page)
 226                        return page;
 227                return no_page_table(vma, flags);
 228        }
 229        if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
 230                page = follow_huge_pd(vma, address,
 231                                      __hugepd(pmd_val(*pmd)), flags,
 232                                      PMD_SHIFT);
 233                if (page)
 234                        return page;
 235                return no_page_table(vma, flags);
 236        }
 237retry:
 238        if (!pmd_present(*pmd)) {
 239                if (likely(!(flags & FOLL_MIGRATION)))
 240                        return no_page_table(vma, flags);
 241                VM_BUG_ON(thp_migration_supported() &&
 242                                  !is_pmd_migration_entry(*pmd));
 243                if (is_pmd_migration_entry(*pmd))
 244                        pmd_migration_entry_wait(mm, pmd);
 245                goto retry;
 246        }
 247        if (pmd_devmap(*pmd)) {
 248                ptl = pmd_lock(mm, pmd);
 249                page = follow_devmap_pmd(vma, address, pmd, flags);
 250                spin_unlock(ptl);
 251                if (page)
 252                        return page;
 253        }
 254        if (likely(!pmd_trans_huge(*pmd)))
 255                return follow_page_pte(vma, address, pmd, flags);
 256
 257        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
 258                return no_page_table(vma, flags);
 259
 260retry_locked:
 261        ptl = pmd_lock(mm, pmd);
 262        if (unlikely(!pmd_present(*pmd))) {
 263                spin_unlock(ptl);
 264                if (likely(!(flags & FOLL_MIGRATION)))
 265                        return no_page_table(vma, flags);
 266                pmd_migration_entry_wait(mm, pmd);
 267                goto retry_locked;
 268        }
 269        if (unlikely(!pmd_trans_huge(*pmd))) {
 270                spin_unlock(ptl);
 271                return follow_page_pte(vma, address, pmd, flags);
 272        }
 273        if (flags & FOLL_SPLIT) {
 274                int ret;
 275                page = pmd_page(*pmd);
 276                if (is_huge_zero_page(page)) {
 277                        spin_unlock(ptl);
 278                        ret = 0;
 279                        split_huge_pmd(vma, pmd, address);
 280                        if (pmd_trans_unstable(pmd))
 281                                ret = -EBUSY;
 282                } else {
 283                        get_page(page);
 284                        spin_unlock(ptl);
 285                        lock_page(page);
 286                        ret = split_huge_page(page);
 287                        unlock_page(page);
 288                        put_page(page);
 289                        if (pmd_none(*pmd))
 290                                return no_page_table(vma, flags);
 291                }
 292
 293                return ret ? ERR_PTR(ret) :
 294                        follow_page_pte(vma, address, pmd, flags);
 295        }
 296        page = follow_trans_huge_pmd(vma, address, pmd, flags);
 297        spin_unlock(ptl);
 298        *page_mask = HPAGE_PMD_NR - 1;
 299        return page;
 300}
 301
 302
 303static struct page *follow_pud_mask(struct vm_area_struct *vma,
 304                                    unsigned long address, p4d_t *p4dp,
 305                                    unsigned int flags, unsigned int *page_mask)
 306{
 307        pud_t *pud;
 308        spinlock_t *ptl;
 309        struct page *page;
 310        struct mm_struct *mm = vma->vm_mm;
 311
 312        pud = pud_offset(p4dp, address);
 313        if (pud_none(*pud))
 314                return no_page_table(vma, flags);
 315        if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
 316                page = follow_huge_pud(mm, address, pud, flags);
 317                if (page)
 318                        return page;
 319                return no_page_table(vma, flags);
 320        }
 321        if (is_hugepd(__hugepd(pud_val(*pud)))) {
 322                page = follow_huge_pd(vma, address,
 323                                      __hugepd(pud_val(*pud)), flags,
 324                                      PUD_SHIFT);
 325                if (page)
 326                        return page;
 327                return no_page_table(vma, flags);
 328        }
 329        if (pud_devmap(*pud)) {
 330                ptl = pud_lock(mm, pud);
 331                page = follow_devmap_pud(vma, address, pud, flags);
 332                spin_unlock(ptl);
 333                if (page)
 334                        return page;
 335        }
 336        if (unlikely(pud_bad(*pud)))
 337                return no_page_table(vma, flags);
 338
 339        return follow_pmd_mask(vma, address, pud, flags, page_mask);
 340}
 341
 342
 343static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 344                                    unsigned long address, pgd_t *pgdp,
 345                                    unsigned int flags, unsigned int *page_mask)
 346{
 347        p4d_t *p4d;
 348        struct page *page;
 349
 350        p4d = p4d_offset(pgdp, address);
 351        if (p4d_none(*p4d))
 352                return no_page_table(vma, flags);
 353        BUILD_BUG_ON(p4d_huge(*p4d));
 354        if (unlikely(p4d_bad(*p4d)))
 355                return no_page_table(vma, flags);
 356
 357        if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
 358                page = follow_huge_pd(vma, address,
 359                                      __hugepd(p4d_val(*p4d)), flags,
 360                                      P4D_SHIFT);
 361                if (page)
 362                        return page;
 363                return no_page_table(vma, flags);
 364        }
 365        return follow_pud_mask(vma, address, p4d, flags, page_mask);
 366}
 367
 368/**
 369 * follow_page_mask - look up a page descriptor from a user-virtual address
 370 * @vma: vm_area_struct mapping @address
 371 * @address: virtual address to look up
 372 * @flags: flags modifying lookup behaviour
 373 * @page_mask: on output, *page_mask is set according to the size of the page
 374 *
 375 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 376 *
 377 * Returns the mapped (struct page *), %NULL if no mapping exists, or
 378 * an error pointer if there is a mapping to something not represented
 379 * by a page descriptor (see also vm_normal_page()).
 380 */
 381struct page *follow_page_mask(struct vm_area_struct *vma,
 382                              unsigned long address, unsigned int flags,
 383                              unsigned int *page_mask)
 384{
 385        pgd_t *pgd;
 386        struct page *page;
 387        struct mm_struct *mm = vma->vm_mm;
 388
 389        *page_mask = 0;
 390
 391        /* make this handle hugepd */
 392        page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 393        if (!IS_ERR(page)) {
 394                BUG_ON(flags & FOLL_GET);
 395                return page;
 396        }
 397
 398        pgd = pgd_offset(mm, address);
 399
 400        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 401                return no_page_table(vma, flags);
 402
 403        if (pgd_huge(*pgd)) {
 404                page = follow_huge_pgd(mm, address, pgd, flags);
 405                if (page)
 406                        return page;
 407                return no_page_table(vma, flags);
 408        }
 409        if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
 410                page = follow_huge_pd(vma, address,
 411                                      __hugepd(pgd_val(*pgd)), flags,
 412                                      PGDIR_SHIFT);
 413                if (page)
 414                        return page;
 415                return no_page_table(vma, flags);
 416        }
 417
 418        return follow_p4d_mask(vma, address, pgd, flags, page_mask);
 419}
 420
 421static int get_gate_page(struct mm_struct *mm, unsigned long address,
 422                unsigned int gup_flags, struct vm_area_struct **vma,
 423                struct page **page)
 424{
 425        pgd_t *pgd;
 426        p4d_t *p4d;
 427        pud_t *pud;
 428        pmd_t *pmd;
 429        pte_t *pte;
 430        int ret = -EFAULT;
 431
 432        /* user gate pages are read-only */
 433        if (gup_flags & FOLL_WRITE)
 434                return -EFAULT;
 435        if (address > TASK_SIZE)
 436                pgd = pgd_offset_k(address);
 437        else
 438                pgd = pgd_offset_gate(mm, address);
 439        BUG_ON(pgd_none(*pgd));
 440        p4d = p4d_offset(pgd, address);
 441        BUG_ON(p4d_none(*p4d));
 442        pud = pud_offset(p4d, address);
 443        BUG_ON(pud_none(*pud));
 444        pmd = pmd_offset(pud, address);
 445        if (!pmd_present(*pmd))
 446                return -EFAULT;
 447        VM_BUG_ON(pmd_trans_huge(*pmd));
 448        pte = pte_offset_map(pmd, address);
 449        if (pte_none(*pte))
 450                goto unmap;
 451        *vma = get_gate_vma(mm);
 452        if (!page)
 453                goto out;
 454        *page = vm_normal_page(*vma, address, *pte);
 455        if (!*page) {
 456                if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 457                        goto unmap;
 458                *page = pte_page(*pte);
 459
 460                /*
 461                 * This should never happen (a device public page in the gate
 462                 * area).
 463                 */
 464                if (is_device_public_page(*page))
 465                        goto unmap;
 466        }
 467        get_page(*page);
 468out:
 469        ret = 0;
 470unmap:
 471        pte_unmap(pte);
 472        return ret;
 473}
 474
 475/*
 476 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 477 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 478 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 479 */
 480static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
 481                unsigned long address, unsigned int *flags, int *nonblocking)
 482{
 483        unsigned int fault_flags = 0;
 484        int ret;
 485
 486        /* mlock all present pages, but do not fault in new pages */
 487        if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 488                return -ENOENT;
 489        if (*flags & FOLL_WRITE)
 490                fault_flags |= FAULT_FLAG_WRITE;
 491        if (*flags & FOLL_REMOTE)
 492                fault_flags |= FAULT_FLAG_REMOTE;
 493        if (nonblocking)
 494                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 495        if (*flags & FOLL_NOWAIT)
 496                fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 497        if (*flags & FOLL_TRIED) {
 498                VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
 499                fault_flags |= FAULT_FLAG_TRIED;
 500        }
 501
 502        ret = handle_mm_fault(vma, address, fault_flags);
 503        if (ret & VM_FAULT_ERROR) {
 504                int err = vm_fault_to_errno(ret, *flags);
 505
 506                if (err)
 507                        return err;
 508                BUG();
 509        }
 510
 511        if (tsk) {
 512                if (ret & VM_FAULT_MAJOR)
 513                        tsk->maj_flt++;
 514                else
 515                        tsk->min_flt++;
 516        }
 517
 518        if (ret & VM_FAULT_RETRY) {
 519                if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 520                        *nonblocking = 0;
 521                return -EBUSY;
 522        }
 523
 524        /*
 525         * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 526         * necessary, even if maybe_mkwrite decided not to set pte_write. We
 527         * can thus safely do subsequent page lookups as if they were reads.
 528         * But only do so when looping for pte_write is futile: in some cases
 529         * userspace may also be wanting to write to the gotten user page,
 530         * which a read fault here might prevent (a readonly page might get
 531         * reCOWed by userspace write).
 532         */
 533        if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 534                *flags |= FOLL_COW;
 535        return 0;
 536}
 537
 538static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 539{
 540        vm_flags_t vm_flags = vma->vm_flags;
 541        int write = (gup_flags & FOLL_WRITE);
 542        int foreign = (gup_flags & FOLL_REMOTE);
 543
 544        if (vm_flags & (VM_IO | VM_PFNMAP))
 545                return -EFAULT;
 546
 547        if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 548                return -EFAULT;
 549
 550        if (write) {
 551                if (!(vm_flags & VM_WRITE)) {
 552                        if (!(gup_flags & FOLL_FORCE))
 553                                return -EFAULT;
 554                        /*
 555                         * We used to let the write,force case do COW in a
 556                         * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 557                         * set a breakpoint in a read-only mapping of an
 558                         * executable, without corrupting the file (yet only
 559                         * when that file had been opened for writing!).
 560                         * Anon pages in shared mappings are surprising: now
 561                         * just reject it.
 562                         */
 563                        if (!is_cow_mapping(vm_flags))
 564                                return -EFAULT;
 565                }
 566        } else if (!(vm_flags & VM_READ)) {
 567                if (!(gup_flags & FOLL_FORCE))
 568                        return -EFAULT;
 569                /*
 570                 * Is there actually any vma we can reach here which does not
 571                 * have VM_MAYREAD set?
 572                 */
 573                if (!(vm_flags & VM_MAYREAD))
 574                        return -EFAULT;
 575        }
 576        /*
 577         * gups are always data accesses, not instruction
 578         * fetches, so execute=false here
 579         */
 580        if (!arch_vma_access_permitted(vma, write, false, foreign))
 581                return -EFAULT;
 582        return 0;
 583}
 584
 585/**
 586 * __get_user_pages() - pin user pages in memory
 587 * @tsk:        task_struct of target task
 588 * @mm:         mm_struct of target mm
 589 * @start:      starting user address
 590 * @nr_pages:   number of pages from start to pin
 591 * @gup_flags:  flags modifying pin behaviour
 592 * @pages:      array that receives pointers to the pages pinned.
 593 *              Should be at least nr_pages long. Or NULL, if caller
 594 *              only intends to ensure the pages are faulted in.
 595 * @vmas:       array of pointers to vmas corresponding to each page.
 596 *              Or NULL if the caller does not require them.
 597 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 598 *
 599 * Returns number of pages pinned. This may be fewer than the number
 600 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 601 * were pinned, returns -errno. Each page returned must be released
 602 * with a put_page() call when it is finished with. vmas will only
 603 * remain valid while mmap_sem is held.
 604 *
 605 * Must be called with mmap_sem held.  It may be released.  See below.
 606 *
 607 * __get_user_pages walks a process's page tables and takes a reference to
 608 * each struct page that each user address corresponds to at a given
 609 * instant. That is, it takes the page that would be accessed if a user
 610 * thread accesses the given user virtual address at that instant.
 611 *
 612 * This does not guarantee that the page exists in the user mappings when
 613 * __get_user_pages returns, and there may even be a completely different
 614 * page there in some cases (eg. if mmapped pagecache has been invalidated
 615 * and subsequently re faulted). However it does guarantee that the page
 616 * won't be freed completely. And mostly callers simply care that the page
 617 * contains data that was valid *at some point in time*. Typically, an IO
 618 * or similar operation cannot guarantee anything stronger anyway because
 619 * locks can't be held over the syscall boundary.
 620 *
 621 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 622 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 623 * appropriate) must be called after the page is finished with, and
 624 * before put_page is called.
 625 *
 626 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 627 * or mmap_sem contention, and if waiting is needed to pin all pages,
 628 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 629 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 630 * this case.
 631 *
 632 * A caller using such a combination of @nonblocking and @gup_flags
 633 * must therefore hold the mmap_sem for reading only, and recognize
 634 * when it's been released.  Otherwise, it must be held for either
 635 * reading or writing and will not be released.
 636 *
 637 * In most cases, get_user_pages or get_user_pages_fast should be used
 638 * instead of __get_user_pages. __get_user_pages should be used only if
 639 * you need some special @gup_flags.
 640 */
 641static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 642                unsigned long start, unsigned long nr_pages,
 643                unsigned int gup_flags, struct page **pages,
 644                struct vm_area_struct **vmas, int *nonblocking)
 645{
 646        long i = 0;
 647        unsigned int page_mask;
 648        struct vm_area_struct *vma = NULL;
 649
 650        if (!nr_pages)
 651                return 0;
 652
 653        VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
 654
 655        /*
 656         * If FOLL_FORCE is set then do not force a full fault as the hinting
 657         * fault information is unrelated to the reference behaviour of a task
 658         * using the address space
 659         */
 660        if (!(gup_flags & FOLL_FORCE))
 661                gup_flags |= FOLL_NUMA;
 662
 663        do {
 664                struct page *page;
 665                unsigned int foll_flags = gup_flags;
 666                unsigned int page_increm;
 667
 668                /* first iteration or cross vma bound */
 669                if (!vma || start >= vma->vm_end) {
 670                        vma = find_extend_vma(mm, start);
 671                        if (!vma && in_gate_area(mm, start)) {
 672                                int ret;
 673                                ret = get_gate_page(mm, start & PAGE_MASK,
 674                                                gup_flags, &vma,
 675                                                pages ? &pages[i] : NULL);
 676                                if (ret)
 677                                        return i ? : ret;
 678                                page_mask = 0;
 679                                goto next_page;
 680                        }
 681
 682                        if (!vma || check_vma_flags(vma, gup_flags))
 683                                return i ? : -EFAULT;
 684                        if (is_vm_hugetlb_page(vma)) {
 685                                i = follow_hugetlb_page(mm, vma, pages, vmas,
 686                                                &start, &nr_pages, i,
 687                                                gup_flags, nonblocking);
 688                                continue;
 689                        }
 690                }
 691retry:
 692                /*
 693                 * If we have a pending SIGKILL, don't keep faulting pages and
 694                 * potentially allocating memory.
 695                 */
 696                if (unlikely(fatal_signal_pending(current)))
 697                        return i ? i : -ERESTARTSYS;
 698                cond_resched();
 699                page = follow_page_mask(vma, start, foll_flags, &page_mask);
 700                if (!page) {
 701                        int ret;
 702                        ret = faultin_page(tsk, vma, start, &foll_flags,
 703                                        nonblocking);
 704                        switch (ret) {
 705                        case 0:
 706                                goto retry;
 707                        case -EFAULT:
 708                        case -ENOMEM:
 709                        case -EHWPOISON:
 710                                return i ? i : ret;
 711                        case -EBUSY:
 712                                return i;
 713                        case -ENOENT:
 714                                goto next_page;
 715                        }
 716                        BUG();
 717                } else if (PTR_ERR(page) == -EEXIST) {
 718                        /*
 719                         * Proper page table entry exists, but no corresponding
 720                         * struct page.
 721                         */
 722                        goto next_page;
 723                } else if (IS_ERR(page)) {
 724                        return i ? i : PTR_ERR(page);
 725                }
 726                if (pages) {
 727                        pages[i] = page;
 728                        flush_anon_page(vma, page, start);
 729                        flush_dcache_page(page);
 730                        page_mask = 0;
 731                }
 732next_page:
 733                if (vmas) {
 734                        vmas[i] = vma;
 735                        page_mask = 0;
 736                }
 737                page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
 738                if (page_increm > nr_pages)
 739                        page_increm = nr_pages;
 740                i += page_increm;
 741                start += page_increm * PAGE_SIZE;
 742                nr_pages -= page_increm;
 743        } while (nr_pages);
 744        return i;
 745}
 746
 747static bool vma_permits_fault(struct vm_area_struct *vma,
 748                              unsigned int fault_flags)
 749{
 750        bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
 751        bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
 752        vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
 753
 754        if (!(vm_flags & vma->vm_flags))
 755                return false;
 756
 757        /*
 758         * The architecture might have a hardware protection
 759         * mechanism other than read/write that can deny access.
 760         *
 761         * gup always represents data access, not instruction
 762         * fetches, so execute=false here:
 763         */
 764        if (!arch_vma_access_permitted(vma, write, false, foreign))
 765                return false;
 766
 767        return true;
 768}
 769
 770/*
 771 * fixup_user_fault() - manually resolve a user page fault
 772 * @tsk:        the task_struct to use for page fault accounting, or
 773 *              NULL if faults are not to be recorded.
 774 * @mm:         mm_struct of target mm
 775 * @address:    user address
 776 * @fault_flags:flags to pass down to handle_mm_fault()
 777 * @unlocked:   did we unlock the mmap_sem while retrying, maybe NULL if caller
 778 *              does not allow retry
 779 *
 780 * This is meant to be called in the specific scenario where for locking reasons
 781 * we try to access user memory in atomic context (within a pagefault_disable()
 782 * section), this returns -EFAULT, and we want to resolve the user fault before
 783 * trying again.
 784 *
 785 * Typically this is meant to be used by the futex code.
 786 *
 787 * The main difference with get_user_pages() is that this function will
 788 * unconditionally call handle_mm_fault() which will in turn perform all the
 789 * necessary SW fixup of the dirty and young bits in the PTE, while
 790 * get_user_pages() only guarantees to update these in the struct page.
 791 *
 792 * This is important for some architectures where those bits also gate the
 793 * access permission to the page because they are maintained in software.  On
 794 * such architectures, gup() will not be enough to make a subsequent access
 795 * succeed.
 796 *
 797 * This function will not return with an unlocked mmap_sem. So it has not the
 798 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
 799 */
 800int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 801                     unsigned long address, unsigned int fault_flags,
 802                     bool *unlocked)
 803{
 804        struct vm_area_struct *vma;
 805        int ret, major = 0;
 806
 807        if (unlocked)
 808                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 809
 810retry:
 811        vma = find_extend_vma(mm, address);
 812        if (!vma || address < vma->vm_start)
 813                return -EFAULT;
 814
 815        if (!vma_permits_fault(vma, fault_flags))
 816                return -EFAULT;
 817
 818        ret = handle_mm_fault(vma, address, fault_flags);
 819        major |= ret & VM_FAULT_MAJOR;
 820        if (ret & VM_FAULT_ERROR) {
 821                int err = vm_fault_to_errno(ret, 0);
 822
 823                if (err)
 824                        return err;
 825                BUG();
 826        }
 827
 828        if (ret & VM_FAULT_RETRY) {
 829                down_read(&mm->mmap_sem);
 830                if (!(fault_flags & FAULT_FLAG_TRIED)) {
 831                        *unlocked = true;
 832                        fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
 833                        fault_flags |= FAULT_FLAG_TRIED;
 834                        goto retry;
 835                }
 836        }
 837
 838        if (tsk) {
 839                if (major)
 840                        tsk->maj_flt++;
 841                else
 842                        tsk->min_flt++;
 843        }
 844        return 0;
 845}
 846EXPORT_SYMBOL_GPL(fixup_user_fault);
 847
 848static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
 849                                                struct mm_struct *mm,
 850                                                unsigned long start,
 851                                                unsigned long nr_pages,
 852                                                struct page **pages,
 853                                                struct vm_area_struct **vmas,
 854                                                int *locked,
 855                                                unsigned int flags)
 856{
 857        long ret, pages_done;
 858        bool lock_dropped;
 859
 860        if (locked) {
 861                /* if VM_FAULT_RETRY can be returned, vmas become invalid */
 862                BUG_ON(vmas);
 863                /* check caller initialized locked */
 864                BUG_ON(*locked != 1);
 865        }
 866
 867        if (pages)
 868                flags |= FOLL_GET;
 869
 870        pages_done = 0;
 871        lock_dropped = false;
 872        for (;;) {
 873                ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
 874                                       vmas, locked);
 875                if (!locked)
 876                        /* VM_FAULT_RETRY couldn't trigger, bypass */
 877                        return ret;
 878
 879                /* VM_FAULT_RETRY cannot return errors */
 880                if (!*locked) {
 881                        BUG_ON(ret < 0);
 882                        BUG_ON(ret >= nr_pages);
 883                }
 884
 885                if (!pages)
 886                        /* If it's a prefault don't insist harder */
 887                        return ret;
 888
 889                if (ret > 0) {
 890                        nr_pages -= ret;
 891                        pages_done += ret;
 892                        if (!nr_pages)
 893                                break;
 894                }
 895                if (*locked) {
 896                        /*
 897                         * VM_FAULT_RETRY didn't trigger or it was a
 898                         * FOLL_NOWAIT.
 899                         */
 900                        if (!pages_done)
 901                                pages_done = ret;
 902                        break;
 903                }
 904                /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
 905                pages += ret;
 906                start += ret << PAGE_SHIFT;
 907
 908                /*
 909                 * Repeat on the address that fired VM_FAULT_RETRY
 910                 * without FAULT_FLAG_ALLOW_RETRY but with
 911                 * FAULT_FLAG_TRIED.
 912                 */
 913                *locked = 1;
 914                lock_dropped = true;
 915                down_read(&mm->mmap_sem);
 916                ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
 917                                       pages, NULL, NULL);
 918                if (ret != 1) {
 919                        BUG_ON(ret > 1);
 920                        if (!pages_done)
 921                                pages_done = ret;
 922                        break;
 923                }
 924                nr_pages--;
 925                pages_done++;
 926                if (!nr_pages)
 927                        break;
 928                pages++;
 929                start += PAGE_SIZE;
 930        }
 931        if (lock_dropped && *locked) {
 932                /*
 933                 * We must let the caller know we temporarily dropped the lock
 934                 * and so the critical section protected by it was lost.
 935                 */
 936                up_read(&mm->mmap_sem);
 937                *locked = 0;
 938        }
 939        return pages_done;
 940}
 941
 942/*
 943 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 944 * paths better by using either get_user_pages_locked() or
 945 * get_user_pages_unlocked().
 946 *
 947 * get_user_pages_locked() is suitable to replace the form:
 948 *
 949 *      down_read(&mm->mmap_sem);
 950 *      do_something()
 951 *      get_user_pages(tsk, mm, ..., pages, NULL);
 952 *      up_read(&mm->mmap_sem);
 953 *
 954 *  to:
 955 *
 956 *      int locked = 1;
 957 *      down_read(&mm->mmap_sem);
 958 *      do_something()
 959 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 960 *      if (locked)
 961 *          up_read(&mm->mmap_sem);
 962 */
 963long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 964                           unsigned int gup_flags, struct page **pages,
 965                           int *locked)
 966{
 967        return __get_user_pages_locked(current, current->mm, start, nr_pages,
 968                                       pages, NULL, locked,
 969                                       gup_flags | FOLL_TOUCH);
 970}
 971EXPORT_SYMBOL(get_user_pages_locked);
 972
 973/*
 974 * get_user_pages_unlocked() is suitable to replace the form:
 975 *
 976 *      down_read(&mm->mmap_sem);
 977 *      get_user_pages(tsk, mm, ..., pages, NULL);
 978 *      up_read(&mm->mmap_sem);
 979 *
 980 *  with:
 981 *
 982 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 983 *
 984 * It is functionally equivalent to get_user_pages_fast so
 985 * get_user_pages_fast should be used instead if specific gup_flags
 986 * (e.g. FOLL_FORCE) are not required.
 987 */
 988long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 989                             struct page **pages, unsigned int gup_flags)
 990{
 991        struct mm_struct *mm = current->mm;
 992        int locked = 1;
 993        long ret;
 994
 995        down_read(&mm->mmap_sem);
 996        ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
 997                                      &locked, gup_flags | FOLL_TOUCH);
 998        if (locked)
 999                up_read(&mm->mmap_sem);
1000        return ret;
1001}
1002EXPORT_SYMBOL(get_user_pages_unlocked);
1003
1004/*
1005 * get_user_pages_remote() - pin user pages in memory
1006 * @tsk:        the task_struct to use for page fault accounting, or
1007 *              NULL if faults are not to be recorded.
1008 * @mm:         mm_struct of target mm
1009 * @start:      starting user address
1010 * @nr_pages:   number of pages from start to pin
1011 * @gup_flags:  flags modifying lookup behaviour
1012 * @pages:      array that receives pointers to the pages pinned.
1013 *              Should be at least nr_pages long. Or NULL, if caller
1014 *              only intends to ensure the pages are faulted in.
1015 * @vmas:       array of pointers to vmas corresponding to each page.
1016 *              Or NULL if the caller does not require them.
1017 * @locked:     pointer to lock flag indicating whether lock is held and
1018 *              subsequently whether VM_FAULT_RETRY functionality can be
1019 *              utilised. Lock must initially be held.
1020 *
1021 * Returns number of pages pinned. This may be fewer than the number
1022 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1023 * were pinned, returns -errno. Each page returned must be released
1024 * with a put_page() call when it is finished with. vmas will only
1025 * remain valid while mmap_sem is held.
1026 *
1027 * Must be called with mmap_sem held for read or write.
1028 *
1029 * get_user_pages walks a process's page tables and takes a reference to
1030 * each struct page that each user address corresponds to at a given
1031 * instant. That is, it takes the page that would be accessed if a user
1032 * thread accesses the given user virtual address at that instant.
1033 *
1034 * This does not guarantee that the page exists in the user mappings when
1035 * get_user_pages returns, and there may even be a completely different
1036 * page there in some cases (eg. if mmapped pagecache has been invalidated
1037 * and subsequently re faulted). However it does guarantee that the page
1038 * won't be freed completely. And mostly callers simply care that the page
1039 * contains data that was valid *at some point in time*. Typically, an IO
1040 * or similar operation cannot guarantee anything stronger anyway because
1041 * locks can't be held over the syscall boundary.
1042 *
1043 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1044 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1045 * be called after the page is finished with, and before put_page is called.
1046 *
1047 * get_user_pages is typically used for fewer-copy IO operations, to get a
1048 * handle on the memory by some means other than accesses via the user virtual
1049 * addresses. The pages may be submitted for DMA to devices or accessed via
1050 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1051 * use the correct cache flushing APIs.
1052 *
1053 * See also get_user_pages_fast, for performance critical applications.
1054 *
1055 * get_user_pages should be phased out in favor of
1056 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1057 * should use get_user_pages because it cannot pass
1058 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1059 */
1060long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1061                unsigned long start, unsigned long nr_pages,
1062                unsigned int gup_flags, struct page **pages,
1063                struct vm_area_struct **vmas, int *locked)
1064{
1065        return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1066                                       locked,
1067                                       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1068}
1069EXPORT_SYMBOL(get_user_pages_remote);
1070
1071/*
1072 * This is the same as get_user_pages_remote(), just with a
1073 * less-flexible calling convention where we assume that the task
1074 * and mm being operated on are the current task's and don't allow
1075 * passing of a locked parameter.  We also obviously don't pass
1076 * FOLL_REMOTE in here.
1077 */
1078long get_user_pages(unsigned long start, unsigned long nr_pages,
1079                unsigned int gup_flags, struct page **pages,
1080                struct vm_area_struct **vmas)
1081{
1082        return __get_user_pages_locked(current, current->mm, start, nr_pages,
1083                                       pages, vmas, NULL,
1084                                       gup_flags | FOLL_TOUCH);
1085}
1086EXPORT_SYMBOL(get_user_pages);
1087
1088#ifdef CONFIG_FS_DAX
1089/*
1090 * This is the same as get_user_pages() in that it assumes we are
1091 * operating on the current task's mm, but it goes further to validate
1092 * that the vmas associated with the address range are suitable for
1093 * longterm elevated page reference counts. For example, filesystem-dax
1094 * mappings are subject to the lifetime enforced by the filesystem and
1095 * we need guarantees that longterm users like RDMA and V4L2 only
1096 * establish mappings that have a kernel enforced revocation mechanism.
1097 *
1098 * "longterm" == userspace controlled elevated page count lifetime.
1099 * Contrast this to iov_iter_get_pages() usages which are transient.
1100 */
1101long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1102                unsigned int gup_flags, struct page **pages,
1103                struct vm_area_struct **vmas_arg)
1104{
1105        struct vm_area_struct **vmas = vmas_arg;
1106        struct vm_area_struct *vma_prev = NULL;
1107        long rc, i;
1108
1109        if (!pages)
1110                return -EINVAL;
1111
1112        if (!vmas) {
1113                vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1114                               GFP_KERNEL);
1115                if (!vmas)
1116                        return -ENOMEM;
1117        }
1118
1119        rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1120
1121        for (i = 0; i < rc; i++) {
1122                struct vm_area_struct *vma = vmas[i];
1123
1124                if (vma == vma_prev)
1125                        continue;
1126
1127                vma_prev = vma;
1128
1129                if (vma_is_fsdax(vma))
1130                        break;
1131        }
1132
1133        /*
1134         * Either get_user_pages() failed, or the vma validation
1135         * succeeded, in either case we don't need to put_page() before
1136         * returning.
1137         */
1138        if (i >= rc)
1139                goto out;
1140
1141        for (i = 0; i < rc; i++)
1142                put_page(pages[i]);
1143        rc = -EOPNOTSUPP;
1144out:
1145        if (vmas != vmas_arg)
1146                kfree(vmas);
1147        return rc;
1148}
1149EXPORT_SYMBOL(get_user_pages_longterm);
1150#endif /* CONFIG_FS_DAX */
1151
1152/**
1153 * populate_vma_page_range() -  populate a range of pages in the vma.
1154 * @vma:   target vma
1155 * @start: start address
1156 * @end:   end address
1157 * @nonblocking:
1158 *
1159 * This takes care of mlocking the pages too if VM_LOCKED is set.
1160 *
1161 * return 0 on success, negative error code on error.
1162 *
1163 * vma->vm_mm->mmap_sem must be held.
1164 *
1165 * If @nonblocking is NULL, it may be held for read or write and will
1166 * be unperturbed.
1167 *
1168 * If @nonblocking is non-NULL, it must held for read only and may be
1169 * released.  If it's released, *@nonblocking will be set to 0.
1170 */
1171long populate_vma_page_range(struct vm_area_struct *vma,
1172                unsigned long start, unsigned long end, int *nonblocking)
1173{
1174        struct mm_struct *mm = vma->vm_mm;
1175        unsigned long nr_pages = (end - start) / PAGE_SIZE;
1176        int gup_flags;
1177
1178        VM_BUG_ON(start & ~PAGE_MASK);
1179        VM_BUG_ON(end   & ~PAGE_MASK);
1180        VM_BUG_ON_VMA(start < vma->vm_start, vma);
1181        VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1182        VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1183
1184        gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1185        if (vma->vm_flags & VM_LOCKONFAULT)
1186                gup_flags &= ~FOLL_POPULATE;
1187        /*
1188         * We want to touch writable mappings with a write fault in order
1189         * to break COW, except for shared mappings because these don't COW
1190         * and we would not want to dirty them for nothing.
1191         */
1192        if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1193                gup_flags |= FOLL_WRITE;
1194
1195        /*
1196         * We want mlock to succeed for regions that have any permissions
1197         * other than PROT_NONE.
1198         */
1199        if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1200                gup_flags |= FOLL_FORCE;
1201
1202        /*
1203         * We made sure addr is within a VMA, so the following will
1204         * not result in a stack expansion that recurses back here.
1205         */
1206        return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1207                                NULL, NULL, nonblocking);
1208}
1209
1210/*
1211 * __mm_populate - populate and/or mlock pages within a range of address space.
1212 *
1213 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1214 * flags. VMAs must be already marked with the desired vm_flags, and
1215 * mmap_sem must not be held.
1216 */
1217int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1218{
1219        struct mm_struct *mm = current->mm;
1220        unsigned long end, nstart, nend;
1221        struct vm_area_struct *vma = NULL;
1222        int locked = 0;
1223        long ret = 0;
1224
1225        VM_BUG_ON(start & ~PAGE_MASK);
1226        VM_BUG_ON(len != PAGE_ALIGN(len));
1227        end = start + len;
1228
1229        for (nstart = start; nstart < end; nstart = nend) {
1230                /*
1231                 * We want to fault in pages for [nstart; end) address range.
1232                 * Find first corresponding VMA.
1233                 */
1234                if (!locked) {
1235                        locked = 1;
1236                        down_read(&mm->mmap_sem);
1237                        vma = find_vma(mm, nstart);
1238                } else if (nstart >= vma->vm_end)
1239                        vma = vma->vm_next;
1240                if (!vma || vma->vm_start >= end)
1241                        break;
1242                /*
1243                 * Set [nstart; nend) to intersection of desired address
1244                 * range with the first VMA. Also, skip undesirable VMA types.
1245                 */
1246                nend = min(end, vma->vm_end);
1247                if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1248                        continue;
1249                if (nstart < vma->vm_start)
1250                        nstart = vma->vm_start;
1251                /*
1252                 * Now fault in a range of pages. populate_vma_page_range()
1253                 * double checks the vma flags, so that it won't mlock pages
1254                 * if the vma was already munlocked.
1255                 */
1256                ret = populate_vma_page_range(vma, nstart, nend, &locked);
1257                if (ret < 0) {
1258                        if (ignore_errors) {
1259                                ret = 0;
1260                                continue;       /* continue at next VMA */
1261                        }
1262                        break;
1263                }
1264                nend = nstart + ret * PAGE_SIZE;
1265                ret = 0;
1266        }
1267        if (locked)
1268                up_read(&mm->mmap_sem);
1269        return ret;     /* 0 or negative error code */
1270}
1271
1272/**
1273 * get_dump_page() - pin user page in memory while writing it to core dump
1274 * @addr: user address
1275 *
1276 * Returns struct page pointer of user page pinned for dump,
1277 * to be freed afterwards by put_page().
1278 *
1279 * Returns NULL on any kind of failure - a hole must then be inserted into
1280 * the corefile, to preserve alignment with its headers; and also returns
1281 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1282 * allowing a hole to be left in the corefile to save diskspace.
1283 *
1284 * Called without mmap_sem, but after all other threads have been killed.
1285 */
1286#ifdef CONFIG_ELF_CORE
1287struct page *get_dump_page(unsigned long addr)
1288{
1289        struct vm_area_struct *vma;
1290        struct page *page;
1291
1292        if (__get_user_pages(current, current->mm, addr, 1,
1293                             FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1294                             NULL) < 1)
1295                return NULL;
1296        flush_cache_page(vma, addr, page_to_pfn(page));
1297        return page;
1298}
1299#endif /* CONFIG_ELF_CORE */
1300
1301/*
1302 * Generic Fast GUP
1303 *
1304 * get_user_pages_fast attempts to pin user pages by walking the page
1305 * tables directly and avoids taking locks. Thus the walker needs to be
1306 * protected from page table pages being freed from under it, and should
1307 * block any THP splits.
1308 *
1309 * One way to achieve this is to have the walker disable interrupts, and
1310 * rely on IPIs from the TLB flushing code blocking before the page table
1311 * pages are freed. This is unsuitable for architectures that do not need
1312 * to broadcast an IPI when invalidating TLBs.
1313 *
1314 * Another way to achieve this is to batch up page table containing pages
1315 * belonging to more than one mm_user, then rcu_sched a callback to free those
1316 * pages. Disabling interrupts will allow the fast_gup walker to both block
1317 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1318 * (which is a relatively rare event). The code below adopts this strategy.
1319 *
1320 * Before activating this code, please be aware that the following assumptions
1321 * are currently made:
1322 *
1323 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1324 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1325 *
1326 *  *) ptes can be read atomically by the architecture.
1327 *
1328 *  *) access_ok is sufficient to validate userspace address ranges.
1329 *
1330 * The last two assumptions can be relaxed by the addition of helper functions.
1331 *
1332 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1333 */
1334#ifdef CONFIG_HAVE_GENERIC_GUP
1335
1336#ifndef gup_get_pte
1337/*
1338 * We assume that the PTE can be read atomically. If this is not the case for
1339 * your architecture, please provide the helper.
1340 */
1341static inline pte_t gup_get_pte(pte_t *ptep)
1342{
1343        return READ_ONCE(*ptep);
1344}
1345#endif
1346
1347static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1348{
1349        while ((*nr) - nr_start) {
1350                struct page *page = pages[--(*nr)];
1351
1352                ClearPageReferenced(page);
1353                put_page(page);
1354        }
1355}
1356
1357#ifdef __HAVE_ARCH_PTE_SPECIAL
1358static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1359                         int write, struct page **pages, int *nr)
1360{
1361        struct dev_pagemap *pgmap = NULL;
1362        int nr_start = *nr, ret = 0;
1363        pte_t *ptep, *ptem;
1364
1365        ptem = ptep = pte_offset_map(&pmd, addr);
1366        do {
1367                pte_t pte = gup_get_pte(ptep);
1368                struct page *head, *page;
1369
1370                /*
1371                 * Similar to the PMD case below, NUMA hinting must take slow
1372                 * path using the pte_protnone check.
1373                 */
1374                if (pte_protnone(pte))
1375                        goto pte_unmap;
1376
1377                if (!pte_access_permitted(pte, write))
1378                        goto pte_unmap;
1379
1380                if (pte_devmap(pte)) {
1381                        pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1382                        if (unlikely(!pgmap)) {
1383                                undo_dev_pagemap(nr, nr_start, pages);
1384                                goto pte_unmap;
1385                        }
1386                } else if (pte_special(pte))
1387                        goto pte_unmap;
1388
1389                VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1390                page = pte_page(pte);
1391                head = compound_head(page);
1392
1393                if (!page_cache_get_speculative(head))
1394                        goto pte_unmap;
1395
1396                if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1397                        put_page(head);
1398                        goto pte_unmap;
1399                }
1400
1401                VM_BUG_ON_PAGE(compound_head(page) != head, page);
1402
1403                SetPageReferenced(page);
1404                pages[*nr] = page;
1405                (*nr)++;
1406
1407        } while (ptep++, addr += PAGE_SIZE, addr != end);
1408
1409        ret = 1;
1410
1411pte_unmap:
1412        if (pgmap)
1413                put_dev_pagemap(pgmap);
1414        pte_unmap(ptem);
1415        return ret;
1416}
1417#else
1418
1419/*
1420 * If we can't determine whether or not a pte is special, then fail immediately
1421 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1422 * to be special.
1423 *
1424 * For a futex to be placed on a THP tail page, get_futex_key requires a
1425 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1426 * useful to have gup_huge_pmd even if we can't operate on ptes.
1427 */
1428static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1429                         int write, struct page **pages, int *nr)
1430{
1431        return 0;
1432}
1433#endif /* __HAVE_ARCH_PTE_SPECIAL */
1434
1435#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1436static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1437                unsigned long end, struct page **pages, int *nr)
1438{
1439        int nr_start = *nr;
1440        struct dev_pagemap *pgmap = NULL;
1441
1442        do {
1443                struct page *page = pfn_to_page(pfn);
1444
1445                pgmap = get_dev_pagemap(pfn, pgmap);
1446                if (unlikely(!pgmap)) {
1447                        undo_dev_pagemap(nr, nr_start, pages);
1448                        return 0;
1449                }
1450                SetPageReferenced(page);
1451                pages[*nr] = page;
1452                get_page(page);
1453                (*nr)++;
1454                pfn++;
1455        } while (addr += PAGE_SIZE, addr != end);
1456
1457        if (pgmap)
1458                put_dev_pagemap(pgmap);
1459        return 1;
1460}
1461
1462static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1463                unsigned long end, struct page **pages, int *nr)
1464{
1465        unsigned long fault_pfn;
1466
1467        fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1468        return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1469}
1470
1471static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1472                unsigned long end, struct page **pages, int *nr)
1473{
1474        unsigned long fault_pfn;
1475
1476        fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1477        return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1478}
1479#else
1480static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1481                unsigned long end, struct page **pages, int *nr)
1482{
1483        BUILD_BUG();
1484        return 0;
1485}
1486
1487static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1488                unsigned long end, struct page **pages, int *nr)
1489{
1490        BUILD_BUG();
1491        return 0;
1492}
1493#endif
1494
1495static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1496                unsigned long end, int write, struct page **pages, int *nr)
1497{
1498        struct page *head, *page;
1499        int refs;
1500
1501        if (!pmd_access_permitted(orig, write))
1502                return 0;
1503
1504        if (pmd_devmap(orig))
1505                return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1506
1507        refs = 0;
1508        page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1509        do {
1510                pages[*nr] = page;
1511                (*nr)++;
1512                page++;
1513                refs++;
1514        } while (addr += PAGE_SIZE, addr != end);
1515
1516        head = compound_head(pmd_page(orig));
1517        if (!page_cache_add_speculative(head, refs)) {
1518                *nr -= refs;
1519                return 0;
1520        }
1521
1522        if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1523                *nr -= refs;
1524                while (refs--)
1525                        put_page(head);
1526                return 0;
1527        }
1528
1529        SetPageReferenced(head);
1530        return 1;
1531}
1532
1533static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1534                unsigned long end, int write, struct page **pages, int *nr)
1535{
1536        struct page *head, *page;
1537        int refs;
1538
1539        if (!pud_access_permitted(orig, write))
1540                return 0;
1541
1542        if (pud_devmap(orig))
1543                return __gup_device_huge_pud(orig, addr, end, pages, nr);
1544
1545        refs = 0;
1546        page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1547        do {
1548                pages[*nr] = page;
1549                (*nr)++;
1550                page++;
1551                refs++;
1552        } while (addr += PAGE_SIZE, addr != end);
1553
1554        head = compound_head(pud_page(orig));
1555        if (!page_cache_add_speculative(head, refs)) {
1556                *nr -= refs;
1557                return 0;
1558        }
1559
1560        if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1561                *nr -= refs;
1562                while (refs--)
1563                        put_page(head);
1564                return 0;
1565        }
1566
1567        SetPageReferenced(head);
1568        return 1;
1569}
1570
1571static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1572                        unsigned long end, int write,
1573                        struct page **pages, int *nr)
1574{
1575        int refs;
1576        struct page *head, *page;
1577
1578        if (!pgd_access_permitted(orig, write))
1579                return 0;
1580
1581        BUILD_BUG_ON(pgd_devmap(orig));
1582        refs = 0;
1583        page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1584        do {
1585                pages[*nr] = page;
1586                (*nr)++;
1587                page++;
1588                refs++;
1589        } while (addr += PAGE_SIZE, addr != end);
1590
1591        head = compound_head(pgd_page(orig));
1592        if (!page_cache_add_speculative(head, refs)) {
1593                *nr -= refs;
1594                return 0;
1595        }
1596
1597        if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1598                *nr -= refs;
1599                while (refs--)
1600                        put_page(head);
1601                return 0;
1602        }
1603
1604        SetPageReferenced(head);
1605        return 1;
1606}
1607
1608static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1609                int write, struct page **pages, int *nr)
1610{
1611        unsigned long next;
1612        pmd_t *pmdp;
1613
1614        pmdp = pmd_offset(&pud, addr);
1615        do {
1616                pmd_t pmd = READ_ONCE(*pmdp);
1617
1618                next = pmd_addr_end(addr, end);
1619                if (!pmd_present(pmd))
1620                        return 0;
1621
1622                if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1623                        /*
1624                         * NUMA hinting faults need to be handled in the GUP
1625                         * slowpath for accounting purposes and so that they
1626                         * can be serialised against THP migration.
1627                         */
1628                        if (pmd_protnone(pmd))
1629                                return 0;
1630
1631                        if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1632                                pages, nr))
1633                                return 0;
1634
1635                } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1636                        /*
1637                         * architecture have different format for hugetlbfs
1638                         * pmd format and THP pmd format
1639                         */
1640                        if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1641                                         PMD_SHIFT, next, write, pages, nr))
1642                                return 0;
1643                } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1644                        return 0;
1645        } while (pmdp++, addr = next, addr != end);
1646
1647        return 1;
1648}
1649
1650static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1651                         int write, struct page **pages, int *nr)
1652{
1653        unsigned long next;
1654        pud_t *pudp;
1655
1656        pudp = pud_offset(&p4d, addr);
1657        do {
1658                pud_t pud = READ_ONCE(*pudp);
1659
1660                next = pud_addr_end(addr, end);
1661                if (pud_none(pud))
1662                        return 0;
1663                if (unlikely(pud_huge(pud))) {
1664                        if (!gup_huge_pud(pud, pudp, addr, next, write,
1665                                          pages, nr))
1666                                return 0;
1667                } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1668                        if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1669                                         PUD_SHIFT, next, write, pages, nr))
1670                                return 0;
1671                } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1672                        return 0;
1673        } while (pudp++, addr = next, addr != end);
1674
1675        return 1;
1676}
1677
1678static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1679                         int write, struct page **pages, int *nr)
1680{
1681        unsigned long next;
1682        p4d_t *p4dp;
1683
1684        p4dp = p4d_offset(&pgd, addr);
1685        do {
1686                p4d_t p4d = READ_ONCE(*p4dp);
1687
1688                next = p4d_addr_end(addr, end);
1689                if (p4d_none(p4d))
1690                        return 0;
1691                BUILD_BUG_ON(p4d_huge(p4d));
1692                if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1693                        if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1694                                         P4D_SHIFT, next, write, pages, nr))
1695                                return 0;
1696                } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1697                        return 0;
1698        } while (p4dp++, addr = next, addr != end);
1699
1700        return 1;
1701}
1702
1703static void gup_pgd_range(unsigned long addr, unsigned long end,
1704                int write, struct page **pages, int *nr)
1705{
1706        unsigned long next;
1707        pgd_t *pgdp;
1708
1709        pgdp = pgd_offset(current->mm, addr);
1710        do {
1711                pgd_t pgd = READ_ONCE(*pgdp);
1712
1713                next = pgd_addr_end(addr, end);
1714                if (pgd_none(pgd))
1715                        return;
1716                if (unlikely(pgd_huge(pgd))) {
1717                        if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1718                                          pages, nr))
1719                                return;
1720                } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1721                        if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1722                                         PGDIR_SHIFT, next, write, pages, nr))
1723                                return;
1724                } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1725                        return;
1726        } while (pgdp++, addr = next, addr != end);
1727}
1728
1729#ifndef gup_fast_permitted
1730/*
1731 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1732 * we need to fall back to the slow version:
1733 */
1734bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1735{
1736        unsigned long len, end;
1737
1738        len = (unsigned long) nr_pages << PAGE_SHIFT;
1739        end = start + len;
1740        return end >= start;
1741}
1742#endif
1743
1744/*
1745 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1746 * the regular GUP.
1747 * Note a difference with get_user_pages_fast: this always returns the
1748 * number of pages pinned, 0 if no pages were pinned.
1749 */
1750int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1751                          struct page **pages)
1752{
1753        unsigned long addr, len, end;
1754        unsigned long flags;
1755        int nr = 0;
1756
1757        start &= PAGE_MASK;
1758        addr = start;
1759        len = (unsigned long) nr_pages << PAGE_SHIFT;
1760        end = start + len;
1761
1762        if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1763                                        (void __user *)start, len)))
1764                return 0;
1765
1766        /*
1767         * Disable interrupts.  We use the nested form as we can already have
1768         * interrupts disabled by get_futex_key.
1769         *
1770         * With interrupts disabled, we block page table pages from being
1771         * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1772         * for more details.
1773         *
1774         * We do not adopt an rcu_read_lock(.) here as we also want to
1775         * block IPIs that come from THPs splitting.
1776         */
1777
1778        if (gup_fast_permitted(start, nr_pages, write)) {
1779                local_irq_save(flags);
1780                gup_pgd_range(addr, end, write, pages, &nr);
1781                local_irq_restore(flags);
1782        }
1783
1784        return nr;
1785}
1786
1787/**
1788 * get_user_pages_fast() - pin user pages in memory
1789 * @start:      starting user address
1790 * @nr_pages:   number of pages from start to pin
1791 * @write:      whether pages will be written to
1792 * @pages:      array that receives pointers to the pages pinned.
1793 *              Should be at least nr_pages long.
1794 *
1795 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1796 * If not successful, it will fall back to taking the lock and
1797 * calling get_user_pages().
1798 *
1799 * Returns number of pages pinned. This may be fewer than the number
1800 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1801 * were pinned, returns -errno.
1802 */
1803int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1804                        struct page **pages)
1805{
1806        unsigned long addr, len, end;
1807        int nr = 0, ret = 0;
1808
1809        start &= PAGE_MASK;
1810        addr = start;
1811        len = (unsigned long) nr_pages << PAGE_SHIFT;
1812        end = start + len;
1813
1814        if (nr_pages <= 0)
1815                return 0;
1816
1817        if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1818                                        (void __user *)start, len)))
1819                return -EFAULT;
1820
1821        if (gup_fast_permitted(start, nr_pages, write)) {
1822                local_irq_disable();
1823                gup_pgd_range(addr, end, write, pages, &nr);
1824                local_irq_enable();
1825                ret = nr;
1826        }
1827
1828        if (nr < nr_pages) {
1829                /* Try to get the remaining pages with get_user_pages */
1830                start += nr << PAGE_SHIFT;
1831                pages += nr;
1832
1833                ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1834                                write ? FOLL_WRITE : 0);
1835
1836                /* Have to be a bit careful with return values */
1837                if (nr > 0) {
1838                        if (ret < 0)
1839                                ret = nr;
1840                        else
1841                                ret += nr;
1842                }
1843        }
1844
1845        return ret;
1846}
1847
1848#endif /* CONFIG_HAVE_GENERIC_GUP */
1849